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PREFACE

Over the years that I have been teaching logic, I have become convinced that
to teach it effectively, one needs to convey two things: the how and the why of
logic. For (to adapt a phrase from Kant) the why without the how is empty,
and the how without the why is blind.

Conveying the how and the why of logic is the aim of this book. The book
explains how to do logic: it presents the tools and techniques of modern logic
in a clear and accessible way. It also explains why things are done the way they
are in logic: the purpose of the tools and the rationales behind the techniques.
In a nutshell, the why comes down to this: the aim of logic is to discern the
laws of truth.

Coverage

The book is a thorough introduction to classical logic (also known as first-
order logic with identity). Part I covers propositional logic, and Part II covers
predicate logic and identity. Part III covers three topics: basic metatheory for
the system of tree proofs used in Parts I and II (soundness and completeness
results are proven; decidability and undecidability results are discussed but
not proven), the major alternative systems of proof (axiomatic proofs, natural
deduction, and sequent calculus), and basic notions from set theory. Some
of these notions from set theory are employed earlier in the book, so the
final chapter, in which these notions are explained, is more in the nature
of an appendix: it can be read piecemeal, as and when necessary. (When an
earlier section presupposes something explained in the final chapter, there is a
reference forward at that point to the relevant section of the final chapter.)

Readership

When writing the book, I had two primary target audiences in mind. First, the
book is designed for use as a textbook in a standard comprehensive introduc-
tory logic course—that is, a course that has no prerequisites and is open to



students from all faculties and majors. Such courses are often taught by phi-
losophy departments but attract students from across the humanities, natural
sciences, social sciences, mathematics, engineering, computer science, law and
health sciences.

Second, the book is intended to be suitable for independent study. In par-
ticular, students at the end of their undergraduate work or the beginning of
their graduate studies—in philosophy, linguistics, and other subjects—often
find that they need to know logic, but the opportunity has passed for them to
take an undergraduate course in the subject. Others have learned some of the
techniques of formal logic but want a better sense of how they relate to one
another, or a deeper understanding of what these techniques amount to. This
book should be well suited to such readers.

Parts of the book also constitute a contribution to the philosophy of logic
and should be of interest even to specialists. Chapter 11 and §13.6.3 are the
most obvious—but not the only—examples.

Choice of Proof Systems

The first question when introducing logic is: what system of proof should be
used? The most popular choices are trees, or one or another flavor of nat-
ural deduction. In this book, logic is introduced via trees, in Parts I and II.
Then in Part III—once the reader already has a good understanding of logic
via trees—Chapter 15 presents all major forms of all other major proof sys-
tems: axiomatic, natural deduction, and sequent calculus. This broad expo-
sure is, I believe, important, because after a proper introduction to logic, one
should not find oneself in the position of picking up a different logic book and
thinking “what on Earth is this?!”—a position students all too commonly find
themselves in when they learn, say, trees and then encounter natural deduction
(or vice versa), or even when they learn, say, Fitch-style natural deduction and
then pick up a book that uses Gentzen-style natural deduction.

Selecting Material

The basic rationale behind the choice of material to cover was as follows.
Studies in introductory logic lead naturally to further studies in many different
areas, for example,

1. nonclassical logics (extensions of and alternatives to classical logic, e.g.,
modal, tense, intuitionist, relevance, many-valued, fuzzy, and free logics;
as in Priest [2008], Burgess [2009]),

2. mathematical logic (more advanced metatheory, e.g., Löwenheim-
Skolem and compactness theorems, undecidability of first-order logic,
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Gödel’s incompleteness theorems; as in Enderton [2001], Boolos et al.
[2007]),

3. theory of computation (e.g., models of computation—automata of var-
ious kinds, Turing machines, register machines; computable and un-
computable functions; computational complexity; algorithmic complex-
ity; as in Davis et al. [1994], Sipser [2006]),

4. philosophical logic (e.g., monism versus pluralism, normativity of logic,
logic and reasoning, logic and ordinary language, theories of truth, analy-
sis of logical consequence; as in Haack [1978], Hughes [1993]),

5. set theory (e.g., axiomatic set theories, consistency and independence,
foundations of mathematics; as in Devlin [1993], Hrbacek and Jech
[1999]), and

6. formal semantics (e.g., generalized quantifiers, theory of types, catego-
rial grammar, intensional semantics, Montague grammar; as in Gamut
[1991b], Heim and Kratzer [1998]).

The idea behind the present book was not to cover these further areas, but to
cover introductory logic in sufficient detail to enable readers interested in any
of these areas to see how they connect to introductory logic. At the same time,
I wanted to cover the core of introductory logic in a way that will be useful and
accessible to readers not intending to pursue logic any further.

The upshot of this approach is that there is more in the book than can be
covered in a typical introductory logic course. The core material is as follows
(excluding endnotes):

. Propositional logic: Chapter 1 (excluding §1.2.2), Chapter 2 (excluding
§2.2.1, §2.5.4 after the first three paragraphs, §2.5.5, and §2.5.6), Chap-
ter 3 (excluding §3.5), Chapter 4 (excluding §4.3.2 after the first para-
graph) and Chapter 7.

. Predicate logic: Chapter 8 (excluding §8.3.3 after the first two para-
graphs), Chapter 9, Chapter 10 (excluding §§10.3.3–10.3.7), and Chap-
ter 12 (excluding §12.4 and §12.5).

. Identity: Chapter 13 (excluding §§13.5–13.7).

In these core parts of the book, the pace is gentle and the presentation max-
imally accessible. At the same time, the material is presented in proper detail
(in contrast to texts that are gentle and reader friendly at the cost of presenting
a simplified version of the material, e.g., a watered-down version of the model
theory for first-order logic, or no model theory at all). When moving outside
the core sections, readers may at times notice a slight increase in pace.
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Those parts of the book not included in the above list of core material can be
used in various ways. Independent readers and teachers with the requisite time
available can cover one or more of them, according to time and interests. They
can be used as material for extension classes. Students wishing to prepare for
subsequent logic courses during the summer after introductory logic can read
one or more of these parts. They can also be used as bridging material at the
beginning of subsequent logic courses. To help readers work out which of the
non-core parts they might like to cover, here is a rough indication of how these
parts relate to the six areas of further study mentioned above. The numbers
in boldface refer to the earlier list of six areas of study; G indicates general
relevance: §1.2.2: 4, 6. §2.2.1: 4, 6. §2.5.4 after the first three paragraphs: G.
§2.5.5: G. §2.5.6: 2, 3. §3.5: G. §4.3.2 after the first paragraph: G. Chapter 5:
G. Chapter 6 up to §6.6: 1, 4, 6; §6.6: G. §8.3.3 after the first two paragraphs:
4, 6. §§10.3.3–10.3.7: 2, 3. Chapter 11 as a whole: 1, 4, 6; §11.3: 2. §12.4: 4, 6.
§12.5: 2. §13.5: G. §13.6: 1, 4, 6. §13.7: 2, 6. Chapter 14 as a whole: 2; §14.2,
§14.3: 3; §14.4: 1, 4, 6. Chapter 15 as a whole: 1, 2, 4; §15.1: 5. Chapter 16: G.

Exercises and Solutions

Working out problems is crucial to learning logic, so the book contains nu-
merous exercises. Being able to see whether one has done the exercises cor-
rectly is also crucial; hence, answers are available on the accompanying web-
site (http://www.press.princeton.edu/titles/9727.html). Because the answers
are online, the exercises cannot be used as take-home assessment tasks, but
they could not be used for this purpose anyway: as soon as exercises are pub-
lished, answers to them begin to circulate, either online or through personal
networks within colleges and universities.

The exercise questions are also reproduced on the website. Additional
exercises—and perhaps other resources—may be added in time. Any typo-
graphical errors or other mistakes in the exercises or answers will be corrected
in the online version as I become aware of them.
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1
Propositions and Arguments

1.1 What Is Logic?

Somebody who wants to do a good job of measuring up a room for purposes of
cutting and laying carpet needs to know some basic mathematics—but mathe-
matics is not the science of room measuring or carpet cutting. In mathematics
one talks about angles, lengths, areas, and so on, and one discusses the laws
governing them: if this length is smaller than that one, then that angle must be
bigger than this one, and so on. Walls and carpets are things that have lengths
and areas, so knowing the general laws governing the latter is helpful when it
comes to specific tasks such as cutting a roll of carpet in such a way as to min-
imize the number of cuts and amount of waste. Yet although knowing basic
mathematics is essential to being able to measure carpets well, mathematics
is not rightly seen as the science of carpet measuring. Rather, mathematics is
an abstract science which gets applied to problems about carpet. While mathe-
matics does indeed tell us deeply useful things about how to cut carpets, telling
us these things is not essential to it: from the point of view of mathematics, it
is enough that there be angles, lengths, and areas considered in the abstract; it
does not matter if there are no carpets or floors.

Logic is often described as the study of reasoning.1 Knowing basic logic is
indeed essential to being able to reason well—yet it would be misleading to
say that human reasoning is the primary subject matter of logic. Rather, logic
stands to reasoning as mathematics stands to carpet cutting. Suppose you are
looking for your keys, and you know they are either in your pocket, on the
table, in the drawer, or in the car. You have checked the first three and the keys
aren’t there, so you reason that they must be in the car. This is a good way to
reason. Why? Because reasoning this way cannot lead from true premises or
starting points to a false conclusion or end point. As Charles Peirce put it in
the nineteenth century, when modern logic was being developed:

The object of reasoning is to find out, from the consideration of what we already
know, something else which we do not know. Consequently, reasoning is good if it



be such as to give a true conclusion from true premises, and not otherwise. [Peirce,
1877, para. 365]

This is where logic comes in. Logic concerns itself with propositions—things
that are true or false—and their components, and it seeks to discover laws gov-
erning the relationships between the truth or falsity of different propositions.
One such law is that if a proposition offers a fixed number of alternatives (e.g.,
the keys are either (i) in your pocket, (ii) on the table, (iii) in the drawer, or
(iv) in the car), and all but one of them are false, then the overall proposition
cannot be true unless the remaining alternative is true. Such general laws about
truth can usefully be applied in reasoning: it is because the general law holds
that the particular piece of reasoning we imagined above is a good one. The
law tells us that if the keys really are in one of the four spots, and are not in any
of the first three, then they must be in the fourth; hence the reasoning cannot
lead from a true starting point to a false conclusion.

Nevertheless, this does not mean that logic is itself the science of reasoning.
Rather, logic is the science of truth. (Note that by “science” we mean simply
systematic study.)2 As Gottlob Frege, one of the pioneers of modern logic,
put it:

Just as “beautiful” points the ways for aesthetics and “good” for ethics, so do words
like “true” for logic. All sciences have truth as their goal; but logic is also concerned
with it in a quite different way: logic has much the same relation to truth as physics
has to weight or heat. To discover truths is the task of all sciences; it falls to logic to
discern the laws of truth. [Frege, 1918–19, 351]

One of the goals of a baker is to produce hot things (freshly baked loaves). It is
not the goal of a baker to develop a full understanding of the laws of heat: that
is the goal of the physicist. Similarly, the physicist wants to produce true things
(true theories about the world)—but it is not the goal of physics to develop a
full understanding of the laws of truth. That is the goal of the logician. The
task in logic is to develop a framework in which we can give a detailed—yet
fully general—representation of propositions (i.e., those things which are true
or false) and their components, and identify the general laws governing the
ways in which truth distributes itself across them.

Logic, then, is primarily concerned with truth, not with reasoning. Yet logic
is very usefully applied to reasoning—for we want to avoid reasoning in ways
that could lead us from true starting points to false conclusions. Furthermore,
just as mathematics can be applied to many other things besides carpet cutting,
logic can also be applied to many other things apart from human reasoning.
For example, logic plays a fundamental role in computer science and com-
puting technology, it has important applications to the study of natural and
artificial languages, and it plays a central role in the theoretical foundations of
mathematics itself.

4 Chapter 1 Propositions and Arguments



1.2 Propositions

We said that logic is concerned with the laws of truth. Our primary objects of
study in logic will therefore be those things which can be true or false—and
so it will be convenient for us to have a word for such entities. We shall use
the term “proposition” for this purpose. That is, propositions are those things
which can be true or false. Now what sort of things are propositions, and what
is involved in a proposition’s being true or false? The fundamental idea is this:
a proposition is a claim about how things are—it represents the world as being
some way; it is true if the world is that way, and otherwise it is false. This idea
goes back at least as far as Plato and Aristotle:

SOCRATES: But how about truth, then? You would acknowledge that there is in
words a true and a false?
HERMOGENES: Certainly.
S: And there are true and false propositions?
H: To be sure.
S: And a true proposition says that which is, and a false proposition says that which
is not?
H: Yes, what other answer is possible? [Plato, c. 360 bc]

We define what the true and the false are. To say of what is that it is not, or of what
is not that it is, is false, while to say of what is that it is, and of what is not that it is
not, is true. [Aristotle, c. 350 bc-a, Book IV (�) §7]

In contrast, nonpropositions do not represent the world as being thus or so:
they are not claims about how things are. Hence, nonpropositions cannot be
said to be true or false. It cannot be said that the world is (or is not) the way
a nonproposition represents it to be, because nonpropositions are not claims
that the world is some way.3

Here are some examples of propositions:

1. Snow is white.

2. The piano is a multistringed instrument.

3. Snow is green.

4. Oranges are orange.

5. The highest speed reached by any polar bear on 11 January 2004 was 31.35 kilome-
ters per hour.

6. I am hungry.

Note from these examples that a proposition need not be true (3), that a
proposition might be so obviously true that we should never bother saying it
was true (4), and that we might have no way of knowing whether a proposition

1.2 Propositions 5



is true or false (5). What these examples do all have in common is that they
make claims about how things are: they represent the world as being some
way. Therefore, it makes sense to speak of each of them as being true (i.e., the
world is the way the proposition represents it to be) or false (things aren’t that
way)—even if we have no way of knowing which way things actually are.

Examples of nonpropositions include:

7. Ouch!

8. Stop it!

9. Hello.

10. Where are we?

11. Open the door!

12. Is the door open?

It might be appropriate or inappropriate in various ways to say “hello” (or
“open the door!” etc.) in various situations—but doing so generally could
not be said to be true or false. That is because when I say “hello,” I do not
make a claim about how the world is: I do not represent things as being thus
or so.4 Nonpropositions can be further subdivided into questions (10, 12),
commands (8, 11), exclamations (7, 9), and so on. For our purposes these
further classifications will not be important, as all nonpropositions lie outside
our area of interest: they cannot be said to be true or false and hence lie outside
the domain of the laws of truth.

1.2.1 Exercises

Classify the following as propositions or nonpropositions.

1. Los Angeles is a long way from New York.

2. Let’s go to Los Angeles!

3. Los Angeles, whoopee!

4. Would that Los Angeles were not so far away.

5. I really wish Los Angeles were nearer to New York.

6. I think we should go to Los Angeles.

7. I hate Los Angeles.

8. Los Angeles is great!

9. If only Los Angeles were closer.

10. Go to Los Angeles!

1.2.2 Sentences, Contexts, and Propositions5

In the previous section we stated “here are some examples of propositions,”
followed by a list of sentences. We need to be more precise about this. The
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idea is not that each sentence (e.g., “I am hungry”) is a proposition. Rather,
the idea is that what the sentence says when uttered in a certain context—the
claim it makes about the world—is a proposition.6 To make this distinction
clear, we first need to clarify the notion of a sentence—and to do that, we need
to clarify the notion of a word: in particular, we need to explain the distinction
between word types and word tokens.7

Consider a word, say, “leisure.” Write it twice on a slip of paper, like so:

leisure leisure

How many words are there on the paper? There are two word tokens on the
paper, but only one word type is represented thereon, for both tokens are of
the same type. A word token is a physical thing: a string of ink marks (a flat
sculpture of pigments on the surface of the paper), a blast of sound waves, a
string of pencil marks, chalk marks on a blackboard, an arrangement of paint
molecules, a pattern of illuminated pixels on a computer screen—and so on,
for all the other ways in which words can be physically reproduced, whether
in visual, aural, or some other form. A word token has a location in space and
time: a size and a duration (i.e., a lifespan: the period from when it comes
into existence to when it goes out of existence). It is a physical object embed-
ded in a wider physical context. A word type, in contrast, is an abstract object:
it has no location in space or time—no size and no duration. Its instances—
word tokens—each have a particular length, but the word type itself does not.
(Tokens of the word type “leisure” on microfilm are very small; tokens on bill-
boards are very large. The word type itself has no size.) Suppose that a teacher
asks her pupils to take their pencils and write a word in their notebooks. She
then looks at their notebooks and makes the following remarks:

1. Alice’s word is smudged.

2. Bob and Carol wrote the same word.

3. Dave’s word is in ink, not pencil.

4. Edwina’s word is archaic.

In remark (1) “word” refers to the word token in Alice’s book. The teacher is
saying that this token is smudged, not that the word type of which it is a token
is smudged (which would make no sense). In remark (2) “word” refers to the
word type of which Bob and Carol both produced tokens in their books. The
teacher is not saying that Bob and Carol collaborated in producing a single
word token between them (say by writing one letter each until it was finished);
she is saying that the two tokens that they produced are tokens of the one
word type. In remark (3) “word” refers to the word token in Dave’s book. The
teacher is saying that this token is made of ink, not that the word type of which

1.2 Propositions 7



it is a token is made of ink (which, again, would make no sense). In remark
(4) “word” refers to the word type of which Edwina produced a token in her
book. The teacher is not saying that Edwina cut her word token from an old
manuscript and pasted it into her book; she is saying that the word type of
which Edwina produced a token is no longer in common use.

Turning from words to sentences, we can make an analogous distinction
between sentence types and sentence tokens. Sentence types are abstract ob-
jects: they have no size, no location in space or time. Their instances—sentence
tokens—do have sizes and locations. They are physical objects, embedded in
physical contexts: arrangements of ink, bursts of sound waves, and so on. A
sentence type is made up of word types in a certain sequence;8 its tokens are
made up of tokens of those word types, arranged in corresponding order. If I
say that the first sentence of Captain Cook’s log entry for 5 June 1768 covered
one and a half pages of his logbook, I am talking about a sentence token. If I
say that the third sentence of his log entry for 8 June is the very same sentence
as the second sentence of his log entry for 9 June, I am talking about a sentence
type (I am not saying of a particular sentence token that it figures in two sep-
arate log entries, because, e.g., he was writing on paper that was twisted and
spliced in such a way that when we read the log, we read a certain sentence
token once, and then later come to that very same token again).9

§

Now let us return to the distinction between sentences and propositions. Con-
sider a sentence type (e.g., “I am hungry”). A speaker can make a claim about
the world by uttering this sentence in a particular context. Doing so will in-
volve producing a token of the sentence.10 We do not wish to identify the
proposition expressed—the claim about the world—with either the sentence
type or this sentence token, for the reasons discussed below.

To begin, consider the following dialogue:

Alan: Lunch is ready. Who’s hungry?
Bob: I’m hungry.
Carol: I’m hungry.
Dave: I’m not.

Bob and Carol produce different tokens (one each) of the same sentence type.
They thereby make different claims about the world. Bob says that he is hun-
gry; Carol says that she is hungry. What it takes for Bob’s claim to be true is
that Bob is hungry; what it takes for Carol’s claim to be true is that Carol is
hungry. So while Bob and Carol both utter the same sentence type (“I’m hun-
gry”) and both thereby express propositions (claims about the world), they
do not express the same proposition. We can be sure that they express differ-
ent propositions, because what Bob says could be true while what Carol says

8 Chapter 1 Propositions and Arguments



is false—if the world were such that Bob was hungry but Carol was not—or
vice versa—if the world were such that Carol was hungry but Bob was not. It
is a sure sign that we have two distinct propositions—as opposed to the same
proposition expressed twice over—if there is a way things could be that would
render one of them true and the other false.11 So one sentence type can be
used to express different propositions, depending on the context of utterance.
Therefore, we cannot, in general, identify propositions with sentence types.12

Can we identify propositions with sentence tokens? That is, if a speaker
makes a claim about the world by producing a sentence token in a particular
context, can we identify the claim made—the proposition expressed—with
that sentence token? We cannot. Suppose that Carol says “Bob is hungry,” and
Dave also says “Bob is hungry.” They produce two different sentence tokens
(one each); but (it seems obvious) they make the same claim about the world.
Two different sentence tokens, one proposition: so we cannot identify the
proposition with both sentence tokens.13 We could identify it with just one
of the tokens—say, Carol’s—but this would be arbitrary, and it would also
have the strange consequence that the claim Dave makes about the world is a
burst of sound waves emanating from Carol. Thus, we cannot happily identify
propositions with sentence tokens.

Let us recapitulate. A proposition is a claim about how things are: it repre-
sents the world as being some way. It is true if things are the way it represents
them to be (saying it how it is) and otherwise it is false (saying it how it isn’t).
The main way in which we make claims about the world—that is, express
propositions—is by uttering sentences in contexts. Nevertheless, we do not
wish to identify propositions with sentences (types or tokens), because of the
following observations:

. One sentence type can be used (in different contexts) to make distinct
claims (the example of “I’m hungry,” as said by Bob and Carol).

. The same claim can be made using distinct sentence types (the example
of John and Johann’s sentences in n. 12).

. The same claim can be made using distinct sentence tokens (the example
of Carol’s and Dave’s tokens of “Bob is hungry”).

It should be said that we have not discussed these issues in full detail.14 We
have, however, said enough to serve our present purposes. For we do not
wish to deny vehemently and absolutely that propositions might (in the final
analysis) turn out to be sentences of some sort. Rather, we simply wish to
proceed without assuming that propositions—our main objects of study—
can be reduced to something more familiar, such as sentences. In light of the
problems involved in identifying propositions with sentences, our decision to
refrain from making any such identification is well motivated.
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So far so good, then. But now, if propositions are not sentences, then what
are they? Propositions might start to seem rather mysterious entities. I can
picture tokens of the sentence “I am hungry,” and perhaps, in some sense, I
can even picture the sentence type (even though it is an abstract object). But
how do I picture the proposition that this sentence expresses (when a certain
speaker utters it in a particular context)? It would be a mistake in methodology
to try to answer this question in detail at this point. One of the tasks of logic—
the science of truth—is to give us an understanding of propositions (the things
that are true or false). What we need in advance of our study of logic—that is,
what we need at the present point in this book—is a rough idea of what it is of
which we are seeking a precise account. (Such a rough idea is needed to guide
our search.) But we now have a rough idea of what propositions are: they are
claims about the world; they are true if the world is as claimed and otherwise
false; they are expressed by sentences uttered in context but are not identical
with sentence types or with tokens thereof. The detailed positive account of
propositions will come later (§11.4).

§

There is one more issue to be discussed before we close this section. We have
seen that, to determine a proposition, we typically need not just a sentence
type but also a context in which that sentence is uttered. For example, for the
sentence type “I am hungry” to determine a proposition, it needs to be uttered
by someone in a particular context. When Bob utters it, he then expresses the
proposition that he (Bob) is hungry (that is how the world has to be for what
he says to be true); when Carol utters it, she then expresses the proposition
that she (Carol) is hungry (that is how the world has to be for what she says to
be true); and so on. This general picture is widely accepted. However, exactly
how it comes about that a particular proposition is expressed by uttering a
certain sentence in a specific context is a topic of great controversy. Some of
the factors that potentially play a role in this process are:

1. The meaning of the sentence type. (This is usually thought of as deter-
mined by the meanings of the sentence’s component word types together
with the syntax—the grammatical structure—of the sentence. The mean-
ing of a word type is what a speaker has to know to understand that word;
it is what a dictionary entry for that word aims to capture.)

2. Facts about the context of utterance. (Relevant facts include the time and
place of the context, and the identity of the speaker.)

3. Facts about the speaker (e.g., what she intended to convey by uttering the
sentence she uttered in the context).
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Together, these facts—and perhaps more besides—determine what is said by
the speaker in uttering a certain sentence in a certain context; that is, what
claim she is making about the world—which proposition is expressed.15 That
much is widely agreed; the controversy enters when it comes to the question
of exactly how the labor of determining a particular proposition is divided
between the contributing factors mentioned above: what role each plays. We
do not need to enter these controversies here, however: for in logic we are
concerned with propositions themselves, not with how exactly they come to be
expressed by uttering sentences in contexts.16 This is not to say that in this book
we shall be able to get by without sentences. On the contrary, our chief way
of getting in touch with propositions is via the sentences that express them.
The point to keep in mind is that our primary interest is in the propositions
expressed: sentences are simply a route to these propositions.17

1.3 Arguments

We said that the laws of truth underwrite principles of good reasoning. Rea-
soning comes packaged in all sorts of different forms in ordinary speech,
writing, and thought. To facilitate discussion of reasoning, it will be useful to
introduce a standard form in which any ordinary piece of reasoning can be rep-
resented. For this purpose we introduce the notion of an argument. As was the
case with the term “proposition,” our usage of the term “argument” is a tech-
nical one that is abstracted from one of the ordinary meanings of the term. In
our usage, an argument is a sequence of propositions. We call the last proposi-
tion in the argument the conclusion: intuitively, we think of it as the claim that
we are trying to establish as true through our process of reasoning. The other
propositions are premises: intuitively, we think of them as the basis on which
we try to establish the conclusion. There may be any finite number of premises
(even zero). We may present arguments in the following format:

Premise 1
Premise 2

Conclusion

Here we use a horizontal line to separate the conclusion from the premises.
The conclusion can also be marked by the term “Therefore” (often abbreviated
as ∴):

Premise 1
Premise 2
Premise 3
∴ Conclusion
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We may also present an argument in a linear fashion, with the premises sepa-
rated by commas and the conclusion separated by a slash and the “therefore”
symbol:

Premise 1, Premise 2, Premise 3, Premise 4 /∴ Conclusion

For example, consider the following piece of ordinary reasoning. I do not
have a watch, and I am wondering what time it is. I notice that Sesame Street
is just starting on television, and I know from my acquaintance with the
timetable that this show starts at 8.30. I conclude that it is now 8.30. We can
represent this piece of reasoning as the following argument:

If Sesame Street is starting, it is 8.30.
Sesame Street is starting.

∴ It is 8.30.

When looking at a piece of reasoning phrased in ordinary language with
a view to representing it as an argument, we identify the conclusion as the
proposition that the speaker is trying to establish—to give reasons for—and
the premises as the reasons given in support of that conclusion. Phrases that
commonly indicate conclusions in ordinary reasoning include “therefore,”
“hence,” “thus,” “so,” and “it follows that;” phrases that commonly indicate
premises include “because,” “since,” and “given that.” However, these words
are not always present, and even when they are they do not always indicate
conclusions and premises, respectively. Hence there is no recipe we can follow
mechanically when representing ordinary reasoning in the form of an argu-
ment: we must always think carefully about what is being said in the ordinary
reasoning—about what it is that the reasoner is trying to establish (this will be
the conclusion) and about what reasons are being given in support of this con-
clusion (these will be the premises). One point to note carefully is that when
we represent a piece of reasoning as an argument in our technical sense—that
is, a sequence of propositions—we always put the conclusion last. In ordinary
English, however, the conclusion of a piece of reasoning is not always what is
stated last.

Let’s consider another example. When working out what to serve a guest
for breakfast, someone might reason as follows: Mary must like marmalade,
because she is English, and all English people like marmalade. Here the
conclusion—the proposition that the reasoning is supposed to establish—is
the thing said first: that Mary likes marmalade. The premises are the reasons
given in support of this conclusion—that Mary is English, and that all English
people like marmalade. So we represent this piece of reasoning as the following
argument:
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Mary is English.
All English people like marmalade.
Therefore, Mary likes marmalade.

Note that we count any sequence of one or more propositions as an argu-
ment. Thus we count as arguments things that do not correspond to anything
we would ordinarily regard as a piece of reasoning. For example:

Snow is green.

It has been a wet winter.

This generosity when it comes to counting things as arguments, while it might
initially seem silly, is in fact good, for the following reason. As we shall dis-
cuss in the next section, one of our aims is to develop an account that will
enable us to determine of any piece of reasoning—no matter what its sub-
ject matter—whether it is valid. (We shall see what validity is, and why it is
important, below.) The more things we count as arguments, the more widely
applicable our account of validity will be. If we were more stringent about what
counts as an argument, then there would be a worry that some piece of rea-
soning to which we want our account to apply cannot be represented as an
argument (in the more restricted sense) and so would be left out of account.
Our present approach avoids this worry. All we are assuming is that any piece
of reasoning can be represented as a sequence of propositions (an argument),
one of which (the conclusion) is what the piece of reasoning is intended to es-
tablish, and the rest of which (the premises) are intended to provide support
for that conclusion. That is, every piece of reasoning can be represented as an
argument. The fact that the opposite does not hold—that not every argument
(in our technical sense) corresponds to an ordinary piece of reasoning—will
not matter.

1.3.1 Exercises

Represent the following lines of reasoning as arguments.

1. If the stock market crashes, thousands of experienced investors will lose a
lot of money. So the stock market won’t crash.

2. Diamond is harder than topaz, topaz is harder than quartz, quartz is
harder than calcite, and calcite is harder than talc, therefore diamond is
harder than talc.

3. Any friend of yours is a friend of mine; and you’re friends with everyone
on the volleyball team. Hence, if Sally’s on the volleyball team, she’s a
friend of mine.
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4. When a politician engages in shady business dealings, it ends up on page
one of the newspapers. No South Australian senator has ever appeared
on page one of a newspaper. Thus, no South Australian senator engages
in shady business dealings.

1.4 Logical Consequence

Consider the following argument:

1. The rabbit ran down the left path or the right path.
The rabbit did not run down the left path.
∴ The rabbit ran down the right path.

It is said that dogs exhibit a grasp of logic by reasoning in this way.18 Suppose a
dog is chasing a rabbit through the forest, when it comes to a fork in the path.
The dog does not know which way the rabbit has gone, but it knows (because
the undergrowth is impenetrable) that it has gone left or right (first premise).
The dog sniffs down one path—say, the left one—trying to pick up the scent.
If it does not pick up the scent, then it knows the rabbit has not gone down
the left path (second premise). In this case the dog simply runs down the right
path, without stopping to pick up the scent. For the dog knows, purely on the
basis of logic—that is, without having to determine so by sniffing—that the
rabbit has gone right: it must have, because it had to go left or right, and it did
not go left, so that leaves only the possibility that it went right.

The argument is a good one. What exactly is good about it? Well, two things.
The first is that given that the premises are true, there is no possibility of the
conclusion’s not being true. We can put the point in various ways:

. The truth of the premises guarantees the truth of the conclusion.

. It is impossible for the premises all to be true and the conclusion not be true.

. There is no way for the premises all to be true without the conclusion being true.

We call this property—the property that an argument has when it is impos-
sible for the premises to be true and the conclusion false—necessary truth-
preservation (NTP), and we call an argument with this property necessarily
truth-preserving (NTP).19

Consider another example:20

2. All kelpies are dogs.
Maisie is a dog.
∴ Maisie is a kelpie.
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Dogs
Kelpies

Maisie

Figure 1.1. The argument is valid

Can we imagine a situation in which the premises are both true but the conclu-
sion is false? Yes: suppose that (as in actual fact) all kelpies are dogs (so the first
premise is true) and suppose that Maisie is a beagle (and hence a dog—so the
second premise is true); in this case the conclusion is false. Hence argument
(2) is not NTP.

Now consider a third example:

3. All kelpies are dogs.
Maisie is a kelpie.
∴ Maisie is a dog.

Can we imagine a situation in which the premises are both true but the con-
clusion is false? No. Supposing the first premise to be true means supposing
that (to represent the situation visually) a line drawn around all kelpies would
never cross outside a line drawn around all dogs (Figure 1.1). Supposing the
second premise to be true means supposing that Maisie is inside the line drawn
around all kelpies. But then it is impossible for Maisie to be outside the line
drawn around the dogs—that is, it is impossible for the conclusion to be false.
So argument (3) is NTP.

There is a second good thing about argument (1), apart from its being NTP.
Consider four more arguments:

4. Tangles is gray, and Maisie is furry.
∴ Maisie is furry.

5. Philosophy is interesting, and logic is rewarding.
∴ Logic is rewarding.

6. John is Susan’s brother.
∴ Susan is John’s sister.

7. The glass on the table contains water.
∴ The glass on the table contains H2O.
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All these arguments are NTP—but let’s consider why each argument is NTP:
what it is, in each case, that underwrites the fact that the premises cannot be
true while the conclusion is false.

In the case of argument (4), it is the form or structure of the argument that
makes it NTP.21 The argument is a complex structure, built from propositions
which themselves have parts. It is the particular way in which these parts
are arranged to form the argument—that is, the form or structure of the
argument—that ensures it is NTP. For the premise to be true, two things
must be the case: that Tangles is gray, and that Maisie is furry. The conclusion
claims that the second of these two things is the case: that Maisie is furry.
Clearly, there is no way for the premise to be true without the conclusion
being true. We can see this without knowing what Tangles and Maisie are (cats,
dogs, hamsters—it doesn’t matter). In fact, we do not even have to know what
“gray” and “furry” mean. We can see that whatever Tangles and Maisie are and
whatever properties “gray” and “furry” pick out, if it is true that Tangles is gray
and Maisie is furry, then it must be true that Maisie is furry—for part of what
it takes for “Tangles is gray, and Maisie is furry” to be true is that “Maisie is
furry” is true.

The same can be said about argument (5). One does not have to know what
philosophy and logic are—or what it takes for something to be interesting or
rewarding—to see that if the premise is true, then the conclusion must be
true, too: for part of what it takes for “philosophy is interesting and logic is
rewarding” to be true is that “logic is rewarding” is true. Indeed it is clear that
any argument will be valid if it has the following form, where A and B are
propositions:

A and B

B

It doesn’t matter what propositions we put in for A and B: we could go
through the same reasoning as above (the conclusion’s being true is part of
what it takes for the premise to be true) and thereby convince ourselves that
the argument is valid.

Contrast arguments (6) and (7). In the case of (6), to see that the premise
cannot be true while the conclusion is false, we need specific knowledge of
the meanings of the terms involved. We need to know that “Susan” is a girl’s
name,22 and that the meanings of “brother” and “sister” are related in a par-
ticular way: if a person x is the brother of a female y, then y is the sister of x.
Accordingly, if we replace these terms with terms having different particular
meanings, then the resulting arguments need not be NTP. For example:
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8. John is Susan’s friend.
∴ Susan is John’s aunt.

9. John is Bill’s brother.
∴ Bill is John’s sister.

Contrast argument (4), where we could replace “Tangles” and “Maisie” with
any other names, and “gray” and “furry” with terms for any other properties,
and the resulting argument would still be NTP. For example:

10. Bill is boring, and Ben is asleep.
∴ Ben is asleep.

11. Jill is snoring, and Jack is awake.
∴ Jack is awake.

In the case of (7), to see that the premise cannot be true while the conclusion
is false, we need specific scientific knowledge: we need to know that the chem-
ical composition of water is H2O.23 Accordingly, if we replace the term “water”
with a term for a substance with different chemical properties—or the term
“H2O” with a term for a different chemical compound—then the resulting
arguments need not be NTP. For example:

12. The glass on the table contains sand.
∴ The glass on the table contains H2O.

13. The glass on the table contains water.
∴ The glass on the table contains N2O.

So, some arguments that are NTP are so by virtue of their form or structure:
simply given the way the argument is constructed, there is no way for the
premises to be true and the conclusion false. Other arguments that are NTP
are not so by virtue of their form or structure: the way in which the argument
is constructed does not guarantee that there is no way for the premises to
be true and the conclusion false. Rather, the fact that there is no such way
is underwritten by specific facts either about the meanings of the particular
terms in the argument (e.g., “Susan”—this has to be a girl’s name), or about
the particular things in the world that these terms pick out (e.g., water—its
chemical composition is H2O), or both.

If an argument is NTP by virtue of its form or structure, then we call it valid,
and we say that the conclusion is a logical consequence of the premises. There
are therefore two aspects to validity/logical consequence:

1. The premises cannot be true while the conclusion is false (NTP).

2. The form or structure of the argument guarantees that it is NTP.
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An argument that is not valid is said to be invalid. An argument might be
invalid because it is not NTP, or because, although it is NTP, this fact is not
underwritten by the structure of the argument.

Note that the foregoing does not constitute a precise definition of validity: it
is a statement of a fundamental intuitive idea. One of our goals is to come up
with a precise analysis of validity or logical consequence.24 The guiding idea
that we have set out—according to which validity is NTP by virtue of form—
can be found, for example, in Alfred Tarski’s seminal discussion of logical
consequence, where it is presented as the traditional, intuitive conception:25

I emphasize . . . that the proposed treatment of the concept of consequence makes
no very high claim to complete originality. The ideas involved in this treatment
will certainly seem to be something well known. . . . Certain considerations of an
intuitive nature will form our starting-point. Consider any class K of sentences
and a sentence X which follows from the sentences of this class. From an intuitive
standpoint it can never happen that both the class K consists only of true sentences
and the sentence X is false.[26] Moreover, since we are concerned here with the
concept of logical, i.e., formal, consequence, and thus with a relation which is
to be uniquely determined by the form of the sentences between which it holds,
this relation cannot be influenced in any way by empirical knowledge, and in
particular by knowledge of the objects to which the sentence X or the sentences
of the class K refer.[27] . . . The two circumstances just indicated[28] . . . seem to be
very characteristic and essential for the proper concept of consequence. [Tarski,
1936, 414–15]

Indeed, the idea goes back to Aristotle [c. 350 bc-b, §1], who begins by stating:
“A deduction is a discourse in which, certain things being stated, something
other than what is stated follows of necessity from their being so.” This is
the idea of NTP. Then, when discussing arguments, Aristotle first presents an
argument form in an abstract way, with schematic letters in place of particular
terms, for example:

Every C is B.
No B is A.
Therefore no C is A.

He then derives specific arguments by putting particular terms in place of the
letters, for example:

Every swan is white.
No white thing is a raven.
Therefore no swan is a raven.

The reasoning that shows the argument to be NTP is carried out at the level
of the argument form (i.e., in terms of As, Bs and Cs; not ravens, white things,
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and swans): it is thus clear that Aristotle is interested in those arguments that
are NTP by virtue of their form.

In this section, we have considered a number of examples of arguments and
asked whether they are valid. We worked in an intuitive way, asking whether
we could imagine situations in which the premises are true and the conclusion
false. This approach is far from ideal. Suppose someone claims that she cannot
imagine a situation in which the premises of argument (2) are true and the
conclusion is false—or that someone claims that he can imagine a situation
in which the premises of argument (3) are true and the conclusion is false.
What are we to say in response? Can we show that these persons are mistaken?
What we should like to have is a foolproof method of determining whether a
given argument is valid: a method that establishes beyond doubt whether the
argument is valid and that can be followed in a straightforward, routine way,
without recourse to intuition or imagination. Think of the way you convince
someone that 1,257 + 2,874= 4,131. You do not appeal to their imagination
or intuition: you go through the mechanical process of long addition, first
writing the numbers one above the other, then adding the units and carrying
1, then adding the tens, and so on, until the answer is attained. The task is
thus broken up, in a specified way, into a sequence of small steps (adding
numbers less than ten and carrying single digits), each of which is simple and
routine. What we would like in the case of validity is something similar: a set of
simple rules that we can apply in a specified order to a given argument, leading
eventually to the correct verdict: valid or invalid.29

§

Recall the quotation from Peirce in §1.1 which ends “reasoning is good if it
be such as to give a true conclusion from true premises, and not otherwise.”
The property of reasoning that Peirce mentions here—being such as to give
a true conclusion from true premises—is NTP. In this passage, Peirce equates
NTP with good reasoning. That view seems too strong—if “good reasoning”
is taken to have its ordinary, intuitive meaning. For example, suppose that
someone believes that there is water in the glass, but does not go on to con-
clude that there is H2O in the glass. This does not necessarily mean that there
is something wrong with her powers of reasoning: she may be fully rational,
but simply not know that water is H2O. Such a person could perhaps be criti-
cized for not knowing basic science—but only if she could have been expected
to know it (say, because she had completed high school)—but it would not be
right to say that she had failed to reason well.

So we cannot equate good reasoning with NTP. Can we equate good rea-
soning with validity (i.e., NTP by virtue of form)? This suggestion might seem
plausible at first sight. For example, if someone believes that Bill is boring and
Ben is asleep, but he does not believe that Ben is asleep, then it seems that there
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is certainly something wrong with his powers of reasoning. Yet even the claim
that reasoning is good if and only if it is valid (as opposed to simply NTP)
would be too strong. As we shall see in §1.5, an argument can be valid without
being a good argument (intuitively speaking). Conversely, many good pieces
of reasoning (intuitively speaking) are not valid, for the truth of the premises
does not guarantee the truth of the conclusion: it only makes the conclusion
highly probable.

Reasoning in which validity is a prerequisite for goodness is often called
deductive reasoning. Important subclasses of nondeductive reasoning are in-
ductive reasoning—where one draws conclusions about future events based on
past observations (e.g., the sun has risen on every morning that I have experi-
enced, therefore it will rise tomorrow morning), or draws general conclusions
based on observations of specific instances (e.g., every lump of sugar that I
have put in tea dissolves, therefore all sugar is soluble)—and abductive rea-
soning, also known as (aka) “inference to the best explanation”—where one
reasons from the data at hand to the best available explanation of that data
(e.g., concluding that the butler did it, because this hypothesis best fits the
available clues).30 Whereas validity is a criterion of goodness for deductive ar-
guments, the analogous criterion of goodness for nondeductive arguments is
often called inductive strength: an argument is inductively strong just in case
it is improbable—as opposed to impossible, in the case of validity—that its
premises be true and its conclusion false.

The full story of the relationship between validity and good reasoning is
evidently rather complex. It is not a story we shall try to tell here, for our topic
is logic—and as we have noted, logic is the science of truth, not the science
of reasoning. However, this much certainly seems true: if we are interested in
reasoning—and in classifying it as good or bad—then one question of interest
will always be “is the reasoning valid?” This is true regardless of whether
we are considering deductive or nondeductive reasoning. The answer to the
question “is the reasoning valid?” will not, in general, completely close the
issue of whether the reasoning is good—but it will never be irrelevant to that
issue. Therefore, if we are to apply logic—the laws of truth—to the study
of reasoning, it will be useful to be able to determine of any argument—no
matter what its subject matter—whether it is valid.

§

When it comes to validity, then, we now have two goals on the table. One is to
find a precise analysis of validity. (Thus far we have given only a rough, guiding
idea of what validity is: NTP guaranteed by form. As we noted, this does
not amount to a precise analysis.) The other is to find a method of assessing
arguments for validity that is both
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1. foolproof: it can be followed in a straightforward, routine way, without
recourse to intuition or imagination—and it always gives the right an-
swer; and

2. general: it can be applied to any argument.

Note that there will be an intimate connection between the role of form in the
definition of validity (an argument is valid if it is NTP by virtue of its form)
and the goal of finding a method of assessing arguments for validity that can
be applied to any argument, no matter what its subject matter. It is the fact that
validity can be assessed on the basis of form, in abstraction from the specific
content of the propositions involved in an argument (i.e., the specific claims
made about the world—what ways, exactly, the propositions that make up the
argument are representing the world to be), that will bring this goal within
reach.

1.4.1 Exercises

State whether each of the following arguments is valid or invalid.

1. All dogs are mammals.
All mammals are animals.

All dogs are animals.

2. All dogs are mammals.
All dogs are animals.

All mammals are animals.

3. All dogs are mammals.
No fish are mammals.

No fish are dogs.

4. All fish are mammals.
All mammals are robots.

All fish are robots.

1.5 Soundness

Consider argument (4) in Exercises 1.4.1. It is valid, but there is still something
wrong with it: it does not establish its conclusion as true—because its premises
are not in fact true. It has the property that if its premises were both true,
then its conclusion would have to be true—that is, it is NTP—but its premises
are not in fact true, and so the argument does not establish the truth of its
conclusion.
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We say that an argument is sound if it is valid and, in addition, has premises
that are all in fact true:

sound = valid + all premises true

A valid argument can have any combination of true and false premises and
conclusion except true premises and a false conclusion. A sound argument has
true premises and therefore—because it is valid—a true conclusion.

Logic has very little to say about soundness—because it has very little to say
about the actual truth or falsity of particular propositions. Logic, as we have
said, is concerned with the laws of truth—and the general laws of truth are
very different from the mass of particular facts of truth, that is, the facts as to
which propositions actually are true and which are false. There are countless
propositions concerning all manner of different things: “two plus two equals
four,” “the mother of the driver of the bus I caught this morning was born in
Cygnet,” “the number of polar bears born in 1942 was 9,125,” and so on. No
science would hope to tell us whether every single one is true or false. This is
not simply because there are too many of them: it is in the nature of science
not to catalogue particular matters of fact but to look for interesting patterns
and generalizations—for laws. Consider physics, which is concerned (in part)
with motion. Physicists look for the general laws governing all motions: they
do not seek to determine all the particular facts concerning what moves where,
when, and at what speeds. Of course, given the general laws of motion and
some particular facts (e.g., concerning the moon’s orbit, the launch trajectory
of a certain rocket, and a number of other facts) one can deduce other facts
(e.g., that the rocket will reach the moon at such and such a time). The same
thing happens in logic. Given the general laws of truth and some particular
facts (e.g., that this proposition is true and that one is false) one can deduce
other facts (e.g., that a third proposition is true). But just as it is not the
job of the physicist to tell us where everything is at every moment and how
fast it is moving, so too it is not the job of the logician to tell us whether
every proposition is true or false. Therefore, questions of soundness—which
require, for their answer, knowledge of whether certain premises are actually
true—fall outside the scope of logic.31

Likewise, logic is not concerned with whether we know that the premises of
an argument are true. We might have an argument that includes the premise
“the highest speed reached by a polar bear on 11 January 2004 was 31.35
kilometres per hour.” The argument might (as it happens) be sound, but that
would not make it a convincing argument for its conclusion, because we could
never know that all the premises were true.

So it takes more than validity to make a piece of (deductive) reasoning con-
vincing. A really convincing argument will be not only valid but also sound,
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and furthermore have premises that can be known to be true. Some peo-
ple have complained that logic—which tells us only about validity—does not
provide a complete account of good reasoning. It is entirely true that logic
does not provide a complete account of good reasoning, but this is cause for
complaint only if one thinks that logic is the science of reasoning. From our
perspective there is no problem here: logic is not the science of reasoning; it
is the science of truth. Logic has important applications to reasoning—most
notably in what it says about validity. However there is both more and less to
good reasoning than validity (i.e., valid arguments are not always good, and
good arguments are not always valid)—and hence (as already noted in §1.4)
there is more to be said about reasoning than can be deduced from the laws of
truth.

1.5.1 Exercises

1. Which of the arguments in Exercises 1.4.1 are sound?

2. Find an argument in Exercises 1.4.1 that has all true premises and a true
conclusion but is not valid and hence not sound.

3. Find an argument in Exercises 1.4.1 that has false premises and a false
conclusion but is valid.

1.6 Connectives

We have said that an argument is valid if its structure guarantees that it is
NTP. It follows immediately that if validity is to be an interesting and useful
concept, some propositions must have internal structure. For suppose that all
propositions were simply “dots,” with no structure. Then the only valid argu-
ments would be ones where the conclusion is one of the premises. That would
render the concept of validity virtually useless and deprive it of all interest.
We are going to assume, then, that at least some propositions have internal
structure—and of course this assumption is extremely natural. Consider our
argument:

Tangles is gray, and Maisie is furry.
∴ Maisie is furry.

It seems obvious that the first premise—so far from being a featureless dot
with no internal structure—is a proposition made up (in some way to be
investigated) from two other propositions: “Tangles is gray” and “Maisie is
furry.”

Before we can say anything useful about the forms that arguments may take,
then, our first step must be to investigate the internal structure of the things
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that make up arguments—that is, of propositions. We divide propositions into
two kinds:

1. basic propositions: propositions having no parts that are themselves
propositions; and

2. compound propositions: propositions made up from other propositions
and connectives.

In Part I of this book—which concerns propositional logic—we look at the
internal structure of compound propositions, that is, at the ways in which
propositions may be combined with connectives to form larger propositions.
It will not be until Part II—which concerns predicate logic—that we shall look
at the internal structure of basic propositions.

A compound proposition is made up of component propositions and con-
nectives. We now embark upon an investigation of connectives. Our inves-
tigation will be guided by our interest in the laws of truth. We saw that any
argument of the form “A and B /∴ B” is valid (§1.4). The reason is that the
premise is made up of two component propositions, A and B, put together
by means of “and”—that is, in such a way that the compound proposition can
be true only if both components are true—and the conclusion is one of those
component propositions. Hence, the conclusion’s being true is part of what
it takes for the premise to be true. Thus, if the premise is true, the conclu-
sion must be too: the laws of truth ensure, so to speak, that truth flows from
premise to conclusion (if it is present in the premise in the first place). So the
validity of the argument turns on the internal structure of the premise—in
particular, on the way that the connective “and” works in relationship to truth
and falsity.

Our search for connectives will be guided by the idea that we are interested
only in those aspects of the internal structure of compound propositions that
have an important relationship to truth and falsity. More specifically, we shall
focus on a particular kind of relationship to truth and falsity: the kind where
the truth or falsity of the compound proposition depends solely on the truth
or falsity of its component propositions. A connective is truth functional if it
has the property that the truth or falsity of a compound proposition formed
from the connective and some other propositions is completely determined by
the truth or falsity of those component propositions. Our focus, then, will be
on truth-functional connectives.32

1.6.1 Negation

Consider the proposition “Maisie is not a rottweiler.” Thinking in terms of
truth and falsity, we can see this proposition as being made up of a component
proposition (“Maisie is a rottweiler”) and a connective (expressed by “not”)
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that have the following relationship to one another: if “Maisie is a rottweiler”
is true, then “Maisie is not a rottweiler” is false, and if “Maisie is a rott-
weiler” is false, then “Maisie is not a rottweiler” is true. We use the term
“negation” for the connective which has this property: viz. it goes together
with a proposition to make up a compound proposition that is true just in
case the component proposition is false. Here is some terminology:

“Maisie is not a rottweiler” is the negation of “Maisie is a rottweiler.”
“Maisie is a rottweiler” is the negand of “Maisie is not a rottweiler.”

Note the double meaning of negation. On the one hand we use it to re-
fer to the connective, which goes together with a proposition to make up a
compound proposition. On the other hand we use it to refer to that com-
pound proposition. This ambiguity is perhaps unfortunate, but it is so well
entrenched in the literature that we shall not try to introduce new terms here.
As long as we are on the lookout for this ambiguity, it should not cause us any
problems.

Using our new terminology, we can express the key relationship between
negation and truth this way:

If the negand is true, the negation is false, and if the negand is false, the negation is
true.

Thus, negation is a truth-functional connective: to know whether a negation
is true or false you need only know whether the negand is true or false: the
truth or falsity of the negation is completely determined by the truth or falsity
of the negand.

It is this particular relationship between negation and truth—rather than
the presence of the word “not”—that is the defining feature of negation. Nega-
tion can also be expressed in other ways, for example:

. It is not the case that there is an elephant in the room.

. There is no elephant in the room.

. There is not an elephant in the room.

All these examples can be regarded as expressing the negation of “there is an
elephant in the room.”

Connectives can be applied to any proposition, basic or compound. Thus,
we can negate “Bob is a good student” to get “Bob is not a good student,” and
we can also negate the latter to get “it is not the case that Bob is not a good
student,” which is sometimes referred to as the double negation of “Bob is a
good student.”
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To get a complete proposition using the connective negation, we need to add
the connective to one proposition (the negand). Thus negation is a one-place
(aka unary or monadic) connective.

1.6.1.1 EXERCISES

1. What is the negand of:

(i) Bob is not a good student
(ii) I haven’t decided not to go to the party.

(iii) Mars isn’t the closest planet to the sun.
(iv) It is not the case that Alice is late.
(v) I don’t like scrambled eggs.

(vi) Scrambled eggs aren’t good for you.

2. If a proposition is true, its double negation is . . . ?

3. If a proposition’s double negation is false, the proposition is . . . ?

1.6.2 Conjunction

Consider the proposition “Maisie is tired, and the road is long.” Thinking in
terms of truth and falsity, we can see this proposition as being made up of
two component propositions (“Maisie is tired” and “the road is long”) and a
connective (expressed by “and”), which have the following relationship to one
another: “Maisie is tired, and the road is long” is true just in case “Maisie is
tired” and “the road is long” are both true. We use the term conjunction for
the connective that has this property: it goes together with two propositions
to make up a compound proposition that is true just in case both component
propositions are true.33 Here is some terminology:

“Maisie is tired and the road is long” is the conjunction of “Maisie is tired” and
“the road is long.”

“Maisie is tired” and “the road is long” are the conjuncts of “Maisie is tired
and the road is long.”

Again, “conjunction” is used in two senses: to pick out a connective and to pick
out a compound proposition built up using this connective.

Using our new terminology, we can express the key relationship between
conjunction and truth in this way:

The conjunction is true just in case both conjuncts are true.
If one or more of the conjuncts is false, the conjunction is false.

Thus, conjunction is a truth-functional connective: to know whether a con-
junction is true or false you need only know whether the conjuncts are true or
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false: the truth or falsity of the conjunction is completely determined by the
truth or falsity of the conjuncts.

It is this particular relationship between conjunction and truth—rather
than the presence of the word “and”—that is the defining feature of con-
junction. Conjunction can also be expressed in other ways, and not every
use of “and” in English expresses truth-functional conjunction. For the mo-
ment, however, we shall continue with our preliminary examination of truth-
functional connectives; we turn to a detailed discussion of the relationships
among these connectives and expressions of English in Chapter 6. So keep in
mind throughout the remainder of this chapter: we are here giving a first, brief
introduction to truth-functional connectives via English words that typically,
often, or sometimes express these connectives. In Chapters 2 and 3 we shall
gain a much deeper understanding of these connectives via the study of a new
symbolic language before returning to the subtleties of the relationships be-
tween these connectives and expressions of English in Chapter 6.

To obtain a complete proposition using the conjunction connective, we
need to add the connective to two propositions (the conjuncts). Thus, con-
junction is called a two-place (aka binary or dyadic) connective.

1.6.2.1 EXERCISES

What are the conjuncts of the following propositions?

1. The sun is shining, and I am happy.

2. Maisie and Rosie are my friends.

3. Sailing is fun, and snowboarding is too.

4. We watched the movie and ate popcorn.

5. Sue does not want the red bicycle, and she does not like the blue one.

6. The road to the campsite is long and uneven.

1.6.3 Disjunction

Consider the proposition “Frances had eggs for breakfast or for lunch.” Think-
ing in terms of truth and falsity, we can see this proposition as being made
up of two component propositions (“Frances had eggs for breakfast” and
“Frances had eggs for lunch”) and a connective (expressed by “or”), which
have the following relationship to one another: “Frances had eggs for breakfast
or for lunch” is true just in case at least one of “Frances had eggs for breakfast”
and “Frances had eggs for lunch” are true. We use the term disjunction for the
connective that has this property: it goes together with two propositions to
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make up a compound proposition that is true just in case at least one of those
component propositions is true. Here is some terminology:

“Frances had eggs for breakfast or for lunch” is the disjunction of “Frances had eggs
for breakfast” and “Frances had eggs for lunch.”

“Frances had eggs for breakfast” and “Frances had eggs for lunch” are the disjuncts
of “Frances had eggs for breakfast or for lunch.”

Using this terminology, we can express the key relationship between disjunc-
tion and truth in this way:

The disjunction is true just in case at least one of the disjuncts is true.
If both the disjuncts are false, the disjunction is false.

Thus, disjunction is a truth-functional connective: to know whether a disjunc-
tion is true or false you need only know whether the disjuncts are true or false:
the truth or falsity of the disjunction is completely determined by the truth or
falsity of the disjuncts.

It is this relationship between disjunction and truth—rather than the use
of the word “or” as in the example above—that is the defining feature of
disjunction. Disjunction can also be expressed in other ways, for example:

. Either Frances had eggs for breakfast or she had eggs for lunch.

. Frances had eggs for breakfast and/or lunch.

. Frances had eggs for breakfast or lunch—or both.

To obtain a complete proposition using the disjunction connective, we need
to add the connective to two propositions (the disjuncts). Thus, disjunction is
a two-place connective.

1.6.4 Conditional

Imagine that we look out the window and see a haze; we are not sure whether
it is smoke, fog, dust, or something else. Consider the proposition “if that is
smoke, then there is a fire.” A proposition of this form has two components,
and claims that if one of them is true, then the other is true too. We call
the former component the antecedent, the latter component the consequent,
and the compound proposition a conditional. (Once again we also use the
term “conditional” for the two-place connective used to form this compound
proposition.) In the above example the conditional is “if that is smoke, then
there is a fire,” the antecedent is “that is smoke,” and the consequent is “there
is a fire.”
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Note that the antecedent is not always written first. The antecedent is the
component proposition of which it is said that if it is true, then another prop-
osition is true; the consequent is that other proposition. To put it another way:
if the conditional is true, then one of its components might be true without the
other component being true, but not vice versa. The consequent is the compo-
nent that might be true even if the other component is not true; the antecedent
is the component that cannot be true without the other component also be-
ing true (assuming the conditional as a whole is true). Thus, the relationship
between the antecedent and the consequent is logical or alethic (having to do
with truth), not temporal or spatial. If I say “there is a fire if that is smoke,” the
antecedent is “that is smoke,” and the consequent is “there is a fire.” In other
words, this is just a different way of expressing the same conditional.

As well as being expressed by “if . . . then” and “if,” conditionals can also
be expressed using “only if.” For example, suppose that I have just gotten off
a mystery flight and am wondering where I am. Consider the proposition “I
am in New York only if I am in America.” This is a conditional in which the
antecedent is “I am in New York,” and the consequent is “I am in America:”
it thus says the same thing as “if I am in New York, I am in America.” The
easiest way to see this is to think what it would take to make the latter claim
false: I would have to be in New York without being in America. So “if I am
in New York, I am in America” rules out the case in which I am in New York
but am not in America. And that is exactly what “I am in New York only if I
am in America” does: the claim is that it does not happen that I am in New
York but not in America. In contrast, “I am in America only if I am in
New York” says something quite different: it says the same thing as “if I am
in America, then I am in New York.” In general, “if P then Q” and “P only if
Q” say the same thing.

1.6.4.1 EXERCISES

What are the (a) antecedents and (b) consequents of the following proposi-
tions?

1. If that’s pistachio ice cream, it doesn’t taste the way it should.

2. That tastes the way it should only if it isn’t pistachio ice cream.

3. If that is supposed to taste that way, then it isn’t pistachio ice cream.

4. If you pressed the red button, then your cup contains coffee.

5. Your cup does not contain coffee if you pressed the green button.

6. Your cup contains hot chocolate only if you pressed the green button.
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1.6.5 Biconditional

Suppose the drink machine has unlabeled buttons, and you are wondering
what is in your cup, which you have just removed from the machine. Consider
the proposition “your cup contains coffee if and only if you pressed the red
button.” Someone who asserts this is committed to two claims:

Your cup contains coffee if you pressed the red button.
Your cup contains coffee only if you pressed the red button.

The first is a conditional with antecedent “you pressed the red button” and
consequent “your cup contains coffee.” The second is a conditional with an-
tecedent “your cup contains coffee” and consequent “you pressed the red but-
ton.” Now, under what conditions is the original proposition true? Suppose
your cup contains coffee. Then, if the second conditional is to be true, it must
be the case that you pressed the red button. Suppose your cup does not con-
tain coffee. Then, if the first conditional is to be true, it must be the case that
you did not press the red button. So the original proposition (“your cup con-
tains coffee if and only if you pressed the red button”) is true if your cup
contains coffee and you pressed the red button, and true if your cup does
not contain coffee and you did not press the red button, but it is false if
your cup contains coffee and you did not press the red button, and it is false
if your cup does not contain coffee and you did press the red button. In other
words, it is true just in case its two component propositions (“your cup con-
tains coffee” and “you pressed the red button”) have the same truth value—
that is, are both true, or both false.

We call the original claim a biconditional. Note that we are here regarding the
proposition “your cup contains coffee if and only if you pressed the red but-
ton” as formed from two propositions (“your cup contains coffee” and “you
pressed the red button”) using the two-place connective “if and only if,” that
is, the biconditional. We regard this claim as equivalent to the conjunction of
the two conditionals “your cup contains coffee if you pressed the red button”
and “your cup contains coffee only if you pressed the red button”—but it is
not the same proposition as “your cup contains coffee if you pressed the red
button and your cup contains coffee only if you pressed the red button.” The
latter is a compound proposition built up using two basic propositions (“your
cup contains coffee” and “you pressed the red button”) and two different con-
nectives (a conditional used twice and a conjunction). This idea of different
propositions being equivalent—that is, true and false in the same situations—
will be made clear in §4.3.34

Note that it is common to abbreviate “if and only if” as “iff,” and that “just in
case” is often used as a synonym for “if and only if” (e.g., “a conjunction is true
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just in case both its conjuncts are true” states the same thing as “a conjunction
is true if and only if both its conjuncts are true”).

1.6.6 Exercises

State what sort of compound proposition each of the following is, and identify
its components. Do the same for the components.

1. If it is sunny and windy tomorrow, we shall go sailing or kite flying.

2. If it rains or snows tomorrow, we shall not go sailing or kite flying.

3. Either he’ll stay here and we’ll come back and collect him later, or he’ll
come with us and we’ll all come back together.

4. Jane is a talented painter and a wonderful sculptor, and if she remains
interested in art, her work will one day be of the highest quality.

5. It’s not the case that the unemployment rate will both increase and de-
crease in the next quarter.

6. Your sunburn will get worse and become painful if you don’t stop swim-
ming during the daytime.

7. Either Steven won’t get the job, or I’ll leave and all my clients will leave.

8. The Tigers will not lose if and only if both Thompson and Thomson get
injured.

9. Fido will wag his tail if you give him dinner at 6 this evening, and if you
don’t, then he will bark.

10. It will rain or snow today—or else it won’t.
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2
The Language of Propositional Logic

2.1 Motivation

In this chapter we introduce a symbolic language PL (the language of Propo-
sitional Logic). Why do we need it? Why can’t we continue to work in English
(or some other natural language), as we did in the previous chapter when
we looked at connectives? The main reason is that we are primarily inter-
ested in propositions. As noted in §1.2.2, English sentences provide a means
of expressing propositions: we can make claims about the world by uttering
sentences in contexts. However, from the point of view of someone inter-
ested in the propositions themselves—in particular, in their structure and the
role it plays in determining their truth or falsity—English sentences are not
the most useful route to propositions: for the structure of an English sen-
tence does not always provide a good guide to the structure of the proposi-
tions that it can be used to express.1 We shall see many illustrations of this
point once we have our logical languages set up and begin to translate into
them from English.2 Our goal in introducing PL will be to have a language in
which the structure of the sentences—or formulas, as they are usually called
when formal symbolic languages, as opposed to natural languages, are un-
der discussion—directly mirrors the structure of propositions: a language in
which the ways of forming complex formulas from simpler components di-
rectly mirror the ways in which compound propositions can be formed from
simpler propositions.

2.2 Basic Propositions of PL

Recall that in Part I of this book, we are not looking at the internal structure of
basic propositions. We are looking at the internal structure only of compound
propositions, which are built up from basic propositions and connectives.
Accordingly, basic propositions will be represented in PL by simple capital



letters (called “sentence letters,” “propositional constants,” or “propositional
parameters”):

A, B , C , . . . , P , Q, R , . . .

The idea is that as basic propositions have (for the moment) no logically
significant internal structure, we represent them using syntactically simple
(as opposed to structured) symbols. (Recall the guiding idea that the
structure—or lack thereof—of formulas of PL should directly mirror
the structure—or lack thereof—of propositions.) There are only twenty-six
letters of the alphabet, but we do not wish to restrict ourselves to just twenty-
six basic propositions, so in case we ever need more we can add numerical
subscripts to the letters:

A2, A3, . . . , B2, B3, . . .

We want to represent ordinary reasoning—carried out in English—in PL.
To do this we require a glossary, such as the following:

A: Antelopes chew the cud
F: Your best friend is my worst enemy
N: Albany is the capital of New York

This glossary tells us what proposition each sentence letter of PL is supposed
to represent.

2.2.1 Glossaries

For each sentence letter on the left-hand side, the glossary specifies which
proposition it represents. Therefore, we need to put something on the right-
hand side that determines a proposition. Generally speaking, we write an
English sentence on the right-hand side of each entry—but given that the
right-hand side needs to determine a proposition, this practice needs to be
fully understood. It needs to be understood that when we write the sentence
letter F opposite the sentence “your best friend is my worst enemy,” we are
saying that this sentence letter represents the proposition expressed by some
particular utterance of the latter sentence in some particular context (for recall
from §1.2.2 that different utterances of this sentence will generally express
different propositions). Which utterance is relevant may be obvious from the
context, or it may be specified by additional information in the glossary entry.
Alternatively, it might not actually matter for the purposes at hand exactly
which of various propositions F picks out: in such cases, while we are to
understand that F does pick out a particular proposition that can be expressed
by utterances of “your best friend is my worst enemy,” we do not need to know
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precisely which of these propositions it is. In any case, the crucial point to keep
in mind is that glossary entries pair sentence letters of PL with propositions.
If we write a sentence letter of PL on the left-hand side of a glossary entry and
a sentence of English on the right-hand side, it should not be thought that the
sentence letter of PL stands for that sentence of English. Rather, the sentence
of English that we put on the right-hand side is to be taken as a route to a
particular proposition—and it is for this proposition that the sentence letter
on the left-hand side is to stand.

Because glossary entries pair sentence letters of PL with particular propo-
sitions, PL is not context sensitive. That is, every token of F (or any other
sentence letter) represents the same proposition: the one with which F is
paired in the glossary entry. (If F was paired with the sentence type “your best
friend is my worst enemy,” then different tokens of F would, in general, ex-
press different propositions.) This is in stark contrast to English, where (as we
saw in §1.2.2) different tokens of the same sentence type often express differ-
ent propositions. This lack of context sensitivity is precisely one of the features
that we want our formal symbolic language to have. We want a language that
provides a transparent window onto propositions: when we see different sen-
tence letters of PL, we know that we are dealing with different propositions,3

and when we see multiple tokens of the same sentence letter, we know that we
are dealing with just one proposition. One of the advantages of this approach
is that we do not have to worry that an argument such as

P

If P then Q

∴ Q

might not be valid because the different tokens of P and Q that occur in it
might express different propositions. In contrast, this is a genuine worry in
English. For example, consider the following sequence of sentences:

I am short.
If I am short, then I am not tall.
Therefore, I am not tall.

If Bob (who is short) reads the first two lines and Ben (who is tall) reads the last
line, then the argument—sequence of propositions—that they express is not
valid. Likewise, if Jane reads the first two lines when she is four (and short for
her age) and then reads the last line when she is eighteen (and has become tall
for her age) then the argument—sequence of propositions—that she expresses
is not valid. When arguments are expressed in PL, however, it is always evident
simply from the shape of the symbols used to represent them whether the same
proposition appears twice or two different propositions appear.
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One important qualification needs to be made when it comes to the context
insensitivity of PL. We can give a certain glossary entry for F (e.g., the one
above), operate with this glossary for a while, and then later, in a different
context, abandon it and introduce a new glossary, in which we use the letter F

again and pair it with a different proposition, for example,

F : Fred is tall

That is, we do not have to use the same glossary for ever. The key point is
that as long as a given glossary is in play, the sentence letters in it are context
insensitive.

We also need to make a clarification regarding the idea that the structure
of formulas of PL should directly mirror the structure of propositions. What
we mean is that PL should have the resources to mirror propositional struc-
ture: the ways of forming complex formulas in PL from simpler components
should directly mirror those in which compound propositions can be formed
from simpler propositions. We do not mean that every time we use PL to
represent some propositions, it is mandatory that we represent their struc-
ture in all its detail. Sometimes it is useful to ignore some of the structure
of certain propositions: we may be interested only in one part of the struc-
ture and wish to “black box” the rest, for example, with a glossary entry
such as:

C: Antelopes do not chew the cud

Here we pair up a sentence letter of PL with a nonbasic proposition (a nega-
tion): some of the structure of this proposition (the fact that it is formed from
another proposition using the negation connective) is not reflected in the for-
mula of PL that represents it (which is a simple sentence letter, with no internal
structure). In applications of logic, ignoring structure that is irrelevant for
one’s purposes can sometimes be useful. In this book, however—where we are
introducing logic—we avoid glossary entries that pair sentence letters with
nonbasic propositions. (In particular, in the exercises, we always look for glos-
saries that link sentence letters with basic propositions.)

Because the structure of PL formulas generally mirrors the structure of
propositions, and because it should never be unclear which proposition a
formula of PL is supposed to express, we can in many contexts afford to be
casual about distinguishing between formulas of PL and propositions. For the
sake of simplicity of presentation, we often therefore refer to formulas of PL
as propositions (rather than as representations of propositions). We return to
the issue of the precise relationship between formulas of the symbolic language
and propositions in §11.4.
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2.3 Connectives of PL

2.3.1 Negation

Negation is represented in PL by the symbol:

¬

which is known as “neg.” To form a compound proposition from the con-
nective negation and another proposition, we place the neg before the other
proposition. For example,

¬P

is a negation, where P is the negand.4

2.3.2 Conjunction

Conjunction is represented in PL by the symbol:

∧

which is known as “caret.” To form a compound proposition from the connec-
tive conjunction and two propositions, we place the caret between the propo-
sitions and place parentheses around them. For example,

(P ∧Q)

is a conjunction, where P and Q are the conjuncts.5

2.3.3 Exercises

Using the glossary:

A: Aristotle was a philosopher
B: Paper burns
F: Fire is hot

translate the following from PL into English.

1. ¬A

2. (A ∧ B)

3. (A ∧ ¬B)

4. (¬F ∧ ¬B)

5. ¬(F ∧ B)

2.3.4 Disjunction

Disjunction is represented in PL by the symbol:

∨
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which is known as “vel.” To form a compound proposition from the connec-
tive disjunction and two propositions, we place the vel between the proposi-
tions and place parentheses around them. For example,

(P ∨Q)

is a disjunction, where P and Q are the disjuncts.

2.3.5 Exercises

Using the glossary of Exercises 2.3.3, translate the following from PL into
English.

1. ((A ∧ B) ∨ F)

2. (¬A ∨ ¬B)

3. ((A ∨ B) ∧ ¬(A ∧ B))

4. ¬(A ∨ F)

5. (A ∧ (B ∨ F))

2.3.6 Conditional

The conditional is represented in PL by the symbol:

→

which is known as “arrow.” To form a compound proposition from this con-
nective and two propositions, we place the arrow between the propositions—
with the antecedent to the left and the consequent to the right—and place
parentheses around them. For example,

(P →Q)

is a conditional, where P is the antecedent and Q is the consequent.

2.3.7 Biconditional

The biconditional is represented in PL by the symbol:

↔

which is known as “double arrow.” To form a compound proposition from
this connective and two propositions, we place the double arrow between the
propositions and place parentheses around them. For example,

(P ↔Q)

is a biconditional with component propositions P (the left-hand expression)
and Q (the right-hand expression).
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2.3.8 Exercises

1. Using the glossary:

B: The sky is blue
G: Grass is green
R: Roses are red
W: Snow is white
Y: Bananas are yellow

translate the following from PL into English.

(i) (W → B)

(ii) (W ↔ (W ∧ ¬R))

(iii) ¬(R →¬W)

(iv) ((R ∨W)→ (R ∧ ¬W))

(v) ((W ∧W) ∨ (R ∧ ¬B))

(vi) (G ∨ (W → R))

(vii) ((Y ↔ Y ) ∧ (¬Y ↔¬Y ))

(viii) ((B →W)→ (¬W →¬B))

(ix) (((R ∧W) ∧ B)→ (Y ∨G))

(x) ¬(¬R ∧ (¬W ∨G))

2. Translate the following from English into PL.

(i) Only if the sky is blue is snow white.
(ii) The sky is blue if, and only if, snow is white and roses are not red.

(iii) It’s not true that if roses are red, then snow is not white.
(iv) If snow and roses are red, then roses are red and/or snow isn’t.
(v) Jim is tall if and only if Maisy is, and Maisy is tall only if Nora is not.

(vi) Jim is tall only if Nora or Maisy is.
(vii) If Jim is tall, then either Maisy is tall or Nora isn’t.

(viii) Either snow is white and Maisy is tall, or snow is white and she isn’t.
(ix) If Jim is tall and Jim is not tall, then the sky both is and is not blue.
(x) If Maisy is tall and the sky is blue, then Jim is tall and the sky is not

blue.

3. Translate the following from English into PL.

(i) If it is snowing, we are not kite flying.
(ii) If it is sunny and it is windy, then we are sailing or kite flying.

(iii) Only if it is windy are we kite flying, and only if it is windy are we
sailing.

(iv) We are sailing or kite flying—or skiing.
(v) If—and only if—it is windy, we are sailing.

(vi) We are skiing only if it is windy or snowing.
(vii) We are skiing only if it is both windy and snowing.

(viii) If it is sunny, then if it is windy, we are kite flying.
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(ix) We are sailing only if it is sunny, windy, and not snowing.
(x) If it is sunny and windy, we’re sailing, and if it is snowing and not

windy, we’re skiing.

2.3.9 Summary

Symbol Name Expressed Basic
in PL of symbol connective example

¬ neg Negation ¬P

∧ caret Conjunction (P ∧Q)

∨ vel Disjunction (P ∨Q)

→ arrow Conditional (P →Q)

↔ double arrow Biconditional (P ↔Q)

If you look at other logic books, you will find that other symbols are sometimes
used for some of the connectives. Common alternatives include:6

Connective Alternate symbols

Negation ∼ P −P P NOT P

Conjunction P & Q P . Q PQ P AND Q

Disjunction P OR Q

Conditional P ⊃Q P ⇒Q

Biconditional P ≡Q P ⇔Q

The choice of symbols has no deep significance. Making a choice is important:
we must pick some basic symbols and then stick with them, so as to avoid
ambiguity and unclarity. What choice we make is not nearly so important.7

In this book we shall stick to the choices we have made and not consider the
alternatives again.8

2.4 Wff Variables

For reasons that will become clear in the next section, we now want to intro-
duce a device that enables us to talk in a general way about propositions of PL.
Perhaps the easiest way to understand this new device is by analogy with vari-
ables in school mathematics. When we learn mathematics, we begin by noting
particular facts, such as 3+ 2= 5= 2+ 3, 7+ 9= 16= 9+ 7—and then we
move to the generalization x + y = y + x. The variables x and y allow us to
state this generalization in a very compact way. Without them, we should have
to say something long and potentially unclear, such as “when you have two
numbers, if you add the first to the second (in that order), the result is the
same as if you add the second to the first (in that order).”
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Note that x and y are not new numbers: they are devices that enable us to
talk in a general, nonspecific way about the ordinary old numbers 1, 2, 3, . . . .
When we say “x + y = y + x,” we mean whatever number (out of the usual
numbers 1, 2, 3, . . .) x is taken to be, and whatever number (out of the
usual numbers 1, 2, 3, . . .) y is taken to be, the result of adding x and y (in
that order) is the same as the result of adding y and x (in that order).

We now want to do a similar thing with propositions of PL. We have en-
countered various specific propositions: A, B, (A ∨ B),¬(A ∧ B), and so on.
(Think of these as analogous to specific numbers: 3, 5, 3+ 7, 11− 8, and so
on.) Now we want to introduce a device for talking in a general, nonspecific
way about these propositions. (Think of this device as analogous to the vari-
ables x and y.) We shall use the lowercased Greek letters α (alpha), β (beta),
γ (gamma), and δ (delta) for this purpose. (We shall also sometimes use these
letters with subscripts, i.e., α1, α2, . . . , αn, etc.) We call these letters wff vari-
ables. (The term “wff” is short for “well-formed formula;” it will be explained
in the next section.) Just as x and y are not new numbers, so too α, β, γ , and
δ are not new propositions of PL. Rather, they give us a general way of talk-
ing about the familiar old propositions—that is, propositions made up of the
symbols A, B , C , . . . , ¬, ∧, ∨, →, ↔, and left and right parentheses.

Using wff variables, we can say, for example,

If α is true, then ¬α is false.

This statement means: whatever proposition (out of the ones we are already
familiar with: A, B , (A ∨ B), etc.) α is taken to be, if this proposition is true,
then the proposition obtained from it by preceding it with a negation sign is
false. This is analogous to the following:

If x is even, then x + 1 is odd.

This statement means: whatever number (out of the ones we are already famil-
iar with: 1, 2, 3, . . .) x is taken to be, if this number is even, then the number
obtained from it by adding 1 is odd.9

2.5 Syntax of PL

We now summarize in a compact and more formal way what we have said
about the language PL. (It is not possible to do this in such a simple way
without using wff variables; that is why we introduced them in the previous
section.) Propositions of PL are made up by arranging the basic symbols of the
language in certain ways, for example, placing a negation sign before a basic
proposition. To describe the syntax of a language is to say (1) what the basic
symbols of the language are, and (2) how these symbols can be combined to
form the sentences of the language. The sentences of PL are called wffs.
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1. The symbols of PL are:

(i) basic propositions:

A, A2, A3, . . . , B , B2, B3, . . . , C , C2, C3, . . . , Z , Z2, Z3, . . .

(ii) connectives:

¬ ∧ ∨ → ↔
(iii) punctuation symbols (parentheses):

( )

2. Wffs of PL are defined as follows:

(i) Any basic proposition is a wff.
(ii) If α and β are wffs, then so are:

¬α

(α ∧ β)

(α ∨ β)

(α → β)

(α ↔ β)

(iii) Nothing else is a wff.

That’s it! We have here told the complete story of the syntax of PL. This is
an example of a recursive definition (aka an inductive definition). Clause (2i)
is known as the “base clause” and (2ii) as the “recursive clause.” (We shall
refer to the first line of clause (2ii), the one featuring ¬, as clause (2ii¬); the
second line, the one featuring ∧, as clause (2ii∧); and so on.) “Recursive”
means “characterized by recurrence or repetition” (as in “recur”). In only a
small number of clauses, this definition characterizes an infinite number of
strings of basic symbols as wffs. The key point is that the recursive clause may
be applied repeatedly. Thus, for example, A is a wff, by clause (2i); so ¬A

is a wff, by clause (2ii¬). But then given that ¬A is a wff, ¬¬A is a wff, by
clause (2ii¬). (Note that in clause (2ii), α may be any wff: it does not have to
be a basic proposition.) Likewise, (A ∨ ¬A) is a wff, by clause (2ii∨), and so
on. By plugging the products of the definition back into the recursive clause,
we can generate more and more complex wffs, without limit. (Clause (2iii) is
known as the “terminal clause”: it makes explicit that only strings of symbols
generated by the first two clauses are wffs.)

Note the use of wff variables in clause (2ii). The second line of this clause,
for example, says that if α and β are wffs, then (α ∧ β) is a wff. This is a clear,
compact way of saying: if you take any two wffs and add a conjunction symbol
between them and parentheses around them, the result is a wff.

Some terminology: We have seen that in a negation ¬α, the proposition α

to which the negation connective is applied is called the “negand;” that in a
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conjunction (α ∧ β), the propositions α and β to which the conjunction con-
nective is applied are called the “conjuncts;” and so on. Sometimes we want
to speak about connectives and the propositions to which they apply in a gen-
eral way (e.g., rather than talking specifically about negation or conjunction,
we want to say something that applies to any connective): in this case we call
those propositions the “arguments” of the connective.10

2.5.1 Exercises

1. State whether each of the following is a wff of PL.

(i) ((A→ B))

(ii) (A→→ B)

(iii) (A→ (A→ A))

(iv) A→ ((A→ A))

(v) ((A ∧ B)∧)A

(vi) (A ∨ (A ∨ (A ∨ (A ∨ (A ∨ (A ∨ (A ∨ A))))))

(vii) ((AA ∨ ∧BC))

(viii) ((A ∨ A) ∧ BC))

(ix) ABC

(x) ((A ∨ A) ∧ ((A ∨ A) ∧ ((A ∨ A) ∧ A)))

2. Give recursive definitions of the following.

(i) The set of all odd numbers.
(ii) The set of all numbers divisible by five.

(iii) The set of all “words” (finite strings of letters) that use only (but not
necessarily both of) the letters a and b.

(iv) The set containing all of Bob’s ancestors.
(v) The set of all cackles: hah hah hah, hah hah hah hah, hah hah hah

hah hah, and so on.

2.5.2 Logical and Nonlogical Vocabulary

In clause 1 in §2.5, we introduced the basic symbols of the language PL. These
symbols fall into three categories:

. logical symbols,

. nonlogical symbols, and

. auxiliary symbols.

Every symbol is in exactly one of these categories. This division will hold for
all the logical languages that we examine in this book. In the case of our first
language—PL—the division is:

. the connectives are logical symbols,
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. the basic propositions are nonlogical symbols, and

. the parentheses are auxiliary symbols.

We shall discuss the significance and implications of this division at various
points below. For now, the rough idea is as follows. Logical symbols have fixed
meanings, whereas the meanings of the nonlogical symbols have to be spec-
ified. That is why our glossaries specify translations for basic propositions of
PL but do not specify translations for the connectives. (The auxiliary symbols
have no meanings in themselves: they simply enable us to form meaningful
compound propositions in an unambiguous way.)11

2.5.3 Constructing Wffs

If a given string of symbols is a wff, it must be constructible in accordance
with the recursive definition given in §2.5. Sometimes it can be useful to trace
through the construction of a wff. For example, consider the wff:

(¬P ∧ (Q ∨ R))

Here is how it can be constructed:

Step Wff constructed at this step From steps/by clause

1 P / (2i)
2 Q / (2i)
3 R / (2i)
4 ¬P 1 / (2ii¬)
5 (Q ∨ R) 2, 3 / (2ii∨)
6 (¬P ∧ (Q ∨ R)) 4, 5 / (2ii∧)

Note that at each step of the construction of our target wff, we have something
that is itself a wff. We call these wffs the subformulas of the target wff. (A note
on the terminology: the target wff is classified as a subformula of itself.)

In constructing the wff, we construct its subformulas from simplest to most
complex. By “simpler” we mean “has fewer connectives.” So we start with basic
subformulas: ones with no connectives. This is phase 0 (steps 1–3 in the exam-
ple). (Note that we are distinguishing phases from steps: in general, one phase
may comprise several steps.) We next construct subformulas that add a con-
nective to formulas constructed in phase 0: this is phase 1 (steps 4 and 5 in the
example). We then construct subformulas that add a connective to formulas
constructed in phase 0 or 1: this is phase 2 (step 6 in the above example). We
can then construct subformulas that add a connective to formulas constructed
in phase 0, 1, or 2: this is phase 3—and so on until we have constructed the tar-
get wff. (In the above example, we stop at phase 2, as the target wff is complete
in that phase.)
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As mentioned, each phase may involve several steps. That is, there may be
more than one basic formula to be constructed in phase 0 (in the above exam-
ple there are three: P , Q, and R), more than one formula to be constructed in
phase 1 (in the example there are two: ¬P and (Q ∨ R)), and so on. Within a
phase, it does not matter in which order the wffs are constructed (e.g., steps 4
and 5 above could be switched). It is crucial, however, that the phases be done
in order: we cannot construct (¬P ∧ (Q∨R)) by putting∧ between¬P and
(Q ∨ R) until we have the component wffs ¬P and (Q ∨ R), constructed at
an earlier phase.

Each nonbasic wff has a main connective: the one added last in the con-
struction. Note that in the above construction, steps 1, 2, and 3 can be done in
any order, and while step 4 must come after step 1, and step 5 must come after
steps 2 and 3, it does not matter whether 4 comes before or after 5. Neverthe-
less, there is never a choice as to which step comes last—so there is never any
uncertainty regarding which connective is the main one.12

We do not have to go through the construction of a wff to determine the
main connective. If the wff has a negation outside all parentheses, that nega-
tion is the main connective. If not, then the main connective is the two-place
connective with the least number of parentheses around it (i.e., only one set of
parentheses).

2.5.3.1 EXERCISES

Write out a construction for each of the following wffs, and state the main
connective.

1. (¬P ∨ (Q ∧ R))

2. ¬(P ∧ (Q ∨ R))

3. ((¬P ∧ ¬Q) ∨ ¬R)

4. ((P →Q) ∨ (R → S))

5. (((P ↔Q)↔ R)↔ S)

6. ((¬P ∧ ¬¬P)→ (P ∧ ¬P))

2.5.4 Abbreviations

Where it will cause no confusion, we may—for the sake of brevity and
simplicity—omit outer parentheses. So we may sometimes write, say, P ∧Q

instead of (P ∧Q). Strictly speaking, the former is not wellformed: clause
(2ii∧) states that to construct a wff using ∧, we must take two wffs and
put ∧ between them and parentheses around the outside. It is, however, a
useful abbreviation, when no confusion can result from omitting the outer
parentheses.13

Note that in clause (2ii) of the definition of wffs in §2.5, the wff variables
α and β stand for wffs: that is, official wffs, with no parentheses omitted. If
you have been working with (say) a conjunction, and you have omitted its
outer parentheses—writing α ∧ β—you must restore them before applying
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(say) clause (2ii¬). Otherwise—if you just stick on a negation symbol, with-
out restoring the parentheses first—you will get ¬α ∧ β. This is a legitimate
abbreviation of (¬α ∧ β), which is a wff—but this wff is not the negation of
our original conjunction α ∧ β. It is not a negation at all—it is a conjunc-
tion: of the negation of α, and β. To get the negation of α ∧ β, you have to
restore its outermost parentheses before applying clause (2ii¬). The result is
then ¬(α ∧ β).

There is an additional unofficial convenience that we allow ourselves: where
we have a formula with many parentheses in it, we may change the shape of
some of them, to make the formula easier to read. For example, instead of:

((((A→B)∧ (B →A))→ (A↔B))∧ ((A↔B)→ ((A∧B)∨¬(A∨B)))) (2.1)

we may write:

{[(A→ B) ∧ (B → A)]→ (A↔ B)} ∧ {(A↔ B)→ [(A ∧ B) ∨ ¬(A ∨ B)]} (2.2)

We are not here augmenting the official syntax of PL with additional symbols
[, {, and so on. Officially, (2.2) is not a wff. Rather, (2.2) is something that we
allow ourselves to write in place of (2.1), in contexts where this format will
cause no confusion, because (2.2) is easier to read. Only (2.1), however, is an
official wff.

§

Some books also introduce conventions for omitting inner parentheses in an
unambiguous way. In general we do not do this in this book (although we do
allow the omission of internal parentheses in two special cases—see §4.3.2).
Nevertheless, such conventions are worth mentioning here, if only because
outside this book it is not uncommon to find expressions with no parentheses
at all. On the face of it, an expression such as:

A→ B ∧ C ∨D

is multiply ambiguous. It could represent any of the following wffs:

1. (((A→ B) ∧ C) ∨D)

2. ((A→ B) ∧ (C ∨D))

3. ((A→ (B ∧ C)) ∨D)

4. (A→ ((B ∧ C) ∨D))

5. (A→ (B ∧ (C ∨D)))

We can pick out just one of these wffs as the intended reading of the original
expression by introducing an ordering of the connectives and then stipulating
that when restoring parentheses to an expression, we go through the connec-
tives in the expression in the prescribed order, adding parentheses around each
one in such a way that we always form the smallest possible subformula at each
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stage. For example, if we consider only the three connectives featured in the
above expression, there are six possible ways of ordering them:

1. →, ∧, ∨
2. →, ∨, ∧
3. ∧, →, ∨

4. ∧, ∨, →
5. ∨, →, ∧
6. ∨, ∧, →

If we add parentheses to our original expression A→ B ∧ C ∨D using the
first ordering, we first add parentheses around the→ in such a way as to make
the smallest possible subformula containing →:

(A→ B) ∧ C ∨D

We then add parentheses around the ∧ in such a way as to make the smallest
possible subformula containing ∧:

((A→ B) ∧ C) ∨D

Finally we add parentheses around the ∨ in such a way as to make the smallest
possible subformula containing ∨:

(((A→ B) ∧ C) ∨D)

The result is the first wff in our list of possible disambiguations of the original
parenthesis-free expression.

What is going on here is analogous to disambiguation in school mathemat-
ics. We are taught that when we see the expression:

20+ 2× 3

we are to read it as 20 + (2× 3), not (20 + 2) × 3. In other words, we are
taught the convention that when restoring parentheses to an expression, ×
comes before +.

Conventions of this sort do not allow one to omit all inner parentheses. For
example, they do not specify what to do with:

A→ B → C

because they do not specify which → to treat first. We could stipulate that
multiple instances of the same connective be treated in order from left to right
(or alternatively from right to left). In that case, A→ B → C would represent
the wff:

((A→ B)→ C)

However, if the wff we wanted to work with was actually:

(A→ (B → C))
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then the only parentheses we could leave off would be the outermost ones:

A→ (B → C)

2.5.4.1 EXERCISE

1. For each of the remaining orderings (2–6) of the connectives →, ∧, and
∨ given in §2.5.4, state which disambiguation (1–5) results from restoring
parentheses to our original expression in this order.

2.5.5 Polish Notation

There is another way of writing wffs, which allows us to do away with paren-
theses altogether. Instead of writing two-place connectives between the wffs,
we write them in front:

. (α ∧ β) becomes ∧ αβ

. (α ∨ β) becomes ∨ αβ

. (α → β) becomes → αβ

. (α ↔ β) becomes ↔ αβ

When reading a formula in this notation, we take the argument of a one-
place connective to be the well-formed expression immediately following it,
and we take the two arguments of a two-place connective to be the two well-
formed expressions immediately following it. (By “well-formed expression”
here I mean well formed according to the new notation with the connectives
out the front.) Thus,

. (((A→ B) ∧ C) ∨D) becomes ∨ ∧→ ABCD

. ((A→ B) ∧ (C ∨D)) becomes ∧→ AB ∨ CD

. ((A→ (B ∧ C)) ∨D) becomes ∨→ A ∧ BCD

and so on. Note that the main connective appears first.
This way of writing formulas was introduced by the Polish logician Jan

Łukasiewicz; it is now known as “Polish notation.”14

2.5.5.1 EXERCISES

1. Write the following in the notation of this book:

(i) ∨ ¬P∧QR

(ii) ¬ ∧ ∨ PQR

(iii) ∧ ¬ ∨ PQR

(iv) ∨ ∧ ¬P¬Q¬R

(v) ↔↔↔ PQRS
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2. Write the following in Polish notation:

(i) ¬(P ∧ (Q ∨ R))

(ii) ([P → (Q ∨ R)]→ S)

(iii) [(P →Q) ∨ (R → S)]

(iv) (P → [(Q ∨ R)→ S])
(v) [(¬P ∧ ¬¬P)→ (P ∧ ¬P)]

2.5.6 Finite Alphabets

According to our specification of the syntax of PL in §2.5, there are infinitely
many symbols of PL: five connectives, two parentheses, and infinitely many
basic propositions. In certain areas of logic, it is important that logical lan-
guages be generated from a finite set of basic symbols. (Such a set of symbols
is often called an “alphabet.”) It is therefore worth noting that PL can be seen
as being generated from a finite alphabet of symbols. For each of the infinitely
many basic propositions:

A, A2, A3, . . . , B , B2, B3, . . . , C , C2, C3, . . . , Z , Z2, Z3, . . .

is clearly made up in a specific way out of symbols from the following finite
alphabet (which contains 36 symbols):

A, B , C , D , E , F , G, H , I , J , K , L, M , N , O , P , Q, R , S , T , U , V , W , X , Y , Z

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

We can spell this out in the following definition of a basic proposition:

1. Any capital letter A, . . . , Z is a basic proposition.

2. If α is a capital letter and x is a finite string of the digits 0, . . . , 9 that
does not begin with 0, then αx is a basic proposition (except where x is
the string 1).

