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classical logic is widely held not to work outside mathematics is 
the theory of the conditional (chapter 4). But the more controver-
sial proposed amendments to classical logic are those that suggest 
there is something wrong even with its treatment of its originally 
intended mathematical area of application.

Such criticisms are of two kinds. If we think of classical logic as 
attempting to describe explicitly the logic accepted implicitly by 
the mathematical community in its practice of giving proofs, then 
there are two quite di! erent ways it might be criticized. It might 
be claimed to be an incorrect description of a correct practice 
or a correct description of an incorrect practice. In the former 
case, the critic’s quarrel is directly with classical logicians; in the 
latter, with orthodox mathematicians, revision in whose practice 
is prescribed. Relevantistic logic (chapter 5) in its original form 
appeared to be a species of criticism of the " rst, descriptive kind. 
Intuitionistic logic (chapter 6) is the best-known species of the 
second, prescriptive kind.

1.3 PHILOSOPHICAL LOGIC VERSUS PHILOSOPHY OF LOGIC

Logic, whether classical or extra- or anti-classical, is concerned 
with form. (On this traditional view of the subject, the phrase 
“formal logic” is pleonasm and “informal logic” oxymoron.) An 
argument is logically valid, its conclusion is a logical consequence 
of its premises, its premises logically imply its conclusions—three 
ways of saying the same thing—if and only if the argument is an 
instance of a logically valid form of argument. In modern logic 
forms are represented using formulas. What the reader of an 
introductory textbook is introduced to—what it is assumed the 
reader of this book has been introduced to—is on the one hand 
the art of formalizing arguments, representing their forms using 
formulas, and on the other hand the science of evaluating argu-
ments once formalized.

What logical forms are, and how they are related to linguistic 
forms, are deep and di#  cult questions not of philosophical logic 
but of philosophy of logic. $ ey are questions about what logi-
cians are doing when they are at work, not questions that have to 
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be resolved before logicians get to work. Indeed, logicians never 
would get to work if they waited for consensus to be achieved on 
such questions.

Similarly for the question of what premises and conclusions 
are. Here they will be spoken of as sentences rather than “propo-
sitions.” It will be le%  to be tacitly understood that in general it is 
only when taken in context that sentences are true or false, and 
that for sentences to count as “the same” for purposes of logical 
analysis in a given context they need not consist of exactly the 
same words in exactly the same order. With these understandings, 
the only di! erence between sentences and “propositions” of real 
importance for our purposes will be that sentences can change in 
truth value over time, whereas it is said that “propositions” can-
not (so that when a sentence changes truth value over time it is by 
expressing di! erent “propositions” at di! erent times).

All branches of philosophical logic borrow heavily from clas-
sical logic. While some previous acquaintance with classical logic 
is assumed here, introductory textbooks di! er greatly in their no-
tation and terminology, and a rapid review of the basics is called 
for, if for no other reason than to " x the particular symbolism and 
vocabulary that will be used in this book. $ e remainder of this 
chapter is a bare summary statement of the most important de" -
nitions and results pertaining to classical sentential and predicate 
logic. $ e reader may skim it on " rst reading and refer back to it 
as needed.

1.4 CLASSICAL SENTENTIAL LOGIC: FORMULAS

At the level of sentential logic, formulas are built up from sen-
tence letters p0, p1, p2, … , standing in the place of sentences not 
further analyzed, using connectives written ¬, ∧, ∨, →, and ↔, 
pronounced “not,” “and,” “or,” “if,” and “if and only if ” (hence-
forth abbreviated “i! ”), but representing negation, conjunction, 
disjunction, the conditional, and the biconditional, however ex-
pressed. $ e sentence letters are the atomic formulas. If A is a for-
mula, then ¬A is a formula. If A and B are formulas, then (A ∧ B) 
is a formula, and similarly for the other three connectives. ($ e 
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parentheses are to prevent ambiguities of grouping; in principle 
they should always be written, in practice they are not written 
when no ambiguity will result from omitting them.)