3. Nothing else is a basic proposition.

Note that we can further specify exactly what we mean by “a finite string of the
digits 0, . . . , 9 that does not begin with 0” (henceforth fsd for short) using a
recursive definition:

1. Each of the single digits 1, . . . , 9 is an fsd.

2. If x is an fsd and y is one of the digits 0, . . . , 9 then xy is an fsd.15

3. Nothing else is an fsd.
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3
Semantics of Propositional Logic

When we first introduced the notion of a connective in §1.6, we said that
connectives are of interest to us because of their relationship to truth and
falsity. More specifically, we said that we shall focus on a particular kind of
relationship to truth and falsity: the kind where the truth or falsity of the
compound proposition is determined by the truth or falsity of its component
propositions (in a particular way characteristic of the given connective). In
other words, our focus is on truth-functional connectives. In our discussion in
the previous chapter of the connectives of PL, we described how they behave
from a syntactic point of view—how they go together with wffs to form other
wffs—but we have not yet said anything about their relationship to truth and
falsity—about how the truth and falsity of the propositions made up using the
connectives are related to the truth and falsity of their components. We turn
to this task now.

We take it as a fundamental assumption that each proposition is either true
or false (but not both). This assumption is known as bivalence. We call truth
and falsity “truth values,” and we symbolize them by T and F, respectively.1

3.1 Truth Tables for the Connectives

3.1.1 Negation

Recall that if a proposition is true, then its negation is false, and vice versa. We
present this information in the form of a truth table for negation:

α ¬α

T F
F T

The table has a header row and then two rows beneath this. The first of these
two rows depicts the possibility that α is true: this possibility is shown in the
left cell of this row. The table tells us that in this situation,¬α is false, as shown
in the right cell of this row. The second of these two rows depicts the possibility



that α is false: this possibility is shown in the left cell of this row. The table tells
us that in this situation, ¬α is true, as shown in the right cell of this row.

That’s all the possibilities there are: any wff α can only be true or false. The
table tells us the truth value of ¬α in each of these situations. It thus tells us
everything that we need to know—from the logical point of view, from the
point of view of the laws of truth—about the meaning of negation.

Note the use made here of wff variables (§2.4). The table tells us that for any
wff, if it is true, then its negation is false, and vice versa. If our table had, say,
P in place of α, it would be telling us about the truth and falsity of just one
particular wff ¬P : the negation of the particular basic wff P . The table we
actually gave, however, tells us about the relationship between the truth and
falsity of any wff whatsoever (α) and its negation (¬α).

3.1.2 Conjunction

Recall that a conjunction is true if both conjuncts are true; otherwise it is false.
We present this information in the form of a truth table for conjunction:

α β (α ∧ β)

T T T
T F F
F T F
F F F

Once again, the table covers all possibilities—all the different possible com-
binations of truth and falsity of the component propositions—and tells us
the truth value of the compound proposition in each case. For negation—
a one-place connective—there is one component, and hence two cases: the
component can be either true or false. For conjunction—and all the other two-
place connectives—there are two components; each of these can be true or
false; and so in total there are four cases (both components true, first true and
second false, first false and second true, or both false). The table has a row for
each of these possible cases.

3.1.3 Disjunction

A disjunction is true just in case at least one disjunct is true:

α β (α ∨ β)

T T T
T F T
F T T
F F F
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The fact that (α ∨ β) is true when α and β are both true might strike you
as a problem for the claim that ∨ corresponds to “or” and “either . . . or” in
English. We discuss this issue in §6.4. For now we shall simply take the truth
table of ∨ as given.

3.1.4 Conditional

Here is the truth table for the conditional connective →:

α β (α → β)

T T T
T F F
F T T
F F T

Note that (α → β) is automatically true if the antecedent α is false. That is,
if the antecedent α is false, it does not matter whether the consequent is true
(row 3) or false (row 4):2 the conditional is true either way. Likewise, (α → β)

is automatically true if the consequent β is true. That is, if the consequent β is
true, it does not matter whether the antecedent is true (row 1) or false (row 3):
the conditional is true either way. Thus the only way to make the conditional
false is to have the antecedent true and the consequent false (row 2).

The fact that (α → β) is true when α is false or β is true (or both) might
strike you as a problem for the claim that → corresponds to the English con-
ditional “if . . . then.” We discuss this issue in §6.3. For now we shall simply
take the truth table of → as given.

3.1.5 Biconditional

A biconditional is true when both sides have the same truth value and is false
otherwise:

α β (α ↔ β)

T T T
T F F
F T F
F F T

3.2 Truth Values of Complex Propositions

Now that we have the truth tables for the connectives, we can work out the
truth value of any proposition of PL, however complex, given the truth values
of its basic components. For example, we can determine the truth value of
(¬P ∧ (Q ∨ R)), given that P is T, Q is F, and R is F. We do this by tracing
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through the syntactic construction of the wff. At each step, we calculate the
truth value of the subformula formed at that step, using the truth table for the
connective added at that step:3

Step wff constructed From steps/by clause tv Origin of tv

1 P / (2i) T given
2 Q / (2i) F given
3 R / (2i) F given
4 ¬P 1 / (2ii¬) F 1, tt for ¬
5 (Q ∨ R) 2, 3 / (2ii∨) F 2, 3, tt for ∨
6 (¬P ∧ (Q ∨ R)) 4, 5 / (2ii∧) F 4, 5, tt for ∧

The wff formed at step 4 is a negation, so in calculating its truth value, we look
to the truth table for negation. In particular, we look to the row in which the
negand is T, because we are adding the negation to P , and we see from step 1
that P is T. This row of the truth table tells us that the negation is F in this case,
and so that is the truth value in step 4. Likewise, at step 5 the wff formed is a
disjunction, so in calculating its truth value, we look to the truth table for ∨.
In particular, we look to the row in which the first disjunct is F and the second
disjunct is F, because we are adding the ∨ between Q and R, and we see from
steps 2 and 3 that Q is F and R is F. This row of the truth table tells us that
the disjunction is F in this case, and so that is the truth value in step 5; and so
on. Note the parallelism between the third and fifth columns in the table: the
syntactic construction of the subformulas and the assignment to each one of a
truth value are perfectly synchronized.

We can also present the calculation of the truth value horizontally. We pro-
ceed in the same order as before, working through the subformulas from the
simplest (the basic components) to the more complex, until finally we get to
the target wff itself. First we write down the given truth values of the basic
propositions beneath those propositions (phase 0):

(¬P ∧ (Q ∨ R))

T F F

Then (phase 1) we move to subformulas constructed directly from one or
more of the basic propositions. In this case, either of the subformulas ¬P or
(Q∨R) can be treated next. Let’s start with¬P . We know that P , the negand,
is T, so ¬P must be F. We write this in (under the main connective of this
subformula¬P , i.e., under the¬) and cross out the truth value written under
P , as it will not be needed any more, now that we have used it to calculate the
value of ¬P :
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(¬P ∧ (Q ∨ R))

F T� F F

Now we calculate the truth value of the subformula (Q ∨ R). We write this
value under the main connective of this subformula (i.e., the ∨), and again we
cross out the values under the components of this subformula (the Q and the
R), as they will no longer be needed:

(¬P ∧ (Q ∨ R))

F T� F� F F�

Finally (phase 2) we go through the same process for the entire formula, as we
have now dealt with all its subformulas. We have a conjunction with two false
conjuncts, so the whole conjunction is false:

(¬P ∧ (Q ∨ R))

F� T� F F� F� F�

3.2.1 Exercises

Determine the truth values of the following wffs, given the truth values for
their basic components, which are written under those components.

1. (¬P ∧ (Q ∨ R))

T T F

2. ¬(P ∨ (Q → R))

T T F

3. (¬¬P ∧ (Q → (R ∨ P)))

F T T F

4. (¬¬P ∧ (Q → (R ∨ P)))

T F F T

5. ((P ∨ Q) → (P ∨ P))

F T F F

6. ((P ∨ Q) → (P ∨ P))

T F T T

7. (P → (Q → (R → S)))

T T T F

8. (P → (Q → (R → S)))

F T F T
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9. ¬(((¬P ↔ P) ↔ Q) → R)

F F F F

10. ¬(((¬P ↔ P) ↔ Q) → R)

T T T T

3.3 Truth Tables for Complex Propositions

We now show how to form a truth table for any wff, no matter how complex.
A truth table lays out all possible combinations of truth and falsity of the
basic propositions that make up a wff, and it shows the truth value of that
wff in each of these cases. We saw how to lay out the cases—as rows in a truth
table—when presenting the truth tables for the connectives in §3.1. In §3.2 we
saw how to calculate the truth value of any wff, given an assignment of truth
values to its basic components. So in this section we simply need to combine
the techniques of the previous two sections.

Consider, for example, the wff¬(P ∧ ¬P). It has one basic component: P .
So there are two possibilities to consider: P is true, or P is false. Our truth table
has a header row, followed by one row for each possibility. On the left is one
column for each basic component of our target wff. These columns constitute
the matrix of the truth table. On the right is a column for the target wff itself.
This column is the body of the truth table:

P ¬(P ∧ ¬P) ← Header row
T ← Row 1
F ← Row 2
↑ ↑

Matrix Body

All we need to do now is fill in the body of the table. That simply involves
doing what we did in the previous section (i.e., calculating the truth value of
a wff, given an assignment of truth values to its basic components) once for
each row, that is, once for each possible assignment of truth values to the basic
components of our proposition.

Rather than work out the truth value of the target wff in row 1, then in row 2,
and so on, it is easier in practice to work on one subformula at a time, working
out its truth value in each row, and then moving to another subformula and
working out its truth value in each row, and so on. The order in which we treat
the subformulas is the same as in §3.2: we start with the basic components
(phase 0), then subformulas containing only one connective (phase 1), then
subformulas constructed by adding one connective to subformulas treated at
earlier phases (phase 2), and so on, until we reach our target wff.
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So we begin by writing in the truth values of the basic components in each
row. These are simply copied over from the matrix:

P ¬(P ∧ ¬P)

T T T
F F F

Then we work out the truth value of the subformula ¬P in each row. As we
work out the truth value of a subformula, we cross out the truth values of its
components, so that they do not clutter up the table and confuse us later:

P ¬(P ∧ ¬P)

T T F T�
F F T F�

We do the same thing now for the subformula (P ∧ ¬P):

P ¬(P ∧ ¬P)

T T� F F� T�
F F� F T� F�

And now finally we work out the truth value of the target wff in each row:

P ¬(P ∧ ¬P)

T T T� F� F� T�
F T F� F� T� F�

The more basic propositions occur in a wff, the greater will be the number
of rows in its truth table. If there is one basic proposition, there are two possi-
bilities to consider: that it is true, and that it is false. The truth table has a row
for each possibility—so two rows. If there are two basic propositions, then as
each of these can be true or false, there are four possibilities in total: both true,
first true and second false, first false and second true, or both false. The truth
table has a row for each possibility—so four rows. In general, the number of
rows is calculated as in Figure 3.1. Why? Well, in assigning values to the com-
ponents, there are two choices (T and F) for the first component, two choices
(T and F) for the second, two for the third, and so on. These choices are in-
dependent of one another, so there are 2× 2× . . .× 2 (n times)= 2n possible
assignments in total—and we need a row for each possible assignment.
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Number of
basic components Number of rows

1 2
2 4
3 8
4 16...

...
n 2n

...
...

Figure 3.1. The number of rows in a truth
table

So consider, for example, the wff (¬P ∧ (Q ∨ R)). It has three basic com-
ponents (P , Q, and R), so its truth table has eight rows:

P Q R ¬P ∧ (Q ∨ R)

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

The matrix has a column for each basic component. Here is a trick for filling
in the truth values in the matrix, to ensure that each possible combination of
assignments of truth values to these basic propositions appears in exactly one
row. Start at the rightmost column of the matrix and work down, alternating
T, F, T, F, . . . to the bottom of the table. Move one column to the left and go
down, alternating T, T, F, F, T, T, F, F, . . . to the bottom of the table (i.e., two
Ts and then two Fs, and so on). Move one column to the left and go down,
alternating T, T, T, T, F, F, F, F, . . . to the bottom of the table (i.e., four Ts
and then four Fs, and so on). In general, as you move one column left, double
the numbers of Ts and Fs written at each stage. Continue until the matrix is
complete.

To complete the body of the table, we first calculate the truth value of the
subformula ¬P in each row (note that it is not necessary to copy over the
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values from the matrix and write them under the basic propositions in the
body of the table):

P Q R ¬P ∧ (Q ∨ R)

T T T F
T T F F
T F T F
T F F F
F T T T
F T F T
F F T T
F F F T

Then the truth value of the subformula (Q ∨ R) in each row (or these two
subformulas can be done in the opposite order: it does not matter, as each
contains only one connective):

P Q R ¬P ∧ (Q ∨ R)

T T T F T
T T F F T
T F T F T
T F F F F
F T T T T
F T F T T
F F T T T
F F F T F

And then the truth value of the target wff in each row can be written:

P Q R ¬P ∧ (Q ∨ R)

T T T F� F T�
T T F F� F T�
T F T F� F T�
T F F F� F F�
F T T T� T T�
F T F T� T T�
F F T T� T T�
F F F T� F F�
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3.3.1 Exercises

Draw up truth tables for the following propositions.

1. ((P ∧Q) ∨ P)

2. (P ∧ (P ∨ P))

3. ¬(¬P ∧ ¬Q)

4. (Q→ (Q ∧ ¬Q))

5. (P → (Q→ R))

6. ((P ∨Q)↔ (P ∧Q))

7. ¬((P ∧Q)↔Q)

8. (((P →¬P)→¬P)→¬P)

9. ¬(P ∧ (Q ∧ R))

10. ((¬R ∨ S) ∧ (S ∨ ¬T ))

3.4 Truth Tables for Multiple Propositions

We can draw up a joint truth table for several wffs at once. The body of the
table will then contain one column for each of these wffs, and the matrix will
contain one column for each basic proposition that occurs in any of these wffs.
For example, a truth table for (P →Q) and ¬(P ∧ ¬P) looks like:

P Q (P →Q) ¬(P ∧ ¬P)

T T T
T F F
F T T
F F T

I have filled in the column for (P →Q). To fill in the column for¬(P ∧¬P),
proceed just as before, working first on the subformula ¬P , then on the
subformula (P ∧ ¬P), and finally on the target wff itself.

We have already noted that it is unnecessary to copy over the values from
the matrix and write them under the basic propositions in the body of the
table if you do not want to. Indeed, you need not write in values for any of
the subformulas: they all get crossed out in the end anyway. All you really
need is the value for the target wff itself. However, in practice, unless you
are exceptionally good at doing mental calculations, you will need to write in
values for at least some of the subformulas—and then, of course, cross them
out again later, leaving only the value for the target wff in each row. (If you
do write only the truth value for the target wff, then it is not really necessary
to write this value under the main connective: you can simply write it in the
center of the column. However, for clarity, I generally write the value under
the main connective, even when it is the only value in the column.)
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3.4.1 Exercises

Draw up a joint truth table for each of the following groups of propositions.

1. (P →Q) and (Q→ P)

2. ¬(P ↔Q) and ((P ∨Q) ∧ ¬(P ∧Q))

3. ¬(P ∧ ¬Q) and ¬Q

4. ((P →Q) ∧ R) and (P ∨ (Q ∨ R))

5. ((P ∧Q) ∧ (¬R ∧ ¬S)) and ((P ∨ (R →Q)) ∧ S)

6. (P ∧ ¬P) and (Q ∧ ¬Q)

7. (P ∨ (Q↔ R)) and ((Q→ P) ∧Q)

8. ¬((P ∧Q) ∧ R) and ((P →Q)↔ (P → R))

9. (P ∨Q), ¬P and (Q ∨Q)

10. (P → (Q→ (R → S))) and ¬S

3.5 Connectives and Truth Functions

We have already noted (§1.6) that the terms “negation,” “conjunction,” “con-
ditional,” and so on can be used to refer to a connective or to a compound
proposition. Thus, we say that the wff¬A is the negation of A, and we also say
that the symbol¬ in¬A is the negation connective. In this section we shall see
that there is also a third kind of entity that these terms can be used to denote:
truth functions.4

Consider the set of truth values: the set that contains T and F. Functions
on this set—that is, functions whose inputs and outputs are truth values—are
called “truth functions.” Figure 3.2 shows two one-place and three two-place
truth functions.5 (In the names given to the functions—f 1

1 , f 2
3 , and so on—

the superscript represents the number of places of the function, while the
subscript is an index number to distinguish between different functions with
the same number of places.) So f 1

1 and f 1
2 both send F to T, but while f 1

1 sends
T to T, f 1

2 sends T to F. Similarly, f 2
1 and f 2

2 both send the pair (T, F) to F, but
while f 2

1 sends the pair (T, T) to T, f 2
2 sends this pair to F; and so on.

Now look at f 1
2 , for example. It might ring a bell—for it looks like the truth

table for ¬:

α ¬α

T F
F T
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Output of Output of
Input function f 1

1 function f 1
2

T T F
F T T

Output of Output of Output of
Input function f 2

1 function f 2
2 function f 2

3

(T, T) T F T
(T, F) F F T
(F, T) F T T
(F, F) T F F

Figure 3.2. Some examples of truth functions

This observation brings us to the point of this section. Presenting the truth
table for ¬ as we did in §3.1.1 can be seen as doing two things at once:

1. defining a particular truth function (the one we labeled f 1
2 above), and

2. stating that this truth function is the meaning of the connective ¬.

We can separate these steps. The first step is to define the truth function f 1
2 , as

we did a moment ago (with no mention of any connectives—we just defined
various functions on the truth values). The second step is to state, letting [α]
represent the truth value of the proposition α:

[¬α]= f 1
2 ([α])

Thus, to find the truth value of ¬α, we take the truth value of α and feed it as
input to the function f 1

2 ; the output is the truth value of ¬α.
Similarly, look at f 2

3 . It might also ring a bell—for it looks like the truth
table for ∨:

α β (α ∨ β)

T T T
T F T
F T T
F F F

Presenting the truth table for ∨ as we did in §3.1.3 can be seen as doing two
things at once:

1. defining a particular truth function (the one we labeled f 2
3 above), and

2. stating that this truth function is the meaning of the connective ∨.
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Again, we can separate these steps. The first step is to define the truth function
f 2

3 , as we did a moment ago (with no mention of any connectives—we just
defined various functions on the truth values). The second step is to state:

[(α ∨ β)]= f 2
3 ([α], [β])

So to find the truth value of (α ∨ β), we take the truth value of α and that of
β, and feed them (in that order) as inputs to the function f 2

3 ; the output is the
truth value of (α ∨ β).

Similarly, presenting the truth table for↔ as we did in §3.1.5 can be seen as
doing two things at once: defining the truth function labeled f 2

1 in Figure 3.2,
and then stating:

[(α ↔ β)]= f 2
1 ([α], [β])

The same holds for the other connectives. We have not explicitly defined and
labeled the truth functions that can be seen as the meanings of the remaining
connectives, but it should now be obvious how to do so—for (as we have been
saying) the information is implicit in their truth tables.6

So the third thing that “negation” (“disjunction,” “biconditional,” . . . ) can
mean—the first being the connective ¬ (∨, ↔, . . . ) and the second being
a compound proposition whose main connective is ¬ (∨, ↔, . . . )—is the
truth function f 1

2 (f 2
3 , f 2

1 , . . . ), which can be seen as the meaning of that
connective.

We can now give an alternative characterization of a truth-functional con-
nective: it is a connective whose meaning can be specified as a truth function.
This definition encapsulates the idea that the connective is concerned only
with the truth values of its arguments. When we say, for example, that:

[(α ∨ β)]= f 2
3 ([α], [β])

(i.e., when we specify that the meaning of ∨ is given by the truth function
f 2

3 ), we mean precisely that to determine the truth value of (α ∨ β), we need
look only at [α] and [β]: that is, at the truth values of α and β. Nothing else
about α and β—apart from their truth values—is relevant to determining
the truth value of the compound proposition (α ∨ β): and that (according to
our original characterization) is what it means for ∨ to be a truth-functional
connective.

3.5.1 Exercises

1. Can the meaning of any of our two-place connectives (∧, ∨, →, ↔) be
specified as the truth function f 2

2 defined in Figure 3.2?

2. Define truth functions f 2
4 and f 2

5 such that the meanings of ∧ and →
(respectively) can be specified as these truth functions.
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3. Suppose we introduce a new one-place connective � and specify its mean-
ing as the truth function f 1

1 defined in Figure 3.2. What is the truth value
of �A when A is T?

4. What truth values do you need to know to determine the truth value of
�(A→ B)?

(i) The truth values of A and B.
(ii) The truth value of A but not of B.

(iii) The truth value of B but not of A.
(iv) None.

5. Which of our connectives could have its meaning specified as the two-
place function g(x , y) defined as follows?

g(x , y)= f 2
3 (f 1

2 (x), y)
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4
Uses of Truth Tables

4.1 Arguments

According to the intuitive conception laid out in §1.4, an argument is valid
if it is NTP by virtue of its form: that is, if the structure of the argument
guarantees that it is impossible for the premises to be true and the conclusion
false. Let us focus just on the NTP part of the intuitive notion of validity for a
moment and use it to motivate an analysis of validity in terms of truth tables.
(We shall return to the issue of form in Chapter 5, where we shall see that
this analysis also captures the “by virtue of form”/“guaranteed by structure”
part of the intuitive conception.) The idea of NTP is that there is no way of
making the premises true that does not also make the conclusion true—no
possible scenario in which the premises are true and the conclusion false.1

In the PL framework, an assignment of truth values to basic propositions
determines the truth values of all compound propositions as well, via the
truth tables for the connectives. So we can think of a possible scenario—a
possible way of making propositions true or false—as an assignment of truth
values to basic propositions. Now think about what a joint truth table for a
collection of propositions does. In the matrix (see §3.3), it lays out all possible
assignments of truth values to the basic components of those propositions. So
it covers all possibilities regarding the truth and falsity of the propositions in
our collection: one possibility per row. Therefore, to determine whether an
argument is valid, we may proceed as follows:

. Translate the argument into PL (if the argument is in English and not
already in PL.

. Produce a joint truth table with one column for each of the premises and
one column for the conclusion.

– If there is no row (i.e., no possible scenario) in which the premises are all true
and the conclusion is false, then the argument is valid.



– If there is one (or more) row(s) in which the premises are all true and the
conclusion is false, then the argument is invalid.

For example, consider the argument:

If Maisie is a kelpie, then Maisie is a dog.
Maisie is a kelpie.
∴ Maisie is a dog.

We translate the argument into PL as follows (the glossary is on the left, and
the translation on the right):

K : Maisie is a kelpie K →D

D: Maisie is a dog K

∴ D

Here is the joint truth table for the premises and conclusion (note that the sec-
ond premise and the conclusion are basic propositions and so appear already
in the matrix: we do not need to repeat these columns in the body of the table):

K D K →D

T T T
T F F
F T T
F F T

We now ask: is there any row of this table in which K →D and K are both
true and D is false? The answer is no. There is only one row in which both
premises are true—row 1—and in this row the conclusion is true also. So the
argument is valid.

Consider another example:

Maisie is not a kelpie.
If Maisie is a kelpie, then Maisie is a dog.
∴ Maisie is not a dog.

Using the same glossary as in the previous case, we translate this argument as
follows:

¬K

K →D

∴ ¬D
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Here is the joint truth table for the premises and conclusion:

K D ¬K K →D ¬D

T T F T F
T F F F T
F T T T F
F F T T T

We now ask: is there any row of this table in which ¬K and K →D are both
true and ¬D is false? The answer is yes: row 3. So the argument is invalid: it is
possible for its premises to be true while its conclusion is false.

Note that there is a row in which the premises and the conclusion are all
true (row 4). This does not make the argument valid! The question is whether
there is a row in which the premises are true and the conclusion false. There
is such a row, so the argument is invalid, regardless of what is happening in
other rows of the table.

4.1.1 Counterexamples

An argument is invalid if there is a possible scenario in which the premises
are true and the conclusion false. A truth table tells us whether there is such a
possible scenario—but it also does more: if there is, it specifies the scenario for
us (and if there is more than one, it specifies them all). For a given argument,
we term a scenario in which the premises are true and the conclusion is false
a counterexample to the argument. So a truth table does not merely tell us
whether an argument is invalid: if it is invalid, we can furthermore read off
a counterexample to the argument from the truth table.

Remember that a possible scenario is characterized by an assignment of
truth values to basic propositions. So a counterexample to an argument will
be an assignment of truth values to the basic propositions that feature in the
premises and conclusion that makes the premises true and the conclusion
false. Look at the truth table above. In row 3, the premises are true and the
conclusion false, as already noted. In this row, K is false, and D is true: we read
this off from row 3 of the matrix. This is our counterexample. In a situation
where K is false and D is true, the argument’s premises are true and the
conclusion is false.

4.1.2 Exercises

Use truth tables to determine whether each of the following arguments is valid.
For any argument that is not valid, give a counterexample.
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1. A ∨ B

A→ C

∴ (B → C)→ C

2. ¬A

∴¬((A→ B)∧ (B → C))∨ C

3. (A ∧ ¬B)→ C

¬C

B

∴ ¬A

4. (A ∧ B)↔ C

A

∴ C → B

5. (¬A ∧ ¬B)↔¬C

¬(A ∨ B)

∴ C →¬C

6. A ∨ B

¬A ∨ C

B → C

∴ C

7. ¬(A ∨ B)↔¬C

¬A ∧ ¬B

∴ C ∧ ¬C

8. ¬(A ∧ B)→ (C ∨ A)

¬A ∨ ¬B

A

∴ ¬(C ∨ ¬C)

9. A→ (B ∧ C)

B ↔¬C

∴ ¬A

10. A→ B

B → C

¬C

∴ ¬A

4.1.3 Soundness

Each row of the truth table represents a possible way of making propositions
true or false. One of the rows (the actual row) represents the actual truth values
of the propositions in question. Consider the argument:

Snow is white.
Grass is green.
∴ Snow is white and grass is green.

Translating into PL we get:

S: Snow is white S

G: Grass is green G

∴ (S ∧G)

Here is the truth table for this argument:

S G (S ∧G)

T T T
T F F
F T F
F F F
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Row 1 is the actual row. In this row, S and G are both true, which corresponds
to the way things actually are.

An argument is valid if there is no row in which the premises are all true
and the conclusion false. An argument is sound if it is valid and its premises
are true: that is, actually true. In other words, an argument will be sound if it
is valid and its premises are true in the actual row of its truth table.

Of course, we may not know which row is the actual row. So although truth
tables give a foolproof test for validity, they do not give a foolproof test for
soundness. A truth table lays out all the possibilities, and by looking at the
table, we can see whether there is any row in which the premises are true and
the conclusion false—that is, we can determine validity. The truth table does
not, however, tell us which of its rows is the actual row—and unless we hap-
pen to know this information, we cannot determine whether the argument is
sound. Note that there always is an actual row: the world really is some way or
other, and the propositions in our argument say particular things about the
world, and so these things are true or false; as the table represents all possible
ways of making the propositions in our argument true or false, it must include
among them the one representing the actual truth values of those proposi-
tions. The point is simply that we may not know what the actual situation is.

4.2 Single Propositions

If a proposition comes out true in every row of its truth table, it is a tautology
or logical truth. Such a proposition can never come out false; it is true no
matter what.

If a proposition comes out false in every row of its truth table, it is called a
contradiction, logical falsehood, or unsatisfiable. Such a proposition can never
come out true; it is false no matter what.

If a proposition is not a tautology (aka a logical truth) we call it a “non-
tautology” or a “non-logicaltruth.”2

A proposition that is not a contradiction is satisfiable: it is true in at least
one row of its truth table. Note that the category of satisfiable propositions
includes both tautologies and propositions that are true in some rows and false
in others. The situation is summarized in Figure 4.1.

There are two notions sometimes applied to single propositions that (unlike
the notions mentioned above) depend for their definitions on the notion of
the actual row. (Thus, in just the way that truth tables provide a foolproof
test for validity, but not for soundness, so too truth tables provide a fool-
proof test for the above notions, but not for the two about to be mentioned.) A
proposition is said to be contingently true (or just contingent) if it is true (i.e.,
in the actual row) but is not a tautology (i.e., it is false in some other row(s)).
A proposition is said to be contingently false if it is false (in the actual row) but

4.2 Single Propositions 67



Values in truth table Type of proposition

1 T in every row Tautology
aka logical truth

2 F in every row Contradiction
aka logical falsehood
aka unsatisfiable

3 T in some or all rows Satisfiable = not 2
4 F in some or all rows Nontautology

aka non-logicaltruth
= not 1

2. Contradiction

1. Tautology

3. Satisfiable

4. Nontautology

Figure 4.1. Classification of single propositions.

is not a contradiction (i.e., it is true in some other row(s)). In other words, a
contingently true proposition is true but not logically so; a contingently false
proposition is false but not logically so.3

4.2.1 Exercises

Write out truth tables for the following propositions, and state whether each
is a tautology, a contradiction, or neither.

1. ((P ∨Q)→ P)

2. (¬P ∧ (Q ∨ R))

3. ((¬P ∨Q)↔ (P ∧ ¬Q))

4. (P → (Q→ (R → P)))

68 Chapter 4 Uses of Truth Tables



5. (P → ((P →Q)→Q))

6. (P → ((Q→ P)→Q))

7. ((P →Q) ∨ ¬(Q ∧ ¬Q))

8. ((P →Q) ∨ ¬(Q ∧ ¬P))

9. ((P ∧Q)↔ (Q↔ P))

10. ¬((P ∧Q)→ (Q↔ P))

4.3 Two Propositions

If two propositions have the same value in every row of their joint truth table
(i.e., where one is T, the other is T, and where one is F, the other is F) they are
said to be equivalent (or logically equivalent): they can never diverge in truth
value—they have the same truth value, no matter what. (If two propositions
are not equivalent, we say that they are inequivalent.)

If two propositions never both have the value T in any row in their joint
table, they are said to be jointly unsatisfiable. Two propositions that are not
jointly unsatisfiable are said to be jointly satisfiable. So two propositions are
jointly satisfiable if they can both be true at the same time. Note that two
propositions, each of which is satisfiable, need not be jointly satisfiable: con-
sider, for example, P and ¬P .

If two propositions are jointly unsatisfiable, they never both take the value
T at the same time. If they also never both take the value F at the same time,
then they are contradictory: they always take opposite truth values. If they are
not contradictory (but are jointly unsatisfiable) they are contraries: they can
never both be true, but they can both be false.

Do not confuse the claim that two propositions are contradictory with the
claim that a single proposition is a contradiction. Two contradictions are not
contradictory (although they are jointly unsatisfiable, because each of them
is unsatisfiable): they are equivalent, and they are contraries. The situation is
summarized in Figure 4.2.

4.3.1 Exercises

Write out joint truth tables for the following pairs of propositions, and state
in each case whether the two propositions are (a) jointly satisfiable, (b) equiv-
alent, (c) contradictory, (d) contraries.

1. (P →Q) and ¬(P ∧ ¬Q)

2. (P ∧Q) and (P ∧ ¬Q)

3. ¬(P ↔Q) and
¬(P →Q) ∨ ¬(P ∨ ¬Q)

4. (P → (Q→ R)) and
((P →Q)→ R)

5. (P ∧ (Q ∧ ¬Q)) and
¬(Q→¬(R ∧ ¬Q))

6. (P ∧ ¬P) and (R ∨ ¬R)
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Values in joint truth table Type of propositions

1 Same value in every row Equivalent
2 Some row in which both T Jointly satisfiable
3 No row in which both T Jointly unsatisfiable = not 2
4 Jointly unsatisfiable and no row

in which both F
Contradictory

5 Jointly unsatisfiable and some
row in which both F

Contraries

2. Jointly satisfiable

5. Contraries

4. Contradictory

1. Equivalent

3. Jointly unsatisfiable

Figure 4.2. Classification of two propositions (joint truth table).

7. (P ∧ ¬P) and ¬(Q→Q)

8. ((P →Q)→ R) and
¬(P ∨ ¬(Q ∧ ¬R))

9. (P ↔Q) and
((P ∧Q) ∨ (¬P ∧ ¬Q))

10. (P ↔Q) and
((P ∧Q) ∨ (¬P ∧ ¬Q))

4.3.2 More Abbreviations

We said in §2.5.4 that we may omit outermost parentheses where this omis-
sion will cause no confusion. We also said that while some books introduce
conventions for omitting inner parentheses in an unambiguous way, we do
not do this in general in this book—although we do allow the omission of in-
ternal parentheses in two special cases. We come now to these special cases.
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First, in the case of a wff involving multiple occurrences of ∧ and no other
connectives, we allow the omission of all parentheses: thus, we may write:

P ∧Q ∧ R

P ∧Q ∧ R ∧ S

P ∧Q ∧ R ∧ S ∧ T

and so on. Second, in the case of a wff involving multiple occurrences of∨ and
no other connectives, we allow the omission of all parentheses: thus, we may
write:

P ∨Q ∨ R

P ∨Q ∨ R ∨ S

P ∨Q ∨ R ∨ S ∨ T

and so on. Strictly speaking, the string of symbols P ∧Q ∧ R is not a wff—
only the following two disambiguations of this string are wffs:

((P ∧Q) ∧ R)

(P ∧ (Q ∧ R))

Likewise, the string of symbols P ∨Q ∨ R ∨ S is not a wff—only the follow-
ing five disambiguations of this string are wffs:

(((P ∨Q) ∨ R) ∨ S)

((P ∨Q) ∨ (R ∨ S))

((P ∨ (Q ∨ R)) ∨ S)

(P ∨ ((Q ∨ R) ∨ S))

(P ∨ (Q ∨ (R ∨ S)))

However, it is easy to verify (using truth tables) that all wffs obtained from
an unparenthesized string of ∧s or ∨s by inserting parentheses are equivalent:
the above two disambiguations of P ∧Q ∧ R are logically equivalent, every
possible pair of the above five disambiguations of P ∨Q ∨ R ∨ S is equiva-
lent, and so on. So when we write, say, “P ∨Q ∨ R,” it is ambiguous which
wff we mean: (P ∨ (Q ∨ R)) or ((P ∨Q) ∨ R). However, these two wffs are
equivalent, so the ambiguity is harmless.

§

The above applies only to∧ and∨: we should not omit internal parentheses in
straight strings of our other two-place connectives (→ and↔). The reason in
the case of → is straightforward: the string P →Q→ R, for example, could
be disambiguated in two ways:

((P →Q)→ R)

(P → (Q→ R))
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and these two wffs are not logically equivalent (as can easily be verified using a
truth table). The reason in the case of↔ is more subtle. For any straight string
of ↔s, the possible disambiguations of the string are all logically equivalent.
For example (as can easily be verified using truth tables) the following are
logically equivalent:

((P ↔Q)↔ R)

(P ↔ (Q↔ R))

as are all of the following:

(((P ↔Q)↔ R)↔ S)

((P ↔Q)↔ (R ↔ S))

((P ↔ (Q↔ R))↔ S)

(P ↔ ((Q↔ R)↔ S))

(P ↔ (Q↔ (R ↔ S)))

Nevertheless, we shall not write such strings as P ↔Q↔ R and P ↔Q↔
R ↔ S. Doing so would (i) bring no apparent benefit and (ii) invite a certain
sort of misinterpretation.

Regarding point (i), abbreviations are a convenience: we introduce one
only when the benefit it brings outweighs any downside it may have. Writ-
ing straight strings of ∧s or ∨s without parentheses does have a benefit: it
makes for more convenient and natural translations. For example, consider
the following propositions:

1. For breakfast I shall have scrambled eggs, baked beans on toast, pancakes, or cereal.

2. Today I shall give a lecture, attend a department meeting, and return some library
books.

Using the following glossary:

S: I shall have scrambled eggs for breakfast
B: I shall have baked beans on toast for breakfast
P : I shall have pancakes for breakfast
C: I shall have cereal for breakfast
T : Today I shall give a lecture
M : Today I shall attend a department meeting
L: Today I shall return some library books

it is natural to translate these propositions as follows:

1. S ∨ B ∨ P ∨ C

2. T ∧M ∧ L
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That is, it is natural to translate them as flat lists of conjuncts/disjuncts—
where each conjunct/disjunct is on the same level—rather than arbitrarily
to choose a particular nesting, such as (((S ∨ B) ∨ P) ∨ C) (the first pair
of disjuncts is the most deeply nested), (S ∨ ((B ∨ P) ∨ C)) (the second
pair of disjuncts is the most deeply nested), and so on. In other words, it
is natural to treat the first proposition as having three equal main connec-
tives and the second as having two equal main connectives, as opposed to
one main connective. Although every wff of PL has a unique main connec-
tive (recall §2.5.3), we can simulate the effect of having several equal main
connectives by writing such strings as S ∨ B ∨ P ∨ C, which is ambiguous
among all possible choices regarding which of the three connectives to take as
the main one.

There is no corresponding benefit in writing such strings as S ↔ B ↔
P ↔ C or T ↔M ↔ L: they do not arise in a natural way as translations
of common sorts of propositions.

Regarding point (ii), disambiguations of strings like P ∧Q ∧ R and P ∨
Q ∨ R ∨ S mean exactly what one naturally takes them to mean, whereas
disambiguations of strings like P ↔Q↔ R and P ↔Q↔ R ↔ S mean
something quite different from what one naturally takes them to mean. Writ-
ing strings of the latter sort would therefore invite confusion.

Consider first ∧ and ∨. The proposition (P ∧Q) is true iff both P and Q

are true. Generalizing in the natural way, one would assume that P ∧Q ∧
. . . ∧ R is true iff P and Q and . . . and R are all true, which is indeed the
case (i.e., all disambiguations of a straight string of ∧s are true iff all basic
propositions involved are true). Similarly, (P ∨Q) is true iff at least one
of P or Q is true. Generalizing in the natural way, one would assume that
P ∨Q ∨ . . . ∨ R is true iff at least one of P or Q or . . . or R is true, which
is indeed the case (i.e., all disambiguations of a straight string of∨s are true iff
at least one of the basic propositions involved is true).

Now consider ↔. The proposition (P ↔Q) is true iff P and Q have the
same truth value. Generalizing in the natural way, one would assume that
P ↔Q↔ . . . ↔ R is true iff P , Q, . . . , R all have the same truth value—
but this is not the case. For example, while all the possible disambiguations of
P ↔Q↔ R are true when P , Q, and R are all true, the disambiguations
are all false when P , Q, and R are all false. Furthermore they are all true
when exactly one (any one) of P , Q, and R is true (as easily seen by drawing
up a truth table). To take another example, all possible disambiguations of
P ↔Q↔ R ↔ S are true when all of P , Q, R, and S are true, and they are
true when all of P , Q, R, and S are false. But the disambiguations are also all
true when exactly two (any two) of P , Q, R, and S are true (as easily seen by
drawing up a truth table).
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In sum, writing “P ↔Q↔R,” “P ↔Q↔R↔ S,” and so on would bring
no apparent benefit, while inviting confusion (it would tempt us to interpret
these strings in a way that is at odds with their disambiguations). That is why I
do not introduce an abbreviation that omits internal parentheses in straight
strings of ↔s, even though all disambiguations of such strings are indeed
equivalent. We allow the omission of internal parentheses only in straight
strings of ∧s and ∨s.

4.4 Sets of Propositions

A set is a collection of objects; these objects are said to be the members of the
set.4 When the objects are propositions, we have a set of propositions. We write
sets with braces (i.e., { and }) around the members. For example,

{P , Q, R}
is the set containing the three propositions P , Q, and R.

If there is no row of their joint truth table in which all propositions in a
given set are true, the set of propositions is said to be unsatisfiable. A set of
propositions that is not unsatisfiable is said to be satisfiable, so a satisfiable set
of propositions is one in which the propositions in the set can all be true at the
same time.

The earlier definitions of satisfiability for a single proposition and of joint
satisfiability for two propositions are the special cases of this general defini-
tion where the set of propositions has one and two members, respectively.
Note, however, the subtle shifts in terminology. If we have a set containing
one proposition, and the set is satisfiable (by our current definition), then the
proposition in the set is satisfiable (by our earlier definition). If we have a set
containing two propositions, and the set is satisfiable (by our current defi-
nition), then the propositions in the set are jointly satisfiable (by our earlier
definition).

Set of propositions (joint truth table)

Some row in which all T Satisfiable set
No row in which all T Unsatisfiable set

4.4.1 Exercises

Write out a joint truth table for the propositions in each of the following sets,
and state whether each set is satisfiable.

1. {(P ∨Q), ¬(P ∧Q), P }
2. {¬(P →Q), (P ↔Q), (¬P ∨Q)}
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3. {(P →¬P), (P ∨ ¬P), (¬P → P)}
4. {((P ∨Q) ∨ R), (¬P →¬Q), (¬Q→¬R), ¬P }
5. {(P ↔Q), (Q ∨ R), (R → P)}
6. {(¬P →¬Q), (P ↔Q), P }
7. {¬P , (P → (P → P)), (¬P ↔ P)}
8. {(P ∨ ¬Q), (P → R), ¬R , (¬R →Q)}
9. {¬R , ¬P , ((Q→¬Q)→ R)}

10. {(¬P ∨ ¬Q), ¬(P ∧ ¬Q), (P ∨ ¬Q), ¬(¬P ∧ ¬Q)}

4.5 More on Validity

4.5.1 Shortcuts

An argument is valid if it has no counterexamples—no rows in which the
premises are true and the conclusion false. If you are testing an argument
for validity, you can therefore sometimes take shortcuts in writing out the
truth table. Start by filling in the column for the simplest proposition in the
argument (i.e., the one with the least number of connectives):

. If it is the conclusion of the argument, then ignore any row in which it
is true. That is, do not bother filling in the values of the premises in this
row: just cross the row off. For a row cannot give us a counterexample
unless the conclusion is false in that row.

. If it is a premise of the argument, then ignore any row in which it is false.
That is, do not bother filling in the values of the other premises and the
conclusion in this row: just cross the row off. For a row cannot give us a
counterexample unless all premises are true in that row.

Now move to the next simplest proposition, and repeat the above process,
and so on. If at any point you find a row in which the premises are all true
and the conclusion is false, stop there: you have a counterexample, and so the
argument is invalid. If you exhaust all rows (either by crossing them off or
filling them in completely) and find no counterexample, then the argument is
valid.

For example, consider the argument:

(¬P ∨Q)

((Q→¬R) ∧ (¬R →¬P))

∴ ¬P
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Here is its truth table, waiting to be filled in:

P Q R (¬P ∨Q) ((Q→¬R) ∧ (¬R →¬P)) ¬P

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

The simplest proposition is ¬P , so we start with it, crossing off any rows in
which it is true:

P Q R (¬P ∨Q) ((Q→¬R) ∧ (¬R →¬P)) ¬P

T T T F
T T F F
T F T F
T F F F
F T T T ×
F T F T ×
F F T T ×
F F F T ×

The next simplest proposition is (¬P ∨Q), so we fill in its column next. We
ignore any rows already crossed off, and we furthermore cross off any rows in
which (¬P ∨Q) is false:

P Q R (¬P ∨Q) ((Q→¬R) ∧ (¬R →¬P)) ¬P

T T T T F
T T F T F
T F T F × F
T F F F × F
F T T T ×
F T F T ×
F F T T ×
F F F T ×

As a result of our shortcuts, we only have to calculate the truth value of the
long proposition ((Q→¬R) ∧ (¬R →¬P)) in two rows, not eight. In the
first row, R is true, so ¬R is false, and Q is true, so (Q→¬R) is false—thus,
the whole conjunction must be false,5 and we can cross off this row. In the
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second row, R is false, so ¬R is true, and P is true, so ¬P is false, and so
(¬R →¬P) is false—thus, the whole conjunction must be false, and we can
cross off this row too. We have now dealt with all rows and seen that none of
them provides a counterexample: a case in which the premises are true and the
conclusion false. So the argument is valid.

4.5.2 Points to Note

We close this chapter with four important points about validity. First, valid ar-
guments can have false premises and a false conclusion. Consider the following
argument (using the glossary in §4.1.3) and its truth table:

¬S S G ¬S ¬G ¬(S ∨G)

¬G T T F F F

∴ ¬(S ∨G) T F F T F
F T T F F
F F T T T

The premises of this argument are both false in the actual row (row 1). But
this does not matter for validity. What matters for validity is whether there is
any row in which the premises are true and the conclusion false. There is no
such row—the only row in which the premises are both true is row 4, and the
conclusion is true there too—so the argument is valid.

Second, true premises and a true conclusion do not establish validity. Con-
sider the following argument (using the glossary in §4.1.3) and its truth table:

S S G (S ∧G)

∴ (S ∧G) T T T

T F F
F T F
F F F

Its premise and conclusion are both true in the actual row (row 1). Never-
theless, the argument is invalid, because there is a row (row 2) in which the
premise is true and the conclusion false. That is, it is possible to make the
premise true and the conclusion false, even though in actual fact, the premise
and the conclusion are both true.

Third, any argument whose conclusion is a tautology is valid. That might
seem odd at first, but think of it this way: there cannot be a counterexample—a
case where the premises are true and the conclusion is false—if there cannot be
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any case in which the conclusion is false. For example, consider the following
argument (again using the glossary in §4.1.3) and its truth table:

S S G (G→G)

∴ (G→G) T T T

T F T
F T T
F F T

Recall our shortcuts. Here we can cross off every row, for the conclusion is true
in all of them.

An argument whose conclusion is a tautology may or may not be sound.
This example happens to be sound.

Fourth, any argument in which the premises form an unsatisfiable set is
valid. (A special case of this is where there is only one premise, which is a
contradiction.) Again, this point might seem odd at first, but think of it this
way: there cannot be a counterexample—a case where the premises are all true
and the conclusion false—if there cannot be any case in which the premises are
all true. For example, consider the following argument and its truth table:

S S G ¬S

¬S T T F

∴ G T F F
F T T
F F T

Recall our shortcuts. Here we can cross off the last two rows, because the first
premise is false there, and we can cross off the first two rows, because the
second premise is false there. In general, if the premises form an unsatisfiable
set, there is no row in which they are all true; that is, at least one premise is
false in each row. Thus, every row can be crossed off.

An argument in which the premises form an unsatisfiable set can never be
sound: regardless of which row is the actual one, the premises cannot all be
true in it, because they are not all true in any row.6
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5
Logical Form

In §1.4 we presented the intuitive idea of validity, which comprises two aspects:
(i) NTP (it is not possible for the premises to be true and the conclusion
false), (ii) by virtue of form. In §4.1, we gave a precise definition of validity
(for arguments in PL) in terms of truth tables: an argument is valid iff, in the
joint truth table for the premises and conclusion, there is no row in which
the premises are true and the conclusion false. As we discussed in §4.1, the
precise definition captures the first part of the intuitive idea of validity (the
NTP part). But what about the second part (the “by virtue of form” part)?
In this chapter we show that the truth table definition of validity captures
this idea too, by showing that if an argument is valid (according to the truth
table definition), then so is every other argument that we can derive from it
by replacing its component basic propositions with other propositions. Thus,
the validity of the original argument does not depend on any features of the
particular basic propositions that make it up: it depends only on the ways in
which these propositions are arranged to make the argument—that is, on the
form of the argument.

Apart from this theoretical upshot—that the truth table definition of valid-
ity captures the idea that validity is a matter of form—the considerations of
this chapter also have a practical point. Consider the following argument:

Maisie is a kelpie.
If Maisie is a kelpie, then Maisie is a dog.
∴ Maisie is a dog.

To test whether it is valid, we translate into PL:

K : Maisie is a kelpie K

D: Maisie is a dog K →D

∴ D



and then do a truth table:

K D K →D

T T T
T F F
F T T
F F T

We then check whether there is any row in which the premises are both true
and the conclusion false. There is no such row, so the argument is valid.

Now consider the following argument:

Rosie is a beagle.
If Rosie is a beagle, then Rosie is a dog.
∴ Rosie is a dog.

To test whether it is valid, we translate into PL:

B: Rosie is a beagle B

R: Rosie is a dog B → R

∴ R

and then do a truth table:

B R B → R

T T T
T F F
F T T
F F T

We then check whether there is any row in which the premises are both true
and the conclusion false. There is no such row—the only row in which the
premises are both true is row 1, and in that row the conclusion is true also—
so the argument is valid.

It seems that we have done more work in the second case than needed. The
two arguments, and their truth tables, differ only in the substitution of the
letters B for K and R for D. It seems obvious, then, that the two arguments
have the same form, and that if one is valid, then the other must be too. It
would be nice not to have to go through the process of truth table construction
to show that the second argument is valid, once we have recognized that it is
of the same form as the first argument, which we already know to be valid. In
this chapter—after making precise this idea of the form of an argument—we
shall show a way of determining with only one use of a truth table whether
all arguments of a given form are valid. This means that we shall not have to
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check the validity of every argument separately: provided we can see that an
argument has the same form as one which we already know to be valid, we can
be assured that this argument is valid without having to construct its truth
table.

5.1 Abstracting from Content: From Propositions to Forms

Consider the proposition (A ∧ B). It has a content, determined by the glos-
sary entries for A and B and the truth table for ∧. But forget about this
content for a moment—about how the proposition represents the world to
be—and consider its form. What is the form of this proposition? Well, it is
a conjunction of two propositions. Wff variables (§2.4) come in handy here:
they allow us to represent the form of this proposition—“a conjunction of
two propositions”—as (α ∧ β). This form abstracts away from the particular
propositions A and B in our original proposition, replacing them with place-
holders (the variables α and β), in keeping with the idea that we wanted to
abstract away from the content of the original proposition and just look at its
form, that is, at the way it is put together.

Consider the proposition ¬(A ∧ ¬B). What is its form? Well, if we think
about it, we see that there is not just one answer to this question. The following
answers are all correct:

1. It is a negation.

2. It is a negation of a conjunction.

3. It is a negation of a conjunction, the second conjunct of which is a nega-
tion.

We can thus give different answers to the question “what is the form of the
proposition?” according to how deeply we look into its structure. Indeed, if
we do not look into its structure at all, we can simply say:

4. It is a proposition.

Using wff variables, we can represent these four forms as follows:

1. ¬α

2. ¬(α ∧ β)

3. ¬(α ∧ ¬β)

4. α

The forms arise from the original proposition by replacing one or more of
its subformulas with a wff variable. In form 1, the variable α stands in place
of the subformula (A ∧ ¬B). In form 2, the variable α stands in place of the
subformula A, and the variable β stands in place of the subformula ¬B. In
form 3, the variable α stands in place of the subformula A, and the variable β
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stands in place of the subformula B. In form 4, the variable α stands in place
of the entire wff ¬(A ∧ ¬B). The more complex the subformulas we “black
box” as simply being propositions—that is, replace with wff variables—the
coarser/less fine-grained is the resultant logical form. At one extreme, where
we black box the entire original proposition, we end up with the form α, a
proposition. At the other extreme, where we black box only basic propositions,
we end up with the fine-grained form ¬(α ∧ ¬β).

5.1.1 Exercises

For each of the following propositions, give three correct answers to the ques-
tion “what is the form of this proposition?”

1. ¬(R → (R →Q))

2. (R ∨ P)→ (R ∨ P)

3. P ∧ (¬P →Q)

4. ((¬P ∨Q) ∧ P)↔ R

5.2 Instances: From Forms to Propositions

We have discussed how to get from a proposition to its (in general many)
logical forms: we replace (i.e., black box) its subformulas with wff variables.
We can also move in the opposite direction, starting with a logical form and
then asking what propositions have—or as we shall also say, are instances of—
this form. To be clear about this, we need to do two things: define what a logical
form is, and describe how to get from a logical form to an instance of this form.

A logical form is simply something that looks just like a wff, except that
in place of basic propositions, it has wff variables. So α, β, ¬α, and (α →
(β ∨ γ )), for example, are logical forms, while the following are not: (α∨) (it
is not well-formed), ¬P (it contains a basic proposition, not a wff variable),
and (α → B) (it contains a mixture of basic propositions and wff variables:
logical forms contain no basic propositions, only wff variables).

Given a logical form, a proposition is an instance of this form if it can be ob-
tained from the form by replacing the variables in the form with propositions,
according to the rule:

all occurrences of the same variable must be replaced by the same proposition.

So given the form:

¬(α → (α ∨ β)) (5.1)

the following is an instance of this form:

¬(A→ (A ∨ B))
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Here we have replaced α with A and β with B. Note that, in accordance with
the rule, both occurrences of α were replaced by the same proposition, in this
case A.

I have said that the wff variables may be regarded as placeholders for propo-
sitions. We can in fact think of them literally as boxes into which propositions
may be put. Thus, form (5.1) can be thought of as:

¬(©→ (©∨ ))

Note that we represent distinct wff variables using different-shaped boxes (α
becomes a circular box and β becomes a square box) to keep track of what
propositions may be put into which boxes: the rule is that boxes with the same
shape must receive the same proposition.

The following is not an instance of form (5.1):

¬(A→ (B ∨ C))

Here we have replaced the first occurrence of α (filled the first circular box)
with A and the second occurrence (the second circular box) with a different
proposition, B, thus violating our rule.

Note that different variables do not have to be replaced by different propo-
sitions. Thus, the following proposition is also an instance of form (5.1):

¬(A→ (A ∨ A))

Here we have replaced both α and β with A. In accordance with the rule, both
occurrences of α must be replaced by the same proposition, in this case A, but
it is perfectly all right also to replace a different variable, in this case β, with
that same proposition.

Note also that, as long as the above rule is observed, a variable may be
replaced by any proposition—not necessarily a basic one, as in the previous
examples. Thus, the following proposition is also an instance of form (5.1):

¬(A→ (A ∨ (A→ B)))

Here we have replaced α with A (both times, as required) and β with the
compound proposition (A→ B). Likewise, the following proposition is also
an instance of form (5.1):

¬((A ∨ B)→ ((A ∨ B) ∨ (A→ B)))

Here we have replaced α with (A ∨ B) and β with (A→ B).
We say that two propositions share a particular form if they are both in-

stances of it. Note that it does not make sense to say, in general, that two
propositions are of the same form. This is because two propositions may both
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be instances of one form, while only one of them is an instance of another
form. For example, the two propositions:

1. (A ∧ (B → C))

2. (A ∧ B)

are both instances of the form:

(α ∧ β)

(the first arises from this form by replacing α with A and β with (B → C); the
second by replacing α with A and β with B), but only the first is an instance
of the form:

(α ∧ (β → γ ))

5.2.1 Exercises

1. The following propositions all have three logical forms in common. State
what the three forms are, and in each case, show what replacements of
variables by propositions are required to obtain the three propositions
from the form.

(i) ¬¬C

(ii) ¬¬(A ∧ B)

(iii) ¬¬(C ∧ ¬D)

2. State whether the given propositions are instances of the given form. If
so, show what replacements of variables by propositions are required to
obtain the proposition from the form.

(i) Form: ¬(α → β)

Propositions:

(a) ¬(P →Q)

(b) ¬(R →Q)

(c) ¬(R → (R →Q))

(ii) Form: ¬(α → (α → β))

Propositions:

(a) ¬(P → (P →Q))

(b) ¬(P → (P → P))

(c) ¬(P → (Q→ P))

(iii) Form: (α ∨ β)→ (α ∧ β)

Propositions:

(a) (¬P ∨Q)→ (¬P ∧Q)

(b) (P ∨ ¬P)→ (P ∧ ¬P)

(c) ¬(R ∨ S)→¬(R ∧ S)

(iv) Form: α ∨ (¬β ∨ α)

Propositions:

(a) (P ∨Q) ∨ (Q ∨ (P ∨Q))

(b) Q ∨ (¬Q ∨ (Q ∧Q))

(c) ¬P ∨ (¬¬P ∨ ¬P)

5.3 Argument Forms

Recall that a logical form is just like a proposition except that it has wff vari-
ables in place of basic propositions. Similarly, an argument form is just like an
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argument except that it has wff variables in place of basic propositions in the
premises and conclusion. In other words, an argument form is just like an ar-
gument except that each premise and the conclusion is a logical form, not a
proposition.

The transitions from arguments to argument forms and from argument
forms to arguments are perfectly analogous to those already discussed from
propositions to logical forms and the reverse.

Consider first the move from arguments to argument forms. If we are given
the argument

P

(P → R)

∴ R

and asked “what is its form?” there are many correct answers. For example:

1. The argument has two premises and a conclusion. The first premise is a
proposition, the second premise is a conditional, and the conclusion is
a proposition.

Expressing this using wff variables yields:

α

(β → γ )

∴ δ

2. The argument has two premises and a conclusion. The first premise is
a proposition, the second premise is conditional whose antecedent is
the first premise, and the conclusion is the consequent of the second
premise. This form captures more information about the structure of the
argument.

Expressing this using wff variables yields:

α

(α → β)

∴ β

Note that here we use the same variable for the first premise and the an-
tecedent of the second premise, to represent the fact that they are the same
proposition, and similarly we use the same variable for the consequent of
the second premise and the conclusion.

3. The argument has two premises and a conclusion, all of which are propo-
sitions. This form is less fine grained than the first two.
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Expressing this using wff variables yields:

α

β

∴ γ

Consider next the transition from an argument form to arguments that are
instances of this form. We proceed in the same manner as we did when mov-
ing from logical forms to propositions: we replace variables with propositions
(not necessarily basic propositions), subject to the rule that multiple occur-
rences of the same variable must all be replaced by the same proposition (and
not subject to a requirement that different variables be replaced by different
propositions). Note that this rule now applies to all occurrences of a variable
throughout the argument—not just within a particular premise or conclusion.
So for example, given the argument form:

¬(α → (α → β))

∴ (α ∨ β)

the following arguments are instances of this form:

1. ¬(P → (P →Q))

∴ (P ∨Q)

(here we have substituted P for α and Q for β).

2. ¬(P → (P → P))

∴ (P ∨ P)

(here we have substituted P for α and β).

3. ¬(R → (R → (R →Q)))

∴ (R ∨ (R →Q))

(here we have substituted R for α and (R →Q) for β).

but the following is not:

¬(P → (P →Q))

∴ (Q ∨Q)

for here we have substituted P for the first and second occurrences of α (in
the premise) and a different proposition Q for the third occurrence of α (in the
conclusion), thus violating our rule that all occurrences of the same variable
throughout the argument must be replaced by the same proposition.

5.3.1 Exercises

For each of the following arguments, give four correct answers to the ques-
tion “what is the form of this argument?” For each form, show what replace-

86 Chapter 5 Logical Form



ments of variables by propositions are required to obtain the argument from
the form.

1. ¬(R → (R →Q))

∴ R ∨ (R →Q)

2. (P ∧Q)→Q

¬Q

∴ ¬(P ∧Q)

3. ¬Q→ (R → S)

¬Q

∴ R → S

4. (P →¬Q) ∨ (¬Q→ P)

¬(¬Q→ P)

∴ P →¬Q

5.4 Validity and Form

Having introduced the ideas of forms (of propositions and arguments) and
of instances of forms, we can now put these ideas to work in the way we
originally envisaged: showing in one fell swoop—that is, without having to
do a truth table for each argument separately—that all arguments of a certain
form are valid.

What we do first is apply our truth table test for validity to argument forms
instead of arguments. We deem an argument form valid* if it passes the test
(i.e., there is no row of its truth table in which the premises all have a T and
the conclusion has an F) and invalid* if it fails the test (i.e., there is at least one
row of its truth table in which the premises all have a T and the conclusion
has an F).

For example, consider the form:

α

(α → β)

∴ β

Here is its truth table:

α β (α → β)

T T T
T F F
F T T
F F T

We see that there is no row in which the premises (columns 1 and 3) both have
a T and the conclusion has an F; so the argument form is valid*.

Now consider the argument form:

β

(α → β)

∴ α
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Its truth table is the same as the one above. We see that there is a row in which
the premises (columns 2 and 3 in this case) both have a T and the conclusion
has an F (row 3), so the argument form is invalid*.

Note that calling an argument form valid* means something different from
calling an argument valid (hence the use of the term “valid*”—as opposed to
“valid”—for argument forms). The premises and conclusion of an argument
are propositions—things that are true or false. To say that an argument is valid
is to say that there is no way of making its premises true and its conclusion
false. The premises and conclusion of an argument form are logical forms.
These are not things that have content—that say something about the world—
and they are not true or false. Rather, they are placeholders for things that have
content and are true or false: they are placeholders for propositions. Thus,
it does not make sense to speak of situations in which the premises of an
argument form are true or its conclusion false—for it does not make sense
to say that a logical form, which is what the premises and conclusion are, is
true or false.1

So what are we doing when we apply the truth table test to an argument
form—as opposed to an argument—if not checking all possible ways of mak-
ing propositions true or false and seeing whether there are any cases in which
the premises are true and the conclusion false? Well, what we are doing when
we produce a truth table for an argument form, say:

α

(α → β)

∴ β

is seeing whether it is possible to assign truth values to any three propositions
of the forms α, (α → β), and β, respectively, in such a way that the first two
propositions come out true and the third comes out false. The wff variables
are placeholders for propositions. As we have said, they can be thought of as
boxes, into which propositions can be put (subject to the rule that where the
same box appears more than once, the same proposition must be put into it
each time). These propositions will then have truth values (different ones in
different possible cases). The truth table for the form shows us whether it is
possible to put in propositions that can then be assigned truth values in such
a way as to make the premises true and the conclusion false. Or—another way
of thinking about the matter—we can conceive of the truth table test for the
form as bypassing the stage of putting propositions in the boxes, and putting
truth values in directly: it then shows us whether there is any way of putting
truth values in the boxes in such a way as to make the premises come out T
and the conclusion come out F.
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This point about truth tables for argument forms underlies the key result
we have been working toward:

Every instance of a valid* argument form is a valid argument.

The reason this result holds is as follows. If the truth table test of the form:

α

β...
∴ γ

establishes that the form is valid*, that means—as we have just discussed—
that it is not possible to assign truth values to any propositions of the forms
α, β, . . . , γ , respectively, in such a way that α, β, . . . come out true while
γ comes out false. It then follows immediately that if we have an argument
whose premises and conclusion are particular propositions that have the forms
α, β, . . . and γ respectively, it is not possible to assign truth values to these
propositions in such a way that all but the last are true, while the last one is
false. Hence our result: every instance of a valid* argument form is a valid
argument.

Or think of it this way. If the truth table for the form shows it to be valid*,
then there is no way of putting truth values in the boxes (thinking of the wff
variables as boxes) in such a way as to make the premises all T and the con-
clusion F. Now when we substitute propositions for the variables to get an
argument that is an instance of our form, we put propositions in the boxes.
Now recall the process of filling in a truth table. First, we look at the truth val-
ues of basic propositions in each row; then we use these, and the truth tables
for the connectives, to assign truth values to subformulas made up from ba-
sic propositions and one connective. We then use these truth values to assign
truth values to more complex subformulas; and so on until we have deter-
mined the truth values of our target wffs—the premises and conclusion—in
each row. At some point in this process, we put truth values in the boxes: the
truth values of the propositions, which we put in the boxes earlier, when we
were getting our particular argument as an instance of the argument form in
question. Now if the truth table for the form has already shown us that there
is no way of putting truth values in the boxes so that the premises are all T
and the conclusion F, then we have a guarantee that this particular way—first
putting certain propositions in the boxes, and then putting the truth values of
these propositions in the boxes—will not make the premises true and the con-
clusion false. In other words, if there is no counterexample row in the truth
table for the form, we have a guarantee that there can be no counterexample
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row in the truth table for any instance of the form. Hence, our result: every
instance of a valid* argument form is a valid argument.

This result is very useful. Consider an argument form that we know to be
valid, say:

α

(α → β)

∴ β

It has two wff variables in it, so its truth table has four rows. An instance of this
argument might have a truth table with any number of rows.2 For example,
if we substitute (P ∨ (Q ∧ R)) for α and (P → S) for β, then the resulting
argument features four basic propositions (P , Q, R, and S) and so its truth
table has sixteen rows. But having seen that the form is valid, we do not need to
do this sixteen-row truth table to see that the argument—which is an instance
of this form—is valid.

But hang on! How can we know from having examined four possibilities
that in none of sixteen possible cases will our premises be true while the con-
clusion is false? The key point is that ultimately each of these sixteen possible
ways of assigning truth values to P , Q, R, and S can only lead to one of four
possible ways of assigning truth values to (P ∨ (Q ∧ R)) and (P → S)—that
is, to the formulas we substituted for α and β, respectively. The four possi-
bilities are (i) both these formulas are true, (ii) the first is true and the second
false, (iii) the first is false and the second true, and (iv) both are false. These are
precisely the four possibilities that were covered in our truth table for the argu-
ment form—and that truth table showed that none of them yields a situation
in which the premises are true and the conclusion false.

We are also now in a position to see that the truth table definition of va-
lidity captures the idea that validity is a matter of form: if an argument is
valid (according to the truth table definition), this fact does not depend on
the particular propositions that make it up, but only on the way in which
those propositions are arranged—that is, on the form or structure of the ar-
gument. Suppose a certain argument is valid. Then it is an instance of at least
one valid* form—namely, the form we obtain by replacing the basic proposi-
tions in the argument by wff variables in such a way that multiple occurrences
of the same basic proposition are replaced by the same wff variable, while dif-
ferent basic propositions are replaced by different wff variables. For example,
given the argument A, A→ B/∴ B, we could arrive in this way at the form
α , α → β/∴ β. Obviously if the truth table test deems the former argument
valid, it must also deem the latter argument valid*, for the truth table for the
argument form differs from that for the argument only in having Greek letters
in place of Roman letters. But now (as we have seen in this section) every other
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instance of this form is also valid. Thus, the validity of the original argument
survives replacement of the particular basic propositions that make it up with
any other propositions (provided that multiple occurrences of the same basic
proposition are replaced by the same substitute proposition). Its validity, then,
does not turn on its content—on the particular propositions that make it up.
Rather, its validity turns on the form of the argument—on the way in which
those propositions are put together.

5.4.1 Exercises

For each of the following arguments, (i) show that it is an instance of the form:

α

α → β

∴ β

by stating what substitutions of propositions for variables have to be made to
otbain the argument from the form, and (ii) show by producing a truth table
for the argument that it is valid.

1. P

P →Q

∴ Q

2. (A ∧ B)

(A ∧ B)→ (B ∨ C)

∴ (B ∨ C)

3. (A ∨ ¬A)

(A ∨ ¬A)→ (A ∧ ¬A)

∴ (A ∧ ¬A)

4. (P →¬P)

(P →¬P)→ (P → (Q ∧ ¬R))

∴ (P → (Q ∧ ¬R))

5.5 Invalidity and Form

It is not true in general that every instance of an invalid* argument form is an
invalid argument. An argument form, say:

β

(α → β)

∴ α

is invalid* if it is possible to have three propositions of the forms β, (α → β),
and α, respectively, such that the first two are true and the third is false. But this
does not mean that every set of three propositions of the forms β, (α → β),
and α, respectively, are such that the first two can be true while the third is
false. Consider the following argument:

P

(P → P)

∴ P
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It is an instance of the above invalid* form, but it is valid, as we can confirm
by doing a truth table for this argument (see below). The three propositions
P , (P → P), and P are of the forms β, (α → β), and α, respectively, yet they
are not such that the first two can be true while the third is false. That is quite
compatible with the claim that the argument form

β

(α → β)

∴ α

is invalid*: for this claim to be true, there need only be some trio of proposi-
tions (not necessarily P , (P → P), and P ) of the forms β, (α → β), and α,
respectively, such that the first two can be true while the third is false.

Recall that the truth table for the argument form

β

(α → β)

∴ α

looks like:

α β (α → β)

T T T
T F F
F T T
F F T

We see that there is a row in which the premises both have a T and the con-
clusion has an F—row 3—so the argument form is invalid*. Now look at the
truth table for the argument

P

(P → P)

∴ P

which is an instance of the above form:

P (P → P)

T T
F T

There is no row in which the premises are both true and the conclusion false—
because there is no row in which P , which is both a premise and a conclusion,
is true and false—and so the argument is valid.
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We noted near the end of §5.4 that while the truth table for an argu-
ment might not have the same number of rows as the truth table for an
argument form of which the argument is an instance, each row will neverthe-
less ultimately be of one of the types covered in the truth table for the form (in
a sense made clear in the earlier discussion). So no new row types will appear
in the truth table for the argument that were not covered in the truth table for
the form. However, some row types may disappear. That is what happens in
the present case. Row 1 of the truth table for the argument—where P , which
is what we substituted for both α and β in the form, is true—corresponds to
row 1 of the truth table for the form, where α and β are both T. Row 2 of the
truth table for the argument—where P , which is what we substituted for both
α and β in the form, is false—corresponds to row 4 of the truth table for the
form, where α and β are both F. There is thus no row in the truth table for the
argument of the type of row 3 in the truth table for the form—that is, where α

is F and β is T. But that was the row that rendered the form invalid*. Thus, the
argument comes out valid, even though it is an instance of an invalid* form.

We have seen that every instance of a valid* argument form is a valid argu-
ment. Thus, if an argument is an instance of even one valid* form, then it is a
valid argument: it does not matter if it is also an instance of various invalid*
forms. In fact, it is certainly not the case that every form of a valid argument
is valid*, because every argument (valid or invalid) is an instance of at least
one invalid* argument form. Every one-premise argument is an instance of
the invalid* form:

α

∴ β

Every two-premise argument is an instance of the invalid* form:

α

β

∴ γ

and so on. But if we can see that a given argument is an instance of just one
valid* form, we know immediately that it is valid, without having to construct
a truth table for the argument, for we know that every instance of any valid*
form is a valid argument. This result is therefore very useful for recognizing
valid arguments in practice.

Having clarified the differences among propositions, wff variables, and log-
ical forms; arguments and argument forms; and what we are doing when we
construct a truth table for an argument and when we construct one for an ar-
gument form, we shall henceforth (for the sake of simplicity) stop using the
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terms “valid*” and “invalid*” and simply apply the terms “valid” and “in-
valid” to both arguments and argument forms. It should always be kept in
mind, however, that calling an argument form “valid” means something dif-
ferent from calling an argument “valid.”

5.5.1 Exercises

1. (i) Show by producing a truth table for the following argument form
that it is invalid:

α

∴ β

(ii) Give an instance of the above argument form that is valid; show that
it is valid by producing a truth table for the argument.

2. While it is not true in general that every instance of an invalid argument
form is an invalid argument, there are some invalid argument forms
whose instances are always invalid arguments. Give an example of such
an argument form.

5.6 Notable Argument Forms

In this section we list some notable argument forms, the names by which
they are commonly known, and whether they are valid or invalid (as can be
verified by producing truth tables for the argument forms). Remember that
all instances of the valid forms are valid arguments. (This is not an exhaustive
list of valid argument forms! It is just a small sample.)

Argument form Common name Validity

α → β Modus ponens Valid
α

∴ β

α → β Modus tollens Valid
¬β

∴ ¬α

α → β Fallacy of affirming the consequent Invalid
β

∴ α

α → β Fallacy of denying the antecedent Invalid
¬α

∴ ¬β

α → β Hypothetical syllogism Valid
β → γ

∴ α → γ
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Argument form Common name Validity

α → β Constructive dilemma Valid
γ → δ

α ∨ γ

∴ β ∨ δ

α ∨ β Disjunctive syllogism Valid
¬α

∴ β

5.7 Other Logical Properties

In this chapter we have talked about validity and invalidity. Analogous com-
ments apply to other central logical notions: tautology/nontautology, equiva-
lence/inequivalence, and unsatisfiability/satisfiability. These notions were de-
fined in Chapter 4.3 From our present point of view, these properties fall into
two categories: those whose presence can be established by citing a single truth
table row (call these s-properties), and the rest (a-properties).4 Here is how the
properties divide up:

A-property S-property

Validity Invalidity
Tautology Nontautology

Equivalence Inequivalence
Unsatisfiability Satisfiability

Note that in each row, the property on the left is just the property something
has if it does not have the property on the right, and vice versa.

To show that an argument is invalid, it suffices to come up with a single truth
table row in which the premises are true and the conclusion false, whereas no
single truth table row can establish that an argument is valid. To show that a
proposition is not a tautology, it suffices to come up with a single truth table
row in which the proposition is false, whereas no single truth table row can
establish that a proposition is a tautology. To show that two propositions are
inequivalent, it suffices to come up with a single truth table row in which
one of them is true and the other false, whereas no single truth table row
can establish that two propositions are equivalent. And to show that a set of
propositions is satisfiable, it suffices to come up with a single truth table row
in which all the propositions in the set are true, whereas no single truth table
row can establish that a set of propositions is unsatisfiable.

Now, returning to the issue of form: the a-properties are all analogous to
validity, in the sense that if a form has the property, so does every instance
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of the form. For example, consider equivalence: two wffs are equivalent iff
on every row of their joint truth table they have the same value. This notion
applies to pairs of propositions—but we could also run the truth table test
for equivalence on pairs of logical forms (in the way that, in §5.4, we applied
the truth table test for validity to argument forms instead of arguments),
deeming two logical forms equivalent* iff they have the same value in every
row of their joint truth table. We could then show that given two equivalent*
logical forms, if we take an instance of the first and an instance of the second
(replacing the same variable by the same wff across both forms—just as, when
going from an argument form to an instance of the form, we replace variables
uniformly across all premises and the conclusion), the two resulting wffs must
be equivalent. Or to take another example, consider the property of being a
tautology: a wff is a tautology iff in every row of its truth table, it has the
value T. This notion applies to propositions—but we could also run the truth
table test for tautology on logical forms, deeming a form a tautology* iff it
has the value T in every row of its truth table. We could then show that,
given a logical form that is a tautology*, every instance of this form must be a
tautology.

In contrast, the s-properties all behave like invalidity: that is, it does not
follow that every instance of the form has the property if the form has that
property. For example, consider satisfiability (of single wffs): a wff is satisfiable
iff in some row of its truth table it has the value T. This notion applies to
propositions—but we could also run the truth table test for satisfiability on
logical forms, deeming a form satisfiable* iff it has the value T in some row
of its truth table. We could then show that, given a satisfiable* logical form,
it does not follow that every instance of this form must be satisfiable. For
example, α ∧ β is a satisfiable* form, but its instance A∧¬A is not satisfiable.

The reason for the different behavior of a-properties and s-properties is that
(as discussed in §5.4 and §5.5) no new row types appear in the truth table
for the instance(s) that were not covered in the truth table for the form(s),
but some row types may disappear. If the row type(s) that disappear are the
row(s) that made the form have the s-property, then the instance will lack that
s-property.
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6
Connectives: Translation and Adequacy

In this chapter we examine two topics concerning connectives. First, in §§6.2–
6.5, we take a closer look at issues surrounding translation from English into
PL. More specifically, for each connective in PL, we have mentioned one or
more words of English that typically express that connective—but we have
noted that the correlations are not perfect: for example, “and” does not al-
ways express conjunction, and conversely, conjunction is often expressed using
words other than “and.” In these sections we engage in a more detailed discus-
sion of the relationships between connectives of PL and expressions in English.
Before discussing particular connectives, we introduce some essential back-
ground concepts in §6.1. In the final section of the chapter—§6.6—we look at
a second issue associated with connectives: the issue of functional complete-
ness (aka adequacy).

6.1 Assertibility and Implicature

Recall that a speaker can make a claim about the world by producing an ut-
terance (i.e., a token—spoken, written, or otherwise—of some sentence) in
a context. Let us consider the issue of assessing utterances for correctness: of
judging whether an utterance is, in the circumstances in which it is produced,
a good one; of judging whether the speaker said the right thing (or an accept-
able thing) in the circumstances, or whether something else (or nothing at all)
would have been better (in those circumstances). To the extent that an utter-
ance of a certain sentence is correct in some context, we say that the sentence
is assertible in that context.1

One way in which an utterance can be bad (wrong, incorrect) is if the
proposition thereby expressed is false. There are, however, many other ways
in which utterances can be bad. For example, even though you speak the
truth, you may say the wrong thing if your utterance is rude, irrelevant to
the discussion at hand, excessively long, unnecessarily complex and hard to
follow, phrased in a language that your audience does not speak, too loud, or



too soft. In a very influential study of these issues, Paul Grice introduced the
Cooperative Principle:

Make your conversational contribution such as is required, at the stage at which it
occurs, by the accepted purpose or direction of the talk exchange in which you are
engaged. [Grice, 1989, 26]

In general, other things being equal, utterances not conforming to the Coop-
erative Principle will be regarded as—to a greater or lesser extent—incorrect.
But what exactly is involved in conforming to the Cooperative Principle? To
help answer this question, Grice [1989, 26–27] laid out serveral more specific
maxims:

. Maxims of Quantity:

– Make your contribution as informative as required (for the current purposes
of the exchange).

– Do not make your contribution more informative than required.

. Maxim of Quality:

– Try to make your contribution one that is true.

Do not say what you believe to be false.
Do not say something for which you lack adequate evidence.

. Maxim of Relation:

– Be relevant.

. Maxim of Manner:

– Be perspicuous.

Avoid obscurity of expression.
Avoid ambiguity.
Be brief (avoid unnecessary prolixity).
Be orderly.

In general, other things being equal, utterances not conforming to one or more
of these maxims will be regarded as—to a greater or lesser extent—incorrect.

For example, suppose that we are all chatting about what we did on the
weekend. If I say “I did some stuff,” this will not be regarded as a cooperative
contribution—I have not conformed to the first Maxim of Quantity: make
your contribution as informative as is required. Likewise, if I launch into
a lengthy description beginning with the complete thought process I went
through in deciding what to have for breakfast, this will not be regarded as a
good contribution—I have not conformed to the second Maxim of Quantity:
do not make your contribution more informative than required. Or again,
suppose I say:
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We set up the camp on the beach. Before that we had lunch. That was after we sank
the boat because we were sailing too fast. We hit a rock and then the bread was all
soggy, so we had to dry it out before lunch. The boat builder says he will be able
to fix the boat, but it will take ten days. We had to get her up from the bottom—
but first we recovered the bread and the other things by diving for them. We got
milk for lunch while the bread was drying and the farmer sang us a song. That was
after we visited the boat builder. Before that we had to patch up the boat to get her
across the lake.

Let’s suppose that everything I say is true, and that I have provided an ap-
propriate amount of information about my weekend. Nevertheless, my con-
tribution leaves something to be desired—it is hard to follow. With much
concentration—or pen and paper to construct a timeline—you can probably
piece together the events, but my contribution to the exchange of informa-
tion would be a better one if I told things in the order they happened—if I
conformed to the last part of the Maxim of Manner: be orderly. Let’s con-
sider a final example. Suppose that we are in the middle of a discussion of
some important matter, when I begin to describe what I did on the weekend.
Let’s suppose my description is entirely true—and orderly. Nevertheless, if I
do not link it in some way with the discussion at hand, my contribution will
be regarded as a bad one. For my comments to be regarded as a cooperative
contribution to the conversation, I need to observe the Maxim of Relation: be
relevant.

Grice regarded the above maxims as specific instances—that is, specific to
the case of conversational exchanges—of more general principles governing
any form of rational cooperative behavior. For example, if you are helping me
to fix a car and I need four nuts, then I expect you to hand me four, not two
or six (cf. the Maxims of Quantity); if you are helping me to make a cake and
I need a spoon, then I expect you to hand me a real spoon, not a trick spoon
made of rubber (cf. the Maxim of Quality) nor (at this point in the process)
an oven cloth (cf. the Maxim of Relation) [Grice, 1989, 28].

Apart from these general principles governing all conversations, some utter-
ances are also subject to further norms attached to particular words in those
utterances. For example, consider the difference between describing an action
as generous and describing it as magnanimous. There are situations in which
the former is the right word to use and other situations in which the latter
is the right word—but this difference cannot be traced to the above conver-
sational maxims. In particular, consider the Maxim of Quality. The problem
with describing an action as magnanimous, when “generous” would be the
right word to use, is not that the former description is false while the latter is
true. The difference is more subtle than that: roughly speaking, it is appropri-
ate to call an act “magnanimous” only when the beneficiary of the act is less
powerful than, or a rival of, the person who performs the act. This condition
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on the correctness of utterances featuring the term “magnanimous” is, then,
separate from—and additional to—the general constraints governing all con-
versations: it is a condition attached in particular to the word “magnanimous.”
Many other words also have special conditions attached to them that dictate
that some utterances involving these words, even though not false, are never-
theless incorrect. Think of a thesaurus, which gives a list of synonyms (e.g.,
“cheap,” “inexpensive,” and “low-cost”): substituting one of these words for
another will not, in general, make a true statement into a false one, but it may
well make an entirely appropriate statement into one that jars—that does not
sound correct in the circumstances.

In light of the above, we can now—following Grice—group into three cat-
egories the information conveyed when one makes a claim by uttering a sen-
tence in a context. First, there is what is said: the proposition expressed (by
uttering that sentence in that context). This is what we aim to capture in trans-
lation from English into PL. That is, the wff of PL that we write down as the
translation of an English utterance is supposed to be a perspicuous represen-
tation of the proposition expressed by that utterance.

Second, there is what is implied: the logical consequences of the proposition
expressed. What is implied by an utterance are those propositions that follow
logically from what is said (i.e., from the proposition expressed by the utter-
ance). So suppose someone says something that we translate into PL as P . The
speaker does not say P ∨Q, but she implies it. She does not say P ∨Q, be-
cause the latter proposition is true in a situation in which P is false and Q

is true, whereas what she actually says—plain old P —is false in this situation.
Nevertheless she implies P ∨Q, because P ∨Q follows logically from P ; that
is, P/∴ P ∨Q is a valid argument. In general, where α is what is said by a
certain utterance, every proposition β such that α/∴ β is a valid argument is
implied by that utterance.

Third, there is what is implicated—known as implicatures.2 Roughly speak-
ing, the implicatures of an utterance are those things that follow from the
assumption that the utterance is correct.3 Consider an example. A friend drops
by, just as you are sitting down to lunch. “Would you like to join us?” you ask.
“I’ve just eaten,” she replies. Part of the information conveyed by this reply is
that your friend would not like to join you for lunch—but this is not what is
said, and it is not implied by what is said. Rather, it is an implicature. It fol-
lows from the assumption that your friend is speaking correctly—in particular,
from the assumption that she is endeavoring to conform to the Cooperative
Principle. You have just asked your friend a question, so the only way that she
can make her conversational contribution as required (at this stage and by the
accepted purpose of the exchange) is if she provides an answer (yes or no)
to this question. Given that (at any point in time) the more recently one has
eaten, the less likely one is to want to eat, it follows that the answer your friend
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wants to convey is no: she would not like to join you for lunch. Note that the
information that your friend does not wish to join you for lunch follows only
given the assumption that she is speaking correctly. If you do not assume that
she is endeavoring to conform to the Cooperative Principle—in particular, if
you do not assume that she is trying to say something relevant to the conversa-
tion at hand but leave it open that she is simply saying the first thing that pops
into her head—then you cannot conclude that she is conveying the answer no
to your question (she might not be trying to answer your question at all).

Recall that we distinguished between general norms of correctness (the Co-
operative Principle, spelled out in the Maxims), which apply to all conver-
sations, and specific norms, which apply to particular words (e.g., the norm
governing correct use of the word “magnanimous” as opposed to “generous”).
Grice calls implicatures that follow from the assumption that the speaker is
conforming to the general norms conversational implicatures and implicatures
that follow from the assumption that the speaker is conforming to the spe-
cial norms governing one or more of the words used conventional implicatures.
A key difference between the two kinds of implicatures is that conversational
implicatures can be cancelled, whereas conventional implicatures cannot. For
example, your friend might say “I’ve just eaten—but it looks so good, I’ll have
a second lunch, thanks.” Here she explicitly cancels the implicature that would
normally be carried by the first part of her utterance: her (extended) reply does
not now convey the information that she would not like to join you for lunch;
rather, it conveys the information that she would like to join you.4 By contrast,
consider the following claim:

The prime minister’s speech, in which she praised Senator Bellinghausen, was
magnanimous—although I do not mean to suggest that there is any rivalry between
the prime minister and the senator, nor that the prime minister is his superior.

This is just odd. If one refers to the prime minister’s speech as magnanimous,
then one does implicate a rivalry between the prime minister and Senator
Bellinghausen or that the prime minister is his superior, and this implica-
ture cannot then be retracted. If one does not think there is any such rivalry
(etc.), then one should not use the word “magnanimous”: one should simply
describe the speech as “generous.”

§

Before turning to particular connectives and the ways in which they may or
may not be expressed in English, we make a general comment on our meth-
odology. Suppose we are faced with an utterance of an English sentence that
seems to express a proposition formed from a number of simpler propositions
and a connective: that is, it is apparently of the form ∗α (where ∗ is some
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one-place connective) or α ∗ β (where ∗ is some two-place connective). For
example,

. “Necessarily, if James is a human being, then James is mortal” is appar-
ently of the form ∗α, where ∗ is the one-place connective “necessarily,”
and α is “if James is a human being, then James is mortal.”5

. “I went to bed, because I was tired” is apparently of the form α ∗ β, where
∗ is the two-place connective “because,” α is “I went to bed,” and β is “I
was tired.”

. “I went to bed, even though I was not tired” is apparently of the form
α ∗ β, where ∗ is the two-place connective “even though,” α is “I went to
bed,” and β is “I was not tired.”

. “I was tired, but I did not go to bed” is apparently of the form α ∗ β,
where ∗ is “but,” α is “I was tired,” and β is “I did not go to bed.”

How do we translate this utterance into PL? Our procedure is to draw up a
truth table. That is, we ask, for each possible combination of truth values for
α and β, whether α ∗ β (or ∗α, if we are dealing with a one-place connective)
would be true or false if α and β had those values. For example: would “I went
to bed, because I was tired” be true or false if “I went to bed” were false and “I
was tired” were true? Would “I was tired, but I did not go to bed” be true or
false if “I was tired” were true and “I did not go to bed” were false? And so on.
At this point, one of two things might happen.

(1) It might happen that we succeed in constructing the truth table. In this
case, we take as our translation of ∗ the connective of PL that has this same
truth table.6

(2) It might happen that we cannot construct the truth table, because in
one or more rows the answer to the question whether α ∗ β (or ∗α, if we are
dealing with a one-place connective) would be true or false if α and β had the
values specified in that row is: we do not know—more information is required.
For example, is “I went to bed, because I was tired” true if “I went to bed” is
true and “I was tired” is true? We do not know: the fact that both component
propositions are true still leaves it open whether I went to bed because I was
tired. To take another example: is “necessarily, John is human” true or false
if “John is human” is true? We do not know: the fact that the component
proposition is true does not determine whether it is necessarily true (i.e., could
not be false). In this case, the connective ∗ is not truth functional: to determine
the truth value of α ∗ β (or ∗α, if we are dealing with a one-place connective),
it is not sufficient to know the truth values of α and β. Therefore, ∗ cannot
be translated into PL: all the connectives in PL are truth functional. There are
two ways of proceeding.

102 Chapter 6 Connectives: Translation and Adequacy



(2a) One option is to move beyond PL to a nonclassical logic that includes
nontruth-functional connectives. (Such logics are beyond the scope of this
book, which covers only classical logic.)

(2b) The other option is to revise the view that our original English ut-
terance (e.g., “I went to bed, because I was tired,” “necessarily, John is hu-
man”) expresses a proposition of the form α ∗ β (or ∗α), instead offering a
more complex translation. This translation will probably use a logical lan-
guage more complex than PL: perhaps one of the languages of predicate logic
(to be examined in Part II of this book), or perhaps the language of some non-
classical logic (which falls outside the scope of this book).

So much for laying out the possibilities in the abstract: in the following
sections we shall encounter particular examples of all of them. One important
general lesson that will emerge is this: when translating into PL, one should
not focus solely on which English words are used (blindly translating “and” as
∧, “if” as →, etc.) but on what is being said—in particular, on the conditions
under which the English utterance one is translating is supposed to be true or
false.

6.2 Conjunction

6.2.1 Conjunction without “And”

Apart from “and,” other expressions in English can also be used to express
conjunction. For example, consider a typical utterance of the sentence “it was
sunny, but it was cold.” It would seem to express a proposition of the form
α ∗ β, where ∗ is the two-place connective (expressed by) “but,” α is (the
proposition expressed by) “it was sunny,” and β is (the proposition expressed
by) “it was cold.”7 That is, here it seems that “but” expresses a two-place
connective. Which one? In accordance with the procedure described above,
we proceed to answer this question by trying to construct a truth table for “it
was sunny, but it was cold.” Using the glossary on the left, we construct the
truth table on the right:

S: It was sunny S C S but C

C: It was cold
T T T
T F F
F T F
F F F

We obtain the entry in the body of the table in row 1 by asking: would what I
said (when I uttered “it was sunny, but it was cold”) be true if “it was sunny”
were true, and “it was cold” were true? Yes: hence there is a T in this row. For
row 2 we ask: would what I said be true if “it was sunny” were true and “it was
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cold” were false? No: hence there is an F in this row, and so on. Now compare
the above table with the following one:

S C S ∧ C

T T T
T F F
F T F
F F F

It has the same entries. So we translate “but” (in “it was sunny, but it was cold”)
as ∧. In other words, “but” here expresses conjunction.

We thus translate “it was sunny, but it was cold” in the same way as we
translate “it was sunny, and it was cold.” In particular, here we translate both
“and” and “but” as conjunction (∧). However, this does not mean that we are
claiming that “but” and “and” have exactly the same meaning. The latter claim
is clearly false. To take the traditional example, the following two statements
convey different things:

1. He was poor and honest.

2. He was poor but honest.

As the only difference between the two is that the second uses “but” where the
first uses “and,” it would seem that these two words must have different mean-
ings: otherwise, how could the two statements differ in what they convey? So
let us agree that “and” and “but” do not mean exactly the same thing. This
does not conflict with our claim that both should be translated as ∧. Trans-
lating (1) and (2) in the same way—as P ∧H (using the glossary P : He was
poor; H : He was honest)—commits us to this: in any situation in which (1) is
true, (2) is true, and vice versa.8 We do not, however, commit to the following:
in any situation in which (1) is a good (appropriate, correct) thing to say, (2) is
a good (appropriate, correct) thing to say, and vice versa. Therefore, we could
say that the difference in meaning between “and” and “but” affects when it is
appropriate to use these words but not whether the resulting utterances are
true. More specifically, there is a condition on the correct use of “but” in “A
but B”: one must take there to be some contrast or opposition between A and
B that makes it unlikely that they are both true. There is no such condition
on the correct use of “and.” Therefore, an utterance of the form “A but B” will
have an implicature that “A and B” lacks. If someone says “A but B,” and we
assume that he is speaking correctly, then it follows that he takes there to be
some contrast between A and B.9 We can make no such inference if he says
instead “A and B.”

In sum, our claim is that “and” and “but” make the same contribution to
the truth conditions of utterances in which they occur; however, they do not
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make the same contribution to assertibility conditions. In terms of our earlier
example, when what is expressed by “it was sunny, but it was cold” is true,
what is expressed by “it was sunny, and it was cold” is true too—and vice versa.
However, it is not the case that when it is appropriate to say “it was sunny,
and it was cold,” it is appropriate to say “it was sunny, but it was cold”—and
vice versa. Hence, we allow for the difference in meaning between “and” and
“but” while maintaining that both express conjunction (i.e., that both should
be translated as ∧).

To make this approach more convincing (call it the implicature approach),
we explore what seems to be the main alternative option: regarding “A but B”
as saying the same thing as “A and B and it is unusual that A and B should
both be true” (call this the third conjunct approach). Using the third conjunct
approach, “it was sunny, but it was cold” would be translated into PL as
S ∧ C ∧ U (using the glossary S: It was sunny; C: It was cold; U : It is unusual
for it to be cold and sunny at the same time). In contrast, “it was sunny,
and it was cold” would be translated as S ∧ C. Consider the three pieces of
information S, C, and U . Intuitively, an utterance of “it was sunny, but it
was cold” conveys all three, while an utterance of “it was sunny, and it was
cold” conveys only S and C. Both the implicature approach (whereby both
are translated as S ∧ C, but “but” is subject to a norm of correct use to which
“and” is not subject—and hence carries an additional implicature, in this case
U) and the third conjunct approach capture this intuition. However, it is also
intuitively the case (i) that the way in which U is conveyed by “it was sunny,
but it was cold” is different from the way in which U is conveyed by “it was
sunny, and it was cold, and it is unusual for it to be cold and sunny at the same
time”—the latter comes straight out and says U , whereas the former conveys
it in a more indirect fashion—and (ii) that one makes a stronger commitment
to the truth of U when one says “it was sunny, and it was cold, and it is unusual
for it to be cold and sunny at the same time” than when one says “it was
sunny but it was cold.” (Or—returning to our other example for a moment—
consider the difference between saying “he was poor but honest” and saying
“he was poor and honest, and most poor people are not honest.” Either way
conveys the opinion that most poor people are not honest, but the second
comes straight out and says it, whereas the first insinuates it without directly
saying it. As a consequence, it seems that you make a stronger commitment
to the opinion that most poor people are not honest when you say “he was
poor and honest, and most poor people are not honest” than when you say
“he was poor but honest.”) The third conjuct approach does not capture this
further intuition: using this approach, an utterance of “it was sunny, but it was
cold” commits you to the truth of U in the same way that an utterance of “it
was sunny, and it was cold, and it is unusual for it to be cold and sunny at the
same time” does. The implicature approach does capture the further intuition.
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Using this approach, when you say “it was sunny, but it was cold,” the truth of
U is required for your statement to be correct but is not required for it to be
true (i.e., U is an implicature), whereas when you say “it was sunny, and it was
cold, and it is unusual for it to be cold and sunny at the same time,” the truth
of U is required for your statement to be true (i.e., U is implied).10

Before leaving the word “but,” note that we are not saying that all uses of
“but” should be translated as conjunction. What we have said applies only
to uses of “but” like the one in “it was sunny, but it was cold.” There are other
uses of “but” that do not express conjunction. First, “but” has uses in which it
does not express a connective at all—for example, in “I could not but laugh,”
“he had no choice but to leave town,” and “who could have done it but him?”
Second, there are cases where “but” (partially) expresses a connective other
than conjunction. For example, in “it never rains but it pours,” the claim is
that if it rains, then it pours (i.e., it rains only if it pours)—so this statement is
a conditional.11

§

Turning now to other words, the situation regarding “although . . . anyway”
is very similar to that regarding “but.” Consider the claim “although she was
tired, she went out anyway.” Using the glossary below, we can construct the
truth table to its right by considering whether the claim in question would be
true or false if she was tired and went out (row 1), was tired and did not go out
(row 2), and so on:

T : She was tired T W Although T , W anyway
W : She went out

T T T
T F F
F T F
F F F

This truth table is the same as that for T ∧W . So we translate “although . . .
anyway” as ∧. Similar considerations lead us to conclude that “although,”
“even though,” “though,” “despite the fact that,” “in spite of the fact that,”
“notwithstanding,” “however,” “yet,” “whereas,” “nevertheless,” “moreover,”
and the semicolon (as in “Tom left the house; Sarah stayed indoors”) can all
be used to express conjunction.

6.2.2 “And” without Conjunction

We have considered some words other than “and” that can be used to express
conjunction. We turn now to cases in which “and” is not properly translated as
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conjunction. As in the case of “but,” there are uses of “and” that do not express
connectives at all, for example, “the weather just keeps getting hotter and
hotter,” “I ran and ran,” “it will be years and years before the trees bear fruit,”
“two and two make four.” There are also cases in which “and” does express
a connective—but the conditional rather than conjunction. For example, in
“study hard, and you will pass the exam,” the claim is that if you study hard,
then you will pass the exam.

It has been suggested that there are various other cases in which “and” is not
properly translated as conjunction. We examine some of them now.

Consider the claims:

1. Albert took off his shoes and went inside.

2. Albert went inside and took off his shoes.

They would typically be taken to convey different things: (1) that Albert took
off his shoes outside and then went in and (2) that Albert went in and then
took off his shoes inside. Now what happens if we translate “and” here as
conjunction? Using the glossary:

S: Albert took off his shoes
W : Albert went inside

the first claim comes out as S ∧W and the second as W ∧ S. These transla-
tions are logically equivalent. Both of them are true, provided S and W are
both true—that is, provided Albert took off his shoes, and Albert went inside:
it makes no difference which happened first. Do we have a problem here with
the proposal to translate “and,” as it occurs in these two utterances, as con-
junction? Some have thought so—but the more common view is that we do
not: the difference between the two utterances is not that they have different
truth conditions—and so must express different propositions—but that they
have different implicatures. If, in the course of recounting a series of events,
someone says something of the form “A and B,” then if we assume that she
is obeying the conversational maxims (§6.1)—in particular, that she is being
orderly—then we shall assume that she is telling things in the order in which
they happened. “A and B” will then implicate that A happened before B.

We have just seen that “A and B” sometimes conveys the information that
A happened before B. At other times, “A and B” conveys the information
that B happened as a result of A. For example, consider the claims:

3. I had an overwhelming feeling that I could achieve anything, and I surged ahead
and won the race.
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4. I surged ahead and won the race, and I had an overwhelming feeling that I could
achieve anything.

They would typically be taken to convey different things: (3) that the feeling
caused me to surge ahead and win; (4) that surging ahead and winning caused
me to have the feeling. Now if we translate “and” here as conjunction, then
(using the glossary F : I had an overwhelming feeling that I could achieve
anything; R: I surged ahead and won the race) (3) translates as F ∧ R and
(4) as R ∧ F . As before, these translations are logically equivalent. Both of
them are true, provided F and R are both true—that is, provided I had
an overwhelming feeling that I could achieve anything, and I surged ahead
and won the race: it makes no difference which came first or whether one
caused the other. Again, some have thought we have a problem here for the
proposal to translate “and” as conjunction in these two utterances—but the
more common view is that we do not: requiring that the second conjunct be
true because the first conjunct is true is not a condition that must be satisfied
for the claim to be true; it is, rather, an implicature.

The alternative to translating (1) as S ∧W (and treating the information
that Albert took off his shoes before going in as an implicature rather than as
part of the truth conditions of (1)) and (3) as F ∧ R (and treating the infor-
mation that the feeling caused the win as an implicature rather than as part
of the truth conditions of (3)) is to regard “and” as ambiguous in the follow-
ing way: in some contexts (e.g., “Albert bought bread and milk”) it expresses
conjunction (i.e., it is correctly translated as ∧), in other contexts (e.g., (1))
it means the same as “and then” (and so cannot be translated as ∧),12 and in
yet other contexts (e.g., (3)) it means the same as “and as a result of this” (and
so again cannot be translated as ∧). There is an influential argument against
this alternative approach—an argument that has come to be known as “Grice’s
Razor.”13 Both the approach advocated above (the implicature approach) and
the alternative approach just mentioned (the ambiguity approach) provide an
account of the phenomena (i.e., of the fact that some uses of “A and B” con-
vey simply that A and B are true; some also convey that A happened before
B; and some also convey that B happened as a result of A), but the implica-
ture approach does so in a more economical way. The implicature approach
appeals to one meaning of “and” and to the conversational maxims, whereas
the ambiguity approach appeals to three different meanings of “and.” Now it
is not as though we can do away with the conversational maxims altogether if
we countenance two extra senses for “and”: the maxims are completely gen-
eral, and they do important work across the board (not just when explaining
the phenomena associated with “and”). However, if we adopt the implicature
approach, then we can do away with the extra senses of “and.” In general, we
should favor the simplest, most economical explanation: the one that captures
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the phenomena using the least resources. Hence, we should favor the implica-
ture approach over the ambiguity approach.

§

Finally, let us turn to phrasal conjunction. In English, “and” can be used to join
whole sentences (e.g., “Jack went shopping, and Jill went to the beach”), but it
can also be used to join parts of sentences (phrases): verbs (e.g., “Jill swam and
sunbathed”), adverbs (e.g., “Jack shopped quickly and efficiently”), and nouns
in object position (e.g., “Jack bought milk and bread”) and in subject position
(e.g., “Jack and Jill are Swiss”). In many cases, a sentence involving phrasal
conjunction is straightforwardly equivalent to a sentence involving sentential
conjunction, which can be straightforwardly translated into PL using ∧. For
example, “Jill swam and sunbathed” says the same thing as “Jill swam, and
Jill sunbathed;” “Jack shopped quickly and efficiently” says the same thing
as “Jack shopped quickly, and Jack shopped efficiently;” “Jack bought milk
and bread” says the same thing as “Jack bought milk, and Jack bought bread;”
and “Jack and Jill are Swiss” says the same thing as “Jack is Swiss, and Jill is
Swiss.” In other cases, however, the phrasal conjunction is not equivalent to
any sentential conjunction—for example, “Jack and Jill are similar.” (Note that
“Jack is similar, and Jill is similar” is ungrammatical and makes no sense.) In
yet other cases, the phrasal conjunction seems to admit two readings, one of
which is equivalent to a sentential conjunction, and the other of which is not.
For example:

1. Jack and Jill are married.

2. Jack is married, and Jill is married.

3. Bill and Ben are brothers.

4. Bill is a brother, and Ben is a brother.

5. Boris and Barbara walked to school.

6. Boris walked to school, and Barbara walked to school.

(1) could be read as saying simply that Jack is married (i.e., his marital status
is “married”) and Jill is married—in which case it says the same thing as (2)—
or it could be read as saying that Jack and Jill are married to each other—in
which case it does not say the same thing as (2). (3) could be read as saying
simply that Bill is a brother (i.e., he has a sibling) and Ben is a brother—in
which case it says the same thing as (4)—or it could be read as saying that Bill
and Ben are brothers of each other—in which case it does not say the same
thing as (4). (5) could be read as saying simply that Boris walked to school
and Barbara walked to school—in which case it says the same thing as (6)—or
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it could be read as saying that Boris and Barbara walked to school together—in
which case it does not say the same thing as (6).

As already mentioned, phrasal conjunctions equivalent to sentential con-
junctions are translated into PL using ∧. For example (using the glossary K :
Jack is married; L: Jill is married), (2) is translated into PL as K ∧ L, and so
is (1) on those occasions when it is deemed to be saying the same thing as
(2). But what about phrasal conjunctions that are not equivalent to sentential
conjunctions—for example, “Jack and Jill are similar,” or (1) when it is taken
to mean that Jack is married to Jill (and vice versa)? These have to be translated
into PL as basic propositions, for example,

I : Jack and Jill are similar
M : Jack is married to Jill

When we discuss predicate logic (in particular, general predicate logic in
Chapter 12), we shall see how to treat these claims in a more illuminating way.

6.3 Conditional and Biconditional

6.3.1 Indicative and Counterfactual Conditionals

In PL we have one conditional: →. We call → the material conditional. The
material conditional (P →Q) is false if P is true and Q is false, and true
otherwise, as the truth table for→ shows. Thus, it is equivalent to¬(P ∧¬Q)

and (¬P ∨Q) (do the truth tables and check). The proposition (P →Q) can
therefore be read into English as “it is not the case both that P and that not
Q” or “either not P , or Q.”

In English, there are at least two different kinds of conditional.14 Consider
the following pair of English conditionals:

1. If humans did not build Stonehenge, nonhumans did.

2. If humans had not built Stonehenge, nonhumans would have.

Conditional (1) seems clearly true: Stonehenge is there; it was built by some-
one or something (that is, it is not a naturally occurring formation); so if it was
not built by humans, it was built by nonhumans. Conditional (2) seems clearly
false: it seems rather that if humans had not built Stonehenge, there would
simply be no Stonehenge. There is no reason to think, for example, that if hu-
mans had not built it, aliens would have. So one of these propositions seems
true and one false. Yet it is natural to regard each of them as composed of two
component propositions—“humans did not build Stonehenge” and “non-
humans built Stonehenge”—using a two-place conditional connective. But
then the conditional connective cannot be the same in both cases. For one
compound is true and one false, and if—in the same situation—one connec-
tive yields a true compound from two propositions and another connective
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yields a false compound from the same two propositions, then the two con-
nectives cannot be the same.

We call the conditional connective in (1) an indicative conditional. Here are
some other examples of indicative conditionals:

3. If it rains tonight, we shall get wet.

4. If the roof leaked last night, there will be water on the kitchen floor.

5. If John is smoking out there, he is doing something very foolish.

We call the conditional connective in (2) a subjunctive or counterfactual con-
ditional. Here are some other examples of subjunctive conditionals:

6. If it were to rain tonight, we would get wet.

7. If the roof had leaked last night, there would be water on the kitchen floor.

8. If John were smoking out there, he would be doing something very foolish.

One thing seems clear: the subjunctive conditional is not correctly trans-
lated into PL as →. This is because subjunctive conditionals are not truth
functional. Consider the claim “if you had put your sandwich down, a dog
would have eaten it.” Suppose we regard this statement as a compound made
up from the subjunctive conditional connective and the two propositions “you
put your sandwich down” and “a dog ate your sandwich.” In a situation in
which you ate your sandwich quickly, without putting it down, while sur-
rounded by hungry, unruly dogs, both components are false, and the subjunc-
tive conditional is true. In a situation in which you ate your sandwich quickly,
without putting it down, and there were no dogs for miles around, both com-
ponents are again false, but the subjunctive conditional is false. So the sub-
junctive conditional is not a truth-functional connective. To know whether a
subjunctive conditional is true in some situation, we need to know more than
just the truth values of its components in that situation. To handle the seman-
tics of subjunctives, we therefore need more machinery than we have so far:
truth tables will not suffice.15

6.3.2 Indicative and Material Conditionals

We said in earlier chapters that “if . . . then” (and “if” and “only if”) are
translated into PL as →. We can now clarify that we meant uses of “if” (etc.)
in indicative conditionals, not in counterfactuals. But even the claim that
the indicative conditional is correctly translated as → is controversial. Before
discussing objections to this translation, we give some reasons in its favor.

First, an uncontroversial point: if we take the indicative conditional to ex-
press a truth-functional connective, then that connective must be→. In other
words, if the indicative conditional has a truth table at all, it is the truth table
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for →: no other truth table is a serious contender.16 Recall the truth table
for →:

α β (α → β)

T T T
T F F
F T T
F F T

Let us consider the four rows of the table. For a start, the F in row 2 is clearly
correct: if a conditional has a true antecedent and a false consequent, it is false.
Next, rows 1 and 4 must contain T, because a paradigm of a true indicative
conditional is one in which the antecedent and the consequent are the same
proposition. “If it is raining, it is raining” is undeniably true, whether it is
raining or not.17 Given our restriction to truth-functional connectives, if we
are to make this conditional come out true both when its antecedent and
consequent are both true and when they are both false, we must put T in
both rows 1 and 4. Now consider row 3. We have a T in this row. The only
other option is an F. But if we put F in row 3, we would end up with the truth
table for the biconditional, whereas clearly conditionals and biconditionals say
different things.

More significantly, there are arguments that seem to show—without any
prior assumption that the indicative conditional is truth functional—that the
indicative conditional “if A then B” has the same truth conditions as the
material conditional A→ B: that is, (i) when “if A then B” is true, so is
A→ B and (ii) when A→ B is true, so is “if A then B.”18 Condition (i) is
uncontroversial. For suppose A→ B is not true. Then (by the truth table for
→) A is true, and B is false. But then the indicative conditional “if A then B”
is certainly false. So when “if A then B” is true, A→ B must be too. The real
issue, then, is (ii). We want to show that if A→ B is true, then “if A then B”
is true. Here are two arguments for this conclusion:

1. The proposition A→ B is equivalent to ¬(A ∧ ¬B), so if A→ B is
true, ¬(A ∧ ¬B) is true. But from ¬(A ∧ ¬B), “if A then B” obviously
follows. For given that it is not the case both that A and that ¬B, if A is
the case, then ¬B must not be the case—that is, B must be the case.

2. The proposition A→ B is equivalent to (¬A ∨ B), so if A→ B is true,
(¬A ∨ B) is true. But from (¬A ∨ B), “if A then B” obviously follows.
For given that at least one of ¬A and B is the case, if A is the case—that
is, ¬A is not the case—then B must be the case.
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Jackson [1991, p. 2] gives an even simpler argument for the conclusion that
the indicative conditional has the same truth conditions as the material con-
ditional:

Instead of saying “if it rains, then the match will be cancelled,” one could have said,
to much the same effect, “either it will not rain, or it will and the match will be
cancelled;” and the latter is true if and only if either “it will rain” is false or “the
match will be cancelled” is true; that is if and only if [the material conditional]
is true.

So what’s the problem with the proposal that we translate indicative condi-
tionals using→? Well, recall that α → β is true when α is false or β is true (or
both). However, the following conditionals all seem quite wrong, even though
the first two have false antecedents and the second two have true consequents:

1. If this book is about pop music, it refers to the work of the logician Frege.
(false antecedent, true consequent)

2. If this book is about pop music, it contains color photos of fruit and vegetables.
(false antecedent, false consequent)

3. If this book is about logic, its author’s surname starts with “S.”
(true antecedent, true consequent)

4. If this book is about naval architecture, its author’s surname starts with “S.”
(false antecedent, true consequent)

Therefore, it might seem that we should not translate these propositions into
PL using →, because then we would translate English conditionals that seem
clearly wrong into PL propositions that are straightforwardly true.19

What exactly is wrong with the conditionals just given? The problem seems
to be that in each case the antecedent has nothing to do with the consequent:
believing the antecedent to be true gives us no reason to think that the con-
sequent is true. One might conclude that for an indicative conditional to be
true, it is not enough simply for it not to be the case that both the antecedent
is true and the consequent is false: there must also be some sort of connec-
tion between the two. If we pursue this line of thought, we shall be led to the
view that the indicative conditional is not truth functional: whether “if A then
B” is true will depend not just on whether A and B are true or false but on
what they actually say—and in particular, on whether there is the right kind
of connection between what A says and what B says.

The alternative is to defend the view that indicative conditionals have the
same truth conditions as material conditionals, by treating the problematic
examples in a way that should now be familiar: we explain why these condi-
tionals seem wrong in a way that is compatible with their being true. So let us
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suppose, for the sake of argument, that indicative conditionals have the same
truth conditions as material conditionals, and then see what follows from the
conversational maxims about the conditions under which indicative condi-
tionals are assertible. For it to be appropriate for one to assert a conditional
“if A then B” (now thought of, for the sake of the argument, as having the
same truth conditions as A→ B), one must believe it to be true (Maxim of
Quality). That is, one must believe that the actual row is row 1, 3, or 4 in the
following truth table:

A B (A→ B)

T T T
T F F
F T T
F F T

It must also be the case that one is not confident either way about the truth or
falsity of A, and similarly about the truth or falsity of B. To see this, consider
the cases in turn. Suppose you are confident that A is false; then (other things
being equal) you are in a position to assert¬A (Maxim of Quality). But saying
¬A is more informative than saying A→ B (it further narrows down the
possibilities: it tells us that the actual row is 3 or 4, whereas the conditional
tells us only that the actual row is 1, 3, or 4)—so you should say ¬A, not
A→B (Maxim of Quantity). Likewise, suppose you believe B to be true; then
it would be more informative for you to say B than A→ B. Now suppose you
believe A to be true; then, given that you also believe A→ B to be true, you
must (assuming you are minimally rational) believe B to be true; but then,
as we have seen, it would be more informative for you to say B than A→ B.
(In fact, you would be in a position to say something even more informative:
A ∧ B.) Likewise, suppose you believe B to be false; then, given that you also
believe A→ B to be true, you must (assuming you are minimally rational)
believe A to be false; but then, as we have seen, it would be more informative
for you to say ¬A than A→ B. (In fact, you would again be in a position to
say something even more informative:¬A∧¬B.) Thus, if someone is to utter
“if A then B” correctly, it follows that she is not confident that A is true, nor
that it is false, and similarly for B. Yet she must be confident that “if A then
B” is true—that is, that row 2 is not the actual row. The only way she can be in
such a position is if there is some sort of connection between A and B: if A’s
being true would make it impossible, or very unlikely, for B to be false. Thus,
if someone utters “if A then B,” it will follow from the assumption that she is
speaking correctly that she takes there to be some connection between A and
B. On this view, then, the existence of such a connection is an implicature: it
is not required for the truth of the conditional.
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Now let us return to the problematic examples. They seem wrong because
there is no connection between their antecedents and the consequents. Thus,
we cannot imagine a situation in which any of them would be a good thing to
say: if we knew the antecedent was false or the consequent true, it would be
more informative to say that straight out, rather than uttering the conditional
(Maxim of Quantity); if we did not know either of these things, then we
would be in no position to think that the conditional is true (for there is no
connection between the antecedent and consequent—hence no reason, if we
do not know the truth values of either, to think we are not in a situation where
the antecedent is true and the consequent false), and so again we should not
say it (Maxim of Quality). We now have an explanation of why the conditionals
seem wrong (i.e., we can imagine no situation in which we should want to
utter them) that is compatible with their being true.20

6.3.3 Conditional and Biconditional without “If ”

The statement “P unless Q” means that if Q is not true, P is true—so we
translate it as ¬Q→ P . For example, using the glossary:

S: I’ll come swimming tomorrow
R: It will be raining tomorrow

we translate “I’ll come swimming tomorrow, unless it rains” as ¬R → S. But
hang on a minute—consider the truth table for ¬R → S:

B S (¬R → S)

T T T
T F T
F T T
F F F

Note that it is true in row 1, where R and S are both true. But wouldn’t you
be surprised if it was raining and I turned up at the pool, after I had said “I’ll
come swimming, unless it rains?” Indeed—but this does not mean that what I
said would be false in that situation. Rather, we take it to be an implicature of
“P unless Q,” as uttered in many contexts, that if Q is true, then P is false (i.e.,
Q→¬P ), but we do not take this to be part of what is said. In our example,
we take it that what I said is simply that nothing other than rain will stop me:
as long as it is not raining, I shall be there. We take the further suggestion that
rain will stop me as an implicature.

That “P unless Q” says (i.e., is properly translated as) ¬Q→ P and (in
many contexts) implicates Q→¬P —rather than saying (¬Q→ P)∧ (Q→
¬P)—is suggested by the following two facts. First, one can cancel the
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suggestion that Q→¬P . For example, it would make perfect sense for me
to say “I’ll come swimming with you, unless it rains—and even that might not
stop me” (or “and even then I might come anyway,” or “and even if it rains,
I still might come,” etc.). If R →¬S were part of what is said by “I’ll come
swimming with you, unless it rains,” however, then this addition would make
little sense: it would be akin to “P and Q—but Q might not be true.” Second,
it would also make perfect sense for me to say “I’ll come swimming with you,
unless it rains—in which case I won’t come.” This statement is properly trans-
lated as (¬R → S) ∧ (R →¬S). However, if “I’ll come swimming with you,
unless it rains” were already properly translated as (¬R → S) ∧ (R →¬S),
then adding “in which case I won’t come” would sound redundant: it would
be akin to “P and Q—and Q.”

Note that our translation of “I’ll come swimming, unless it rains”—that
is, ¬R → S—is equivalent to R ∨ S, whereas our translation of “I’ll come
swimming, unless it rains—in which case I won’t come”—that is, (¬R →
S) ∧ (R →¬S)—is equivalent to ¬R ↔ S, R ↔¬S, and ¬(R ↔ S).

Instead of saying “I’ll come swimming tomorrow, unless it rains” (or “I’ll
come swimming tomorrow, if it doesn’t rain”), I could also say any of the
following:

. I’ll come swimming tomorrow, assuming it doesn’t rain.

. I’ll come swimming tomorrow, provided it’s not raining.

. I’ll come swimming tomorrow, as long as it isn’t raining.

. I’ll come swimming tomorrow, given it’s not raining.

All these statements also translate as¬R→ S. Hence, “assuming,” “provided,”
and so on can be used (in certain contexts) to express the conditional.

6.3.4 “If ” without Conditional

Consider the following claims:

1. There are biscuits on the sideboard, if you want them.

2. Harry’s having a party, if you feel like going.

3. If you like, we can stop in at Claire’s on the way home.

Claims of this sort are called “biscuit conditionals” (after claim (1), which
is due to Austin [1970]) or “relevance conditionals.” Evidently they are not
properly translated as material conditionals, that is, using →. Whether or not
you want them is irrelevant to the truth of (1): claim (1) is true iff there are
biscuits on the sideboard. Whether or not you feel like going is irrelevant to
the truth of (2): claim (2) is true iff Harry’s having a party. A similar point
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holds for claim (3). Thus, where “if A, C” is a biscuit conditional, the role
of A is not to state a condition sufficient for the truth of C, and so the proper
translation is not A→ C. Rather, the role of A is to state a condition sufficient
for the listener to care whether or not C is true, and the claim as a whole says
simply that C.

6.4 Disjunction

It is sometimes said that “or” in English is ambiguous: sometimes it expresses
inclusive disjunction and sometimes exclusive disjunction. The difference be-
tween these is as follows:

. An inclusive disjunction “A or B” is true iff at least one—that is, one or
both—of the disjuncts A and B is true.

. An exclusive disjunction “A or B” is true iff exactly one—that is, one or
the other but not both—of the disjuncts A and B is true.

Inclusive disjunction is represented in PL by the connective ∨. Recall its truth
table:

α β (α ∨ β)

T T T
T F T
F T T
F F F

Note that α ∨ β is false in row 4—where α and β are both false—and true in
all other rows—that is, where at least one of α and β is true. In some logic
books, an additional two-place connective is introduced to represent exclusive
conjunction—for example the symbol � might be used for this purpose.21

(Note that we are not introducing this new symbol into PL; PL remains as
defined in §2.5.) The truth table for this connective is then as follows:

α β (α � β)

T T F
T F T
F T T
F F F

The truth tables for ∨ and � differ only in the first row. In this row—where
both α and β are true—the inclusive disjunction α ∨ β (which states either α

or β or both) is true, and the exclusive disjunction α � β (which states either
α or β but not both) is false.
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In PL, we have no symbol for exclusive disjunction, and in this book we do
not regard “or” as ambiguous: we always translate “A or B” as A ∨ B. We now
look at some of the reasons given in favor of translating certain uses of “or”
as exclusive disjunction and indicate why they are not convincing. First, three
preliminary points.

(1) Although PL does not have a special symbol for exclusive disjunction
(e.g., �), we can write a formula of PL having the truth conditions of an
exclusive disjunction. For example, both (A∨B)∧¬(A∧B) and¬(A↔B)

have the same truth table as A � B (do the truth tables and check).
(2) There are certainly utterances of English that have the truth conditions

of A � B. For example, “A or B, but not both,” “A unless B, in which case
not A,” “A if and only if not B,” and “B if and only if not A.” But none
of these constitutes a case where “or” means something other than inclusive
disjunction—that is, a case where “or” is not properly translated as∨. The first
example translates as (A ∨ B) ∧ ¬(A ∧ B), so here “or” translates as ∨.22 The
other examples do not involve “or” at all; they translate as (¬B →A)∧ (B →
¬A), A↔¬B, and B ↔¬A, respectively.

(3) Some writers claim that “A or B” in English always expresses inclusive
disjunction, whereas “either A or B” always expresses exclusive disjunction
(the difference here is simply that the second formulation contains “either”).
However, many other writers have no such intuition: they hear “A or B” and
“either A or B” as mere stylistic variants that have the same truth conditions—
that say the same thing (i.e., express the same proposition). The Oxford En-
glish Dictionary does not help us decide the issue—it offers the noncommittal:

The primary function of either, etc., is to emphasize the indifference of the two (or
more) things or courses; e.g., “you may take either the medal or its value” = the
medal and its value are equally at your option, you may take either; but a secondary
function is to emphasize the mutual exclusiveness, = either of the two, but not
both.23

Evidently, then, it would be unwise to assume of any given utterance of “either
A or B” that it was supposed to express an exclusive disjunction—the speaker
might be one of the many who regard “either . . . or” as a mere stylistic variant
of “or,” differing only in emphasis. In this book, at any rate, we take “either A

or B” to say the same thing as “A or B.”

§

With these preliminary points in mind, we turn now to cases in which “or”
allegedly cannot be translated as ∨. Consider the following arguments:

1. James ate a sandwich.
Therefore, James ate a sandwich or a hot dog.
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2. James ate a sandwich and a hot dog.
Therefore, James ate a sandwich or a hot dog.

If we translate “or” here as ∨, then these arguments translate as follows (using
the glossary S: James ate a sandwich; H : James ate a hot dog):

1′. S

∴ S ∨H

2′. S ∧H

∴ S ∨H

Both arguments (1′) and (2′) are valid (do the truth tables and check). Yet in
English, both original arguments (1) and (2) seem quite wrong. One might see
this as a reason to think that in these cases “or” should be translated in such a
way that “he ate a sandwich or a hot dog” does not follow logically from “he
ate a sandwich” or from “he ate a sandwich and a hot dog.” Translating “or” as
exclusive disjunction would yield these results. However, another response to
the problem cases is possible: we explain why these arguments seem wrong in
a way that is compatible with their being valid. Consider argument (1′). To be
in a position to assert the premise, one needs to believe S (recall the Maxims
of Quality in §6.1). But to be in a position to assert the conclusion, one must
not believe S: for if one does believe S, then instead of asserting S ∨H , one
should make the more informative claim S (recall the Maxims of Quantity).24

Thus, someone in a position to assert the premise is in no position to assert
the conclusion. The argument is then useless: we cannot imagine a situation
in which it would be useful to reason in this way. That explains the intuitive
incorrectness of the argument in a way that is perfectly compatible with its
being valid. Similar comments apply to argument (2′).

We thus have two possible explanations of the intuitive incorrectness of
arguments (1) and (2): (i) they are invalid (because “or” here expresses ex-
clusive disjunction); (ii) although the arguments are both valid (because “or”
here expresses inclusive disjunction), in each case there is (for reasons stem-
ming from the conversational maxims) no situation in which one could assert
the premise and the conclusion. Both explanations—(i) and (ii)—provide an
account of the phenomena, but (ii) does so in a more economical way. Ex-
planation (ii) appeals to one meaning of “or” together with the conversational
maxims, which are needed in any case; (i) appeals to two different meanings of
“or” (the exclusive meaning here, and the inclusive meaning in other contexts).
Hence, by Grice’s Razor (recall §6.2.2), we should favor explanation (ii).

§

A second kind of case that is sometimes thought (especially by beginners at
logic) to involve exclusive disjunction in English is when the disjuncts are
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incompatible: that is, they cannot both occur. For example, suppose you are
about to roll a die, and I say “you will roll 3 or 4.” Obviously you cannot
roll both 3 and 4—but this does not mean that my statement is an exclusive
disjunction. To think it does is to confuse two issues:

1. The issue of whether both disjuncts can be true at the same time.

2. The issue of whether, in a situation in which both disjuncts are true, the
disjunction is true.

When it comes to the question of whether a disjunction is inclusive or ex-
clusive, it is the second question that matters. Our strategy for translating an
utterance—say, “you will roll 3 or 4”—into PL is to consider in what situations
what is said would be true, and in what situations what is said would be false,
and then find a proposition of PL having these truth conditions. Now part of
the assumption of the PL framework is that all combinations of assignments
of truth values to basic propositions are possible. So we draw up a truth table
covering all these possible assignments—one in each row:

You will roll 3 You will roll 4 You will roll 3 or 4

T T
T F
F T
F F

Then, on the basis of our intuitions (as competent speakers of English) about
the truth or falsity in each possible scenario of what is said by our target
utterance, we fill in each blank cell with T or F. The key row in this case is
row 1: if it should contain a T, then our sentence will translate as an inclusive
disjunction; if F, exclusive. In the present case, it is actually very difficult to
imagine row 1: for it seems impossible that you should roll a 3 and a 4 (on
the same throw). But our response to that fact should not be to say that the
“or” in “you will roll 3 or 4” is exclusive. What should make us respond that
way is if we consider row 1 and see that our target utterance is clearly false in
such a scenario. This is not at all what happens in the present case: we have
no clear idea what would be true or false in row 1—owing to the difficulty of
conceiving such a scenario in the first place.

So the first point to note is that what should make us translate a disjunction
as exclusive is not the fact that both its disjuncts cannot be true at the same
time, but the fact that were its disjuncts both true, the disjunction would
be false. Now, given that it is unclear what to say about the truth value of
“you will roll 3 or 4” in the situation in which you roll a 3 and a 4, how
should we go about translating this claim into PL? Well, a safe option is to
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translate it as inclusive disjunction, for the following reason. The inclusive
disjunction makes a weaker claim than the exclusive disjunction: it conveys
less information. It tells us only that we are in one of three out of four possible
scenarios—that is, the three rows of the truth table in which it is true—
whereas the exclusive disjunction rules out not only that we are in the bottom
row but also that we are in the top row. Now consider what information I
might want to convey to you when I say “you will roll 3 or 4.” One of two
cases is possible. The first is that I want to convey to you simply that we are
not in a situation like row 4; that is, it is not the case that you will roll neither
3 nor 4. In that case, I should of course be interpreted as making an inclusive
disjunctive claim. The second possibility is that I want to convey to you that
we are not in a situation like row 4, nor in one like row 1: we are in a situation
like row 2 or 3, that is, in which you roll exactly one of 3 or 4. But we already
know that you will not roll a 3 and a 4—that is impossible—so I do not need to
build the ruling out of this type of situation into the content of my claim. I can
just utter the inclusive disjunction and rely on your background knowledge of
the behavior of dice to fill in the missing information. So either way, I can be
interpreted as uttering an inclusive disjunctive claim: in the first case because
it carries exactly the information I want to convey; in the second case because,
while it carries less information than I want to convey, I already know that you
know the extra bit of information it does not convey, and so I do not need to
say it explicitly.25

§

A final kind of alleged example of exclusive disjunction in English that one
often encounters involves menu options. For example, one might be told at a
diner that a certain fixed price meal includes tea or coffee. If it is somehow
obvious in the context that this means one can have tea or coffee but not
both—that is, it is obvious even though no explicit phrase, such as “one only
of (tea or coffee)” or “(tea or coffee) but not both,” is used—then it might
seem to be a case of exclusive “or.”

However, while it may certainly be the case that “you may have tea or
coffee” conveys to us that we may have tea or coffee but not both, this is
not a situation in which we have an utterance in English featuring “or” that
is properly translated into PL using a connective other than ∨. The test of
whether a disjunction is inclusive or exclusive is to consider the case in which
both disjuncts are true and then ask whether the disjunctive claim is true or
false in this case. If it is true, the disjunction is inclusive; if false, exclusive.
Now suppose the menu (or waiter) says “you can have tea or coffee.” Imagine
a situation in which you help yourself to both. Is the waiter’s claim false? No:
what is going on here is that you have broken a rule or violated an order, which
is quite different from making a proposition false. The waiter’s utterance is
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not a factual statement but a setting out of the rules. It does not describe how
the world is; it stipulates how the world should be. The same thing happens
when the umpire says “players are to stay within the marked boundaries of the
field at all times.” When a player steps outside these boundaries, she breaks the
rules—she does not make them false. The rules are not rendered false, because
they are not propositions—things that can be true or false—in the first place.
They are pronouncements or commands. Such things cannot be translated
into PL at all—only propositions can be translated. So while a command or
rule may stipulate taking exactly one, and not both, of two options, this is not
a case in which we have a proposition that is properly translated into PL using
a connective other than ∨.

Imagine a different case, in which the menu does express the proposition
“all meals are served with tea or coffee.” That is, this sentence in the menu is
meant to function not as a rule about how things should happen, but as a sim-
ple statement of fact about what does happen in this particular establishment.
Now suppose a meal is served with both tea and coffee. Is the statement on
the menu false in this case? That is not at all obvious. Contrast the case where
a meal comes out with neither tea nor coffee: the statement is obviously false
in such a situation. But when the meal comes out with both beverages, some-
thing may well have happened that was not supposed to happen—a rule may
have been violated in the kitchen—but it does not seem that the simple prop-
osition “all meals are served with tea or coffee” has come out false. Indeed it
seems perfectly true.

Thus, neither way of construing these menu-type examples—that is, as
rules, or as propositions—results in a sentence of English featuring “or”
that seems to translate into a proposition of PL featuring a connective other
than ∨.26

6.5 Negation

“Ilsa is neither funny nor interesting” means that both the propositions:

F : Ilsa is funny
I : Ilsa is interesting

are false. So it translates as¬(F ∨ I ) or (¬F ∧ ¬I ) (see the first two columns
after the matrix in the truth table below).

F I ¬(F ∨ I ) (¬F ∧ ¬I ) ¬(F ∧ I ) (¬F ∨ ¬I )

T T F F F F
T F F F T T
F T F F T T
F F T T T T
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“Ilsa is not both funny and interesting” means that it is not the case that both
the propositions F and I are true: neither of them, or just one of them, may be
true—but not both. So we translate this statement as¬(F ∧ I ) or (¬F ∨¬I )

(see the last two columns in the truth table above). “Ilsa is both not funny and
not interesting” says that F and I are both false. That is, it says the same thing
as “neither F nor I .” So we translate it as ¬(F ∨ I ) or (¬F ∧ ¬I ).

6.5.1 Exercises

Translate the following arguments into PL and then assess them for validity
(you may use shortcuts in your truth tables).

1. Bob is happy if and only if it is raining. Either it is raining or the sun is
shining. So Bob is happy only if the sun is not shining.

2. If I have neither money nor a card, I shall walk. If I walk, I shall get tired
or have a rest. So if I have a rest, I have money.

3. Maisy is upset only if there is thunder. If there is thunder, then there is
lightning. Therefore, either Maisy is not upset, or there is lightning.

4. The car started only if you turned the key and pressed the accelerator. If
you turned the key but did not press the accelerator, then the car did not
start. The car did not start—so either you pressed the accelerator but did
not turn the key, or you neither turned the key nor pressed the accelerator.

5. Either Maisy isn’t barking, or there is a robber outside. If there is a robber
outside and Maisy is not barking, then she is either asleep or depressed.
Maisy is neither asleep nor depressed. Hence Maisy is barking if and only
if there is a robber outside.

6. If it isn’t sunny, then either it is too windy or we are sailing. We are having
fun if we are sailing. It is not sunny and it isn’t too windy either—hence
we are having fun.

7. Either you came through Singleton and Maitland, or you came through
Newcastle. You didn’t come through either Singleton or Maitland—you
came through Cessnock. Therefore, you came through both Newcastle
and Cessnock.

8. We shall have lobster for lunch, provided that the shop is open. Either the
shop will be open, or it is Sunday. If it is Sunday, we shall go to a restaurant
and have lobster for lunch. So we shall have lobster for lunch.

9. Catch Billy a fish, and you will feed him for a day. Teach him to fish, and
you’ll feed him for life. So either you won’t feed Billy for life, or you will
teach him to fish.
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10. I’ll be happy if the Tigers win. Moreover, they will win—or else they
won’t. However, assuming they don’t, it will be a draw. Therefore, if it’s
not a draw, and they don’t win, I’ll be happy.

6.6 Functional Completeness

In §6.4, we mentioned that some logic books include a symbol—for example,
�—for exclusive disjunction, which has the following truth table:

α β (α � β)

T T F
T F T
F T T
F F F

We then remarked that even though we have no such connective in PL, we
can form propositions in PL having these truth conditions—that is, having
the same truth table as � (e.g., (A ∨ B) ∧ ¬(A ∧ B) or ¬(A↔ B)). In this
section we show something stronger: with its five connectives (¬, ∨, ∧, →,
and↔) PL has the resources to construct a formula with any truth conditions
whatsoever. In other words, for any possible truth table you care to imagine,
there is a formula of PL with that truth table. In fact, as we shall see, there are
much smaller sets of connectives—sets containing just three, two, or even one
connective, as opposed to the five in PL—that also have this property.

We call a set of connectives functionally complete—or expressively complete
or adequate—if it has the property just mentioned: that is, if we can define all
possible connectives from the connectives in that set. To clarify this notion, we
need to explain two things: what it means to define one connective in terms
of some others, and what we mean by “all possible connectives.” First, some
notation. We have symbols for specific connectives (∧, ¬, etc.), but we need a
means of talking about connectives in a general way. For this purpose we shall
use the symbols ∗ and †. Each of these symbols stands to specific connectives
(∧, ¬, etc.) in the way that each wff variable (α, β, etc.) stands to specific
wffs (A, (B ∧ ¬A), etc.). As in the case of wff variables, we may also use these
symbols with subscripts (i.e., ∗1, ∗2, . . . , ∗n and †1, †2, . . . , †n).

6.6.1 Defining One Connective in Terms of Others

The basic idea behind defining one connective in terms of others is this: for
any formula containing the former connective, we find a logically equivalent
formula that does not contain that connective but does include the latter con-
nectives. More precisely, we can define the connective ∗ in terms of the connec-
tives †1, . . . , †n iff, for any formula γ containing (one or more) occurrences
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of ∗, there is a formula δ that contains no occurrences of ∗ but may contain
occurrences of †1, . . . , †n (and contains no occurrence of any connective that
neither occurs in γ nor is one of †1, . . . , †n) and is equivalent to γ : that is, in
their joint truth table, γ and δ have the same values on every row.

To show that ∗ can be defined in terms of †1, . . . , †n, it is sufficient to show
that for any formula γ in which ∗ occurs as the main connective, this occur-
rence of ∗ (i.e., the main connective) can be eliminated in favor of occurrences
of †1, . . . , †n. Let us see how this works via an example.

We can easily check that (α → β) is equivalent to (¬α ∨ β): that is, they
have the same truth table.27 Thus, where we have a formula with → as the
main connective—that is, a formula of the form (α → β)—we can find an
equivalent formula—(¬α ∨ β)—in which that occurrence of → has been
omitted in favor of occurrences of ¬ and ∨. The claim now is that this fact
suffices to show that → can be defined in terms of ¬ and ∨: that is, that for
any formula γ containing occurrences of→ (perhaps multiple occurrences—
and even if there is only one, it need not be the main connective) there is a
formula δ that contains no occurrences of → but may contain occurrences of
¬ and ∨ (and contains no occurrence of any connective that neither occurs in
γ nor is one of ¬ and ∨), which is equivalent to γ . We illustrate this claim by
using a particular case.

Consider the following wff:

(A ∧ (B → (A→ C))) (6.1)

Formula (6.1) contains two occurrences of→. Neither is the main connective
of (6.1): one is the main connective of the subformula (A→ C), the other is
the main connective of (B → (A→ C)). We know that (α → β) is equiva-
lent to (¬α ∨ β). Applying this equivalence to the subformula (A→ C), we
know that (A→ C) is equivalent to (¬A ∨ C). Now consider the following
subformula of (6.1):

(B → (A→ C)) (6.2)

In general, for any formula γ , if we replace a subformula α of γ with a
formula β that is equivalent to α, the result will be equivalent to γ .28 Let’s
apply this general principle to (6.2), replacing its subformula (A→ C) with
the equivalent (¬A ∨ C):

(B → (¬A ∨ C)) (6.3)

By the general principle just stated, (6.3) is equivalent to (6.2). Next we apply
our known equivalence between (α → β) and (¬α ∨ β) to (6.3), yielding the
result that the following is equivalent to (6.3):

(¬B ∨ (¬A ∨ C)) (6.4)
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Given that (6.4) is equivalent to (6.3), and (6.3) is equivalent to (6.2), it
follows that (6.4) is equivalent to (6.2). Using the general principle again, if we
replace (6.2) as it occurs as a subformula in (6.1) by the equivalent (6.4), the
result:

(A ∧ (¬B ∨ (¬A ∨ C))) (6.5)

is equivalent to (6.1). Thus, (6.5) is equivalent to (6.1) and contains no occur-
rences of →, all of them having been eliminated in favor of ¬ and ∨.

The general point illustrated by this particular case is as follows. Once we
know that (α→ β) is equivalent to (¬α ∨ β), we know that occurrences of→
as a main connective can be eliminated in favor of ¬ and ∨. Given a formula
with multiple occurrences of →, we work from the inside out, replacing each
subformula in which → is the main connective by an equivalent subformula
in which → is eliminated in favor of ¬ and ∨. When we have replaced all
occurrences of → in this way, the result will be a formula equivalent to our
original one, in which all occurrences of → have been eliminated in favor of
¬ and ∨.

By similar reasoning, the fact that (α ↔ β) is equivalent to ((α → β) ∧
(β → α)) shows that we can define the connective ↔ in terms of the connec-
tives → and ∧; that (α → β) is equivalent to ¬(α ∧ ¬β) shows that we can
define the connective → in terms of the connectives ¬ and ∧; that (α ∨ β) is
equivalent to¬(¬α ∧¬β) shows that we can define the connective∨ in terms
of the connectives ¬ and ∧; and so on.

6.6.2 The Range of Possible Connectives

Having clarified what it means to define one connective in terms of others,
we now explain what we mean by “all possible connectives.” Throughout this
section, by “connectives” we mean truth-functional connectives (recall the
discussion in §6.3). So how many possible (truth-functional) connectives are
there? Well, consider first one-place connectives. A one-place connective ∗ has
a two-row truth table:

α ∗α
T
F

We specify a one-place connective by putting T or F in each of the two blank
spaces in this table. Two spaces; two possible fillings for each—so there are
22 = 4 possible ways of filling in the blanks:
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α

T T T F F
F T F T F

Note that the order in which the columns appear here is arbitrary: all that
matters is that each possible way of filling in each of the two blanks in our
first table with a T or an F is represented by a column in the second table; we
have to present these columns in some order, but the particular order we have
chosen has no significance. Now, for each of the four columns just given, it
will be convenient to have a symbol for a connective that has this column as
its truth table. We already have a symbol for the third one: it is negation. For
the other three, we introduce symbols as follows:

α 1©1 1©2 ¬ 1©4

T T T F F
F T F T F

In this symbolism, the circle represents the connective, the number inside
the circle shows the number of places of the connective, and the subscript
distinguishes different connectives with the same number of places. Thus, 1©1

is the first one-place connective, 1©2 is the second one-place connective, and so
on.29

The connective 1©1 yields a true proposition when the proposition to which
it is applied is true and when that proposition is false. Connective 1©2 yields a
proposition whose truth value is the same as that of the proposition to which
it is applied. The third connective—negation—yields a proposition whose
truth value is the opposite of that of the proposition to which it is applied.
Connective 1©4 yields a false proposition when the proposition to which it is
applied is true and when that proposition is false.

What about two-place connectives? A two-place connective ∗ has a four-row
truth table:

α β (α ∗ β)

T T
T F
F T
F F
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We specify a two-place connective by putting T or F in each of the four blank
spaces in this table. Four spaces; two possible fillings for each—that makes
24 = 16 possible two-place connectives. Here are their truth tables:

α β 2©1 ∨ 2©3 2©4 → 2©6 ↔ ∧ 2©9 � 2©11 2©12 2©13 2©14 2©15 2©16

T T T T T T T T T T F F F F F F F F
T F T T T T F F F F T T T T F F F F
F T T T F F T T F F T T F F T T F F
F F T F T F T F T F T F T F T F T F

Again, note that the order in which the columns appear here is arbitrary: all
that matters is that each possible way of filling in each of the four blanks in
our previous table with a T or an F is represented by a column in the table just
given. Now, having filled in the columns, it is convenient to have a symbol
for each connective with one of the sixteen columns as its truth table. We
already have symbols in PL for columns 2, 5, 7, and 8. We have previously
seen a symbol for column 10 (exclusive disjunction). For the other columns,
we use the circle symbolism again: the circle represents the connective, the
number inside the circle shows the number of places of the connective, and the
subscript distinguishes different connectives with the same number of places.
Thus, 2©1 is the first two-place connective, 2©3 is the third two-place connective,
and so on.

We have not talked about connectives with three or more places, but we
could easily define them.30 A three-place connective ∗ has an eight-row truth
table:

α β γ ∗(α , β , γ )

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

We specify a three-place connective by putting T or F in each of the eight blank
spaces in this table. Eight spaces; two possible fillings for each—that makes
28 = 256 possible three-place connectives. Likewise, we can define four-place
connectives (of which there are 216 = 65,536)—and so on for every positive
finite number of places.
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There is also such a thing as a zero-place connective. The truth table of a
zero-place connective ∗ looks like:

∗

where the blank is filled either with T or F. So there are two possible zero-
place connectives; they are usually called the verum and the falsum and are
symbolized by � and ⊥, respectively:

� ⊥
T F

The idea of a zero-place connective seems rather odd at first, but it makes
sense when we think about it. An n-place connective plus n propositions
makes a proposition. So a zero-place connective all by itself—that is, with zero
propositions added—forms a proposition. Being a proposition, this entity
(i.e., the zero-place connective by itself) is either true or false. Note that �
is always true, and ⊥ is always false: these propositions have no component
propositions, so their truth values cannot vary with the truth values of their
components.

Connectives � and ⊥ can feature in the definitions of other connectives.
For example,¬ can be defined in terms of→ and⊥, for as the following truth
tables show, ¬α and α →⊥ are equivalent:

α ⊥ ¬α α →⊥
T F F F
F F T T

Note that ⊥ appears here as a component of the larger proposition α →⊥.
This use is legitimate because a zero-place connective by itself—that is, with
zero propositions added—is a wff.

§

We said that a set of connectives is functionally complete if we can define all
possible connectives from the connectives in that set. We have just seen that
there is an infinite number of possible connectives (a finite number of n-place
connectives for each finite number n, but there is no upper bound on n)—so
it may seem that no (small) set of connectives could possibly be functionally
complete. But in fact the set {¬, ∨, ∧} is functionally complete; that is, we can
define any connective ∗ in terms of ¬, ∨, and ∧. Here’s how.
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Suppose that ∗ (the connective to be defined in terms of ¬, ∨, and ∧) is a
zero-place connective. That is, ∗ is � or ⊥. The connective � can be defined
as A ∨ ¬A, and ⊥ can be defined as A ∧ ¬A:

A � A ∨ ¬A ⊥ A ∧ ¬A

T T T F F
F T T F F

Suppose now that ∗ is an n-place connective. We shall describe the method
for defining ∗ in terms of¬,∨, and∧ by way of an example. In this example, ∗
is a two-place connective. However, as will be clear, the method used to define
∗ is quite general: it can be applied to n-place connectives for any positive
finite n.

We start with the truth table for ∗. (This table is a given. Our aim is then to
construct a formula containing only the connectives ¬, ∨, and ∧ that has the
same truth table as ∗.) For example,31

α β (α ∗ β)

T T T
T F F
F T T
F F F

It may happen that there are no rows in which (α ∗ β) is true. In this case,
(α ∗ β) is equivalent to (α ∧¬α). The latter is a formula that does not contain
∗, and does contain ∧ and ¬, so this shows that ∗ can be defined in terms of
∧ and ¬. A fortiori, it can be defined in terms of ∧ and ¬ and ∨.32

The other possibility is that—as in our example—there is at least one row
in which (α ∗ β) is true. In this case, for each row in which (α ∗ β) is true, we
write a conjunction “describing” that row:

α β (α ∗ β) row description

T T T (α ∧ β)

T F F
F T T (¬α ∧ β)

F F F

The row description is read off from the matrix: in row 1, α is true and β is
true, so the row description is (α ∧ β) (i.e., “α and β”); in row 3, α is false and
β is true, so the row description is (¬α ∧ β) (i.e., “not α, and β”). Note that
each row description is true in the row it describes and false in all other rows.
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We now form the disjunction of these row descriptions:

(α ∧ β) ∨ (¬α ∧ β) (6.6)

The disjunction (6.6) uses only the connectives ∨, ∧, and ¬, and it is true in
exactly the rows in which (α ∗ β) is true. For each row in which (α ∗ β)

is true, (6.6) has a disjunct that is true in that row—and in any row in which
one of its disjuncts is true, a disjunction is true. In each row in which (α ∗ β)

is false, all disjuncts of (6.6) are false—recall that each row description is true
only in the row it describes—and so the disjunction is false. Thus, (α ∗ β) is
equivalent to a formula (6.6), which involves only the connectives ¬, ∨, and
∧. This establishes that ∗ is definable in terms of ¬, ∨, and ∧.

Here’s one more example to illustrate the method of defining an arbitrary
connective ∗ in terms of¬,∨, and∧. Suppose ∗ has the following truth table:33

α β γ ∗(α , β , γ )

T T T F
T T F T
T F T F
T F F F
F T T F
F T F T
F F T T
F F F F

We form our row descriptions as follows:

α β γ ∗(α , β , γ ) row description

T T T F
T T F T (α ∧ β ∧ ¬γ )

T F T F
T F F F
F T T F
F T F T (¬α ∧ β ∧ ¬γ )

F F T T (¬α ∧ ¬β ∧ γ )

F F F F

and then take their disjunction:

(α ∧ β ∧ ¬γ ) ∨ (¬α ∧ β ∧ ¬γ ) ∨ (¬α ∧ ¬β ∧ γ ) (6.7)

Formula (6.7) uses only the connectives ∨, ∧, and ¬, and it is equivalent to
∗(α , β , γ ). Thus, ∗ is definable in terms of ¬, ∨, and ∧.

So {¬, ∨, ∧} is a functionally complete set of connectives. Furthermore,
we can define ∧ in terms of ¬ and ∨—(α ∧ β) is equivalent to ¬(¬α ∨
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¬β)—and we can define ∨ in terms of ¬ and ∧—(α ∨ β) is equivalent
to ¬(¬α ∧ ¬β). (These two equivalences are known as De Morgan’s laws.
Two n-place connectives ∗ and † are duals if ∗(α1, . . . , αn) is equivalent to
¬ † (¬α1, . . . , ¬αn) and †(α1, . . . , αn) is equivalent to¬ ∗ (¬α1, . . . , ¬αn).
Hence, ∨ and ∧ are duals.) So to show that some set of connectives is func-
tionally complete, it suffices to show that ¬, and either ∨ or ∧, can be defined
using the members of that set.

We can now see that { 2©9} is a functionally complete set of connectives: every
connective can be defined using just the single connective 2©9. This connective
is often symbolized by a vertical stroke | (the Sheffer stroke).34 The following
truth table shows that ¬ can be defined using only |:

α ¬α (α | α)

T F F
F T T

and the following truth tables show that ∧ and ∨ can each be defined using
only |:

α β (α ∧ β) ((α | β) | (α | β)) (α ∨ α) ((α | α) | (β | β))

T T T T T T
T F F F T T
F T F F T T
F F F F F F

To show that a set of connectives is not functionally complete, we need to
show that there is some connective that cannot be defined in terms of those
in the set. For example, the set {∨, ∧} is not functionally complete, because ¬
cannot be defined in terms of ∨ and ∧. In the top row of their truth tables—
where α and β are both true—both (α ∨ β) and (α ∧ β) are true. Thus,
however complex a formula we make up using the connectives ∨ and ∧, it
will always be true when its simple components are all true. But ¬P is false
when P is true. So no complex formula built up using ∨ and ∧ will have the
same truth table as¬P : they will always differ in the top row. Hence,¬ cannot
be defined in terms of ∨ and ∧.

6.6.3 Exercises

1. State whether each of the following is a functionally complete set of con-
nectives. Justify your answers.

(i) {→, ¬}
(ii) {↔, �}
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(iii) { 2©15} (The connective 2©15 is often symbolized by ↓; another com-
mon symbol for this connective is NOR.)

(iv) {→, ∧}
(v) {¬, 2©12}

(vi) {∨, 2©4}
2. Give the truth table for each of the following propositions.

(i) B 2©14 A

(ii) (A 2©11 B) 2©15 B

(iii) ¬(A ∨ (A 2©6 B))

(iv) A↔ (A 2©3 ¬B)

(v) (A 2©12 B) � (B 2©12 A)

(vi) (A 2©12 B) � (B 2©16 A)

3. Consider the three-place connectives � and 	, whose truth tables are as
follows:

α β γ �(α , β , γ ) 	(α , β , γ )

T T T T F
T T F F F
T F T T T
T F F T T
F T T T T
F T F F T
F F T T F
F F F T F

(i) Define � using only (but not necessarily all of) the connectives ∨, ∧,
and ¬.

(ii) Do the same for 	.

4. State a proposition involving only the connectives ¬ and ∧ that is equiv-
alent to the given proposition.

(i) ¬(A→ B)

(ii) ¬(A ∨ B)

(iii) ¬A ∨ ¬B

(iv) ¬(¬A ∨ B)

(v) A↔ B

(vi) (A→ B) ∨ (B → A)

5. (i) What is the dual of 1©1?
(ii) What is the dual of →?

(iii) Which one-place connectives are their own duals?
(iv) Which two-place connectives are their own duals?
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7
Trees for Propositional Logic

Using truth tables, we can frame a precise definition of validity (an argument
α1, . . . , αn/∴ β is valid iff there is no row in their joint truth table in which
α1, . . . , αn are true and β is false), and we can also test whether a given
argument is valid (we write out its truth table and check whether there is any
such row). Similar remarks apply to the other central logical notions: using
truth tables, we can both give precise definitions of these notions and test for
their presence (a formula α is a tautology or logical truth iff it is true on every
row of its truth table; two formulas α and β are logically equivalent iff they
have the same value on every row of their joint truth table; a formula α is
satisfiable iff it is true on some row of its truth table; etc.).

In this chapter, we look at a second method of testing for validity (tautology,
equivalence, etc.): the method of trees (aka truth trees, semantic trees, and
semantic tableaux). Given that truth tables already provide a foolproof test for
each of these notions, why look at another method of testing for them? There
are two main reasons.

First, trees provide a faster test for many cases we ordinarily encounter. If we
have an argument featuring more than four basic propositions, its truth table
will have at least 32 rows (recall §3.3), and so it will not be practical to write
it out. Furthermore, even when our truth table has a manageable number of
rows, the truth table test for validity often involves more work than necessary.
We need to fill in every row (at least partially—recall §4.5.1) to determine
whether there is any row in which the premises are all true and the conclusion
is false. If we somehow had a way of targeting such a row directly (when such
a row exists), we could proceed more quickly: we would not need to fill in
all rows (even partially) and could focus on the kind of row we are looking
for. This, in essence, is what trees do. We begin a tree by writing down some
propositions that we suppose, for the sake of argument, are all true. We then
work out what else—more specifically, what simpler propositions—must be
true if these starting propositions are all true, and so on, until we work our



way down to basic propositions or negations of basic propositions. We then
see either that the starting propositions cannot all be true (because that would
involve some proposition being both true and false), or else we see a particular
scenario (i.e., assignment of truth values to basic propositions) in which they
are all true. This particular scenario is the truth table row we seek. So where
such a row exists, the tree takes us straight to it—and where no such row exists,
the tree indicates as much.1

Second, truth tables play two roles in propositional logic:

1. Truth tables provide an analysis—a fundamental, precise definition—
of each of our central logical notions (validity, equivalence, etc.). For
example, recall that we started with an intuitive idea of validity (NTP by
virtue of form), and truth tables then gave us a precise definition (no row
in which the premises are true and the conclusion false) that captures this
intuitive idea.

2. Truth tables provide a method of testing for the presence of each of the
central logical notions. We can test whether an argument is valid, a prop-
osition a tautology, and so on, by writing out the relevant truth table and
examining it.

When we turn to predicate logic in Part II, we will (for reasons that will
become clear) need to replace truth tables with something else: models. Models
provide analyses of our central logical notions (validity, etc.), but they do
not provide any tests for these notions. That is, in the context of predicate
logic, models take over the first role of truth tables, but they do not fulfill the
second role. So we will need something else to play this second role. There are
various options (they are explored in Chapter 15), but the one we will adopt
(at least initially, in Chapter 10) is the method of trees—and it will be easier to
understand trees in the richer setting of predicate logic if we first familiarize
ourselves with trees for propositional logic in this chapter.

§

In §7.1 and §7.2 we introduce the techniques for constructing trees. It will
aid in the understanding of these techniques if we first have some idea of the
purpose of trees; however, it is not possible to explain fully the point of trees
without details about their construction. We therefore give a rough idea now
of the purpose of trees and then return to this issue in §7.2.6.

The basic purpose of a tree is to tell us whether a given set of propositions
is satisfiable: that is, whether all propositions in the set can be true. (This does
not mean that trees cannot also be used to test for validity, equivalence, and so
on: as we shall see in §7.3, trees can be used to test for all logical properties of
interest.) We begin the tree by writing down these propositions. We then apply
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tree rules that determine further propositions to write down, given what we
have already written. Each rule takes one proposition as input and gives one
or more propositions as output. These rules have two essential features:

1. The output propositions are simpler than the input proposition; in par-
ticular, the main connective of the input is eliminated.2

2. The output propositions must be true, assuming that the input proposi-
tion is true.3

We continue applying rules—to the original propositions at the top of the tree
and to the outputs of earlier applications of the rules—until we can apply them
no more. Because (given property (1)) the output propositions are simpler
than the inputs, eventually the process of writing down new propositions
terminates: there are no more connectives to eliminate. At that point we have a
group of relatively simple propositions—basic propositions and/or negations
of basic propositions—that (given property (2)) we know must all be true,
assuming that the original propositions at the top of the tree are all true.4

We now look at these propositions. If we find among them both some basic
proposition and its negation, we know that they cannot all be true—in which
case the original propositions at the top of the tree are not satisfiable. If we find
no such clash among the simple propositions, we can read off from them an
assignment of truth values to basic propositions—a truth table row—in which
the original propositions at the top of the tree are all true.

7.1 Tree Rules

When we construct a tree, we begin by writing some propositions at the top of
the page. (In §7.3 we shall see how to choose these propositions, depending
on what we want to show in a particular case—but for the moment, it is
not important which propositions we begin with.) We then extend the tree
by writing down things that must be true, assuming that the things we have
already written are true. There are precise rules governing what we may write
down, which we set out below; the justification for the rules comes from the
truth tables for the connectives, as we shall see. Before setting out the rules, we
note some preliminary points.

If we have written down α, then after we have written down everything that
must be true given that α is true, we check off α, to remind us later that it
has been fully dealt with (i.e., all consequences of the assumed truth of α have
been written down).

Sometimes it follows from the assumption that some proposition is true
that some other proposition is false. But trees offer no direct way of saying
that a proposition is false: we write down some propositions, and then we
write propositions that must be true, given the truth of what we have already
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written. The solution is simple: when a proposition is false, its negation is
true; so if we want to indicate that a proposition α is false, we write down
its negation, ¬α. So although we cannot directly represent falsity in the tree
framework, we can do something just as good, namely, consider the truth of
negations.

Sometimes the truth of a proposition α implies the truth of several propo-
sitions, say, β and γ . In this case we write down both β and γ , one above the
other:

β

γ

Sometimes it does not follow from the assumption that a proposition α is
true that any particular proposition is definitely true: it follows only that either
some proposition β is true, or some other proposition γ is true. In this case we
introduce a branch into our tree, and write down β on one side of the branch
and γ on the other:

β γ

Now we define the precise rules for generating our tree, given what has come
before. The aim is, through repeated applications of the rules, to check off
compound formulas in our tree, leaving us with basic propositions and/or
negations of basic propositions. We thus have rules for each of our five con-
nectives. For each connective, there are two cases to consider. We want to know
what follows from the assumption that (i) a proposition whose main connec-
tive is this one is true and (ii) a proposition whose main connective is this one
is false. The second case is handled by considering what follows from the as-
sumption that the negation of the proposition is true. So we should expect to
end up with ten rules (five connectives, two cases for each). In fact, for reasons
we shall see, we have only one rule for negation, giving nine rules in total.

7.1.1 Disjunction

Recall the truth table for disjunction:

α β (α ∨ β)

T T T
T F T
F T T
F F F
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We see here that if a disjunction (α ∨ β) is true—that is, we are in rows 1, 2, or
3—then either α is true (rows 1 and 2) or β is true (rows 1 and 3). (If neither
α nor β is true—row 4—then the disjunction is false.) Hence the rule:

(α ∨ β) �

α β

Note the check mark next to (α ∨ β), which we add after writing in the branch
with α on one side and β on the other.5

If a disjunction (α ∨ β) is false, then both α and β are false. Equivalently, if
¬(α ∨ β) is true, then both ¬α and ¬β are true. Hence the rule:

¬(α ∨ β) �
¬α

¬β

7.1.2 Conjunction

Recall the truth table for conjunction:

α β (α ∧ β)

T T T
T F F
F T F
F F F

If a conjunction (α ∧ β) is true—that is, we are in row 1—then both α and β

are true. Hence the rule:

(α ∧ β) �
α

β

If (α ∧ β) is false—that is, we are in rows 2, 3, or 4—then either α is false
(rows 3 and 4) or β is false (rows 2 and 4). Equivalently, if ¬(α ∧ β) is true,
then either ¬α is true or ¬β is true. Hence the rule:

¬(α ∧ β) �

¬α ¬β

7.1.3 Conditional

If (α → β) is true, then either α is false or β is true (for if α is true and β is
false, then (α → β) is false). Hence the rule:
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(α → β) �

¬α β

If (α → β) is false, then α is true and β is false:

¬(α → β) �
α

¬β

7.1.4 Biconditional

If (α ↔ β) is true, then α and β have the same truth value. In other words, if
(α ↔ β) is true, then either both α and β are true, or both α and β are false
(recall the truth table for ↔). Hence the rule:

(α ↔ β) �

α

β

¬α

¬β

If (α ↔ β) is false, then α and β have opposite truth values. That is, either α

is true and β is false, or α is false and β is true:

¬(α ↔ β) �

α

¬β

¬α

β

7.1.5 Negation

If a negation ¬α is false, then α is true. Hence the rule:

¬¬α �
α

The other possibility—that a negation ¬α is true—gives us no useful rule.
From the assumption that ¬α is true, it follows that α is false—that is, that
¬α is true. But that is precisely where we started. It yields the rule:

¬α �
¬α

This rule gets us nowhere, so we do not adopt it.6 We therefore have only one
rule for negation.
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Disjunction

(α ∨ β) �

α β

¬(α ∨ β) �
¬α

¬β

Conjunction

(α ∧ β) �
α

β

¬(α ∧ β) �

¬α ¬β

Conditional

(α → β) �

¬α β

¬(α → β) �
α

¬β

Biconditional

(α ↔ β) �

α

β

¬α

¬β

¬(α ↔ β) �

α

¬β

¬α

β

Negation

¬¬α �
α

Figure 7.1. Tree rules for PL.

The tree rules are summarized in Figure 7.1.

7.2 Applying the Rules

7.2.1 Not Digging Too Deep

The foregoing rules are presented using wff variables, which is to say that
they apply to any propositions—however complex—that may be substituted
for those variables. So, for example, suppose we have a tree containing the
proposition

(¬A ∧ ¬B)

The main connective here is a conjunction, so we apply the tree rule for
(unnegated) conjunction—we write a column containing the first conjunct
above the second conjunct:
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(¬A ∧ ¬B) �
¬A

¬B

To take another example, suppose we have a tree containing the proposition

¬(¬A→¬B)

The main connective here is a negation, and the main connective of its negand
is a conditional, so we apply the rule for negated conditional—we write in a
column containing the antecedent above the negation of the consequent:

¬(¬A→¬B) �
¬A

¬¬B

When we apply a tree rule, we do not need to look inside the proposition of
interest farther than its top one or two levels. That is to say, we need look only
at its main connective where that is not negation—or, where the main connec-
tive is negation, we need look only at this negation and the main connective
of its negand. So it can be useful, when learning to apply the rules, mentally
to “black box” all structure of the proposition of interest below its outermost
one or two connectives. Thus, in the first case above, the main connective is∧.
So we apply the rule for unnegated ∧. The fact that the conjuncts¬A and¬B

have further internal structure (they are negations) is irrelevant at this point.
So we can just think of the proposition to which we are to apply our rule as a
conjunction of two formulas that are concealed in boxes, a circular box and a
square box:

(©∧ )

The rule for conjunction tells us: write a column with the first conjunct (the
content of the circular box) above the second conjunct (the content of the
square box):

(©∧ ) �
©

Now, having first conceived of the rule in this way—using black boxes—we
copy in the contents of those boxes (the circular box contains ¬A and the
square box ¬B) to obtain our actual instance of the tree rule in question:

(¬A ∧ ¬B) �
¬A

¬B
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Thinking in terms of boxes helps avoid confusion about where negations come
from: whether from the rule as applied to some boxes or from inside those
boxes. In the case above, the negations in the outputs of our rule—in ¬A and
¬B—did not come from the rule; they were there all along inside the boxes to
which the rule was applied.

Now consider the second case discussed above:

¬(¬A→¬B)

Its main connective is a negation, so we need to look also at the main connec-
tive of its negand, which in this case is a conditional. We do not need to look
any deeper into the structure of our proposition than this: we black box the
antecedent and the consequent of this conditional:

¬(©→ )

So we are to apply the rule for negated conditional, which tells us to form
a column with the antecedent (the content of the circular box) above the
negation of the consequent (the content of the square box):

¬(©→ ) �
©

¬
Now, having first conceived of the rule in this way—using boxes—we copy in
the contents of those boxes (the circular box contains ¬A and the square box
¬B) to obtain our actual instance of the tree rule in question:

¬(¬A→¬B) �
¬A

¬¬B

Now we can see quite clearly where the negations in the outputs of our rule
come from. The negation in ¬A was not added by the rule: it was in the box.
As for the two negations in ¬¬B, the first was added by the rule, while the
second was already in the box to which the rule was applied.

7.2.1.1 EXERCISES

Apply the appropriate tree rule to each of the following propositions.

1. (¬A ∨ ¬B)

2. (¬A→ B)

3. ((A→ B) ∧ B)

4. ((A↔ B)↔ B)

5. ¬(A↔¬¬A)

6. ¬(¬A ∨ B)
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7.2.2 Finishing What Is Started

A tree starts with one or more propositions. It is not finished until we have
applied the appropriate rule to every proposition in the tree to which a rule can
be applied (i.e., every proposition that is not basic or the negation of a basic
proposition).7 That includes not only the propositions we start with but also
any other propositions generated by the tree rules along the way. For example,
suppose we begin with the proposition:

(A→ (B → A))

Applying the rule for unnegated conditional, we get:

(A → (B → A)) �

¬A (B → A)

We now have a proposition (B →A) to which a rule—the rule for unnegated
conditional—can be applied. Applying it yields:

(A → (B → A)) �

¬A (B → A) �

¬B A

Our tree is now finished: all propositions other than basic propositions and
negations of basic propositions have had the appropriate rule applied (as in-
dicated by the check marks).

7.2.2.1 EXERCISES

Construct finished trees for each of the following propositions.

1. ((A→ B)→ B)

2. ((A→ B) ∨ (B → A))

3. ¬(¬A→ (A ∨ B))

4. ¬¬((A ∧ B) ∨ (A ∧ ¬B))

7.2.3 Closing Paths

A path (aka branch) through a tree is a complete route from the topmost
proposition down until one can go no further. So in the tree:

(A → (B → A)) �

¬A (B → A) �

¬B A
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there are three paths:

1. (A→ (B → A)) ⇒ ¬A

2. (A→ (B → A)) ⇒ (B → A) ⇒ ¬B

3. (A→ (B → A)) ⇒ (B → A) ⇒ A

When constructing a tree, if at any point we find that a path contains both
a formula and its negation, we close the path with a cross. For example:

((A ∧ ¬A) ∨ B) �

(A ∧ ¬A) �
A

¬A
×

B

In this tree there are two paths:

1. ((A ∧ ¬A) ∨ B) ⇒ (A ∧ ¬A) ⇒ A ⇒ ¬A

2. ((A ∧ ¬A) ∨ B) ⇒ B

The first path contains both a formula (in this case A) and its negation (in this
case ¬A), so we close it with a cross (×). The second path does not contain
both a formula and its negation, so it is an open path.

7.2.3.1 EXERCISES

Construct finished trees for each of the following propositions; close paths as
appropriate.

1. ¬(A→ (B → A))

2. ((A→ B) ∨ (¬A ∨ B))

3. ¬((A→ B) ∨ (¬A ∨ B))

4. ¬¬¬(A ∨ B)

5. ¬(A ∧ ¬A)

6. ¬(¬(A ∧ B)↔ (¬A ∨ ¬B))

7.2.4 Applying Rules on All Open—and No Closed—Paths

It may happen at a certain stage of constructing a tree that the formula to
which we are applying a rule is on more than one open path. For example,
consider the following partially finished tree:

((A → B) ∧ (B → A)) �
(A → B) �
(B → A)

¬A B
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We need to apply the rule for unnegated conditional to (B →A). This formula
is sitting on both of the following open paths:

1. ((A→ B) ∧ (B → A)) ⇒ (A→ B) ⇒ (B → A) ⇒ ¬A

2. ((A→ B) ∧ (B → A)) ⇒ (A→ B) ⇒ (B → A) ⇒ B

So we apply the rule twice: once at the end of each of these open paths. (In
general, if the formula of interest is on n open paths, we apply the rule n times:
once at the end of each open path.) The result is:

((A → B) ∧ (B → A)) �
(A → B) �
(B → A) �

¬A

¬B

B

A
×

¬B
×

A

In contrast, we never apply rules at the bottom of closed paths. Once a path
has been closed with a cross, no more wffs can be added to it.

7.2.5 Order of Application of Rules; Checking Closure

There is no hard-and-fast requirement on the order in which one applies the
tree rules. However, there are some useful rules of thumb. For convenience,
it is useful to apply nonbranching rules before branching rules, if one has a
choice. Applying branching rules first will not make the tree incorrect, but it
will in general make it bigger. So, for example, if the tree begins with (A ∧ B)

and (A→ B), one obtains a shorter tree by applying the rule for ∧ to the
first proposition and then applying the rule for → to the second proposition
than by dealing with the propositions in the opposite order. In this particular
case, the difference is not very large (do the two trees and see)—but in more
complex trees, applying nonbranching rules first can make quite a significant
difference to the size of the tree.

There is, however, one hard-and-fast requirement on the order in which
one must do things when constructing a tree. One must check for closure each
time wffs are added to the tree: after writing down the initial wffs in the tree,
one must check whether the tree closes immediately. And each time a rule is
applied, after writing down the results of applying that rule, one must check
each path to which wffs were added to see whether it closes. If the check reveals
that a path can close, then it must indeed be crossed off.8

7.2 Applying the Rules 145



7.2.6 The Underlying Idea

Now that we are familiar with the mechanics of trees, let us return to the ba-
sic idea behind them (discussed in a preliminary way in the second part of
the opening section of this chapter). When constructing a tree, we begin by
writing some proposition(s) at the top of the tree. The tree rules then deter-
mine what we may write next. The idea behind the rules is (roughly) this: we
assume (for the sake of argument) that what we write at the top of the tree
is true, and then the rules prescribe things to write that must be true, given
that what we have already written is true. More precisely, as we apply rules
and grow the tree, it may branch; what the rules ensure is not that every-
thing on every branch is true (assuming the starting propositions are true),
but rather that there is at least one path through the tree such that every prop-
osition on that path is true (assuming that the propositions we started with are
all true).9

Now recall that as we apply rules, we check off more complex propositions,
until we end up with only basic propositions and negations of basic proposi-
tions. Recall also that if a negation of a basic proposition is true, then the basic
proposition itself is false. So each path represents an alleged way for all propo-
sitions at the top of the tree to be true—an alleged possible assignment of truth
values to basic propositions (true for the propositions that appear alone in the
path, false for the ones that appear negated) under which the propositions at
the top of the tree all come out true. I say “alleged” because some of these paths
may not represent possible assignments at all. These are the closed paths: the
ones featuring both a proposition and its negation, that is, which correspond
to an assignment of truth values under which some proposition is both true
and false. That is impossible: there are no such scenarios. So a closed path does
not represent a possible assignment at all, whereas an open path represents a
possible assignment in which all propositions at the top of the tree are true.10

Now suppose that all paths close in our tree. Then there is no scenario—
no way of making propositions true or false, no assignment of truth values to
basic propositions, no truth table row—in which all propositions at the top of
the tree are true. Suppose, however, that one or more paths remain open when
the tree is finished (i.e., when all possible rules have been applied on all open
paths). In that case, it is possible for all propositions at the top of the tree to be
true: an open path represents such a scenario.

7.3 Uses of Trees

We now consider how to use trees to find out things that we are interested
in, such as whether a given argument is valid or whether two propositions are
equivalent.
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7.3.1 Validity

A tree will (directly) answer only one sort of question: whether all propositions
at the top of the tree can be true (in the same scenario)—that is, whether the
set containing those propositions is satisfiable. A tree will always give us an
answer to a question of this type, but it cannot give a direct answer to other
sorts of question, such as “can this proposition be false?” Such questions need
to be rephrased in terms of the possibility of truth (i.e., satisfiability).

Now consider the question of whether an argument is valid. Can the
premises all be true while the conclusion is false? If so, the argument is in-
valid; if not, it is valid. We cannot ask a tree this question directly—for a tree
cannot tell us about falsity, only truth. So we have to rephrase the question:
is it possible for all premises and the negation of the conclusion to be true at
the same time? It is not hard to see that this is precisely the information we
wanted—whether the premises can be true while the conclusion is false—just
packaged in a different form.

So, to test whether an argument is valid, we write at the top of the tree the
premise(s) and the negation of the conclusion. We then finish our tree. If all
paths close, the argument is valid (it is not possible for the propositions at the
top of the tree all to be true—i.e., it is not possible for the premises of our
argument to be true while its conclusion is false). If one or more paths remain
open (when the tree is finished), then the argument is invalid.

For example, consider the argument:

(A→ B)

(B → C)

∴ (A→ C)

We write out the two premises and the negation of the conclusion at the top
of a tree, and then apply rules and close branches as appropriate until the tree
is finished:

   (A → B) �
   (B → C) �
¬(A → C) �

A
¬C

¬A
×

B

¬B
×

C
×

(We first apply the nonbranching rule for negated conditionals to ¬(A→ C).
Then we apply the rule for (A→ B), at which point the path:

(A→ B) ⇒ (B → C) ⇒ ¬(A→ C) ⇒ A ⇒ ¬C ⇒ ¬A
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closes (because it contains both A and ¬A). Thus, to decompose our final
proposition (B → C), we have to apply the rule only once: even though the
formula is on two paths, at this point only one of those paths is still open.) All
paths close, so the argument is valid.

Consider now the argument:

(A→ C)

(B → C)

∴ (B → A)

Again we write out the two premises and the negation of the conclusion at the
top of a tree, and then apply rules and close branches as appropriate until the
tree is finished:

   (A → C) �
   (B → C) �
¬(B → A) �

B
¬A

¬A C

¬B
×

C
↑

¬B
×

C
↑

(We first apply the nonbranching rule for negated conditionals to ¬(B →A).
Then we apply the rule for (A→ C), which causes the tree to branch. At this
point, neither branch closes, so when we then apply the rule for (B → C), we
have to write the output of the rule—which is a branch with ¬B on one side
and C on the other side—twice: once at the bottom of each path. We now have
four paths. Two of them close and two remain open.) There are two open paths
(indicated by vertical arrows), so the argument is invalid.

As was the case with the truth table test for validity, when an argument is
invalid, the test does not simply tell us this: it furthermore gives us a counter-
example. We read off a counterexample from each open path in the tree.
Looking down the left-hand open path in our tree, we see that B and C appear
unnegated, while ¬A appears negated. This path thus represents a scenario in
which A is false, and B and C are true. This is our counterexample. We can
confirm that in this scenario, the premises are true and the conclusion false by
writing out the corresponding row of the truth table for our argument:

A B C (A→ C) (B → C) (B → A)

F T T T T F

(Remember that when doing truth tables we do not negate the conclusion!)
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Thus, the tree test directly targets the truth table rows in which we are
interested. We wanted to know whether there was any row in the truth table for
our argument in which the premises are true and the conclusion false. Without
having to search all eight of them, the tree test has given us a row of the type we
were looking for. And when there are no such rows—as in the first argument
considered above—the tree test demonstrates this, by having all its paths close.

Note that what the tree test tells us is this: if there is at least one open path,
then there is at least one case in which all propositions at the top of the tree are
true. There is no direct relationship between the number of open paths and
the number of cases in which the propositions at the top of the tree are true.
(Except in the case where that number is zero: if there are no open paths, then
there are no such cases.) Look back at our most recent tree. The right-hand
open path yields the same counterexample as the left-hand one (A false, B

and C true). So here we have two open paths that yield one scenario in which
the propositions at the top of the tree are true. In other cases, one path might
yield more than one such scenario. For example, consider the argument:

A

∴ (¬(A ∧ B) ∧ ¬((A ∧ B) ∧ C))

Here is its tree:

¬¬((A ∧ B) ∧ C) �
      ((A ∧ B) ∧ C) �

(A ∧ B) �
C
A
B
↑

A
¬(¬(A ∧ B) ∧ ¬((A ∧ B) ∧ C))  �

¬¬(A ∧ B) �
      (A ∧ B) �

A
B
↑

Not all paths close, so the argument is invalid. The right-hand open path yields
the counterexample: A true, B true, and C true. The left-hand open path
contains A and B unnegated, but it does not contain C, either unnegated
or negated. So what counterexample does it yield? Well, the point is that in
a situation in which A is true and B is true, both propositions at the top of the
tree are true. That is, as long as A and B are true, it does not matter whether
C is true or false: the propositions at the top of the tree will be true either way.
So this one open path yields two counterexamples: A true, B true, and C true;
and A true, B true, and C false.

In general, when reading off a counterexample from an open path, we
put in the value T for any basic proposition that appears unnegated in the
path and the value F for any basic proposition that appears negated in
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the path. For basic propositions appearing in the propositions at the top of
the tree that do not occur either by themselves or negated in the open path,
we can put any value we like in the counterexample.

Note that although the number of open paths need not equal the number of
truth table rows in which the premises are true and the conclusion is false, we
can be assured that every such row can be read off some open path. That is, the
tree will not overlook any counterexamples: it might have multiple counterex-
amples coming off the same open path, or the same counterexample coming
off multiple open paths, but every counterexample will be there somewhere.
This is because our tree rules all have the property that their outputs are jointly
exhaustive:11 if the input is true, then (in the case of a nonbranching rule) all
outputs must be true and (in the case of a branching rule) either all outputs on
the left branch must be true or all outputs on the right branch must be true.
Thus, the tree covers all ways in which the propositions at the top of the tree
could be true: no way is overlooked.

7.3.1.1 EXERCISES

Using trees, determine whether the following arguments are valid. For any
arguments that are invalid, give a counterexample.

1. A

∴ (A ∨ B)

2. (A ∨ B)

∴ B

3. (A ∨ B)

(A→ C)

(B →D)

∴ (C ∨D)

4. ((A ∨ ¬B)→ C)

(B →¬D)

D

∴ C

5. B

(A→ B)

∴ A

6. A

(A→ B)

∴ B

7. (A ∨ (B ∧ C))

(A→ B)

(B ↔D)

∴ (B ∧D)

8. ¬(¬A→ B)

¬(C ↔ A)

(A ∨ C)

¬(C → B)

∴ ¬(A→ B)

9. (A↔ B)

(B → C)

(¬B →¬C)

(A ∨ (B ∧ ¬B))

∴ C

10. (A→ B)

(B → C)

(C →D)

(D → E)

∴ ¬(A ∧ ¬E)
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7.3.2 Satisfiability

A proposition is satisfiable if there is at least one scenario in which it is
true. A proposition is a contradiction if it is false in every scenario; that is,
there is no scenario in which it is true (it is not satisfiable). A set of proposi-
tions is satisfiable if there is at least one scenario in which they are all true. Two
propositions are jointly satisfiable iff the set containing them both is satisfiable;
they are jointly unsatisfiable iff the set containing them both is unsatisfiable.

Satisfiability questions can be put directly to trees, without any need for
reformulation: they are, at the outset, framed in terms that trees can handle.
To test whether a single proposition is satisfiable, we write it at the top of our
tree and then finish the tree: if all paths close, it is not satisfiable (i.e., it is a
contradiction); if not all paths close, the proposition is satisfiable (i.e., it is
not a contradiction), and we can read off from an open path a scenario in
which it is true. To test whether a set of propositions is satisfiable, we write the
propositions in the set at the top of our tree and then finish the tree: if all paths
close, the set is unsatisfiable; if not all paths close, the set is satisfiable, and we
can read off from an open path a scenario in which all formulas in the set are
true.

7.3.2.1 EXERCISES

1. Using trees, test whether the following propositions are contradictions.
For any proposition that is satisfiable, read off from an open path a sce-
nario in which the proposition is true.

(i) A ∧ ¬A

(ii) (A ∨ B) ∧ ¬(A ∨ B)

(iii) (A→ B) ∧ ¬(A ∨ B)

(iv) (A→¬(A ∨ B)) ∧ ¬(¬(A ∨ B) ∨ B)

(v) ¬((¬B ∨ C)↔ (B → C))

(vi) (A↔¬A) ∨ (A→¬(B ∨ C))

2. Using trees, test whether the following sets of propositions are satisfiable.
For any set that is satisfiable, read off from an open path a scenario in
which all the propositions in the set are true.

(i) {(A ∨ B), ¬B , (A→ B)}
(ii) {(A ∨ B), (B ∨ C), ¬(A ∨ C)}

(iii) {¬(¬A→ B), ¬(C ↔ A), (A ∨ C), ¬(C → B), (A→ B)}
(iv) {(A↔ B), ¬(A→ C), (C → A), (A ∧ B) ∨ (A ∧ C)}

7.3.3 Contraries and Contradictories

If two propositions are jointly unsatisfiable, they cannot both be true (in
the same scenario). If, furthermore, they cannot both be false, then they are
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contradictories, whereas if they can both be false, they are contraries. To test
whether two propositions can both be false, we need to test whether their
negations can both be true. In other words, we need to test whether their nega-
tions are jointly satisfiable. So to find out whether two propositions are con-
traries or contradictories (or neither), we do two tests. First we test whether the
set containing the two propositions is satisfiable. If it is, then the two propo-
sitions are not contraries or contradictories. If the set is unsatisfiable, then we
test the set containing the negations of the two propositions for satisfiability. If
this set is satisfiable (i.e., the two negations can both be true), then the original
propositions can both be false—and so they are contraries. If the set contain-
ing the negations is unsatisfiable, then the original propositions cannot both
be false—and so they are contradictories.

7.3.3.1 EXERCISES

Test whether the following pairs of propositions are contraries, contradicto-
ries, or jointly satisfiable.

1. (¬A→ B) and (B → A)

2. (A→ B) and ¬(A→ (A→ B))

3. ¬(A↔¬B) and ¬(A ∨ ¬B)

4. ¬(A ∨ ¬B) and (¬A→¬B)

5. (¬A ∧ (A→ B)) and ¬(¬A→ (A→ B))

6. ((A→ B)↔ B) and ¬(A→ B)

7.3.4 Tautologies

To ask whether a proposition is a tautology is to ask whether it is true in every
scenario. As this is a question about truth, can we not put it directly to a
tree? No, we cannot. For trees can only answer questions about whether the
proposition(s) at the top of the tree can be true—that is, whether there is at
least one scenario in which the proposition(s) are true. But when we want to
know whether a proposition α is a tautology, we want to know whether it is
true in all scenarios. If we do a tree starting with α, and some path(s) remain
open, this shows us only that α is satisfiable—that it can be true—not that it
must be true.

So how do we determine the latter? Well, another way of putting the ques-
tion is: can α be false? Now we are getting closer: we just need to change this
talk of falsity to talk of truth of a negation, and we shall have a question we
can put to a tree, namely, can ¬α be true? That is, is ¬α satisfiable? So, to
test whether a proposition is a tautology, we write down its negation and then
do a tree. If all paths close, the negation cannot be true—that is, our original

152 Chapter 7 Trees for Propositional Logic



proposition cannot be false and so is a tautology. If not all paths close, then
the negation can be true—that is, our original proposition can be false and so
is not a tautology. In this case we can read off from an open path a scenario in
which the original proposition is false.

It is useful to think a bit further about why we cannot test whether α is a
tautology by starting a tree with α itself (not its negation) and seeing whether
all paths remain open. Here is a nontautology that would pass this test:

A

and here is a tautology that would fail it:

(A ∧ ¬A) ∨ ¬(A ∧ ¬A)

(Do the trees and confirm these statements.) The problem with the proposed
test is that it is based on the following mistaken line of thought: in a tree, there
is one path per scenario (truth table row); an open path represents a truth
table row in which the propositions at the top of the tree are true; a closed
path represents a truth table row in which the propositions at the top of the
tree are false. This line of thought involves two confusions about the nature
of paths. First, a closed path does not represent a truth table row in which
the propositions at the top of the tree are false: it does not represent a truth
table row at all (for it involves some proposition being both true and false).
A closed path is an impossible scenario, not a (possible) falsifying scenario.
Second, a tree does not, in general, have a path corresponding to every truth
table row: it is only guaranteed to represent those truth table rows in which the
propositions at the top of the tree are true; truth table rows on which those
propositions are false will not be represented at all. (Recall an advantage of
trees: they target the cases we are interested in—if such exist—without our
having to search through all possible cases.) So “all paths open” does not mean
“true in all possible cases” (i.e., true in all truth table rows). Rather, it means
just the same as “one path open.” The only important distinction is between
(i) all paths closed and (ii) not all paths closed (i.e., one or more paths open).
One or more paths open means that there is some (one or more) possible
scenario in which the propositions at the top of the tree are true.

7.3.4.1 EXERCISES

Test whether the following propositions are tautologies. (Remember to restore
outermost parentheses before adding the negation symbol at the front—recall
§2.5.4.) For any proposition that is not a tautology, read off from your tree a
scenario in which it is false.

1. A→ (B → A)

2. A→ (A→ B)
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3. ((A ∧ B) ∨ ¬(A→ B))→ (C → A)

4. (A ∧ (B ∨ C))↔ ((A ∧ B) ∨ (A ∧ C))

5. ¬A ∨ ¬(A ∧ B)

6. A ∨ (¬A ∧ ¬B)

7. (A→ B) ∨ (A ∧ ¬B)

8. (B ∧ ¬A)↔ (A↔ B)

9. (A ∨ (B ∨ C))↔ ((A ∨ B) ∨ C)

10. (A ∧ (B ∨ C))↔ ((A ∨ B) ∧ C)

7.3.5 Equivalence

The formula α is equivalent to β iff (α ↔ β) is a tautology. (Why? Well,
(α ↔ β) is true in exactly those cases where α and β have the same truth
value. The forumula α is equivalent to β just in case α and β have the same
truth value in every case. So α is equivalent to β just in case (α ↔ β) is true
in every case, i.e., is a tautology.) So to test whether α is equivalent to β using
trees, we check whether (α ↔ β) is a tautology. That is, we start our tree with
¬(α ↔ β). If every path closes, (α ↔ β) is a tautology, and so α is equivalent
to β. If some path remains open, (α ↔ β) is not a tautology, and so α is not
equivalent to β. In this case, we can read off from an open path a case in which
(α ↔ β) is false—that is, a case in which α and β have different truth values.

For example, suppose we want to know whether P and (P ∨ P) are equiv-
alent. We put a biconditional between them, a negation out the front of the
result, and then finish the tree:

¬P
(P ∨ P) �

P
×

P
×

¬(P ↔ (P ∨ P))  �

P
¬(P ∨ P) �

¬P
¬P
  ×

All paths close, so P and (P ∨ P) are equivalent.
There is an alternative way of phrasing the question of whether two propo-

sitions α and β are equivalent in such a way that trees can answer the question
(i.e., an alternative to asking whether (α ↔ β) is a tautology). We want to
know two things:

1. Can it ever be the case that α is true while β is false?

2. Can it ever be the case that α is false while β is true?
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If the answer to both questions is no, then α and β must always have the same
truth value—that is, they must be equivalent. Now we can answer the first
question by doing a tree for α and¬β, and we can answer the second question
by doing a tree for ¬α and β. If all paths close on both trees, α and β are
equivalent.

Note that the two trees drawn in our second method are simply the two
main parts of the single tree drawn in our first method. The first method
starts with ¬(α ↔ β) at the top of the tree. Applying the rule for negated
biconditional, the tree then splits into two branches, with α and ¬β on one
side, and ¬α and β on the other side. In completing the left branch, we
replicate the process of doing the first tree required by the second (two-tree)
method for testing equivalence; in completing the right branch, we replicate
the process of doing the second tree.

7.3.5.1 EXERCISES

Test whether the following are equivalent. Where the two propositions are not
equivalent, read off from your tree a scenario in which they have different truth
values.