And those are all the formulas. And because those are all, in 
order to show that all formulas have some property, it is enough to 
show that atomic formulas have it, that if a formula has it, so does 
its negation, and that if two formulas have it, so does their conjunc-
tion, and similarly for the other connectives. $ is method of proof 
is called induction on complexity. One can also de" ne a notion for 
all formulas by the similar method of recursion on complexity.

To give an example of formalization, consider the following 
argument, in words (1)–(2) and symbols (3)–(4):

(1)  Portia didn’t go without Queenie also going; and Portia 
went.

(2) $ erefore, Queenie went.
(3) ¬(p ∧ ¬q) ∧ p
(4) q

When formalizing arguments, turning words into formulas, it 
is convenient to have as many connectives as possible available; 
but when proving results about formulas it is convenient to have 
as few as possible, since then in proofs and de" nitions by induc-
tion or recursion one has fewer cases to consider. One gets the 
best of both worlds if one considers only ¬ and ∧, say, as primi-
tive or part of the o#  cial notation, and the others as de! ned, or 
mere uno#  cial abbreviations: A ∨ B for ¬(¬A ∧ ¬B), A → B for 
¬A ∨ B, A ↔ B for (A → B) ∧ (B → A).

1.5 CLASSICAL SENTENTIAL LOGIC: MODELS

A form of argument is logically valid i!  in any instance in which 
all the premises are true, the conclusion is true. Here instances 
of a form are what one obtains by putting speci" c sentences in 
for the sentence letters, to obtain speci" c premises and a speci" c 
conclusion that may be true or false. But it really does not matter 
what the sentences substituted are, or what they mean, but only 
whether they are true. For the connectives are truth- functional, 
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meaning that the truth value, true or false, of a compound formed 
using one of them depends only on the truth values of the com-
ponents from which it is formed. $ us the truth values of the 
instances of premise (3) and conclusion (4) depend only on the 
truth values of the sentences substituted for p and q, and not their 
meaning or identity. A model for (part or all of) classical senten-
tial logic is just an assignment of truth values, conveniently repre-
sented by one for truth and zero for falsehood, to (some or all of) 
the sentence letters. $ us a model represents all that really mat-
ters for purposes of logical evaluation about an instance, so that 
in evaluating arguments it is not necessary to consider instances, 
but only models.

$ e extension of a model’s assignment of truth values to all 
formulas (or if only some sentence letters have been assigned val-
ues, to all formulas in which only those sentence letters occur) 
is de" ned by recursion on complexity. $ e value of a negation 
is the opposite of the value of what is negated, and the value of a 
conjunction is the minimum of the values of what are conjoined. 
Writing V B A to indicate that model V makes formula A true, we 
have the following (wherein (7) and (8) follow from (5) and (6) 
and the de" nitions of ∨ and → in terms of ¬ and ∧):

(5) V B ¬A i!   not V B A
(6) V B A ∧ B i!   V B A and V B B
(7) V B A ∨ B i!  V B A or V B B
(8) V B A → B i!  V B B if V B A

$ e argument from premises A1, A2, … , An to conclusion B 
is valid, the conclusion is a consequence or implication of the 
premises, i!  every model (for any part of the formal language 
large enough to include all the sentence letters occurring in the 
relevant formulas) that makes the premises true makes the con-
clusion true. $ ere is a separate terminology for two “degener-
ate” cases. If no model makes all of A1, A2, … , An true, then they 
are called jointly unsatis! able, and otherwise jointly satis! able 
(with “jointly” super& uous when n = 1). Like the notion of con-
sequence, the notion of satis" ability makes sense for in" nite as 
well as " nite sets. If every model makes B true, it is called valid, 
and otherwise invalid. Note that if one formula is the negation of 
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another, one of the two will be valid i!  the other is unsatis" able, 
and satis" able i!  the other is invalid.