1. P and (P ∧ P)

2. (P → (Q ∨ ¬Q)) and (R → R)

3. ¬(A ∨ B) and (¬A ∧ ¬B)

4. ¬(A ∨ B) and (¬A ∨ ¬B)

5. ¬(A ∧ B) and (¬A ∧ ¬B)

6. ¬(A ∧ B) and (¬A ∨ ¬B)

7. A and ((A ∧ B) ∨ (A ∧ ¬B))

8. ¬(P ↔Q) and ((P ∧ ¬Q) ∨ (¬P ∧Q))

9. ((P ∧Q)→ R) and (P → (¬Q ∨ R))

10. ¬(P ↔Q) and (Q ∧ ¬P)

7.3.6 Summary

To test whether an argument is valid:

. Start the tree with the premises and the negation of the conclusion.

. If all paths close, the argument is valid.

. If a path remains open, the argument is invalid. Read off from an open
path a scenario in which the premises are true and the conclusion false.
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To test whether a proposition α is a tautology:

. Start the tree with the negation ¬α.

. If all paths close, α is a tautology.

. If a path remains open, α is not a tautology. Read off from an open path
a scenario in which α is false.

To test whether two propositions α and β are equivalent:

. Start the tree with the negated biconditional ¬(α ↔ β).

. If all paths close, α and β are equivalent.

. If a path remains open, α and β are not equivalent. Read off from an open
path a scenario in which α and β have different truth values.

To test whether a proposition is satisfiable or a contradiction:

. Start the tree with the proposition.

. If all paths close, the proposition is a contradiction (i.e., not satisfiable).

. If a path remains open, the proposition is satisfiable (i.e., not a contradic-
tion). Read off from an open path a scenario in which the proposition is
true.

To test whether a set of propositions is satisfiable:

. Start the tree with the propositions in the set.

. If all paths close, the set is unsatisfiable.

. If a path remains open, the set is satisfiable. Read off from an open path a
scenario in which all propositions in the set are true.

To test whether two jointly unsatisfiable propositions (as determined by the
previous test for satisfiability, applied to the set containing the two proposi-
tions) are contraries or contradictories:

. Start the tree with the negations of the propositions.

. If all paths close, the propositions are contradictories.

. If a path remains open, the propositions are contraries. Read off from an
open path a scenario in which both propositions are false.

7.4 Abbreviations

We said in §4.3.2 that we may, for convenience, omit internal parentheses
in strings of straight ∧s or straight ∨s. How do we handle such abbreviated
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propositions in trees? One way would be to introduce a convention for restor-
ing parentheses to these expressions—for example, treat the multiple connec-
tives in order from left to right (as discussed in §2.5.4)—and then proceed
with the tree in the standard way. A second option is to introduce a method
of handling the unparenthesized expressions directly in trees. We explain this
second option now.

In the case of (unnegated) conjunction, we do the following:

α1∧ α2 ∧ . . . ∧ αn �
α1

α2...

αn

When we write, say, A ∧ B ∧ C, this expression is ambiguous between the
two equivalent wffs (A ∧ (B ∧ C)) and ((A ∧ B) ∧ C). The tree for the first
of these wffs looks like:

(A ∧ (B ∧ C)) �
A

(B ∧ C) �
B

C

and the tree for the second looks like:

((A ∧ B) ∧ C) �
(A ∧ B) �

C

A

B

Both trees end with one column containing A, B, and C, plus some other
checked-off wffs. So given A ∧ B ∧ C as our starting point, we jump straight
to checking this off and writing down A, B, and C below it:

A ∧ B ∧ C �
A

B

C

In the case of (unnegated) disjunction, we do the following:

α1 ∨ α2 ∨ … ∨ αn �

α2α1 αn…

7.4 Abbreviations 157



When we write, say, A ∨ B ∨ C, this expression is ambiguous between the
two equivalent wffs (A ∨ (B ∨ C)) and ((A ∨ B) ∨ C). The tree for the first
of these wffs looks like:

(A ∨ (B ∨ C))  �

A (B ∨ C) �

B C

The tree for the second looks like:

((A ∨ B) ∨ C) �

(A ∨ B) � C

A B

Both trees end with three branches, with A on one, B on another, and C on the
other, plus some other checked-off wffs along the way. So given A ∨ B ∨ C as
our starting point, we jump straight to checking it off and writing down three
branches, one with A on it, another with B on it, and the third with C on it:

A ∨ B ∨ C �

A B C

Negated conjunction and negated disjunction are handled in the obvious
analogous ways:

¬(α1 ∧ α2 ∧ … ∧ αn) �

…

¬(α1 ∨ α2 ∨ … ∨ αn) �
¬α1

¬α2

¬αn

¬α2¬α1 ¬αn…

Note that what we have just laid out are not extra tree rules: they are simply
abbreviations. A tree with (say) A ∨ B ∨ C in it and three branches coming
off below this point is not strictly speaking a properly constructed tree. It is
simply a convenience. We can always expand such a thing into a proper tree if
we want to: first we would eliminate A ∨ B ∨ C—which (recall §4.3.2) is not
a genuine wff but is likewise simply a convenience—in favor of a genuine wff
(i.e., (A ∨ (B ∨ C)) or ((A ∨ B) ∨ C)); then we would proceed to apply the
official disjunction rule, which involves only two branches.
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The distinction between proper or official trees and expressions of conve-
nience is an important one. Suppose that you wish to know whether some ar-
gument is valid. At some point in your tree you find, say, the formula (¬A→
B). The official way to proceed is as follows:

(¬A → B) �

¬¬A �
 A

B

Obviously, however, you will not get the wrong result if you skip the ¬¬A

on the left branch and go straight to A (i.e., if you do this step in your head,
rather than writing it down). If you are just working something out (e.g.,
whether some argument is valid or some proposition a tautology) for your
own purposes, this sort of abbreviation is fine: it won’t lead you astray. But
it is important to realize that it is an abbreviation and that what you have
created is not an official tree. There are two sorts of reason this is important—
why it is important to be aware of the difference between an official tree and
one involving shortcuts or abbreviations. First, when we prove things about
the system of tree proofs (e.g., that it is sound and complete; see Chapter 14),
the only way we can prove things about all trees (of which there are infinitely
many) is by referring to the rules that generate them (of which there are only
finitely many). Our conclusions therefore apply only to trees generated in
accordance with the rules: trees in which we have used ad hoc shortcuts will
not be covered.12 Second, in many contexts in logic, the notion of an effective
procedure plays a crucial role. It is therefore important that the procedure of
drawing up trees can be seen to be an effective one: all rules must be able to be
applied mechanically, without any need for ingenuity or insight. In particular,
we cannot have a rule that states “skip any steps that are obviously OK to skip.”
For further discussion of this point, see §14.2.

We should therefore always be aware of whether we are following the official
rules or using insight and ingenuity to take shortcuts. In some contexts—for
example, working out whether an argument is valid for one’s own purposes—
shortcuts ore OK. In other contexts, however, it is not just obtaining the right
answer that matters: whether one gets it by the official rules is also crucial.
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8
The Language of Monadic Predicate Logic

One of our aims is to come up with a method for determining whether any
given argument is valid. In Part I we made a good start on this, but there
are arguments that the account presented there cannot handle, because the
propositions making up those arguments cannot be represented adequately in
PL. In Part II of this book we therefore extend our logical language. We do this
in three phases:

1. monadic predicate logic (Chapters 8–10),

2. general predicate logic (Chapter 12),

3. general predicate logic with identity (Chapter 13).

Within each phase we follow the same three-step process:

1. We introduce an extended language.

2. We introduce an account of the semantics of our new language. Just as
the truth table semantics did for PL, the semantics for each new language
specifies what a “possible way of making propositions true or false” is, and
what is involved in a proposition being true or false in such a scenario.1

This then allows us to frame precise analyses or definitions of key logical
notions, such as validity (in every scenario in which the premises are true,
the conclusion is true), equivalence (having the same truth value in every
scenario), and so on.

3. We extend our system of tree rules to match the extended expressive
resources of the new language. This enables us to use trees to test whether
a given argument is valid, whether two given propositions are equivalent,
and so on.



8.1 The Limitations of Propositional Logic

Before extending our existing language PL, let’s discuss why we need to extend
it. Consider the following argument:

All kelpies are dogs.
Maisie is a kelpie.
∴ Maisie is a dog.

In §1.4, this was one of our paradigms for an intuitively valid argument. Yet
look what happens if we apply our truth table test for validity to this argument.
First we translate into PL. The first premise is a basic proposition: it does
not have any propositions as parts. Similarly for the second premise and the
conclusion. And they are all different basic propositions. So the translation is:

K : All kelpies are dogs K

M : Maisie is a kelpie M

D: Maisie is a dog ∴ D

A truth table for this argument consists simply of the matrix containing K , M ,
and D. So there is certainly a row on which K and M are true, and D is false.
So the argument comes out as invalid, according to our existing test of validity.

Let’s think about why the argument is valid (intuitively). The first premise
describes a relationship between two properties—being a kelpie and being a
dog: it states that if something has the property of being a kelpie, then it also
has the property of being a dog. The second premise states that Maisie has
the first of these properties (being a kelpie). The conclusion states that Maisie
has the other property (being a dog). Visually, we can think of the situation
as in Figure 8.1. We can picture a property as a line drawn around all the
things that have that property—so the property of being a kelpie is pictured as
a line drawn around all kelpies, and the property of being a dog is pictured
as a line drawn around all dogs. Then if the first premise is true, the line
around the kelpies never crosses outside the line drawn around the dogs (i.e.,
there is nothing inside the kelpie ring but outside the dog ring). If the second
premise is true, then Maisie is to be found within the kelpie ring. But then if
both premises are true, Maisie must be found within the dog ring—that is,
the conclusion must be true. So the argument is NTP. Furthermore, it is so
by virtue of its form. The foregoing reasoning does not depend on anything
about Maisie in particular, or about kelpies or dogs. It is the structure of the
argument that matters: it would go through just as well with any properties P

and Q in place of the properties “being a kelpie” and “being a dog,” and with
any individual a in place of Maisie:
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All P s are Qs.
a is a P .
∴ a is a Q.

As we can see from Figure 8.2, if it is true that a (whatever it is) is to be found
in the region of the P s (whatever they are) and it is true that no P falls outside
the region of the Qs (whatever they are), then it must be true that a is among
the Qs.

Consider the following argument, which swaps around premise two and the
conclusion of our original argument:

All kelpies are dogs.
Maisie is a dog.
∴ Maisie is a kelpie.

This argument is not valid—we can easily imagine a situation in which the
premises are true and the conclusion is false (Figure 8.3). Premise 1 is the same
as before: if it is true, then the line around the kelpies never crosses outside the
line around the dogs. In a situation in which Maisie is, say, a beagle—so she
is in the dog ring, but not in the kelpie ring—premise 2 is true. But in this

Dogs
Kelpies

Maisie

Figure 8.1. The argument is
necessarily truth-preserving . . .

Qs
Ps

a

Figure 8.2. . . . in virtue of its
form.
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Dogs
Kelpies

Maisie

Figure 8.3. The argument is
invalid.

situation the conclusion is false. The possibility of such a situation (even if in
the actual situation, Maisie is a kelpie, and so the premises and conclusion are
all true) shows the argument to be invalid.

In both arguments, the first premise has (at least) two components—a part
that picks out the property of being a kelpie, and a part that picks out the
property of being a dog—and whether the argument is valid depends on
which of these two components figures in the second premise and which
features in the conclusion. So the validity of the argument depends on the
internal structure of the propositions that make it up. But as yet we have no
handle on this internal structure: for the relevant parts of these propositions
are not further propositions. From the point of view of propositional logic,
these propositions are basic: they have no propositions as parts. But it is clear
now that they do have logically important structure. So we need a richer
language that does not simply translate each of these propositions as a simple,
indivisible letter. Rather, it must bring out the fact that “all kelpies are dogs”
has (at least) two parts, one of which shows up again in “Maisie is a kelpie”
and the other of which shows up again in “Maisie is a dog.”

8.1.1 Extending the Logical Language

We have seen that the internal structure of basic propositions can be logi-
cally important. We therefore no longer wish to regard a basic proposition
such as “Maisie is a dog” as logically simple (i.e., as having no logically sig-
nificant parts)—and so we do not want it to be represented in our logical
language by a simple symbol (e.g., a capital letter, as in PL). Rather, we want
to have symbols for its logically important parts—and the representation of
the whole proposition “Maisie is a dog” should then be constructed out of
these parts.2 So we shall take the language PL, remove the symbols for basic
propositions—the capital letters A, B , C , . . .—and in their place add sym-
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bols for the internal components of these propositions.3 Note that we retain
the five connectives.

We shall proceed as follows. We start with the simplest kind of basic proposi-
tion and distinguish its parts (a name and a predicate). We then see how far we
can get representing further propositions using the connectives from propo-
sitional logic plus names and predicates. We soon find that we need more
resources (quantifiers and variables). We then see how far we can get repre-
senting further propositions using connectives, names, predicates, quantifiers,
and variables. We eventually find that we need even more resources—and so
on. We thus proceed in stages, adding symbols to our logical language as we
find a need for them. To keep things clear, rather than simply talking about
“the logical language” and having to keep track of what resources it has at any
given point, we introduce names for specific languages, each of which has a
particular combination of resources: the language of monadic predicate logic
(MPL), the language of general predicate logic (GPL), and the language of gen-
eral predicate logic with identity (GPLI):

Part of book Resource added Language with resources

§8.2 Names and predicates
MPL

§8.3 Quantifiers and variables

Chapter 12 Many-place predicates GPL

Chapter 13 Identity predicate GPLI

Note that the resources accumulate: MPL has the connectives of PL (but not
the symbols for basic propositions) plus names, predicates, quantifiers, and
variables; GPL has the resources of MPL plus many-place predicates; GPLI
has the resources of GPL plus the identity predicate.4

8.2 MPL, Part I: Names and Predicates

We start with the simplest kind of basic proposition. Our aim is to determine
its components. Consider the claim “Maisie is happy.” What are its logically
significant parts? Recall §1.6, where we first looked into the structure of com-
pound propositions—that is, identified connectives. We said that our search
for connectives was to be guided by an interest in those aspects of the in-
ternal structure of compound propositions that have an important relation-
ship to truth and falsity—and hence to the laws of truth. The same point
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applies here: we are interested in those aspects of the internal structure of basic
propositions that make a difference to truth and falsity. From this point of
view, it seems clear that the proposition expressed by a typical utterance of
“Maisie is happy” has two significant parts. When one makes a claim of the
form “Maisie is happy,” one says of some particular thing (in this case, Maisie)
that it has some property (in this case, the property of being happy). So the
proposition has two parts: a part that serves to pick out a particular individ-
ual (aka thing, object, entity) and a part that serves to pick out a particular
property (aka attribute) that things may or may not possess. The proposition
is true if the thing picked out does possess the property singled out (in this
case, if Maisie is happy); it is false if the thing picked out does not possess the
property (Maisie is not happy).

We thus represent the proposition expressed by “Maisie is happy” as having
two parts. The part whose function is to pick out an object we call a name (aka
singular term, referring term, individual constant). The part whose function
is to pick out a property we call a predicate. Names will be symbolized in MPL
by lowercased letters a , b, c, . . . , r , s , t (not including the last six letters in
the alphabet, u, v , w , x , y , z—we reserve those for another purpose, to be
discussed in §8.3). Predicates will be symbolized in MPL by uppercased letters:
A, B , C , . . . , X , Y , Z (the entire alphabet may be used).5

When translating into MPL, the first step—as with PL—is to write a glos-
sary. This time, however, a glossary pairs up names and predicates of MPL (as
opposed to basic propositions, as in PL) with (utterances of) expressions of
English, for example:

b: Brave New World6 B: is big
c: Caitlin E: is exciting
d : Doug F : is famous
e: Mount Everest G: is gigantic
m: Maisie H : is happy
n: New York I : is interesting

P : is pleasant

A proposition made up from one name and one predicate is called an atomic
proposition. In MPL, we write an atomic proposition with the predicate imme-
diately before the name, for example:

Fc

En

Ge
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Using the glossary given above, these translate into English as:

Caitlin is famous.
New York is exciting.
Mount Everest is gigantic.

Going the other way, the following claims in English:

Maisie is happy.
Brave New World is interesting.
Mount Everest is famous.

translate into MPL as:

Hm

Ib

Fe

We retain all the connectives of PL in MPL. They work just as before: if α

and β are wffs (of MPL), so are (α→ β),¬α, and so on. So far, the only wffs of
MPL that we have encountered are atomic propositions made up of a predicate
in front of a name. Using these as starting points, we can then construct wffs
using connectives just as we did in PL. For example:

(Fn ∧ Fe)

(In ∨ ¬Hd)

(Bn→Ge)

Using the glossary given above, these translate into English as:

New York is famous and Mount Everest is famous.
Either New York is interesting or Doug isn’t happy.
If New York is big then Mount Everest is gigantic.

Going the other way, the following claims in English:

Either Doug or Caitlin is famous.
If Mount Everest is big, it’s pleasant.
Either Mount Everest is big and pleasant, or it’s gigantic.

translate into MPL as:

(Fd ∨ Fc)

(Be→ Pe)

((Be ∧ Pe) ∨Ge)
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8.2.1 Exercises

Translate the following propositions from English into MPL:

1. The Pacific Ocean is beautiful.

2. New York is heavily populated.

3. Mary is nice.

4. John is grumpy.

5. Seven is a prime number.

6. Pluto is a planet.

7. Bill and Ben are gardeners

8. If Mary is sailing or Jenny is
kite flying, then Bill and Ben are
grumpy.

9. Mary is neither sailing nor kite
flying.

10. Only if Mary is sailing is Jenny
kite flying.

11. John is sailing or kite flying but
not both.

12. If Mary isn’t sailing, then unless
he’s kite flying, John is sailing.

13. Jenny is sailing only if both
Mary and John are.

14. Jenny is sailing if either John or
Mary is.

15. If—and only if—Mary is sailing,
Jenny is kite flying.

16. If Steve is winning, Mary isn’t
happy.

17. Two is prime, but it is also even.

18. Canberra is small—but it’s not
tiny, and it’s a capital city.

19. If Rover is kite flying, then two
isn’t prime.

20. Mary is happy if and only if
Jenny isn’t.

8.2.2 Names and Indexicals

Suppose that Bob says “I’m hungry.” He is claiming of a particular individual
(himself) that it (he) has a certain property (being hungry)—so we translate
this into MPL as an atomic proposition. But we need to be careful. For suppose
that Carol also says “I’m hungry.” It would be a mistake to translate as follows:

i: I Bob’s claim: Hi

H : is hungry Carol’s claim: Hi

The problem here is that Bob and Carol are not making the same claim—they
are not expressing the same proposition. (This is clear, because what one of
them says could be true while what the other says is false.) Therefore, their
two claims should receive different translations into MPL.

As discussed in §2.2.1, when writing a glossary for PL, we specify—for
each sentence letter on the left-hand side—which proposition it represents.7

If we write an English sentence on the right-hand side of the glossary, it is
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to be understood that the sentence letter on the left-hand side represents the
proposition expressed by some particular utterance of this English sentence in
some particular context. A similar point applies in the context of MPL. When
we translate Bob’s claim—“I’m hungry”—into MPL, the result is supposed to
be a representation of the proposition Bob expressed. It is not supposed to be a
representation of the sentence he used to express it. (That same sentence could
be used to express different propositions: e.g., Carol makes a different claim—
expresses a different proposition—using the same sentence.) In the present
case, the crucial word is “I.” When Bob says “I,” he picks out himself; when
Carol says it, she picks out someone different: herself. So their two utterances
of “I” need to be translated as different names. There are various ways to
phrase the glossary so as to make this clear:

i: I (as uttered by Bob on this occasion)
j : I (as uttered by Carol on this occasion)

or:

i: I (Bob)
j : I (Carol)

or simply:

i: Bob
j : Carol

Using any of these glossaries, our translations are then:

Bob’s claim: Hi

Carol’s claim: Hj

The translations are different—which is what we wanted.
What we have just said about translating claims involving “I” into MPL ap-

plies also to other singular pronouns—“me,” “you” (singular), “he,” “she,”
“him,” “her,” “it”—and to other indexical singular terms, such as “this” and
“that” (accompanied by appropriate pointing gestures or other indications of
which object is being picked out on a given occasion).8 They are translated as
names in MPL—but different occurrences of the same expression in English
need to be translated using different names in MPL, if the different occur-
rences are used to pick out distinct objects.

The upshot is that MPL (like PL) is not context sensitive (which is a good
thing, for the reasons discussed in §2.2.1). While a given glossary is in play,
every token of Hi represents the same proposition—and similarly for Hj and
every other atomic proposition whose components feature in that glossary.9

8.2 MPL, Part I: Names and Predicates 171



8.3 MPL, Part II: Variables and Quantifiers

We have seen how to translate a variety of claims into our augmented logical
language—but there are also claims that we cannot translate. For example,
consider Papa Bear’s claim, “someone has been eating my porridge.” As it
happens, we know who has been eating his porridge: Goldilocks. But Papa
Bear’s claim is not the same as the claim “Goldilocks has been eating my
porridge,” because “someone” (unlike “Goldilocks”) is not a singular term.
To see this, note that there is no particular individual who has to have the
property X to make the claim “someone is X” true. As it happens, Papa
Bear’s claim is true, because Goldilocks has the relevant property (she has
been eating his porridge). But we can easily imagine a situation in which
it is someone else who has been eating his porridge, and Goldilocks is not
involved at all. In such a situation, Papa Bear’s claim is still true. Thus, in
the original situation the relationship between “someone” and Goldilocks is
not the relationship of a singular term to the individual that it picks out. If
Papa Bear had said “Goldilocks has been eating my porridge,” then if someone
else—not Goldilocks—had been eating his porridge, his claim would have
been false. A singular term—such as “Goldilocks”—serves to pick out a unique
individual, and unless that particular individual has the relevant property,
an atomic proposition involving that singular term is false. With “someone,”
the situation is different. For Papa Bear’s claim “someone has been eating
my porridge” to be true, it is only required that someone—not necessarily
Goldilocks or any other particular individual—has been eating his porridge.

The same point applies to other expressions, for example, “a man.” Suppose
Bob Wood comes to the door, and later I say “a man came to the door.” My
claim is true—thanks to Bob Wood. But the key point is that it would likewise
have been true if it had been another man, say, Bill Smith, who came to the
door. So “a man” (in “a man came to the door”) is not a singular term: it
does not serve to pick out a particular individual, who then has to have some
attribute to make the claim true. Contrast “Bob Wood came to the door.” Here
I claim of a particular individual that he did something. If that particular
individual did not do that thing, then the proposition is false. “Bob Wood
came to the door” is true only if Bob Wood came to the door. Thus, the
relationship between the singular term “Bob Wood”—as it figures in a claim
of the form “Bob Wood did X”—and Bob Wood (i.e., the individual that
the singular term serves to pick out) is very different from the relationship
between “a man” (as it figures in a claim of the form “a man did X”) and the
man who (as it happens) did X (if there was such a man at all—i.e., if the claim
is true).

Consider the claim “someone enjoys running.” For the reasons given above,
“someone” here is not a singular term: its function is not to pick out a particu-
lar individual, who must then enjoy running for the claim to be true. So what
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is its function? Well, what is required for the claim in question to be true is that
someone or other enjoys running. Anyone will do—no particular person is re-
quired. As long as at least one person enjoys running, the proposition is true.
So the function of “someone” is to specify how many people must like running
for the proposition to be true. Thus, “someone” is a quantifier. In particular,
it is an existential quantifier: in “someone enjoys running,” it specifies that at
least one—that is, one or more—persons must like running. Common ways
of expressing existential quantification in English include:

. “some,” as in “some dogs have fleas;”

. “at least one,” as in “at least one adult must be present;”

. “someone,” as in “someone has been using my toothbrush;” and

. “there is a(n),” as in “there is an elephant in the garden.”

Note that we take “some” to mean at least one—that is, one or more—not
exactly one.

Consider now the claim “everyone is eating porridge.” Obviously, “every-
one” here is not a singular term: the claim is certainly not that one particular
individual is eating porridge, it is that all individuals are doing so. Nor is this
an example of existential quantification: for the claim to be true, it is not
enough that one or more persons is eating porridge; it must be the case that all
persons are doing so. Rather, this is an example of universal quantification: in
“everyone is eating porridge,” “everyone” specifies that the quantity of persons
who must be eating porridge (for the claim to be true) is all persons. Common
ways of expressing universal quantification in English include:

. “all,” as in “all dogs have fleas;”

. “every,” as in “every cloud is grey;”

. “each,” as in “each student shall receive a laptop computer;”

. “each and every,” as in “each and every one of you is in trouble;”

. “everything,” as in “everything you say is so funny;”

. “everyone,” as in “everyone is special;”

. “everybody,” as in “everybody laughs.”

We turn now to the question of representing existential and universal quan-
tification in our logical language. “Carl enjoys running” translates as follows:

c: Carl Lc

L: enjoys running

8.3 MPL, Part II: Variables and Quantifiers 173



Because “someone” and “everyone” are not singular terms, “someone enjoys
running” and “everyone enjoys running” do not translate in an analogous
way—that is, as:

s: someone Ls

e: everyone Le

L: enjoys running

We need to introduce some new resources into the logical language. In partic-
ular, we need symbols for universal and existential quantifiers—ways of saying
“for all” and “there is an”—and as we shall see, to make these symbols work
properly, we need something else as well: variables. Let’s see how this works.

Consider the case of the universal quantifier first. Suppose that we wish to
translate the following into MPL:

Everything is green.

We can rephrase this as follows:

Every thing is such that it is green.

In MPL, individual variables—or just “variables” for short—play the role
played here by “thing” and “it.” Variables are represented by lowercased letters
from the end of the alphabet: u, v , w , x , y , z. So we obtain a partial transla-
tion into MPL as follows:

Every x is such that x is green.

Now using the glossary:

G: is green

this expression becomes:

Every x is such that Gx.

Now we just need a symbol in MPL that means “every x is such that.” The
symbol we use is:

∀x
Now our full translation is:

∀xGx

Note that ∀ is an upside-down A (for “all”). As well as “every x is such that,”
we can also read ∀x as “for all x,” “no matter which x you pick,” “whichever x

you pick,” or “whatever x you pick.”
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Consider next the existential quantifier. Suppose that we wish to translate
the following into MPL:

Something is green.

We can rephrase it as follows:

Some thing is such that it is green.

Using the variable x in place of “thing” and “it,” as before, we obtain a partial
translation into MPL:

Some x is such that x is green.

Using the same glossary as before, this expression becomes:

Some x is such that Gx.

Now we just need a symbol in MPL that means “some x is such that.” The
symbol we use is:

∃x
Now our full translation is:

∃xGx

Note that ∃ is a back-to-front E (for “exists”). As well as “some x is such that,”
we can also read ∃x as “there is some x such that,” “there exists an x such that,”
or “you can pick an x such that.”10

8.3.1 Examples

Here is a glossary:

Gx: x is green
Rx: x is red
Hx: x is heavy
Ex: x is expensive

Note that, now that we have introduced variables, we adopt the practice of
writing in a variable next to the predicate in the glossary (i.e., instead of
writing “G: is green,” we write “Gx: x is green”).

Now we can make the following translations into MPL:

Something is both red and green.
∃x(Rx ∧Gx)

Everything is either red or green.
∀x(Rx ∨Gx)

All red things are heavy.
∀x(Rx →Hx)
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Note that the correct translation in the last case is not ∀x(Rx ∧ Hx). That
expression states that everything is both red and heavy, whereas the original
English states only that red things are heavy. One useful way to read the uni-
versal quantifier ∀x is as “take anything at all” or “pick anything at all.” On
this reading, ∀x(Rx →Hx) states “take anything at all: if it is red, then it is
heavy.” That is another way of saying that all red things are heavy. In contrast,
∀x(Rx ∧Hx) states “take anything at all: it is red and it is heavy.” That is not
the same as saying that all red things are heavy: it states that everything is both
red and heavy.

Some red thing(s) are heavy.
(There is at least one thing that is red and heavy.)
∃x(Rx ∧Hx)

Something is red but not heavy.
∃x(Rx ∧ ¬Hx)

Something is neither red nor heavy.
∃x(¬Rx ∧ ¬Hx) or ∃x¬(Rx ∨Hx)

Something is red and heavy.
∃x(Rx ∧Hx)

If something is red, then it’s heavy.
∀x(Rx →Hx)

The last example is tricky! Despite the appearance of the word “something,”
this statement is in fact a universal claim. It states: take anything at all: if it is
red, then it is heavy.

Nothing is red.
(It is not the case that even one thing is red.)
(Everything is non-red.)
¬∃xRx or ∀x¬Rx

No red things are heavy.
∀x(Rx →¬Hx) or ¬∃x(Rx ∧Hx)

Something isn’t red.
(It is not the case that everything is red.)
∃x¬Rx or ¬∀xRx

Something is red and something is heavy.
∃xRx ∧ ∃xHx

Note that the correct translation in the last case is not ∃x(Rx ∧ Hx). For
the latter to be true, there must be some thing that is both red and heavy: it
claims that there is some thing such that it is red and heavy. But the original
English does not require there to be at least one thing that is both red and
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heavy: it requires only that there is some thing that is red and that there is
some (possibly different) thing that is heavy.

8.3.2 Exercises

Translate the following from English into MPL.

1. If Independence Hall is red, then
something is red.

2. If everything is red, then Inde-
pendence Hall is red.

3. Nothing is both green and red.

4. It is not true that nothing is both
green and red.

5. Red things aren’t green.

6. All red things are heavy or ex-
pensive.

7. All red things that are not heavy
are expensive.

8. All red things are heavy, but
some green things aren’t.

9. All red things are heavy, but not
all heavy things are red.

10. Some red things are heavy, and
furthermore some green things
are heavy too.

11. Some red things are not heavy,
and some heavy things are not
red.

12. If Kermit is green and red, then
it is not true that nothing is both
green and red.

13. Oscar’s piano is heavy, but it is
neither red nor expensive.

14. If Spondulix is heavy and ex-
pensive, and all expensive things
are red and all heavy things are
green, then Spondulix is red and
green.11

15. If Kermit is heavy, then some-
thing is green and heavy.

16. If everything is fun, then noth-
ing is worthwhile.

17. Some things are fun and some
things are worthwhile, but noth-
ing is both.

18. Nothing is probable unless
something is certain.

19. Some things are probable and
some aren’t, but nothing is cer-
tain.

20. If something is certain, then it’s
probable.

8.3.3 Restricted Quantification

Consider the claim “every person is special.” The correct way to translate it is:

Sx: x is special ∀x(Px → Sx)

Px: x is a person
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Note that here the qualification or restriction on the quantification—that we
are talking about all persons, not about everything whatsoever—comes in the
form of a predicate Px, which is placed inside the scope of the quantifier.12

In the case of an existential quantification—for example, “some people are
special”—we similarly obtain:

∃x(Px ∧ Sx)

(Recall that “all P s are Ss” is translated with a conditional, whereas “some P s
are Ss” is translated with a conjunction.)

Sometimes we use such terms as “everyone” and “someone” (as opposed
to “everything” and “something”). (i) “Everyone is special” states that every
person is special (not that everything is special), and (ii) “someone is tall” says
that some person is tall—so we translate these claims as follows:

T x: x is tall (i) ∀x(Px → Sx)

Px: x is a person
Sx: x is special (ii) ∃x(Px ∧ T x)

§

Sometimes the information conveyed by utterances involving “everyone” and
“someone” is more restricted, that is, restricted not only to persons but also
to some particular group of persons. For example, suppose that a tour guide
says to a group of people assembled in a hotel lobby, “everyone is ready—
let’s begin.” Suppose also that an exam monitor says to a group of people
sitting in a room, “everyone is ready—let’s begin.” Focus on the first part of
what each says: “everyone is ready.” The guide will typically be taken to be
conveying the information that all persons who are on the tour are ready—
not that all persons whatsoever (wherever in the world they may be) are ready.
And the monitor will typically be taken to be conveying the information that
all persons who are candidates for the exam are ready—not that all persons
whatsoever (wherever in the world they may be) are ready. There are two ways
to approach these cases.

According to the pragmatic approach, the proposition expressed by an ut-
terance of “everyone is ready” is always the same: it is the proposition that
all persons whatsoever are ready. The restricted claims—that everyone on the
tour is ready, that all candidates are ready—are not what is said by the guide
or the monitor: these claims are implicatures. To see how this story works,
imagine that the proposition expressed by the guide is indeed that every per-
son in the entire world is ready—and suppose also that she is conforming to
the conversational maxims (§6.1): in particular, the Maxims of Quality. It will
then follow that she is trying to make her contribution true. But it is obviously
false (and obvious that she knows that it is false) that absolutely everyone in
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the whole world is ready—so we shall infer that the information she is actually
trying to contribute is that some restricted set of persons is ready—say, the set
of persons on the tour.13 A similar story works for the monitor.14

According to the semantic approach, the proposition expressed by “every-
one is ready” varies from context to context. Uttered by the tour guide, this
sentence expresses the proposition that everyone on the tour is ready; uttered
by the exam monitor, it expresses the proposition that every candidate for the
exam is ready; and so on.

Following the pragmatic approach and applying the glossary:

Px: x is a person
Rx: x is ready

we translate both the tour guide’s claim “everyone is ready” and the monitor’s
claim “everyone is ready” as ∀x(Px → Rx). On this approach, both speakers
say the same thing—they express the same proposition (that all persons what-
soever are ready). However, because of their differing contexts, their claims
have different implicatures (the guide’s claim has the implicature that all per-
sons on the tour are ready, the invigilator’s that all persons who are taking the
exam are ready). Following the semantic approach and applying the glossary:

Px: x is a person
Rx: x is ready
T x: x is on the tour
Cx: x is a candidate for the exam

we translate the tour guide’s claim “everyone is ready” as:

∀x((Px ∧ T x)→ Rx)

and the monitor’s claim “everyone is ready” as:

∀x((Px ∧ Cx)→ Rx)

On this approach, the two speakers express different propositions (using the
same sentence).

The debate between pragmatic and semantic approaches to restricted quan-
tification is an ongoing one. In this book, we take the pragmatic approach,
largely because it makes translations from English into our logical language
more straightforward, which is useful as we are getting the hang of the logical
apparatus. Note, however, that the logical apparatus itself is perfectly compat-
ible with both approaches. Regardless of whether you think that the proposi-
tion expressed by the tour guide is ∀x(Px → Rx) or ∀x((Px ∧ T x)→ Rx),
both propositions can be represented perfectly well in MPL.
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Note that if the tour guide says explicitly “everyone who is part of the
tour is ready,” we shall translate this as ∀x((Px ∧ T x)→ Rx). But if the tour
guide says simply “everyone is ready,” we translate this as ∀x(Px → Rx).
That is, we add predicates to our translations to restrict the quantifiers only
when expressions corresponding to these predicates are explicitly uttered in
the English that we are translating.15

The issues we have been discussing do not affect just “everyone”—they also
affect plain old “everything.” For example, if a shopkeeper says “everything has
been reduced,” he will typically be taken to be conveying the information that
every piece of merchandise in the shop has been reduced (not that absolutely
everything in existence has been reduced—nor even that everything in the
shop, including the sales assistants and the shoppers, has been reduced). In
accordance with the pragmatic approach, using the glossary:

Rx: x has been reduced

we translate the shopkeeper’s claim as ∀xRx. That is, we take it that the prop-
osition expressed by the shopkeeper is that absolutely everything has been
reduced. We take the restricted claim—that every item of merchandise in
the store has been reduced—to be an implicature, not what is said; hence it
does not show up in the translation into MPL, which represents the proposi-
tion expressed. In contrast, following the semantic approach and applying the
glossary:

Mx: x is an item of merchandise
Sx: x is in the shop
Rx: x has been reduced

the translation would be ∀x((Mx ∧ Sx)→ Rx). In this book, however—
where we adopt the pragmatic approach—we only give the latter transla-
tion when each of its constituents corresponds to some expression in the
English claim that we are translating. Thus, we take this MPL expression
to be the translation of “every piece of merchandise in the store has been
reduced,” whereas we take the translation of plain old “everything has been re-
duced” to be simply ∀xRx.

8.3.4 Only; Necessary and Sufficient Conditions

Given the glossary:

Hx: x is a horse
Gx: x gallops
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how do we translate “only horses gallop” into MPL? Recall that “all horses
gallop” is translated as ∀x(Hx →Gx). That is, for anything whatsoever, if it is
a horse, then it gallops. Similarly, “only horses gallop” states that for anything
whatsoever, it gallops only if it is a horse. Remembering that “α only if β” is
translated as (α → β), we can see that “only horses gallop” will therefore be
translated as ∀x(Gx →Hx). Now if we look at the latter wff, we see that it is
also the translation of “all galloping things are horses.” So “only horses gallop”
and “all galloping things are horses” state the same thing. That may seem odd
at first, but when we think about it, it is exactly right: if only horses gallop,
then nothing but horses gallop—that is, everything that gallops is a horse; and
conversely, if all galloping things are horses, then no nonhorse gallops—that
is, only horses gallop.

What about “all and only horses gallop?” This states that all horses gallop
and only horses gallop, so it translates as:

∀x(Hx →Gx) ∧ ∀x(Gx →Hx)

We can also translate it as ∀x(Hx ↔Gx), that is, for anything whatsoever, it
is a horse if and only if it gallops. In Chapter 10 we will be in a position to show
that these two translations are logically equivalent.

What about the phrase “only some,” as in “only some smokers get cancer?”
Well, the claim here is that some smokers get cancer and some do not—in
other words, some smokers get cancer, but not all of them do. So we translate
as follows:

Sx: x is a smoker ∃x(Sx ∧ Cx) ∧ ∃x(Sx ∧ ¬Cx) or

Cx: x gets cancer ∃x(Sx ∧ Cx) ∧ ¬∀x(Sx → Cx)

“P is a sufficient condition for Q” means that having the property P is
enough for something to have the property Q; that is, if something is P ,
then it is Q. So we regard this statement as meaning the same thing as “all
P s are Qs,” and we translate it as ∀x(Px →Qx). For example, “weighing
more than a ton is sufficient for being heavy” says the same as “anything that
weighs more than a ton is heavy.” “P is a necessary condition for Q” means that
something cannot possess the property Q if it does not possess the property
P —in other words, something possesses the property Q only if it possesses
the property P . So we regard this statement as meaning the same thing as
“all Qs are P s,” and we translate it as ∀x(Qx → Px). For example, “weighing
more than a pound is necessary for being heavy” says the same as “only things
that weigh more than a pound are heavy” and as “anything that is heavy
weighs more than a pound.” Thus, “P is a necessary and sufficient condition
for Q” says the same thing as “all P s and only P s are Qs,” and translates as
∀x(Px →Qx) ∧ ∀x(Qx → Px), or equivalently ∀x(Px ↔Qx).
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8.3.5 Exercises

Translate the following propositions from English into MPL.

1. Everyone is happy.

2. Someone is sad.

3. No one is both happy and sad.

4. If someone is sad, then not ev-
eryone is happy.

5. No one who isn’t happy is
laughing.

6. If Gary is laughing, then some-
one is happy.

7. Whoever is laughing is happy.

8. Everyone is laughing if Gary is.

9. Someone is sad, but not every-
one and not Gary.

10. Gary isn’t happy unless every-
one is sad.

11. All leaves are brown and the sky
is gray.

12. Some but not all leaves are
brown.

13. Only leaves are brown.

14. Only brown leaves can stay.

15. Everyone is in trouble unless
Gary is happy.

16. Everyone who works at this
company is in trouble unless
Gary is happy.

17. If Stephanie is telling the truth,
then someone is lying.

18. If no one is lying, then Stephanie
is telling the truth.

19. Either Stephanie is lying, or no-
one’s telling the truth and every-
one is in trouble.

20. If Gary is lying, then not every-
one in this room is telling the
truth.

8.4 Syntax of MPL

Having introduced the language of propositional logic in a relatively casual
way earlier in Chapter 2, in §2.5 we gave a precise and compact account of the
syntax of PL. Here we do the same for MPL.

1. The symbols of MPL are:

(i) names:

a , b, c, . . . , t

We use lowercased letters other than u, v, w, x, y, and z, which are reserved for
variables (see below). If we need more than twenty different name symbols, we
use subscripts (i.e., a2, a3, . . . , b2, b3, . . .).

(ii) variables:

x , y , z, u, v , w

182 Chapter 8 The Language of Monadic Predicate Logic



If we need more than six different variable symbols, we use subscripts (i.e.,
x2, x3, . . . , y2, y3, . . .).

(iii) predicates:

A, B , C , . . . X , Y , Z

If we need more than twenty-six different predicate symbols, we use subscripts
(i.e., A2, A3, . . . , B2, B3, . . .).

(iv) five connectives:

¬, ∧, ∨, →, and ↔
(v) two quantifier symbols:

∀ and ∃
(vi) two punctuation symbols (parentheses):

( and )

Recall the distinction between logical and nonlogical vocabulary (§2.5.2).
In the case of MPL, the logical symbols are the connectives, the quantifier
symbols, and the variables; the nonlogical symbols are the names and
predicates; and the parentheses are auxiliary symbols.

2. We define the notion of a term of MPL as follows:

(i) A name is a term.
(ii) A variable is a term.

(iii) Nothing else is a term.

At this stage, then, the word “term” simply gives us a quick way of talking
about names and/or variables.16

3. Wffs of MPL are defined as follows:17

(i) Where P is a predicate and t is a term, the following is a wff:

P t

That is, a predicate followed by one name or variable is a wff. Wffs of this form
are atomic wffs.

(ii) Where α and β are wffs and x is a variable, the following are wffs:

¬α

(α ∧ β)

(α ∨ β)

(α → β)

(α ↔ β)

∀xα

∃xα

(iii) Nothing else is a wff.
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8.4.1 Terminology

We call the simple symbols ∀ and ∃ quantifier symbols, and reserve the term
“quantifier” for complex symbols consisting of a quantifier symbol followed
by a variable. So the following are quantifiers:

∀x , ∃x , ∀y , ∃y , . . .

It will be useful to have a single term that covers both connectives and quan-
tifiers. We use logical operator (or sometimes just operator) for this purpose. So
a logical operator is a connective or a quantifier.

8.4.2 Syntactic Variables

Wff variables (§2.4) allow us to make general statements about all wffs in a
compact, clear way. Sometimes we need something that relates to specific sym-
bols of a syntactic category other than wffs—for example names, predicates,
or variables—in the way that a wff variable relates to specific wffs. Let us use
syntactic variable as a general term here: so wff variables, name variables, pred-
icate variables, and so on will all be called “syntactic variables.” It is often useful
to think of them as placeholders—boxes into which a specific item of syntax
of the relevant sort (i.e., a wff, a name, or a predicate, as the case may be) may
be put.

The recursive definition of a wff of MPL in §8.4 makes use of wff variables α

and β. It also makes use of variables for predicates, terms, and variables. I have
used underlining to represent these. So P is a predicate variable—a box into
which any predicate may be put; and t is a term variable—a box into which
any term (i.e., any name or predicate) may be put. Clause (3i) states that if we
take any predicate of the language and place it before any term of the language
(i.e., any name or variable), the result is a wff—for example, Pa, Px, Rb, or
Gy. Likewise, x is a variable variable: a box into which any variable may be
put. Clauses (3ii∀) and (3ii∃)18 state that if we take any wff and stick on the
front of it ∀ or ∃ followed by any variable, the result is a wff. For example:

. ∀xRx

Here the wff Rx takes the place of the wff placeholder α in clause (3ii∀),
and the variable x takes the place of the variable placeholder x.

. ∀yPx

Here the wff Px takes the place of the wff placeholder α in clause (3ii∀),
and the variable y takes the place of the variable placeholder x.

. ∃x((Pa → Rb) ∧ Sx)

Here the wff ((Pa → Rb) ∧ Sx) takes the place of the wff placeholder α

in clause (3ii∃), and the variable x takes the place of the variable place-
holder x.
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. ∀y∃x(Rx ∧ Py)

Here the wff ∃x(Rx ∧ Py) takes the place of the wff placeholder α in
clause (3ii∀), and the variable y takes the place of the variable place-
holder x.

In general in this book, I use the following typographical devices to indicate
syntactic variables:

. Greek letters: variables for wffs, and

. underlining: variables for items of the same syntactic category as the
underlined symbol.

So an item of vocabulary (a variable, a name, a predicate, etc.) with a line
under it is a placeholder for any item of vocabulary of that sort (any variable,
any name, any predicate, etc.) Think of the line as (the bottom of) a box,
and the symbol above the line as telling you what sort of thing may go in the
box: namely, something of the same syntactic category as that object above
the line. So a is a syntactic variable for names: a box into which any name
may be put. Likewise, y is a syntactic variable for variables: a box into which
any variable may be put, and so on. The rules for filling these placeholders are
the same as for wff variables (recall §5.2): where you see the same box twice,
it must be filled with the same thing both times. So acceptable instances of
Pa →Qa include, for example, Pa →Qa, Pb→Qb, and Rb→ Rb—but
not Pa →Qb. For the rules for forming instances are that P must be filled
with any predicate, that Q must be filled with any predicate, that a must be
filled with any name, and that both occurrences of the placeholder a must
be filled with the same name.19

8.4.3 Constructing Wffs

If a given string of symbols is a wff, it must be constructible in accordance with
the recursive definition of §8.4. Sometimes it can be useful to trace through the
construction of a wff. For example, consider the wff ∃x(Fx →Ga):

Step Wff constructed at this step From steps/by clause

1 Fx / (3i)
2 Ga / (3i)
3 (Fx →Ga) 1, 2 / (3ii→)
4 ∃x(Fx →Ga) 3 / (3ii∃)

Note that at each step of the construction of our target wff, we have something
that is itself a wff. We call these wffs (including the last one, i.e., the target wff
itself) the “subformulas” of the target wff.
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Each nonatomic wff has a main operator. This is the one added last in the
construction. So in our example above, the main operator is the existential
quantifier ∃x.

Consider a second example: (∃xFx →Ga):

Step Wff constructed at this step From steps/by clause

1 Fx / (3i)
2 Ga / (3i)
3 ∃xFx 1 / (3ii∃)
4 (∃xFx →Ga) 2, 3 / (3ii→)

The main operator here is the →.

8.4.3.1 EXERCISES

Write out a construction for each of the following wffs, and state the main
operator.

1. ∀x(Fx →Gx)

2. ∀x¬Gx

3. ¬∃x(Fx ∧Gx)

4. (Fa ∧ ¬∃x¬Fx)

5. ∀x(Fx ∧ ∃y(Gx →Gy))

6. (∀x(Fx →Gx) ∧ Fa)

7. ((¬Fa ∧ ¬Fb)→∀x¬Fx)

8. ∀x∀y((Fx ∧ Fy)→Gx)

9. ∀x(Fx →∀yFy)

10. (∀xFx →∀yFy)

8.4.4 Quantifier Scope; Free and Bound Variables

We say that x is the variable in the quantifier ∀x, that y is the variable in the
quantifier ∃y, and so on. Conversely, we say that the quantifier ∀x contains the
variable x, that the quantifier ∃y contains the variable y, and so on.

If a wff has a quantifier in it, then it must have got there—in accordance
with clause (3ii∀) or (3ii∃)—by being placed in front of some subformula α

at some stage in the construction of the wff. For any quantifier appearing in a
wff, we call this subformula α (i.e., the one to which the quantifier was prefixed
during construction of the wff) the scope of the quantifier. So in our first
example in the previous section, the scope of the quantifier ∃x is the wff
(Fx →Ga). In our second example, the scope of the quantifier ∃x is the
wff Fx.

Suppose a variable occurs somewhere in a wff. That occurrence of the vari-
able is bound in that wff if (i) it is in a quantifier or (ii) it is in the scope of a
quantifier that contains the same variable. An occurrence of a variable that is
not bound in a wff is free in that wff. So, for example:
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. The variable x is free in Rx.

. Both occurrences of x are bound in ∀xRx.

. The variable x is free in ∀yRx (because although x is within the scope of
the quantifier ∀y, that quantifier contains the variable y, not x).

. Both occurrences of x are bound in (∀xRx →Qa).

. All three occurrences of x are bound in ∀x(Rx →Qx).

. The first two occurrences of x are bound and the third is free in (∀xRx →
Qx).20

Note that a variable can occur within the scope of more than one quantifier
containing that variable. For example, in the wff ∀x(Px →∃xQx), the oc-
currence of x in Qx is within the scopes of both ∀x and ∃x. Nevertheless, we
do not say that this occurrence of x is bound “twice.” Rather, for every bound
occurrence of a variable x in a wff, we pick out exactly one quantifier in the
wff that binds it: it is the quantifier ∀x or ∃x, in whose scope the occurrence
of x in question falls, that is added first in the construction of the wff. So in
the above wff, the occurrence of x in Qx is bound by the quantifier ∃x, not by
∀x. Note carefully: the occurrence of x in Qx is indeed in the scope of ∀x, but
it is not bound by that quantifier—because it is already bound (i.e., already in
the process of constructing the wff) by the quantifier ∃x.

An occurrence of a quantifier ∀x or ∃x in a wff is vacuous if the variable x

(i.e., the one in the quantifier) does not occur free in the scope of the quantifier
(in that wff). For example, the quantifier ∀x is vacuous in each of the following
wffs, because in each case its scope does not contain any free occurrences of x:

. ∀xFa

. ∀xFy

. ∀x∃xFx (Here the scope of ∀x is ∃xFx, which contains no free occurrences of x.)

For further discussion of vacuous quantifiers, see §10.1.7.

8.4.5 Open and Closed Wffs; Propositions

A wff with no free occurrences of variables is a closed wff. A wff with one
(or more) free occurrences of variable(s) is an open wff.21 Our syntax counts
open and closed wffs as equally well formed. But note that open wffs are not
propositions in the sense of things that can be true or false. Given the glossary:

Rx: x is red
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the open formula Rx translates into English as “it is red.” This does not express
a proposition: it cannot be said to be true, or false, because “it” does not
pick out anything in particular. Remember that “it” here is a variable, not a
singular term. If I point to a billiard ball and say “it is red,” then I do express
a proposition. But in this case, “it” is a singular term, not a variable, and my
statement translates into MPL as Rb, using the glossary:

b: that ball/the ball to which I pointed

This is quite different from the case in which “it” is the English translation of
the free variable x: in this case “it” does not pick out some particular thing,
and “it is red” cannot be said to be true or false.

The fact that open formulas are not propositions will be reflected in our
semantics for MPL, to be introduced in the next chapter. The semantics will
make precise the notion of a “way of making propositions true or false,” and it
will assign truth values only to each closed wff in each such scenario.

We could, if we wished, complicate our definition of the syntax of MPL in
such a way as to make only closed formulas come out as well formed. However,
as long as we remember that not every wff is a proposition (something that can
be said to be true or false), it is simpler to do things the way we have here.

8.4.5.1 EXERCISES

Identify any free variables in the following formulas. State whether each for-
mula is open or closed.

1. T x ∧ Fx

2. T x ∧ Ty

3. ∃xT x ∧ ∃xFx

4. ∃xT x ∧ ∀yFx

5. ∃xT x ∧ Fx

6. ∃x(T x ∧ Fx)

7. ∀y∃xTy

8. ∃x(∀xT x →∃yFx)

9. ∃y∀xT x →∃yFx

10. ∀x(∃xT x ∧ Fx)

11. ∀x∃xT x ∧ Fx

12. ∃xTy

13. ∀xT x →∃xFx

14. ∃x∀y(T x ∨ Fy)

15. ∀xFx ∧Gx

16. ∀x∀yFx →Gy

17. ∀x∀y(Fx →∀xGy)

18. ∃yGb ∧Gc

19. ∃yGy ∧ ∀x(Fx →Gy)

20. ∀x((Fx →∃xGx) ∧Gx)
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9
Semantics of Monadic Predicate Logic

In this chapter we turn to the task of developing a semantics for our new lan-
guage MPL. As mentioned at the beginning of Chapter 8, what our semantics
needs to do is (i) give a precise account of what a “possible way of making
propositions true or false” is, and (ii) tell us how the truth value of each prop-
osition of MPL is determined in each such scenario. Once these tasks are done,
we can then formulate precise accounts of our key logical notions, such as
validity (in every possible scenario in which the premises are true, the con-
clusion is true) and equivalence (having the same truth value in every possible
scenario).

At this point it will be useful to introduce some new terms. Propositions
have truth values. Other expressions in a logical language—in particular,
names and predicates—do not have truth values, but there are (as we shall
see) entities that (roughly speaking) play the role for them that truth values
play for propositions. It is useful to have an umbrella term for all these enti-
ties. We use the term “value” for this purpose. So the value of a proposition is
its truth value; the value of a name—which is its referent—is what the name
contributes to the determination of the truth value of a proposition in which
it features; and the value of a predicate—which is its extension—is what the
predicate contributes to the determination of the truth value of a proposition
in which it features. We explain these concepts properly below—for now we
are just introducing terms: “value” (a general term applying to different kinds
of expressions), “referent” (the value of a name), and “extension” (the value
of a predicate). (We already have the term “truth value” for the value of a
proposition.)

We can now state the general principle governing all our systems of
semantics—for propositional logic and for predicate logic. The guiding idea is
that the values of nonlogical symbols are unconstrained: for any distribution of
values to nonlogical expressions of the language, there is a possible scenario in
which these expressions have those values. Propositions then have their truth



values determined by the values of their nonlogical components, together with
the laws of truth that govern their logical components.

In the case of PL, the nonlogical symbols are the basic propositions (repre-
sented in PL by capital letters), and the logical symbols are the connectives. A
scenario is represented as a truth table row: an assignment of truth values to
basic propositions. These assignments are completely unconstrained: for each
basic proposition, there is a possible scenario in which it is true and a possible
scenario in which it is false; furthermore, for any collection of basic proposi-
tions, any combination of assignments of truth values to these propositions is
possible. Given an assignment of truth values to basic propositions, the truth
value of each compound proposition is then determined via the truth tables
for the connectives.

As discussed in §8.1, sets of such propositions as:

Maisie is a kelpie.
All kelpies are dogs.
Maisie is a dog.

pose a problem for the PL framework. Translated into PL, these propositions
come out as simple nonlogical expressions, and so their truth values are un-
constrained. Any assignment of truth values to them is possible. In particular,
there is a possible scenario in which the first two are true and the third is false.
Intuitively, that’s not right: it seems clear that if the first two are true, the third
cannot be false.

Now that we have enriched our logical language, a solution to this problem
is within reach. Translated into MPL, these three propositions are no longer
simple nonlogical expressions: each one is a wff made up of names, predicates,
variables, and/or quantifiers. So there is now a possibility that although the
assignment of values to nonlogical expressions (names and predicates) is un-
constrained, nevertheless the laws of truth governing the logical expressions
(and governing the truth of atomic wffs)—which determine the truth values
of propositions given values for their nonlogical components—might rule out
the possibility that “Maisie is a kelpie” and “all kelpies are dogs” are both true
while “Maisie is a dog” is false. In fact, this is exactly what will happen.

So what we need to investigate are the following issues:

. What are the values of the nonlogical symbols of MPL? (A possible
scenario will then simply be any assignment of values to nonlogical
expressions.)

. What are the rules that determine the truth values of propositions of MPL
on the basis of the values of their nonlogical components? (That is, how
are the truth values of propositions of MPL determined in each possible
scenario?)
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Some of what we learned about propositional logic will carry over unchanged.
For example, the way in which the truth value of a proposition whose main
operator is one of our five connectives is determined by the truth values of its
components will be just the same as before. Some of what we learn will be new.
For example, we need to learn what the values of names and predicates are, and
we need to see how the truth value of a proposition whose main operator is a
quantifier is determined in a scenario.

9.1 Models; Truth and Falsity of Uncomplicated Propositions

Consider an atomic proposition, say, Pa. As just discussed, we no longer
wish to view its truth value as simply given (i.e., a brute fact) in each possible
scenario. Rather, now that atomic propositions are not represented by simple
symbols (as they were in PL), we want their truth values to be determined by
the values of their components: the name (in this case a) and the predicate
(P ). So what must the values of a and P be, in order that together, they
determine a truth value for the atomic proposition Pa?

The answer flows straightforwardly from our discussion of atomic propo-
sitions in §8.2. An atomic proposition has two parts: a name and a predicate.
The function of the name is to pick out a particular object. The function of the
predicate is to single out a certain property. The atomic proposition is true if
the object picked out by the name has the property singled out by the predi-
cate; it is false if the object picked out by the name does not have the property
singled out by the predicate.

So, we shall take the value of a name to be an object: this choice falls straight
out of the story just told. As for predicates, the move that follows directly from
the story just told is to take the value of a predicate to be a property. However,
for reasons explained in §16.1.1, it is more convenient to work with sets than
with properties. But we can easily rephrase the above story: instead of saying
that Pa is true if the object picked out by a has the property picked out by P ,
we can say that Pa is true if the object picked out by a is a member of the set of
objects that have the property picked out by P . We can now take the value of a
predicate to be a set. Intuitively, it is the set of objects possessing the property
that the predicate picks out; but all mention of properties is now confined to
this intuitive gloss—the value of the predicate itself is simply a set of objects.

So the value of a name (e.g., a) is an object, and the value of a predicate
(e.g., P ) is a set of objects. As mentioned at the beginning of this chapter,
we call the value of a name its “referent,” and the value of a predicate its
“extension.” We now need to specify how these values determine a truth value
for an atomic proposition (Pa). The answer is simple. The proposition Pa is
true if the referent of the name a is a member of the extension of the predicate
P (intuitive gloss: if the object picked out by the name is a member of the
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Pa is true

a P

Pa is false

a

Figure 9.1. Truth and falsity of an atomic proposition Pa.

set of objects possessing the property singled out by the predicate). It is false
if the referent of the name is not a member of the extension of the predicate
(intuitive gloss: if the object picked out by the name is not a member of the
set of objects possessing the property singled out by the predicate). Figure 9.1
represents these ideas in visual form. Objects are shown as dots. The arrow
from the name a shows its referent: an object. The arrow from the predicate
P shows its extension: a set of objects (represented as a ring drawn around the
objects in the set). Proposition Pa is true if the referent of a is in the extension
of P ; it is false if the referent of a is not in the extension of P .

We now have an account of what the values of names and predicates are—
objects, and sets of objects, respectively—which has the desired feature that
the value of the name and the predicate in an atomic proposition together
determine a truth value for that proposition.

§

Let’s turn now to quantified propositions. The least complicated kind of prop-
osition involving a (nonvacuous) universal quantifier is one of the form ∀xPx.
Obviously, what it takes for ∀xPx to be true is for everything to be in the ex-
tension of the predicate P . But what is covered by “everything” here? Recall
that we deem something a logical truth if it is true in every possible scenario—
and when it comes to counting something as a possible scenario, we cast the
net widely. In propositional logic, we take any assignment of truth values to ba-
sic propositions to constitute a possible scenario. Similarly, in predicate logic,
we want to allow any assignment of referents to names and of extensions to
predicates to count as a possible scenario (more on this below). In a similar
vein, it seems that we should countenance all possibilities regarding what “ev-
erything” covers. It should not be sufficient to deem ∀xPx logically true if it
merely comes out true no matter what extension P is assigned: it should also
be true no matter what “everything” covers. Thus, if logical truth is to be truth
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for all scenarios, a scenario needs to specify not just a referent for each name
and an extension for each predicate but also what counts as “everything.” We
can make this idea more precise as follows. A scenario—or model, as we shall
call it—comprises three things:1

1. A set of objects. This set of objects is the domain of the model. (Intuitively,
the set specifies what counts as “everything” according to the model:
“everything” covers all objects in the domain.)

2. A specification of a referent for each name.

3. A specification of an extension for each predicate.

Now that we have domains in the picture, we place a requirement on the
specifications of referents and extensions: in a given model, the referent of
each name must be an object in the domain of the model, and the extension
of each predicate must be a subset of the domain of the model.2 That is, an
object cannot be the referent of a name in a model unless it is in the domain of
the model, and an object cannot be in the extension of a predicate in a model
unless it is in the domain of the model.

Let’s return now to our least complicated kind of universally quantified
proposition: ∀xPx. We can now say that it is true on a given model just in case
the extension of P on that model includes the entire domain of the model:
that is, just in case everything (according to that model) is in the extension
of P (on that model). Similarly, the least complicated kind of proposition
involving a (nonvacuous) existential quantifier is one of the form ∃xPx. It is
true on a given model just in case the extension of P on that model includes at
least one thing (from the domain of the model): that is, just in case something
(according to that model) is in the extension of P (on that model).

§

A model comprises an assignment of values to names and predicates together
with a domain of objects from which these values must be drawn (the value
of a name must be a member of the domain; the value of a predicate must be
a set of members of the domain). In keeping with the guiding idea set out at
the beginning of this chapter, we regard any assignment of values to names and
predicates as a possible scenario. That is, there are no constraints on the values
of nonlogical symbols: for any name and any object you care to imagine, we
countenance a model in which that name has that object as its referent; and
for any predicate and any set of objects you care to imagine, we countenance a
model in which that predicate has that set of objects as its extension.3 However,
there is one restriction on models: the domain must be a nonempty set—that
is, it must contain at least one object. For we want each name to have a value
in each model—after all, a model (a possible scenario) is just a free assignment

9.1 Models; Truth and Falsity of Uncomplicated Propositions 193



of values to nonlogical symbols—and this value must be a member of the
domain. So in all cases, the domain had better have at least one object in it.4

Note that the extension of a predicate may be the empty set: that is, the set—
denoted ∅—that has no members. As explained in §16.1, the empty set is a
perfectly good set: it is simply one with nothing in it. So a predicate assigned
the empty set as its extension does have a value (i.e., its extension, the empty
set): the point is simply that there are no objects in its extension. But why
should we want to countenance predicates that apply to nothing? Well, if you
think about it, such predicates are not all that strange. For example, consider
the predicate “is 20 billion years old.” It picks out a property that, plausibly,
nothing possesses.5

We have said that a model assigns a referent to each name and an extension
to each predicate. We now need to be a bit more precise. The full language
MPL contains all those wffs that may be constructed in accordance with the
clauses given in §8.4 from the symbols given in that section. Among those
symbols there are infinitely many names and infinitely many predicates (recall
the use of subscripts: a2, a3, . . . , b2, b3, . . . and P2, P3, . . . , Q2, Q3, . . .).
Suppose we restrict ourselves to a (possibly empty) subset of names and a
(nonempty) subset of predicates, but we retain all the logical vocabulary of
MPL. We may then construct wffs from this restricted base of symbols, using
the same clauses as before. The result is a fragment of MPL.6 We shall allow
models of fragments—models that assign a referent to each name and an
extension to each predicate in that fragment.7

Note the reason for requiring that a fragment contain at least one predicate,
even though it may contain no names. A fragment containing just one predi-
cate P , but no names, will include some propositions (i.e., closed wffs)—for
example, ∀xPx. In contrast, a fragment containing no predicates will contain
no wffs at all.8

Note also that when translating into MPL, we use a fragment of the full lan-
guage: the one containing just those names and predicates featured in our glos-
sary.9 Note that as a matter of terminology, the full language MPL is counted as
a fragment of itself (cf. the way that a wff is counted as a subformula of itself).

§

We now summarize. A model of a fragment of MPL consists of:

1. a domain (a set of objects);

2. a specification of a referent (an object) for each name in the fragment;
and

3. a specification of an extension (a set of objects) for each predicate in the
fragment.
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The following properties are required:

. The domain must be nonempty.

. Every name and predicate in the fragment must be assigned a referent/
extension.

. The referent of a name in a model must be an object in the domain of that
model.

. An object can be in the extension of a predicate in a model only if it is in
the domain of that model.

The following properties are allowed (but not required):

. The extension of a predicate may be the empty set.

. The extension of a predicate may be the entire domain.

. Different names may be assigned the same object as referent.

. Different predicates may be assigned the same set of objects as extension.

§

Suppose that we have a model M of the fragment of MPL containing just
the name a and the predicate P . Propositions of MPL that are not in this
fragment are assigned no truth value in M. For example, Pb and Ra—which
are propositions of the full language MPL but are not in this fragment—
have no truth value assigned in M (because the truth value of an atomic
proposition in a model is True if the referent of the name is in the extension
of the predicate and False if the referent is not in the extension; if there is no
referent, or no extension, then the proposition is neither true nor false). This
does not mean that we are abandoning bivalence (Chapter 3). On the contrary,
it means that when we are dealing with a certain fragment of MPL, we are
interested only in models of that fragment, and we ignore all models that do
not assign referents/extensions to some names/predicates in the fragment. We
may say, for the sake of simplicity, that (e.g.) a proposition α is logically true iff
it is true on “all models,” but what we really mean is: true on all models of any
fragment of MPL that includes the proposition α—that is, true on all models
that assign values to all nonlogical symbols occurring in α.

We have already seen how a model determines the truth value of an atomic
proposition: Pa is true in a model M iff the referent of a in that model is in
the extension of P in that model. Note that we are talking here about atomic
propositions—that is, closed atomic wffs. Formula Px is an atomic wff—
but it is not a closed wff, for it contains the free variable x. So (§8.4.5) it
is not a proposition: it is not something that can be said to be true or false.
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Hence, a model does not determine a truth value for it: a model that assigns
an extension to P does not determine a truth value for Px. The reason is
that the variable x is not assigned a value. That is just the way things should
be: the point of the distinction between variables and singular terms is that a
singular term picks out a particular individual, whereas a variable does not. In
a particular model, P gets an extension—but x does not get a referent (or any
other value), and so Px is not assigend a truth value.10

9.1.1 Exercises

For each of the propositions:

(i) Pa (ii) ∃xPx (iii) ∀xPx

state whether it is true or false on each of the following models.

1. Domain: {1, 2, 3, . . .} 11

Referent of a: 1
Extension of P : {1, 3, 5, . . .} 12

2. Domain: {1, 2, 3, . . .}
Referent of a: 1
Extension of P : {2, 4, 6, . . .} 13

3. Domain: {1, 2, 3, . . .}
Referent of a: 2
Extension of P : {1, 3, 5, . . .}

4. Domain: {1, 2, 3, . . .}
Referent of a: 2
Extension of P : {2, 4, 6, . . .}

5. Domain: {1, 2, 3, . . .}
Referent of a: 1
Extension of P : {1, 2, 3, . . .}

6. Domain: {1, 2, 3, . . .}
Referent of a: 2
Extension of P : ∅

9.2 Connectives

We said that some of what we learned about the semantics of propositional
logic will carry over unchanged to the semantics of predicate logic—and
that in particular, the way in which the truth value of a proposition whose
main operator is one of our five connectives is determined by the truth values
of its components will be just the same as before. Consider the truth table for
negation:

α ¬α

T F
F T

We can now interpret this as follows. The first row tells us that in any model in
which α is true,¬α is false. The second row tells us that in any model in which
α is false, ¬α is true. In other words, a formula ¬α is true in a model just in
case its negand α is false in that model.
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The same holds for the other truth tables, for example, the one for
conjunction:

α β (α ∧ β)

T T T
T F F
F T F
F F F

The first row tells us that in any model in which α and β are both true, (α ∧ β)

is true. The second row tells us that in any model in which α is true and β is
false, (α ∧ β) is false; and so on. (Note that all possibilities are covered: in any
model that assigns values to α and β, either α and β are both true, or α is true
and β is false, or α is false and β is true—row 3—or α and β are both false—
row 4.) In other words, a formula (α ∧ β) is true in a model just in case both
its conjuncts are true in that model.

In sum, where α and β are any propositions:

. ¬α is true in a model iff α is false in that model.

. (α ∧ β) is true in a model iff α and β are both true in that model.

. (α ∨ β) is true in a model iff one or both of α and β is true in that model.

. (α → β) is true in a model iff α is false in that model or β is true in that
model (or both).

. (α ↔ β) is true in a model iff α and β are both true or both false in that
model.

9.2.1 Exercises

State whether each of the following propositions is true or false in each of the
six models given in Exercises 9.1.1.

(i) (¬Pa ∧ ¬Pa) (iv) (∃xPx ∨ ¬Pa)

(ii) (¬Pa → Pa) (v) ¬(∀xPx ∧ ¬∃xPx)

(iii) (Pa ↔∃xPx)

9.3 Quantified Propositions: The General Case

Given a model, we know how to determine whether the simplest kinds of
quantified propositions—those of the form ∀xPx or ∃xPx—are true or false
in that model. For example, consider the following model:

Domain: {Bill, Ben, Alice, Mary}
Extension of P : {Bill, Ben, Alice, Mary}
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In this model, ∀xPx is true (because everything in the model is indeed in the
extension of P ), and ∃xPx is true too. In the following model:

Domain: {Bill, Ben, Alice, Mary}
Extension of P : {Bill, Ben, Alice}

∀xPx is false (not everything in the model is in the extension of P ), but ∃xPx

is true (there is at least one thing in the domain of the model that is in the
extension of P ). In the following model:

Domain: {Bill, Ben, Alice, Mary}
Extension of P : ∅

∀xPx is false (not everything in the model is in the extension of P —indeed,
nothing is), and ∃xPx is false too (there is not even one thing in the domain
of the model that is in the extension of P ).

So far so good, but we also need to know how the truth values of more
complex propositions whose main operator is a quantifier are determined.
Consider, for example:

∀x(Px → Rx)

∃x(Px ∧ Rx)

∀x(Px ↔ (Rx ∨Gx))

Nothing we have said so far tells us how the truth values of these propositions
are determined (relative to a given model).

Our strategy will be to trade in the question of the truth value of a quantified
proposition in one given model for the question of the truth values of a non-
quantified proposition in many models.14 That may sound like a bad trade-off,
but as we shall see, it is not, because we already know how the truth values of
nonquantified propositions are determined. So we trade in one question we
do not know how to answer for many questions we do know how to answer.
Or, to put it more accurately, we derive an answer to the first question from
the answers that we already have to the latter questions. Let us see how this
is done.

First we define some new terminology. We have used Greek letters (α ,
β , . . .) as wff variables. Where x is a variable, we shall use α(x) to stand for an
arbitrary wff that has no free variables other than x. Note that α(x) may have
no free variables at all: the point is simply that it has no free variables other
than x. Then, where a is a name, we shall use α(a/x) to stand for the wff that
results from α(x) by replacing all free occurrences of x in α(x) with a. So, for
example, consider the wff (Fx ∨Gx). It contains no free variables other than
x, so we can represent it as α(x). Then α(a/x) is (Fa ∨Ga) and α(b/x) is
(Fb ∨Gb).
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9.3.1 Exercises

1. If α(x) is (Fx ∧Ga),
what is

(i) α(a/x)

(ii) α(b/x)

2. If α(x) is ∀y(Fx →Gy),
what is

(i) α(a/x)

(ii) α(b/x)

3. If α(x) is ∀x(Fx →Gx) ∧ Fx,
what is

(i) α(a/x)

(ii) α(b/x)

4. If α(x) is ∀x(Fx ∧Ga),
what is

(i) α(a/x)

(ii) α(b/x)

5. If α(y) is ∃x(Gx →Gy),
what is

(i) α(a/y)

(ii) α(b/y)

6. If α(x) is ∃y(∀x(Fx → Fy)∨ Fx),
what is

(i) α(a/x)

(ii) α(b/x)

Now we continue with the question of how the truth values of quantified
propositions are determined. We are concerned to assign truth values only to
propositions—that is, to closed wffs. Any proposition whose main operator is
a quantifier must be of one of the following forms, where x is a variable:

∀xα(x)

∃xα(x)

That is, the scope of the quantifier must not contain any free variables other
than the variable appearing in the quantifier itself—otherwise, placing the
quantifier before this scope would not yield a closed wff. So, we want to know
what the truth values of ∀xα(x) and ∃xα(x) are in some model M. What we
do is introduce a new name d—that is, one that is not assigned a referent on
M. Then the truth values of ∀xα(x) and ∃xα(x) in M are determined by the
truth values of α(d/x) on all those models exactly like M except that they also
assign a referent to d . Specifically, ∀xα(x) is true in M if α(d/x) is true in all
these models, and ∃xα(x) is true in M if α(d/x) is true in at least one of these
models.

There is quite a lot of detail here, but the basic idea is intuitive. Consider the
universal claim “everything is F .” Now suppose we introduce a new name—
say, “The Dude”—which does not yet refer to anyone. If the universal claim is
true, then it must be that whoever we decide to call “The Dude,” “The Dude
is F ” comes out true. For if there is even one thing in our domain that is
not F , then we could make “The Dude is F ” false by calling that thing “The
Dude.” Similarly, for “something is F ” to be true, it must be that there is at
least one thing such that if we called it “The Dude,” then “The Dude is F ”
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would come out true. This is the essential idea behind our account of how the
truth conditions of quantified claims are determined.

§

Let’s work through some concrete examples to get the feel of this account. We
start with a simple example—one that we already know how to handle—to
illustrate the workings of our new account and see that it gives the right result
in this simple case. Consider the proposition ∀xPx, and suppose we want to
know whether it is true or false in the following model M:

Domain: {Alice, Ben, Carol}
Extension of P : {Alice}

What we do first is introduce a new name (i.e., a name to which M does not
assign any referent). In this case, M assigns referents to no names—so we can
use whatever name we please. Let’s use a. Now we strip off the quantifier in
∀xPx, leaving Px, and then replace all free occurrences of x in this wff by a,
yielding Pa. (What we are doing here is moving from ∀xα(x)—where α(x)

is Px in this particular case—to α(a/x), where a is a new name that is not
assigned a referent in M.) We then consider whether this proposition Pa is
true or false in each model that is just like M except that it also assigns a
referent to a. Each of these models must have the same domain as M and
must assign the same extensions to predicates as M does. Now the referent of
a name in a model can only be an object in the domain of that model. So the
only possible referents of a we need to consider are the objects in the domain
of M. Thus, there will be one such model for each object in the domain of M:
one that is just like M but assigns a this object in the domain, another that is
just like M but assigns a that object in the domain, and so on for all the objects
in M’s domain. In the present case there are three objects in the domain of M:
Alice, Ben, and Carol. So we need to consider the following three models:

M1: M2:
Domain: {Alice, Ben, Carol} Domain: {Alice, Ben, Carol}
Extension of P : {Alice} Extension of P : {Alice}
Referent of a: Alice Referent of a: Ben

M3:
Domain: {Alice, Ben, Carol}
Extension of P : {Alice}
Referent of a: Carol

Note that they all have the same domain as M and assign the same extension
to P ; they differ only by the referent of the new name a.
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Now we ask whether our formula Pa is true or false in each of these models.
Pa is true in M1: the referent of a in that model is in the extension of P

in that model. It is false in M2: the referent of a is not in the extension of P in
that model. And it is false in M3. So our target formula ∀xPx is false in our
target model M: for it to be true, Pa would have to be true in all of M1

through M3.

§

Let’s consider another example. We want to know whether ∃x(Px ∧ Rx) is
true or false in the following model M:

Domain: {1, 2, 3, 4, 5}
Extension of P : {2, 4}
Extension of R: {1, 2, 3}

So we introduce a new name—a will do in this case. We then strip off the
initial quantifier and replace the subsequent free xs with this new name a,
yielding (Pa ∧ Ra). Now we ask whether this proposition is true or false in
each model just like M except that it assigns the new name a a referent. There
are five objects in the domain of M and so five models to consider:

M1: M2:
Domain: {1, 2, 3, 4, 5} Domain: {1, 2, 3, 4, 5}
Extension of P : {2, 4} Extension of P : {2, 4}
Extension of R: {1, 2, 3} Extension of R: {1, 2, 3}
Referent of a: 1 Referent of a: 2

M3: M4:
Domain: {1, 2, 3, 4, 5} Domain: {1, 2, 3, 4, 5}
Extension of P : {2, 4} Extension of P : {2, 4}
Extension of R: {1, 2, 3} Extension of R: {1, 2, 3}
Referent of a: 3 Referent of a: 4

M5:
Domain: {1, 2, 3, 4, 5}
Extension of P : {2, 4}
Extension of R: {1, 2, 3}
Referent of a: 5

The sentence we are considering—(Pa ∧ Ra)—is a conjunction, so it is true
in a model just in case both conjuncts are true in that model. In M1 the
referent of a is not in the extension of P , so the first conjunct Pa is false,
and thus, the whole conjunction (Pa ∧ Ra) is false. In M2 the referent of a is
in the extension of P , so the first conjunct Pa is true, and the referent of a

is in the extension of R, so the second conjunct Ra is true, and thus, the whole
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conjunction (Pa ∧ Ra) is true. Now all it takes for ∃x(Px ∧ Rx) to be true
in M is for (Pa ∧ Ra) to be true in even one model that is just like M except
that it assigns a referent to the new name a—so the fact that (Pa ∧Ra) is true
in M2 means that our target wff ∃x(Px ∧ Rx) is true in our target model M.
Put in more intuitive terms, it is true in M that something is both P and R,
because there is at least one object in the domain—in particular, 2—such that
if the new name “The Dude” referred to that object (note that a refers to 2 in
M2), then “The Dude is both P and R” would be true.

§

Let’s consider a third example. We want to know whether (∀x(Px → Rx) ∧
Ra) is true or false in the following model M:

Domain: {1, 2, 3}
Extension of P : {1, 2}
Extension of R: {1}
Referent of a: 1

Our target wff is a conjunction, so it will be true in this model just in case
both its conjuncts are true. Ra is true (because the referent of a is in the
extension of R), so this leaves the other conjunct to consider: ∀x(Px → Rx).
We strip off the quantifier, leaving (Px → Rx). We need to replace the free xs
here with a new name: one that has not been assigned a referent in our target
model. In this case a is already in use—so we take b as our new name, yielding
(Pb→ Rb). Now we need to ask whether the latter formula is true in each of
the following models:

M1: M2:
Domain: {1, 2, 3} Domain: {1, 2, 3}
Extension of P : {1, 2} Extension of P : {1, 2}
Extension of R: {1} Extension of R: {1}
Referent of a: 1 Referent of a: 1
Referent of b: 1 Referent of b: 2

M3:
Domain: {1, 2, 3}
Extension of P : {1, 2}
Extension of R: {1}
Referent of a: 1
Referent of b: 3

Note that each of these models is just the same as M except that it assigns
the new name b a referent, so each of them assigns the same extensions to
P and R as M does, and the same referent to the name a. They differ only
by the referents they assign to the new name b. Now (Pb→ Rb) is false in a

202 Chapter 9 Semantics of Monadic Predicate Logic



model just in case Pb is true and Rb false. In M2, Pb is true and Rb false, so
(Pb→ Rb) is false. That means our wff ∀x(Px → Rx) is false in our target
model M: for it to be true in M, (Pb→ Rb) has to be true in every model
that differs from M only in assigning a referent to b. So the first conjunct of
our original wff (∀x(Px → Rx) ∧ Ra) is false in M; hence this wff itself is
false in M.15

9.3.2 Understanding Models

A key point about models is that a model specifies relations between symbols
of the logical language and objects in the domain: it does not specify relations
between symbols of the logical language and symbols of another language
(say, English). People sometimes get confused over this point, because when
presenting a model, we often describe it by something like:

Domain: {Alice, Ben, Carol}
Extension of F : {Alice, Carol}
Referent of b: Ben

Here we use the English names “Alice,” “Ben,” and “Carol” to specify the
domain, and we use the English name “Ben” to specify the referent of b in this
model. But this does not mean that the model consists (partly) of a relation
between the two names b and “Ben.” What the model (partly) consists of is a
relation between the name b and the object Ben: the man Ben himself, not his
English name “Ben.” In general, the only practical way to describe a model is
to say in English (or some other language) what the domain contains and what
the referents of names and extensions of predicates are—but the model itself
comprises a domain of objects (not their names),16 together with relations
between names and predicates of the logical language and objects and sets
of objects in the domain. Thus, in the present example, the idea is that the
domain contains three persons—the ones we happen to know by the names
“Alice,” “Ben,” and “Carol”—not that it contains three names. The referent of
b is then one of these persons (Bob)—not his name (“Bob”).

As an analogy, consider the following. When you want a dog to fetch
something—say, a newspaper—you typically point to the thing.17 You do not
go and touch or pick up the newspaper—if you were prepared to do that, you
would not need to ask the dog to fetch it. The dog misunderstands if he then
licks your finger: you wanted him to fetch the newspaper; holding your fin-
ger out and pointing was just a way of getting him to notice the newspaper.
Those who think that, because models are typically presented in English, they
give relations between symbols of the logical language and symbols of En-
glish, misunderstand in the same way. The English words used in describing
the model are meant to pick out certain objects and sets: the model consists
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(partly) in relations between names and predicates of the logical language and
these objects and sets of objects, not in relations between names and predi-
cates of the logical language and the words of English we use to pick out these
objects and sets.

9.4 Semantics of MPL: Summary

There are two steps to describing the semantics of a language:

1. Specify what constitutes a possible scenario (a possible way of making
propositions true or false). (In general, it will be a free assignment of
values to nonlogical symbols.)

2. Specify the rules that determine a truth value for each proposition (closed
wff) in each scenario.

In the case of MPL, the two steps are as follows.

9.4.1 Step 1: Defining Models

A model of a fragment of MPL consists of:

1. a domain (a nonempty set of objects);

2. a specification of a referent (an object in the domain) for each name in
the fragment; and

3. a specification of an extension (a subset of the domain) for each predicate
in the fragment.

9.4.2 Step 2: Specifying How Truth Values Are Determined

There are eight types of closed wff (recall §8.4): atomic formulas, formulas
whose main operator is one of the five connectives, and formulas whose main
operator is one of the two quantifiers. So we have eight rules telling us how the
truth values of closed wffs are determined relative to a given model—one rule
for each type of wff:

1. Pa is true in M iff the referent of a in M is in the extension of P in M.

2. ¬α is true in M iff α is false in M.

3. (α ∧ β) is true in M iff α and β are both true in M.

4. (α ∨ β) is true in M iff one or both of α and β is true in M.

5. (α → β) is true in M iff α is false in M or β is true in M (or both).

6. (α ↔ β) is true in M iff α and β are both true in M or both false in M.
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7. ∀xα(x) is true in M iff for every object o in the domain of M, α(a/x) is
true in M

a
o , where a is some name that is not assigned a referent in M,

and M
a
o is a model just like M except that in it the name a is assigned the

referent o.

8. ∃xα(x) is true in M iff there is at least one object o in the domain of M

such that α(a/x) is true in M
a
o , where a is some name that is not assigned

a referent in M, and M
a
o is a model just like M except that in it the name

a is assigned the referent o.

9.4.3 Exercises

1. Here is a model:
Domain: {1, 2, 3, 4}
Extensions: E: {2, 4} O: {1, 3}
State whether each of the following propositions is true or false in this
model.

(i) ∀xEx

(ii) ∀x(Ex ∨Ox)

(iii) ∃xEx

(iv) ∃x(Ex ∧Ox)

(v) ∀x(¬Ex →Ox)

(vi) ∀xEx ∨ ∃x¬Ex

2. State whether the given proposition is true or false in the given models.

(i) ∀x(Px ∨ Rx)

(a) Domain: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Extensions: P : {1, 2, 3} R: {5, 6, 7, 8, 9, 10}

(b) Domain: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Extensions: P : {1, 2, 3, 4} R: {4, 5, 6, 7, 8, 9, 10}

(ii) ∃x(¬Px ↔ (Qx ∧ ¬Rx))

(a) Domain: {1, 2, 3, . . .}
Extensions: P : {2, 4, 6, . . .} Q: {1, 3, 5, . . .}

R: {2, 4, 6, . . .}
(b) Domain: {1, 2, 3, . . .}

Extensions: P : {2, 4, 6, . . .} Q: {2, 4, 6, . . .}
R: {1, 3, 5, . . .}

(iii) ∃xPx ∧ Ra

(a) Domain: {1, 2, 3, . . .}
Referent of a: 7
Extensions: P : {2, 3, 5, 7, 11, . . .}18 R: {1, 3, 5, . . .}

(b) Domain: {Alice, Ben, Carol, Dave}
Referent of a: Alice
Extensions: P : {Alice, Ben} R: {Carol, Dave}
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3. Here is a model:
Domain: {Bill, Ben, Alison, Rachel}
Referents: a: Alison r : Rachel
Extensions: M : {Bill, Ben} F : {Alison, Rachel} J : {Bill, Alison}

S: {Ben, Rachel}
State whether each of the following propositions is true or false in this
model.

(i) (Ma ∧ Fr)→∃x(Mx ∧ Fx)

(ii) ∀x∀y(Mx →My)

(iii) (¬Ma ∨ ¬J r)→∃x∃y(Mx ∧ Fy)

(iv) ∀xMx →∀xJx

(v) ∃x∃y(Mx ∧ Fy ∧ Sr)

(vi) ∃x(Fx ∧ Sx)→∀x(Fx → Sx)

4. For each of the following propositions, describe (a) a model in which it
is true, and (b) a model in which it is false. If there is no model of one of
these types, explain why.

(i) ∀x(Fx →Gx)

(ii) ∀xFx ∧ ¬Fa

(iii) ∃xFx ∧ ¬Fa

(iv) ∃x(Fx ∧Gx)

(v) ∀x(Fx → Fx)

(vi) ∃xFx ∧ ∃xGx

(vii) ∀xFx →∃xFx

(viii) ∃x(Fx ∧ ¬Fx)

(ix) ∃xFx ∧ ∃x¬Fx

(x) ∃x(Fx → Fx)

(xi) ∃xFx →∃xGx

(xii) ∃xFx →∀xGx

(xiii) ∀xFx → Fa

(xiv) ∀x(Fx → Fa)

(xv) Fa → Fb

(xvi) ∀x(Fx ∨Gx)

(xvii) ∃x(Fx ∨Gx)

(xviii) ∀x(Fx ∧ ¬Fx)

(xix) ∀x∃y(Fx →Gy)

(xx) ∀x(Fx →∃yGy)

5. (i) Is ∀x(Fx →Gx) true or false in a model in which the extension of
F is the empty set?

(ii) Is ∃x(Fx ∧Gx) true in every model in which ∀x(Fx →Gx) is true?

9.5 Analyses and Methods

We are now in a position to give precise definitions, in the context of predicate
logic, of our key logical notions, such as satisfiability, validity, and equivalence.
The definitions are exactly what one would expect, given that a model now
plays the role that a truth table row played in propositional logic; that is, it
represents a possible scenario, a possible way of making propositions true or
false.

Concepts relating to arguments. An argument is valid iff there is no model in
which the premises are true and the conclusion false. Equivalently, an ar-
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gument is valid iff in every model (of the fragment of the language used to
state the argument)19 in which the premises are all true, the conclusion is
true too. An argument is invalid iff there is a model in which the premises
are all true and the conclusion false. Such a model is a countermodel (or
counterexample) to the argument.

Concepts relating to single propositions. A proposition is a logical truth (aka
logically true) iff there is no model in which it is false; or equivalently, iff
it is true in every model (of the fragment of the language used to state the
proposition).20 A proposition is a logical falsehood (aka logically false, a
contradiction) iff there is no model in which it is true; or equivalently, iff
it is false in every model (of the fragment of the language used to state the
proposition). A proposition is satisfiable iff there is at least one model in
which it is true.

Concepts relating to pairs of propositions. Two propositions are equivalent
iff there is no model in which one is true and the other false; or equiva-
lently, iff they have the same truth value in every model (of the fragment
of the language used to state the propositions). Two propositions are con-
tradictory iff there is no model in which they have the same truth value;
or equivalently, iff they have opposite truth values in every model (of the
fragment of the language used to state the propositions). Two proposi-
tions are jointly satisfiable iff there is at least one model on which they
are both true.

Concepts relating to sets of propositions. A set of propositions is satisfiable iff
there is at least one model in which all propositions in the set are true.

In §1.4 we introduced the intuitive notion of validity and said that we want
both a precise analysis of this notion and a method for determining whether a
given argument is valid. Now recall the situation with regard to propositional
logic. Truth tables kill two birds with one stone. They give us a precise analysis
of validity (for arguments of PL): an argument is valid just in case there is
no row of its truth table in which the premises are true and the conclusion
false. Truth tables also constitute a method for determining validity (for any
argument of PL): we write out the truth table for the argument and then check
through the table line by line to see whether there is any row in which the
premises are true and the conclusion false. (In practice the truth table may be
too big for this method to be feasible—but in principle, the method is always
available.) The situation is very different in predicate logic (as foreshadowed
at the beginning of Chapter 7). We now have a precise analysis of validity: an
argument is valid iff there is no model in which the premises are true and
the conclusion false. Assuming that there is a fixed set of facts concerning
what sets of objects exist (see §16.1.4), this analysis then fixes the facts about
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validity. However, it gives us no method for ascertaining these facts. Given any
model and any closed wff (of MPL), our recursive specification in §9.4.2 of
the truth conditions of closed wffs relative to a model fixes a fact as to whether
that wff is true in that model. We have said that any nonempty set of objects
as domain, together with an assignment of a referent for each name and an
extension for each predicate, constitutes a model. So assuming there is some
fact concerning what sets of objects exist—that is, what sets are available as
domains—there is then a determinate totality of all models. So there is then
a fact, concerning any argument, as to whether or not it is valid, because
(i) for each model, and each proposition in the argument, there is a fact as
to whether the proposition is true or false on that model, and (ii) there is
a determinate totality of models. Thus, there is a fact as to whether there is
any model in which the premises are true and the conclusion false.21 But how
can we ascertain whether a given argument is valid? Well, as yet we have no
systematic way of finding out. Certainly, our analysis of validity does not yield
any such method. First, there are infinitely many models; second, some of
them have infinite domains. So, unlike in the propositional case, there is no
way—even in principle—that we can lay out all possible scenarios and survey
them to see whether a given proposition is true in each one (i.e., a logical truth)
or whether some proposition (the conclusion of some argument) is true in
every model in which the premises are all true (i.e., whether the argument is
valid), and so on.

This is not to say that we can never answer such questions. Sometimes we
can: by thinking things through in a more or less intuitive way. We proceed in
such an intuitive way in the remainder of this section, to get a better feel for
our new analyses of the fundamental logical concepts. But we will, eventually,
want a systematic method for answering questions of interest to us (whether
an argument is valid, whether a proposition is a logical truth, and so on). We
turn to the task of developing such a method in Chapter 10.

For now, however—in the absence of a systematic method—let us work in a
more informal way. Consider, for example, whether the following proposition
is satisfiable:

(∀xFx ∧ ¬Fa)

Suppose it is true. It is a conjunction, so that means both conjuncts must be
true. Making the left conjunct true requires making the extension of F include
everything in the domain. Making the right conjunct true requires making Fa

false—which requires making a refer to something in the domain that is not
in the extension of F . Clearly these two things cannot both happen. So no
model makes this proposition true: therefore, it is not satisfiable (i.e., it is a
contradiction).
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Consider, for another example, whether the following propositions are
equivalent:

∀x¬Fx

¬∃xFx

Suppose the first proposition is true in some model M. Then ¬Fa is true in
every model that is just like M except that it assigns a referent to a.22 Thus, Fa

is false in every such model—that is, the referent of a lies outside the extension
of F . The only way this can happen in every such model is if nothing in the
domain of M is in the extension of F . So the models in which ∀x¬Fx is
true are those in which the extension of F is empty. Now consider the second
proposition. It is true in a model M just in case ∃xFx is false in M. That is
the case if there isn’t even one model that is just like M—except that it assigns
a referent to a—in which Fa is true. That is, Fa is false in every such model:
the referent of a lies outside the extension of F . The only way this can happen
in every such model is if nothing in the domain of M is in the extension of F .
So the models in which ¬∃xFx is true are those in which the extension of F

is empty. Thus, the models in which ∀x¬Fx is true are exactly those models
in which ¬∃xFx is true—so these propositions are equivalent.

For a third example, consider whether the following argument is valid:

∀x(Fx →Gx)

Fa

∴ Ga

The truth of the first premise in a model M requires that (Fb→Gb) is true
in every model that is just like M except that it assigns a referent to b. Now for
(Fb→Gb) to be true in a model, it must not be the case that Fb is true (i.e.,
the referent of b is in the extension of F ) and Gb is false (i.e., the referent of
b is not in the extension of G). So for (Fb→Gb) to be true on every model
that is just like M except that it assigns a referent to b, it must be that nothing
in the domain of M is both in the extension of F and not in the extension of
G. Turning to the second premise, for it to be true in a model M, the referent
of a must be in the extension of F . Now suppose that both premises are true
in some model M: the referent of a is in the extension of F , and nothing in the
domain is both in the extension of F and not in the extension of G. Then of
course the referent of a must be in the extension of G—and so the conclusion
will be true. So the argument is valid.

As a final example, consider whether the following argument is valid:

∀x(Fx →Gx)

Ga

∴ Fa
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By similar reasoning to that used in the previous example, a model in which
both premises are true is one in which nothing in the domain is both in the
extension of F and not in the extension of G, and the referent of a is in the
extension of G. It need not be the case, in such a model, that the referent of a is
in the extension of F : so the conclusion need not be true. Thus the argument
is not valid. Countermodels are easy to imagine, for example:

Domain: {Maisie, Rover, Oscar}
Extensions: F : {Rover} G: {Maisie, Rover}
Referent of a: Maisie

9.5.1 Exercises

For each of the following arguments, either produce a countermodel (thereby
showing that the argument is invalid) or explain why there cannot be a
countermodel (in which case the argument is valid).

1. ∃xFx ∧ ∃xGx

∴ ∃x(Fx ∧Gx)

2. ∃x(Fx ∧Gx)

∴ ∃xFx ∧ ∃xGx

3. ∀x(Fx ∨Gx)

¬∀xFx

∴ ∀xGx

4. ∀x(Fx →Gx)

∀x(Gx →Hx)

∴ ∀x(Fx →Hx)

5. ∀x(Fx →Gx)

∀x(Gx →Hx)

∴ ∀x(Hx → Fx)
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10
Trees for Monadic Predicate Logic

As discussed in §9.5, we now have precise analyses of the notions of satisfia-
bility, logical truth, validity, and so on (for propositions of MPL, arguments
composed of such propositions, and the like)—but we do not yet have a sys-
tematic method of finding out the answers to questions framed in terms of
these concepts, such as “Is this argument valid?” or “Is this proposition a log-
ical truth?” In this chapter we extend the system of tree proofs (Chapter 7) to
give us such a method.

The basic idea behind the tree method is just the same as it was for propo-
sitional logic. We begin by writing down some propositions at the top of our
tree. (Note that they must be propositions, i.e., closed wffs.) We then apply
rules with (roughly speaking—more on this below) the following property:
assuming what we have already written is true, what we write down next will
be true too. (That is why we can write down only propositions: things that can
indeed be said to be true.) The basic idea behind the tree method is then as
follows:

A tree tells us whether it is possible for the propositions written at the top of the
tree all to be true together. If this is possible, then the tree presents a scenario in
which these propositions are all true.

In the case of propositional logic, where scenarios—ways of making proposi-
tions true or false—are truth table rows, this idea amounts to the following:

A tree takes us directly to the truth table rows we are interested in—ones in which
the formulas at the top of the tree are all true—if any such exist: we read off such
a row from an open path. If no such rows exist, then the tree demonstrates this by
showing all paths as closed.

In the case of predicate logic, where scenarios are models, the idea amounts to
the following:

A tree takes us directly to the models we are interested in—ones in which the
formulas at the top of the tree are all true—if any such exist: we read off such a



model from an open path. If no such models exist, then the tree demonstrates this
by showing all paths as closed.

It follows that the ways in which we use trees will be just the same as in
propositional logic. To test a formula for being a logical truth, we start with
the negation of the formula; if all paths close, then the negated formula cannot
be true, and so the original formula is a logical truth. To test an argument for
validity, we start with the premises and the negation of the conclusion; if all
paths close, then the premises and the negation of the conclusion cannot all be
true—that is, the conclusion cannot be false while the premises are all true—
and so the argument is valid; and so on (see §7.3.6 for a summary of all the
ways to use trees to answer questions of interest).

10.1 Tree Rules

What will change now that we have moved from propositional to predicate
logic are the tree rules—or rather, the existing rules remain the same, but
we need to add some new rules as well. For recall that we need two rules for
each operator (except in the case of negation): one to apply to wffs where this
operator is the main operator and one to apply to wffs where this operator
is negated (i.e., where our wff is of the form ¬α, and the operator we are
interested in is the main operator of the negand α). So we need four new rules:
two each for our two new operators, the universal quantifier and the existential
quantifier.

Before introducing the new rules, it will be helpful to recall the general
rationale behind tree rules, enabling us to appreciate the point of the new rules
for quantified propositions. Stated roughly, the rationale is: the rules prescribe
propositions that must be true, given that what we have already written down
is true. Now let us give a more precise statement. Suppose we are applying
some rule at the bottom of a path p. (Think of the path as a sequence of
propositions: the ones on the path.) If we are applying a nonbranching rule,
which will extend p to p′ (by adding some proposition(s) to the end of the
sequence), then the rule should have this property:

If there is a model in which every proposition on p is true, then there is a model in
which every proposition on p′ is true.

If we are applying a branching rule, which will create two paths q and r (both
of which share a common trunk p and then diverge), then the rule should have
this property:

If there is a model in which every proposition on p is true, then either there is a
model in which every proposition on q is true, or there is a model in which every
proposition on r is true, or both.
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It is precisely because our rules all have this nature that trees can work the
way they do. We start our tree by writing some propositions at the top, and
we suppose—for the sake of argument—that there is a model in which these
propositions are all true. The tree will then tell us one of two things:

1. There is in fact no such model (all paths close).

2. There is such a model (and we can read off such a model from an open
path).

Note that our propositional rules all have the character just outlined. Con-
sider the rule for negated ∨:

¬(α ∨ β) �
¬α

¬β

Suppose there is a model in which¬(α ∨ β) is true. Then by rule (2) of §9.4.2,
(α ∨ β) is false in this model. Then by rule (4), α and β are both false in this
model. So by rule (2) again, both¬α and¬β are true in this model. Thus, the
new rule has the property we wanted. Think of the proposition ¬(α ∨ β) to
which we apply the rule as lying on some path p. Applying the rule extends p
to p′, by adding¬α and¬β to the path. Now if there is a model in which every
proposition on p is true—and hence in particular in which¬(α ∨ β) is true—
then there is a model (the same one, in fact) in which every proposition on p′
is true. For p′ differs from p only by the addition of ¬α and ¬β, and we have
just seen that if ¬(α ∨ β) is true on some model, then so are ¬α and ¬β.

Consider now the branching rule for unnegated ∨:

(α ∨ β) �

α β

Suppose there is a model in which (α ∨ β) is true. Then by rule (4) of §9.4.2,
either α or β or both are true in this model. Thus, the rule has the property
we wanted. Think of the proposition (α ∨ β) to which we apply the rule as
lying on some path p. Applying the rule creates two paths, q and r: q contains
everything on p plus α at the end; r contains everything on p plus β at the end.
Now if there is a model in which every proposition on p is true—and hence
in particular in which (α ∨ β) is true—then there is a model (the same one,
in fact) in which every proposition on q is true, or there is a model (the same
one, in fact) in which every proposition on r is true, or both. This reasoning
holds because q differs from p only by the addition of α, and r differs from p
only by the addition of β, and we have just seen that if (α ∨ β) is true in some
model, then either α or β or both are true on that model.

10.1 Tree Rules 213



Similar sorts of reasoning establish that the other tree rules for the connec-
tives also have the character outlined above (see Exercises 14.1.2.1). We turn
now to the new rules for the quantifiers—bearing in mind that they are de-
signed precisely to share this basic characteristic.1

10.1.1 Negated Existential Quantifier

The rule for the negated existential quantifier is:

¬∃xα(x) �
∀x¬α(x)

Note that the scope of the existential quantifier here is not just any wff α: it is
a wff α(x) that does not contain any free variables other than x. Otherwise,
placing the quantifier before this scope would not yield a closed wff—and our
trees are designed to handle only closed wffs (i.e., propositions).

This rule has the desired property outlined above. For suppose ¬∃xα(x) is
true in some model M. Then by rule (2) of §9.4.2, ∃xα(x) is false in M. Then
(by rule (8)), there is no model that is just like M except that it also assigns
a referent to a—where a is some name to which M assigns no referent—in
which α(a/x) is true. That is, α(a/x) is false in every model just like M except
that it also assigns a referent to a. So by rule (2),¬α(a/x) is true in every such
model. But by rule (7), that is precisely what it takes for ∀x¬α(x) to be true in
M. So if the input of our rule is true in some model, so is the output.

10.1.2 Negated Universal Quantifier

The rule for the negated universal quantifier is:

¬∀xα(x) �
∃x¬α(x)

This rule has the desired property outlined above. For suppose ¬∀xα(x) is
true in some model M. Then by rule (2) of §9.4.2, ∀xα(x) is false in M.
Then by rule (7), there is some model just like M except that it also assigns
a referent to a—where a is some name to which M assigns no referent—in
which α(a/x) is false. So by rule (2), ¬α(a/x) is then true in this model. But
by rule (8), that is precisely what it takes for ∃x¬α(x) to be true in M. So if
the input of our rule is true in some model, so is the output.

10.1.3 Existential Quantifier

The rule for the (unnegated) existential quantifier is:

∃xα(x) � a

α(a/x)
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where a is some name that is new to the path; that is, at the time of applying the
rule at the bottom of some path, the name a used in applying the rule must
be one that has not yet appeared anywhere—inside any wff—on that path.
Note that when applying the rule and checking off the existentially quantified
formula ∃xα(x), we write the name a that we have used in applying the rule
next to the check mark.

Here are some example applications and misapplications of this rule:

. ∃xFx �a

Fa

. ∃xFx �b

Fb

. ∃x(Fx →Gx) �a

Fa →Ga

. ∃x(Fx →Gx) �a

Fa →Gx

Wrong! All occurrences of x that become free after the initial quantifier ∃x is
stripped away must be replaced with a.

. ∃x(Fx →Gb) �a

Fa →Gb

. ∃x(Fx →Gb) �b

Fb→Gb

Wrong! The name used must be new to the path.

This rule has our desired property. For suppose there is a model M in which
∃xα(x) is true. Then by rule (8) of §9.4.2, there is at least one object o in the
domain of M such that α(a/x) is true in M

a
o , where a is some name not

assigned a referent in M, and M
a
o is a model that is just like M except that

in it the name a is assigned the referent o. So if there is a model M in which
∃xα(x) is true, then there is a (different) model M

a
o (differing from M only in

that it assigns a referent to the new name a) in which α(a/x) is true. We now
need only observe that ∃xα(x) is also true in this new model M

a
o (because

if we introduce another new name b to which M
a
o assigns no referent, then

α(b/x) will be true on the model that is just like M
a
o except that it assigns o

as the referent of b). So if there is a model in which the input to our rule is
true, then there is a model (a different one in this case) in which both this
input and the output of the rule are true—and that is the desired property for
a nonbranching rule.
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Let’s consider why the name used in applying this rule has to be new to the
path. Suppose we have a tree that starts with:

Fa

∃xGx

Then the assumption is that there is a model in which a is F and something
is G. If we misapply the rule for the existential quantifier as follows, using the
name a, which is not new to the path:

Fa

∃xGx � a

Ga

then the assumption is now that there is a model in which a is F and a is G:
that is, the very same object that is F (namely a) is also G. But that clearly does
not follow: from the fact that a is F and something is G, it does not follow that
anything is both F and G.

Here’s another example illustrating the trouble we get into if we do not
choose a new name when applying the rule for the existential quantifier. Sup-
pose we want to know whether (∃xFx ∧ ∃x¬Fx) is satisfiable. Clearly it is: it
is true, for example, in the following model:

Domain: {1, 2}
Extension of F : {1}

Now we begin our tree as follows:

(∃xFx ∧ ∃x¬Fx) �
∃xFx � a

∃x¬Fx

Fa

So far so good. But if we now misapply the rule for the remaining existen-
tially quantified proposition—using the name a, rather than a new name—we
obtain:

(∃xFx ∧ ∃x¬Fx) �
∃xFx � a

∃x¬Fx � a

Fa

¬Fa

×
This tree tells us that our target wff is not satisfiable (for all paths close). As we
have seen, however, this result is wrong.
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The general point is that when we apply the rule for the existential quan-
tifier, we reason as follows: something is F—so let’s be specific and give this
thing (or one such thing) a name.2 Now that is fine, as long as all we assume
about the thing we name is that it is F . If the name we use is not a new one,
however, then we are not assuming only this: we are also assuming whatever
else we have already said using this name. That is why the name used must be
new. That way, when we transition from saying “something is F ” to “a is F ”—
on the grounds that if something is F , we can give one such thing a name, say
a—we are assured that all we are assuming about a is that it is F .

Note that the name used in applying the rule for the existential quantifier
must be new to the path on which one is applying the rule: it need not be new
to the entire tree. So the following tree is fine:

(∃xFx ∨ ∃xGx) �

∃xFx �a ∃xGx �a
Fa Ga

Here we use the name a in applying the rule for the existential quantifier to
∃xFx on the left path, and we use the same name a in applying the rule for
the existential quantifier to ∃xGx on the right path. That is fine: suppose we
construct the left path first; then at the time of doing the right path, the name
a has already been used somewhere else in the tree—but it has not been used
anywhere else on the path on which we are applying the rule. This is all that
matters, because we read off a model from each open path: not from the tree
as a whole. When we introduce the name a in applying the rule for ∃xFx, we
are assuming there is a model in which ∃xFx is true—so we give (one of) the
thing(s) that is F a name, a. We cannot assume that anything is true of a in
this model except that a is F—that is why a must be new to this path. It does
not matter, however, if in another model—drawn from a different path—we
suppose that Ga is true.

10.1.4 Universal Quantifier

The rule for the (unnegated) universal quantifier is:

∀xα(x) \ a

α(a/x)

Here a can be any name at all: it does not have to be new to the path. Note
that when applying this rule, we write a backslash, not a check mark—and
we write the name used in applying the rule next to the backslash. We use a
backslash rather than a check mark because we can apply this rule repeatedly
to the same formula: once each for different names a , b, c, . . . . Each time the
rule is applied, we write the name used next to the backslash.
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Here are some example applications and misapplications of this rule:

. ∀xFx \a
Fa

. ∀xFx \b
Fb

. ∀xFx \a b

Fa

Fb

Here we make two applications of the rule to the same formula, first using a and
then using b.

. ∀x(Fx →Gx) \a
Fa →Ga

. ∀x(Fx →Gb) \a
Fa →Gb

. ∀x(Fx →Gb) \b
Fb→Gb

This is correct: the name used does not have to be new to the path.

. ∀x(Fx →Gx) \a
Fa →Gx

Wrong! All occurrences of x that become free after the initial quantifier ∀x is
stripped away must be replaced with a.

. ∀x(Fx →Gx) \a b

Fa →Gb

Wrong! If we apply the rule twice to the same formula, once with a and once with b,
then the first time we must replace all occurrences of x (that become free after the
initial quantifier ∀x is stripped away) with a, and the second time we must replace
all such occurrences of x with b, as follows:

∀x(Fx →Gx) \a b

Fa →Ga

Fb→Gb

The original example squashes these two correct applications of the rule into one
misapplication.

. Fa →∀xFx \b
Fa → Fb

Wrong! The universal quantifier is not the main operator. We need to apply the rule
for the conditional first.
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This rule has our desired property. Consider two cases in turn. Case (i): the
name a used in applying the rule is new to the path. By rule (7) of §9.4.2, if
there is a model M in which ∀xα(x) is true, then for every object o in the
domain of M, α(a/x) is true in M

a
o , where a is our new name (which is not

assigned a referent in M), and M
a
o is a model that is just like M except that in

it the name a is assigned the referent o. We now need only observe that ∀xα(x)

will also be true on this model M
a
o . So if there is a model in which the input

to our rule is true, then there is a model (a different one in this case) in which
both this input and the output of the rule are true—and that is the desired
property. Case (ii): the name a used in applying the rule is not new to the
path. By rule (7) of §9.4.2, if there is a model M in which ∀xα(x) is true, then

for every object o in the domain of M, α(d/x) is true in M
d
o , where d is a new

name (which is not assigned a referent in M), and M
d
o is a model that is just

like M except that in it the name d is assigned the referent o. Now in this case,
a is assigned a referent in M—say it is assigned the object k. We have just seen
that α(d/x) is true in every model just like M except that it assigns a referent
to d (remember that in the case we are considering now, M assigns a referent
to a—the name we used in applying the rule for the universal quantifier, but

it does not assign a referent to d). So in particular, α(d/x) is true in M
d

k , the
model that assigns as d ’s referent the object k. But then clearly α(a/x) must
be true in M, because in M, a’s referent is that same object k (and the truth
of a formula involving a name depends only on the name’s referent, not on

what name it is—and apart from assigning d the referent k, M
d

k is exactly like
M).3 So if there is a model in which the input to our rule is true, then there is
a model (the same one in this case) in which both this input and the output of
the rule are true—and that is the desired property.4

The tree rules are summarized in Figure 10.1 (the rules for the connectives
are exactly the same as in PL).

10.1.5 Order of Application

It is desirable to apply the tree rules in the following order:

1. propositional logic rules—and among these, nonbranching rules first;

2. negated quantifier rules;

3. unnegated existential quantifier rule;

4. unnegated universal quantifier rule;

and then return to (1) and cycle through again, until no more rules can be
applied. This is a heuristic—a rule of thumb. Our tree will not be incorrect if
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Disjunction

(α ∨ β) �

α β

¬(α ∨ β) �
¬α

¬β

Conjunction

(α ∧ β) �
α

β

¬(α ∧ β) �

¬α ¬β

Conditional

(α → β) �

¬α β

¬(α → β) �
α

¬β

Biconditional

(α ↔ β) �

α

β

¬α

¬β

¬(α ↔ β) �

α

¬β

¬α

β

Negation

¬¬α �
α

Existential quantifier

∃xα(x) �a (new a)

α(a/x)

¬∃xα(x) �
∀x¬α(x)

Universal quantifier

∀xα(x) \a (any a)

α(a/x)

¬∀xα(x) �
∃x¬α(x)

Figure 10.1. Tree rules for MPL.

we apply the rules in some other order—but it may be longer than necessary
(in some cases much longer—see §10.3.1 for an example).

The requirement on checking closure still applies: when we add wffs to the
tree, we must check all open paths, and if any of them can close, we must
close them with a cross. Once a path is closed with a cross, no more wffs can
be added to it. This procedure is not merely a heuristic: it is a hard-and-fast
requirement.5
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10.1.6 Saturated Paths and Finished Trees

We stop applying tree rules and draw a conclusion from our tree—for exam-
ple, “valid: all paths close,” or “invalid: some path remains open”—when the
tree is finished. A tree is finished when each of its paths is either closed (with a
cross) or saturated. Basically, a saturated path is one on which every applicable
rule has been applied; a path such that every formula on it of a sort that figures
as input to some tree rule—that is, every formula other than atomic formu-
las and negations of atomic formulas—has had the relevant rule applied to it.
However, in light of the rule for the unnegated universal quantifier, we do not
wish to define a saturated path in the simple way just stated, because we al-
ways can continue applying the rule for the universal quantifier, without limit,
using a new name each time:

∀xGx \a b c . . .

Ga

Gb

Gc
...

but we do not want to mandate that any path containing a universally quanti-
fied formula must continue forever. So we define saturation as follows:

A path is saturated iff:

1. every formula on it—apart from atomic formulas, negations of atomic
formulas, and formulas whose main operator is a universal quantifier—
has had the relevant rule applied; and

2. every formula on it whose main operator is a universal quantifier

(i) has had the universal quantifier rule applied to it at least once, and
(ii) has had the rule applied to it once for each name that appears on the path (i.e.,

for any name appearing anywhere on the path—above or below the universal
formula in question—the rule has been applied to that formula using that
name).

Some examples will help to make this definition clear. The following tree is
finished:

∃xFx � a

∀xGx \ a

Fa

Ga

There are no rules that can be applied to the atomic formulas Fa and Ga. The
relevant rule has been applied to ∃xFx. As for ∀xGx, the universal rule has
been applied to it at least once, and it has been applied once for every name
appearing on the path (in this case, just the name a).
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The following tree is not finished:

Fa

∃xFx � b

∀xGx \ a

Fb

Ga

To finish it, we need to apply the universal rule again to ∀xGx, using the name
b, because the name b occurs on this path. Once we do that, the tree is finished:

Fa

∃xFx � b

∀xGx \ a b

Fb

Ga

Gb

The following tree is not finished:

∀xGx

To finish it, we need to apply the universal rule at least once to ∀xGx. As no
names appear in the path, we may use any name we please when applying the
rule. We choose a; now the tree is finished:

∀xGx \ a

Ga

10.1.7 Vacuous Quantifiers

Recall (§8.4.4) that an occurrence of a quantifier ∀x or ∃x in a wff is vacuous
if the variable x (i.e., the one in the quantifier) has no free occurrences in the
scope of the quantifier. The formulas ∀xα and ∃xα are each equivalent to α,
when α does not contain free occurrences of x—that is, when the quantifier
is vacuous. These equivalences arise because ∀xα (∃xα) is true in a model M

just in case the wff resulting from α by replacing every free occurrence of x

in it by some new name a is true on every (some) model just like M except
that it assigns a referent to a. When α contains no free occurrences of x, the
wff resulting from α by replacing every free occurrence of x in it by some
new name a is simply α itself. And because α contains no occurrences of a

(remember a is a new name), it is true in any model just like M except that
it assigns a referent to a iff it is true on M itself (because the truth value of a
wff is fully determined by the values of its own components, together with the
domain: it cannot be affected by the referents/extensions of names/predicates
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that do not occur in it). So what is required for ∀xα or ∃xα to be true in
any model M is simply that α be true in M. Hence ∀xα and ∃xα are each
equivalent to α.

Note that in a wff such as ∀x∃xFx, it is the outer quantifier (in this case the
universal one) that is vacuous. The scope of ∃x here is Fx, which does contain
a free x—so ∃x is not vacuous. The scope of ∀x is ∃xFx, which contains no
free x—so ∀x is vacuous. Hence, ∀x∃xFx is equivalent to ∃xFx. Similarly, in
∀x∃x∀xFx, the outer ∀x and the ∃x are both vacuous, so this wff is equivalent
to ∀xFx.

When we apply a tree rule to a vacuous quantifier, we simply strip off the
quantifier: this action does not result in a wff with any free variables in it, and
so there are no free variables to replace by names. We therefore simply write a
check mark next to the formula (even in the case of the rule for the universal
quantifier), with no name next to it. For example:

∀x∃xFx �
∃xFx

∃x∀xFx �
∀xFx

10.2 Using Trees

Let us now work through a couple of examples of using trees to answer ques-
tions of interest. First, let’s test whether the following proposition is a logical
truth:

([∃xFx ∧ ∀x(Fx →Gx)]→∃xGx)

We write the negation of this formula at the top of our tree and then finish the
tree. Note that in the following tree, I number the wffs (on the left) and note
where each step comes from (in braces on the right) to make it easier to keep
track of what is going on:

¬([∃xFx ∧ ∀x(Fx → Gx)] → ∃xGx) �
[∃xFx ∧ ∀x(Fx → Gx)]  �

¬∃xGx �
∃xFx �a

∀x(Fx → Gx)  \a
∀x¬Gx  \a

Fa
Fa → Ga �

1.
2.
3.
4.
5.
6.
7.
8.

{1}
{1}
{2}
{2}
{3}
{4}
{5}

¬Fa
×

9. {8}
{7, 9}

   Ga
¬Ga
×

10.
11.

{8}
{6}

{10, 11}

All paths close, so the original formula is a logical truth.
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Second, let’s test whether the following argument is valid:

∃xFx

∃xGx

∴ ∃x(Fx ∧Gx)

We write the premises and the negation of the conclusion at the top of our tree
and then finish the tree:

∃xFx � a
∃xGx � b

¬∃x(Fx ∧ Gx) �

Fa
Gb

¬(Fa ∧ Ga) �

∀x¬(Fx ∧ Gx)  \a b

1.
2.
3.
4.
5.
6.
7.

{3}
{1}
{2}

{4, a}

¬Fa
×

8. {7}
{5, 8}

¬Fb
↑

11. {10} ¬Gb
×

12. {10}
{6, 12]

¬Ga
   ¬(Fb ∧ Gb) �

9.
10.

{7}
{4, b}

After all rules have been applied—including applying the universal rule to wff
(4) for every name on the open path—a path remains open, so the argument
is invalid.

10.2.1 Reading off Models from Open Paths

We said earlier (§10.1) that where a path remains open, we can read off from
it a model in which the formulas at the top of the tree are all true (indeed, in
which every formula on the open path is true). Let us now see how to do this.
To specify a model, we must specify three things:

1. a domain,

2. a referent for each name (in the relevant fragment of the language—i.e.,
each name that appears in the path), and

3. an extension for each predicate (in the relevant fragment—i.e., each pred-
icate that appears in the path).

As our domain, we can take any set of objects we like: we must simply ensure
that there is one member of the domain for each name appearing in the
path. Where there are n names in the path, we write our domain as follows:
{1, . . . , n}. You can read this statement abstractly, as saying that the domain
contains n distinct objects: a first one labeled “1,” a second one labeled “2,” and
so on. Or you can read it concretely, as saying that the domain contains the first
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n positive integers; that is, the first object in the domain is the number 1, the
second object is the number 2, and so on. It does not matter which way we
read it—either way, we obtain a model in which every formula on the open
path is true—so choose whichever way feels more comfortable.

We now need to specify the referents in our model of the names appearing
on the open path. Because (in the previous step of specifying our model’s
domain) we put one object into the domain for each name in the path, we
know at this stage that there will always be a separate object available to act as
the referent of each name. All we need to do is match up names to objects in
some way. One simple way of doing it—which we shall adopt in general—is:

Referents: a: 1 b: 2 c: 3 . . .
(for as many names as appear in the path)

That is, the first name in the path refers to the first object we put into our
domain, the second name refers to the second object, and so on.6

Now we need to specify the extensions of predicates that appear on the open
path. Remember that the guiding idea is that the model we construct is one
in which every proposition on our path is true. What we do is look at the
atomic propositions (if any) that occur as complete wffs (not as subformulas of
some larger complete wff) on the open path. We then put into the extension
of each predicate all and only the referents of those names that appear after
the predicate in an atomic wff on the path. So suppose (for example) that
we find Fa, Ga, and Gb (and no other atomic wffs) on our path. For Fa

to come out true in the model we are constructing, the referent of a must be
in the extension of F . For Ga to come out true, the referent of a must be in
the extension of G. Likewise, for Gb to come out true, the referent of b must
be in the extension of G. So we construct our extensions as follows:

Extensions: F : {1} G: {1, 2}

Here we have put into the extension of F the referent of a on our model (i.e.,
the number 1), and we have put into the extension of G the referents of a

and of b on our model (i.e., the numbers 1 and 2). And we have put nothing
else into these extensions, because (in our example) the only atomic proposi-
tion on our path featuring the predicate F is Fa, and the only atomic prop-
ositions on our path featuring the predicate G are Ga and Gb.

Note that, following this method of constructing extensions, if we have a
predicate P on our path but no atomic formula Pa, for any name a (as a
complete wff), then we make P ’s extension the empty set ∅. This case can
easily happen; for example, the only predicate letter in a path might be P ,
and the only name a, and the path might contain ¬Pa. Here the atomic wff
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Pa does not appear as a whole wff, only as a subformula in ¬Pa, and we are
interested only in atomic formulas that occur as complete wffs.

§

We can now apply this method of constructing a model to the second example
considered in the previous section. Our argument was invalid, so we can read
off from the open path in our tree a countermodel: a model in which the
premises are true and the conclusion false. Looking along the open path, we
see that two names, a and b, occur. Hence we specify our domain and the
referents of these two names as:

Domain: {1, 2}
Referents: a: 1 b: 2

We now look to see what atomic formulas occur on our path; we find Fa and
Gb. (Note that Ga does not appear as a whole wff, only as a subformula in
other wffs; similarly Fb does not appear as a whole wff, only as a subformula
in other wffs. We are interested only in atomic formulas that occur as complete
wffs.) So we specify the extensions as:

Extensions: F : {1} G: {2}

Note that in this case, the names a and b appearing in our open path do not
appear in the original argument:

∃xFx

∃xGx

∴ ∃x(Fx ∧Gx)

So if we simply want a countermodel to the argument—as opposed to a model
in which every wff on the open path is true—then it does not matter if we leave
out the assignment of referents to names from our model. That is, we could
present the model as:

Domain: {1, 2}
Extensions: F : {1} G: {2}

Note that it is crucial that everything else about this model (apart from the
absence of a specification of referents for a and b) is the same as in the first
model. In particular, we must include one object in the domain of the model
for each of the names on our open path.

§

We must read off a model only from a saturated path. Consider the following
argument:
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∃x∀y(Fx ∧Gy)

∀xFx

∴ ∀x∀y(¬Fx ∨ ¬Gy)

We begin its tree as follows:

1. ∃x∀y(Fx ∧Gy) �a

2. ∀xFx

3. ¬∀x∀y(¬Fx ∨ ¬Gy) �
4. ∃x¬∀y(¬Fx ∨ ¬Gy) �b {3}
5. ∀y(Fa ∧Gy) {1}
6. ¬∀y(¬Fb ∨ ¬Gy) � {4}
7. ∃y¬(¬Fb ∨ ¬Gy) �c {6}
8. ¬(¬Fb ∨ ¬Gc) � {7}
9. ¬¬Fb � {8}

10. ¬¬Gc � {8}
11. Fb {9}
11. Gc {10}

At this point, the only formulas remaining to which rules can be applied are
the universal quantifications (2) and (5). The names a, b, and c all appear
in the path on which these formulas are located, so to saturate the path, we
need to apply the universal rule three times to each of these formulas: using a,
once again using b, and finally using c. We can see that eventually this yields
the formulas Fa, Fb, Fc, Ga, Gb, and Gc on our path, and so the path
will not close. Now if you just wanted to run a quick test to see whether the
argument we started with is valid, you could stop here: evidently the path will
not close, and so the argument is invalid. However if you actually want to read
off a particular model in which the premises are true and the conclusion false,
then you need first to saturate the path. Because if we read off a model from
the unsaturated path in the above unfinished tree, we obtain the following:

Domain: {1, 2, 3}
Referents: a: 1 b: 2 c: 3
Extensions: F : {2} G: {3}

This is not a model in which the premises are true and the conclusion false.
For example, the second premise ∀xFx is clearly not true in this model, in
which there are three objects in the domain, only one of which is F .

10.2.2 Exercises

1. Using trees, determine whether the following propositions are logical
truths. For any proposition that is not a logical truth, read off from your
tree a model in which it is false.
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(i) Fa →∃xFx

(ii) ∃xFx →¬∀x¬Fx

(iii) ∀x((Fx ∧ ¬Gx)→∃xGx)

(iv) ∀xFx →∃xFx

(v) (Fa ∧ (Fb ∧ Fc))→∀xFx

(vi) ∃xFx ∧ ∃x¬Fx

(vii) ∃x(Fx →∀yFy)

(viii) ∀x(Fx →Gx)→
(Fa →Ga)

(ix) ¬∀x(Fx ∧Gx)↔
∃x¬(Fx ∧Gx)

(x) ¬∃x(Fx ∧Gx)↔
∀x(¬Fx ∧ ¬Gx)

2. Using trees, determine whether the following arguments are valid. For
any argument that is not valid, read off from your tree a model in which
the premises are true and the conclusion false.

(i) ∃xFx ∧ ∃xGx

∴ ∃x(Fx ∧Gx)

(ii) ∃x∀y(Fx →Gy)

∴ ∀y∃x(Fx →Gy)

(iii) Fa →∀xGx

∴ ∀x(Fa →Gx)

(iv) Fa →∀xGx

∴ ∃x(Fa →Gx)

(v) ∀x(Fx ∨Gx)

¬∀xFx

∴ ∀xGx

(vi) ∃x(Fx ∧Gx)

∴ ∃xFx ∧ ∃xGx

(vii) ∀x(Fx →Gx)

Fa

∴ Ga

(viii) ¬∀x(Fx ∨Gx)

∴ ∃x(¬Fx ∧ ¬Gx)

(ix) ∀x(Fx →Gx)

∀x(Gx →Hx)

∴ ¬∃x(¬Fx ∧Hx)

(x) ∀x(Fx ∨Gx)

∴ ¬∃x(Fx ∧Gx)

10.3 Infinite Trees

Suppose we want to know whether the wff ∀x∃y(Fx ∧Gy) is satisfiable. So
we write this wff at the top of our tree. We first apply the rule for the universal
quantifier: no names have yet been used, so we use a new name, a. Then we
apply the rule for the existential quantifier, picking a new name b. Then
we apply the rule for conjunction:

∀x∃y(Fx ∧Gy) \ a

∃y(Fa ∧Gy) � b

(Fa ∧Gb) �
Fa

Gb

Is the tree now finished? No, because the name b appears, as well as the name a,
but the universal rule has only been applied using a. So we go back and apply
the rule again using b. But this application then creates a new existentially
quantified formula, and so we have to apply the rule for that, using a new
name c. Then we apply the rule for conjunction:
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∀x∃y(Fx ∧Gy) \ a b

∃y(Fa ∧Gy) � b

(Fa ∧Gb) �
Fa

Gb

∃y(Fb ∧Gy) � c

(Fb ∧Gc) �
Fb

Gc

Is the tree now finished? No, because now the name c appears, as well as a

and b, but the universal rule has only been applied using a and b. So we go
back and apply the rule again using c. But this application then gives us a new
existential formula—and applying the rule for that one gives us another new
name d . So we have to go back and apply the universal rule for d , and so on.
So this tree goes on forever.

10.3.1 Infinite Paths and Saturated Paths

The mere fact that a path continues infinitely—that we could write forever
and not close the path—does not, in itself, mean that we can deem the initial
formula to be satisfiable. We can reach that conclusion only if we have a
saturated open path. So we need to ask the following question. If we applied
every applicable rule to this path—including applying all universal rules for
every name on the path—would the tree close, or would it still remain open?
In the example just considered we can see that the tree would indeed remain
open, no matter what we did. So we can conclude that our wff is satisfiable.

But consider a different example. We want to know whether the following
wff is satisfiable:

(∀x∃y(Fx ∧Gy) ∧ (Fa ∧ ¬Fa))

So we begin our tree as follows:

(∀x∃y(Fx ∧Gy) ∧ (Fa ∧ ¬Fa)) �
∀x∃y(Fx ∧Gy) \ a

(Fa ∧ ¬Fa)

∃y(Fa ∧Gy) � b

(Fa ∧Gb) �
Fa

Gb

Here we have neglected to follow the heuristic that says to apply propositional
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rules first—but this procedure is only a rule of thumb. Ignoring it does not
make our tree wrong—only (in general) longer than necessary. Now suppose
we go back and apply the universal rule again for b, and then again for the
new name c that results, and so on. We shall be writing forever: extending our
tree in the same way as in the example discussed in §10.3. But although this
tree will go on forever—when approached in this way—the resultant infinite
path is not saturated, and so we cannot conclude that our wff is satisfiable. For
there is a formula on the path—(Fa ∧ ¬Fa)—that could have a rule applied
to it and is such that were this rule applied, the path would close straight away.
So infinitude by itself shows nothing. What is significant—what does allow us
to conclude that the formulas starting the tree can all be true—is when a path
continues infinitely even if it is saturated.

The distinction between saturated and unsaturated infinite paths can be
tricky to get one’s head around at first, so it might be useful to consider an
analogy. Consider the following infinite sequence of numbers:

1, 2, 3, 4, . . .

It goes on forever—we cannot write out the whole thing. And yet we can see
that the following is true: for any number in the sequence, there is another
number in the sequence that is three times its size. Imagine the sequence as a
path stretching into the infinite distance: you can see that as you walk down
it, whatever number you get to (say 11, or 472), after some finite amount of
further walking you will reach a number three times its size (in this case 33, or
1,416). So although we cannot actually write out the whole sequence, we can
see that it is “complete with respect to multiplication by three.” Contrast the
sequence obtained from the first by removing the number 6:

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, . . .

It is also infinite: we cannot write out the whole thing. But we can still see
that it is not complete with respect to multiplication by three: it contains the
number 2, but it does not contain a number three times the size (i.e., 6).

The distinction between an infinite path that is saturated and one that is
not is just like the distinction between an infinite sequence of numbers that is
complete with respect to multiplication by three and one that is not. So given
an infinite path in a tree, imagine walking down the path, starting at the top.
We need to ask ourselves: for every wff we pass that should have a rule applied,
is there—some finite distance down the path—a point at which that rule is
applied (including applying the universal rule once for every name appearing
anywhere down the path)? If so, the path is saturated.
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10.3.2 Reading off Models

Let’s go back to the example in §10.3, where we could conclude that the
infinite path is saturated and so concluded that the wff at the top of the tree
is satisfiable. We can read off from our open path a model in which the wff is
true in the same way as before, only this time the domain will be infinite. Our
saturated infinite path contains infinitely many names, so the domain must
contain infinitely many objects:

Domain: {1, 2, 3, . . .}
Referents: a: 1 b: 2 c: 3 . . .

Remember from the end of §10.2.1 that we must read off a model only from
a saturated path. So in this case we read off our model from the entire (imag-
ined) saturated path, not simply from the small initial section of this path that
we have actually written down. What about the extensions of predicates? Two
predicates appear in the open path: F and G. If we look at the pattern emerg-
ing in our tree (extend the tree a bit more if you can’t see the pattern yet), we
see that for every new name d that is introduced, Fd appears on the path, and
although Ga does not appear on the path, for every new name d introduced
after a, Gd does appear on the path. So our extensions are:

Extensions: F : {1, 2, 3, . . .} G: {2, 3, . . .}

10.3.3 Finite and Infinite Models

So the model we read off from the open path has an infinite domain. But note
that the tree is not telling us that the wff at the top of the tree is true only in
models with infinite domains. A tree tells us whether there is any model in
which the wff(s) at the top are true, and if so, it specifies at least one such
model. (If a tree has more than one open path, it supplies one model for
each open path—but they need not be different models.) So all we know at
this stage is that ∀x∃y(Fx ∧Gy) is satisfiable—there is at least one model
in which it is true—and furthermore we have one such model: the one just
constructed. We cannot conclude from this that all models in which it is true
also have an infinite domain. In fact they do not—the wff is also true in the
following model:

Domain: {1}
Extensions: F : {1} G: {1}

How did I devise the latter model? Not from a tree, nor by following some
other systematic method. I came up with it ad hoc—by looking at the formula
∀x∃y(Fx ∧Gy) and trying to think of a model with a finite domain in which
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it is true. (Recall question (4) in Exercises 9.4.3.) But there is in fact a variant
of the tree method that always finds a finite model of the propositions at the
top of the tree, if such a model exists.7 Given any group of propositions with
which we might begin a tree, there are two possibilities, the second of which
divides into two further possibilities:

1. the set is unsatisfiable, or

2. the set is satisfiable

(i) there is a model with a finite domain in which every proposition in the set is
true, or

(ii) there is a model with an infinite domain in which every proposition in the set
is true but no model with a finite domain in which every proposition in the
set is true.

In case (1), all paths in the tree will close. In case (2), some path in the tree
will remain open. Our tree method makes no distinction between cases (2i)
and (2ii): even if there is a model of the starting propositions with a finite
domain, our tree method may yield a model with an infinite domain. This
is what happened in the example considered above. In contrast, the variant
method does distinguish these two cases: in case (2i) it yields a finite model,
whereas in case (2ii) it yields an infinite one.

10.3.4 Extending the Initial Section

We said that when reading off extensions for predicates from an infinite satu-
rated path—of which, of course, we have actually written down only a finite
initial section—we have to look at the pattern emerging in the initial section.
Sometimes there are different ways of extending the initial section, which lead
to different infinite paths and so yield different models. In such cases, before
we can see a pattern emerging, we have to decide how the initial section is to
be extended. An example will make this clear.

Suppose we want to test whether the two wffs ∀x∃y(Fx ∧ Gy) and
∀x∃y(Fx ∧ ¬Gy) are jointly satisfiable. So we write these wffs at the top of
our tree and begin applying rules:

1. ∀x∃y(Fx ∧Gy)

2. ∀x∃y(Fx ∧ ¬Gy)

Given our experience with the first example in this section, we know that
this tree will go forever: we have to apply the universal quantifier rule to line
1 for infinitely many names a , b, c, . . ., and likewise for line 2. However,
there are different ways that the tree might progress. Or, to put the point
more accurately, there are different infinite finished trees that begin this way.
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1. ∀x∃y(Fx ∧Gy) \ a b . . .
2. ∀x∃y(Fx ∧ ¬Gy) \ a b . . .
3. ∃y(Fa ∧Gy) � b {1, a}
4. (Fa ∧Gb) � {3}
5. Fa {4}
6. Gb {4}
7. ∃y(Fa ∧ ¬Gy) � c {2, a}
8. (Fa ∧ ¬Gc) � {7}
9. Fa {8}

10. ¬Gc {8}
11. ∃y(Fb ∧Gy) � d {1, b}
12. (Fb ∧Gd) � {11}
13. Fb {12}
14. Gd {12}
15. ∃y(Fb ∧ ¬Gy) � e {2, b}
16. (Fb ∧ ¬Ge) � {15}
17. Fb {16}
18. ¬Ge {16}

...

Domain: {1, 2, 3, . . .}
Referents: a: 1 b: 2 c: 3 . . .
Extensions: F : {1, 2, 3, . . .} G: {2, 4, 6, . . .}

Figure 10.2. An infinite tree and the model read off from it.

For simplicity, let’s use “1a” to mean “apply the universal quantifier rule to
line (1) using the name a,” “2b” to mean “apply the universal quantifier rule
to line (2) using the name b,” and so on. Suppose we decide to extend the tree
in accordance with the following pattern:

1a , 2a , 1b, 2b, 1c, 2c, . . .

(It is to be understood here that after we do 1a, we then carry out all steps that
can be done as a result of that action before doing 2a, after which we do all
steps that can be done as a result of that action before doing 1b, etc.) Then the
tree, and the model read off from it, will be as in Figure 10.2. If, however, we
decide to extend the tree in accordance with the following pattern:

2a , 1a , 2b, 1b, 2c, 1c, . . .

then the tree, and the model read off from it, will be as in Figure 10.3. Note
that the extensions of G are different in these two models.
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1. ∀x∃y(Fx ∧Gy) \ a b . . .
2. ∀x∃y(Fx ∧ ¬Gy) \ a b . . .
3. ∃y(Fa ∧ ¬Gy) � b {2, a}
4. (Fa ∧ ¬Gb) � {3}
5. Fa {4}
6. ¬Gb {4}
7. ∃y(Fa ∧Gy) � c {1, a}
8. (Fa ∧Gc) � {7}
9. Fa {8}

10. Gc {8}
11. ∃y(Fb ∧ ¬Gy) � d {2, b}
12. (Fb ∧ ¬Gd) � {11}
13. Fb {12}
14. ¬Gd {12}
15. ∃y(Fb ∧Gy) � e {1, b}
16. (Fb ∧Ge) � {15}
17. Fb {16}
18. Ge {16}

...

Domain: {1, 2, 3, . . .}
Referents: a: 1 b: 2 c: 3 . . .
Extensions: F : {1, 2, 3, . . .} G: {3, 5, 7, . . .}

Figure 10.3. Another infinite tree and the model read off
from it.

Of course there are also infinitely many other ways in which we could grow
the tree, for example:

1a , 1b, 2a , 2b, 1c, 1d , 2c, 2d , . . .

1a , 1b, 1c, 2a , 2b, 2c, 1d , 1e, 1f , 2d , 2e, 2f , . . .

1a , 2a , 1b, 1c, 2b, 2c, 1d , 1e, 1f , 2d , 2e, 2f , . . .

Note that these ways all ensure that the path will become saturated. Other
methods for extending the tree forever do not result in a saturated path, for
example: 1a , 1b, 1c, . . . . Here, although the tree continues forever, the uni-
versal rule never gets applied to line 2, so the path is not saturated.

Thus, looking at the initial section of a tree and “seeing a pattern emerg-
ing” in general entails the following: decide on a strategy for extending the
initial section, and make sure that it will result in a finished tree; follow this
strategy for a while; and then look for a pattern emerging in the extensions of
predicates.

This procedure raises two issues, both of which require further considera-
tion. First, how do we ensure that our strategy for extending the initial section
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will result in a finished tree? Second, how do we find the pattern that emerges
from a given strategy? We discuss these issues in the following two subsections.

10.3.5 Ensuring that Trees Are Finished

We can give a single strategy for extending any initial section to a finished
tree (one in which every path is either closed or saturated). Before we present
the strategy, we introduce the idea of giving an address to each proposition
in a tree. Our addresses will be like street addresses in (parts of) Manhattan
(e.g., 156 West 48th Street, or 901 Sixth Avenue) in the sense that knowing the
address enables you to find your way there (count up the streets [or avenues]
until you reach the street you want, then count up the buildings until you
reach the desired one). We specify an address for every proposition in a tree
recursively, as follows:

1. The first proposition at the top of the tree has address 1.

2. Any proposition α in the tree (apart from the first) is in one of the fol-
lowing positions:

(i) immediately below another proposition (whose address is n). In this case α’s
address is n1:

...

n

n1

(ii) on the left side of a branch that begins under another proposition (whose
address is n). In this case α’s address is n1:

n

n1

…

(iii) on the right side of a branch that begins under another proposition (whose
address is n). In this case α’s address is n2:

n

n2

…

Note that by assigning the topmost proposition address 1 and then working
down recursively, this procedure specifies an address for every proposition in
any tree. Figure 10.4 gives an example (the propositions in this tree are not
shown: only their addresses). Note also that the address of an entry tells you
how to get there. For example, take address 1212. The first digit specifies the
start (at address 1: the top of the tree). The next digit (2) directs us to go right
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1212111
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1

1111212

Figure 10.4. Assigning addresses to the propositions in a tree.

(at this point we are at address 12). The next digit (1) says to go left (if there
is a branch) or straight down (if there is not). In this case there is no branch,
so we go straight down (at this point we are at address 121). The next digit (2)
says to go right. Now all the digits of our address are exhausted—and we are at
the address we wanted: 1212. The address 1212 is thus like a starting point (1)
followed by three directions: right (2); left (1), where “left” means “straight
ahead” in case there is no branch; and right (2).

Now, given any finite tree, our procedure for extending it is as follows:

1. Go through every proposition in the tree in order of address (i.e., go to
α before β if α’s address is a smaller number than β’s address). For each
proposition α you visit:

(i) If α lies on no open path, or α is an atomic proposition or a negated atomic
proposition, or α has been checked off, do nothing and move to the next
proposition.

Otherwise stay on α and go to step (ii).
(ii) If α can have a propositional rule8 or a negated quantifier rule9 applied to it,

apply the relevant rule at the bottom of every open path on which α lies, and
check α off.

If α can have the unnegated existential quantifier rule applied to it,10 apply
this rule at the bottom of every open path on which α lies, and check α off.
When applying the rule at the bottom of a path, use the alphabetically first
name that does not occur on that path.11

If α can have the unnegated universal quantifier rule applied to it,12 apply
this rule at the bottom of every open path on which α lies (do not check α off).
When applying the rule at the bottom of a path, do so once for each name that
appears on that path—but in each case, apply the rule using that name only if
this results in writing down a formula not already on the path.13 If no names
appear on the path, apply the rule using the name a.

In all cases, when you write something at the bottom of an open path, check
the path for closure, and close it with a cross if you can do so.
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When you have visited the last proposition in the tree and dealt with it in
accordance with the above instructions, go to step (2).14

2. If the tree has changed (in any way: you have added a proposition, closed
a path, checked off a formula, etc.) since you last began step (1), go back
to the beginning of step (1).15

If the tree has not changed since you last began step (1), stop.

Let’s think about what happens when you apply this procedure to a given
finite tree. If the tree is already finished, nothing happens: you go through
step (1) without changing the tree in any way, and then step (2) tells you to
stop. If the tree is not already finished, one of two things might happen:

1. You go through step (1) a number of times, adding to the tree. Eventually
there are no more additions, and step (2) tells you to stop. The result is a
finished finite tree.

2. You keep going through step (1), adding to the tree forever. The result
(after an infinite amount of time, so to speak) is an infinite tree. But note
the crucial point: this infinite tree is finished.16

10.3.6 Finding the Pattern

In the previous section, we solved one of our two problems: coming up with
a strategy for extending a finite initial section of a tree in a way that ensures
a finished tree. Now to the second problem: how do we detect what pattern
emerges from this strategy, so that we can read off a model? Here the news
is not so good. We have given an effective procedure for extending any finite
segment of a tree to a finished tree. But there is no effective procedure that
when applied to a finite segment of tree, will tell us whether—when finished—
the tree will have an infinite path. It is not just that no one has come up with
such a procedure: it has been shown that there cannot be such a procedure.17

Of course, in simple cases, a pattern does emerge clearly. For example, there is
no doubt that the tree discussed in §10.3 will never close, even when saturated,
and the pattern emerging in the extensions of F and G is easy to discern.
Hence, we can safely conclude that the proposition at the top of the tree is
satisfiable and read off a model in which it is true (as we did in §10.3.2).
However, the point is that although we can do this sort of thing in individual
cases, there is no single, effective procedure that can be applied to any finite
tree and that will give a correct answer as to whether, when finished, that
tree will be infinite. We return to this issue in §14.2. In the meantime, we
confine ourselves to examples that are simple enough that—using insight and
ingenuity, rather than following a mechanical procedure—it is possible to tell,
from an examination of an initial section of the tree, whether the finished tree
will be infinite.
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10.3.7 What Infinite Trees Do Not Look Like

We conclude our discussion of infinite trees by noting two features we can be
sure we shall never see. (The fact that we can never see these things will be
important in §14.1, when we prove the soundness and completeness of the
tree method.)

First, no tree has a path that looks like:

α

β

γ
...

×
(The three dots with no proposition below them indicate that the sequence of
propositions beginning with α, β and γ goes on infinitely.) That is, no tree
has an infinite path with a cross at the bottom: an infinite closed path, that
is, an infinite path that contains both some wff and its negation. The reason
we never see this form of path is because of our closure-checking requirement
(§10.1.5). If a path contains both some wff δ and its negation ¬δ, then one of
them must come before the other. Suppose, without loss of generality, that δ

comes first.18 Then, as soon as ¬δ is entered, the path must close:

α

β

γ
...

δ
...

¬ δ

×
Thus, the path cannot be infinitely long, because wffs are never added below a
cross. That is, we cannot get a path like:

α

β

γ
...

δ
...

¬ δ
...

×
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In sum, if a path is infinitely long, it is open. Equivalently, if a path closes, it
does so after some finite amount of time; a path cannot stay open through all
finite stages of constructing a tree but then close at infinity.

So the first feature we never see is an infinite closed path. The second is an
infinite tree (that is, a tree with infinitely many propositions in it) in which
every path is finite. If the procedure for building a tree never terminates—that
is, the tree grows forever—then the finished tree (after an infinite amount of
time, so to speak) has an infinite path. That is, the tree cannot grow only side-
ways, with new paths forever being added, but every path eventually ending
(either because it closes or becomes saturated). Thus, an infinite tree might
look like:

α1

α2 α3

α4 α5

α6 α7

α8 α9

α10 α11

…

but will never look like:

α1

α3

α4

α2 α5

α6

α7

α8

α9

α10

α11

…

The reason is that our branching rules have only two branches—whereas to
obtain an infinite tree with no infinite path (i.e., an infinite tree with infinitely
many finite paths) starting from a finite set of initial propositions and applying
tree rules, one would need rules with infinitely many branches.

Before showing this, let’s introduce some terminology. For any two entries
α and β in some tree, we say that β is a descendant of α (in that tree) iff we can
get from α to β by moving down a path (i.e., iff there is a path that contains
both α and β, and β is lower down that path than α is). We say that β is an
immediate descendant of α iff it is a descendant of α, and there are no entries
in between α and β (i.e., iff there is a path that contains both α and β, and β

is the wff immediately after α on this path). If an entry in a tree has infinitely
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many descendants, it will be said to be ID; if an entry has only finitely many
descendants, it will be said to be FD.

Now let us show that if one of our trees is infinite, it must have an infinitely
long path. For each entry in one of our trees, the number of immediate de-
scendants that it has is either zero, one, or two. Thus, if an entry α is ID, it
must have at least one immediate descendant that is also ID. (Because if α has
no immediate descendants, then it is not ID. So suppose α has one or two im-
mediate descendants. If they are both FD, then so is α: an entry cannot be a
descendant of α without being a descendant of one of α’s immediate descen-
dants, and a finite number of finite numbers adds up to a finite number. Thus,
if α is ID, it must have at least one immediate descendant that is also ID.) Now
suppose we have an infinite tree, that is, a tree with infinitely many entries.19

Every entry in the tree is a descendant of the topmost entry, so the topmost
entry (call it “1”) is ID. Thus, 1 must have at least one immediate descendant
which is ID: call this entry “2.” (If there are two such entries, call the first of
them—the one with the lower address—2.) Being ID, 2 must have at least one
immediate descendant that is ID: call this entry “3.” (If there are two such en-
tries, call the first of them “3.”) We can go on in this way forever, specifying an
infinite series of ID entries: 1, 2, 3, . . . . But this series of entries constitutes
an infinite path! So we have shown that our infinite tree must have an infinite
path.20

10.3.8 Exercises

Translate the following arguments into MPL, and then test for validity using
trees. For any argument that is not valid, read off from your tree a model in
which the premise(s) are true and the conclusion false.

1. All dogs are mammals. All mammals are animals. Therefore, all dogs are
animals.

2. If everything is frozen, then everything is cold. So everything frozen is
cold.

3. If a thing is conscious, then either there is a divine being, or that thing has
a sonic screwdriver. Nothing has a sonic screwdriver. Thus, not everything
is conscious.

4. All cows are scientists, no scientist can fly, so no cow can fly.

5. Someone here is not smoking. Therefore, not everyone here is smoking.

6. If Superman rocks up, all cowards will shake. Catwoman is not a coward.
So Catwoman will not shake.
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7. Each car is either red or blue. All the red cars are defective, but some
of the blue cars aren’t. Thus, there are some defective cars and some
nondefective cars.

8. For each thing, it swims only if there is a fish. Therefore, some things don’t
swim.

9. All robots built before 1970 run on kerosene. Autovac 23E was built
before 1970, but it doesn’t run on kerosene. So it’s not a robot.

10. Everyone who is tall is either an athlete or an intellectual. Some people
are athletes and intellectuals, but none of them is tall. Graham is a person.
Therefore, if he’s an athlete, then either he’s not an intellectual, or he isn’t
tall.
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11
Models, Propositions, and

Ways the World Could Be

In this chapter we pause the development of the machinery of predicate logic
to reflect on the significance of the machinery now in hand. In particular, we
wish to investigate how the logical apparatus relates to the guiding ideas set
out in Chapter 1:

. Logic is the science of truth.

. Our primary objects of study in logic are those things that can be true or
false: propositions.

. A proposition is a claim about how things are—it represents the world as
being some way; it is true if the world is that way, and otherwise it is false.

Among our technical apparatus we have closed wffs, and we have models.
Relative to a given model, each closed wff is either true or false. How do the
technical definitions of closed wffs (§8.4 and §8.4.5) and of truth and falsity
relative to a model (§9.4.2) relate to the above ideas? In other words, which bit
of the logical apparatus is supposed to be the precise version of the intuitive
idea of a proposition, which bit is supposed to represent the world (or a way
the world could be), and so on?

One answer that might spring to mind is this: closed wffs represent proposi-
tions; different models represent different ways the world could be; a wff being
true in a model represents a way the world could be being the way a proposi-
tion says the world is; and a wff being false in a model represents a way the
world could be not being the way a proposition says the world is. However,
this idea does not withstand close scrutiny. One immediate problem concerns
the idea that a closed wff by itself represents a proposition. A wff is a sequence
of symbols. These symbols are simply objects: in themselves, they do not have
meanings, and they do not pick out anything. They have no more content than
do rocks or pieces of wood. A sequence of such symbols—a wff—likewise has
no content (when considered simply as it is, in and of itself): it does not make



a claim; it does not represent things as being thus or so. How then can such a
thing—an uninterpreted wff, as it is called—be an adequate representative of
the intuitive notion of a proposition?

But wait a minute: we have been in the habit of referring to closed wffs
as propositions—are we now saying that this was a mistake? No, we are not.
As noted at the end of §2.2.1, we spoke of wffs in these terms for the sake
of simplicity of presentation, because talking in this way is convenient and
harmless in most contexts. We now need to engage in a proper analysis of the
matter, to determine which bit of our logical machinery can be regarded as
the precise version of the intuitive notion of a proposition. There is a prima
facie problem with regarding uninterpreted wffs as propositions, noted in
the previous paragraph. But we should not expect to find that it is entirely
incorrect, in every context, to think of closed wffs in these terms: if that were
the case, we should never have called them “propositions” in the first place.
Evidently, the full story is going to be somewhat complex. There are various
legitimate candidates for the role of precise representative of the intuitive idea
of a proposition. One candidate (in spite of the prima facie problem noted in
the previous paragraph) is closed wffs, but there are others too. To ward off
potential confusion, we shall, for the time being, refrain from calling closed
wffs “propositions”: we temporarily reserve this term for the intuitive notion
introduced in Chapter 1 (and summarized in the third bullet point above).

As noted, an uninterpreted wff has no content of any sort: it does not say
anything; it does not make any claim; it cannot (considered by itself, without
reference to something else, such as a model) be said to be true or false. A
useful way into our topic is to consider ways in which uninterpreted wffs can
be given content. Although we did not reflect on this explicitly at the time
(that is what we are doing now), we have already seen two different ways of
giving content to wffs: translation and (as we shall call it) valuation. There
is also a third way, which we have not hitherto encountered: axiomatization.
We explore these processes in subsequent sections. It will be important to
understand in detail how each works—and also to see that they are quite
different.1

11.1 Translation

Recall how we translate a claim expressed in English into MPL. Take, for
example, the claim “Mount Everest is tall.” We set up a glossary:

m: Mount Everest
T x: x is tall

and then translate the English as T m. The idea is that T m represents the prop-
osition expressed by some utterance of the sentence “Mount Everest is tall.” Of
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course, it is not the bare wff T m that does this: it is the wff in conjunction
with the glossary; or as we shall say, the wff under this particular glossary. The
wff T m could represent countless other propositions. For example, under the
glossary:

m: Marcel Marceau
T x: x is talkative

it represents the proposition that Marcel Marceau is talkative.
So what does a glossary contribute that makes a bare, uninterpreted wff—

which (considered by itself) says nothing—into a representation of a particu-
lar proposition (a particular claim about the world)? The short answer is that
the glossary gives m and T contents that determine that T m has the same con-
tent as the proposition expressed by some utterance of “Mount Everest is tall,”
but this answer requires unpacking and explanation.

Recall the guiding idea: a proposition is a claim about the world—it repre-
sents things as being thus and so. It is true if the world is the way the propo-
sition represents the world to be—if things are thus and so—and otherwise it
is false. Implicit in this picture are the ideas that there are (in principle) dif-
ferent ways the world could be (or could have been), and that a proposition
gets a truth value when confronted with (or considered relative to) such a way.
For example, the thing we call “Mount Everest” is tall, so given the way the
world actually is, the proposition expressed by “Mount Everest is tall” is true;
but that thing could have been much lower—if, for example, there had been
millions of years of heavy rain causing extensive erosion—and relative to that
way things could have been, the proposition expressed by “Mount Everest is
tall” is false.2 Because we will be talking about them quite a lot, it will be use-
ful to have a short term for a “way the world could be.” We use “ww” for this
purpose.3

So, whatever exactly the content of the proposition expressed by “Mount
Everest is tall” is, it must at least have this feature: it determines whether the
proposition would be true or false, relative to each way the world could be. In
other words, the content of a proposition determines a function from wws to
truth values.4

Now, what are the contents of T and m? Well, they are what they need to
be to determine a content for T m5—and the content of T m is to be the same
as the content of the proposition expressed by “Mount Everest is tall.” As we
have said, this content must, at a minimum, determine a truth value for the
proposition relative to each ww. To obtain a truth value for T m, we need a
referent for m (an object) and an extension for T (a set of objects). So the
content of T must, at a minimum, determine a function from wws to sets of
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objects, and the content of m must, at a minimum, determine a function from
wws to objects.

We have defined the notion of a value for certain kinds of expressions in
the logical language: names, whose values are objects; predicates, whose val-
ues are sets of objects; and closed wffs, whose values are truth values. We now
define the notion of an intension for these kinds of expressions. An intension
is a function from wws to values.6 Thus, the intension of a name is a function
from wws to objects, the intension of a predicate is a function from wws to
sets of objects, and the intension of a closed wff is a function from
wws to truth values.7 In these terms, we can express the above points as fol-
lows. The content of a name must at least determine an intension for it, the
content of a predicate must at least determine an intension for it, and the in-
tension of a name m and a predicate T together determine an intension for
the closed wff T m.8

Recapping, and putting the pieces together, the content of a proposition is
that which determines that it is true relative to some wws and false relative
to others. (This notion of the content of a proposition is implicit in the orig-
inal picture, according to which a proposition represents the world as being
some way and is true if the world is that way and false if the world is not.) For
simplicity, we henceforth take this content just to be a function from wws to
truth values.9 Now, a glossary assigns contents to T and m (in the case of the
example given above—but the point is general), which together ensure that
T m has the same content as the proposition expressed by some utterance of
“Mount Everest is tall.” Given that the content of this proposition is a function
from wws to truth values, the content of T m must be an intension: a func-
tion from wws to truth values. Hence, the contents of T and m—conferred on
them by the glossary—must likewise be intensions:10 a function from wws to
objects in the case of the name m, and a function from wws to sets of objects
in the case of the predicate T .

§

Glossaries, then, endow nonlogical symbols with intensions. How do we get
from intensions to truth values? In other words, how do we get from inten-
sions to values—to models? (Recall that a model is an assignment of values
to nonlogical symbols.) By supplying a ww. An intension determines a value
relative to each ww (that is just what an intension is). So to obtain a particu-
lar value from an intension, we plug in a particular ww. For example, consider
the two wws mentioned above: the one corresponding to the way the world
really is (the actual ww) and the imagined one, in which there has been severe
erosion. The intension of T is a function from wws to sets of objects; the in-
tension of m is a function from wws to objects. Applying these functions to the
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Figure 11.1. Translation.

first ww, we obtain an extension for T and a referent for m—this is the model
generated by the given intensions of T and m and the first ww; likewise, apply-
ing these functions to the second ww, we get an extension for T and a referent
for m—this is the model generated by the given intensions of T and m and
the second ww. These ideas are represented in Figure 11.1. The bottom two
boxes and the arrow between them represent what is involved in the process of
translation itself; the remaining boxes and arrows show how to obtain models.

Well, actually we don’t quite have models yet: we have an extension for T

and a referent for m, but to obtain a model of the fragment of MPL containing
T and m we also need a domain. We may take the domain of a model gener-
ated by a ww (together with some intensions) to be all the objects that exist,
according to that ww. We can imagine the world containing more or fewer
individuals—for example, imagine that your parents had more, or fewer, chil-
dren. As part of specifying a way the world could be (or could have been), a
ww specifies which things would exist (were the world that way). These are the
things that go into the domain of any model generated by that ww (i.e., by that
ww together with any intensions).11

§

Note that in the picture just presented—the picture of how uninterpreted wffs
gain content via translation—models and wws are quite different kinds of
things. A model is an assignment of values to nonlogical symbols (which then
determine an assignment of truth values to closed wffs). A ww is a way the
world could be. A ww does not in itself involve assigning values to expressions.
Rather, the value of an expression (name, predicate, or closed wff) is deter-
mined by its content (an intension) together with a ww. We obtain a value for
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an expression at, or relative to, a ww by combining its content with the facts
according to that ww. A ww plus contents for some items of nonlogical vocab-
ulary determines an assignment of values to those items—that is, a model:

ww + contents �→ model

A closed wff is true or false only in a model—that is, given an assignment of
values to its nonlogical components. A wff cannot be true or false outside of
any model—that would amount to the wff being assigned a value (a truth
value) without its components getting values (recall that a model just is an
assignment of values to the nonlogical components of wffs). And that cannot
happen: now that we have moved beyond propositional logic, the truth value
of a closed wff is never a brute fact—it is always determined by the values of
the nonlogical components of the proposition. Thus, if we say that a wff is true
at, or relative to, a ww, this is just a convenient manner of speaking. What we
really mean is that the wff is true in the model determined by that ww together
with certain contents.

Given some nonlogical symbols endowed (via a glossary) with contents,
we have many models of the fragment of MPL containing those symbols:
one model for each ww.12 One of these models has a special status. We call
it the actual model. It is the one generated by (the given contents and) the
actual ww (i.e., that ww which—out of all the possible ways the world could
be—represents the way the world really is). When we speak of soundness as
involving validity plus truth of premises, what we mean is truth on the actual
model.13 So an argument is sound just in case there is no model at all in which
the premises are true and the conclusion false (i.e., it is valid), and in the actual
model the premises are true.

Note that it makes no sense to speak of the actual model of a fragment
of MPL in abstraction from an assignment of intensions to the nonlogical
symbols in the fragment (i.e., a glossary): although there is just one actual
ww, the actual model is the one generated by applying certain intensions to
this ww. Hence, without intensions, we still have an actual ww, but we have
no actual model. In other words, there is not just one model that is the actual
model, once and for all. Rather, for any intensions for the nonlogical symbols
in a fragment, there is an actual model of the fragment together with those
intensions.

11.2 Valuation

In the previous section we examined one way of giving content to bare wffs:
translation. In this section we look at a second way: valuation. Like translation,
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valuation is something we have already encountered in earlier chapters. Recall
that in Chapter 9, we would sometimes present a model, for example,

Domain: {1, 2, 3, . . .}
Extensions: E: {2, 4, 6, . . .} O: {1, 3, 5, . . .}

and then ask, of various closed wffs, for example,

1. ∀xEx

2. ∃xOx

3. ∀x(Ex ∨Ox)

4. ∃x(Ex ∧Ox)

whether each of them is true or false in the given model. Call the process of
specifying a particular model for some wffs—of specifying values for their
nonlogical components—valuation. It seems very natural to say that in the
context of valuation, closed wffs take on a kind of content; they say something,
and hence can be assessed for truth or falsity. In the abstract, wffs have many
models, in some of which they are true and in others false, but once we fix on
a particular model, it is natural to think of a wff as saying something about the
things in the domain of this model and as being simply true if it is true relative
to the chosen model.

Note that the kind of content that wffs take on in valuation—that is, when
we pick out a specific model—is quite different from the kind they take on
in translation. In translation, nonlogical symbols are assigned intensions via a
glossary, and intensions, together with a ww, determine a model. So in trans-
lation, there is an indirect relationship between the kind of content assigned to
wffs (i.e., intensions) and models. To obtain a model, given intensions, we also
need a ww; different wws will yield different models from the same intensions.
In contrast, valuation does not involve a glossary, and there are no intensions.
There is a direct relationship between the kind of content assigned and mod-
els. The contents assigned are just values: a content is assigned by picking out
a model, and a model is just an assignment of values to nonlogical symbols
(together with a domain from which these values are drawn).

Recall Figure 11.1: using translation, we reach a model (i.e., an assignment
of values to the nonlogical symbols) by going around three sides of a square.
Contrast this process to that shown in Figure 11.2: using valuation, a model
is simply specified (out of nowhere, so to speak). Intensions and wws play no
role here as intermediaries between the nonlogical symbols and their values,
rather, the values are assigned directly.

The model assigned in the process of valuation is often called the intended
model of (the relevant fragment of) the logical language. A fragment has in-
finitely many different models, in some of which it is true and in others, false.14
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Once one of them has been singled out as the intended model, it is then natu-
ral to speak of a wff as simply “true” (as opposed to “true in such and such a
model”) if it is true in the intended model. Note that the intended model can-
not be equated with the actual model. The notion of an actual model makes
sense only when symbols have intensions (it is defined as the model deter-
mined by those intensions and the actual ww—the ww corresponding to the
way the world really is)—and using valuation, we do not give symbols inten-
sions; we only give them values.

To appreciate fully the difference between translation and valuation, we
have to be very clear on the issue discussed in §9.3.2. When we engage in
valuation—when we assign a model directly to a fragment of the logical
language—we often use English to do so. For example, suppose we introduce
a model as follows:

Domain: the set of persons alive in the world on 11 June 2011 at 11:44:00 a.m.
Referents: a: Angela Merkel b: Barack Obama
Extensions: F : females M : males

Relative to this model, Fa is true, ∀xFx is false, ∃xFx ∧ ∃xMx is true, and
so on. It is easy to confuse what is going on here with a case where we translate
the propositions:

1. Angela Merkel is female.

2. Everyone is a woman.

3. There is at least one woman and there is at least one man.
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into MPL using the glossary:

a: Angela Merkel
b: Barack Obama
Fx: x is female
Mx: x is male

However, the two processes—valuation and translation—are completely dif-
ferent.

In the example of valuation just given, one particular model is specified of
the fragment of MPL containing the names a and b and the predicates F and
M . I specify a set of objects as the domain, two objects as referents of a and
b, and two sets of objects as extensions of F and M . To make these specifi-
cations, I rely on your grasp of English expressions such as “persons,” “the
world,” “11 June 2011,” and “Angela Merkel.” But as discussed in §9.3.2, these
expressions are just a route to certain objects and sets. I could (in principle)
specify the very same model in other ways. For example, if we had a com-
pletely accurate database of the entire population of the world, updated in real
time, I could specify the domain as the set containing everyone in the database
as of 11 June 2011 at 11:44:00 a.m., the referent of a as the person numbered
165,465,464 (or whatever) in the database, the extension of F as the set con-
taining persons numbered 165,465,464, 654,684, 465,464, . . . and 65,464 (or
whatever), and so on.

In contrast, in the example of translation the expressions a, b, F , and M

are not assigned values: no particular model is specified. Hence, no partic-
ular truth value is determined for Fa—the translation of “Angela Merkel is
female”—or for any other closed wff. Rather, the expressions a, b, F , and
M are assigned intensions. Together with a ww, they determine a model (an
assignment of values), but no particular ww is singled out by the process
of translation. Relative to some wws, Fa—taken under the given glossary—
comes out false; relative to others, it comes out true.

Thus, when it comes to truth values, translation gives us both less and
more than valuation. Less, in that by itself, translation gives us no truth values
whatsoever. More, in that it gives us something—intensions—that determines
truth values relative to every ww. (That is, given just one intension for each
nonlogical symbol—provided by a glossary—we get a truth value for each
closed wff relative to any ww.) In contrast, valuation yields one truth value
for each closed wff (in the fragment assigned values by the specified model).
It gives us values directly—nothing else (e.g., a ww) is required for truth
values to be forthcoming. However, valuation just specifies one model: it has
no implications for other truth values that closed wffs might have in other
models.
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11.3 Axiomatization

We have looked at two ways of giving content to uninterpreted wffs: transla-
tion (in which the contents are intensions, given by a glossary) and valuation
(in which the contents are values, given by direct stipulation of a model). We
now look at a third way: axiomatization. Using axiomatization, we supply con-
tent to some nonlogical symbols—and hence to wffs formed from them—by
specifying a group of wffs containing these symbols. These wffs are called ax-
ioms (or postulates). The most obvious and prominent examples of axiom
systems (e.g., the axioms for Peano arithmetic; various axiom systems for
set theory; axiomatizations of geometry; axiom systems in algebra, including
those for groups, rings, and fields) employ logical resources we have not yet
introduced: many-place predicates (Chapter 12), identity (Chapter 13), and
often function symbols (§13.7). We therefore use a toy example here, but it
illustrates the basic idea perfectly well. Consider the predicates A, B, and C,
and suppose we lay down the following axioms governing these predicates:

1. ∀x(Ax ∨ Bx)

2. ¬∃x(Ax ∧ Bx)

3. ∀x(Cx → Ax)

This set of axioms does not fix particular values (extensions) for A, B, and C.
However, it does constrain their extensions: if the axioms are all to come out
true in a model, certain relationships must hold among the extensions of A,
B, and C in that model. For axiom (3) to be true, the extension of C must be a
subset of the extension of A; for axiom (2) to be true, the extensions of A and
B must not overlap; and for axiom (1) to be true, the extensions of A and B

must together exhaust the entire domain. Here are some models that make all
the axioms true:

1. Domain: {1}
Extensions: A: {1} B: ∅ C: {1}

2. Domain: {1, 2}
Extensions: A: {1, 2} B: ∅ C: {2}

3. Domain: {1, 2}
Extensions: A: {1} B: {2} C: {1}

4. Domain: {1, 2, 3}
Extensions: A: {1, 2} B: {3} C: {2}

and here are some models that make at least one of the axioms false:

5. Domain: {1}
Extensions: A: {1} B: {1} C: {1}
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6. Domain: {1, 2}
Extensions: A: {1} B: ∅ C: {2}

7. Domain: {1, 2}
Extensions: A: {1} B: {2} C: {1, 2}

8. Domain: {1, 2, 3}
Extensions: A: {1} B: {2} C: {1}

In general, the more axioms we add, the greater the constraints will be on
the values of the nonlogical symbols featured in the axioms. Note, however,
that we can never determine a unique model by adding more axioms. This
follows from the isomorphism lemma (Chapter 9, n. 3): if we have a model
that makes all our axioms true, we can always define a different model that
still makes them all true by switching all objects in the domain for new objects
(without making any other changes; i.e., if x is in the extension of a certain
predicate or is the referent of a certain name before the switch, then its re-
placement is in the extension of that predicate or is the referent of that name
after the switch). Therefore, the most that a set of axioms can do is fix a model
“up to isomorphism.” Note that not all axiom systems fix their models up to
isomorphism.15 For example, we listed four models that make true all the ax-
ioms in our example system, but none of these models can be derived from
any of the others just by switching objects in the domain (while holding refer-
ents and extensions fixed—relatively speaking—in the way discussed above).
In other words, no two of these four models are isomorphic.16

So axiomatization does not fix intensions for nonlogical symbols, nor does
it fix particular values for them (i.e., particular objects, or particular sets of
objects). It does, however, constrain the possible values of nonlogical symbols,
and to this extent, it gives them a kind of content. The point is often put this
way: what are As, Bs, and Cs, according to the above axiom system? Or to
put it another way, what are the contents of the predicates A, B, and C? The
answer is: whatever they need to be to make the axioms true. They could be
anything at all—provided they have the right relationships to one another
to make the axioms true. So the axioms transform A, B, and C from being
empty symbols—which have infinitely many different possible extensions, one
in each model of the language—to having some sort of content. This content
determines that some assignments of values to them are now acceptable (those
made by models in which the axioms are true) while other assignments are
not acceptable.

If we consider bare, uninterpreted closed wffs, we can say that they are true
in some models and false in others, but we cannot say that they are simply true
or false without qualification. Both translation and valuation yield (different)
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unqualified notions of truth: translation involves the notion of truth in the
actual model; valuation involves the notion of truth in the intended model.
Axiomatization does not yield an unqualified notion of truth. Rather, the
notion that emerges naturally in this context is that of a theorem: a wff that is
true in every model that makes all the axioms true. In other words, a theorem
is a logical consequence of the axioms. A set of wffs that is closed under logical
consequence—that is, one for which every wff that is a logical consequence of
some wffs in the set is also in the set—is a theory. A set of axioms generates
a theory: the set of all wffs that are true in every model in which all the
axioms are true. A theorem of an axiomatic system is a wff that is a member
of the theory generated by the axioms. For example, in our example above,
¬∃x(Cx ∧ Bx) is a theorem of the system: it follows logically from axioms (2)
and (3).

11.4 Propositions

At the beginning of this chapter, we asked which bit of the logical apparatus
is supposed to be the precise version of the intuitive idea of a proposition. We
are now in a position to return to this question. One answer emerges from
the process of translation; another comes from the process of valuation. In
addition, there are at least five other reasonable answers to the question. We
examine these seven answers now.

(1) The notion of a proposition that emerges naturally from a considera-
tion of translation is: a proposition is a closed wff together with intensions
for its nonlogical components. In other words—given that a glossary assigns
intensions to nonlogical symbols—a proposition is a closed wff under a glos-
sary. This notion meshes perfectly with the intuitive idea of a proposition as a
claim about how the world is, which is true if the world is that way, and false
if it is not.

(2) The notion of a proposition that emerges naturally from a consideration
of valuation is: a proposition is a closed wff together with a model (which
assigns values to the nonlogical components of the wff). This notion meshes
perfectly with the intuitive idea of propositions as things that are true or false.

Consideration of axiomatization does not lead naturally to any notion of
proposition. This is to be expected, given the close intuitive link between
propositions and truth/falsity, together with the fact (noted in §11.3) that
axiomatization does not yield an unqualified notion of truth.

We now have two models for propositions on the table: a closed wff plus in-
tensions for its nonlogical components (provided by a glossary) and a closed
wff plus a model (which assigns values to its nonlogical components). We can
picture propositions, in these two senses, as closed wffs with the nonlogical
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vocabulary tagged with additional material—either intensions or values (pro-
vided by the model):

∀xPx

Pa

G∃xFx ∧ a)(

If we think of the circles here as intensions, we have images of propositions in
the first sense; if we think of the circles as values, we have images of propo-
sitions in the second sense. (Note, however, that a proposition in the second
sense is a closed wff plus a model. A model assigns values to nonlogical sym-
bols, but there is more to a model: there is also a domain. The domain is not
explicitly represented in these pictures.)

(3) There are other models of propositions worthy of our attention. Most
obviously, there is the notion of a closed wff by itself. Note that the core logi-
cal notions—validity, logical truth, equivalence, and so on—are defined with
reference to all models: no reference is made to any particular special model
(e.g., an actual model, or an intended model). Whether a wff is a logical truth
is a matter of whether it is true on all models whatsoever. Thus, it does not
depend on whether content has been assigned to the nonlogical symbols in
the wff by translation, valuation, axiomatization, or some other process. Like-
wise, the validity of an argument depends on whether there is any model in
which the premises are true and the conclusion false. Thus, when considering
validity, any content that wffs may have been assigned—content that makes
some models more salient than others (e.g., the actual model, the intended
model, or the models that make the axioms true)—is ignored, and all mod-
els are treated equally. (Remember that validity is supposed to depend only on
form or structure—on the way in which an argument is composed out of wffs,
and the ways in which these wffs are composed out of smaller components—
not on any specific contents that these components may have.) Similar com-
ments apply to the other core logical notions (satisfiability, equivalence, and
so on). From a purely logical point of view, then, all we care about is the wffs
themselves. It is therefore natural, in contexts where we are considering purely
logical properties (validity, equivalence, and so on), to refer to a closed wff by
itself as a proposition. This line of thought explains why we spoke of closed
wffs in these terms in earlier chapters.

Recall that in §2.1 we said that our goal in introducing PL (and the point
carried over to subsequent logical languages) was to have a language in which
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the structure of the wffs directly mirrors the structure of propositions. For
the three notions of proposition just examined, we go further: we take wffs
(either alone, or together with something else—intensions or models) to be
propositions. Thus, we no longer say simply that the structure of wffs directly
mirrors the structure of propositions; we say that the structure of wffs is the
structure of propositions. This identification is theoretically economical: it
avoids an unnecessary duplication of entities (i.e., wffs, and the things whose
structure they represent: propositions). It is also elucidatory: the question of
what propositions really are reduces at least partially to the question of what
wffs are, and that question (as we shall see in §16.7) is quite tractable.

We have now mentioned three notions of proposition that arise naturally
from processes examined earlier in the book: translation, valuation, and con-
sideration of logical properties (e.g., validity, satisfiability). There are other
reasonable notions of a proposition that arise naturally in other contexts. The
next two notions to be discussed can be regarded as two different ways of
unpacking one basic idea: two claims (one made by person X and one by per-
son Y ) have the same content—or in other words, X and Y express the same
proposition—iff these claims are true and false in exactly the same situations.
The two unpackings differ in their conceptions of a “situation”: the first way
takes it to be a ww; the second takes it to be a model.

(4) The notion of proposition emerging from the basic idea considered in
the previous paragraph when a “situation” is taken to be a ww is: a proposition
is a function from wws to truth values.17 Recall our first notion of propo-
sition: a closed wff together with intensions for its nonlogical components
(provided by a glossary). These intensions, together with the structure of the
wff, determine an intension for the entire closed wff. The notion of proposi-
tion currently under discussion takes this latter intension itself (without the
closed wff) to be a proposition.

Here’s an intuitive way of thinking about propositions in this sense. Think of
the space of all wws: all the ways the world could be. Suppose someone makes
a claim. In one sense of “content,” we could regard the content of her claim
as the information it conveys about how things are: about the way the world
is. This information consists of a division of the wws into those compatible
with the claim (those relative to which it is true) and those incompatible with
it (those relative to which it is false). A function from wws to truth values is
precisely such a division: it divides the space of wws into two groups: those
mapped to True (intuitively, the ones compatible with the claim) and those
mapped to False (intuitively, the ones incompatible with the claim). In this
picture, two people make the same claim—express the same proposition—iff
they divide the wws in exactly the same way.

(5) To explain the notion of proposition that emerges from the basic idea
considered three paragraphs ago when a “situation” is taken to be a model, we
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need some background notions. Consider the relation of logical equivalence
among closed wffs: a wff α stands in this relation to a wff β iff they have the
same truth value in every model (of any fragment of the language containing
all nonlogical symbols that occur in α or β). It is easy to see that this relation is:
reflexive—any proposition α is logically equivalent to itself; symmetric—if α is
logically equivalent to β, then β is logically equivalent to α; and transitive—
if α is logically equivalent to β and β is logically equivalent to γ , then α is
logically equivalent to γ . Hence, it is an equivalence relation.18 Thus, it divides
the set of all closed wffs into equivalence classes: nonoverlapping groups that
between them cover all the closed wffs, such that each wff in a given group
is logically equivalent to every other wff in that group, and no wff in a group
is logically equivalent to any wff not in that group. Given a closed wff α, we
use |α| to denote the equivalence class containing α. Note that if α and β

are logically equivalent, then |α| and |β| denote the same equivalence class.
Now we can state the fifth notion of proposition: the propositions are the
equivalence classes of closed wffs just considered.

(6, 7) We have now considered five notions of proposition. We mention
two more. Recall our pictures of propositions in the first two senses: closed
wffs with the nonlogical vocabulary tagged by circles (representing intensions
in the first case and values in the second). To form pictures of propositions
in our last two senses, imagine that the circles move down and replace the
nonlogical symbols to which they are attached. More precisely, a closed wff
is a sequence of symbols. For any such sequence, generate a new sequence
by replacing nonlogical symbols in it by intensions or by values (of the sort
appropriate to each kind of symbol). The result will be a proposition in the
sixth or seventh sense, respectively.19

11.4.1 Pluralism with Regard to Propositions

We asked which bit of the logical apparatus is supposed to be the precise
version of the intuitive idea of a proposition, and got seven different answers.
We should not, I think, press the question as to which one of these is the formal
analogue of the intuitive notion. The seven candidates are not like presidential
candidates, only one of whom can win: it is not to be expected that an intuitive
idea (e.g., the idea of a proposition sketched in Chapter 1) should necessarily
have sufficiently determinate content to fix just one formal notion as its correct
counterpart. Rather, all seven are perfectly good notions: each has its pros and
cons; some are useful in one context, some in another. Let us briefly mention a
couple of differentiating factors, which lead to some notions being more useful
than others in certain contexts.

First, only three of the notions make use solely of the logical machinery
developed so far: closed wffs, closed wffs plus models, and equivalence classes
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of closed wffs under the relation of logical equivalence. Three of the other
notions make mention of intensions and/or wws, but these are part of the
background picture (which we use, for example, to make sense of translation),
not part of the logical machinery itself. There are extensions of classical logic—
known as intensional logics—in which wws and intensions are brought into the
(expanded) logical fold. We have been somewhat vague about what wws are:
they are ways the world could be—the things relative to which propositions
are true or false.20 There are various ways of making this notion more precise.
We could take a ww to be a complete way the world could be—throughout its
entire history and across its entire spatial extent—down to the finest detail;21

or we could take a ww to be a way the world could be at some particular
moment of time, or in some particular place at some particular time, and so
on. All that really matters is that intensions and wws be made for each other:
whatever exactly a ww is taken to be, an intension (of some expression in the
logical language) must be a function from one of these things to values (of the
sort appropriate to that kind of expression: truth values for closed wffs, objects
for names, and so on).22

Second, some of the notions are more coarse-grained than others. That is
to say, if we group utterances according to which ones express the same prop-
osition, then for some notions of proposition (the more coarse-grained ones)
the groups will be larger, and for others (the more fine-grained ones) the
groups will be smaller. For example, the view of propositions as closed wffs
is rather fine-grained, whereas the views of propositions as sets of wws, or as
equivalence classes of wffs are rather coarse-grained. Also, the sixth and sev-
enth notions are less fine-grained than the first and second. For example, we
might represent two utterances as expressing different propositions in the first
sense—different because P and Q are different nonlogical symbols, although
the attached intension is the same in both cases:

∀xPx ∀xQx

If we consider the corresponding propositions in the sixth sense—where the
attached intension takes the place of the nonlogical symbol—then the two
utterances will be regarded as expressing the same proposition.

11.5 Logical Consequence and NTP

Consider the following argument:

The sun is hot.
Therefore, the sun is not cold.
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Translating into MPL yields:

s: the sun Hs

Hx: x is hot ∴ ¬Cs

Cx: x is cold

This argument is invalid. Here is a model in which the premise is true and the
conclusion false:

Domain: {Plato, Aristotle, Socrates}
Referent of s: Plato
Extensions: H : {Plato, Aristotle} C: {Plato}

This is an example of an argument that is NTP—after all, it is obviously
impossible for the sun to be both hot and cold—but not so by virtue of its
form; hence, it is not valid. In light of our discussions earlier in this chapter,
we can now shed more light on cases of this sort.

Note that the countermodel to the argument we gave above cannot be
reached by taking the intensions assigned to the nonlogical symbols by the
glossary given above and applying them to some ww. For one thing, the inten-
sion of “the sun” does not determine Plato as referent relative to any ww. In
other words, Plato could not be the sun (no matter how different things were).
In addition, the intensions of “hot” and “cold” do not determine overlapping
extensions relative to any ww: nothing could be hot and cold (no matter how
different things were).

Given intensions for the nonlogical symbols in a fragment of the logical
language, I will call a model of that fragment a ww-model iff it can be gen-
erated by taking those intensions and applying them to some ww. Recall that a
glossary assigns intensions to nonlogical symbols, and that intensions for the
nonlogical symbols in a fragment of the logical language, together with a ww,
determine a model of the fragment. Consider Figure 11.3. Given a glossary G

for some fragment of the logical language, some models of the fragment can
be generated from the intensions assigned by that glossary, together with some
ww. These are the ww-models (of the fragment under G). Other models can-
not be generated in this way: there is no ww that, together with the intensions
assigned by G, generates such a model.

Given the notion of a ww-model, we can then say that an argument is NTP
iff there is no ww-model in which the premises are true and the conclusion
false. Another term for this concept is entailment: when an argument is NTP,
the premises entail the conclusion. (Obviously this definition makes sense only
for arguments—sequences of closed wffs—whose nonlogical symbols have
been endowed with intensions. Without intensions—given just some closed
wffs—we cannot distinguish ww-models of those wffs from other models:
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Models

ww-models
(of the fragment
under glossary G)

Fragment of MPL
under glossary G

wws

Figure 11.3. Models and ww-models.

the notion of a ww-model is defined relative to some given intensions.) In
contrast, an argument is valid iff there is no model at all (ww-model or other)
in which the premises are true and the conclusion false. (This notion is defined
for arguments—sequences of closed wffs—by themselves: intensions are not
needed.) Clearly, if an argument is valid, it is NTP relative to any assignment
of intensions to its nonlogical vocabulary. If there is no model at all in which
the premises are true and the conclusion false, then a fortiori there is no ww-
model in which the premises are true and the conclusion false, no matter how
we pick out the ww-models (i.e., no matter what set of intensions we use to
generate a set of ww-models).23 The converse does not hold: an argument can
be NTP but not valid. The argument given at the beginning of this section
provides an example.
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The definition of NTP is obtained from that of logical consequence by
replacing “model” with “ww-model.” Other logical notions have counterparts
obtained in an analogous manner. For example, a logical truth is a wff that
is true in every model. A necessary truth is a wff (together with intensions for
its nonlogical components) that is true in every ww-model (relative to those
intensions). Dual to the notion of logical truth is the notion of satisfiability: a
logical truth is a proposition (closed wff) that is true in all models; a satisfiable
proposition is one that is true in some model. Likewise, dual to the notion
of necessity is the notion of possibility: a proposition (closed wff under a
glossary) is necessarily true if it is true in all ww-models; a proposition is
possibly true if it is true in some ww-model.24

In logic we are interested in validity, logical truth, satisfiability and so on—
the notions defined in terms of models. One of our goals is to come up with a
general procedure for testing for each of these properties. To illustrate the idea
with the example of logical truth (analogous comments apply to validity and
the other notions), we want a single procedure we can apply to any proposi-
tion whatsoever that will tell us whether that proposition is logically true. The
two procedures we have seen are: construct a truth table and see whether
the proposition is true in every row, or construct a tree for the negation
of the proposition and see whether all paths close.

Turning from the notions defined in terms of models to those defined in
terms of ww-models, there can be no general science of the latter notions:
nothing analogous to logic; nothing which stands to these notions as logic
stands to the former notions. There is no hope of a single procedure that can be
applied to any proposition and will tell us whether it is necessarily true. (Again,
analogous comments apply to entailment and the other notions defined in
terms of ww-models.) To see why, consider, for example, the following claim:

All jibs are headsails.

Does it express a logical truth? To find out, we need only discern the structure
of the proposition. Our procedure is to translate into MPL—say, as follows:

Jx: x is a jib ∀x(Jx →Hx)

Hx: x is a headsail

When we then test for logical truth—by doing a tree starting with¬∀x(Jx →
Hx)—the glossary is irrelevant: all that matters is the bare wff itself. Thus, we
do not need to know anything about jibs or headsails to determine whether
this proposition is logically true.25

The situation is very different when it comes to necessary truth. Here the
glossary cannot be cast aside. We want to know: is there any ww-model in
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which this proposition is false? In other words, is there any model that can
be reached by taking the intensions assigned to J and H by the glossary and
applying them to some ww, in which ∀x(Jx → Hx) is false? Obviously we
cannot answer this question without knowing about the intensions in question
and about the space of wws (i.e., about which facts are represented there—
which supposed possibilities are genuine ways the world could be, and which
are really impossible). Thus, a science of necessity—if it were able to yield
an answer for any proposition as to whether that proposition is a necessary
truth—would need to include a complete account both of the contents of
every expression and of how the world could and could not be. If such a science
were possible at all, it would certainly look nothing like logic: the rules of
logic can be written down in a few pages, but the rules of necessity would fill
countless libraries of dictionaries and encyclopedias.26

11.6 Postulates

Consider the argument from the beginning of §11.5:

The sun is hot.
Therefore, the sun is not cold.

It is not valid. Intuitively, it is NTP. As discussed in §11.5, there is no hope for
a general science of NTP (as opposed to validity). Nevertheless, there is a way
of bringing arguments of this sort into the fold of logic. Recall Figure 11.3.
Our argument is NTP iff in every ww-model in which the premises are true,
the conclusion is true. The ww-models, relative to a given glossary, are those
generated by the intensions assigned by that glossary together with some ww.
But although the ww-models are defined in this way, it does not mean that
the only way to pick them out is (so to speak) to bounce the intensions off the
wws. Given a set M of models (e.g., the set of ww-models of some fragment
under some glossary), it may be possible to pick out that set of models via
axiomatization, that is, by stating some wffs such that the models in which
all of those wffs are true are precisely the models in M .27 Let a postulate for a
glossary (which, recall, assigns intensions to the nonlogical symbols in some
fragment of the logical language) be a closed wff that is true in all ww-models
(relative to that glossary) of the fragment. A complete set of postulates for a
given glossary is an axiomatization of its ww-models: a set of closed wffs such
that a model makes all these wffs true iff it is a ww-model (relative to that
glossary). We shall say that a glossary is axiomatizable iff there is a complete set
of postulates for that glossary. There is no reason to think that every glossary
should be axiomatizable, but this does not always matter: often a partial set
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of postulates is all we need. For example, recall our glossary for the argument
given above:

s: the sun
Hx: x is hot
Cx: x is cold

The only aspect of the intensions assigned by this glossary that is relevant to
the fact that the argument is NTP is that there is no ww relative to which the
intensions of H and C pick out extensions that overlap. We can capture this
aspect of the glossary via the following axiom:

∀x(Hx →¬Cx)

(or anything logically equivalent to it, e.g., ∀x(Cx →¬Hx) or ¬∃x(Hx ∧
Cx)). Now consider the following argument—which is our earlier argument,
with the postulate added as an extra premise:

Hs

∀x(Hx →¬Cx)

∴ ¬Cs

This argument is valid. Remember, to determine whether an argument is valid,
we need only look at the wffs that make it up: any contents these wffs may
have is irrelevant. Thus, once we have postulates, we can throw away the
glossary: we just work with the wffs—their intensions are beside the point.
Provided that we can supply the relevant postulates, we can then tackle
the question of whether an argument is NTP via the question of whether an
associated argument—with the relevant postulates added as extra premises—
is valid. The latter question is one we can handle using purely logical tech-
niques.