Actually, the general notions of consequence and unsatis" -
ability, at least for " nite sets, can be reduced to the special case of 
validity of a formula, by considering the formulas

(9) ¬(A1 ∧ A2 ∧ … ∧ An ∧ ¬B)
(10) ¬(A1 ∧ A2 ∧ … ∧ An)

For the argument from the Ai to B is valid or invalid according as 
the formula (9), called its leading principle, is valid or invalid, and 
the Ai are satis" able or unsatis" able according as the formula (10) 
is invalid or valid. Two formulas A and B are equivalent i!  each is 
a consequence of the other, or what comes to the same thing, i!  
the biconditional A ↔ B is valid.

$ e valid formulas of classical sentential logic are called tau-
tologically valid or simply tautologies; with other logics, tautolo-
gies mean not valid formulas of that logic but formulas of that 
logic that are substitution instances of valid formulas of classical 
sentential logic; countertautologies are formulas whose negations 
are tautologies. $ e term tautological consequence or tautological 
implication is used similarly.

1.6 CLASSICAL SENTENTIAL LOGIC: DECIDABILITY

When the intuitive but vague notion of “instance” is replaced by 
the technical but precise notion of “model,” the need to check in-
! nitely many cases is reduced to the need to check ! nitely many. 
In (3) and (4), for example, though there are in" nitely many in-
stances, or pairs of sentences that might be substituted for the 
sentence letters, there are only four models, or pairs of truth val-
ues that such sentences might have.

$ e result is that classical sentential logic is decidable. $ ere is 
a decision procedure for validity, a mechanical procedure—a pro-
cedure such as in principle could be carried out by a computing 
machine—that will in all cases in a " nite amount of time tell us 
whether a given formula is valid or invalid, satis" able or unsatis-
" able, namely, the procedure of checking systematically through 
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all possible models. ($ e method of truth tables expounded in 
most introductory textbooks is one way of displaying such a sys-
tematic check.) It is easily checked that the argument (3)–(4) is 
valid (though it represents a form of argument rejected both by 
relevantists and by intuitionists).

1.7 CLASSICAL PREDICATE LOGIC: FORMULAS

$ ere are many arguments that cannot be represented in classical 
sentential logic, above all arguments that turn on quanti! cation, 
on statements about all or some. Classical predicate logic provides 
the means to formalize such arguments.

$ e notion of formula for predicate logic is more complex than 
it was for sentential logic. $ e basic symbols include, to begin 
with, predicate letters of various kinds: one-place predicate letters 
1P0, 1P1, 1P2, … , two-place predicate letters 2P0, 2P1, 2P2, … , and so 
on. $ ere are also the variables x0, x1, x2, … , and an atomic formula 
now is a k-place predicate followed by k variables. Sometimes a 
special two-place predicate symbol = for identity is included. It 
is written between its two variables (and its negation is abbrevi-
ated v). Formulas can be negated and conjoined as in sentential 
logic, but now a formula A can also be universally or existentially 
quanti" ed with respect to any variable xi, giving ∀xi A and ∃xi A. 
However, just as disjunction was not really needed given negation 
and conjunction, so existential quanti" cation is not really needed 
given negation and universal quanti" cation, since ∃xi A can be 
taken to be an abbreviation for ¬∀xi¬A.

To give an example, here is an argument and its formalization 
in classical predicate logic:

(11) All quarterlies are periodicals.
(12)  $ erefore, anyone who reads a quarterly reads a 

periodical.
(13) ∀x(Qx → Px)
(14) ∀y(∃x(Qx ∧ Ryx) → ∃x(Px ∧ Ryx))

An important distinction, de" ned by recursion on complex-
ity, is that between free and bound occurrences of a variable in 
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a  formula. All occurrences of variables in an atomic formula are 
free. $ e free occurrences of variables in the negation of a for-
mula are those in the formula itself, and the free occurrences of 
variables in a conjunction of two formulas are those in the two 
formulas themselves. In a quanti" cation ∀xi A on xi the free oc-
currences of variables other than xi are those in A, while all oc-
currences of xi are bound rather than free. Formulas where every 
occurrence of every variable is bound are called closed; others, 
open. In a quanti" cation ∀yA on y, the free variables in A are said 
to be within the scope of the initial quanti" er. We say y is free for x 
in A i!  no free occurrence of x is within the scope of a quanti" ca-
tion on y. In that case we write A(y/x) for the result of replacing 
each free occurrence of x in A by y.