Similar comments apply to other notions: necessary truth, possible truth,
and so on. For example, if a proposition (a closed wff under a glossary) is
necessarily true, then—provided we can capture, in postulates, the aspects of
the intensions assigned by the glossary that render it necessarily true—we can
get a handle on the fact that it is necessarily true in this way: the proposition
(closed wff under a glossary) is necessarily true iff the proposition (closed
wff—now the intensions become irrelevant) is true in every model in which
the postulates (closed wffs—their intensions are also irrelevant) are true—
that is, iff the proposition is a logical consequence of the postulates. The latter
question is one that can be addressed using purely logical techniques. For
example, “no kelpie is a cat” is, intuitively, a necessary truth: because a kelpie
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is one specific kind of dog, and nothing can be both a dog and a cat. If we
translate into the logical language using the glossary:

Kx: x is a kelpie
Cx: x is a cat
Dx: x is a dog

then the result:

¬∃x(Kx ∧ Cx) (11.1)

is not a logical truth: there are models in which (11.1) is false. However, if we
also introduce as postulates ∀x(Kx →Dx) and ¬∃x(Dx ∧ Cx), then (11.1)
does follow logically from these two postulates: there is no model in which
the postulates are true and (11.1) is false. Thus, provided that the relevant
postulates are forthcoming, the validity of an argument with the postulates as
premises and a proposition α as conclusion gives us a means—within formal
logic—to determine whether the proposition α is necessarily true.
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12
General Predicate Logic

12.1 The Language of General Predicate Logic

We said in §8.1.1 that our development of predicate logic would proceed as
follows: we start with the simplest kind of basic proposition and distinguish
its parts—a name and a predicate; we then see how far we can get represent-
ing further propositions using the connectives from propositional logic plus
names and predicates; we find that we need more resources—quantifiers and
variables; we then see how far we can get representing further propositions
using connectives, names, predicates, quantifiers, and variables; we eventu-
ally find that we need even more resources, and so on. We come now to the
point where, to represent the propositions expressed by some common kinds
of utterance, we need more resources than we have so far. Consider the claims:

Brutus was Caesar’s friend.
Brutus betrayed Caesar.
Brutus betrayed one of his friends.

None of these can be translated adequately into MPL; that is, the propositions
they express cannot be represented adequately in MPL. Each claim involves a
relation—betraying, being friends with—and we have no means of expressing
relations in MPL. We can say that Caesar is ambitious, that Brutus is honor-
able, and so on—that is, we can attribute properties to individuals—but we
cannot express the idea that a relation holds between two individuals.

The claim “Brutus betrayed Caesar” involves two singular terms, “Brutus”
and “Caesar,” and the predicate “betrayed.” The latter predicate is, then, a two-
place (or dyadic) predicate “x betrayed y”: a predicate that yields a proposition
when two names are plugged into its two argument places. (These two argu-
ment places are represented by x and y in “x betrayed y.”) But MPL contains
only one-place (or monadic) predicates, such as “x is ambitious,” “x is hon-
orable.” In this chapter we extend our logical language to include two-place
(and indeed three- and more-place) predicates, taking us from monadic to



general (polyadic, i.e., many-place) predicate logic. This change is the only
one we make to our language. So, for example, what we have already said
about quantifiers remains unchanged. However, when we combine quantifiers
with many-place predicates, new richness and complexity emerges, so we shall
spend some time exploring the new possibilities arising from the interaction
of our existing quantifiers and the new predicates.

12.1.1 Many-Place Predicates

Consider the following claims:

1. Alice is interesting.

2. Bob is pleasant.

3. Alice is taller than Bob.

4. Bob is next to Carol.

5. Alice is opposite Bob.

6. Carol is standing between Alice and Bob.

To translate them into our logical language, we need glossary entries for the
singular terms they contain:

a: Alice
b: Bob
c: Carol

Claims (1) and (2) are handled in the familiar way. We introduce glossary
entries for the predicates they contain—the only difference is that we now add
a superscript 1 to indicate explicitly that these are one-place predicates:

I 1x: x is interesting
P 1x: x is pleasant

We can now translate claims (1) and (2) as follows:

I 1a

P 1b

Claims (3), (4) and (5) contain two-place predicates: “is taller than,” “is next
to,” and “is opposite.” In English, if we want to add singular terms to such a
predicate to yield a statement, we need two such terms: “Alice is taller than”
is not a grammatical or meaningful statement; neither is “is taller than Bob.”
But “Alice is taller than Bob” is. In our logical language, we use capital letters
for two-place predicates, as for one-place predicates: the difference is that they
have a superscript 2 to indicate that they have two argument places:

T 2xy: x is taller than y

N2xy: x is next to y

O2xy: x is opposite y
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We can now translate claims (3), (4), and (5) as follows:

T 2ab

N2bc

O2ab

Claim (6) contains a three-place predicate: “is standing between . . . and.”
In English, if we want to add singular terms to such a predicate to yield a
statement, we need three such terms: “Carol is standing between Alice and”
is not a grammatical or meaningful statement; neither are “Carol is standing
between and Bob” or “is standing between Alice and Bob.” But “Carol is stand-
ing between Alice and Bob” is. In our logical language, we use capital letters for
three-place predicates, as for one- and two-place predicates: the difference is
that they have a superscript 3 to indicate that they have three argument places:

S3xyz: x is standing between y and z

We can now translate claim (6) as follows:

S3cab

In general, we allow predicates with any positive finite number n of argu-
ment places. An n-place predicate is represented by a capital letter with the
superscript n. In practice, however, we rarely deal with predicates of more than
two places in this book and never with predicates of more than three places.

Some terminology: a one-place predicate picks out a property of objects.
The many-place analogue of a property is called a “relation.” Thus, a two-
place predicate picks out a two-place relation between objects, a three-place
predicate picks out a three-place relation between objects, and so on.

12.1.2 Atomic Wffs

Recall that when we give the official syntax of a logical language (§2.5 for PL
and §8.4 for MPL), we first list the basic symbols and then explain how to
construct wffs using these symbols. We have now added some basic symbols
to the language of MPL: n-place predicates for n greater than 1. So now we
need to explain how to make wffs using two-, three-, and in general n-place
predicates. In our syntax for MPL, the only point in the definition of a wff
where predicates played a role directly was clause (3i): the definition of an
atomic wff. So this clause is the only one we need to modify. The modification
is straightforward: the old clause states that to make a wff from a one-place
predicate, one follows it with one name or variable. The new clause will simply
generalize this: to make a wff from an n-place predicate, one follows it with n
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names and/or variables. (The complete syntax is presented in §12.1.3.) So, for
example, the following are well formed:

T 2ab T 2ax T 2xy T 2zc

while the following are not:

T 2a T 2x T 2abc T 2xyz

The key thing is that the number of terms (where a term is a name or a vari-
able) after the predicate must be the same as the superscript of the predicate:
so the two-place predicate T 2 must have two terms after it.1

The distinction (§8.4.5) between wffs and propositions (i.e., closed wffs)
remains: T 2xy and T 2ax are just as well formed as T 2ab, but only the last is a
proposition, because the first two contain free variables (and so are not closed
wffs).

12.1.3 Syntax of GPL

Here we present in one place the full syntax of GPL: the language of General
Predicate Logic. As remarked in the previous section, the only differences from
the syntax of MPL in §8.4 are clause (1iii) covering predicates, in the section
on symbols, which now allows n-place predicates for any positive finite n; and
the corresponding generalization of clause (3i) covering atomic wffs, in the
section on well-formed formulas.

1. The symbols of GPL are:

(i) names:

a , b, c, . . . t

We use lowercased letters other than u, v, w, x, y, and z, which are reserved
for variables. If we need more than twenty different name symbols, we use
subscripts (i.e., a2, a3, . . . , b2, b3, . . .).

(ii) variables:

x , y , z, u, v , w

If we need more than six different variable symbols, we use subscripts (i.e.,
x2, x3, . . . , y2, y3, . . .).

(iii) predicates:

A1, B1, C1, . . . , A2, B2, C2, . . .

We use uppercased letters from anywhere in the alphabet (with one excep-
tion:2 the letter “I” is not used for a two-place predicate, so that I 2 is not
a predicate symbol of the language, although I 1, I 3, I 4 and so on are),
with a superscript indicating the number of argument places. If we need
more than twenty-six different n-place predicate symbols for any n (or more
than twenty-five in the case n= 2), we use subscripts (i.e., A1

2, A1
3, . . . , A2

2,
A2

3, . . .).
(iv) five connectives:

¬, ∧, ∨, →, and ↔

12.1 The Language of General Predicate Logic 267



(v) two quantifier symbols:

∀ and ∃
(vi) two punctuation symbols (parentheses):

( and )

The logical symbols are the connectives, the quantifier symbols, and
the variables; the nonlogical symbols are the names and predicates; and
the parentheses are auxiliary symbols.

2. We define the notion of a term of GPL as follows:

(i) A name is a term.
(ii) A variable is a term.

(iii) Nothing else is a term.

3. Wffs of GPL are defined as follows:

(i) Where P n is any n-place predicate and t1 . . . tn are any terms, the following is
a wff:

P nt1 . . . tn
That is, an n-place predicate followed by any mixture of n names and/or
variables is a well-formed formula. Wffs of this form are atomic wffs.

(ii) Where α and β are wffs and x is a variable, the following are wffs:

¬α

(α ∧ β)

(α ∨ β)

(α → β)

(α ↔ β)

∀xα

∃xα

(iii) Nothing else is a wff.

12.1.3.1 EXERCISES

State whether each of the following is a wff of GPL.

1. ∀xF 1y

2. ∀x∃yF 1y

3. ∀xR2xy

4. ∀x∃xR2yy

5. R2x

6. ∀xR2x

7. ∀x(F 1x → R2x)

8. ∀x∃y(F 1x → R2xy)

9. ∀x∃y(F 1xy → R2y)

10. ∀x∃y∀x∃yR2xy

12.1.3.2 ABBREVIATIONS

We may leave the numerical superscript off a predicate letter when it is clear
how many places the predicate has. For example, if I write the following glos-
sary entry:

Hxy: x heard y
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then it is perfectly clear—from the fact that two variables x and y follow the
letter H in the glossary—that H is a two-place predicate. So no confusion
results from omitting the superscript 2 on the H .

12.1.4 Order of Arguments

Consider the following two propositions:

T ab

T ba

Both contain the same two-place predicate T (i.e., T 2, but where we have
omitted the superscript 2, in line with §12.1.3.2) and the same two names.
They differ with respect to the order in which these two names appear after
the predicate. This order is significant. Given the glossary entry:

T xy: x is taller than y

(together with the glosary entries for a and b in §12.1.1) the two propositions
do not say the same thing. T ab says that Alice is taller than Bob, whereas T ba

says that Bob is taller than Alice. Similarly, given the glossary entry:

Sxyz: x is standing between y and z

Sabc says that Alice is standing between Bob and Carol, whereas Sbac says
something quite different: that Bob is standing between Alice and Carol.

We can set up our glossary however we please. So, for example, the above
entry for Sxyz is fine, but the following entry would also have been fine:

Sxyz: y is standing between x and z

(One might prefer to set up the glossary in the latter way, because it looks
like what it means: here the middle argument is the one corresponding to the
person who is standing between the other two.) What really matters is:

1. We must have only one entry for each predicate in a given glossary.

2. We must translate correctly given the glossary chosen.

So (1) we cannot have both the above entries for Sxyz: we must choose one or
the other, and (2) given that we have adopted the first glossary entry for Sxyz,
we must translate “Bob is standing between Alice and Carol” as Sbac. Sure,
relative to the second glossary, Sbac says that Alice is standing between Bob
and Carol, but relative to the first glossary, it says that Bob is standing between
Alice and Carol. So given that the first is indeed our chosen glossary, it would
be incorrect to translate “Bob is standing between Alice and Carol” as Sabc:
we must translate it as Sbac.
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Thus, you can choose your glossary freely, but once it is chosen, you can-
not choose freely how to translate given claims: you must translate them in
accordance with your chosen glossary.3

12.1.5 Number of Arguments

Consider the following piece of reasoning:

Alice is taller than Bob.
Bob is tall.
∴ Alice is tall.

We must translate it using two predicates:

T 1x: x is tall
T 2xy: x is taller than y

We cannot employ a single predicate that somehow has one argument place in
its occurrences in the second premise and the conclusion, and two argument
places in its occurrence in the first premise. That sort of thing is not allowed in
GPL: each predicate has a fixed number of places, indicated by its numerical
superscript. Unless the predicate appears with exactly that number of terms
after it, the result is not a well-formed formula. So absolutes (tall, short, heavy,
etc.) need to be translated by one-place predicates, whereas their associated
comparatives (taller, shorter, heavier, etc.) need to be translated by (different)
two-place predicates.4

12.1.6 Exercises

Translate the following into GPL.

1. Bill heard Alice.

2. Bill did not hear Alice.

3. Bill heard Alice, but Alice did
not hear Bill.

4. If Bill heard Alice, then Alice
heard Bill.

5. Bill heard Alice if and only if Al-
ice heard Alice.

6. Bill heard Alice, or Alice heard
Bill.

7. Clare is taller than Dave, but
she’s not taller than Edward.

8. Mary prefers Alice to Clare.

9. Mary doesn’t prefer Dave to Clare;
nor does she prefer Clare to Dave.

10. Edward is taller than Clare, but
he’s not tall.

11. The Eiffel tower is taller than
both Clare and Dave.

12. If Dave is taller than the Eiffel
tower, then he’s tall.
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13. Although the Eiffel tower is
taller, Clare prefers Dave.

14. If Alice is taller than Dave, then
he prefers himself to her.

15. Dave prefers Edward to Clare
only if Edward is taller than the
Eiffel tower.

16. Dave prefers Edward to Clare
only if she’s not tall.

17. Mary has read Fiesta, and she
likes it.

18. Dave doesn’t like Fiesta, but he
hasn’t read it.

19. If Dave doesn’t like The Bell Jar,
then he hasn’t read it.

20. Dave prefers The Bell Jar to
Fiesta, even though he hasn’t
read either.

12.1.7 Multiple Quantifiers

Consider the following open wff:

Lxy

It is made up of a two-place predicate L (i.e., L2) with two different variables,
x and y, plugged into its argument places. So it takes two quantifiers out the
front—one containing the variable x and one containing the variable y—
to make a closed wff (a proposition). Each of these quantifiers can be either
existential or universal, and the quantifier containing x might come first—
with the quantifier containing y then coming second—or vice versa. This
results in eight options to consider (note that throughout, we do not change
the original wff Lxy—i.e., in this wff, we keep x and y in the same order):

1. ∀x∀yLxy

2. ∀y∀xLxy

3. ∃x∃yLxy

4. ∃y∃xLxy

5. ∀x∃yLxy

6. ∃y∀xLxy

7. ∀y∃xLxy

8. ∃x∀yLxy

Let us go through these options in turn. It will make the formulas easier to
think about if we give L a specific content—say, via the glossary Lxy: x likes y.

Proposition (1): ∀x∀yLxy. This says (relative to our glossary) “for every x

and every y, x likes y” or “no matter which thing you pick first (call it x) and
no matter which thing you pick second (call it y), x likes y.” (Note that when
we talk of a second selection we do not necessarily mean that you must pick
a different thing the second time: picking the same thing twice is allowed.) In
other words, everything likes everything.

Proposition (2): ∀y∀xLxy. This says “for every y and every x, x likes y” or
“no matter which thing you pick first (call it y) and no matter which thing you
pick second (call it x), x likes y.” (Note that we read the quantifiers from left to
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Figure 12.1. ∀x∃yLxy.

right, not according to the alphabetical ordering of the variables they contain.)
In other words, everything likes everything.

Thus, propositions (1) and (2) are equivalent.
Proposition (3): ∃x∃yLxy. This says “you can choose a thing (call it x),

and you can choose a thing (call it y) such that x likes y.” In other words,
something likes something.

Proposition (4): ∃y∃xLxy. This says “you can choose a thing (call it y),
and you can choose a thing (call it x) such that x likes y.” In other words,
something likes something.

Thus, propositions (3) and (4) are equivalent.
Proposition (5): ∀x∃yLxy. This says “no matter what thing you pick first

(call it x), you can pick a thing second (call it y) such that x likes y.” That is,
for every thing, there is some thing that it likes. (For different things x and y,
the thing that x likes need not be the same as the thing that y likes.) Figure 12.1
gives a visual form to this idea—picturing “x likes y” as an arrow going from
x to y. The only essential point in the picture is that every object sends out
an arrow. Note that different things may send their arrows to different places:
there is no requirement that all arrows go to the same place. There is also no
requirement that each thing send out exactly one arrow—just that each thing
send out at least one arrow.

Proposition (6): ∃y∀xLxy. This says “you can pick a thing first (call it y)
such that no matter what you pick second (call it x), x likes y.” That is, there
is something that everything likes. Figure 12.2 gives a visual form to this idea.
The only essential point in the picture is that there is one particular thing that

Figure 12.2. ∃y∀xLxy.
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Figure 12.3. ∀y∃xLxy.

receives an arrow from everything in the domain. It is not required that there
be exactly one such thing, only that there be at least one.

Propositions (5) and (6) are not equivalent: proposition (5) could be true
without proposition (6) being true. If each thing sends an arrow somewhere,
it does not follow that there is one particular thing to which everything sends
an arrow. However, proposition (6) logically implies proposition (5): it could
not be true without proposition (5) being true. If everything sends an arrow
to one particular thing, then a fortiori everything sends an arrow somewhere.

Proposition (7): ∀y∃xLxy. This says “no matter what thing you pick first
(call it y), you can pick a thing second (call it x) such that x likes y.” That is,
for every thing, there is some thing that likes it. (For different things x and y,
the thing that likes x need not be the same as the thing that likes y.) Figure
12.3 gives a visual form to this idea. The only essential point in the picture is
that everything receives an arrow. Note that different things may receive their
arrows from different places: there is no requirement that all arrows come
from the same place. There is also no requirement that each thing receive
exactly one arrow—just that each thing receive at least one arrow.

Proposition (8): ∃x∀yLxy. This says “you can pick a thing first (call it x)
such that no matter what you pick second (call it y), x likes y.” That is, there
is something that likes everything. Figure 12.4 gives a visual form to this idea.
The only essential point in the picture is that there is one particular thing that
sends an arrow to everything in the domain (including itself). It is not required
that there be exactly one such thing: only that there be at least one.

Propositions (7) and (8) are not equivalent: proposition (7) could be true
without proposition (8) being true. If each thing receives an arrow from

Figure 12.4. ∃x∀yLxy.
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somewhere, it does not follow that there is one particular thing that sends
an arrow to everything. However, proposition (8) logically implies proposi-
tion (7): it could not be true without proposition (7) being true. If there is one
particular thing that sends an arrow to everything, then a fortiori each thing
receives an arrow from somewhere.

We have now examined eight different propositions that can be derived
from the open formula Lxy by adding two quantifiers: one to bind the x and
the other to bind the y. Note that we did not need to make any additions or
alterations to the parts of our syntax that deal with quantifiers to generate this
variety of propositions. Our syntax already stipulates that when α is any wff,
∀xα and ∃xα are wffs. So as soon as we introduce two-place predicates and
allow Lxy as a wff, we automatically allow that ∀xLxy, ∀yLxy, ∃xLxy,
and ∃yLxy are wffs; then given that they are wffs, so are ∀y∀xLxy,
∃y∀xLxy, and so on.

Of course, if we have an atomic wff Rxyz involving a three-place predicate,
we need three quantifiers in front to make a proposition: one containing x,
one containing y, and one containing z, so we have even more complexity.
And so on for n-place predicates for any finite n.

12.1.8 Uniform Change of Variables

Something that always results in an equivalent proposition is the uniform
substitution of variables. For example, the following propositions are all
equivalent:

1. ∃x∀yLxy

2. ∃z∀yLzy

Here x in proposition (1) has been uniformly replaced by z. (By “uniformly” we
mean that every occurrence of x has been replaced by z.)5

3. ∃x∀wLxw

Here y in proposition (1) has been uniformly replaced by w.

4. ∃y∀xLyx

Here x in proposition (1) has been uniformly replaced by y, and y in that proposi-
tion has been uniformly replaced by x.6

These propositions are all equivalent—think about what they say (relative to
our glossary Lxy: x likes y):

1. You can pick a thing first (call it x) such that no matter what you pick
second (call it y), x likes y.

2. You can pick a thing first (call it z) such that no matter what you pick
second (call it y), z likes y. (It makes no difference whether we tag the
first-picked thing as x or as z: we are still saying the same thing.)
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3. You can pick a thing first (call it x) such that no matter what you pick
second (call it w), x likes w. (It makes no difference whether we tag the
second-picked thing as y or as w: we are still saying the same thing.)

4. You can pick a thing first (call it y) such that no matter what you pick
second (call it x), y likes x. (It makes no difference whether we tag the
first-picked thing as x and the second-picked as y, or vice versa: we are
still saying the same thing.)

Note that in going from proposition (1) to (4), we uniformly change the
variables—that is, we change all xs to ys, and vice versa. So the x and the y

are switched inside Lxy as well. This action is different from what we did in
§12.1.7, when we saw that ∃x∀yLxy does not say the same thing as ∃y∀xLxy:
in the latter case we have only switched the x and y in the quantifiers but left
them in the original order inside Lxy.

Let’s introduce some new notation. Where α is a wff and y is a variable that
does not occur in α, α(y/x) is the result of replacing all free occurrences of
x in α by occurrences of y. (If there are no free occurrences of x in α, then
α(y/x) is just α.) Now we can say, quite generally, that:

∀xα is equivalent to ∀yα(y/x)

∃xα is equivalent to ∃yα(y/x)

12.1.9 Exercises

Translate the following into GPL.

1. (i) Something is bigger than everything.
(ii) Something is such that everything is bigger than it.

(iii) If Alice is bigger than Bill, then something is bigger than Bill.
(iv) If everything is bigger than Bill, then Alice is bigger than Bill.
(v) If something is bigger than everything, then something is bigger than

itself.
(vi) If Alice is bigger than Bill and Bill is bigger than Alice, then every-

thing is bigger than itself.
(vii) There is something that is bigger than anything that Alice is bigger

than.
(viii) Anything that is bigger than Alice is bigger than everything that Alice

is bigger than.
(ix) Every room contains at least one chair.
(x) In some rooms some of the chairs are broken; in some rooms all of

the chairs are broken; in no room is every chair unbroken.

2. (i) Every person owns a dog.
(ii) For every dog, there is a person who owns that dog.
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(iii) There is a beagle that owns a chihuahua.
(iv) No beagle owns itself.
(v) No chihuahua is bigger than any beagle.

(vi) Some chihuahuas are bigger than some beagles.
(vii) Some dogs are happier than any person.

(viii) People who own dogs are happier than those who don’t.
(ix) The bigger the dog, the happier it is.
(x) There is a beagle that is bigger than every chihuahua and smaller

than every person.

3. (i) Alice is a timid dog, and some cats are bigger than her.
(ii) Every dog that is bigger than Alice is bigger than Bill.

(iii) Bill is a timid cat, and every dog is bigger than him.
(iv) Every timid dog growls at some gray cat.
(v) Every dog growls at every timid cat.

(vi) Some timid dog growls at every gray cat.
(vii) No timid dog growls at any gray cat.

(viii) Alice wants to buy something from Woolworths, but Bill doesn’t.
(ix) Alice wants to buy something from Woolworths that Bill doesn’t.
(x) Bill growls at anything that Alice wants to buy from Woolworths.

4. (i) Dave admires everyone.
(ii) No one admires Dave.

(iii) Dave doesn’t admire himself.
(iv) No one admires himself.7

(v) Dave admires anyone who doesn’t admire himself.8

(vi) Every self-admiring person admires Dave.
(vii) Frank admires Elvis but he prefers the Rolling Stones.

(viii) Frank prefers any song recorded by the Rolling Stones to any song
recorded by Elvis.

(ix) The Rolling Stones recorded a top-twenty song, but Elvis didn’t.
(x) Elvis prefers any top-twenty song that the Rolling Stones recorded to

any song that he himself recorded.

12.2 Semantics of GPL

The semantics for MPL (Chapter 9) told us two things:

1. What the values are of the nonlogical symbols of MPL. (A possible sce-
nario or model is then simply any assignment of values to nonlogical
symbols—together with a domain from which these values are drawn.)

2. What the rules are that determine the truth values of propositions (closed
wffs) of MPL on the basis of the values of their nonlogical components.
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Regarding point (1), in moving from monadic to general predicate logic, all we
have done is add some new nonlogical symbols: many-place predicates. So we
now need to define the value of a many-place predicate. Regarding point (2),
our statements about the truth values of atomic propositions formed from
one-place predicates, and of nonatomic propositions, will carry over un-
changed from MPL to GPL. All we need to add is an account of how the truth
value of an atomic proposition formed from a many-place predicate is deter-
mined by the values of the names and the many-place predicate that make
it up.

So, what is the value of a many-place predicate? Consider, for example, the
two-place predicate T . Its value must be something that, together with values
for a and b, determines a truth value for T ab and T ba (and, for that matter,
for T aa and T bb). Now think about these propositions. Each has three parts:
two names (or two occurrences of one name) and a predicate. The function
of each name is to single out a particular object; the function of the predicate
is to pick out a certain relation. At this point, we might think of saying the
following:

If these two objects (the one picked out by a and the one picked out by b) stand in
this relation (the one picked out by T ), then the proposition is true; the proposition
is false if the objects picked out by the names do not stand in the relation picked
out by the predicate.

But this prescription won’t do: it obscures a crucial distinction. Suppose the
relation picked out by T is the relation “taller than.” Suppose a picks out
Alice and b picks out Bob. Then we cannot simply talk about “Alice and Bob
standing in the ‘taller than’ relation”: it might be that they stand in the relation
when taken in one order (Alice is taller than Bob) but not when taken in the
other order (Bob is not taller than Alice). In other words, it might be that T ab

is true and T ba is false. So we have to say something like this:

An atomic proposition formed from two names and a two-place predicate is true if
the objects picked out by the names, when taken in the order in which their names
feature in the proposition, stand in the relation picked out by the predicate; it is
false if those objects, when taken in the order in which their names feature in the
proposition, do not stand in the relation picked out by the predicate.

Thus, T ab is true if Alice and Bob taken in that order stand in the “taller than”
relation—that is, if Alice is taller than Bob; T ab is false if Alice and Bob taken
in that order do not stand in the “taller than” relation—that is, if Alice is not
taller than Bob.

So the value of a two-place predicate, such as T , must be something that,
together with values for a and b, determines truth values for T ab and for
T ba—and not necessarily the same truth value for both. That is, it should
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not be built into the semantics that T ab and T ba always have the same truth
value, given the same values for T , a, and b. One simple proposal that does the
job is that the value of T is a set of ordered pairs. The ordered pair containing
Alice and Bob in that order—that is, Alice first and Bob second—is written
〈Alice, Bob〉.9 The ordered pair containing Bob and Alice in that order—that
is, Bob first and Alice second—is written 〈Bob, Alice〉. These are different or-
dered pairs: both contain the same two individuals, but in different orders.
Note that 〈Alice, Alice〉 and 〈Bob, Bob〉 are perfectly good ordered pairs: the
first contains Alice in positions one and two; the second contains Bob in po-
sitions one and two. Thus, we should not think of an ordered pair as two
objects standing in a line, one behind the other—for Alice cannot stand be-
hind herself. Rather, we should think of an ordered pair as an abstract ranking
or ordering: a stipulation of a first object and a second object. There is no rea-
son (in general) why Alice (or any other individual) should not be ranked first
and second.10

Recall the truth conditions for atomic propositions involving one-place
predicates: Pa is true in a model M iff the referent of a in that model is in the
extension of P in that model, where the extension of P is a set of objects from
the domain. Given that the value of a two-place predicate is a set of ordered
pairs (of objects drawn from the domain), the story about how truth values are
determined for atomic propositions containing two-place predicates is now as
follows: Rab is true in a model M iff the ordered pair consisting of the referent
of a in that model followed by the referent of b in that model is in the extension
of R in that model, where the extension of R is a set of ordered pairs of ob-
jects from the domain. (Note that the case where a and b are the same name is
covered here: Raa, for example, will be true just in case the ordered pair con-
sisting of the referent of a in positions one and two is in the extension of R.)

Let’s consider an example. Here is a model M of the fragment of GPL
containing the names a , c, g, and r and the two-place predicate R:

Domain: {Alice, Charles, Roger, Susan, The Catcher in the Rye, The Great Gatsby,
The Wind in the Willows, The Lord of the Rings}

Referents: a: Alice c: Charles g: The Great Gatsby r : The Catcher in the Rye
Extension of R: {〈Alice, The Great Gatsby〉, 〈Charles, The Great Gatsby〉,

〈Susan, The Wind in the Willows〉}

On this model, Rag is true: the ordered pair consisting of the referent of a

followed by the referent of g—that is, 〈Alice, The Great Gatsby〉—is in the
extension of R. Likewise, Rcg is true, because the ordered pair consisting of
the referent of c followed by the referent of g—that is, 〈Charles, The Great
Gatsby〉—is also in the extension of R. In contrast, Rar is false in this model:
the ordered pair consisting of the referent of a followed by the referent of r—
that is, 〈Alice, The Catcher in the Rye〉—is not in the extension of R.
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More complex propositions are handled in just the same way as in monadic
predicate logic. Consider the proposition ∀x∃yRxy. It is of the form ∀xα(x),
where α(x) is ∃yRxy. Its truth value is determined by rule (7) of §9.4.2: it is
true on our model M iff ∃yRby is true in every model just like M except that
it also assigns a referent to the new name b. Now this formula ∃yRby has its
truth value determined by rule (8) of §9.4.2: it is true on one of the models
just considered iff Rbd is true on some model just like that model except that
it also assigns a referent to the new name d . So our original formula is not
true in M: if we let b denote Roger, then there is nothing d can denote such
that Rbd will be true—for there is no ordered pair in the extension of R with
Roger in its first position.

So far we have discussed two-place predicates. The extension to three-,
four-, and in general n-place predicates is straightforward. The extension of a
three-place predicate is a set of ordered triples of objects from the domain. The
proposition Sabc is then true in a model M iff the ordered triple consisting
of the referent of a in that model followed by the referent of b in that model
followed by the referent of c in the model is in the extension of S in the model.
For example, consider the following model:

Domain: {Alice, Bob, Carol, David, Edwina, Frank}
Referents: a: Alice b: Bob c: Carol e: Edwina
Extension of B: {〈Alice, Bob, Carol〉, 〈Carol, Alice, Edwina〉,

〈Edwina, Carol, Frank〉, 〈Frank, Edwina, David〉}

Babc is true in this model, because 〈Alice, Bob, Carol〉 is in the extension of
B; Bbac is false, because 〈Bob, Alice, Carol〉 is not in the extension of B; Bcae

is true, because 〈Carol, Alice, Edwina〉 is in the extension of B; and so on.
In general, the extension of an n-place predicate is a set of ordered n-tuples

of members of the domain. An ordered n-tuple comprises some things given in
a particular order: first, second . . . nth.11 You can think of an ordered n-tuple
〈x , y , z, . . . , w〉 as a list: x first, y second, z third, and so on down to w in
nth position.12 Then (where P n is any n-place predicate and a1

. . . an are any
names) the atomic proposition P na1 . . . an is true in a model iff the ordered
n-tuple consisting of the referents of a1 through an in that model (taken in that
order) is in the extension of P n in that model.

12.2.1 Summary

Here we summarize the semantics of GPL.

12.2.1.1 MODELS

A model of a fragment of GPL comprises:

1. a domain (a nonempty set of objects);
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2. a specification of a referent for each name in the fragment:

– the referent of a name is an object in the domain;

3. a specification of an extension for each predicate in the fragment:

– the extension of a one-place predicate is a set of objects from the domain;
– the extension of an n-place predicate (for any finite n greater than 1) is a set

of n-tuples of objects drawn from the domain.

12.2.1.2 TRUTH CONDITIONS

There are eight types of propositions of GPL (see clause (3) of the syntax for
GPL in §12.1.3):13 atomic propositions, propositions whose main operator is
one of the five connectives, and propositions whose main operator is one of
the two quantifiers. So we have one rule for each type of proposition, which
states how its truth value is determined relative to a given model M. The only
new type of proposition that emerged when we moved from MPL to GPL was
atomic propositions with many-place predicates. Accordingly, the only differ-
ence between the following truth conditions for propositions of GPL and those
for MPL given in §9.4.2 concerns the first rule: the one for atomic proposi-
tions. This rule is now generalized to cover atomic propositions formed from
predicates with any positive finite number of places (the rule for MPL covered
only one-place predicates). The remaining clauses are reproduced here simply
for the sake of having the complete semantics of GPL stated in one place for
ready reference:

1. P na1 . . . an is true in M iff the ordered n-tuple consisting of the referents
in M of a1 through an in that order is in the extension in M of P n.

2. ¬α is true in M iff α is false in M.

3. (α ∧ β) is true in M iff α and β are both true in M.

4. (α ∨ β) is true in M iff one or both of α and β is true in M.

5. (α → β) is true in M iff α is false in M or β is true in M (or both).

6. (α ↔ β) is true in M iff α and β are both true in M or both false in M.

7. ∀xα(x) is true in M iff for every object o in the domain of M, α(a/x)

is true in M
a
o , where a is some name not assigned a referent in M, and

M
a
o is a model just like M except that in it the name a is assigned the

referent o.

8. ∃xα(x) is true in M iff there is at least one object o in the domain of M

such that α(a/x) is true in M
a
o , where a is some name not assigned a

referent in M, and M
a
o is a model just like M except that in it the name

a is assigned the referent o.
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12.2.2 Exercises

1. Here is a model:

Domain: {1, 2, 3, . . .}
Referents: a: 1 b: 2 c: 3
Extensions: E: {2, 4, 6, . . .} P : {2, 3, 5, 7, 11, . . .}14

L: {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, . . . , 〈2, 3〉, 〈2, 4〉, . . . , 〈3, 4〉, . . .}15

State whether each of the following propositions is true or false in this
model.

(i) Lba

(ii) Lab ∨ Lba

(iii) Laa

(iv) ∃xLxb

(v) ∃xLxa

(vi) ∃xLxx

(vii) ∀x∃yLxy

(viii) ∀x∃yLyx

(ix) ∃x(Px ∧ Lxb)

(x) ∃x(Px ∧ Lcx)

(xi) ∀x∃y(Ey ∧ Lxy)

(xii) ∀x∃y(Py ∧ Lxy)

(xiii) ∀x(Lcx → Ex)

(xiv) ∀x((Lax ∧ Lxc)→ Ex)

(xv) ∀x∀y(Lxy ∨ Lyx)

(xvi) ∃x∃y∃z(Ex ∧ Py ∧ Ez ∧ Pz ∧
Lxy ∧ Lyz)

(xvii) ∃x∃y∃z(Lxy ∧ Lyz ∧ Lzx)

(xviii) ∀x∀y∀z((Lxy ∧ Lyz)→ Lxz)

2. Here is a model:

Domain: {1, 2, 3}
Referents: a: 1 b: 2 c: 3
Extensions: F : {1, 2} G: {2, 3} R: {〈1, 2〉, 〈2, 1〉, 〈2, 3〉} S: {〈1, 2, 3〉}

State whether each of the following propositions is true or false in this
model.

(i) ∀x∀y(Rxy → Ryx)

(ii) ∀x∀y(Ryx → Rxy)

(iii) ∀x∃y(Gy ∧ Rxy)

(iv) ∀x(Fx →∃y(Gy ∧ Rxy))

(v) ∃x∃y∃zSxyz

(vi) ∃x∃ySxay

(vii) ∃x∃ySxby

(viii) ∃xSxxx

(ix) ∃x∃y(Fx ∧ Fy ∧ Sxby)

(x) ∃x∃y(Fx ∧Gy ∧ Sxby)

3. Here is a model:

Domain: {Alice, Bob, Carol, Dave, Edwina, Frank}
Referents: a: Alice b: Bob c: Carol d : Dave e: Edwina f : Frank
Extensions: M : {Bob, Dave, Frank} F : {Alice, Carol, Edwina}

L: {〈Alice, Carol〉, 〈Alice, Dave〉, 〈Alice, Alice〉, 〈Dave, Carol〉,
〈Edwina, Dave〉, 〈Frank, Bob〉}

S: {〈Alice, Bob〉, 〈Alice, Dave〉, 〈Bob, Alice〉, 〈Bob, Dave〉,
〈Dave, Bob〉, 〈Dave, Alice〉}
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State whether each of the following propositions is true or false in this
model.

(i) ∀x∀y(Lxy → Lyx)

(ii) ∃xLxx

(iii) ¬∃xSxx

(iv) ∀x∀y(Sxy → Syx)

(v) ∀x∀y∀z((Sxy ∧ Syz)→ Sxz)

(vi) ∀x(Mx →∃yLyx)

(vii) ∀x(Fx →∃yLyx)

(viii) ∀x(Fx →∃yLxy)

(ix) ∃x∃y(Lax ∧ Lyb)

(x) ∀x((Lxd ∨ Ldx) ∨Mx)

4. For each of the following propositions, describe (a) a model in which it
is true and (b) a model in which it is false. If there is no model of one of
these types, explain why.

(i) ∀xFxx

(ii) ∀x∀y(Fxy → Fyx)

(iii) ∀x∀y(Fxy ↔ Fyx)

(iv) ∃x∀yFxy

(v) ∀x∃yFxy

(vi) ∃x∃yFxy

(vii) ∀x∀yFxy

(viii) ∃x∃yFxy ∧ ¬Faa

(ix) ∀x∀yFxy ∧ ¬Faa

(x) ∀x∀y(Fxy ↔ Fyx) ∧ Fab ∧ ¬Fba

12.3 Trees for General Predicate Logic

In moving from trees for propositional logic to trees for monadic predicate
logic, we said (at the beginning of Chapter 10) that the basic idea remained
the same: a tree tells us whether it is possible for the propositions written at the
top of the tree all to be true together; if this is possible, then the tree presents a
scenario in which these propositions are all true. Hence, the ways we use trees
remained the same too. For example, to test a formula for being a logical truth,
we start with the negation of the formula; if all paths close, this negation can-
not be true, and so the original (unnegated) formula is a logical truth; and so
on for testing for validity, satisfiability, and the other logical properties. What
did change was that we added new rules for the new operators: the quantifiers.
Furthermore, in line with the change in the semantics for our logical language
from representing “ways of making propositions true or false” (i.e., scenarios)
as truth table rows to representing them as models, we introduced a method
for reading off a model from an open path of a tree.

In moving from monadic to general predicate logic, the basic idea behind
trees once again stays the same—hence, the ways we can use trees remain
the same too. We have not added any new logical operators—only some new
predicates—so there are no new tree rules. The only change we have made to
our language is adding new many-place predicates. The corresponding change
in the semantics was that we assigned such predicates sets of n-tuples of mem-
bers of the domain as extensions, not sets of members of the domain (as in
the case of one-place predicates). The corresponding question that we need to
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discuss in the case of trees—the only new issue we need to discuss in relation
to trees when moving from MPL to GPL—is how to read off the extensions of
many-place predicates from open paths.

The procedure is a simple generalization of the procedure for one-place
predicates. Given an open path, we put into the extension of a one-place
predicate F the referent of any name a which appears after F in a standalone
atomic wff Fa in our path. (By “standalone” I mean that the atomic wff Fa

appears in the path as a complete wff, not simply as a subformula of a larger
wff.) For an n-place predicate Fn, we put into the extension of this predicate
the ordered n-tuple consisting of the referents of the names a1 through an (in
that order), for any (occurrences of) names a1 through an appearing after Fn

(in that order) in a standalone atomic wff Fna1 . . . an in our path. So, to take
a concrete example, suppose we are dealing with the three-place predicate R

and that the only standalone atomic wffs involving R that appear in our path
are Raba and Rbac. Assume the referents of the names a, b, and c are the
objects 1, 2, and 3, respectively. Then we form the extension of R as follows:

R : {〈1, 2, 1〉, 〈2, 1, 3〉}

The idea is that the model we are constructing must be one in which every wff
on our open path is true. For Raba to be true, the n-tuple consisting of the
referents of a, b, and a, in that order, must be in the extension of R. Hence,
we put 〈1, 2, 1〉 into the extension of R. Likewise, we put 〈2, 1, 3〉 into the
extension to make Rbac true.

Let’s consider some examples. First, let’s test whether the following argu-
ment is valid:

∀x(Fx →∃yRxy)

Fa

∴ ∃xRax

We construct the tree as follows:

∀x(Fx → ∃yRxy)  \a
Fa

¬∃xRax �
∀x¬Rax  \b

Fa → ∃yRay �

1.
2.
3.
4.
5.

{3}
{1}

¬Fa
×

6. {5}
{2, 6}

∃yRay �b
Rab

¬Rab
×

7.
8.
9.

{5}
{7}
{4}

{8, 9}

All paths close, so the argument is valid.

12.3 Trees for General Predicate Logic 283



For a second example, let’s test whether the following proposition is a logical
truth:

(∃x∀yRxy →∀x∃yRxy)

We construct the tree as follows:

1. ¬(∃x∀yRxy →∀x∃yRxy) �
2. ∃x∀yRxy � a {1}
3. ¬∀x∃yRxy � {1}
4. ∃x¬∃yRxy � b {3}
5. ∀yRay \ a b {2}
6. ¬∃yRby � {4}
7. ∀y¬Rby \ a b {6}
8. Raa {5, a}
9. Rab {5, b}

10. ¬Rba {7, a}
11. ¬Rbb {7, b}

↑

There is only one path in this tree: it is saturated and open. So we can read off
a model in which the wff at the top of the tree is true—that is, in which the
original wff (∃x∀yRxy →∀x∃yRxy) is false. The names appearing on the
path are a and b, so our domain and referents are:

Domain: {1, 2}
Referents: a: 1 b: 2

The only predicate on the path is R. To get its extension, we look for stand-
alone atomic wffs featuring R that occur in our path. We find two: Raa and
Rab. So we set the extension of R as follows:

Extension of R: {〈1, 1〉, 〈1, 2〉}

12.3.1 Exercises

1. Using trees, determine whether the following propositions are logical
truths. For any proposition that is not a logical truth, read off from your
tree a model in which it is false.

(i) ∀x(Rxx →∃yRxy)

(ii) ∀x(∃yRxy →∃zRzx)

(iii) ∀xRax →∀x∃yRyx

(iv) ∀x∃y∃zRyxz→∃x∃yRxay

(v) ¬∀x∃yRxy

(vi) ∀x∀y∀z((Rxy ∧ Ryz)→ Rxz)

(vii) ∃x∀yRxy →∀x∃yRxy

(viii) ∃y∀xRxy →∀x∃yRxy

(ix) ∃x∀yRxy →∃x∃yRxy

(x) ∀x∀y∃zRxyz ∨ ∀x∀y∀z¬Rxyz
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2. Using trees, determine whether the following arguments are valid. For
any argument that is not valid, read off from your tree a model in which
the premises are true and the conclusion false.

(i) ∀x∀y∀z((Rxy ∧ Ryz)→ Rxz)

Rab

Rba

∴ ∃xRxx

(ii) ∀xFxa →∃xFax

∃xFxa

∴ ∃xFax

(iii) ∃x∃y∃z(Rxy ∧ Rzy)

∴ ∃xRxx

(iv) ∀x∀y(Rxy → Ryx)

∃xRxa

∴ ∃xRax

(v) ∀x∀y(¬Rxy → Ryx)

∴ ∀x∃yRyx

(vi) ∀x∀y(Rxy → (Fx ∧Gy))

∴ ¬∃xRxx

(vii) ∀x(Fx → (∀yRxy ∨ ¬∃yRxy))

Fa

¬Rab

∴ ¬Raa

(viii) ∀x∀y(∃z(Rzx ∧ Rzy)→ Rxy)

∀xRax

∴ ∀x∀yRxy

(ix) ∀x∃yRxy

∴ ∃xRxb

(x) ∃x∀y(Fy → Rxy)

∃x∀y¬Ryx

∴ ∃x¬Fx

3. Translate the following arguments into GPL and then test for validity
using trees. For any argument that is not valid, read off from your tree
a model in which the premises are true and the conclusion false.

(i) Alice is older than Bill, and Bill is older than Carol, so Alice must be
older than Carol.

(ii) Alice is older than Bill. Bill is older than Carol. Anyone older than
someone is older than everyone who that someone is older than. It
follows that Alice is older than Carol.

(iii) I trust everything you trust. You trust all bankers. Dave is a banker.
Thus, I trust Dave.

(iv) Everybody loves somebody, so everybody is loved by somebody.
(v) Nancy is a restaurateur. She can afford to feed all and only those

restaurateurs who can’t afford to feed themselves. So Nancy is very
wealthy.

(vi) Everything in Paris is more beautiful than anything in Canberra. The
Eiffel tower is in Paris, and Lake Burley Griffin is in Canberra. There-
fore, the Eiffel tower is more beautiful than Lake Burley Griffin.

(vii) Politicians only talk to politicians. No journalist is a politician. So no
politician talks to any journalist.

(viii) There is no object that is smaller than all objects; therefore, there is
no object such that every object is smaller than it.
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(ix) Either a movie isn’t commercially successful or both Margaret and
David like it. There aren’t any French movies that Margaret
and David both like. So there aren’t any commercially successful
French movies.

(x) There’s something that causes everything. Thus, there’s nothing that
is caused by everything.

12.4 Postulates

Consider the following piece of reasoning:

Alice is taller than Bob.
Carol is shorter than Bob.
∴ Alice is taller than Carol.

We translate as follows:

a: Alice T ab

b: Bob Scb

c: Carol ∴ T ac

T xy: x is taller than y

Sxy: x is shorter than y

The result is not valid. This should not be a surprise, in light of §11.5. The
glossary endows the predicates T and S with intensions that are related in the
following ways:16

1. For every ww, if the intension of T determines that 〈x , y〉 is in the ex-
tension of T relative to that ww, then the intension of S determines that
〈y , x〉 is in the extension of S relative to that ww. (In other words, neces-
sarily, for any x and y, if x is taller than y, then y is shorter than x.)

2. For every ww, if the intension of S determines that 〈x , y〉 is in the ex-
tension of S relative to that ww, then the intension of T determines that
〈y , x〉 is in the extension of T relative to that ww. (In other words, neces-
sarily, for any x and y, if x is shorter than y, then y is taller than x.)

3. For every ww, if the intension of T determines that 〈x , y〉 and 〈y , z〉 are in
the extension of T relative to that ww, then it also determines that 〈x , z〉
is in the extension of T relative to that ww. (In other words, necessarily,
for any x, y, and z, if x is taller than y and y is taller than z, then x is taller
than z.)

4. For every ww, if the intension of S determines that 〈x , y〉 and 〈y , z〉 are in
the extension of S relative to that ww, then it also determines that 〈x , z〉
is in the extension of S relative to that ww. (In other words, necessarily,
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for any x, y, and z, if x is shorter than y and y is shorter than z, then x is
shorter than z.)

Thus, there is no ww-model (relative to the given glossary) in which the
premises are true and the conclusion false. In other words, the argument is
NTP. If Carol is shorter than Bob (second premise) then by point (2), Bob is
taller than Carol. From this and the first premise (Alice is taller than Bob) the
conclusion (Alice is taller than Carol) follows by point (3). However, when
it comes to validity (and other logical properties, e.g., equivalence, satisfiabil-
ity), glossaries—and the intensions they confer—fall by the wayside. Validity is
NTP by virtue of form. When determining validity, we use a glossary to trans-
late into GPL, but then we apply the tree test to the argument (the sequence of
closed wffs): any content conferred on these wffs in the process of translation
is ignored. We consider all models—not just ww-models (which are no longer
meaningfully defined, once the intensions are out of the picture). That is why
the argument under consideration comes out invalid: although there are no
ww-models in which the premises are true and the conclusion false, there are
models in which the premises are true and the conclusion false.

To obtain a valid argument, we need to take the restrictions on models
(which rule out some models as not being ww-models) embodied in the in-
tensions and embody them in further wffs, which we then add as premises.
(Because, as we have been saying, only wffs themselves affect validity: any in-
tensions these wffs may have been given, via some glossary, are irrelevant when
assessing validity.) The idea behind these further wffs is that at least one of
them is false in any countermodel to the original argument. These further wffs
are postulates (§11.6). In the present case, the conclusion can be derived from
the premises via points (2) and (3). So we embody these points in the following
postulates:

∀x∀y(Sxy → Tyx)

∀x∀y∀z((T xy ∧ Tyz)→ T xz)

and then add them as premises to our argument:

T ab

Scb

∀x∀y(Sxy → Tyx)

∀x∀y∀z((T xy ∧ Tyz)→ T xz)

∴ T ac

This argument is valid (as can easily be confirmed by producing a tree).17

Let’s consider another example:

Mary likes everyone, so Mary likes Bob.
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We translate as follows:

b: Bob ∀x(Px → Lmx)

m: Mary ∴ Lmb

Px: x is a person
Lxy: x likes y

The result is invalid. To obtain a valid argument, we need to add Pb (Bob is a
person) as a postulate.

Note that it is not always necessary to add postulates to make a valid argu-
ment. For example, consider the argument:

Mary likes everything, so Mary likes Bob.

Using the above glossary, this translates as:

∀xLmx

∴ Lmb

which is valid as it stands.
Let’s consider a different sort of example:

Mary likes everyone Bob likes.
Bob likes a pilot.
Hence, Mary likes a pilot.

Adding “T x: x is a pilot” to the above glossary, this translates as:

∀x((Px ∧ Lbx)→ Lmx)

∃x(T x ∧ Lbx)

∴ ∃x(T x ∧ Lmx)

which is invalid (do the tree and confirm this). To obtain a valid argument, we
need to add the postulate ∀x(T x → Px) (all pilots are persons). (Look at the
countermodel derived from your tree for the original argument: note that it
turns on having some object x in the extension of T but not in the extension
of P , such that 〈the referent of b, x〉 is in the extension of L and 〈the referent
of m, x〉 is not in the extension of L.) This example is different, because the
original argument is not NTP, and the postulate—when taken under the given
glossary—is not necessarily true (presumably it is possible for there to be
pilots that are not persons—e.g., robot pilots). Rather, the postulate is simply
supposed to be true (i.e., when taken under the given glossary, it comes out
true relative to the actual ww). The original argument is an example of an
enthymeme: an argument in which a premise is not explicitly stated. Examples
of this sort commonly occur when the suppressed premise (e.g., “all pilots are
persons”) is so obviously true that one does not bother saying it. In such cases,
the role of the postulate is simply to make explicit the suppressed premise.
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12.4.1 Exercises

For each of the following arguments, first translate into GPL and show that the
argument is invalid using a tree. Then formulate suitable postulates and show,
using a tree, that the argument with these postulates added as extra premises
is valid.

1. Roger will eat any food; therefore, Roger will eat that egg.

2. Bill weighs 180 pounds. Ben weighs 170 pounds. So Bill is heavier than
Ben.

3. John ran 5 miles; Nancy ran 10 miles; hence, Nancy ran farther than John.

4. Sophie enjoys every novel by Thomas Mann, so she enjoys Buddenbrooks.

5. Chris enjoys novels and nothing else; therefore, he does not enjoy any-
thing by Borges.

12.4.2 Translation

Consider the two claims, “Alice is taller than Bob” and “Bob is shorter than
Alice.” We translate as follows:

a: Alice T ab

b: Bob Sba

T xy: x is taller than y

Sxy: x is shorter than y

Neither of these formulas of GPL is a logical consequence of the other, but
each is a logical consequence of the other together with the postulate
∀x∀y(Sxy ↔ Tyx).

A second option would be to bypass the postulate and simply translate both
claims using one two-place predicate. If we use T , both will translate as T ab; if
we use S, both will come out as Sba. Either way, as both claims are translated
as the same wff, they are (trivially) logically equivalent.

Which way of translating is the right one? The question comes down to
this: are the two claims, “Alice is taller than Bob” and “Bob is shorter than
Alice” different ways of expressing the same proposition (in which case the
second way is right), or are they expressions of two different propositions that
necessarily have the same truth value (i.e., are true/false relative to the same
wws—in which case the first way is right)? There is no general answer to this
kind of question. We said in the last part of §1.2.2 that which proposition a
speaker expresses on a given occasion is determined by the meaning of the
sentence type she utters, facts about the context of utterance, and facts about
the speaker—and perhaps more besides. Thus, whether some particular utter-
ance of the sentence “Alice is taller than Bob” and some particular utterance of
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“Bob is shorter than Alice” express the same proposition is not something we
can answer in the abstract: we need to know many specific details—apart from
simply which sentences were uttered—and even then the issues are highly con-
troversial. Suffice it to say here that we have the logical resources to take either
approach: if we translate some particular utterance of the sentence “Alice is
taller than Bob” as T ab, then it is open to us to translate a given utterance of
“Bob is shorter than Alice” as Sba or as T ab.

The more we tend toward translating utterances of different sentences as
expressing the same propositions (i.e., the second way above), the less postu-
lates we need to obtain valid arguments. For example, if “Alice is taller than
Bob” and “Bob is shorter than Alice” are translated in the same way (as T ab,
or alternatively as Sba), then the argument “Alice is taller than Bob, so Bob is
shorter than Alice” comes out as valid (trivially so, because the premise and the
conclusion are the same wff). Conversely, the more we tend toward translat-
ing utterances of different sentences as expressing different propositions (i.e.,
the first way above), the more situations we can regard as making sense from
a purely logical point of view. For example, suppose we make the natural as-
sumption that someone who assents to an utterance of a sentence believes the
proposition expressed by that utterance, and that someone who dissents from
an utterance of a sentence does not believe the proposition expressed by that
utterance.18 Then, if we want to translate “Alice is taller than Bob” and “Bob
is shorter than Alice” in the same way, we cannot make sense of a situation in
which someone assents to “Alice is taller than Bob” but dissents from “Bob is
shorter than Alice”: that would mean that the person both believes a certain
proposition and does not believe the same proposition, which is simply im-
possible. In contrast, the situation does make sense if “Alice is taller than Bob”
and “Bob is shorter than Alice” express different propositions.

Consider another example: active versus passive constructions. “Alice
shouted at Carol” is said to be in the active voice, while “Carol was shouted
at by Alice” is in the passive voice. Suppose we translate an utterance of “Alice
shouted at Carol” as Sac, using the glossary:

a: Alice
c: Carol
Sxy: x shouted at y

Should we now translate an utterance of “Carol was shouted at by Alice” as
Sac, or should we introduce a new predicate:

Hxy: x was shouted at by y

and then translate as Hca? Again, there is no general answer to this ques-
tion. If you translate in the former way, you are supposing that the particular
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utterances of “Alice shouted at Carol” and “Carol was shouted at by Alice” ex-
press the same proposition (just as two different utterances of “Alice shouted
at Carol” might express the same proposition). If you translate in the lat-
ter way, you are supposing that the two utterances express different propo-
sitions. The former supposition carries with it the feature that postulates (e.g.,
∀x∀y(Sxy ↔Hyx)) are not required to make certain arguments valid (e.g.,
“Alice shouted at Carol, so Carol was shouted at by Alice”): their validity is en-
sured by the method of translation. The latter supposition carries with it the
feature that more situations can be regarded as making sense from a purely
logical point of view (e.g., someone assenting to “Alice shouted at Carol” but
dissenting from “Carol was shouted at by Alice”). Which (if either) of these
features is advantageous will depend on the situation—on why we are trans-
lating into GPL and what we hope to achieve thereby.

The sort of issue we have just been discussing arises virtually every time
we are translating into a logical language. For example, suppose you hear
someone say “Bob is tall, so Bob is tall.” This reasoning may sound like the
most trivial case of logical consequence, but the hypothesis remains open that
the two tokens of “Bob” refer to different people, in which case the correct
translation yields an invalid argument:

a: Bob Smith T a

b: Bob Jones ∴ T b

T x: x is tall

In this case, it may be that to capture the reasoning being expressed as a valid
argument, we need to add extra premises: Bob Jones is taller than Bob Smith
(T 2ba, using the glossary entry T 2xy: x is taller than y); if something is tall,
then anything taller than it is tall (∀x∀y((T x ∧ T 2yx)→ Ty)).19

A translation is a hypothesis about the propositions expressed by certain
utterances. Generally, there will not be conclusive evidence in favor of one
translation over all other possible translations. What we can be sure about,
however, are such assertions as: if the correct translation is so and so, then
the argument is valid; if the correct translation is such and such, then the
proposition expressed is logically true.

12.4.3 Complex Predicates

Consider the following claims:

1. Alice is walking.

2. Bob is walking slowly.

3. Constance is walking quickly.

4. Doug is reading.

5. Ed is reading slowly.

6. Frances is reading quickly.
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We translate them into GPL as follows:

a: Alice Wx: x is walking 1. Wa

b: Bob Sx: x is walking slowly 2. Sb

c: Constance Qx: x is walking quickly 3. Qc

d : Doug Rx: x is reading 4. Rd

e: Ed Lx: x is reading slowly 5. Le

f : Frances Ux: x is reading quickly 6. Uf

In English, the predicates are expressed using four words (apart from “is”):
“walking,” “reading,” “slowly,” and “quickly.” The sentence “Bob is walking
slowly” has something (the word “walking”) in common with “Alice is walk-
ing” and something (the word “slowly”) in common with “Ed is reading
slowly;” similarly for others of these sentences. In contrast, in GPL we have six
different predicates. The translation of “Bob is walking slowly” has nothing in
common with the translation of “Alice is walking,” nor with the translation
of “Ed is reading slowly;” indeed, none of the translations has any symbol in
common with any of the other translations.

This may seem odd at first, but we need to remember that the translation
into GPL of an utterance of a sentence, such as “Bob is walking slowly,” is sup-
posed to be a representation of the proposition expressed by the utterance—
not a representation of the sentence uttered. English, like other natural lan-
guages, has the following useful feature: learning a relatively small number
of words and a relatively small number of grammatical rules enables us to
produce and understand a relatively large (in fact, a potentially unlimited)
number of meaningful sentences. For example, if I have learned the mean-
ings of the adverbs “slowly” and “quickly,” then for any new verb X I learn
(“read,” “walk,” “write,” “run,” “eat,” . . . ), I can work out the meaning of “X
slowly” and “X quickly”: I do not have to learn the meanings of the latter sep-
arately. This feature is all well and good, but it does not automatically follow
from it that the proposition I express by uttering “Bob is walking slowly” must
have a component in common with any proposition that I express by utter-
ing a sentence that has a word in common with “Bob is walking slowly” (e.g.,
“Constance is walking quickly,” “Ed is reading slowly”). Learning a few words
allows us to express a lot of propositions; it does not follow that the propo-
sitions themselves must, so to speak, carry a trace of the means by which we
express them. That is, the propositions expressed by “Bob is walking slowly”
and “Constance is walking quickly” might have no component in common.
That is precisely the view we arrive at if we take GPL as our logical language.20

Note that, when translated into GPL, the following argument comes out as
invalid:

Alice is walking slowly, so Alice is walking.

To get a valid argument, we need to add the postulate ∀x(Sx →Wx).
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Consider the following claims:

1. Bones is a gray dog.

2. Ernest is a gray elephant.

3. Bones is a small dog.

4. Ernest is a small elephant.

In accordance with the foregoing discussion, we translate them as follows:

b: Bones Sx: x is small 1. Rb

e: Ernest Mx: x is a small dog 2. Le

Dx: x is a dog Rx: x is a gray dog 3. Mb

Ex: x is an elephant Ax: x is a small elephant 4. Ae

Gx: x is gray Lx: x is a gray elephant

Note that we can, if needed, introduce the following wffs as postulates:

∀x(Mx →Dx) ∀x(Ax → Ex)

∀x(Rx →Gx) ∀x(Lx →Gx)

∀x(Rx →Dx) ∀x(Lx → Ex)

but not the following:

∀x(Mx → Sx) ∀x(Ax → Sx)

For necessarily, if Bones is a gray dog and Ernest is a gray elephant, then Bones
and Ernest are both gray; but if Bones is a small dog and Ernest is a small
elephant, it does not necessarily follow that Bones and Ernest are both small.

Thus, we do not have the option of translating claims (3) and (4) as follows:

Sb ∧Db Se ∧ Ee

but we do have the option of translating claims (1) and (2) this way:

Gb ∧Db Ge ∧ Ee

Taking the latter option is like translating “Alice is taller than Bob” and “Bob is
shorter than Alice” as the same wff (§12.4.2): we build the postulates into the
translation.

12.5 Moving Quantifiers

If you have a two-place connective (other than ↔, which is discussed sep-
arately in §12.5.1) with a quantifier attached to one side, you can move
that quantifier to the front, and the result will be equivalent to the original
formula—except in one case: when we move a quantifier attached to the an-
tecedent of a conditional to the front of the entire conditional, we must change
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it to the other kind of quantifier to obtain a formula equivalent to the original
one. More precisely, where β contains no free occurrences of x:

∧: (∀xα ∧ β) is equivalent to ∀x(α ∧ β)

(∃xα ∧ β) is equivalent to ∃x(α ∧ β)

(β ∧ ∀xα) is equivalent to ∀x(β ∧ α)

(β ∧ ∃xα) is equivalent to ∃x(β ∧ α)

∨: (∀xα ∨ β) is equivalent to ∀x(α ∨ β)

(∃xα ∨ β) is equivalent to ∃x(α ∨ β)

(β ∨ ∀xα) is equivalent to ∀x(β ∨ α)

(β ∨ ∃xα) is equivalent to ∃x(β ∨ α)

→: (∀xα → β) is equivalent to ∃x(α → β)

(∃xα → β) is equivalent to ∀x(α → β)

(β →∀xα) is equivalent to ∀x(β → α)

(β →∃xα) is equivalent to ∃x(β → α)

Let’s consider why these equivalences hold. (In the following reasoning we
assume that α contains no free occurrence of any variable other than x—and
so we write it as α(x)—and that β contains no free occurrence of any variable.)
Take the first one. The left-hand formula (∀xα(x) ∧ β) is true in a model M

just in case (a) in every model just like M except that it also assigns a referent
to a—where a is some name to which M assigns no referent—α(a/x) is true,
and (b) β is true in M. The right-hand formula ∀x(α(x) ∧ β) is true in M

just in case in every model just like M except that it also assigns a referent to a,
α(a/x) is true and β is true. But β does not involve the name a (remember that
a was a new name brought in to replace free occurrences of x, and β contains
no free occurrences of x), so “β is true in every model just like M except that
it also assigns a referent to a” holds just in case “β is true in M” holds. So the
conditions required for the left-hand formula to be true in a model are exactly
those required for the right-hand formula to be true; hence, the equivalence
holds.

Consider a second example: (∀xα(x)→ β) is equivalent to ∃x(α(x)→ β).
The left-hand formula (∀xα(x)→ β) is true in a model M just in case either
(a) in some model just like M except that it also assigns a referent to a—where
a is some name to which M assigns no referent—α(a/x) is false, or (b) β is
true in M. The right-hand formula ∃x(α(x)→ β) is true in M just in case
there is some model just like M except that it also assigns a referent to a, in
which α(a/x) is false or β is true. But β does not involve the name a, so “there
is some model just like M except that it also assigns a referent to a in which β

is true” holds just in case “β is true in M” holds. So the conditions required
for the left-hand formula to be true in a model are exactly those required for
the right-hand formula to be true; hence, the equivalence holds.

Similar reasoning establishes the other equivalences. A useful way to re-
member that it is only when we move a quantifier to or from the antecedent of
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a conditional that we need to change it to the other type of quantifier to main-
tain equivalence is to keep in mind that (α→ β) is equivalent to (¬α ∨ β). It is
the negation here that leads to the need to change the quantifier. For example,
(∀xα → β) is equivalent to (¬∀xα ∨ β), which is equivalent to (∃x¬α ∨ β)

(there’s the change of quantifier, as we pass the negation across it; see §12.5.3),
which is equivalent to ∃x(¬α ∨ β), which is equivalent to ∃x(α → β).

Note that there is an important implication here for how we translate into
our logical language. Given the glossary:

r : Rosie
Bx: x is a beagle
Dx: x is a dog

we translate “all beagles are dogs” as ∀x(Bx →Dx) and “if everything is a
beagle, then Rosie is a dog” as (∀xBx →Dr), not as ∀x(Bx →Dr). By the
equivalences presented above, the latter is equivalent to (∃xBx →Dr), which
does not say “if everything is a beagle, then Rosie is a dog,” but “if even one
thing is a beagle, then Rosie is a dog.”

12.5.1 Biconditional

The case of the biconditional is more complex. In general, (∀xα↔ β) is equiv-
alent to neither ∀x(α ↔ β) nor ∃x(α ↔ β), and (∃xα ↔ β) is equivalent to
neither ∃x(α ↔ β) nor ∀x(α ↔ β). Consider, for example

(∀xα ↔ β) (12.1)

(where β contains no free occurrences of x). Formula (12.1) is equivalent to

(∀xα → β) ∧ (β →∀xα) (12.2)

From §12.5, (12.2)’s left conjunct is equivalent to ∃x(α → β), and its right
conjunct is equivalent to ∀x(β → α), so21 (12.2) is equivalent to

∃x(α → β) ∧ ∀x(β → α) (12.3)

From §12.5, (12.3) is equivalent to

∃x[(α → β) ∧ ∀x(β → α)] (12.4)

Now consider the scope of the initial existential quantifier here:

[(α → β) ∧ ∀x(β → α)] (12.5)

One might think that from §12.5, (12.5) is equivalent to

∀x[(α → β) ∧ (β → α)] (12.6)
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But one would be wrong, because (α → β) might contain free occurrences of
x.22 However, using the first of the two equivalences at the end of §12.1.8, the
right conjunct of (12.5) is equivalent to ∀w(β → α(w/x)), where w is a new
variable that does not occur in α or β, so (12.5) is equivalent to

[(α → β) ∧ ∀w(β → α(w/x))] (12.7)

Now we can make the move we wanted to make earlier and conclude that
(12.7) is equivalent to

∀w[(α → β) ∧ (β → α(w/x))] (12.8)

and hence23 that (12.4) is equivalent to

∃x∀w[(α → β) ∧ (β → α(w/x))] (12.9)

So (12.1) is equivalent to (12.9).

12.5.2 Other Implications and Nonimplications

In what follows, α = β or β = α means that α implies β; that is, the argument
with α as premise and β as conclusion is valid. When we write α �= β or β �= α,
we mean that α does not imply β; that is, the argument with α as premise
and β as conclusion is invalid. If α implies β and vice versa, then α and β are
equivalent.

∧: (∀xα ∧ ∀xβ) = = ∀x(α ∧ β)

(∃xα ∧ ∃xβ) �= = ∃x(α ∧ β)

∨: (∀xα ∨ ∀xβ) = �= ∀x(α ∨ β)

(∃xα ∨ ∃xβ) = = ∃x(α ∨ β)

→: (∀xα →∃xβ) = = ∃x(α → β)

(∃xα →∀xβ) = �= ∀x(α → β)

These relations can be established by reasoning similar to that used in §12.5.
Note that for all the other possible combinations of types of wff not listed
here—for example (∀xα →∀xβ) and ∀x(α → β), or (∀xα →∀xβ) and
∃x(α → β)—neither formula implies the other.

12.5.3 Prenex Normal Form

A wff is said to be in prenex normal form if it has all its quantifiers (if any)
in front, and then everything else (atomic wffs and connectives) follows after
that. For any wff of GPL, there is a wff in prenex normal form equivalent
to it. To find such a prenex equivalent of a given formula, we proceed as in
the example of (∀xα ↔ β) in §12.5.1. That is, we replace any biconditionals
with equivalent combinations of conjunctions and conditionals, and apply the
equivalences of §12.5 to move quantifiers to the front of subformulas. To move
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quantifiers to the left of negations, we also need to appeal to the following
equivalences, which are established by the kind of reasoning given in §10.1.1
and §10.1.2 in relation to the tree rules for negated existential and universal
quantifications:

¬∃xα is equivalent to ∀x¬α

¬∀xα is equivalent to ∃x¬α

As we saw in §12.5.1, it may also be necessary at times to replace variables
uniformly with other variables, using the equivalences at the end of §12.1.8.
Finally, at each stage of the process we make use of the fact that substitution
of equivalent subformulas maintains equivalence of the whole formula (where
“equivalence” here is understood in the sense of n. 22):

If α1 is equivalent to α2, and α1 is a subformula of β1, then β1 is equivalent to β2,
where β2 arises from β1 by replacing an occurrence of α1 with an occurrence of α2.

In the example in §12.5.1, we appealed to particular instances of this fact in
nn. 21 and 23.

12.5.4 Exercises

For each of the following wffs, find an equivalent wff in prenex normal form.

1. (∀xPx ∨ ∀xQx)

2. (∃xPx ∨ ∃xQx)

3. (∀xPx →∀xPx)

4. (∀xPx ↔∀xPx)

5. ¬∀x(Sx ∧ (∃yTy →∃zUxz))
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13
Identity

We said in §8.1.1 that our development of predicate logic would proceed as fol-
lows. We start with the simplest kind of basic proposition and distinguish its
parts—a name and a predicate; we then see how far we can go representing fur-
ther propositions using the connectives from propositional logic plus names
and predicates. We find that we need more resources—quantifiers and vari-
ables; we then see how far we can go representing further propositions using
connectives, names, predicates, quantifiers, and variables. We eventually find
that we need even more resources—many-place predicates; we then see how
far we can go representing still further propositions using connectives, names,
predicates of any number of places, quantifiers, and variables. We eventually
find that we need one more resource—the identity predicate. We are at this fi-
nal stage now. To represent the propositions expressed by some common kinds
of utterance, we need more resources than we have so far.

Consider the claims:

Alice is the tallest person.
Mark Twain is Samuel Langhorne Clemens.
Mark Twain isn’t Mary Ann Evans.
There are two dogs.
There are between ten and twenty dogs.

None of these can be translated adequately into GPL; that is, the propositions
they express cannot be represented adequately in GPL. We can translate “Alice
is taller than Bob” and “Alice is not taller than herself,” but not “Alice is
the tallest person.” For the claim in the latter case is that Alice is taller than
everyone else—everyone other than herself, everyone who is not Alice—and
we have no way of expressing this in GPL. Again, we can translate “Mark
Twain is a novelist,” but not “Mark Twain is Samuel Langhorne Clemens”—
the claim that Mark Twain and Samuel Langhorne Clemens are one and the
same individual—or “Mark Twain isn’t Mary Ann Evans”—the claim that



Mark Twain and Mary Ann Evans are not one and the same individual (i.e.,
they are two separate individuals). Likewise, we can translate “there aren’t any
dogs,” “there is at least one dog,” and “everything is a dog”—but not “there are
two dogs” or “there are between ten and twenty dogs.”

In this chapter, we introduce a single new two-place predicate into our
logical language: the identity predicate, written I 2. With its aid, we will be able
to express all the claims just considered.

Recall that in clause (1iii) of the syntax for GPL in §12.1.3, we said that we
use uppercased letters from anywhere in the alphabet as predicates, with one
exception: the letter “I” is not used for a two-place predicate; that is, I 2 is
not a predicate symbol of the language GPL (although I 1, I 3, I 4, and so on
are predicate symbols of GPL). What we are doing now is extending GPL to a
new language GPLI—the language of General Predicate Logic with Identity—
which has the new symbol I 2, in addition to all the symbols of GPL.

From the syntactic point of view, I 2 functions just like all other two-place
predicates. So the full syntax of GPLI is exactly like that of GPL minus the
qualification in clause (1iii), which says that I 2 is not a predicate. From the
semantic point of view, however, I 2 will not be treated just like any other two-
place predicate: it will be given special treatment. This is because—unlike all
other predicates in GPLI—the identity predicate is part of the logical vocabu-
lary. In particular, its extension will not be allowed to vary freely from model
to model. Rather, in every model it will pick out the identity relation (on the
domain of that model). So before we see how to use the new identity predicate
in translations from English into GPLI, it will be helpful to clarify the identity
relation.

13.1 The Identity Relation

In English, we often use the word “identical” to mean “exactly the same in all
respects,” “similar in every detail,” or “exactly alike.” For example, we speak
of identical twins, of a very good forgery being identical to the original, of
two persons wearing identical dresses, and so on. Figure 13.1 shows a way
of picturing this relation of “exact similarity.” In this picture, a and b are
exactly alike (they have the same size and shape—and as size and shape are
the only properties pictured, they are exactly the same in all respects), whereas
c and d are not exactly alike (e.g., they have different sizes). In logic, however,
we use the word “identical” in a different way. In our sense, to be identical
to something is to be the very same thing as that thing. You are identical to
yourself and to no one else, I am identical to myself and to no-one else, and
so on for every object: each object is identical to itself and to nothing else. So
two objects are never identical to one another (in the sense of “identity” used
in logic), because they are two different things, not one and the same thing.
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a

c

b

d

Figure 13.1. Exact similarity and
lack of exact similarity.

c d

a b

Figure 13.2. Identity and
lack of identity.

An object a is identical to an object b only if they are in fact the same object—
that is, there is just one object with two names, “a” and “b.” So in the sense
that we shall use “identity,” we should picture identity and nonidentity as in
Figure 13.2. In this picture a and b are identical (the names “a” and “b” pick
out the same object), whereas c and d are nonidentical (the names “c” and “d”
pick out different objects).

Some authors use the term “qualitative identity” to mean “exact similarity,”
and “numerical identity” to mean “being the very same thing.”1 However, in
this book the simple term “identity” will be used for the relation of “being the
very same thing” (and never for the relation of “being exactly alike”).

If we have a set of objects, we can picture a two-place relation among these
objects as a collection of arrows: we draw an arrow from one object to another
if the first object stands in the relation in question to the second object. For
example, suppose that Alice (a) is 5′8′′ in height, Bill (b) and Carol (c) are
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both 5′10′′ in height, and Diana (d) is 6′ in height. Then we can picture the
relation “x is taller than y” among these four persons as:

d

c

a

b

We can picture the relation “x is the same height as y” as:

d

c

a

b

And we can picture the relation “x is identical to y” as:

d

c

a

b

Whatever set of objects we are dealing with, the identity relation among the
members of this set will always look like this, when pictured as a collection of
arrows; that is, it will have an arrow from each object to itself and no other
arrows.

Another way to picture a two-place relation among some objects is as a set
of ordered pairs. We put the ordered pair 〈x , y〉 in the set representing the
relation just in case x bears the relation to y (i.e., just in case there is an arrow
from x to y, in the previous way of picturing relations). So the relation “x is
taller than y” among our four persons is the set of ordered pairs:

{〈b, a〉, 〈c, a〉, 〈d , a〉, 〈d , b〉, 〈d , c〉}

The relation “x is the same height as y” is:

{〈a , a〉, 〈b, b〉, 〈b, c〉, 〈c, b〉, 〈c, c〉, 〈d , d〉}

And the relation “x is identical to y” is

{〈a , a〉, 〈b, b〉, 〈c, c〉, 〈d , d〉}
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a

c

d

b d c a

Figure 13.3. Horizontal and vertical axes . . .

◦(b, a) ◦(d , a) ◦(c, a) ◦(a , a)

◦(b, c) ◦(d , c) ◦(c, c) ◦(a , c)

◦(b, d) ◦(d , d) ◦(c, d) ◦(a , d)

◦(b, b) ◦(d , b) ◦(c, b) ◦(a , b)

Figure 13.4. . . . and the plane they determine.

Whatever objects we are dealing with, the identity relation among these ob-
jects will always look like this, when represented as a set of ordered pairs. That
is, for each object, there will be a pair with that object in both first and second
place and there will be no other pairs.

A third way of picturing a two-place relation among some objects is as a
graph. Imagine lining up all objects in the set in some order (it does not matter
which order) along a horizontal axis and lining up copies of them in the same
order along a vertical axis. The first object (in the chosen ordering) should
appear on both axes (i.e., the axes meet at this point). Thus, given our set of
four persons—and choosing, arbitrarily, to order them b, d , c, a—we create
axes as in Figure 13.3. This gives us a plane—a set of points whose coordinates
are of the form (x , y), where x is some object on the horizontal axis, and y is
some object on the vertical axis (Figure 13.4). We can now picture a relation
this way: we fill in the point (x , y) just in case x bears the relation to y (i.e., iff
the ordered pair 〈x , y〉 is in the set representing the relation in the second way
of picturing relations, or iff there is an arrow from x to y in the first way of
picturing relations). Figure 13.5 shows the relation “x is taller than y” among
our four persons (when the axes are set up as in Figure 13.3); Figure 13.6 shows
the relation “x is the same height as y;” Figure 13.7 shows the relation “x is
identical to y.” The identity relation will always look like Figure 13.7 when
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Figure 13.5. The relation
“x is taller than y.”

Figure 13.6. The relation
“x is the same height as y.”

Figure 13.7. The relation
“x is identical to y.”

represented as a graph (whatever order the objects are put in along the axes,
as long as they are in the same order on both axes): a diagonal line starting at
the bottom left (where the horizontal and vertical axes meet) and going up to
the right.

13.2 The Identity Predicate

Our new predicate I 2 is meant to express the relation of identity in the sense
of being one and the same thing, explained in the previous section. With this
in mind, let’s return to some of the claims considered at the beginning of the
chapter.2
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1. Mark Twain is a novelist.

2. Mark Twain is Samuel Langhorne Clemens.

3. Mark Twain isn’t Mary Ann Evans.

Note the different functions of “is” here. In claim (1), we have what is called the
“is” of predication: it is simply part of the predicate “is a novelist.” In claim (2),
we have what is called the “is” of identity: the claim here is that Mark Twain
and Samuel Langhorne Clemens are identical—they are one and the same
person (i.e., he had two names). Likewise claim (3) uses the “is” of identity:
the claim here is that Mark Twain and Mary Ann Evans are not identical—they
are not one and the same person. So we translate as follows:

m: Mary Ann Evans 1. Nt

s: Samuel Langhorne Clemens 2. I 2ts

t : Mark Twain 3. ¬I 2tm

Nx: x is a novelist

Note that, as the new identity predicate I 2 is part of the logical vocabulary, we
do not put an entry for it in our glossary.

Next, consider:

4. Alice is taller than Bob.

5. Alice is not taller than herself.

6. Alice is the tallest person.

We translate as follows:

a: Alice 4. T ab

b: Bob 5. ¬T aa

Px: x is a person 6. ∀x((Px ∧ ¬I 2xa)→ T ax)

T xy: x is taller than y

Note that we need the new identity predicate to translate claim (6). The claim
is that Alice is taller than everyone else, that is, than every person who is not
identical to Alice.

Let’s consider some further examples:

7. Mark Twain is taller than some other novelist.3

∃x((Nx ∧ ¬I 2xt) ∧ T tx)

8. Samuel Langhorne Clemens is taller than someone other than Mary Ann Evans.
∃x((Px ∧ ¬I 2xm) ∧ T sx)

9. Mark Twain is taller than everyone except Samuel Langhorne Clemens.4

∀x((Px ∧ ¬I 2xs)→ T mx)
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10. Some novelist other than Mark Twain is taller than Mary Ann Evans.
∃x((Nx ∧ ¬I 2xt) ∧ T xm)

11. Mary Ann Evans is taller than every novelist apart from herself.
∀x((Nx ∧ ¬I 2xm)→ T mx)

We have seen that “is” sometimes translates as the identity predicate (the
“is” of identity) and sometimes as part of some other predicate (the “is” of
predication). Another word to watch carefully is “same.” If I say “Alice and
Mary’s dresses are exactly the same,” this is not an identity claim: I am not
saying they have just one dress between them; I am saying that their (two)
dresses are exactly alike in all respects. But if I add “they bought them at
the same shop,” this is an identity claim: I am saying that the shop at which
Alice bought her dress is one and the same shop as the one at which Mary
bought her dress; that is, there is one single shop at which they both bought
their dresses. Finally, such words as “identity” and “is identical to” need to be
treated carefully: as we have seen, typical uses of these words in English (e.g.,
“the forgery and the original were identical”) do not translate as the identity
predicate, because they are claims about exact similarity, not about identity in
our sense.

13.2.1 Abbreviations

We allow ourselves to write I 2t1t2 (where t1 and t2 are any terms, i.e., names or

variables) as t1= t2. That is, we may write I 2 as= and put this symbol between
its two argument places, rather than out the front. We then also abbreviate
¬t1= t2 as t1 �= t2. Thus, when fully unpacked, t1 �= t2 is an abbreviation of

¬I 2t1t2. Note that = and �= are not new symbols of the language GPLI: they
are not part of the official syntax at all. They are informal abbreviations that
we permit ourselves for reasons of convenience—on a par with omitting out-
ermost parentheses or superscripts on predicates.5

13.2.2 Exercises

Translate the following into GPLI.

1. Chris is larger than everything (except himself).

2. All dogs are beagles—except Chris, who is a chihuahua.

3. Ben is happy if he has any dog other than Chris by his side.

4. Chris is happy if he is by anyone’s side but Jonathan’s.

5. Jonathan is larger than any dog.

6. Everything that Mary wants is owned by someone else.
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7. Mary owns something that someone else wants.

8. Mary owns something she doesn’t want.

9. If Mary owns a beagle, then no one else does.

10. No one other than Mary owns anything that Mary wants.

11. Everyone prefers Seinfeld to Family Guy.

12. Seinfeld is Adam’s most preferred television show.

13. Family Guy is Adam’s least preferred television show.

14. Jonathon watches Family Guy, but he doesn’t watch any other television
shows.

15. Jonathon is the only person who watches Family Guy.

16. Diane is the tallest woman.

17. Edward is the only man who is taller than Diane.

18. Diane isn’t the only woman Edward is taller than.

19. No one whom Diane’s taller than is taller than Edward.

20. Edward and Diane aren’t the only people.

21. You’re the only one who knows Ben.

22. I know people other than Ben.

23. Everyone Ben knows (not including Chris and me) is happy.

24. The only happy person I know is Ben.

25. Ben is the tallest happy person I know.

26. Jindabyne is the coldest town between Sydney and Melbourne.

27. There’s a colder town than Canberra between Sydney and Melbourne.

28. For every town except Jindabyne, there is a colder town.

29. No town between Sydney and Melbourne is larger than Canberra or
colder than Jindabyne.

30. Jindabyne is my most preferred town between Sydney and Melbourne.

13.3 Semantics of Identity

Because I 2 is a two-place predicate, its value in a model should be a set of
ordered pairs. Then the semantics of GPL (§12.2) will carry over to GPLI:
once we have an extension for I 2, everything else proceeds as before. The
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story we tell about the truth values of closed wffs involving I 2—given a set
of ordered pairs as the extension of I 2—will be the same as the story about the
truth values of closed wffs involving any two-place predicate R2—given a set
of ordered pairs as the extension of R2. For example, ∀x∃yI 2xy will be true
in a model just in case for every object x in the domain, the extension of I 2

in that model contains an ordered pair with x in first position (this is just a
new instance of the familiar story about the truth of ∀x∃yR2xy, for any two-
place predicate R2); ∃x(Rx ∧ I 2xx) will be true in a model just in case the
extension of I 2 contains a pair 〈x , x〉 for some object x that is in the extension
of R (again, this is just a new instance of the familiar story about the truth of
∃x(Rx ∧ R2xx), for any two-place predicate R2); and so on.

However, because I 2 is part of the logical vocabulary, we shall not treat it
in exactly the same way as any other two-place predicate. In particular, its
extension should not be allowed to vary freely from model to model. There
should not be two models that differ only in the extension of I 2—whereas for
any other two-place predicate R2, there are two models that differ only in the
extensions they assign to R2.

So the extension of I 2 in a model should be a set of ordered pairs of objects
drawn from the domain of that model, and this extension should already be
fixed once the rest of the model (the domain, the referents of names, and the
extensions of all other predicates) is in place. Given that we said that I 2 is
supposed to pick out the identity relation, the way to proceed is clear. Once
a domain (a set of objects) is specified, the identity relation on that domain is
fixed, in the way discussed in §13.1: it is the collection of arrows such that each
object in the domain has an arrow pointing to itself (and there are no other
arrows); it is the set of ordered pairs containing one pair 〈x , x〉 for each object
x in the domain (and no other ordered pairs); it is the diagonal graph. Now
we can simply say that the extension of I 2 in a model is the identity relation on
the domain of that model (thinking of the identity relation as a set of ordered
pairs). Thus, in a model whose domain is {1, 2, 3}, the extension of I 2 is the
following set of ordered pairs:

{〈1, 1〉, 〈2, 2〉, 〈3, 3〉}

In a model whose domain is {1, 2, 3, 4, 5}, the extension of I 2 is the following
set of ordered pairs:

{〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉, 〈5, 5〉}

In a model whose domain is {Alice, Bob, Carol, Dave}, the extension of I 2 will
be the following set of ordered pairs:

{〈Alice, Alice〉, 〈Bob, Bob〉, 〈Carol, Carol〉, 〈Dave, Dave〉}
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and so on. In general, whatever the domain is, the extension of I 2 contains
exactly one ordered pair for each object in the domain: the pair containing
that object in both first and second place.

Note that the extension of the identity predicate is not exactly the same in all
models (e.g., in the first example above it contains three ordered pairs, in the
second example, five; in the second example it includes the ordered pair 〈4, 4〉,
in the first it does not). However, unlike all other predicates, its extension is
not allowed to vary freely from model to model: it always contains all and only
those pairs 〈x , y〉 such that x and y are members of the domain in question
and x is identical to y; or in other words, it always contains all and only those
pairs 〈x , x〉 such that x is a member of the domain in question.

Now that we know the extension of the identity predicate in any given
model, we can (as foreshadowed at the beginning of this section) work out
the truth value in that model of a given formula involving this predicate as in
§12.2. For formulas of the form a = b—that is, formulas involving the identity
predicate with both its argument places filled by names—there is another
way of thinking that can also be useful. Consider the formula a = b, that is,
I 2ab. Officially, for this claim to be true in a model, it must be that the pair
consisting of the referent of a followed by the referent of b is in the extension
of I 2. But we know that the only pairs in the extension of I 2 are those with the
same object in both first and second place. So for a = b to be true in a model,
it must be that the two names a and b have the same referent in that model.

§

To both gain practice in determining the truth values of claims involving
identity and gain a better understanding of the identity relation, let us see why
the following formulas must be true in every model—that is, why they are
logically true:

1. Reflexivity of identity:
∀xx = x

2. Symmetry of identity:
∀x∀y(x = y → y = x)

3. Transitivity of identity:
∀x∀y∀z((x = y ∧ y = z)→ x = z)

4. Leibniz’s Law (simple version):
∀x∀y((Px ∧ x = y)→ Py)

Formula (1) states that every object is identical to itself. For it to be true in a
model M, it must be the case that a = a is true in every model like M except
that it assigns a referent to a (where a is a name not assigned a referent in M).
But a = a is true in every model that assigns a referent to a: for it to be true,
it is required that the referent of a be the same as the referent of a, and this is
automatically the case in any model that assigns a referent to a. So ∀xx = x is
indeed true on any model M.
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Formula (2) states that for any first-picked object and any second-picked
object, if the first picked is identical to the second picked, then the second
picked is identical to the first picked. For it to be true in a model M, it must
be the case that a = b→ b = a is true in every model just like M except that
it assigns referents to a and b (where a and b are names not assigned referents
in M). But a = b→ b = a is true in every model that assigns referents to a

and b. If a and b are assigned different referents, then the antecedent of the
conditional is false, and so the conditional is true. If a and b are assigned the
same object as referent, then the antecedent of the conditional is true, but so
is the consequent, and so the conditional is true. So ∀x∀y(x = y → y = x) is
indeed true in any model M.

Formula (3) states that for any first-picked object, any second-picked object,
and any third-picked object, if the first picked is identical to the second picked
and the second picked identical to the third picked, then the first picked is
identical to the third. For this statement to be true in a model M, it must
be the case that (a = b ∧ b = c)→ a = c is true in every model just like M

except that it assigns referents to a, b, and c (where a, b, and c are names not
assigned referents on M). But (a = b ∧ b= c)→ a = c is true in every model
that assigns referents to a, b, and c. If a and b are assigned different referents,
then the left conjunct of the antecedent is false, so the antecedent is false, and
so the conditional is true. If b and c are assigned different referents, then the
right conjunct of the antecedent is false, so the antecedent is false, and so the
conditional is true. If a and b are assigned the same referent, and b and c are
assigned the same referent, then the antecedent is true; but in this case a and
c are assigned the same referent, and so the consequent is true too, and so the
conditional is true. So ∀x∀y∀z((x = y ∧ y = z)→ x = z) is indeed true in
any model M.

Formula (4) involves the syntactic variable P . When we say that it is true in
every model, what we mean is that every instance of it—obtained by replacing
P with any one-place predicate—is true in every model. Consider such an
instance:

∀x∀y((Px ∧ x = y)→ Py) (13.1)

Proposition (13.1) states that for any first-picked object and any second-
picked object, if the first picked has the property P , and the first picked is
identical to the second picked, then the second picked has the property P . For
(13.1) to be true in a model M, it must be the case that (Pa ∧ a = b)→ Pb

is true in every model just like M except that it assigns referents to a and b

(where a and b are names not assigned referents in M). But (Pa ∧ a = b)→
Pb is true in every model that assigns referents to a and b. If a and b are
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assigned different referents, then the right conjunct of the antecedent is false,
so the antecedent is false, and so the conditional is true. So suppose a and b

are assigned the same object as referent. If this referent is not in the extension
of P , then the left conjunct of the antecedent is false, so the antecedent is false,
and so the conditional is true. If this referent is in the extension of P , then the
antecedent is true, but the consequent is true too, and so the conditional is
true. So (13.1) is indeed true in any model M.

We can obtain a more general version of Leibniz’s Law by replacing Px with
any formula α(x) (no matter how complex) that has no free occurrence of
any variable other than x, and Py with the result of replacing some or all
free occurrences of x in α(x) by occurrences of y, where y is a variable that
is free for x in α(x).6 We’ll see the reasoning that shows that every instance of
this more general form of Leibniz’s Law is true in every model—packaged in
a slightly different form—in connection with the second tree rule for identity
(the rule of Substitution of Identicals) to be introduced in §13.4.

13.3.1 Exercises

1. Here is a model:

Domain: {Clark, Bruce, Peter}
Referents: a: Clark b: Clark e: Peter f : Peter
Extensions: F : {Bruce, Peter}

R: {〈Clark, Bruce〉, 〈Clark, Peter〉, 〈Bruce, Bruce〉, 〈Peter, Peter〉}

State whether each of the following propositions is true or false in this
model.

(i) ∀x(¬Fx → x = a)

(ii) ∀x(x = a →∀yRxy)

(iii) ∃x(x �= f ∧ Ff ∧ Rxf )

(iv) ∀x(x �= b→ Rax)

(v) ∃x(x �= a ∧ ∀y(Fy → Rxy))

(vi) ∃x(x �= e ∧ Rxx)

2. Here is a model:

Domain: {1, 2, 3, . . .}
Referents: a: 1 b: 1 c: 2 e: 4
Extensions: F : {1, 2, 3} G: {1, 3, 5, . . .}

R: {〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈4, 5〉, . . .}

State whether each of the following propositions is true or false in this
model.

(i) ∃x(Rax ∧ ¬Rbx)

(ii) ∀x((Fx ∧ ¬Gx)→ x = c)

(iii) ∀x(x �= a →∃yRyx)

(iv) ∀x(Gx →∃y∃z(Rxy ∧ Ryz ∧Gz))

310 Chapter 13 Identity



(v) ∀x((x = a ∨ x = b)→ x �= c)

(vi) ∃x(¬Fx ∧ x �= e ∧ ∃y(Fy ∧ Ryx))

3. For each of the following propositions, describe (a) a model in which it
is true and (b) a model in which it is false. If there is no model of one of
these types, explain why.

(i) ∀x(Fx → x = a)

(ii) ∃x(x = a ∧ x = b)

(iii) ∃x∀y(x �= y → Rxy)

(iv) ∀x∀y(Rxy → x = y)

(v) ∀x∀y(x �= y →∃zRxyz)

(vi) ∃x(x = a ∧ a �= x)

(vii) ∀x∀y((Fx ∧ Fy)→ x = y)

(viii) ∃x(Fx ∧ ∀y(Gy → x = y))

(ix) ∀x(Fx →∃y(x �= y ∧ Rxy))

(x) ∀x((Fx ∧ Rax)→ x �= a)

(xi) ∃x∃y∃z(x �= y ∧ y �= z ∧ x �= z ∧ Rxyz)

(xii) ∀x∀y∀z(Rxyz→ (x �= y ∧ y �= z ∧ x �= z))

(xiii) ∀x∀y(x �= y → (Fx ∨ Fy))

(xiv) ∃x(Fx ∧ ∀y((Fy ∧ x �= y)→ Rxy))

(xv) ∀x∀y∀z(Rxyz→ (Rxxx ∧ Ryyy ∧ Rzzz))

(xvi) ∀x(Rxx →∀y(x = y → Rxy))

(xvii) (Fa ∧ Fb) ∧ ∀x∀y((Fx ∧ Fy)→ x = y)

(xviii) ∃x∃y(Fx ∧ Fy ∧ ∀z[Fz→ (x = z ∨ y = z)])

13.4 Trees for General Predicate Logic with Identity

The identity predicate is part of the logical vocabulary, and therefore our
system of tree proofs must be extended to accommodate the introduction of
this new predicate into the language. We extend the system with two new tree
rules. The first rule gives us a new way of closing a path:

...

¬I 2aa

×
That is, we close any path that contains a formula of the form ¬I 2aa: the
negation of a formula consisting of the identity predicate with both argument
places filled by the same name. In looking for situations in which this rule may
be applied, don’t forget that¬I 2aa may also be written as¬a = a or as a �= a.

The rationale behind the rule is as follows. We close a path when there
cannot be a model in which all the formulas on that path are true. (Remember,
a closed path is one corresponding to no model—not one corresponding to a
model in which the formulas at the top of the path are false.) Any formula
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of the form a = a is true in every model, so there is no model in which its
negation a �= a is true.

To state the second rule, we need some new terminology. Recall (§9.3) that
we use α(x) to stand for an arbitrary wff with no free occurrence of any
variable other than x, and α(a/x) to stand for the wff resulting from α(x)

by replacing all free occurrences of x in α(x) with the name a. We now also
introduce the following terminology. We use α(a) to stand for an arbitrary wff
in which the name a occurs (one or more times). We then use α(b//a) to stand
for any wff resulting from α(a) by replacing some (i.e., one or more—maybe
all, but maybe not) occurrences of a in α(a) with the name b. So, for example,
if α(a) is Fa, then α(b//a) is Fb and α(c//a) is Fc. If α(b) is (Rab ∧ Rbc),
then we may replace the placeholder α(d//b) with any of the wffs (Rad ∧
Rbc), (Rab ∧ Rdc), or (Rad ∧ Rdc). If α(c) is ((Rab → Rbc) ∨ a = c),
then we may replace the placeholder α(a//c) with any of the wffs ((Rab →
Rba) ∨ a = c), ((Rab → Rbc) ∨ a = a), or ((Rab → Rba) ∨ a = a), and
so on.

We can now state our second new tree rule—the rule of Substitution of
Identicals (SI):

α(a)

I 2ab (or I 2ba)

α(b//a)

Note the following points. (i) The two inputs to the rule—α(a) and either
I 2ab or I 2ba—may come in either order on the path on which the rule is
being applied. (ii) When applying this rule, we do not check off any formulas.
(iii) We do not apply this rule using a formula α(a) as input if α(a) has been
checked off. (iv) In looking for situations in which this rule may be applied,
don’t forget that I 2ab may also be written as a = b and that I 2ba may also be
written as b = a.

Suppose we are applying this rule at the bottom of a path p (which has on it
α(a), and I 2ab or I 2ba). Applying the rule extends p to p′ (which differs from
p by also having α(b//a) on it). The desired property that our rule should have
is (recall §10.1):

If there is a model in which every proposition on p is true, then there is a model in
which every proposition on p′ is true.

Let’s check that our new rule SI has this property. Path p contains I 2ab or
I 2ba. A model in which either of these is true is one in which a and b have
the same referent. Path p also contains α(a). A model in which this is true is
one in which the referent of a has certain features.7 Now a model in which
α(b//a) is true is one in which either the referent of a or the referent of b

has those very same features.8 But the referent of a just is the referent of b, so
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1. ¬∀x∀y∀z((x = y ∧ y �= z)→ x �= z) �
2. ∃x¬∀y∀z((x = y ∧ y �= z)→ x �= z) � a {1}
3. ¬∀y∀z((a = y ∧ y �= z)→ a �= z) � {2}
4. ∃y¬∀z((a = y ∧ y �= z)→ a �= z) � b {3}
5. ¬∀z((a = b ∧ b �= z)→ a �= z) � {4}
6. ∃z¬((a = b ∧ b �= z)→ a �= z) � c {5}
7. ¬((a = b ∧ b �= c)→ a �= c) � {6}
8. (a = b ∧ b �= c) � {7}
9. ¬a �= c � {7}

10. a = b {8}
11. b �= c {8}
12. a = c {9}
13. b = c {10, 12 (SI)}9

× {11, 13}

Figure 13.8. A GPLI tree.

our characterization of a model in which α(b//a) is true (one in which either
the referent of a or the referent of b has certain features) is equivalent to our
characterization of a model in which α(a) is true (one in which the referent of
a has certain features). So our rule does indeed have the desired property.

As an example, let’s test whether the following proposition is a logical truth:

∀x∀y∀z((x = y ∧ y �= z)→ x �= z)

We write down the negation of this formula, and then finish the tree (Figure
13.8). All paths close, so the proposition is indeed a logical truth. As a second
example, let’s test whether the following proposition is a logical truth:

∀x∀y∀z(((Rxy ∧ Ryz) ∧ x = z)→ Ryy)

We write the negation of this formula at the top of a tree and then finish the
tree (Figure 13.9). A path remains open, so the proposition is not a logical
truth.

The tree rules are summarized in Figure 13.10 (the rules for the connectives
and the quantifiers are the same as before).

13.4.1 Saturated Paths

Recall (§10.1.6) that we stop applying tree rules and draw a conclusion from
our tree—for example, “valid: all paths close” or “invalid: some path remains
open”—when the tree is finished, and that a tree is finished when each of its
paths is either closed (with a cross) or saturated. The basic idea of a saturated
path is one on which every rule that can be applied has been applied. But
as we saw in §10.1.6, we need to be a bit more specific than this in the case
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1. ¬∀x∀y∀z(((Rxy ∧ Ryz) ∧ x = z)→ Ryy) �
2. ∃x¬∀y∀z(((Rxy ∧ Ryz) ∧ x = z)→ Ryy) � a {1}
3. ¬∀y∀z(((Ray ∧ Ryz) ∧ a = z)→ Ryy) � {2}
4. ∃y¬∀z(((Ray ∧ Ryz) ∧ a = z)→ Ryy) � b {3}
5. ¬∀z(((Rab ∧ Rbz) ∧ a = z)→ Rbb) � {4}
6. ∃z¬(((Rab ∧ Rbz) ∧ a = z)→ Rbb) � c {5}
7. ¬(((Rab ∧ Rbc) ∧ a = c)→ Rbb) � {6}
8. ((Rab ∧ Rbc) ∧ a = c) � {7}
9. ¬Rbb {7}

10. (Rab ∧ Rbc) � {8}
11. a = c {8}
12. Rab {10}
13. Rbc {10}
14. Rcb {11, 12 (SI)}
15. Rba {11, 13 (SI)}

↑
Figure 13.9. A second GPLI tree.

of formulas whose main operator is a universal quantifier. We said that a
condition on a path being saturated is that every formula on it whose main
operator is a universal quantifier:

1. has had the universal quantifier rule applied to it at least once, and

2. has had the rule applied to it once for each name that appears on the path.

We also need to add a further qualification with regards to SI. For suppose we
simply said that this rule must be applied wherever it can be applied, before a
path can be deemed saturated. Then we would encounter some problems. For
example, suppose that a = b and Fa appear on our path. Then we can apply
SI to get Fb. But now we can apply SI to a = b and Fb to obtain another
occurrence of Fa—and then we can apply SI to a = b and this new formula
Fa to get yet another occurrence of Fb, and so on forever, extending our
path with repetitions of formulas already on it. For another example, suppose
that our path contains a = b and b = a. Then, whatever applications of SI we
can make using a = b, we can also make duplicate applications using b = a.
But this just makes our path longer, to no purpose: again, we are extending
our path with repetitions of formulas already on it. So we add the following
condition on saturation:

a path is not saturated unless every application of SI that could be made on that
path and that would result in the addition to the path of a formula that does not
already appear on it has been made.
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Disjunction

(α ∨ β) �

α β

¬(α ∨ β) �
¬α

¬β

Conjunction

(α ∧ β) �
α

β

¬(α ∧ β) �

¬α ¬β

Conditional

(α → β) �

¬α β

¬(α → β) �
α

¬β

Biconditional

(α ↔ β) �

α

β

¬α

¬β

¬(α ↔ β) �

α

¬β

¬α

β

Negation

¬¬α �
α

Existential quantifier

∃xα(x) �a (new a)

α(a/x)

¬∃xα(x) �
∀x¬α(x)

Universal quantifier

∀xα(x) \a (any a)

α(a/x)

¬∀xα(x) �
∃x¬α(x)

Identity

Closure
rule:

a �= a

×
Substitution
of Identicals

(SI):

a(a)

a = b (or b = a)

α(b//a)

Figure 13.10. Tree rules for GPLI.
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Consider an example:

1. a = b

2. Saba

3. Sbba {1, 2 (SI)}

This tree is not finished: it can be extended as follows:

4. Sabb {1, 2 (SI)}
5. Sbbb {1, 2 (SI)}

because if Saba is represented as α(a), then all of Sbba, Sabb, and Sbbb

may be represented as α(b//a)—and hence as legitimate outputs of the rule
SI, applied to a = b and Saba. The tree is still not finished: it can be extended
as follows:

6. Saaa {1, 2 (SI)}

because Saba can be represented as α(b) (as well as α(a)), and then Saaa

can be represented as α(a//b)—and hence as a legitimate output of the rule
SI, applied to a = b and Saba. The tree is still not finished: the new formula
Saaa can be represented as α(a), and hence all the following formulas can be
represented as α(b//a), and hence as legitimate outputs of the rule SI, applied
to a = b and Saaa:

Sbaa , Saba , Saab, Sbba , Sbab, Sabb, Sbbb

Now some of these already appear in our tree, so we do not need to write them
in. Writing in the new ones yields:

7. Sbaa {1, 6 (SI)}
8. Saab {1, 6 (SI)}
9. Sbab {1, 6 (SI)}

Now the tree is finished. We have only applied SI to rows 1 and 2, and rows 1
and 6, but all of rows 3–5 and 7–9 can be represented as α(a), α(b), or both,
so there are many more applications of SI that could be made. However, none
of them would result in the addition of a new formula to the path.

13.4.2 Reading off Models

Given a saturated open path, we can read off a model in which the propositions
at the top of the tree are true. The process involves three stages:

1. Construct a provisional domain and assignment of referents to names.

2. Trim the domain and assignment of referents to names to obtain a final
domain and assignment of referents to names.

3. Assign extensions to predicates.

316 Chapter 13 Identity



Steps 1 and 3 are exactly as in the case of trees for predicate logic without
identity; only step 2 is new.

Step 1. Here we follow the procedure described in §10.2.1. We put one object
into the domain for each name appearing in our path and then assign the first
of these objects as the referent of the first name, the second as the referent of
the second name, and so on. To take a concrete example, look at the open path
in the tree in Figure 13.9. We find three names on this path: a, b, and c. So our
provisional domain and referents are:

Domain: {1, 2, 3}
Referents: a: 1 b: 2 c: 3

Step 2. Now we trim our provisional domain and referents, in light of any
identity statements a = b appearing on our path. Remember that the idea is
to construct a model in which every formula on our open path is true. The
proposition a = b is true only if the referents of a and b are the same, so we
need to make them so, and then we strike from the domain any object no
longer used as the referent of any name. To return to our concrete example,
our open path contains the identity statement a = c. So the referents of a

and c—which, in our provisional assignment, are different objects (1 and 3,
respectively)—must be made the same. What we do is leave the referent of a

(the alphabetically first name in our identity statement) as it is and change
the referent of c to be the same object (in this case 1). And now we strike out
object 3 from our domain, as it is no longer the referent of any name.10 So our
final domain and referents are:

Domain: {1, 2}
Referents: a: 1 b: 2 c: 1

Step 3. Now we assign extensions to the predicates appearing on our path,
following the procedure described in §12.3: for every standalone atomic wff
Fna1 . . . an appearing on our path, we put into the extension of the n-place
predicate Fn the ordered n-tuple consisting of the referents of the names a1

through an (in that order), and we put no other n-tuples into the extension of
Fn. In our present example, Rab, Rbc, Rcb, and Rba appear (as standalone
atomic wffs—i.e., not simply as subformulas in some more complex wff). So
we need to put into the extension of R the following pairs:

. the referent of a followed by the referent of b (to make Rab true in the
model we are constructing),

. the referent of b followed by the referent of c (to make Rbc true),

. the referent of c followed by the referent of b (to make Rcb true), and

. the referent of b followed by the referent of a (to make Rba true).
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So our extension is:

R: {〈1, 2〉, 〈2, 1〉, 〈1, 2〉, 〈2, 1〉}

As this is a set of ordered pairs, there is no point writing the same pair twice
when we describe the set.11 So we may write our extension more compactly as:

R: {〈1, 2〉, 〈2, 1〉}

Note that what we are doing in moving from writing the extension of R as
{〈1, 2〉, 〈2, 1〉, 〈1, 2〉, 〈2, 1〉} to writing it as {〈1, 2〉, 〈2, 1〉} is crucially different
from what we did in step 2. Sets {〈1, 2〉, 〈2, 1〉, 〈1, 2〉, 〈2, 1〉} and {〈1, 2〉, 〈2, 1〉}
are (two ways of writing) the same set (a set containing the two ordered pairs
〈1, 2〉 and 〈2, 1〉), so when we go from describing the extension of R in the
first way to describing it in the second way, we are not changing our model:
we are simply describing the same model in a more compact fashion. This
is convenient but not essential: there is nothing incorrect about describing
the extension of R as {〈1, 2〉, 〈2, 1〉, 〈1, 2〉, 〈2, 1〉}. However, it is incorrect
to assign a and c different referents: in a model in which a refers to 1 and c

refers to 3, a = c is false. That is why we must trim our domain and referent
assignments in light of any identity statements on our path. Doing so is not a
mere convenience: not doing so makes our model incorrect. What we achieve
in step 2 is not a shorter description of the same model we had in step 1: it is (in
general) a different model. Crucially, it is a model that—unlike the provisional
model obtained in step 1—makes the identity statements on our path true.

Let’s work through another example: testing whether the following set of
propositions is satisfiable:

{∀x(Rxb ∧ x = a), ∃xRxb, a = b}
We write down the three propositions and then finish the tree (Figure 13.11).
The path is now saturated: the universal rule has been applied to line 1 for
every name appearing in the path, and anything we could obtain by applying
SI to lines on the path is already on the path. The path is open, so the set of
propositions we started with is satisfiable.

Let’s read off a model from this open path (a model in which all three
propositions in the original set are true). Three names—a, b, and c—appear
on the path, so we start with the following provisional domain and assignment
of referents:

Domain: {1, 2, 3}
Referents: a: 1 b: 2 c: 3

We now trim this in light of any identity statements appearing on our path.
The proposition a = b appears on line 3, so we set the referent of b to be the
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1. ∀x(Rxb ∧ x = a) \ a b c

2. ∃xRxb � c

3. a = b

4. Rcb {2}
5. (Rab ∧ a = a) � {1, a}
6. Rab {5}
7. a = a {5}
8. (Rbb ∧ b = a) � {1, b}
9. Rbb {8}

10. b = a {8}
11. (Rcb ∧ c = a) � {1, c}
12. Rcb {11}
13. c = a {11}
14. Rca {3, 4 (SI)}
15. Raa {3, 6 (SI)}
16. Rba {3, 9 (SI)}
17. Rcc {13, 14 (SI)}
18. Rac {13, 15 (SI)}
19. Rbc {13, 16 (SI)}
20. a = c {7, 13 (SI)}
21. b = b {3, 10 (SI)}
22. b = c {10, 13 (SI)}
23. c = b {21, 22 (SI)}
24. c = c {22, 23 (SI)}

↑
Figure 13.11. A third GPLI tree

same as the referent of a—object 1—and remove object 2 (the former referent
of b) from the domain:

Domain: {1, 3}
Referents: a: 1 b: 1 c: 3

There is more trimming to be done. The proposition c= a appears on line 13,
so we set the referent of c to be the same as the referent of a—object 1—and
remove object 3 (the former referent of c) from the domain:

Domain: {1}
Referents: a: 1 b: 1 c: 1

No more trimming is possible. We now need to specify the extension of R.
Rcb appears on line 4, so we put the ordered pair consisting of the referent of
c (object 1) followed by the referent of b (object 1) into the extension of R:

R: {〈1, 1〉}
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Given that 1 is the only object in the domain, R now contains every possible
ordered pair of objects from the domain. (There is only one such pair when
the domain contains just one object.) We are therefore finished: nothing more
can be added to the extension of R. (There are plenty more atomic formulas
involving R in the tree, but they all lead to the same ordered pair. For example,
Rab appears on line 6, so we need to have the ordered pair consisting of
the referent of a followed by the referent of b in the extension of R—but we
already do: it is just the pair 〈1, 1〉 again.)

13.4.3 Exercises

1. Using trees, determine whether the following sets of propositions are
satisfiable. For any set that is satisfiable, read off from your tree a model
in which all propositions in the set are true.

(i) {Rab→¬Rba , Rab, a = b}
(ii) {Rab, ¬Rbc, a = b}

(iii) {∀x(Fx → x = a), Fa , a �= b}
(iv) {∀x(Fx →Gx), ∃xFx , ¬Ga , a = b}
(v) {∀x(x �= a → Rax), ∀x¬Rxb, a �= b}

(vi) {∃x∀y(Fy → x = y), Fa , Fb}
(vii) {∀x∀y(Rxy → x = y), Rab, a �= b}

(viii) {∀x((Fx ∧ Rxa)→ x �= a), Fb ∧ Rba , a = b}
(ix) {∃x∃y∃zRxyz, ∀x(x = x → x = a)}
(x) {∀x¬Rxx , ∀x∀yx = y , ∃xRax}

2. Using trees, determine whether the following arguments are valid. For
any argument that is not valid, read off from your tree a model in which
the premises are true and the conclusion false.

(i) ∃xFx

∃yGy

∀x∀yx = y

∴ ∃x(Fx ∧Gx)

(ii) ∃x∃y(Fx ∧Gy ∧ ∀z(z= x ∨ z= y))

∴ ∃x(Fx ∧Gx)

(iii) Rab

∴ ∀x∀y∀z(((Rxy ∧ Ryz) ∧ x = z)→ Ryy)

(iv) ∀x∀y(Rxy → Ryx)

∃x(Rax ∧ x �= b)

∴ ∃x(Rxa ∧ x �= b)

(v) ∀x∀yx = y

∴ ∀x∀y(Rxy → Ryx)

320 Chapter 13 Identity



(vi) ∀x∀y∀z((Rxy ∧ Rxz)→ y = z)

Rab ∧ Rcd

b �= d

∴ a �= c

(vii) ∃x∃y(Rxy ∧ x = y)

∴ ¬∀xRxx

(viii) ∀x(x = a ∨ x = b)

∴ ∀xx = a

(ix) ∀xRax

¬∀x∀yx = y

∴ ∃x∃y∃z(Rxy ∧ Rxz ∧ y �= z)

(x) ∀xx = a

∴ ∀xx = b

3. Translate the following propositions into GPLI and then test whether they
are logical truths using trees. For any proposition that is not a logical
truth, read off from your tree a model in which it is false.

(i) If Stan is the only firefighter, then no one else is a firefighter.
(ii) If Julius Caesar is left-handed but Lewis Carroll isn’t, then Lewis

Carroll isn’t Julius Caesar.
(iii) If the sun is warming all and only things other than itself, then the

sun is warming Apollo.
(iv) If Kevin Bacon isn’t Kevin Bacon, then he’s Michael J. Fox.
(v) If no one who isn’t Twain is a witty author, and Clemens is an author,

then Clemens is not witty.
(vi) No spy trusts any other spy.

(vii) Either everything is identical to this ant, or nothing is.
(viii) If Doug is afraid of everything but Santa Claus, then either he’s afraid

of himself, or else he’s Santa Claus.
(ix) If Mark respects Samuel and only Samuel, then Mark doesn’t respect

himself.
(x) Either I am a physical body, or I am identical to something that’s not

a physical body.

13.5 Numerical Quantifiers

At the beginning of this chapter we gave some examples of claims that cannot
be translated adequately into GPL: to translate these claims, we need the iden-
tity predicate. We return now to the final two examples: “there are two dogs”
and “there are between ten and twenty dogs.” Using the glossary:

Dx: x is a dog
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we translate “there aren’t any dogs” as ¬∃xDx, “there is at least one dog” as
∃xDx, and “everything is a dog” as ∀xDx. Now what about “there are two
dogs” (i.e., exactly two: no more, no less)? Well, let’s start with a weaker claim:
“there are at least two dogs.” Note that we cannot translate this as:

∃xDx ∧ ∃yDy (13.2)

Formula (13.2) says (under our glossary) “you can pick an object that is a dog,
and you can pick an object that is a dog.” This would be true if there were
only one dog: you could pick it both times. Nor can we translate “there are at
least two dogs” as ∃x∃y(Dx ∧Dy): this formula is equivalent to (13.2) (recall
§12.5). What we need to say is “you can pick an object that is a dog, and you
can pick another object—a different object from the first one—that is a dog.”
Translating this statement requires the identity predicate. Our translation is:

∃x∃y(Dx ∧Dy ∧ x �= y)

Similarly, “there are at least three dogs” translates as:

∃x∃y∃z(Dx ∧Dy ∧Dz ∧ x �= y ∧ x �= z ∧ y �= z) (13.3)

Formula (13.3) says (under our glossary) “you can pick an object that is a dog,
and you can pick an object different from the first one that is a dog, and you
can pick an object different from both the first one and the second one that is a
dog.” Note that there are three nonidentity statements here (x �= y, x �= z, and
y �= z)—that is, one for every possible (nonordered) pairing of the variables
appearing in our initial three quantifiers.12 The following would not do:

∃x∃y∃z(Dx ∧Dy ∧Dz ∧ x �= y ∧ y �= z) (13.4)

Formula (13.4) says (under our glossary) “you can pick an object that is a dog,
and you can pick an object different from the first one that is a dog, and you
can pick an object different from the second one that is a dog.” This statement
would be true if there were only two dogs, say, Rosie and Maisie: you could pick
Rosie first and third, and Maisie second. The translation strategy generalizes.
“There are at least four dogs” translates as:

∃x∃y∃z∃w(Dx ∧Dy ∧Dz ∧Dw ∧
x �= y ∧ x �= z ∧ x �= w ∧ y �= z ∧ y �= w ∧ z �= w)

and so on. Note that the translation of “there are at least n dogs” has n exis-
tential quantifiers in front, each containing a different variable x; it then has
one wff Dx for each of these variables. And then, for each nonordered pairing
of these variables, it has one nonidentity statement involving this pair of vari-
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ables (it does not matter which variable in the pair appears on the left side of
the nonidentity sign and which appears on the right).13

§

So much for saying that there are at least n dogs, that is, n or more. How do
we say that there are at most n dogs, that is, n or less? Well, “there is at most
one dog” translates as:

∀x∀y((Dx ∧Dy)→ x = y) (13.5)

Formula (13.5) says (under our glossary) that if you make two choices and get
a dog each time, you must have chosen the same thing both times. “There are
at most two dogs” translates as:

∀x∀y∀z((Dx ∧Dy ∧Dz)→ (x = y ∨ x = z ∨ y = z)) (13.6)

Formula (13.6) says (under our glossary) that if you make three choices and
get a dog each time, you must have chosen the same thing on at least two of
your picks (the first and second, the first and third, or the second and third).
Similarly, “there are at most three dogs” translates as:

∀x∀y∀z∀w((Dx ∧Dy ∧Dz ∧Dw)→
(x = y ∨ x = z ∨ x = w ∨ y = z ∨ y = w ∨ z= w))

(13.7)

Formula (13.7) says (under our glossary) that if you make four choices and get
a dog each time, you must have chosen the same thing on at least two of your
picks (the first and second, the first and third, the first and fourth, the second
and third, the second and fourth, or the third and fourth). The translation
strategy extends to “there are at most four dogs,” “there are at most five dogs,”
and so on.

Note that the translation of “there are at most n dogs” has n+ 1 universal
quantifiers in front, each containing a different variable x. It then has one wff
Dx for each of these variables and then, for each nonordered pairing of these
variables, it has one identity statement involving this pair of variables (it does
not matter which variable in the pair appears on the left side of the identity
sign and which appears on the right).14

§

Now that we can say “there are at least n dogs” and “there are at most n dogs,”
we can say that there are exactly n dogs by taking the conjunction of these two
claims. (The first conjunct rules out the possibility that there are less than n

dogs; the second conjunct rules out the possibility that there are more
than n dogs; the only possibility left is that there are exactly n dogs.) So “there
is (exactly) one dog” translates as:

∃xDx ∧ ∀x∀y((Dx ∧Dy)→ x = y)
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“There are (exactly) two dogs” translates as:

∃x∃y(Dx ∧Dy ∧ x �= y) ∧
∀x∀y∀z((Dx ∧Dy ∧Dz)→ (x = y ∨ x = z ∨ y = z))

“There are (exactly) three dogs” translates as:

∃x∃y∃z(Dx ∧Dy ∧Dz ∧ x �= y ∧ x �= z ∧ y �= z) ∧
∀x∀y∀z∀w((Dx ∧Dy ∧Dz ∧Dw)→

(x = y ∨ x = z ∨ x = w ∨ y = z ∨ y = w ∨ z= w))

and so on. Furthermore, we can say “there are between ten and twenty dogs”
(inclusive) by conjoining “there are at least ten dogs” and “there are at most
twenty dogs” (and if we mean it noninclusively—that is, that that there are
strictly more than ten and strictly less than twenty—then we can conjoin
“there are at least eleven dogs” and “there are at most nineteen dogs”).

§

Instead of translating “there are exactly n dogs” as literally the conjunction of
“there are at least n dogs” and “there are at most n dogs,” we can also translate
such statements in a different, but ultimately equivalent, way. (This alternative
translation strategy has the advantage that it yields shorter formulas in GPLI.)
“There is (exactly) one dog” is rendered as:

∃x∀y(Dy ↔ y = x) (13.8)

Note how (13.8) says two things (under our glossary). It says that there is a
dog (i.e., at least one): there is an x such that for every y, if y = x, then y is a
dog (this claim is the right-to-left direction of the embedded biconditional),
or in other words x is a dog. It also says that every dog is identical to this x: for
every y, if y is a dog then y = x (this claim is the left-to-right direction of the
embedded biconditional). Putting these two statements together, the wff says
that there is exactly one dog.

“There are (exactly) two dogs” is rendered as:

∃x∃y(x �= y ∧ ∀z(Dz↔ (z= x ∨ z= y))) (13.9)

Formula (13.9) likewise says two things. It says that there are (at least) two
dogs: there is an x and a different y (this is the first conjunct, x �= y) such
that for every z, if z = x or z = y, then z is a dog (this claim is the right-to-
left direction of the embedded biconditional), or in other words, x and y are
dogs. It also says that every dog is identical to this x or this y: for every z, if
z is a dog then z = x or z = y (the left-to-right direction of the embedded
biconditional). Putting these two things together, the wff says that there are
exactly two dogs.
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In similar fashion, “there are (exactly) three dogs” is rendered as:

∃x∃y∃z(x �= y ∧ x �= z ∧ y �= z ∧ ∀w(Dw ↔ (w = x ∨ w = y ∨ w = z)))

“There are (exactly) four dogs” is rendered as:

∃x∃y∃z∃w(x �= y ∧ x �= z ∧ x �= w ∧ y �= z ∧ y �= w ∧ z �= w ∧
∀v(Dv ↔ (v = x ∨ v = y ∨ v = z ∨ v = w)))

and so on. Note that the translation of “there are exactly n dogs” has n existen-
tial quantifiers in front, each containing a different variable x. It then has one
nonidentity statement for each nonordered pairing of these variables;15 then
one universal quantifier involving a new variable y; then the single wff Dy;
and then a series of n identity statements, each of which has y on one side and
one of the n variables x on the other side.

Sometimes it is useful to have an abbreviation for (13.8)—“there is exactly
one dog”—and formulas like it. The symbol ∃! is often used for this purpose.
Thus, ∃!xDx abbreviates ∃x∀y(Dy ↔ y = x) (or any formula equivalent to
it in which y is uniformly replaced by some other variable, apart from x),
∃!yCy abbreviates ∃y∀z(Cz↔ z = y) (or any formula equivalent to this in
which z is uniformly replaced by some other variable, apart from y), and so
on. More generally, where α(x) is a formula that has no free occurrence of any
variable other than x, y is a variable that is free for x in α(x),16 and α(y/x)

is the result of replacing all free occurrences of x in α(x) by occurrences of y,
∃!xα(x) abbreviates ∃x∀y(α(y/x)↔ y = x). We read “∃x . . .” as “there is an
x . . . ” (i.e., “there is at least one x . . . ”), whereas we read “∃!x . . .” as “there
is exactly one x . . . .” Note that neither ∃! nor ! are new symbols of the logical
language: ∃! is simply an abbreviation—something we may write for the sake
of convenience (like= and �=). (We shall not in fact be using this abbreviation
in this book. In particular, do not use it in your answers to the following set of
exercises.)

13.5.1 Exercises

1. Translate the following propositions into GPLI and then test whether they
are logical truths using trees. For any proposition that is not a logical
truth, read off from your tree a model in which it is false.

(i) There are at most two gremlins.
(ii) There are at least three Beatles.

(iii) There is exactly one thing that is identical to Kevin Bacon.
(iv) If there are at least two oceans, then there is an ocean.
(v) Take any two distinct dogs, the first of which is larger than the sec-

ond; then the second is not larger than the first.
(vi) If there is exactly one apple, then there is at least one apple.
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(vii) It’s not the case both that there are at least two apples and that there
is at most one apple.

(viii) Either there are no snakes, or there are at least two snakes.

2. Translate the following arguments into GPLI and then test for validity
using trees. For any argument that is not valid, read off from your tree a
model in which the premises are true and the conclusion false.

(i) There are at least three things in the room. It follows that there are at
least two things in the room.

(ii) There are at least two bears in Canada, so there are at most two bears
in Canada.

(iii) There is at most one barber. So either every barber cuts his own hair,
or no barber cuts any barber’s hair.

(iv) There are at most two things. If you pick a first thing and then pick
a second thing (which may or may not be a different object from the
first thing), then one of them is heavier than the other. So everything
is either the heaviest or the lightest thing.

(v) Some football players are athletes. Some golfers are athletes. Thus,
there are at least two athletes.

(vi) Everything is a part of itself. So everything has at least two parts.
(vii) There are at least two things that are identical to the Eiffel tower.

Therefore, there is no Eiffel tower.
(viii) I’m afraid of Jemima and the chief of police. So either Jemima is the

chief of police, or I’m afraid of at least two things.

13.6 Definite Descriptions

Consider the following claims:

1. Someone is jogging.

2. Bill Clinton is jogging.

3. The forty-second president of the United States of America is jogging.

As we have already discussed (§8.3), claims (1) and (2) have very different
translations into the logical language: claim (2) is translated using a singular
term, whereas claim (1) is translated using a quantifier:

b: Bill Clinton 1. ∃x(Px ∧ Jx)

Jx: x is jogging 2. Jb

Px: x is a person

What about claim (3)? The English sentence used to make claim (3) features a
definite description: “the forty-second president of the United States of Amer-
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ica.” Definite descriptions are expressions of the form “the so-and-so.” For
example,

. the prime minister of New Zealand,

. the inventor of Post-it notes,

. the third mayor of Newcastle,

. the tallest person in this room, and

. the first man on the moon.

It is a commonplace that when we use a definite description “the X,” we
assume that there is exactly one X. If we thought that Buzz Aldrin and Neil
Armstrong stepped onto the moon simultaneously, we would not talk about
“the first man on the moon;” if we thought that New Zealand’s system of gov-
ernment involved a president and no prime minister, we would not talk about
“the prime minister of New Zealand;” and so on. Let’s call this assumption the
uniqueness assumption. It plays a role in all theories of definite descriptions,
although it gets cashed out in different ways in different theories.

It is a point of controversy whether claims made using sentences involving
definite descriptions should be classed with claim (1) (quantifications of some
sort) or with claim (2) (involving a singular term in the logical language, cor-
responding to the definite description in English). We shall explore versions of
both approaches.

13.6.1 Russellian Descriptions in GPLI

Bertrand Russell argued that claims made using sentences involving definite
descriptions should be translated into the logical language as quantified for-
mulas of a certain sort: formulas in which there is no singular term corre-
sponding to the definite description in the original English.17 Russell’s idea was
that the uniqueness assumption is something that we actually state when we
use a definite description. This statement shows up when the claim is trans-
lated into the logical language. Consider, for example, the claim “the inventor
of Post-it notes is rich.” We translate as follows (using Russell’s approach):

Ix: x invented Post-it notes ∃x(∀y(Iy ↔ y = x) ∧ Rx)

Rx: x is rich

Note how the first part of the translation (the part preceding the conjunc-
tion symbol) says that there is exactly one inventor of Post-it notes. (Recall
formula (13.8): our second way of translating “there is exactly one dog” is
∃x∀y(Dy ↔ y = x). The first part of the present translation is just like this,
except that it has the predicate I in place of the predicate D.) The second part
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then says that this thing (i.e., x) is rich.18 Thus, the translation of “the inventor
of Post-it notes is rich” is the same as the translation of “there is exactly one
inventor of Post-it notes, and that individual is rich.” Note that the translation
is a quantified formula, and it does not include any symbol corresponding
directly to the English expression “the inventor of Post-it notes.” Using Rus-
sell’s approach, we do not have glossary entries for definite descriptions. In the
present example, we do not have a glossary entry with “the inventor of Post-
it notes” on the right-hand side. Rather, we have an entry for the predicate
“invented Post-it notes,” and then we translate the whole claim “the inventor
of Post-it notes is rich” using this predicate and quantifiers (and the predicate
“rich”). Note also that the predicate Ix (“x invented Post-it notes”) involves
no assumption of uniqueness: there would be nothing amiss about using this
predicate in the propositions Ia, Ib, Ic, and so on, where a, b, and c denote
distinct individuals. Rather, using Russell’s approach, the uniqueness assump-
tion is embodied in the first part of the translation: the part saying that there
is exactly one inventor of Post-it notes (i.e., exactly one x such that Ix).

Let’s consider some further examples of claims made using sentences involv-
ing definite descriptions and see how they translate into GPLI using Russell’s
approach.

(i) “The queen of England is rich.” Let’s start by translating “there is exactly
one queen of England” (i.e., the relevant uniqueness assumption):

e: England ∃x∀y(Qye↔ y = x)

Qxy: x is queen of y

Now we just have to add “and this individual (i.e., the one and only individual
who is queen of England, or x in the above wff) is rich”:

∃x(∀y(Qye↔ y = x) ∧ Rx)

Note that “∧ Rx” is added within the scope of the initial quantifier ∃x—that
is, we do not add it on at the end, like so: ∃x∀y(Qye ↔ y = x) ∧ Rx. The
latter is not a closed wff, because the final occurrence of x is free.

(ii) “The queen of England is Elizabeth Windsor.” We start with our trans-
lation of “there is exactly one queen of England,” and then we conjoin “and
this individual is Elizabeth Windsor” (using the additional glossary entry l:
Elizabeth Windsor):

∃x(∀y(Qye↔ y = x) ∧ x = l)

(iii) “The queen of England is the inventor of Post-it notes.” Here we have
two definite descriptions: “the queen of England” and “the inventor of Post-
it notes.” We start by translating the two uniqueness assumptions: “there is
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exactly one queen of England” and “there is exactly one inventor of Post-it
notes”:

∃x∀y(Qye↔ y = x) and ∃z∀y(Iy ↔ y = z)

Note that we use a different variable (z, not x) for the second claim, as we
need to put these two claims together, and we do not want the variables to
clash. Now we just need to add that the former individual (x: the one and only
individual who is queen of England) and the latter individual (z: the one and
only individual who invented Post-it notes) are identical:

∃x(∀y(Qye↔ y = x) ∧ ∃z(∀y(Iy ↔ y = z) ∧ x = z)) (13.10)

Note that the second uniqueness claim is placed inside the scope of the exis-
tential quantifier in the first uniqueness claim. This is because the final identity
claim x = z needs to be in the scope of both existential quantifiers (otherwise
one or both of x or z in x = z would be free, and we would then not have a
closed wff). Note that the following is equivalent to (13.10)—it results from
that formula by moving the quantifier ∃z to the front (recall §12.5):

∃x∃z(∀y(Qye↔ y = x) ∧ ∀y(Iy ↔ y = z) ∧ x = z) (13.11)

If you find (13.11) easier to parse, you can just as well use it—rather than
(13.10)—as the translation of “the queen of England is the inventor of Post-it
notes.”

(iv) “The father of Elizabeth Windsor is rich.” We start by translating the
uniqueness assumption “Elizabeth Windsor has exactly one father” (using the
additional glossary entry Fxy: x is father of y):

∃x∀y(Fyl ↔ y = x)

Now we just have to add: “and this individual (i.e., the one and only individual
who is father of Elizabeth Windsor, or x in the above wff) is rich”:

∃x(∀y(Fyl ↔ y = x) ∧ Rx)

(v) “The father of the queen of England is rich.” Here the definite
description—“the father of the queen of England”—rides piggy-back, as it
were, on the definite description “the queen of England.” It involves two
uniqueness assumptions: that there is exactly one queen of England and that
this individual has exactly one father. We first translate these assumptions:

∃x(∀y(Qye↔ y = x) ∧ ∃z∀y(Fyx ↔ y = z))

Note that the second uniqueness condition involves x—the subject of the first
uniqueness condition; thus, it must fall within the scope of the existential
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quantifier in the first uniqueness condition. Now we just have to add that the
individual z—the subject of the second uniqueness condition—is rich:

∃x(∀y(Qye↔ y = x) ∧ ∃z(∀y(Fyx ↔ y = z) ∧ Rz))

Again, this formula is equivalent to the following, which is an equally good
translation of “the father of the queen of England is rich”:

∃x∃z(∀y(Qye↔ y = x) ∧ ∀y(Fyx ↔ y = z) ∧ Rz)

Using Russell’s approach, then, a claim such as “the inventor of Post-it notes
is rich” turns out to involve two parts: a part claiming that there is a unique
inventor of Post-it notes and a part claiming that this individual is rich.19

Therefore, if we deny such a claim, we could be interpreted in two ways: as
denying the uniqueness assumption (as in “not so: there was no inventor of
Post-it notes—they were developed by a team”) or as accepting the uniqueness
assumption but denying the further claim that this individual is rich (as in
“not so: he made no money at all from the invention”). The first kind of denial
of ∃x(∀y(Iy ↔ y = x) ∧ Rx) (our original translation of “the inventor of
Post-it notes is rich”) comes out as:

¬∃x(∀y(Iy ↔ y = x) ∧ Rx)

Here the negation is placed in front of the entire formula. The second kind of
denial comes out as:

∃x(∀y(Iy ↔ y = x) ∧ ¬Rx)

Here the uniqueness assumption is still asserted; the negation applies only to
the subformula Rx.

13.6.1.1 EXERCISES

Translate the following into GPLI, using Russell’s approach to definite descrip-
tions.

1. Joseph Conrad is the author of The Shadow Line.

2. The author of The Shadow Line authored Lord Jim.

3. The author of The Shadow Line is the author of Lord Jim.

4. Vance reads everything authored by the author of Lord Jim.

5. Joseph Conrad authored The Inheritors, but it’s not the case that he is the
author of The Inheritors.

6. The author of The Shadow Line is taller than any author of Lord Jim.

7. There is something taller than the author of The Shadow Line.
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8. The author of The Shadow Line is taller than Joseph Conrad, who is taller
than the author of Lord Jim.

9. The father of the author of The Shadow Line is taller than Joseph Conrad.

10. The father of the author of The Shadow Line is taller than the author of
The Shadow Line.

13.6.2 Descriptions as Singular Terms in an Extension of GPLI

An alternative approach to claims made using sentences involving definite de-
scriptions is to translate using a wff that features a singular term corresponding
to the definite description. In GPLI, our only singular terms are the simple ex-
pressions a , b, c, . . . . If we translate using such a singular term, the claim “the
inventor of Post-it notes is rich” comes out as:

a: the inventor of Post-it notes Ra

Rx: x is rich

The prevailing view is that this sort of translation will not do, because certain
arguments that intuitively should be valid turn out to be invalid when trans-
lated this way. For example,

Art Fry invented Post-it notes.
No one else invented Post-it notes.
Therefore, the inventor of Post-it notes is Art Fry.

translates as follows (adding the entry f : Art Fry, to our previous glossary):

If

∀x(Ix → x = f )

∴ a = f

The latter argument is invalid (as can easily be seen by producing a tree).
Likewise, the argument:

Art Fry is the inventor of Post-it notes.
Therefore, Art Fry, and no one else, invented Post-it notes.

translates as:

f = a

∴ ∀x(Ix ↔ x = f )

which is invalid (as can easily be seen by constructing a tree).
I am not convinced by this objection; we return to the idea of translating

definite descriptions as names in §13.6.3 and see that it is quite viable (when
done in the right way). In the meantime, however, let’s look at what we might
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do if we want to translate definite descriptions as singular terms but are con-
vinced that they cannot be translated as simple names (i.e., as a, b, c, and
so on). We need to introduce a new kind of singular term into the logical
language. We call the language GPLI enriched with this new kind of singular
term the language of General Predicate Logic with Identity and Descriptions
(GPLID). In addition to all the symbols of GPLI, GPLID contains the sym-
bol ι. This is an upside-down Greek letter iota (ι); we refer to it as the definite
description operator.20 It is part of the logical vocabulary.

The syntax of GPLID is interesting, because it involves a new two-way inter-
action between the categories of term and wff . A term is something that, from
the syntactic point of view, behaves like a name or a variable: putting n (oc-
currences of) terms after an n-place predicate yields a wff. In GPLI, the only
terms are names and variables—simple symbols. In GPLID, however, we can
use the new definite description operator ιto form complex terms. For exam-
ple, suppose we have a wff with one free variable, say, Fx. We can form the
term ιxFx from this wff by adding the definite description operator followed
by an occurrence of the variable x in front of the wff. We read this term as
“the F ” (or “the one and only x that is F ,” or “the unique x such that Fx,”
etc.). Now we can make a wff by putting this new term anywhere that a name
or variable can go. For example, we can put x after G to make the wff Gx—
but instead of the variable x, we could also put our new term ιxFx after G

to make the wff G ιxFx: “the F is G.” Or again, we can put the variables x

and y after the two-place predicate R to make the wff Rxy—but instead of
the variable x, we could also put our new term ιxFx (and then the variable y)
after R to make the wff R ιxFxy: “the F bears the relation R to y.” And now
we can create a new term from this wff by placing ιy before it. The result is

ιyR ιxFxy: “the thing to which the F bears the relation R” (or “the thing y

such that the F bears the relation R to y”). And so on. Thus, we cannot—as
we have up until now—first define the terms of the language and then define
the wffs on this basis, because we can create new terms from wffs (by apply-
ing the definite description operator to them) and then make new wffs from
these terms, and so on. Thus, we have to define the terms and wffs of GPLID
simultaneously:

1. A name (a , b, c, . . .) is a term.

2. A variable (x , y , z, . . .) is a term.

3. Where P n is any n-place predicate and t1 . . . tn are any terms, P nt1 . . . tn
is a wff.

4. Where α and β are wffs and x is a variable, the following are wffs:

¬α (α ∧ β) (α ∨ β) (α → β) (α ↔ β) ∀xα ∃xα
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5. Where α is a wff and x is a variable, ιxα is a term.

6. Nothing else is a term or wff.

Clause (5) is new: it specifies how we can make terms from wffs using the
definite description operator (and a variable). Clauses (1), (2), and (4) are
exactly as in §12.1.3. (But note the absence here of clause (2iii) in §12.1.3,
which said that only names and variables are terms. In GPLID, names and
variables are terms—according to clauses (1) and (2)—but they are not the
only kinds of terms.) Clause (3) is phrased in the same way as clause (3i) in
§12.1.3, but because—thanks to clause (5)—more things now count as terms,
clause (3) now generates new wffs. Note the loop generated by clauses (3) and
(5): clause (3) generates wffs from terms; clause (5) generates terms from wffs.

Here is a glossary:

b: Martin Van Buren Px: x is a person
s: the United States of America Rxy: x respects y

Cx: x is a country Sxy: x is president of y

Fxy: x is father of y Zxy: x is a citizen of y

The following are some examples of terms and wffs of GPLID generated by the
foregoing recursive definition—together with their readings in English, given
the above glossary:

1. ιxSxs

term: the president of the United States of America

2. ιx(Cx ∧ Sbx)

term: the country of which Martin Van Buren is president

3. b = ιxSxs

wff: Martin Van Buren is the president of the United States of America.

4. ιxFxb

term: Martin Van Buren’s father

5. ιyFy ιxSxs

term: the father of the president of the United States of America

6. ιySy ιx(Cx ∧ Sbx)= ιxSxs

wff: The president of the country of which Martin Van Buren is president is the
president of the United States of America.

7. ∀x∀y((Cy ∧ Zxy)→ Rx ιzSzy)

wff: Every citizen of every country respects the president of that country.

8. ιx(Px ∧ ∀y(Py → Ryx))

term: the person everyone respects
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9. ιx(Cx ∧ ∀y(Py → Ryx))

term: the country everyone respects

10. Z ιx(Px ∧ ∀y(Py → Ryx)) ιx(Cx ∧ ∀y(Py → Ryx))

wff: The person everyone respects is a citizen of the country everyone respects.

§

The definite description operator ι—like the quantifiers ∀ and ∃—binds vari-
ables. We call ιthe “definite description operator.” Let us refer to ιx, ιy, and
so on—that is, the definite description operator plus a variable—as a defini-
tion description prefix. We say that x is the variable in the definition description
prefix ιx, that y is the variable in the definition description prefix ιy, and so on.
Conversely, we say that the definition description prefix ιx contains the vari-
able x, that the definition description prefix ιy contains the variable y, and so
on. If a wff has an occurrence of a definition description prefix ιx in it, then
it must—in accordance with clause (5) above—have been placed in front of
some wff α; we call this formula α the scope of that occurrence of that defini-
tion description prefix; we call the entire expression ιxα a definite description.
Now suppose a variable occurs somewhere in a term or wff. That occurrence
of the variable is bound in that term or wff if (i) it is in a quantifier or a defi-
nition description prefix or (ii) it is in the scope of a quantifier or a definition
description prefix that contains the same variable. An occurrence of a variable
that is not bound in a term or wff is said to be free in that term or wff. We can
now extend our “open” and “closed” terminology from wffs to terms: a term
that contains a free occurrence of a variable is an open term; a term that con-
tains no free occurrence of any variable is a closed term. Note that if α contains
no free occurrence of any variable other than x—in which case we can write
α as α(x)—then the definite description ιxα(x) is a closed term (aka a closed
definite description). In contrast, if α contains a free occurrence of a variable
other than x, then the definite description ιxα is an open term (aka an open
definite description). Here are some examples:

. The term ιxPx is closed (a closed definite description), because both
occurrences of x are bound.

. The term ιxRxy is open (an open definite description), because even
though both occurrences of x are bound, the occurrence of y is free.

. The term a is closed (a name).

. The term x is open (a variable).

. The wff R ιxRxyz is open, because even though both occurrences of x are
bound, the occurrences of y and z are free.

. The wff ∀y∃zR ιxRxyz is closed.
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§

So much for the syntax of GPLID. Because ιis part of the logical vocabulary,
we need to extend the semantics to deal with it.21 Recall the guiding idea:
a model is a free assignment of values to nonlogical symbols; each model
should determine a truth value for each closed wff. Now consider a closed wff
formed using a definite description, for example, Z ιxSxss (“the president of
the United States of America is a citizen of the United States of America,” given
our earlier glossary). To assign a truth value to this wff, we need referents for

ιxSxs (“the president of the United States of America”) and for s. (The wff is
then true if the ordered pair comprising the referent of ιxSxs followed by the
referent of s is in the extension of Z; it is false if this ordered pair is not in the
extension of Z.) So closed complex terms, such as ιxSxs, require referents.
In this respect they are like names. However, they are unlike names in that
their referents should not be given freely (i.e., in an unconstrained way): they
should be determined by the values assigned to the nonlogical symbols (in this
case S and s) together with a general rule governing the behavior of the logical
symbol ιin all models. The obvious candidate for the rule governing ιis: the
value of ιxα(x) in a model should be the unique object in the domain that
satisfies the formula α.22 So the referent of ιxFx is the one and only object in
the extension of F ; the referent of ιxSxs is the one and only object that bears
the relation S to s;23 and so on.

We now face a problem, however. The values of nonlogical symbols—F ,
S, and s in the examples just given—are unconstrained. For any combination
of values for these symbols, there is a model that assigns those values to the
symbols. Thus, there are models in which there is no unique thing in the
extension of F (F could have the empty set as its extension, or it could have
more than one object in its extension) or no unique object that bears the
relation S to s (S might not have any ordered pair in its extension with the
referent of s in second position, or it might have more than one such ordered
pair). In general, there are models in which there is no unique object in the
domain that satisfies the formula α (in some models there is no such object;
in others there is more than one). In such models, the rule given above does
not determine a value for ιxα(x).

At this point, two routes lie open. First, we can extend the rule so that it
determines a referent for ιxα(x) in all models. This was Frege’s approach.24

The basic idea is to supplement the above rule with a specification of a referent
for ιxα(x) in those cases where the domain does not contain a unique object
satisfying α. There are several options. For example, one could specify some
other object in the domain (bearing in mind that there is no single object
guaranteed to be in every domain); or one could say that every model has,
in addition to the domain, an extra entity, which is to be the referent of
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every closed term ιxα(x) where the domain does not contain a unique object
satisfying α. Second, one could allow that ιxα(x) simply lacks a referent in
some models. Again, there are several options here. For example, one could
say that every expression of which ιxα(x) is a subexpression lacks a value when

ιxα(x) lacks a value (in just the way that every formula of which the name a

or the predicate P is a part lacks a value in models of fragments that do not
include a and P ). Alternatively, one could alter the rest of the semantics to
allow (for example) some closed wffs to have truth values even though they
contain terms that do not have referents.

Both routes take us outside standard classical logic (some farther outside
than others) and hence are beyond the scope of this book. So at this point
we leave this strand of the discussion of definite descriptions and turn to the
prospects for translating definite descriptions as singular terms in (unaug-
mented) GPLI.

13.6.2.1 EXERCISES

Translate the claims in Exercises 13.6.1.1 into GPLID, using the definite de-
scription operator to translate definite descriptions.

13.6.3 Descriptions as Singular Terms in GPLI

I propose the following way of treating definite descriptions as singular terms
in GPLI:25 we translate definite descriptions as names, and we formulate the
uniqueness assumptions associated with them as postulates.26 For example,
consider the first example in §13.6.1: “the inventor of Post-it notes is rich.”
We translate as follows:

a: the inventor of Post-it notes translation: Ra

Ix: x invented Post-it notes uniqueness postulate:
Rx: x is rich ∀x(Ix ↔ x = a)

Note that the predicate I (“invented Post-it notes”) does not appear in the
translation Ra: it appears only in the postulate ∀x(Ix ↔ x = a) (i.e., “a—and
no one else—invented Post-it notes”).

Compare this translation to the Russellian translation ∃x(∀y(Iy ↔ y =
x)∧Rx). As noted in §13.6.1, there are two parts to the Russellian translation:
the uniqueness assumption—“there is one and only one x such that x invented
Post-it notes” (i.e., ∃x(∀y(Iy ↔ y = x))—and the claim that this individual
x is rich (i.e., ∧Rx)). Under the present method of handling descriptions, the
translation proper of “the inventor of Post-it notes is rich” is just the second
of these two, with the name a in place of the variable x. The first part of
the Russellian translation turns up as the associated postulate, again, with the
name a in place of the variable x.27
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Recall that the translation into the logical language of a claim made in
English is supposed to represent the proposition expressed in that claim. In
the Russellian view, the uniqueness claim is part of the proposition expressed
when one utters “the inventor of Post-it notes is rich.” In the present approach,
the proposition expressed is simply Ra, and the uniqueness claim is a separate
assumption. The idea is that when we make a claim using a definite description
“the X,” the proposition expressed has a name (a simple singular term) in it
corresponding to this definite description (in the above example, the name
a). However, in this view, when we use a description “the X” to pick out an
object, we are also assuming that this object is the one and only thing that
is X. This assumption is embodied in the postulate (in the above example,
∀x(Ix ↔ x = a)). This postulate is not (contra the Russellian view) part of
what is claimed to be true when one makes a claim using a definite description:
it is simply something that one assumes to be true.

Now let’s return to the arguments mentioned in §13.6.2, which were sup-
posed to pose a problem for the view that definite descriptions can be repre-
sented in GPLI as names:

1. Art Fry invented Post-it notes.
No one else invented Post-it notes.
Therefore, the inventor of Post-it notes is Art Fry.

2. Art Fry is the inventor of Post-it notes.
Therefore, Art Fry, and no one else, invented Post-it notes.

From the present point of view, they are enthymemes (arguments in which
a premise is not explicitly stated—recall §12.4). Translated simply as they
stand, they come out as invalid (adding the entry f : Art Fry, to our previous
glossary):

1. If

∀x(Ix → x = f )

∴ a = f

2. f = a

∴ ∀x(Ix ↔ x = f )

However, if we add the uniqueness assumption associated with the description
“the inventor of Post-it notes” (which we are translating as the name a)—that
is, ∀x(Ix ↔ x = a)—as an extra premise in each argument, then the resulting
arguments are valid:

1. If

∀x(Ix → x = f )

∀x(Ix ↔ x = a)

∴ a = f
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2. f = a

∀x(Ix ↔ x = a)

∴ ∀x(Ix ↔ x = f )

Let’s consider the remaining examples in §13.6.1 of claims made using ex-
pressions involving definite descriptions and see how they translate into GPLI
using the present approach. In each case, if you compare the new translation
to the Russellian translation in §13.6.1, you will see that the new trans-
lation corresponds to the second part of the Russellian translation, whereas
the first part of the Russellian translation (representing the uniqueness claim)
shows up as the associated postulate. We use the following glossary:

e: England q: the queen of England
f : the father of Elizabeth Windsor Fxy: x is father of y

g: the father of the queen of England Qxy: x is queen of y

i: the inventor of Post-it notes Rx: x is rich
l: Elizabeth Windsor

(i) The queen of England is rich:

translation: Rq

uniqueness postulate: ∀x(Qxe↔ x = q)

(ii) The queen of England is Elizabeth Windsor:

translation: q = l

uniqueness postulate: ∀x(Qxe↔ x = q)

The uniqueness postulate is the same in (ii) as in (i), because the same defi-
nite description—“the queen of England”—features in both claims. The idea
is that each definite description “the X” is represented as a name a, and that
when we use such a name, we furthermore assume (although we do not actu-
ally state this in every case) that a is the one and only one thing that is X.

(iii) The queen of England is the inventor of Post-it notes:

translation: q = i

uniqueness postulate for q (the queen of England):
∀x(Qxe↔ x = q)

uniqueness postulate for i (the inventor of Post-it notes):
∀x(Ix ↔ x = i)

(iv) The father of Elizabeth Windsor is rich:

translation: Rf

uniqueness postulate for f (the father of Elizabeth Windsor):
∀x(Fxl ↔ x = f )
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(v) The father of the queen of England is rich:

translation: Rg

uniqueness postulate for g (the father of the queen of England):
∀x(Fxq ↔ x = g)

uniqueness postulate for q (the queen of England):
∀x(Qxe↔ x = q)

There is only one definite description here: “the father of the queen
of England” (g). However, its uniqueness postulate involves another definite
description—“the queen of England” (q)—which in turn requires its own
uniqueness postulate.

Recall that in Russell’s approach, a claim such as “the inventor of Post-it
notes is rich” involves two parts: a part claiming that there is a unique inventor
of Post-it notes and a part claiming that this individual is rich. Therefore,
if we deny such a claim, we could be interpreted in two ways: as denying
the uniqueness assumption (as in “not so: there was no inventor of Post-
it notes—they were developed by a team”); or as accepting the uniqueness
assumption but denying the further claim that this individual is rich (as in
“not so: he made no money at all from the invention”). Something similar
happens in the present proposal. Recall that “the inventor of Post-it notes is
rich” is translated as Ra, with the associated uniqueness postulate ∀x(Ix ↔
x = a). The second kind of denial of “the inventor of Post-it notes is rich” is
represented as¬Ra, together with the uniqueness postulate ∀x(Ix ↔ x = a).
(The denial is represented as ¬Ra, which involves a. Because a is being used,
the associated uniqueness claim is assumed to be true, hence the presence of
the postulate.) The first kind of denial of “the inventor of Post-it notes is rich”
is the denial of the uniqueness assumption. However, we do not represent
it simply as ¬∀x(Ix ↔ x = a)—that is, as the negation of the uniqueness
postulate. The uniqueness postulate features the name a—the translation of
the definite description “the inventor of Post-it notes”—and the idea is that
any time one makes a claim using a definite description, one assumes the truth
of the associated uniqueness claim (in this case ∀x(Ix ↔ x = a)). So instead,
we represent the first kind of denial as ¬∃x∀y(Iy ↔ y = x): it is not the case
that there is one and only one inventor of Post-it notes.28

§

Using the present approach to definite descriptions, we have glossary entries
such as:

f : the father of Elizabeth Windsor
i: the inventor of Post-it notes
q: the queen of England
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We said in §11.1 that a glossary entry assigns an intension to a nonlogical
symbol: a function from wws to values of the appropriate kind for that symbol.
In the present case, the symbols are names, so the relevant kind of value is
an object. Glossary entries of the sort shown above, then, assign functions
from wws to objects to the singular terms that feature in them. What are these
intensions like? Take a specific example, say,

q: the queen of England

Consider a ww: a way the world could have been. To find the object to which
the intension of “the queen of England” (which the above glossary entry as-
signs as the intension of q) sends this ww—that is, to find the object that “the
queen of England” picks out relative to this ww—we find the thing that, had
the world been this way, would have been England (note that England might
have been bigger, or smaller, or located somewhere else entirely, had things
been different), and we find the pairs of things that, had the world been this
way, would have been such that the first was a queen of the second (note that
things apart from countries might have had queens, and things apart from
persons might have been queens, had things been different). The thing picked
out by “the queen of England,” relative to this ww, is then the unique thing that
is the queen of England (according to this way the world could have been). In
general, the referent of “the X” relative to any ww is the unique thing that
would have been X had the world been that way.

If these claims about intensions are right—and they seem undeniably so—
then the intensions of (most) definite descriptions are partial functions. For
there are certainly ways the world could have been such that England did not
exist at all, such that England did exist but was not a monarchy, such that En-
gland had two queens, and so on. Relative to each of these wws, “the queen
of England” fails to pick out an individual. This is reminiscent of the sit-
uation in GPLID surrounding terms of the form ιxα relative to models in
which there is no unique object in the domain satisfying the wff α. But this
time the situation is very different: now we do not need to change our logi-
cal apparatus in any way at all. The name q—our translation of “the queen of
England”—is assigned a referent in every model (of the relevant fragment of
GPLI), because it is part of the definition of a model (of this fragment) that
it must assign a value to every nonlogical symbol in the fragment. All that
is going on in the present case is that the intensions assigned to nonlogical
symbols by our glossary, together with certain wws, do not determine mod-
els at all. Recall Figure 11.3. That picture suggests that every ww, together
with the intensions assigned to a fragment by some glossary, determines a
model of the fragment. We now see that this is not the case when the glos-
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Models

ww-models
(of the fragment
under glossary G)

Fragment of GPLI
under glossary G

wws

Figure 13.12. Models and ww-models with partial intensions.

sary in question assigns to a name in the logical language the intension of a
typical definite description. In such cases, the relevant picture is Figure 13.12,
which shows a ww and a set of intensions for the fragment such that ap-
plying those intensions to that ww does not lead to any model at all. This
situation does not require any modification of our logical apparatus (the def-
initions of models of GPLI, and of such logical notions as validity in terms
of these models), because logic does not discriminate ww-models from the
other models: as discussed in §11.4, such logical notions as validity and tau-
tology are defined with respect to all models; whether some of these models
can be generated by applying intensions to wws—and if so, which ones—is
irrelevant.
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There is, however, one notion that is potentially affected by the fact that
the intensions of definite descriptions are (in general) partial: the notion of
truth in the actual model (which figures in the definition of soundness of
an argument—recall §11.1). Suppose that we have a definite description—
for example, “the (present) king of France” (Russell’s [1905, p. 479] famous
example)—where one of the wws sent to no model at all (by the intension of
this definite description) is the actual ww: the one corresponding to the way
the world really is. In this case, we cannot say whether a claim made using such
a definite description—for example, “the (present) king of France is bald”—is
true or false: what we mean by “true” here is true in the actual model (the one
determined by the intensions of the expressions involved and the actual ww),
and here there is no actual model. For every model of (the relevant fragment
of) GPLI, we can state whether the translation of “the (present) king of France
is bald” is true or false in this model (and we can do the same for the associated
uniqueness postulate). However, as none of these is the actual model—because
the actual ww does not determine any model at all—we cannot say that this
claim is simply true, nor that it is simply false.

It cannot be stressed too much that this problem is not a logical one: it
does not require any adjustments to our system of model theory. The models
are all in order as they are. It is, rather, a practical problem: our practice of
assessing claims based on whether they are true (in the actual model) or false
(in the actual model) breaks down when no model is the actual model. One
response to this problem would be to adjust our practice of assessing claims
based on their truth and falsity so that it can be applied even when there is
no actual model. But if we think carefully about the matter, it is clear that
this approach is wrong. The solution to this practical problem is simply not to
use definite descriptions (e.g., “the present king of France”) whose intensions
send the actual ww to no referent. That is, we should try to make sure that
the uniqueness assumption associated with a given description is actually true
before using that description to make claims.29 Sometimes, of course, we will
make a mistake. The point is that when we do make a mistake (and find out
about it) we should stop using the definite description in question30—rather
than adjusting our practice of assessing claims based on whether they are true
(in the actual model) or false (in the actual model) so that it can be applied
even when there is no actual model.

Note the crucial difference here from the situation in GPLID surrounding
terms of the form ιxα relative to models in which there is no unique object
in the domain satisfying the wff α. In that context, it would miss the point
completely to say “do not use such terms.” Whether we use them or not,
the logical problem remains. However, in the present case there is no logical
problem, only a practical one—and this problem does go away if we refrain
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from using definite descriptions whose associated uniqueness assumptions are
actually false.

§

In sum, we have examined three ways of handling definite descriptions: in
GPLI using Russell’s approach (which does not view definite descriptions as
singular terms); in GPLID using the new definite description operator (which
does view descriptions as singular terms but requires new logical apparatus:
syntactic, semantic, and proof-theoretic); and in GPLI, treating descriptions
as simple names, with the uniqueness assumption as an associated postulate
(rather than part of the proposition expressed, as in Russell’s approach). The
great advantage shared by Russell’s approach and the approach developed
in the present section is that they require no new logical machinery beyond
that already available in GPLI. Thus, for these two approaches, once we have
translated claims using definite descriptions into GPLI, we can then proceed
to use trees to test for satisfiability, validity, and so on, just as we did in
§13.4. Just remember that, when treating definite descriptions in the way
developed in the present section, the question we are most interested in may
not be “is this argument—as literally stated—valid?” (or “is this proposition—
as literally stated—a logical truth?,” and so on) but “is this argument, along
with the uniqueness assumptions associated with any definite descriptions
that feature in it added as extra premises, valid?” (or “is this proposition true in
every model in which the uniqueness assumptions associated with any definite
descriptions that feature in it are all true?,” and so on).

13.6.3.1 EXERCISES

Translate the claims in Exercises 13.6.1.1 into GPLI, treating definite descrip-
tions as names and stating appropriate uniqueness assumptions as postulates.

13.7 Function Symbols

Consider the following claims:

1. 5+ 7= 12

2. 4× (5+ 7)= 48

3. 32 = 9

4. x × y is even, unless x and y are both odd

5. x × (y + z)= (x × y)+ (x × z)

They all involve function symbols. A function symbol is like a predicate in
that it has a fixed number of argument places, each of which may be filled
by a term; but unlike a predicate, when those argument places are filled with
terms, the result is a term—whereas when we fill the argument places of a
predicate with terms, the result is a wff.31 For example, consider the expression
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“5+ 7.” It is formed from the names (numerals) “5” and “7,” together with
the two-place function symbol +. When we fill the two argument places of
this function symbol with two names—as in “5+ 7,” or “2+ 2,” and so on—
the result is a name: of the number 12 (i.e., the number also known by the
name “12”), or the number 4, and so on. Note that complex names such as
“5+ 7”—names formed from function symbols and other names (in this case
the simple names “5” and “7”)—can themselves be plugged into the argument
positions of function symbols, as in example (2) above: here the complex name
“4× (5+ 7)”—which denotes 48 (i.e., the number also known by the simple
name “48”)—is formed from the two-place function symbol × with its first
argument place filled by the simple name “4” and its second argument place
filled by the complex name “5+ 7.” Function symbols can have their argument
places filled with variables, as well as names, as in example (4). They can also
have their argument places filled with complex terms formed from function
symbols, variables and/or names, as in example (5).

Our logical language GPLI does not contain function symbols: the only
terms it contains are the simple names a , b, c, . . . and the simple variables
x , y , z, . . . . This is not to say that such claims as (1)–(5) cannot be repre-
sented in GPLI: in fact they can, by a roundabout route, as we shall see in
§13.7.3. But first, let’s look at what happens if we expand GPLI by adding func-
tion symbols to the language, giving us the language of General Predicate Logic
with Identity and Function Symbols (GPLIF).

13.7.1 Syntax of GPLIF

Recall that the syntax of GPLI is just like that of GPL (§12.1.3), except that
I 2 is a predicate symbol of GPLI (it is the identity predicate, also represented
as =). The syntax of GPLIF is like that of GPLI except for the following two
additions.

First, we add function symbols to the stock of basic symbols of the language:

f 1, g1, h1, . . . , f 2, g2, h2, . . .

We use lowercased letters from anywhere in the alphabet, with a superscript
indicating the number of argument places. (There will be no confusion with
the use of lowercased letters as names and variables, because the latter do
not have superscripts.) If we ever need more than twenty-six different n-place
function symbols for any n, we use subscripts: f 1

2 , f 1
3 , . . . , f 2

2 , f 2
3 , . . . . The

function symbols are nonlogical symbols.32

Second, we add a clause to the definition of terms:

Where f n is any n-place function symbol and t1 . . . tn are any terms, f nt1 . . . tn is
a term.

So, for example, the following are all terms:
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f 1a g2aa g2xa g2xy f 1g2aa g2f 1ax g2g2aag2xy

We can make these expressions easier to read in two ways: by adding paren-
theses around the arguments of a function and commas between them, and
by omitting the superscripts on functions. (It is the added parentheses that
now ensure there will be no confusion between function symbols, and names
and variables.) Then the above terms are written as:

f (a) g(a , a) g(x , a) g(x , y) f (g(a , a)) g(f (a), x) g(g(a , a), g(x , y))

(The latter expressions are allowed for the sake of convenience—like a = b in-
stead of I 2ab, Fa ∧Gb instead of (F 1a ∧G1b), and so on; only the former
are official expressions of GPLIF.) Note the way in which terms formed using
function symbols can themselves be plugged into the argument places of func-
tion symbols to form new terms. Thus, if we start, for example, with just one
function symbol and one name, we get infinitely many terms:

f (a) f (f (a)) f (f (f (a))) . . .

The definition of wffs is the same as in GPLI, but note that because more
expressions now count as terms, the following clause—which is unchanged
from clause (3i) in §12.1.3—now generates new wffs:

Where P n is any n-place predicate and t1 . . . tn are any terms, P nt1 . . . tn is a wff.

For example, the following are all wffs:

P 1f 1a P 1g2aa Q2yg2xa Q2ag2xy P 1f 1g2aa

Q2g2f 1axg2aa P 1g2g2aag2xy

These may also be written as follows:

Pf (a) Pg(a , a) Qyg(x , a) Qag(x , y) Pf (g(a , a))

Qg(f (a), x)g(a , a) Pg(g(a , a), g(x , y))

Let’s now translate the claims at the beginning of §13.7 into GPLIF. As al-
ways, we need to begin with a glossary. For a start, we need names correspond-
ing to the numerals “5,” “7,” and so on. Rather than writing separate glossary
entries for each one (i.e., a5: 5, a7: 7, and so on) we use the following short-
hand:

an: n

Because function symbols are part of the nonlogical vocabulary, they require
glossary entries. Here are entries for the sum and product functions:

s(x , y): x + y

p(x , y): x × y
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In claim (3), we find the expression “32.” We could think of this as the one-
place function “x squared” with 3 as argument, or we could think of it as the
two-place function “x to the power y” with 3 as first argument and 2 as second
argument. Simply to give us practice with a one-place function symbol, let’s
think of it in the first way:

q(x): x squared

We also require glossary entries for the predicates:

Ex: x is even
Ox: x is odd

Now we translate the claims as follows:

1. s(a5, a7)= a12

2. p(a4, s(a5, a7))= a48

3. q(a3)= a9

4. ∀x∀y(¬(Ox ∧Oy)→ Ep(x , y))

5. ∀x∀y∀zp(x , s(y , z))= s(p(x , y), p(x , z))

Note the universal quantifiers in translations (4) and (5). When a mathematics
book, for example, says “x × y = y × x,” although no quantifiers are used
explicitly, what is usually meant is that the statement holds for any x and y;
that is, the initial universal quantifiers are left implicit. When we represent
such claims in GPLIF, we make the quantifiers explicit.

13.7.2 Semantics of GPLIF

Let’s turn now to the semantics of GPLIF. Because function symbols are part of
the nonlogical vocabulary, they need to be assigned values by models. Thus, we
need to augment our notion of a model: as well as assigning values to names
and predicates, a model must also assign values to function symbols. What
is the value of a function symbol? Well, it must have the following feature.
The value of f n, together with the values of the predicate P 1 and the names
a1, . . . , an, must determine a truth value for the closed wff P 1f 1a1, . . . , an.
The value of P 1 is a set of objects. Thus, the value of f 1a1, . . . , an must be an
object (then P 1f 1a1, . . . , an will be true if that object is in the extension of
P 1, and it will be false if that object is not in the extension of P 1). The values
of the names a1, . . . , an are objects. Thus, the value of f n must be something
that takes us from n objects (the values of the names a1, . . . , an) to a single
object (the value of f 1a1, . . . , an). We shall, then, take the value of f n to be
an n-place function on the domain: something that sends every n-tuple of
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members of the domain (taken as input to the function) to an object in the
domain (the output of the function, for that input). It will be convenient to
represent this function as a set of (n+ 1)-tuples of members of the domain
that contains exactly one (n+ 1)-tuple x ′ for each n-tuple x of members of
the domain: the first n entries of x′ constitute x and represent a possible input
to the function; the last entry of x ′ represents the output of the function for
input x.

For example, here is a model of the fragment of GPLIF used in our earlier
translations:

Domain: {1, 2, 3, . . .}
Referents: a1: 1 a2: 2 a3: 3 . . .
Extensions: E: {2, 4, 6, . . .} O: {1, 3, 5, . . .}
Values of function symbols: q: {〈1, 1〉, 〈2, 4〉, 〈3, 9〉, 〈4, 16〉, . . .}

s: {〈1, 1, 2〉, 〈2, 1, 3〉, 〈2, 2, 4〉, 〈1, 2, 3〉, 〈3, 1, 4〉, 〈3, 2, 5〉, 〈3, 3, 6〉, 〈2, 3, 5〉,
〈1, 3, 4〉, 〈4, 1, 5〉, . . .}

p: {〈1, 1, 1〉, 〈2, 1, 2〉, 〈2, 2, 4〉, 〈1, 2, 2〉, 〈3, 1, 3〉, 〈3, 2, 6〉, 〈3, 3, 9〉, 〈2, 3, 6〉,
〈1, 3, 3〉, 〈4, 1, 4〉, . . .}

Note that the value of q—a one-place function symbol—is a set of ordered
pairs, containing exactly one pair beginning with x for each object x in the
domain. The second member of the pair whose first member is x is the value of
the function picked out by q for input x. The value of s (and similarly for p)—
a two-place function symbol—is a set of ordered triples, containing exactly
one triple beginning with x , y for each ordered pair of objects 〈x , y〉 in the
domain. The last member of the triple whose first members are x and y (in
that order) is the value of the function picked out by s for input 〈x , y〉.

The model given above is just one of infinitely many models of the frag-
ment of GPLIF used in our earlier translations. As always, a model is a free
(i.e., unconstrained) assignment of values to nonlogical symbols. Thus, any
assignment of a set of ordered pairs (containing exactly one pair beginning
with x for each object x in the domain) to q would be legitimate, as would any
assignments of sets of ordered triples (containing exactly one triple beginning
with x , y for each ordered pair of objects 〈x , y〉 in the domain) to s and p.

Note that the value of an n-place function is similar to the value of an
(n+ 1)-place relation, but is not exactly the same. The value of an (n+ 1)-
place relation can be any set of ordered (n + 1)-tuples of members of the
domain. The value of an n-place function, in contrast, cannot be just any set of
ordered (n+ 1)-tuples of members of the domain: it must be one that contains
exactly one (n + 1)-tuple x′ for each n-tuple x of members of the domain,
where the first n entries of x ′ constitute x. We shall return to this relationship
between n-place functions and (n+ 1)-place relations in §13.7.3.
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Mathematical discourse is a rich source of claims made using function sym-
bols. Arguably, such claims can also be found in nonmathematical talk. Con-
sider, for example:

1. Everyone loves his/her first car.

2. Everyone loves his/her mother and father.

3. No one’s mother loves his/her first car.

We could translate these as follows:

c(x): x’s first car 1. ∀x[Px → Lxc(x)]
f (x): x’s father 2. ∀x(Px → [Lxf (x) ∧ Lxm(x)])
m(x): x’s mother 3. ¬∃x[Px ∧ Lm(x)c(x)]
Px: x is a person
Lxy: x loves y

We need to be mindful, however. The natural thing to say about the intension
assigned to c by this glossary entry is that, relative to the actual ww, it picks out
a function that sends each individual to his or her first car. But this is a partial
function: some people have never had a car, so this function does not send
them to any object at all. As we have seen, however, the value of a one-place
function symbol in a model is a set of ordered pairs containing exactly one
pair beginning with x for every object x in the domain. In other words, it is
built into the semantics that function symbols pick out total functions.33 Thus,
the intension assigned to c by this glossary entry, together with the actual ww,
do not determine a value for c. So there is no actual model of the fragment
of GPLIF in question, relative to this glossary. As we saw in §13.6.3, this is a
practical problem, not a logical one. In any case, it is something to keep in
mind.34

13.7.3 Simulating Functions in GPLI

Given a closed wff in GPLIF, how can we test whether it is a logical truth
(i.e., true in all GPLIF models)? Given an argument in GPLIF, how can we
test whether it is valid (i.e., the conclusion is true in all GPLIF models in
which the premises are true)? Similar questions apply to equivalence, satis-
fiability, and so on. One approach would be to adjust the tree method for
GPLI to handle function symbols. This extension is perfectly feasible: only rel-
atively minor adjustments are necessary.35 We shall, however, take a different
approach, because it involves a point of independent interest: that there is a
sense in which we can do without function symbols and work instead in GPLI.
More precisely:
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(S) Given any finite set � of closed wffs of GPLIF, there is a finite set �′ of closed wffs
of GPLI, such that � is satisfiable iff �′ is satisfiable.

Note that “� is satisfiable” means there is some model of GPLIF in which all
wffs in � are true; “�′ is satisfiable” means there is some model of GPLI in
which all wffs in �′ are true.

We shall establish (S) shortly. For now, its significance in relation to tree tests
in GPLIF is as follows. Note that, when we use a tree to test for the presence
or absence of some logical property (validity, logical truth, and so on), we
are always—whether or not it is our primary intention—testing whether the
initial set of formulas written at the top of the tree is satisfiable (i.e., whether
they can all be true together): if all paths close, this set is not satisfiable; if there
is a saturated open path, the set is satisfiable. We then extract whatever further
information we want from this result about satisfiability—for example, an
argument is valid iff the set containing its premises and the negation of the
conclusion is unsatisfiable, or a proposition is a logical truth iff its negation is
unsatisfiable. Now, given (S), instead of running a tree test in GPLIF beginning
with an initial set � of wffs, we can instead run the tree test for GPLI on
the corresponding set �′: (S) ensures that the verdict of the tree test will be
transferable.

Now to establish (S).36 Given a set � = {γ1, . . . , γn}, we first show how to
generate the corresponding set �′, and we then show that � is satisfiable iff
�′ is satisfiable. The key to the proof is the close relationship—touched on in
§13.7.2—between n-place functions and (n+ 1)-place relations.

First we show how to generate the set �′ from a given set �.37 We illustrate
the method for generating �′—which is fully general (i.e., it applies to any
finite set � of closed wffs of GPLIF)—using a particular example. Let γ be the
formula:

∀x(Px → [Lxf (x) ∧ Lm(a , x)c(a , b, x)])

and let � be the set containing just γ . (If we have a set � with multiple
formulas in it, we handle each of them in turn as we do γ .)

Step 1. We find a formula γ ∗ equivalent to γ in which the only place that
any function symbol occurs is at the front of a term immediately to the left of
an identity sign, to the right of which is a variable, for example,

f (x)= y m(a , x)= z c(a , b, x)= w

We do this by successively replacing each subformula α(t) of γ containing
a term t that contains a function symbol by the equivalent formula ∃x(t =
x ∧ α(x/t)), where x is a new variable, and α(x/t) is the result of replacing
all occurrences of t in α(t) by occurrences of x.38 In our example we have the
following sequence of replacements. First we replace f (x) in the subformula
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Lxf (x) of γ :

∀x(Px → [∃y(f (x)= y ∧ Lxy) ∧ Lm(a , x)c(a , b, x)]) (13.12)

Next we replace m(a , x) in the subformula Lm(a , x)c(a , b, x) of (13.12):

∀x(Px → [∃y(f (x)= y ∧ Lxy) ∧ ∃z(m(a , x)= z ∧ Lzc(a , b, x))]) (13.13)

Finally we replace c(a , b, x) in the subformula Lzc(a , b, x) of (13.13):

∀x(Px → [∃y(f (x)= y ∧ Lxy) ∧ ∃z(m(a , x)= z ∧ ∃w(c(a , b, x)= w ∧ Lzw))])

This last formula is γ ∗: it is equivalent to γ (because it arises from it by
replacing subformulas with equivalent formulas—recall §12.5.3) and the only
place that any function symbol occurs in it is at the front of a term that is
immediately to the left of an identity sign, to the right of which is a variable.

Step 2. For each n-place function symbol f that appears in γ ∗, we introduce
a new (n + 1)-place predicate R. We now work through γ ∗, replacing each
subformula of the form:

f (t1, . . . , tn)= x

by the formula:

Rt1 . . . tnx

Note that, from the way γ ∗ was constructed: (i) all terms t1, . . . , tn here are
names or variables (i.e., none of them contains function symbols); (ii) once we
have made these replacements, the resulting formula—call it γ ∗∗—contains
no function symbols. In our example, we have three function symbols: f , m,
and c. Their new corresponding predicates shall be F , M , and C. (These are,
as required, new predicate letters.) Because f is a one-place function symbol,
F is a two-place predicate; because m is a two-place function symbol, M is a
three-place predicate; and because c is a three-place function symbol, C is a
four-place predicate. Taking γ ∗ and replacing subformulas involving function
symbols with formulas involving relations in this way results in:

∀x(Px → [∃y(Fxy ∧ Lxy) ∧ ∃z(Maxz ∧ ∃w(Cabxw ∧ Lzw))])

This is our γ ∗∗.
Step 3. For each new (n+ 1)-place predicate R introduced in Step 2, we now

formulate a postulate of the following form:

∀x1 . . . ∀xn∃y∀z(Rx1 . . . xnz↔ z= y)

This proposition says that for each n-tuple of objects x1 . . . xn, there is exactly
one object y such that Rx1 . . . xny holds. In other words, R behaves like an
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n-place function. In the case of our three new predicates F , M , and C, the
postulates are as follows:

. ∀x∃y∀z(Fxz↔ z= y)

. ∀x1∀x2∃y∀z(Mx1x2z↔ z= y)

. ∀x1∀x2∀x3∃y∀z(Cx1x2x3z↔ z= y)

We now specify �′: it contains γ ∗∗ plus all postulates for the new predicates
that appear in γ ∗∗. So in our case �′ contains the following wffs:

. ∀x(Px → [∃y(Fxy ∧ Lxy) ∧ ∃z(Maxz ∧ ∃w(Cabxw ∧ Lzw))])

. ∀x∃y∀z(Fxz↔ z= y)

. ∀x1∀x2∃y∀z(Mx1x2z↔ z= y)

. ∀x1∀x2∀x3∃y∀z(Cx1x2x3z↔ z= y)

It remains to show that �′ (constructed in the way just discussed) is satisfi-
able iff � is satisfiable.

Suppose � is satisfiable—that is, there is a model M of GPLIF in which each
wff γ in � is true. Then each γ ∗ is true in M, because each γ is equivalent to its
corresponding γ ∗. Now we can construct a model M′ of GPLI (not GPLIF) in
which everything in �′ is true—that is, each γ ∗∗ and its associated postulates.
What we do is set the extension of each new (n+ 1)-place predicate R to be the
same as the value of its associated function symbol f . We then strike out the
assignments of values to function symbols from the model (leaving a model
of GPLI). That the extensions of these predicates arise from functions in this
way ensures that their associated postulates are true in M′. As for each γ ∗∗, it
is true in M′, because it differs from the corresponding γ ∗ (which is true in
M) only by having Rt1 . . . tnx where the former has f (t1, . . . , tn)= x—and
the way that the extension of R is derived from the value of f guarantees that

f (t1, . . . , tn)= x is true in M iff Rt1 . . . tnx is true in M′.39

Suppose �′ is satisfiable—that is, there is a model M′ of GPLI in which every
γ ∗∗ and its associated postulates are true. Now we can construct a model M

of GPLIF in which each corresponding γ is true. What we do is set the value
of each function symbol f to be the same as the extension of its associated
predicate R. The reasoning showing that each γ is true in M is then much the
same as above. The only new point is that this time the role of the postulates is
as follows: the truth in M′ of the postulate for R guarantees that R’s extension
in M′ is the right kind of set of (n + 1)-tuples to be the value in M of the
function f .40
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13.7.4 Exercises

1. Translate the following into GPLIF.

(i) 2+ 2= 4
(ii) 2× 2= 4

(iii) 2+ 2= 2× 2
(iv) 22 = 2× 2
(v) (x + y)2 = (x + y)(x + y)

(vi) (x + y)2 = x2 + 2xy + y2

(vii) Whether x is even or odd, 2x is even.
(viii) Tripling an odd number results in an odd number; tripling an even

number results in an even number.
(ix) 5x < 6x

(x) If x < y, then 3x < 4y

2. Here is a model:

Domain: {Alison, Bruce, Calvin, Delilah}
Referents: a: Alison b: Bruce c: Calvin d : Delilah
Extensions: F : {Alison, Delilah} M : {Bruce, Calvin}

S: {〈Alison, Bruce〉, 〈Alison, Calvin〉, 〈Alison, Delilah〉,
〈Bruce, Calvin〉, 〈Bruce, Delilah〉, 〈Calvin, Delilah〉}

Values of function symbols: f : {〈Alison, Bruce〉, 〈Bruce, Calvin〉,
〈Calvin, Bruce〉, 〈Delilah, Calvin〉}

m: {〈Alison, Delilah〉, 〈Bruce, Alison〉,
〈Calvin, Delilah〉, 〈Delilah, Alison〉}

s: {〈Alison, Alison, Bruce〉, 〈Alison, Bruce, Calvin〉,
〈Alison, Calvin, Delilah〉, 〈Alison, Delilah, Alison〉,
〈Bruce, Alison, Calvin〉, 〈Bruce, Bruce, Calvin〉,
〈Bruce, Calvin, Delilah〉, 〈Bruce, Delilah, Alison〉,
〈Calvin, Alison, Delilah〉, 〈Calvin, Bruce, Delilah〉,
〈Calvin, Calvin, Delilah〉, 〈Calvin, Delilah, Alison〉,
〈Delilah, Alison, Alison〉, 〈Delilah, Bruce, Alison〉,
〈Delilah, Calvin, Alison〉, 〈Delilah, Delilah, Alison〉}

State whether each of the following propositions is true or false in this
model.

(i) ∀xMf (x)

(ii) ∃xMm(x)

(iii) s(c, b)= d

(iv) s(a , a)= f (c)

(v) Ff (b)→Mf (b)

(vi) ∀x∀y∃z∀w(s(x , y)= w ↔ w = z)
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(vii) ∃x∃y∃z∃w(s(x , y)= z ∧ s(x , y)= w ∧ z �= w)

(viii) s(s(b, a), s(d , a))= s(b, c)

(ix) ∃x∃ys(x , y)=m(y)

(x) ∀x∃ys(y , x)= x

3. Here is a model:

Domain: {1, 2, 3, . . .}
Referents: a1: 1 a2: 2 a3: 3 . . .
Extensions: E: {2, 4, 6, . . .} O: {1, 2, 3, . . .}

L: {〈x , y〉 : x < y}41

Values of function symbols: q: {〈x , y〉 : y = x2}42

s: {〈x , y , z〉 : z= x + y}43

p: {〈x , y , z〉 : z= x × y}44

State whether each of the following propositions is true or false in this
model.

(i) s(a2, a2)= a5

(ii) p(a2, a2)= a3

(iii) s(a2, a2)= p(a2, a2)

(iv) q(a2)= p(a1, a2)

(v) ∀x∀yq(s(x , y))= p(s(x , y), s(x , y))

(vi) ∀x∀yq(s(x , y))= s(s(q(x), p(a2, p(x , y))), q(y))

(vii) ∀xEp(a2, x)

(viii) ∀x((Ox →Op(a3, x)) ∧ (Ex → Ep(a3, x)))

(ix) ∃xLp(a5, x)p(a5, x)

(x) ∀x∀y(Lyx → Lp(a3, x)p(a4, y))

4. For each of the following propositions, describe (a) a model in which it
is true and (b) a model in which it is false. If there is no model of one of
these types, explain why.

(i) f (a)= f (b)

(ii) f (a) �= f (b)

(iii) f (a) �= f (a)

(iv) ∀x∃yf (x)= y

(v) ∃x∀yf (x)= y

(vi) ∀x∀ys(x , y)= s(y , x)

(vii) ∀x∀yf (s(x , y))= s(f (x), f (y))

(viii) ∃x∃ys(x , y)= f (x)→∃x∃ys(x , y)= f (y)

(ix) ∃x∃ys(x , y)= f (x)→∃x∃yf (s(x , y))= f (x)

(x) ∀x∀y∃z∀w(s(x , y)= w ↔ w = z)
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PART III
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14
Metatheory

At the end of §1.4, we said that one of our goals was to find a method of
assessing arguments for validity that is both:

1. foolproof: it can be followed in a straightforward, routine way, without
recourse to intuition or imagination—and it always gives the right an-
swer; and

2. general: it can be applied to any argument.

In this chapter we consider the extent to which this goal has been achieved. It
turns out that there is an essential tension between the desiderata: generally
speaking, the more general a system of logic is—the greater its expressive
power—the less foolproof it will be. In our case, when we moved from MPL to
GPL we crossed a watershed, with greater foolproofness on one side (the MPL
side) and greater expressive power on the other.

Before proceeding, let us comment on the title of the chapter. In proposi-
tional logic, we looked at two methods of determining validity: truth tables
and trees. Once we moved to predicate logic, we had just one method: trees.
(We look at further methods of proof for both propositional and predicate
logic in Chapter 15.) In this chapter we focus on the tree method. Given a
system of proof—say, the tree method for GPLI—we call propositions that
can be proven using that method “theorems” of that system. So, for exam-
ple, (Pa ∨ ¬Pa) is a theorem of our system of tree proofs for GPLI, be-
cause we can prove, using a GPLI tree, that (Pa ∨ ¬Pa) is a logical truth.
In this chapter we switch from using trees to establish results about particu-
lar propositions and arguments to considering the system of tree proofs itself
and establishing (or in some cases mentioning, without proving) results about
this system. These results about a proof system—or about proof systems in
general—are called “metatheorems;” the activity of proving metatheorems is
called “metatheory” or “metalogic.”



In §§14.1–14.3 we discuss metatheorems related to the issue of whether
the tree method of assessing arguments for validity is foolproof. In §14.4 we
discuss the issue of whether our method is general.

14.1 Soundness and Completeness

The idea that our method of assessing arguments for validity should be fool-
proof encompasses two parts: the method should be mechanical (able to be
followed in a straightforward, routine way, without recourse to intuition or
imagination), and it should always give the right answer. In this section we par-
tially address the second part: we show that, in one particular sense, the tree
method for GPLI never goes wrong with respect to validity (when the rules
are followed correctly; of course, wrong answers may emerge if we misapply a
rule, for example, using an old name in the rule for the existential quantifier).
More specifically, we establish two results:

(S) If all paths close in a tree that starts from certain propositions, then there is no
model in which those propositions are all true.

(C) If there is no model in which certain propositions are all true, then all paths
close in every finished tree that starts from those propositions.

Given (S), if the tree method tells you that an argument is valid (by having all
paths close when you build a tree starting from the premises and the negation
of the conclusion), then the argument really is valid (there is no model in
which the premises and the negation of the conclusion are all true; that is,
no model in which the premises are true and the conclusion false). We express
this fact by saying that the tree method is sound with respect to validity.1 Given
(C), if an argument is valid, then the tree method will tell you that it is (in the
form of all paths closing in any finished tree that begins with the premises and
the negation of the conclusion). We express this fact by saying that the tree
method is complete with respect to validity.