1.8 CLASSICAL PREDICATE LOGIC: MODELS

$ e notion of model for predicate logic, like the notion of for-
mula, is more complex than it was for sentential logic. $ e idea 
is that no more matters for the truth values of premises and con-
clusion in any instance are what things are being spoken of, and 
which of the predicates substituted for the predicate letters are 
true of which of those things. What the predicates substituted for 
the predicate letters are, or what they mean, does not matter.

To specify a model U for (some or all of) the formal language 
of classical predicate logic we must specify its universe U, and also 
for (some or all of) the k-place predicate letters which things in 
U they are true of. $ is latter information can be represented in 
the form of a denotation function assigning as denotation to each 
one-place predicate letter 1Pi a set 1Pi

U of elements of U, assigning 
to each two-place predicate letter 2Pi as denotation a set 2Pi

U of 
pairs of elements of U, and so on. If identity is present, then =U 
is required to be the genuine identity relation on the universe U, 
which as a set of pairs is just {(u, u): u ! U}. $ us a model consists 
of a set of things and some distinguished relations among them 
(sets being counted as one-place relations, sets of pairs as two-
place relations, and so on).8
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$ e notion of truth of a formula in a model for the formal 
language of classical predicate logic is also more complex. Its de" -
nition is one of the centerpieces of a good introductory course 
in logic, “Tarski’s theory of truth.” $ e notion of truth is appli-
cable only to closed formulas, but to de" ne it we must de" ne a 
more general notion of satisfaction applicable to open formulas. 
Intuitively, a formula A(y1, … , yk) with no more than the k free 
variables displayed is satis" ed by a k-tuple (u1, … , uk) of elements 
of U, or in symbols,

(15) U B A(y1, … , yk) [u1, … , uk]

i!  the formula A is true when each free variable yi is taken to 
stand for the corresponding element ui. Truth is then simply the 
special case k = 0 of satisfaction. For present purposes we can 
work with this intuitive understanding, and there will be no need 
to recall the full technical de" nition, but it may be said that where 
A(x) has just the one free variable, the analogues of (6) and (7) 
read as follows:

(16)  U B ∀xA(x) i!  U B A(x)[u] for all u in U
(17)  U B ∃xA(x) i!  U B A(x)[u] for some u in U

An argument is valid, its conclusion is a consequence or im-
plication of its premises, i!  every model (of a large enough part 
of the formal language to include all the predicate letters occur-
ring in the relevant formulas) that makes the premise true makes 
the conclusion true. $ e notions of (un)satis" ability for a set of 
formulas, and (in)validity for a single formula, and equivalence 
of two formulas can then be introduced just as in sentential logic. 
While all these notions, involving as they do the notion of truth, 
in the " rst instance make sense only for closed formulas, they 
can be extended to open formulas. $ us A(x, y, z) is valid i!  it is 
satis" ed by every (u, v, w) in every model, and satis" able i!  it is 
satis" ed by some (u, v, w) in some model, or equivalently, is valid 
i!  its universal closure ∀x∀y∀zA(x, y, z) is valid, and satis" able i!  
its existential closure ∃x∃y∃zA(x, y, z) is satis" able.

It has been indicated above that no more matters for the 
truth of a closed formula in a model than what objects are in the 9
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 domain of the model and what distinguished relations among 
them the predicates of the language denote. But in fact a great 
deal less matters. All that really matters is the number of elements 
in the domain of the model, and the pattern of distinguished re-
lations among them. For if we replace a model by another with 
the same number of elements and the same pattern of distin-
guished relations—the technical expression is: with an isomorphic 
model—then exactly the same closed formulas will be true. For 
instance, suppose we have a language with two one-place predi-
cates P and Q and one two-place predicate R, and a model M with 
universe {i, h, g, f} and with the denotations of P and Q being 
{i, h} and {g, f}, and the denotation of R being {(i, h), (h, g), 
(g, f)}. If we replace it by the model M' with universe {1, 2, 3, 4} 
and with the denotations of P and Q being {1, 2} and {3, 4} and 
the denotation of R being {(1, 2), (2, 3), (3, 4)}, then exactly the 
same closed formulas will be true. In practice there is no need to 
consider any but mathematical models, models whose universes 
consist of mathematical objects, since every model is isomorphic 
to one of these. (In principle there would be no need to consider 
any but models whose universes are subsets of the set of natural 
numbers, though this fact depends on the Löwenheim-Skolem 
theorem, a result usually not covered in introductory texts.)

1.9 CLASSICAL PREDICATE LOGIC: UNDECIDABILITY

According to Church’s theorem, whose establishment is a major 
goal in intermediate-level textbooks, whereas for sentential logic 
there is a decision procedure, or method for determining whether 
a given formula is valid, for predicate logic there is none. Hence 
one looks for the next best thing, a proof procedure, or method for 
demonstrating that a given formula is valid, when it is.

Every introductory text presents some proof procedure or 
other, but hardly any two the same one, and there are several 
formats for proof procedures (“axiomatic,” “natural deduction,” 
“sequent calculus,” “tableaux,” “trees”), all quite di! erent in ap-
pearance. Yet all styles have some features in common. With all, 
a formal proof or demonstration is some kind of " nite array of 
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symbols, and it is decidable whether or not a given " nite array of 
symbols is a proof of a given formula.

$ e format of an axiomatic-style proof procedure, for in-
stance, is as follows. Certain kinds of formulas are admitted as 
axioms and certain kinds of inferences from premise formulas to 
a conclusion formula are admitted as (primitive) rules. A proof 
(of a given formula) is a sequence of formulas (the last being the 
given formula) in which every formula or step either is an axiom 
or follows from earlier steps by a rule. In practice when proofs of 
this kind are presented, as they will be in later chapters, the steps 
are not just listed but annotated (using obvious abbreviations), 
with each step numbered on the le%  and marked on the right 
 either as an axiom or as following from speci" ed earlier steps by 
a speci" ed rule.

For any style for proof procedure, a formula is demonstrable or 
a theorem i!  there exists some formal proof or demonstration of 
it; otherwise it is indemonstrable. $ ere are two related notions. 
Conclusion B is deducible from premises Ai i!  the formula (9) is 
demonstrable, and the Ai are jointly inconsistent i!  the formula 
(10) is demonstrable. We de" ne B to be deducible from an in" nite 
set i!  it is deducible from some " nite subset, and de" ne an in" -
nite set to be inconsistent i!  some " nite subset is.

And for any style of proof procedure, there are two results to 
be established for it, namely, that every demonstrable formula is 
valid and every valid formula is demonstrable. $ e task of estab-
lishing the " rst result, soundness, is generally tedious but routine. 
$ e second result, completeness, is another of the centerpieces of 
a good introductory course in logic, “Gödel’s completeness theo-
rem.” Since the relationship of deducibility and consistency to 
demonstrability parallels the relationship of consequence and sat-
is" ability to validity, the coincidence of validity with demonstra-
bility yields the coincidence of the other alethic or truth-related 
notions, consequence and unsatis" ability, with their apodictic or 
proof-related counterparts, deducibility and inconsistency. ($ e 
coincidence of consequence and unsatis" ability with deducibility 
and inconsistency in the case of in" nite sets of formulas depends 
on the compactness theorem, a result o% en not covered in intro-
ductory texts.)
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