Before proving that the tree method is sound and complete with respect to
validity, we might ask why it is necessary to do so. Recall the discussion of
analyses and methods in §9.5. Our story about models yields a precise analysis
of what such terms as “validity” mean—but models don’t give us a method for
showing that an argument is valid. Such methods are very useful. Trees are one
such method (in the next chapter we look at other methods). A little thought
makes it clear that we should not simply assume that our method works:
we should prove that it does. That is what we do now. Before proceeding to
the proofs, we explain in the following section a particular style of reasoning
that is very common in metalogic and is used in both the soundness and
completeness proofs.
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14.1.1 Proof by Induction

If we want to show that a certain property P holds for every one of a certain
group of things, it is often useful—especially when there are infinitely many
things in the group—to prove this fact by induction (aka mathematical induc-
tion). Such proofs proceed as follows:

I. Enumeration:
We assign to each object a number 1, 2, 3, . . .

II. Base case:
We prove that property P holds for the object(s) numbered 1.

III. Induction step:
We prove that the property holds for the object(s) numbered n + 1,
on the assumption that the property holds for all the object(s) num-
bered 1 through n. This assumption is called the inductive (or induction)
hypothesis.

How do these steps establish that every object in question has the property
P ? By step (III), on the assumption that all objects numbered 1 have the
property P , it follows that all objects numbered 2 have the property P . But
by step (II), all objects numbered 1 do have the property P . So it follows
that all objects numbered 2 have the property P . Now by step (III) again,
assuming that all objects numbered 1 and 2 have the property P , it follows that
all objects numbered 3 have the property P . But we have already established
that all objects numbered 1 and all objects numbered 2 have the property P ,
so it follows that all objects numbered 3 have the property P . Now by step
(III) again, assuming that all objects numbered 1, 2, and 3 have the property
P , it follows that all objects numbered 4 have the property P . But we have
already established that all objects numbered 1 and all objects numbered 2
and all objects numbered 3 have the property P , so it follows that all objects
numbered 4 have the property P . In general, whatever number n we pick, by
this style of reasoning we can establish that all objects numbered n have P .
But every object has been given some number n—that is step (I)—so it follows
that every object has P .

There is a variant form of proof by induction where, in the induction step,
we prove that the property holds for object(s) numbered n + 1, on the as-
sumption that the property holds for object(s) numbered n (rather than
1 through n). Often we can get by with this weaker inductive hypothesis
(“weaker” in that it is implied by, but does not imply, the original induc-
tive hypothesis). Sometimes the terms “strong induction” and “course-of-
values induction” are used to indicate induction using the stronger inductive
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hypothesis; sometimes the term “weak induction” is used to describe induc-
tion using the weaker inductive hypothesis.

Another common variation involves numbering the objects from 0 rather
than from 1 in step (I) (i.e., 0, 1, 2, 3, . . . rather than 1, 2, 3, . . .). In this
case, in step (II) we prove that property P holds for object(s) numbered 0,
and in step (III) the (strong) inductive hypothesis assumes that P holds for all
object(s) numbered 0 through n.

The key to a successful inductive proof often lies in step (I)—in finding a
way of assigning numbers to the objects under consideration that facilitates
establishing steps (II) and (III). When the objects under consideration are
wffs—when we want to show that all of some group of wffs have a certain
property—one way of assigning numbers that is often very useful is to assign
to each wff the number of logical operators it contains. So atomic wffs (e.g.,
Pa, b = c) are assigned the number 0; wffs with one connective or quantifier
(e.g., (Pa ∨ Rb), ¬b = c, ∀xRx) are assigned the number 1; and so on. The
number of logical operators contained in a wff α is often called the complexity
of α.2 A proof by induction in which the objects in question are wffs assigned
numbers in step (I) according to their complexity is often called a proof by
induction on complexity of formulas. Such proofs are common in logic; we shall
see one in §14.1.3.

14.1.1.1 EXERCISES

What is the complexity of each of the following wffs?

1. Fa

2. (Hx →∀x(Fx →Gx))

3. ∀xx = x

4. ∀x∃y¬Rxy

5. ¬∀xa �= x

6. ∀x(Fx →∃yRxy)

7. (∀xa = x ∧ ¬∃xa �= x)

8. (Fa ∧ (Fa ∧ (Fa ∧ (Fa ∧ (Fa ∧ Fa)))))

9. ∀x(Fx →∀x(Fx →∀x(Fx →∀x(Fx →∀x(Fx → Fx)))))

10. (((¬∃x(¬Fx ∨Gx) ∧ a �= b)→¬Fa) ∨ (¬∃x(¬Fx ∨Gx) ∨ ¬Fa))
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14.1.2 Soundness

We want to show:

(S) If all paths close in a tree that starts from propositions α1, . . . , αn, then there
is no model in which α1, . . . , αn are all true.

We shall show (S) by showing the contrapositive: if there is a model in which
α1, . . . , αn are all true, then there must be an open path in any tree that starts
from α1, . . . , αn.3 We show the contrapositive by induction on the stages of
constructing any such tree. We can think of the process of constructing a tree
starting from α1, . . . , αn as follows. At stage 0, one writes up the initial wffs
α1, . . . , αn and then checks for closure, closing the path if necessary. At stage
1, one applies a first tree rule4 and then checks for closure, closing any paths as
necessary. At stage 2, one applies a second tree rule and then checks for closure;
and so on. At some point, there may be no more rules to apply (one—but not
the only—way in which this could happen is if every path has closed): the tree
is finished and finite.5 Alternatively, the process continues forever: the tree is
infinite.

Note that in the above account, there is no restriction on the order in
which rules may be applied: our aim is to show that if there is a model in
which α1, . . . , αn are all true, then there is no way of constructing a tree that
starts with α1, . . . , αn such that all paths close.

Consider an example to illustrate the general idea that a tree starting from
α1, . . . , αn can be thought of as being constructed in a series of stages. Sup-
pose we begin our tree with ∃xFx, ∃xGx and ¬∃x(Fx ∧Gx). At stage 0 the
tree looks like:

∃xFx

∃xGx

¬∃x(Fx ∧Gx)

At stage 1, the tree looks like:6

∃xFx

∃xGx

¬∃x(Fx ∧Gx) �
∀x¬(Fx ∧Gx)

Stage 2: Stage 3:
∃xFx � a ∃xFx � a

∃xGx ∃xGx � b

¬∃x(Fx ∧Gx) � ¬∃x(Fx ∧Gx) �
∀x¬(Fx ∧Gx) ∀x¬(Fx ∧Gx)

Fa Fa

Gb
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Stage 4: Stage 5:
∃xFx � a ∃xFx  �      a

∃xGx  � b

¬(Fa ∧ Ga) �

Fa
Gb

∀x¬(Fx ∧ Gx)  \ a
¬∃x(Fx ∧ Gx) �

¬Fa
×

¬Ga

∃xGx � b

¬∃x(Fx ∧Gx) �
∀x¬(Fx ∧Gx) \ a

Fa

Gb

¬(Fa ∧Ga)

Stage 6: Stage 7:
∃xFx  � a
∃xGx  � b

¬(Fa ∧ Ga) �

Fa
Gb

∀x¬(Fx ∧ Gx)  \ a b
¬∃x(Fx ∧ Gx) �

¬Fa
×

¬Ga
¬(Fb ∧ Gb)

∃xFx  � a
∃xGx  � b

¬(Fa ∧ Ga) �

Fa
Gb

∀x¬(Fx ∧ Gx)  \ a b
¬∃x(Fx ∧ Gx) �

¬Fa
×

¬Ga
¬(Fb ∧ Gb) �

¬Fb ¬Gb
×

This tree is now finished. For convenience, we shall speak of stages 8, 9, 10, . . .
of the construction of this tree: it is just that nothing happens at these stages.
That is, after stage 7, the tree remains the same through all subsequent stages.
This way of speaking is convenient, because we want to be able to generalize
about all trees, regardless of whether they are finite or infinite. Thus, we need
to be able to speak of “stage n” of the construction of any tree for any n. The
mark of an infinite tree, then, is not that there are infinitely many stages in
its construction, but that it changes (propositions are added) at every one of
these stages.

§

Having now introduced the idea of numbering the stages of construction of
any tree, we turn to the first major part of the proof of (S). But first we establish
some terminology. A path in a tree will be said to be satisfiable if there is a
model in which every proposition on that path is true. We prove by induction
on stages that, assuming that there is a model in which α1, . . . , αn are all true,
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any tree starting from the propositions α1, . . . , αn has at least one satisfiable
path at every stage n of its construction. We have already seen how to number
the stages of construction of any tree—that is step (I) in our inductive proof.
This brings us to step (II)—the base case: at stage 0, the tree has a satisfiable
path. This claim is immediate, given the assumption that there is a model in
which α1, . . . , αn are all true. At stage 0, the tree has only one path, and the
only formulas on it are α1, . . . , αn. Now for step (III)—the induction step:
if the tree has a satisfiable path at stage n of its construction, then it has a
satisfiable path at stage n + 1. There are two cases to consider. (i) Nothing
happens at stage n+ 1: the tree is already finished at stage n. In this case the
result is immediate. (ii) The tree changes at stage n+ 1. In this case the result
holds because (as discussed, for example, in §10.1—and see further Exercises
14.1.2.1 below) the tree rules all preserve truth. More precisely, suppose we are
applying some rule at the bottom of a path p. Our nonbranching rules, which
extend p to p′, all have this property:

If there is a model in which every proposition on p is true, then there is a model in
which every proposition on p′ is true

and our branching rules, which will create two paths q and r, all have this
property:

If there is a model in which every proposition on p is true, then there is a model in
which every proposition on q is true, or there is a model in which every proposition
on r is true, or both

We now know that if there is a model in which α1, . . . , αn are all true, then
at every stage n of its construction, any tree starting from α1, . . . , αn has a
satisfiable path (i.e., a path such that there is a model in which every propo-
sition on that path is true). It follows that at every stage n of its construction,
every such tree has an open path. For a path closes only if it contains either
(i) a wff and its negation or (ii) a wff of the form a �= a. In both these cases,
however, there cannot be a model in which every wff on the path is true, be-
cause (i) there is no model in which both a wff and its negation are true, and
(ii) there is no model in which a wff of the form a �= a is true.

We want to show that if there is a model in which α1, . . . , αn are all true,
then there is an open path in any tree that starts from α1, . . . , αn (i.e., the
contrapositive of (S)). We are not quite there yet. What we currently have
is: if there is a model in which α1, . . . , αn are all true, then at every stage n

of its construction, any tree starting from α1, . . . , αn has an open path. In
theory, this still allows the possibility that an infinite tree might have no open
path; that is, although it has an open path at every stage of its construction,
after an infinite amount of time the finished infinite tree might have no open
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path. There are, in principle, two ways in which this might happen: (i) the tree
has infinite paths, and they are all closed or (ii) the tree has no infinite paths
but has infinitely many finite paths, and they are all closed. However, both
possibilities were ruled out in §10.3.7: no tree has an infinite closed path, and
every tree that grows forever has an infinite path. Thus, the case is closed—the
contrapositive of (S) (and hence (S) itself) is established: if there is a model in
which α1, . . . , αn are all true, then there is an open path in any tree (finite or
infinite) that starts from α1, . . . , αn.

14.1.2.1 EXERCISES

In §10.1 we showed that the tree rules for (negated and unnegated) disjunction
and the quantifiers are truth-preserving (in the precise sense spelled out in
§14.1.2), and in §13.4 we showed that the tree rule SI is truth-preserving.
Complete the soundness proof by showing that the remaining tree rules are
truth-preserving:

1. Unnegated conjunction.

2. Negated conjunction.

3. Unnegated conditional.

4. Negated conditional.

5. Unnegated biconditional.

6. Negated biconditional.

7. Negated negation.

14.1.3 Completeness

We want to show:

(C) If there is no model in which propositions α1, . . . , αn are all true, then all
paths close in every finished tree that starts from α1, . . . , αn.

We shall prove (C) by showing the contrapositive: if there is an open path in
a finished tree that begins with α1, . . . , αn, then there is a model in which
α1, . . . , αn are all true.

In §13.4.2 we described how to read off a model from an open saturated
path. What we prove now is that when we read off a model in this way, every
wff on the saturated path from which the model is read off is true in that
model. For convenience, we refer to the path from which we are reading off
the model as p and the model being read off as M.7

We want to prove something about every wff on p; we do so by induction
on complexity of formulas. That is, step (I) of our inductive proof consists of
assigning to each wff on p the number that represents its complexity (recall
§14.1.1).

Step (II) is the base case: we show that all wffs on p numbered 0 are true in
M. These wffs are atomic wffs. There are two cases to consider: (i) wffs of the
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form Fna1 . . . an, where Fn is some predicate other than the identity predicate
and (ii) wffs of the form a = b. Model M is designed precisely to make all
these wffs true: those of form (i) are true because in step (3) of reading off
M (recall §13.4.2), for every standalone atomic wff Fna1 . . . an appearing on
p, we put into the extension of the n-place predicate Fn the ordered n-tuple
consisting of the referents of the names a1 through an in that order; those of
form (ii) are true because in step (2) of reading off M (recall §13.4.2), when
we encountered a wff a = b on p, we made the referents of a and b the same.

Step (III) is the induction step: we show that all wffs on p of complexity n+1
are true in M, assuming that all wffs on p of complexity 0 through n are true
in M. From here we proceed by cases. We are considering a wff of complexity
n+ 1. For convenience, we refer to this wff as γ . Its main operator could be
any of our connectives or quantifiers, so we consider each case in turn.

Conjunction. γ is of the form (α ∧ β); that is, its main operator is conjunc-
tion. Then p also contains α and β (because p must be saturated: we are given
that the tree is finished and that p is open, and in a finished tree, every path
is either closed or saturated). The complexities of α and β are less than the
complexity of (α ∧ β), so by the induction hypothesis α and β are true in M.
So by the rule governing the truth of conjunctions in models,8 (α ∧ β) is also
true in M.

Disjunction. γ is of the form (α ∨ β). Then p also contains either α or β

(because p is saturated). These are of lesser complexity than (α ∨ β), so by the
induction hypothesis, whichever of them is on p is true in M; hence by the
rule governing the truth of disjunctions in models, (α ∨ β) is also true in M.

Existential quantifier. γ is of the form ∃xα(x). Then p also contains α(a/x),
for some name a that does not appear on p before this occurrence of α(a/x).
The complexity of α(a/x) is less than that of ∃xα(x), so by the induction
hypothesis α(a/x) is true in M. But then the following argument shows that
∃xα(x) is also true in M. By the rule governing the truth of existentially
quantified wffs in models, ∃xα(x) is true in M iff there is at least one object

o in the domain of M such that α(b/x) is true on M
b
o, where b is some name

not assigned a referent on M, and M
b
o is a model just like M except that in it

the name b is assigned the referent o. There is at least one such object o: the
object that is the referent of a on M.

Universal quantifier. γ is of the form ∀xα(x). Then (by the requirements on
saturation relating to the tree rule for the universal quantifier) p also contains
α(a/x) for every name a that appears on p, and there must be at least one
such name. The complexity of each α(a/x) is less than that of ∀xα(x), so by
the induction hypothesis each α(a/x) is true in M. Now note that, given the
way models are read off paths, there is no object in the domain of M that is not
the referent in M of some name appearing on p, because in step (1) of reading
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off M (recall §13.4.2), we put one object into the domain for each name that
appears on p and then assign the first of these objects as the referent of the first
name, the second as the referent of the second name, and so on. Furthermore,
in step (2), if (in light of any identity statements on p) we change the referent
of some name b so that it is the same as the referent of some other name a,
then we remove the object that was the referent of b from the domain. Thus,
the following argument shows that ∀xα(x) is true in M. By the rule governing
the truth of universally quantified wffs in models, ∀xα(x) is true in M iff for

every object o in the domain of M, α(b/x) is true in M
b
o, where b is some

name not assigned a referent in M, and M
b
o is a model just like M except that

in it the name b is assigned the referent o. But we know that α(b/x) is true in

M
b
o for every o in the domain of M, because for each such o there is at least

one corresponding wff α(a/x) on p—where a refers to o in M—and every
such α(a/x) is true in M.

Negation. γ is of the form ¬α. Here we need to consider all possible forms
of the negand α:

1. (i) α is an atomic wff of the form Fna1 . . . an, where Fn is some predicate other
than the identity predicate. Now Fna1 . . . an cannot appear by itself on p, for
then p would close. But then Fna1 . . . an must be false in M, because we put
the n-tuple 〈referent-of-a1, . . . , referent-of-an〉 into the extension of Fn in

M iff Fna1 . . . an appears on p.9 Hence, by the rule governing the truth of
negations in models, ¬Fna1 . . . an is true in M.

(ii) α is an atomic wff of the form a = b. Now a = b cannot appear by itself on
p, because then p would close. But then a = b must be false in M, because we
set the referents of a and b to the same object iff a = b appears on p.10 Hence,
by the rule governing the truth of negations in models, ¬a = b is true in M.

2. α is of the form ¬β; that is, its main operator is negation. So the formula
¬α we are considering is of the form ¬¬β. Then β also occurs on p. The
complexity of β is less than that of ¬¬β, so by the induction hypothesis
β is true in M. So ¬¬β is also true in M.

3. α is of the form (β ∨ δ); that is, its main operator is disjunction. So the
formula ¬α we are considering is of the form ¬(β ∨ δ). Then ¬β and
¬δ also occur on p. The complexities of these wffs are less than that of
¬(β ∨ δ), so by the induction hypothesis ¬β and ¬δ are true in M. So
¬(β ∨ δ) is also true in M.

4. α is of the form ∀xβ; that is, its main operator is the universal quantifier.
So the formula ¬α we are considering is of the form ¬∀xβ. Then ∃x¬β

also occurs on p. By the clause above covering the case of wffs on p whose
main operator is the existential quantifier, ∃x¬β is true in M. So by the

366 Chapter 14 Metatheory



reasoning in §10.1.2 (which establishes that¬∀xβ and ∃x¬β are true and
false in the same models), ¬∀xβ is also true in M.

5. α is of the form (β ∧ δ). See Exercises 14.1.3.1, question 1.

6. α is of the form (β → δ). See Exercises 14.1.3.1, question 2.

7. α is of the form (β ↔ δ). See Exercises 14.1.3.1, question 3.

8. α is of the form ∃xβ. See Exercises 14.1.3.1, question 4.

Conditional. γ is of the form (α → β). Then p also contains either ¬α or
β. (i) Suppose p contains β. The complexity of β is less than that of (α → β),
so by the induction hypothesis β is true in M; hence, (α → β) is also true in
M. (ii) Suppose p contains ¬α. The complexity of ¬α is not necessarily less
than that of (α → β): if β is an atomic wff (i.e., it has complexity 0), then
¬α and (α → β) have the same complexity. So we consider two cases: (a) β

is not atomic, so the complexity of ¬α is less than that of (α → β), so by the
induction hypothesis ¬α is true in M; hence, α is false in M; hence, (α → β)

is true in M. (b) β is atomic, so the complexity of ¬α is the same as that of
(α → β). Our induction hypothesis is that all formulas in p with complexity
less than that of (α → β) are true in M. Given that the complexity of ¬α is
the same as that of (α → β), this hypothesis asserts that all formulas in p with
complexity less than that of ¬α are also true in M. Because ¬α is in p (we are
still in case (ii)), by the reasoning in the clause(s) for negation above, it follows
that ¬α is true in M. Hence, α is false in M, and so (α → β) is true in M.

Biconditional. See Exercises 14.1.3.1, question 5.
Claim (C) is now established, via its contrapositive: if there is an open path

p in a finished tree that begins with α1, . . . , αn, then there is a model M in
which every formula on p is true. Hence, in particular, α1, . . . , αn are all true
in M, because the initial formulas in a tree lie on every path through the tree.

§

Note that the completeness result as presented here does not provide a guar-
antee that if you start with (say) an argument that is in fact valid and begin
constructing a tree starting from the premises and the negation of the con-
clusion, then your tree will eventually close. The completeness result tells us
only that (in this situation) every finished tree is closed—and as we have seen
in §10.3.1, there are, for some choices of starting propositions, ways of con-
structing trees that lead to infinite paths that are not saturated. Nothing in
the completeness result itself guarantees that when you start constructing a
tree, you will not hit on one of these poor orderings of rule applications. That
is, although the completeness result refers to finished trees, it does not show
how to construct finished trees—how to avoid infinite but unfinished trees.
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For that, we need to turn somewhere else: to the sort of systematic procedure
for building trees given in §10.3.5.11 When we build trees in accordance with
such a procedure, we have a guarantee that the result (perhaps after an infi-
nite amount of time) will be a finished tree. Thus, completeness plus such a
systematic tree-building procedure provides a guarantee that if you start with
(say) an argument that is in fact valid and build a tree following this proce-
dure starting from the premises and the negation of the conclusion, then your
tree will eventually close. Furthermore, note that because every infinite tree
has an infinite path and there are no infinite closed paths (§10.3.7), a closed
tree is always finite. Thus, if you start with an argument that is in fact valid and
start building a tree in accordance with a systematic procedure that guarantees
finished trees, then you will always have a closed tree after a finite amount of
time. We return to this point below.

14.1.3.1 EXERCISES

Fill in the remaining cases in step (III) of the completeness proof.

1. γ is of the form ¬α, and α’s main operator is conjunction.

2. γ is of the form ¬α, and α’s main operator is the conditional.

3. γ is of the form ¬α, and α’s main operator is the biconditional.

4. γ is of the form ¬α, and α’s main operator is the existential quantifier.

5. γ ’s main operator is the biconditional.

14.2 Decidability and Undecidability

The idea that our method of assessing arguments for validity should be fool-
proof encompasses two parts: the method should be mechanical (able to be
followed in a straightforward, routine way, without recourse to intuition or
imagination), and it should always give the right answer. In §14.1 we partially
addressed the second part: we showed that if the tree method indicates that an
argument is valid, then the argument is valid (soundness); and that if an argu-
ment is valid, then the tree method will indicate that it is, after a finite amount
of time (completeness, together with a systematic procedure for constructing
finished trees). In this section we turn to the first part.12

Recall the notion of an effective procedure (mentioned in Chapter 1, n. 29).
A procedure is effective if it can be encapsulated in a finite set of instructions,
to be followed in a specified order, where each instruction is:

1. mechanical (no ingenuity or insight is required to carry it out—a com-
puter could be programmed to do it);

2. deterministic (it involves no random devices, e.g., coin tosses); and
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3. finitely achievable (only a finite amount of time is required to com-
plete it).

For example, think of the familiar procedure for adding two numbers. Write
the numbers down, one above the other, aligned at the right. Look up the
two rightmost digits in the addition tables for numbers 0–9. If the answer is a
one-digit number, write it down underneath the rightmost two digits; if it is a
two-digit number, write down its right digit and carry the left digit (i.e., write
it above the second-rightmost digits of the original numbers). Move to the
second-rightmost digits and repeat (more or less: it won’t quite be a simple
repeat if there is a carried digit to add as well), and so on. When there are
no digits left to process, the answer will be written under the original two
numbers. I have just sketched the procedure here, to jog your memory, but
evidently it could be written out in complete detail, resulting in a finite set
of instructions to be followed in a particular order, where each instruction
is mechanical, deterministic, and finitely achievable. (Note that the addition
tables for numbers 0–9 can be included as part of these instructions.)

Note two points. First, because each step of an effective procedure is deter-
ministic and the order in which the steps are to be followed is specified as part
of the procedure, two different people following the same effective procedure
will always get the same result. Second, in an effective procedure the order in
which the instructions are to be followed may include loops. Thus, although
each instruction must be finitely achievable, an effective procedure as a whole
might run for an infinite amount of time. For example, the following is an
effective procedure for writing an infinite string of alternating 1s and 0s:

1. Write 1; go to step (2).

2. Write 0; go to step (1).

Let’s now consider the tree method for testing an argument for validity. We
write down the premises and the negation of the conclusion of the argument to
be tested. We then apply tree rules. When the tree is finished, we check whether
all paths are closed. If so, the argument is valid; if not, it is invalid.

Is this an effective procedure? Well, it involves a finite number of instruc-
tions (there are only finitely many tree rules), but we have allowed that the
rules can be followed in any order one pleases. To obtain an effective proce-
dure, we need to specify an order in which the rules are to be followed. This
can be done via a systematic procedure for building trees of the sort described
in §10.3.5—a procedure that tells us exactly which rule to apply at each stage
of construction. For the remainder of this section, when we talk of the “tree
method,” we include such a systematic tree-building procedure.

Each step of the tree method is mechanical, or at least it can be made so,
if we add more detail (in the way that each step of the procedure for adding
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two numbers can be made mechanical). For example, no ingenuity or insight
is required to apply a tree rule or to check a path for closure.

Given the way we originally presented the tree rules, it was not the case that
each step was deterministic. For example, we said to apply the rule for the
unnegated existential quantifier with a new name but did not specify which
name. Thus, two persons following the same rule might construct different
trees, if they pick different new names. However, the systematic tree-building
procedure removes this indeterminacy: for example, for the rule for the un-
negated existential quantifier, the procedure specifies that we are to use the
alphabetically first name that does not occur on the path.

Finally, each step of the tree method is finitely achievable: applying a tree
rule involves writing down at most finitely many things; checking for closure
at any point requires checking through the finitely many entries in the tree at
that point; and so on. Of course the method as a whole may in some cases run
forever and generate an infinite tree, but as already discussed, this does not
prevent the method from counting as an effective procedure.

The tree method, then, constitutes an effective procedure. In this respect, it
is unlike, say, the methods taught in school geometry. Suppose we are given a
geometric diagram with certain information in it (certain angle sizes, certain
lengths) and asked whether two angles η and θ are equal. We are taught how
to set out a proof properly but are given no mechanical method to follow to
find the proof in the first place. We just have to look at the diagram and think
and try various tactics until the answer strikes us. With trees, in contrast, we
can just start applying the tree rules mechanically.

§

It might seem, then, that the tree method is foolproof: it is an effective proce-
dure, and it is sound and complete. Yet there is a catch. We want a mechanical
method that always yields the correct answer. We have a mechanical method,
and its answers are always correct (if all paths close, the argument is valid
[soundness]; if a finished tree has an open path, the argument is invalid [the
contrapositive of completeness]). However, the method does not always yield
an answer in a finite amount of time. Suppose we are given an argument that
(as a matter of fact, although we might not know this yet) is valid. Then the
tree method will yield a (correct) answer in a finite amount of time: all paths
will close, which establishes that the argument is valid. But suppose we are
given an argument that (as a matter of fact, although we might not know this
yet) is not valid. Then one of two things might happen. First, the finished tree
might be finite. Then, as above, the tree method will yield a (correct) answer
in a finite amount of time: the tree will be finished, at least one path will be
open, and this will establish that the argument is invalid. The second possi-
bility, however, is that the finished tree might be infinite. In this case the tree
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method does not yield an answer in a finite amount of time. In a sense the tree
method yields the correct answer here, but it takes an infinite amount of time
to do so. (In another sense, what it yields—an infinite tree—is not a legitimate
answer at all, because it is infinitely long. At any rate, it is not a proof of inva-
lidity, in the way that a finite closed tree is a proof of validity. We discuss this
issue in §14.3.)

To clarify the situation further, some terminology will be helpful. A positive
test for a property is an effective procedure that can be applied to an object,
and if (and only if) the object does have the property, then the test will tell
us that it does (i.e., say Yes) after some finite amount of time. A negative test
for a property is an effective procedure that can be applied to an object, and
if (and only if) the object does not have the property, then the test will tell us
that it doesn’t (i.e., say No) after some finite amount of time.13 A decision pro-
cedure for a property is an effective procedure that can be applied to an object
and that will, after some finite amount of time, yield a (correct) answer as to
whether this object has the property (Yes if it does, No if it doesn’t). A positive
test and a negative test for a property together provide a decision procedure
for the property. The steps of the decision procedure are obtained by interleav-
ing the steps of the positive and negative tests: steps 1, 2, 3, . . . of the positive
test become steps 1, 3, 5, . . . of the decision procedure, while steps 1, 2, 3, . . .
of the negative test become steps 2, 4, 6, . . . of the decision procedure. Now
when we apply the decision procedure to an object, if the object does have the
property, that fact will be established at some odd-numbered step of the deci-
sion procedure (i.e. by some step of the positive test), and if it does not have
the property, that fact will be established at some even-numbered step (i.e.
by some step of the negative test). Either way, we will know, after some finite
amount of time, whether the object has the property. The decision problem for
a property is said to be solvable iff there exists a decision procedure for that
property (and it is solved when we actually know at least one such decision
procedure).14

The property we are concerned with here is validity. The objects that may
or may not possess this property are arguments. (In §14.3 we consider other
logical properties, e.g., logical truth and equivalence. The objects that may or
may not possess these properties are, respectively, propositions and pairs of
propositions.)

The tree method is a positive test for validity. If we are given an argument
that, as a matter of fact, does possess the property of being valid, then the tree
method will tell us this in a finite amount of time: all paths will close, and we
will know that the argument is valid. (Recall from the end of §14.1.3 that a
closed tree is always finite.) The tree method is not, however, a negative test
for validity. When applied to an argument that, as a matter of fact, does not
possess the property of being valid, the tree method will sometimes establish
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that it is invalid in a finite amount of time, but it will not always do so—
because some invalid arguments generate infinite trees.15

So the tree method is not a decision procedure for validity. Is there some
other method we could employ that would do better? At this point it will be
useful to consider our logical systems PL, MPL, and GPL separately. First,
consider PL. In this case, the tree method is a decision procedure, because
there are no infinite PL trees (infinite trees emerged only when we moved to
predicate logic). The truth table method is also a decision procedure (or at
least it can be made to be one, if we add enough detail to each step to make
it purely mechanical and add rules specifying the precise order in which the
steps are to be carried out). So the decision problem for validity of arguments
in propositional logic is solved.

Second, consider MPL. We can have infinite trees in MPL, so the tree
method is not a decision procedure for validity of arguments in MPL. How-
ever, as a matter of fact, the decision problem for MPL is solvable: there are
decision procedures for validity in MPL.16 Indeed, we can extend the tree
method to yield such a decision procedure. The only way that an MPL tree
can continue forever is if it contains a formula beginning with a universal
quantifier that has within its scope either an existential quantifier or a negated
universal quantifier. (Not every tree with such a formula in it continues for-
ever but every infinite tree has such a formula in it.) However, there is an
effective procedure that, given any formula of MPL, generates an equivalent
formula with the following form (known as ∃∗∀∗ form), where α contains no
quantifiers:17

∃x∃y . . . ∀z∀w . . . α

That is, it has all its existential quantifiers (if any) in front, then all its universal
quantifiers (if any), followed by everything else (atomic wffs and connectives).
So if we supplement our tree method with this additional procedure, which
allows us to cross out any formula in our tree that is not in ∃∗∀∗ form and
replace it with an equivalent formula that is in ∃∗∀∗ form, then our trees will
never be infinite—and so we will have a decision procedure for validity.

Third, consider GPL. The additional procedure we mentioned in the case of
MPL—the one that converts each formula in the tree to an equivalent formula
in ∃∗∀∗ form—will not work in GPL: it is not true in general predicate logic,
as opposed to monadic predicate logic, that every formula is equivalent to
some formula in ∃∗∀∗ form. What is true is that every formula is equivalent to
some formula in prenex normal form (§12.5.3). Indeed, there is an effective
procedure for putting any formula into prenex normal form (i.e., finding
an equivalent formula in that form). But there is no guarantee that we can
find an equivalent formula in prenex normal form in which, furthermore, all
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existential quantifiers precede all universal quantifiers—that is, a formula in
∃∗∀∗ form. Consider, for example, the following two formulas:

∀x∃y(Fx ∧Gy) (14.1)

∀x∃yRxy (14.2)

Formula (14.1) is equivalent to (∀xFx ∧ ∃yGy) (recall §12.5) and to
∃y∀x(Fx ∧Gy), which is in ∃∗∀∗ form. However, (14.2) is not equivalent
to ∃y∀xRxy (recall §12.1.7) or to any other formula in ∃∗∀∗ form.

If we cannot supplement our tree method for GPL with a procedure that will
exclude infinite trees, perhaps we can do something else. In §10.3, we began
producing a tree to determine whether the wff ∀x∃y(Fx ∧Gy) is satisfiable.
After a finite amount of time spent developing the tree we determined that
the tree would indeed remain open, no matter what we did and concluded
that the wff is satisfiable (§10.3.1). The idea now is to try to write up a set of
rules—an effective procedure—that we can follow to determine whether any
unfinished tree will be finite or infinite when finished. It turns out, however,
that there can be no such set of rules. This conclusion is not at all obvious—
in fact, on first encounter, it is puzzling. But it is a consequence of the fact that
the decision problem for validity in general predicate logic is not solvable; that
is, there is no decision procedure for validity in GPL. This extraordinary fact—
one of the key results of twentieth-century logic—was proved independently
in the 1930s by Alan Turing in Cambridge and Alonzo Church in Princeton.18

Proving this fact—known as the undecidability of first-order logic—is beyond
the scope of this book.19 But note that it follows from this fact that there
can be no effective procedure of the sort we just imagined: one that tells us
whether a given unfinished tree will—when extended in accordance with our
systematic tree-building procedure—go on forever. Because if there were such
a procedure, then it, together with the tree method, would yield a decision
procedure for validity in GPL as follows. Given an argument, we write up
its premises and the negation of the conclusion; we then run the imagined
procedure to determine whether the finished tree will be infinite. If it will be
infinite, we know the argument is invalid; if it will be finite, we then construct
the tree to find out whether the argument is valid. None of this is to deny
that sometimes we can see—after a finite amount of time and with absolute
certainty—that a given tree will be infinite when finished. The point is that we
cannot be seeing this by following a single effective procedure that could be
applied to any unfinished tree and would always yield a correct answer.

In sum, the tree method of testing an argument for validity is an effective
procedure, and it provides a positive test for validity. Once we move beyond
MPL, however, the tree method does not provide a negative test for validity.20

In its defense, however, no other method can do any better: there can be no
negative test for validity in GPL, because it is known that there is no decision
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procedure for validity in GPL—and a positive test (which we already have)
together with a negative test would yield a decision procedure.

14.3 Other Logical Properties

We have discussed the extent to which trees provide a foolproof method of as-
sessing arguments for validity. But we have also used trees for other purposes:
testing for logical truth, equivalence, and so on. In this section we consider the
situation with respect to these other logical properties.

Recall the distinction between a-properties and s-properties (originally
drawn in §5.7 in terms of truth table rows rather than models). The pres-
ence of an s-property can, in principle, be established by citing a single model;
the presence of an a-property cannot be so established:

A-property S-property

Validity Invalidity
Logical truth Non-logicaltruth
Equivalence Inequivalence

Unsatisfiability Satisfiability

To show that an argument is invalid, it suffices to come up with a single
model in which the premises are true and the conclusion false, whereas no
single model could, by itself, establish that an argument is valid. To show
that a proposition is a non-logicaltruth, it suffices to come up with a single
model in which the proposition is false, whereas no single model could, by
itself, establish that a proposition is a logical truth. Similar remarks apply to
inequivalence/equivalence and satisfiability/unsatisfiability.

In the table, the property on the left is just the property something of the
relevant sort has if it does not have the property on the right, and vice versa.
Thus, checking for the absence of an a-property is the same as checking for
the presence of the corresponding s-property, and vice versa. So the absence
of any a-property can, in principle, be established by citing a single model; the
absence of an s-property cannot be so established.

The a-properties are all interdefinable (and similarly for the s-properties).
If we start with the notion of unsatisfiability (of a set of propositions), a
valid argument α1, . . . , αn/∴ β is one where the set {α1, . . . , αn, ¬β} is
unsatisfiable; a logical truth is a proposition α where the set {¬α} is unsat-
isfiable; two propositions α and β are equivalent iff the sets {α , ¬β} and
{¬α , β} are unsatisfiable. Starting with the notion of validity, we can de-
fine unsatisfiability as follows: a set is unsatisfiable iff there is some propo-
sition in it whose negation follows logically from the other propositions in
the set (i.e., the set {α1, . . . , αn} is unsatisfiable iff there is some αi such that
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α1, . . . , αi−1, αi+1, . . . αn/∴¬αi is a valid argument). Having defined unsat-
isfiability, we can proceed as above to define the other notions. Starting with
the notion of logical truth, we can define validity as follows: the argument
α1, . . . , αn/∴ β is valid iff (α1∧ . . . ∧ αn)→ β is a logical truth. Having de-
fined validity, we can proceed as above to define the other notions. Starting
with the notion of equivalence, we can define logical truth as follows: α is a
logical truth iff it is equivalent to a = a (or any other known logical truth).
Having defined logical truth, we can proceed as above to define the other no-
tions.21

Where P is any of our logical properties (a- or s-properties), a system of
proof is sound with respect to property P iff when there is a proof in the
system that some object has P , that object really does have P . A system of
proof is complete with respect to property P iff when some object has property
P , there is a proof in the system that it has P .22 Now, with respect to which
properties in our table is the system of tree proofs sound, and with respect to
which properties is it complete? Jumping ahead, the answer is that it is sound
with respect to all of them; it is complete with respect to all a-properties and
none of the s-properties. But before we can establish this answer, we need to
be more precise about what a proof is.

14.3.1 Proofs

Intuitively, a proof that something is the case establishes beyond doubt that
it is the case. Thus, a proof that X (or that not X) ends any argument as to
whether or not X: if something does not end such an argument once and for
all, then even though it might be good evidence for or against X, it isn’t a
proof that X (or that not X). If a proof that X is to end any argument as to
whether or not X, then there should not be any doubt that it is a proof that
X: otherwise, the argument will shift to whether it is a genuine proof. In logic,
we make this idea precise as follows (a proof in the precise sense we are about
to explain is often called a formal proof). First, there must be a specified set
of symbols from which proofs may be constructed. (These will be the symbols
of the logical language, together perhaps with some additional symbols, e.g.,
the lines and crosses in tree proofs.) Any finite array of these proof symbols
will then be a candidate for the title of “proof”—it may or may not actually
be a proof, but it is at least in the running to be one (unlike something that
is not even composed of the right symbols). Second, there must be a decision
procedure for determining whether a candidate proof that something is the
case really is a proof that that thing is the case. That is, there must be an
effective procedure which, given any candidate proof as input, will yield an
answer one way or the other (either “yes it is a proof that X” or “no it is not a
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proof that X”) in a finite amount of time. This makes precise the idea that if
something is a proof that X, then there should not be any doubt that it is (and
furthermore, if it is not, then there should not be any doubt that it is not): we
can just apply the effective procedure to check whether it is a genuine proof.

One upshot of the foregoing is that proofs must be finite. This requirement
is intuitively correct: something cannot end an argument if it itself never ends.
It is also necessary if there is to be a decision procedure for checking whether
any proof candidate is a genuine proof. For suppose we did allow infinite
proofs. Then the proof-testing procedure, when fed this proof as input, would
run forever (because the input is infinite), and therefore fail to yield the correct
verdict “yes, this is a proof” in a finite amount of time. Thus, it would not be
a decision procedure.

14.3.2 Tree Proofs

In light of these general considerations about proofs, let’s consider our system
of tree proofs. As we will see, the system provides proofs of the presence of
s-properties and proofs of the presence of a-properties. (In this respect, the
tree system is unlike two of the other three major kinds of proof system—
natural deduction and axiomatic systems—to be discussed in Chapter 15.
Those systems do not provide any proofs of the presence of s-properties—
or in other words, of the absence of a-properties: they provide proofs only
of the presence of a-properties.) Let’s start with validity (an a-property) and
invalidity (its corresponding s-property).

A finite closed tree beginning with α1, . . . , αn, ¬β is a proof that the argu-
ment α1, . . . , αn/∴ β has the property of being valid. First, there is a decision
procedure for whether any given candidate tree proof is a finite closed tree be-
ginning with α1, . . . , αn, ¬β. For we could, in principle, write out an effective
procedure (or program a computer) to determine—given as input any finite
array of the symbols used to make trees (logical symbols, lines, crosses, etc.)—
whether this array is a correctly formed tree beginning with α1, . . . , αn, ¬β

in which every path is closed. The procedure would need to check that

1. the initial entries are α1, . . . , αn and ¬β;

2. every entry after the initial entries follows from an earlier entry or entries
by one of the tree rules—that is, that the tree-building rules (of which
there are only finitely many) have been applied correctly;

3. the path-closing rules have been applied correctly (any path that should
close is closed with a cross; any path closed with a cross should indeed be
closed); and

4. every path has a cross at the bottom.
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Second, by (S) (§14.1.2), if such a tree exists, then the argument α1, . . . ,
αn/∴ β is valid. Thus, a finite closed tree beginning with α1, . . . , αn, ¬β

constitutes a proof that the argument α1, . . . , αn/∴ β has the property of
being valid.

Similarly, a finite finished tree with an open path, beginning with α1, . . . ,
αn, ¬β, is a proof that the argument α1, . . . , αn/∴ β has the property of
being invalid. First, there is a decision procedure for whether any given can-
didate tree proof is a finite finished tree with an open path, beginning with
α1, . . . , αn, ¬β. For we could, in principle, write out an effective procedure
(or program a computer) to determine—given as input any finite array of the
symbols used to make trees—whether this array is a correctly formed tree be-
ginning with α1, . . . , αn, ¬β in which every path is closed or saturated, and
in which some path is open. The procedure would need to check that

1. the initial entries are α1, . . . , αn and ¬β;

2. every entry after the initial entries follows from an earlier entry or entries
by one of the tree rules—that is, that the tree-building rules (of which
there are only finitely many) have been applied correctly;

3. the path-closing rules have been applied correctly (any path that should
close is closed with a cross; any path closed with a cross should indeed be
closed);

4. every path that does not have a cross at the bottom is saturated; and

5. at least one path does not have a cross at the bottom.

Second, by the contrapositive of (C) (§14.1.3), if such a tree exists, then the
argument α1, . . . , αn/∴ β is invalid. Thus, a finite finished tree with an open
path, beginning with α1, . . . , αn, ¬β, constitutes a proof that the argument
α1, . . . , αn/∴ β has the property of being invalid.

So far so good. However, an infinite finished tree with an open path, begin-
ning with α1, . . . , αn, ¬β, is not a proof that the argument α1, . . . , αn/∴ β

has the property of being invalid. For although, by the contrapositive of (C),
if such a tree exists, the argument really is invalid—nevertheless, such a tree,
being infinite, does not constitute a proof.

Similar comments apply to the other pairs of properties—for example, un-
satisfiability and satisfiability. A closed tree beginning with α1, . . . , αn is a
proof that the set α1, . . . , αn has the property of being unsatisfiable. A finite
finished tree with an open path, beginning with α1, . . . , αn is a proof that the
set α1, . . . , αn has the property of being satisfiable. However, an infinite fin-
ished tree with an open path, beginning with α1, . . . , αn is not a proof that
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the set α1, . . . , αn has the property of being satisfiable (even though, by the
contrapositive of (C), if such a tree exists, the set is satisfiable).

14.3.3 Soundness and Completeness . . .

In light of the foregoing discussions of what a proof is in general—and of
which kinds of trees constitute proofs of which kinds of facts—let us return to
the questions of whether the system of tree proofs is sound and complete with
respect to other a-properties (apart from validity) and whether it is sound and
complete with respect to any s-properties.

Our proofs of (S) and (C) in §14.1 established that trees are sound and
complete with respect to validity. If an argument is valid, there is a proof
that it is (i.e., a closed tree starting with the premises and the negation of
the conclusion), which is completeness with respect to validity. And if there
is a proof that an argument is valid, the argument really is valid, which is
soundness with respect to validity. But our proofs of (S) and (C) also establish
much more: they establish that trees are sound and complete with respect to
all other a-properties as well. Recall what we proved:

(S) If all paths close in a tree that starts from propositions α1, . . . , αn, then there
is no model in which α1, . . . , αn are all true.

(C) If there is no model in which propositions α1, . . . , αn are all true, then all
paths close in every finished tree that starts from α1, . . . , αn.

Now consider the property of logical truth. A proof that α is a logical truth is a
closed tree beginning with¬α. If the tree system provides such a proof, then by
(S), there is no model in which¬α is true; that is, α is true in every model—it
is a logical truth. Thus, the tree method is sound with respect to logical truth.
Conversely, if α is a logical truth, then there is no model in which¬α is true—
so by (C), all paths will close in a finished tree beginning with ¬α—that is,
there is a tree proof that α is a logical truth (i.e., a closed tree beginning with
¬α). Thus, the tree method is complete with respect to logical truth.23 Similar
reasoning applies to equivalence and unsatisfiability: the tree method is sound
and complete with respect to these properties, as well as with respect to validity
and logical truth.

What about the s-properties? It follows from the contrapositive of (C) that
trees are sound with respect to the s-properties. If there is a tree proof that an
argument is invalid—a finished finite tree with an open path that begins with
the premises and the negation of the conclusion—then by the contrapositive
of (C), the argument really is invalid (there is a model in which the premises
and the negation of the conclusion are all true). If there is a tree proof that
a proposition is a non-logicaltruth—a finished finite tree with an open path,
beginning with the negation of the proposition—then by the contrapositive of
(C), the proposition really is a non-logicaltruth (there is a model in which the

378 Chapter 14 Metatheory



negation of the proposition is true). Similarly for tree proofs of inequivalence
and satisfiability.

What about completeness with respect to the s-properties? First, it does not
follow from the contrapositive of (S) that trees are complete with respect to
the s-properties. Suppose that an argument α1, . . . , αn/∴ β is invalid. What
follows from the contrapositive of (S) is:

It is not the case that all paths close in a tree that starts from α1, . . . , αn and ¬β

But this statement does not mean there will be a proof that the argument is in-
valid, that is, a finite finished tree with an open path, starting from α1, . . . , αn

and ¬β. We know the finished tree will have an open path, but there is no
guarantee it will be finite. And an infinite tree is not a proof. Similar comments
apply to non-logicaltruth, inequivalence, and satisfiability.

So it does not follow from the contrapositive of (S) that trees are complete
with respect to the s-properties—and in fact, trees are not complete with
respect to these properties. We know that some invalid arguments generate
infinite finished trees. Infinite trees are not proofs. So there are some invalid
arguments for which there is no tree proof that they are invalid. That is, the
system of tree proofs is not complete with respect to the property of invalidity.
Similarly, some satisfiable sets generate infinite finished trees. Again, infinite
trees are not proofs. So there are some satisfiable sets of propositions for
which there is no tree proof that they are satisfiable. That is, the system of tree
proofs is not complete with respect to the property of satisfiability. Likewise
for inequivalence and non-logicaltruth.24

14.3.4 . . . and Positive Tests

So the system of tree proofs is sound with respect to all s-properties and
complete with respect to none of them. It is interesting to note, however,
that no other proof system could possibly do any better, because a sound
and complete proof procedure for invalidity would yield a negative test for
validity—and this is something we know cannot exist (§14.2). (Likewise, a
sound and complete proof procedure for any of the other s-properties in our
table in §14.3 would yield a negative test for its corresponding a-property—
and that, via the interdefinability of the a-properties, would yield a negative
test for validity.) Let us see why this is so. The key step is:

(P) A system of proof that is sound and complete with respect to property P

(where P is any a- or s-property) yields a positive test for P .

We shall show why (P) is true shortly. For now, note that a positive test
for any property in the table in §14.3 is, immediately, a negative test for its
corresponding property on the other side of the table. For example, a positive
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test for satisfiability is a negative test for unsatisfiability (because a set is satis-
fiable iff it is not unsatisfiable), and a positive test for invalidity is a negative
test for validity. Thus, by (P), a proof procedure that was sound and complete
with respect to invalidity would yield a positive test for invalidity, and that
would yield a negative test for validity. We know there can be no negative test
for validity; hence, we know there can be no proof procedure that is sound
and complete with respect to invalidity.

Let us see, then, why (P) is true. A proof in some system that some object has
some property (e.g., a tree proof that some argument is valid, or a tree proof
that some set of propositions is satisfiable) is a finite array of proof symbols.
As discussed in §14.3.1, there must (in principle) be a decision procedure for
the property of “being a proof in the system that object x has property P ” (for
any x of the sort that might possess P —e.g., any argument, if P is validity or
invalidity; or any set of propositions, if P is satisfiability or unsatisfiability).
That is, there must be an effective procedure that, when given as input an
arbitrary finite array of proof symbols, will in a finite amount of time return
the (correct) verdict “yes, it is a proof that x has P ” or “no, it is not a proof that
x has P ” for arbitrary x. Now suppose that the system is sound and complete
with respect to P : for any x that possesses the property P , there is a proof
in the system that x has P (completeness); and when there is a proof in the
system that x has P , x really does have P (soundness). Then a positive test
for P is as follows.

1. Given an object x, start generating, in some predefined order, all possi-
ble finite arrays of proof symbols. It may require some ingenuity to figure
out an order in which to generate them, such that no array is permanently
left off the list, but it will always be possible, provided that the logical lan-
guage and the system of proof have been set up in a minimally reasonable
way.25

2. Each time you generate an array of proof symbols in accordance with
step (1), use it as input to the decision procedure for the property of “be-
ing a proof in the system that x has P .” If x does have P , then eventually
you must get to a proof that x has P (because the system is complete with
respect to P ), and at this point the decision procedure will return the
verdict “yes, this is a proof that x has P .” Now you can conclude “yes, x

has P .”

This procedure is a positive test for P : you will conclude that x has P only
if x does have P (by soundness: if there is a proof that x has P , then x does
have P ), and if x does have P then you will conclude that it does after a finite
amount of time (by completeness, there will be a proof that x has P , and so
you will find it after some finite amount of time).
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§

Note that (P) is completely general: any system of proof that is sound and
complete with respect to any property P yields a positive test for P . Given an
x, which we are testing for being P , we just perform a brute force search for a
proof that P holds for x; that is, we search through every possible finite array
of proof symbols. By completeness, if x has P , then we shall find a proof that it
does, and by soundness, if we find such a proof, x has P . Thus, this procedure
provides a positive test for P . Note, however, that in the tree system, if we
want to know (say) whether an argument is valid, we can search for a proof
in a more intelligent—but still effective (i.e., mechanical)—way. In fact, this is
just what a systematic tree-building procedure is (i.e., a procedure of the sort
discussed in §10.3.5, which ensures finished, although not necessarily finite,
trees): an intelligent but still effective method of searching for a proof that
an argument is valid. We can also think of it as a search for a proof that the
argument is invalid (as trees provide proofs of a-properties and s-properties,
we can think of it either way). The search may succeed—that is, terminate with
a finished tree—in one of two different ways: it may terminate with a (finite)
closed tree—a proof of validity, or it may terminate with a finished finite tree
with an open path—a poof of invalidity. The third possibility is that the search
never terminates: it continues forever, building an infinite tree. In this case, the
search yields no proof of validity or invalidity. After an infinite amount of time,
the search will generate a finished tree, but an infinite tree is not a proof.

The point is a general one: it does not apply only to validity. Suppose you
want to know whether a set of propositions is satisfiable. You write up the
propositions and begin constructing a tree in accordance with a systematic
procedure for producing finished trees. One of three things may happen.
(i) The search terminates in a proof of satisfiability: a finished finite tree with
an open path. (ii) The search terminates in a proof of unsatisfiability: a closed
tree. (iii) The search never terminates: you continue building the tree forever.
That the tree system involves an intelligent but still effective method of search-
ing for proofs—whether of validity, unsatisfiability, logical truth, equivalence,
or their corresponding s-properties—is one of the highly attractive features of
the tree method.

§

In sum, the situation regarding the other a-properties is the same as the situ-
ation regarding validity: the tree method of testing for the presence of these
properties is an effective procedure, and it provides a positive test for each
property. Once we move beyond MPL, however, there can be no negative
tests for the a-properties. For we know that there cannot be a negative test
for validity, and via the interdefinability of the a-properties, a negative test for
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any a-property would yield a negative test for validity. Thus, there cannot be
any proof procedure that is sound and complete for any s-property, because a
sound and complete proof procedure for any s-property would yield a positive
test for that s-property, and that would yield a negative test for its correspond-
ing a-property. The tree method is sound with respect to the s-properties: this
follows from the contrapositive of (C). Therefore, it is not complete with re-
spect to any s-property. Trees do provide proofs of the presence of s-properties,
such as invalidity (in the form of finished finite trees with open paths). How-
ever, the system of tree proofs is not—and no system can be—complete with
respect to the s-properties.

14.4 Expressive Power

We wanted a method of assessing arguments for validity that is both foolproof
and general. Having now discussed the extent to which the tree method is
foolproof, we turn to the question of generality. When we test an argument
given in natural language for validity, we begin by translating the argument
into our logical language. When we speak of a method of assessing arguments
for validity that is general, what we are really talking about is the expressive
resources of the logical language together with its model theory. Thus, the
issue of generality concerns our logical languages and their associated systems
of model theory, rather than their associated systems of tree proofs.

We gradually increased the expressive power of our logical language, from
propositional logic (PL) to monadic predicate logic (MPL) to general predi-
cate logic (GPL) to general predicate logic with identity (GPLI). We also con-
sidered some further additions to the language: a definite description operator
(GPLID, §13.6.2) and function symbols (GPLIF, §13.7). The generality ques-
tion can be formulated as: can any argument—that is, any proposition—be
represented in GPLI? Or rather, can it be represented in a good or at least
reasonable way? Any proposition at all can be represented even in PL—as a
sentence letter, but obviously this representation will not, in general, be a good
one. Let’s begin by considering some examples.

(1) The proposition 2+ 2= 4. In GPLIF we represent this proposition (us-
ing the glossary of §13.7.1) as:

s(a2, a2)= a4 (14.3)

If we follow the procedure of §13.7.3, the corresponding wff of GPLI is:26

∃x(Sa2a2x ∧ x = a4) ∧ ∀x1∀x2∃y∀z(Sx1x2z↔ z= y) (14.4)

Although (14.4) could be simplified somewhat, the result would still be con-
siderably more complex than (14.3).
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(2) The proposition expressed by an utterance, at 11:44:00 a.m. on Monday,
11 July 2011, of “Ned has not yet been to see his doctor, but he will go.” We
could represent this proposition in GPLI as:

a: 11:44:00 a.m. on Monday, 11 July 201127

d : Ned’s doctor
n: Ned
T x: x is a moment of time
Pxy: x is prior to y

V xyz: x goes to see y at z

¬∃x(T x ∧ Pxa ∧ V ndx) ∧ ∃x(T x ∧ Pax ∧ V ndx)

Note that this representation involves quantifiers that range over moments of
time (considered as entities) and names that refer to such moments of time.
It also involves representing “Ned goes to see his doctor” using a three-place
relation V , which involves argument positions for Ned and his doctor, and a
third argument position for a moment of time.

The major alternative way of representing such claims in a logical language
is to augment the language with new one-place connectives: G (which can be
read as “it will always be the case that;” compare the way that ¬ can be read as
“it is not the case that”), F (“it will at some time be the case that”), H (“it has
always been the case that”), and P (“it has at some time been the case that”). If
we add these connectives to PL—giving us the language of propositional tense
logic—“Ned has not yet been to see his doctor, but he will go” can then be
represented in either of the following ways (using the glossary N : Ned goes to
see his doctor):

¬PN ∧ FN
H¬N ∧ FN

As the new connectives are part of the logical vocabulary, we also need to
augment the semantics. This task turns out not be simple because the new
connectives are not truth functional, and so we cannot simply assign each one
a truth table—something more radical is called for.28

(3) So far we have contrasted ways of representing claims in GPLI with
ways of representing them in logics with a different syntax. Now consider the
claim “Bertrand is tall.” We can represent this claim in GPLI as T b (using
the obvious glossary). In every model, T will be assigned a subset of the
domain as extension, and T b will be true or false. One might object that
assigning a sharply defined subset of objects as the extension of “tall” does not
do justice to its vagueness—to the fact that there is no sharp division between
tall and nontall persons. One might therefore think that although the syntax
of GPLI is adequate to the representation of “Bertrand is tall,” the semantics is
not. Rather, we should have a semantics wherein predicates may be assigned
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nonsharply defined collections as their extensions—for example, fuzzy sets of
objects.29

(4) Given a predicate P , we saw in §13.5 how to translate “there are exactly
two P s,” “there are exactly three P s,” and so on. One form of quantification
that we cannot express in GPLI is “there are finitely many P s.” That is, we
cannot form a wff (or even a set of wffs) such that for every model in which
that wff (or all wffs in that set) is true, the extension of P is a finite set. (Note
that infinite disjunctions are not wffs in GPLI. Thus, we cannot express “there
are finitely many P s” in GPLI as the disjunction of “there are exactly n P s” for
every finite n.) There are extensions of GPLI, however, in which this idea can
be expressed.

In light of these examples, let’s return to the question of generality. There
are some propositions that cannot be represented adequately in GPLI (e.g.,
example (4)), and other propositions (e.g., examples (2) and (3)) for which
the issue of whether their representations in GPLI are better than their rep-
resentations in certain other logical systems is highly controversial. Neverthe-
less, GPLI—aka (first-order, or restricted, or lower) predicate calculus (with
identity), quantification theory (with identity), or simply classical logic—is a
canonical logical system. This is because it has a particularly nice balance of
properties. Its expressive power is not limitless, but it is very high (or at least
high enough for very many purposes), and, in general, we do not acquire
greater expressive power in a logic without some corresponding trade-off.
For example, when we move from MPL to GPL, we gain much more expres-
sive power, but we lose the property of decidability. Similarly, when we move
from GPLI to certain of its possible extensions or alternatives, we lose cer-
tain properties—for example, in some of them there is not even a positive test
for validity, let alone a negative test. At this point, we are not in a position to
appreciate fully the merits of classical logic—its particular balance of expres-
sive power and other properties (e.g., admitting sound and complete proof
procedures). To appreciate these merits fully, one needs to know about the
rest of the core metalogical properties of classical logic, and about other log-
ical systems that possess different combinations of features. Exploring these
areas—mathematical logic (which includes the study of the metalogical prop-
erties of classical logic) and nonclassical logic (which includes the study of
various extensions of and alternatives to classical logic)—is beyond the scope
of this book. Suffice it to say here that although GPLI cannot do everything
and do it better than any other logical system, GPLI is a very attractive system,
and one of its merits is its high level of expressive power. Still, there are also
other attractive logical systems, some of which have greater expressive power,
and some of which have other merits. Classical logic should not, then, be seen
as a monopoly. But it is—for good reasons—a central reference point, relative
to which other logical systems are inevitably compared.
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15
Other Methods of Proof

In §9.5 we contrasted precise analyses of logical properties (e.g., validity) with
methods for showing that a given object possesses or does not possess one of
these properties (e.g., that a given argument is valid or is not valid). In the case
of propositional logic, we looked at two methods of proof: truth tables and
trees. In the case of predicate logic, we have so far examined only one method:
trees. But there are many other proof methods that have been developed,
and in this chapter we look at the three most commonly used among them:
axiomatic proof, natural deduction, and sequent calculus.1

Before proceeding further, it will be useful to flag the difference between
particular methods of proof and styles of proof method. We discussed the
notion of a formal proof in §14.3.1. A particular method of proof is a set of
rules governing the production of some specific kind of formal proofs. Be-
cause it is part of the very idea of a formal proof that there should be a decision
procedure for whether a given proof candidate really is a formal proof (of
such-and-such in a given system), particular proof methods must be extremely
precise: the fine details matter crucially, if there is to be a decision procedure
for being a proof in the system. From another point of view, however, small
differences in details between one proof system and another are not always
significant: sometimes they can be seen as different particular ways of doing
much the same thing. Thus, it is natural to group particular methods of proof
into families or styles of proof method. A proof in one particular system is not,
in general, a proof in any other particular system, because the rules of each sys-
tem have to be so precise. This particularity holds even between proof systems
in the same family. However, the differences from one family to another are
even greater. They are not mere differences of detail; the basic underlying idea
behind proofs in two systems from different families might be quite different,
even if they are ultimately proofs of the same thing (e.g., that some argument
is valid).



The four most common broad families or styles of proof system are tableau
proof, axiomatic proof, natural deduction, and sequent calculus. We have
looked at one particular method in the tableau style: the tree method. There
are other particular methods in the tableau family.2 For example, in the
method of Beth tableaux, we write down two columns of wffs: one on the left
side of the page and one on the right side. In the left column we write wffs that
are supposed to be true, and in the right column we write wffs that are sup-
posed to be false. So to begin testing an argument from premises α1, . . . , αn

to conclusion β for validity, we start by writing α1, . . . , αn in the left column
and β (without any negation sign out the front) in the right column. Now,
suppose we come across a wff of the form (γ → δ) in the right column; we
then write γ in the left column and δ in the right column (because if (γ → δ)

is false, then γ is true and δ false). Or suppose we encounter a wff of the form
(γ ∨ δ) in the left column; we then split the column into two halves and write
γ on one side and δ on the other (because if (γ ∨ δ) is true, then either γ is
true, or δ is true), and so on. The analogue of finding α and ¬α in the same
path—which causes the path to close in one of our tree proofs—is finding α in
both the left and right columns. This particular method of proof is not exactly
the same as our tree method, but it is recognizably similar in certain funda-
mental ways. Hence, both are classified as (different) specific methods of the
same (tableau) style.3

In the following sections, we look at specific examples of each of the three
other major families of proof methods—axiomatic proof, natural deduction,
and sequent calculus—while indicating some of the scope for variation among
the members of each family.4

15.1 Axiomatic Systems

Some trees provide information about validity: those starting from some for-
mulas followed by a negation. Some trees provide information about logical
truth: those starting from a negation. Some trees yield information about
equivalence: those starting from a negated biconditional. But all (finished)
trees yield information about satisfiability: if the tree closes, the set contain-
ing the initial formulas in the tree is unsatisfiable; if it does not close, the set
is satisfiable. Thus, it is natural to say that the principal notion of tree proofs
is that of the satisfiability of a set of propositions. That is, the primary infor-
mation that a tree yields—and tree rules are constructed precisely so that trees
will yield this information—is whether there is any model in which the propo-
sitions written at the top of the tree are all true (i.e., whether the set containing
these propositions is satisfiable). Other information (e.g., whether a given ar-
gument is valid or a certain proposition is a logical truth) can then be obtained
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by careful use of trees (an argument is valid if the set containing its premises
and negated conclusion is unsatisfiable, a proposition is a logical truth if the
set containing its negation is unsatisfiable, etc.).

In axiomatic proof systems (aka Hilbert or Hilbert-Frege style systems) the
primary notion is that of a proposition being a logical truth. So there is a dou-
ble contrast here with the primary notion in tree proofs. First, in an axiomatic
proof we are concerned with a single proposition, not a set of propositions.
Second, we are concerned with whether this proposition is a logical truth (true
in all models) rather than satisfiable (true in some model). The basic idea be-
hind proving that a proposition is a logical truth in an axiomatic proof system
is as follows. The system has two kinds of basic ingredient: axioms and rules of
inference. Axioms are wffs. Rules of inference are rules or procedures that take
a certain number of wffs as input and specify a wff as output (which particular
wff is given as output depends on which particular wffs are supplied as input).
An axiomatic proof is then a list (sequence) of wffs, where every wff in the list
is either an axiom or the output of one of the rules of inference when supplied
as input some wffs appearing earlier in the list. A proof as just defined is a
proof of a particular proposition α if α is the last line of the proof (i.e., the last
wff in the list of wffs constituting the proof). If there is a proof of α in some
axiomatic system A, then α is a theorem of system A, or in symbols, �A α.
The symbol � is called the “single turnstile” or “proof-theoretic turnstile.”5

The symbol = is the “double turnstile” or “semantic turnstile.” The expression
= α means that α is a logical truth (true in all models). That system A is sound
(with respect to logical truth) is therefore expressed as: if �A α, then = α. That
system A is complete (with respect to logical truth) is expressed as: if = α, then
�A α.

For an axiomatic proof system to be sound, it is necessary and sufficient
that two conditions be met: the axioms are logical truths, and the rules are
logicaltruth-preserving (i.e., when all their inputs are logical truths, their out-
puts are logical truths). In this case, we can readily see why a proof of α

establishes that α is a logical truth. The proof is a sequence of wffs, each of
which must be a logical truth. (We can establish this claim by induction. The
first step is an axiom; hence, it is a logical truth. Now assume steps 1 through
n are logical truths—this is the inductive hypothesis. Step n+ 1 is either an
axiom—and hence a logical truth—or follows from earlier steps, all of which
are by hypothesis logical truths, by a logicaltruth-preserving rule—and hence
is a logical truth.) In particular, the last step α is thus a logical truth.

Let’s look at some concrete examples of axiomatic proof systems. To make
the presentation easier to follow, we begin—as we did with trees—by restrict-
ing ourselves to propositional logic and then look at what further axioms and
rules need to be added to handle predicate logic and identity. Figure 15.1
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Axioms:
(A1) α → (β → α)

(A2) (α → (β → γ ))→ ((α → β)→ (α → γ ))

(A3) (¬β →¬α)→ ((¬β → α)→ β)

Rule (MP):
α

(α → β)

� β

Figure 15.1. System A1.

shows an axiomatic proof system A1 for propositional logic [Mendelson, 1987,
29]. When presenting rules of inference, we mark the output of the rule with a
triangle (�). The modus ponens rule (MP) is sometimes called the rule of de-
tachment . Note the use of wff variables in the axioms and rule. Axioms stated
using wff variables in this way are called axiom schemas. The idea is that any
instance of any of the axiom schemas—any wff obtained by replacing wff vari-
ables with actual wffs (in the way discussed in §5.2)—may be written down
at any point in an axiomatic proof. (The schema itself may not be written
down in a proof, because a proof is a sequence of actual wffs, not of logical
forms.)6 Likewise, the rule licenses writing down any wff β, provided that there
is some wff α such that both α and (α→ β) already appear (in either order) in
the list.

Figure 15.2 shows a proof of (¬P → P)→ P in system A1.
7 So (¬P →

P)→ P is a theorem of A1; that is, �A1
(¬P → P)→ P . Note that the

numbers down the left, and the annotations down the right, are not part
of the proof proper: the proof is simply the sequence of wffs in the middle.
The numbers and annotations make the proof easier to follow, but they are
not essential. Even without them, it would be possible to write an effective
procedure (or program a computer) to check whether a given list of wffs

1. ¬P → [(¬P →¬P)→¬P ] (A1)
2. {¬P → [(¬P →¬P)→¬P ]} →

{[¬P → (¬P →¬P)]→ (¬P →¬P)} (A2)
3. [¬P → (¬P →¬P)]→ (¬P →¬P) 1, 2 (MP)
4. ¬P → (¬P →¬P) (A1)
5. ¬P →¬P 3, 4 (MP)
6. (¬P →¬P)→ [(¬P → P)→ P ] (A3)
7. (¬P → P)→ P 5, 6 (MP)

Figure 15.2. A proof in system A1.
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is a genuine proof. For each wff α in the list, the computer has to check
only finitely many things—the wffs that appear before α in the list and the
three axiom schemas—to check whether α is an instance of one of the axiom
schemas or results from earlier wffs by application of (MP).

§

So far so good, but clearly there are logical truths that cannot be proved in
A1 as presented. For example, we cannot prove P ∨ ¬P , because none of our
axioms deals with ∨. This brings us to an important point. To keep a proof
system as simple as possible (to minimize the number of axioms and rules), it
is very common to confine it to a restricted portion of the full language PL. We
saw in question 1(i) of Exercises 6.6.3 that {→, ¬} is a functionally complete
set of connectives. Thus, if our axioms allow us to prove all logical truths
involving only the connectives → and ¬, that is, in a sense, enough: for any
proposition α involving other connectives, there is an equivalent proposition
α′ involving only → and ¬. If α is a logical truth, then so is α′ (because α

and α′ are equivalent), and so we can prove α′ in our system. All we need is to
supplement our axiom system with definitions of the other connectives in PL
in terms of the connectives featured in our axioms. In the case of A1, we add
the following definitions:

. (α ∧ β) :=¬(α →¬β)

. (α ∨ β) := (¬α → β)

. (α ↔ β) :=¬((α → β)→¬(β → α))

Now, to show that P ∨ ¬P is a logical truth, we first define out ∨, giving
¬P →¬P , and then prove the latter in A1. In fact, the first five lines of
the proof in Figure 15.2 constitute a proof of ¬P →¬P . This observation
illustrates an interesting point about axiomatic proof systems: any initial part
of a proof is itself a proof.8

The alternative to defining out the other connectives in the way just indi-
cated is to add further axioms that enable us to prove logical truths involving
these connectives. For example, Figure 15.3 shows a second axiomatic proof
system, A2, where ∧ and ∨, as well as → and ¬, figure in the axioms [Kleene,
1952, p. 82].9

§

Let’s turn now to predicate logic and identity. We need some axioms and
rules for the quantifiers and for the identity predicate (which is part of the
logical vocabulary), or for at least one of the quantifiers, because in keeping
with the strategy examined above, we can define the other quantifier in terms
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Axioms:
(A1) α → (β → α)

(A2′) (α → β)→ ((α → (β → γ ))→ (α → γ ))

(A3′) α → (β → (α ∧ β))

(A4′) (α ∧ β)→ α

(A5′) (α ∧ β)→ β

(A6′) α → (α ∨ β)

(A7′) β → (α ∨ β)

(A8′) (α → γ )→ ((β → γ )→ ((α ∨ β)→ γ ))

(A9′) (α → β)→ ((α →¬β)→¬α)

(A10′) ¬¬α → α

Rule: (MP)

Figure 15.3. System A2.

of negation and the quantifier for which we have axioms and rules, via the
following equivalences:10

∃xα is equivalent to ¬∀x¬α

∀xα is equivalent to ¬∃x¬α

First, let us introduce some terminology. Recall (§9.3) that we use α(x) to
stand for an arbitrary wff that may or may not contain free x but certainly has
no free variables other than x. We now use α[x] (with square brackets instead
of parentheses) to indicate a wff that may or may not contain free x and may
or may not contain free variables other than x. We use α[t/x] to indicate the
result of replacing all free occurrences of x in α[x] with the term t . In this
context, a term is a name or variable.11 We say that t is free for x in α[x]if either
(i) t is a name or (ii) t is a variable y, and y is free for x in α[x] in the sense
defined in Chapter 13, n. 6—that is, no free occurrence of x in α[x] lies in the
scope of a quantifier containing the variable y. We use α[y//x] to indicate the
result of replacing some (not necessarily all) free occurrences of x in α[x] by
y, where y is free for x in α[x]. (Compare the terminology α(b//a) introduced
in §13.4.)

Now, here are some axioms and a rule for the universal quantifier; we call
the system resulting from adding them to A1 (see Figure 15.1) system A∀

1:

Axioms:
(A4) ∀xα[x]→ α[t/x], where t is free for x in α[x]
(A5) ∀x(α → β)→ (α →∀xβ), where α contains no free x

Rule (Gen):
α

� ∀xα
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The restrictions on (A4) and (A5) are there to prevent us being able to prove
things in A∀

1 that are not logical truths (compare the restriction on the tree rule
for the existential quantifier, i.e., the requirement that we use a new name). For
identity, adding the following axioms to A∀

1 yields the system A∀=
1 :

(A6) ∀xx = x

(A7) x = y → (α[x]→ α[y//x])

§

We have looked at just a few examples of axiomatic systems out of very many
that exist in the literature.12 Two of the main ways in which these systems
differ from one another are the following. First, the number of axioms and
rules varies. We have already seen variation in axiom numbers between A1

and A2. As for rules, A∀
1, for example, has two, whereas the axiomatic system

for predicate logic in Quine [1951] has just modus ponens, and the axiomatic
system for predicate logic in Shoenfield [1967] has five rules. Second, there are
three main styles for the presentation of axioms. One is via axiom schemas;
we have seen this style above. In the second style, each axiom is a specific
wff, not a schema. The power provided by schemas is then attained instead
by having an extra rule—a rule of substitution: one may infer from a wff any
wff obtained from it by replacing certain of its parts by other parts in specified
ways. For example, one may infer (Q ∨ R) ∨ ¬(Q ∨ R) from P ∨ ¬P by
substituting (Q ∨ R) for P . In the case of propositional logic, substitution
rules can be stated quite simply; in the case of predicate logic, substitution
rules become more tricky to state. The third style does not present specific
wffs or even specific schemas as axioms, but simply says (for example) that
any propositional logical truth is an axiom. (By propositional logical truth,
I mean a logical truth whose main operator is a connective, as opposed to a
quantifier.) This style of axiom does not threaten the basic requirement that it
should be possible to decide mechanically whether a given list of propositions
is a legitimate proof, because propositional logic is decidable (§14.2).

15.1.1 Derivations from Assumptions

We have seen how to use an axiomatic proof system to establish that a wff is a
logical truth. How can one establish that an argument is valid? Given an argu-
ment α1, . . . , αn/∴ β, let the corresponding conditional be (α1∧ . . . ∧ αn)→
β. One way to establish that an argument is valid is to establish that its cor-
responding conditional is a logical truth.13 Another way is to allow assump-
tions in axiomatic systems. Where � is a set of wffs, we say that a derivation
from assumptions in � in axiomatic system A is a sequence of wffs, each of
which is (i) an axiom of A, (ii) a member of �, or (iii) follows from earlier
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1. P →Q A
2. Q→ R A
3. (Q→ R)→ (P → (Q→ R)) (A1)
4. P → (Q→ R) 2, 3 (MP)
5. (P → (Q→ R))→ ((P →Q)→ (P → R)) (A2)
6. (P →Q)→ (P → R) 4, 5 (MP)
7. P → R 1, 6 (MP)

Figure 15.4. A derivation from assumptions in system A1.

wffs in the sequence by a rule of A.14 Figure 15.4 is an example of a deri-
vation from assumptions in system A1 (“A” is short for “assumption”). The
assumptions here are P →Q and Q→ R. We now extend our � notation
to allow � to be written between a list of wffs and a wff. (Previously � could
only be written to the left of a wff.) Where we can derive β from assumptions
α1, . . . , αn in system A, we write α1, . . . , αn �A β.15 A derivation from no
assumptions is simply a proof in our old sense, so the original use of the �
notation is now a special case of the new use. The derivation in Figure 15.4
establishes that P →Q, Q→ R �A1

P → R. We likewise extend our = nota-
tion: α1, . . . , αn

= β means that β is a logical consequence of α1, . . . , αn; that
is, there is no model in which α1, . . . , αn are all true and β is false. (So again,
the old use is a special case of the new use: = β means that there is no model in
which β is false.) Now we can say that a system A of axiomatic proof with as-
sumptions is sound (with respect to validity) just in case: if α1, . . . , αn �A β,
then α1, . . . , αn

= β. It is complete (with respect to validity) just in case: if
α1, . . . , αn

= β, then α1, . . . , αn �A β.
In an axiomatic proof, every line is a logical truth (assuming the system

is sound). In a derivation from assumptions, this is not the case. When we
write in α as an assumption, we are not supposing that α is a logical truth;
we are simply supposing, for the sake of argument, that α is true and then
seeing what else follows. So the idea is that every line in the derivation must
be true in a model M, given that all the assumptions are true in M. For
a system to be sound, each of its axioms must therefore be a logical truth
(axioms can appear in any derivation, no matter what the assumptions—even
in derivations with no assumptions—and they must be true in every model in
which all the assumptions are true; so, they must be true in every model),16

and its rules must be truth-preserving. That is, the rules must be such that for
any model M, if the inputs to the rule are true in M, then the output is true
in M. This condition is subtly different from the requirement that rules be
logicaltruth-preserving: the latter requirement says that if the inputs are true
in every model, then the output must be too.17 We can see, then, how deriving
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β from assumptions α1, . . . , αn in a sound system shows that the argument
α1, . . . , αn/∴ β is valid: it establishes that in any model in which α1, . . . , αn

are all true, β is true too.
We said that the primary notion of tree proofs is that of the satisfiability of

a set of propositions, and that the primary notion of a system of axiomatic
proof (i.e., without assumptions) is that of a proposition being a logical truth.
In a system of axiomatic derivation (i.e., where assumptions are allowed), the
prinicipal notion is that of the validity of an argument: the argument whose
premises are the assumptions of our derivation and whose conclusion is the
last line of the derivation.

15.1.1.1 THE DEDUCTION THEOREM

We have mentioned two strategies for establishing the validity of an argument:
prove the corresponding conditional (i.e., derive it from no assumptions) or
assume the premises and then derive the conclusion. Now in fact, deriving
conditionals is often a rather lengthy process, which can be shortened signif-
icantly by assuming the antecedent and deriving the consequent. Recall our
derivation of P → R in Figure 15.4. Had we instead assumed P and derived
R, the derivation would have been simpler (Figure 15.5). Fine—but how does
the derivation in Figure 15.5 help us establish the conditional P → R? Well,
it helps us if we are working in a system for which we can prove the deduction
theorem:

If α1, . . . , αn, β � γ , then α1, . . . , αn � β → γ

A1 is such a system (see below). The deduction theorem says that if there is a
derivation of one sort (of γ , from assumptions α1, . . . , αn and β), then there
exists a derivation of another sort (of β → γ , from assumptions α1, . . . , αn).
So given the deduction theorem for A1 and our derivation in A1 of R from
assumptions P →Q, Q→R, and P (Figure 15.5), we know—even if we have
no such derivation before us—that there is a derivation in A1 of P → R from
assumptions P →Q and Q→ R, and so we can conclude P →Q, Q→
R �A1

P → R.

1. P →Q A
2. Q→ R A
3. P A
4. Q 1, 3 (MP)
5. R 2, 4 (MP)

Figure 15.5. A derivation from
assumptions in system A1.
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How do we establish the deduction theorem for a system? The strategy
is as follows. We assume that we have a derivation of γ from assumptions
α1, . . . , αn and β, and we want to construct a derivation of β → γ from
assumptions α1, . . . , αn. What we do first is add “β →” to the front of every
wff in our derivation of γ ; we call the result the “prefixed list.” Note that the
last line of the prefixed list is β → γ . We now show that we can add steps to
the prefixed list in such a way that it becomes a legitimate derivation from
assumptions α1, . . . , αn. We show this by induction on the length of the
prefixed list. Here we illustrate for the case of A1.

Base case. The first line of the prefixed list is β → α, for some α. Because this
α is the first line of our original derivation in A1 from assumptions α1, . . . , αn

and β, there are only three possibilities. (i) The formula α is an axiom of A1.
In this case we insert the following lines in our prefixed list (above the line
β → α):

1. α Axiom of A1

2. α → (β → α) (A1)

Now β → α follows from these two lines by (MP), and so the first three
lines of the prefixed list are now a legitimate derivation of β → α. (ii) The
formula α is one of α1, . . . , αn. This case is handled in the same way as the
previous case. This time, α is not an axiom of A1, but it is one of α1, . . . , αn,
so the result of expanding our prefixed list in the way indicated will be—
as desired—a legitimate derivation of β → α from assumptions α1, . . . , αn.
(iii) The formula α is β. In this case the first line of our prefixed list is β → β.
Now look at the first five lines of the proof in Figure 15.2: if we put in β in
place of ¬P , we would have a legitimate proof of β → β. We insert the first
four lines of this proof of β → β in our prefixed list (above the line β → β),
and so the first five lines of the prefixed list are now a legitimate derivation of
β → β.

Induction. Suppose that lines 1 through n of the prefixed list have now had
lines inserted before them, so as to render the result a legitimate derivation
of line n.18 We want to show that extra lines can now be inserted before line
n + 1 to render the result a legitimate derivation of that line. Line n + 1 of
the prefixed list is β → α, for some α. Because this α is line n + 1 of our
original derivation in A1 from assumptions α1, . . . , αn and β, there are four
possibilities regarding it. Three of them—that α is an axiom of A1, that α

is one of α1, . . . , αn, and that α is β—are handled in the same way as in
the base case. The fourth option is that α follows from earlier steps δ and
δ → α in the original derivation by (MP). In this case the prefixed list—and
hence our derivation of line n (which we assume to exist, by the inductive
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hypothesis)—must contain β → δ and β → (δ → α). Then we need only
insert the following lines above line n+ 1:

(β → (δ → α))→ ((β → δ)→ (β → α)) (A2)
(β → δ)→ (β → α) (MP)

Now line n+ 1—that is, β → α—follows by (MP).
Note that the deduction theorem does not hold in every axiomatic system:

whether the above sort of proof can be carried through successfully depends
on the particular axioms and rules of the system. We have seen that the deduc-
tion theorem holds in A1. It also holds in A2 by virtually identical reasoning.
In A∀=

1 , however, it holds in a restricted form: if there is a derivation of γ from
assumptions α1, . . . , αn and β in which there is no application of (Gen) using
a variable that is free in β, then there is a derivation of β → γ from assump-
tions α1, . . . , αn.19

15.1.2 Formal and Informal Proofs

By a formal proof in a given axiomatic system we shall mean an axiomatic
proof or derivation as defined above: a sequence of wffs, each of which is
(i) an axiom, (ii) the output of one of the rules of inference when supplied
as input some wffs appearing earlier in the sequence, or (iii) (in the case of
derivations only) a member of the given set of assumptions. When working
with axiomatic systems, it is often convenient to show that a formal proof can
be given, without actually giving it. By an informal proof we shall mean a piece
of reasoning that is not itself a formal proof but establishes that a formal proof
exists.20

Let’s consider some examples. Taken as a whole, the reasoning in Figure 15.6
is not a formal proof. Lines 1–5 on their own constitute a formal proof in
system A1, but then lines 6 and 7 have a different status. These lines contain
the symbol �, which is not a symbol of the logical language and hence never
appears inside a formal proof.21 Rather, � is a symbol we use when talking
about a system of axiomatic proof. If we have a formal proof with last line P in,
for example, system A1, then we can conclude “P is provable in system A1,” and
we abbreviate this claim as �A1

P . Thus, in the informal proof in Figure 15.6,
we work within the axiomatic proof system until line 5, and then we step
outside it in steps 6 and 7 and make claims about what is provable in the
system. Step 6 is justified by the existence of the formal proof comprising steps
1–5. Step 7 then follows from step 6 and the deduction theorem (abbreviated
as DT in the proof).

Figure 15.7 shows a second example of an informal proof. Note line 6.
The first five lines of the proof in Figure 15.2 constitute a formal proof of
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1. P →Q A
2. Q→ R A
3. P A
4. Q 1, 3 (MP)
5. R 2, 4 (MP)
6. P →Q, Q→ R , P � R 1–5
7. P →Q, Q→ R � P → R 6, DT

Figure 15.6. An informal proof in system A1.

1. ¬¬P A
2. ¬¬P → (¬P →¬¬P) (A1)
3. (¬P →¬¬P)→ ((¬P →¬P)→ P) (A3)
4. ¬P →¬¬P 1, 2 (MP)
5. (¬P →¬P)→ P 3, 4 (MP)
6. ¬P →¬P lines 1–5 of proof in Figure 15.2
7. P 5, 6 (MP)

Figure 15.7. An informal proof in system A1.

1. P →Q A
2. ¬¬P A
3. ¬¬P → P proof in Figure 15.7, DT
4. P 2, 3 (MP)
5. Q 1, 4 (MP)
6. P →Q, ¬¬P �Q 1–5
7. P →Q � ¬¬P →Q 6, DT

Figure 15.8. An informal proof in system A1.

¬P →¬P . As we now know such a proof exists, we can enter ¬P →¬P in
our informal proof in Figure 15.7. If we want to transform this informal proof
into a formal proof, we need to insert all five lines of the proof of ¬P →¬P ,
not just the final line.

Figure 15.8 shows a third example of an informal proof. Note line 3. The
proof in Figure 15.7 begins with the assumption ¬¬P and ends with P . It
therefore establishes that ¬¬P � P . From this and the deduction theorem,
it follows that � ¬¬P → P . So in the proof in Figure 15.8, we can write in
¬¬P → P at line 3. To make the informal proof in Figure 15.8 into a formal
proof, we should need to insert all the lines of the proof of ¬¬P → P , not
just the final line. We do not know what these lines are, but we do know that
they exist, and when producing an informal proof, that suffices.
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1. Q A
2. Q→ (P →Q) (A1)
3. P →Q 1, 2 (MP)
4. ¬¬P →Q 3, line 7 of proof in Figure 15.8
5. Q→ (¬¬P →Q) 1–4, DT

Figure 15.9. An informal proof in system A1.

Figure 15.9 shows a final example of an informal proof. Note line 4. From
line 7 of the proof in Figure 15.8, we know that we can derive ¬¬P →Q

from P →Q. But in the proof in Figure 15.9, we already have P →Q at
line 3. So at line 4 we may enter ¬¬P →Q. To fill out the informal proof
in Figure 15.9 and make it a formal proof, we need to insert all lines of the
derivation of ¬¬P →Q from P →Q, not just the final line. Once again, we
do not know what these lines are, but we do know that they exist, and when
we are producing an informal proof, that is sufficient.

As the foregoing examples illustrate, informal proofs may differ from formal
proofs in one or both of two ways. First, they may omit some steps. That is,
every line of the informal proof is the sort of thing that could appear as a line in
a formal proof, but there are not enough of these lines to make up a (complete)
formal proof. Second, informal proofs may contain lines including symbols
such as �, which never appear inside formal proofs. Such symbols are used
only when we are talking about what can be proved in a given system—not
when producing formal proofs in that system.

15.1.3 Soundness and Open Wffs

The way to show that an axiomatic proof/derivation system is sound is to
show that its axioms are logical truths and its rules are logicaltruth-/truth-
preserving. That’s all very well for the systems for propositional logic, but
we cannot possibly show this for A∀

1, because in that system, we can prove
wffs with free variables. For example, ∀xPx → Py is an instance of (A4),
and hence has a one-line proof. Yet our semantics assigns truth values only
to closed wffs—those with no free variables. So our axiomatic system allows
us to prove something that our semantic framework does not recognize as true
or false in any model, and hence certainly does not recognize as a logical truth
(i.e., true in every model). This problem never arose with tree proofs, because
only closed wffs appear in trees. There are axiomatic systems that likewise
allow only closed wffs to appear in derivations, for example, the system of
Quine [1951] mentioned in §15.1. However, there are also ways of making
sense of systems, such as A∀

1, that allow derivations of open wffs. As already
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stated, we know that such a system cannot be sound, as we defined soundness
above:

If α1, . . . , αn �A β, then α1, . . . , αn
= β

because given that the system allows us to prove an open wff, it could be sound
only if that open wff were true on all models—and open wffs are never true.
So what we must do is replace the requirement of soundness with some other
notion that serves as well. We shall discuss two options here: closure-soundness
and sowndness.

§

First we discuss closure-soundness. The universal closure (or just “closure” for
short) [[α]] of a wff α is the result of prefixing α with one universal quantifier
∀x for each variable x that has a free occurrence in α. So if α is closed—
contains no free variables—its universal closure [[α]] is simply α itself (no free
variables, so no quantifiers prefixed). If α contains free occurrences of x and
y (and of no other variables), then its universal closure is ∀x∀yα, and so on.22

Note that whether α is open or closed, [[α]] is always closed.
Now we say that system A is closure-sound just in case:

If α1, . . . , αn �A β, then [[α1]], . . . , [[αn]]= [[β]]

The basic idea is this. We allow open wffs in derivations, for the sake of con-
venience, but we know that open wffs cannot be true. So when interpreting a
derivation—extracting information from it about what wffs are logical truths,
which arguments are valid, and so on—we regard any open wff in the deri-
vation as standing proxy for its universal closure. So if we have a proof of an
open wff α, we regard this proof as telling us not that α is a logical truth, but
that its universal closure [[α]] is a logical truth; when we write an open wff in a
derivation as an assumption, we are assuming that its closure is true (in some
model), and so on. Now to show that an axiomatic system is closure-sound, we
need to show (i) that the closure of each axiom is a logical truth and (ii) that
for each rule, if the closures of all inputs are true, then the closure of the output
is true.

§

We turn now to the second option: sowndness. Sowndness is defined in terms
of a new notion, trewth, which is itself defined in terms of another notion,
satisfaction.23 The notion of satisfaction applies to open and closed wffs alike.
Where a closed wff is true or false relative to one thing—a model—a wff is
satisfied or unsatisfied relative to two things: a model and a value assignment
on that model. A value assignment v on a model M is just like an assignment
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of referents to names, except that it assigns values to variables: each variable is
assigned as value a particular object in the domain of the model. We use Mv

to denote a model M together with a value assignment v on M.
Recall that a term is a name or variable. Where t is a term, M is a model,

and v is a value assignment on M, let [t]Mv be the referent of t in M (in case
t is a name) or the value assigned to t by v (in case t is a variable).

The notion of satisfaction relative to a model and a value assignment on
that model is now defined as follows; like the definition of truth in a model in
§12.2.1.2, the definition has one clause for each type of wff in the language:

1. P nt1 . . . tn is satisfied relative to Mv iff the ordered n-tuple
〈[t1]Mv , . . . , [tn]Mv〉 is in the extension in M of P n.

2. ¬α is satisfied relative to Mv iff α is unsatisfied relative to Mv.24

3. (α ∧ β) is satisfied relative to Mv iff α and β are both satisfied relative to
Mv.

4. (α ∨ β) is satisfied relative to Mv iff one or both of α and β is satisfied
relative to Mv.

5. (α → β) is satisfied relative to Mv iff α is unsatisfied relative to Mv or β

is satisfied relative to Mv (or both).

6. (α ↔ β) is satisfied relative to Mv iff α and β are both satisfied, or are
both unsatisfied, relative to Mv.

7. ∀xα is satisfied relative to Mv iff α is satisfied relative to Mv′ for every
value assignment v′ on M that differs from v at most in what it assigns
to x.

8. ∃xα is satisfied relative to Mv iff α is satisfied relative to Mv′ for some
value assignment v′ on M that differs from v at most in what it assigns
to x.

We now define trewth as follows. We say that a wff is trew in a model if it is
satisfied relative to (that model and) every value assignment on that model. It
is fawlse in a model if it is unsatisfied relative to (that model and) every value
assignment on that model. Note that whereas a wff is satisfied or unsatisfied
relative to two things—a model and a value assignment on that model—a wff
is trew or fawlse relative to one thing—a model. So trewth is just like truth
in this respect, even though the former, but not the latter, is defined via the
notion of satisfaction.

If a wff α has no free variables, then what particular values v assigns is irrele-
vant to whether α is satisfied relative to Mv: what M assigns is all that matters.
We can see this by considering each clause in turn. Consider clause (1). For
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atomic wffs, if P nt1 . . . tn is closed—that is, t1, . . . , tn are all names—then

what it takes for P nt1 . . . tn to be satisfied relative to Mv is exactly what it takes
for P nt1 . . . tn to be true relative to M: the ordered n-tuple consisting of the
referents in M of t1 through tn must be in the extension in M of P n. Clauses
(2)–(6) can be considered together. If the particular values v assigns are irrel-
evant to whether α is satisfied relative to Mv, then it is clear from clause (2)
that they are irrelevant to whether ¬α is satisfied relative to Mv; similarly for
clauses (3)–(6). Now consider clause (7). If ∀xα is closed—that is, α can be
represented as α(x)—then what it takes for ∀xα to be satisfied relative to Mv

is exactly what it takes for ∀xα(x) to be true relative to M: α will be satis-

fied relative to Mv′ for every value assignment v′ on M that differs from v at
most in what it assigns to x just in case for every object o in the domain of M,
α(a/x) is true in M

a
o . Similar comments apply to clause (8).

Thus, a quick way (for someone who already understands the notion of
truth) to conceptualize a closed wff being satisfied relative to Mv is that the wff
is true relative to M. Furthermore, a closed wff will be (un)satisfied relative
to one value assignment on a model just in case it is (un)satisfied relative to
all value assignments on that model. Hence, a closed wff is trew in a model
just in case it is true in that model: trewth and truth are coextensive among
closed wffs.

Some additional notation is useful here. We use α(x , y , . . .) to indicate
a wff that does have free occurrences of x , y , . . . and does not have free
occurrences of any other variable. We use α(a/x , b/y , . . .) to indicate the wff
that results from α(x , y , . . .) by replacing each free occurrence of x by a, each
free occurrence of y by b, and so on. Now, a quick way to conceptualize an
open wff α(x , y , . . .) being satisfied relative to Mv is that, where a , b, . . .
are names not assigned referents in M, α(a/x , b/y , . . .) is true relative to the
model M′ just like M except that it assigns as referent to a what v assigns as
value to x, as referent to b what v assigns as value to y, and so on. In other
words, think of free variables as names, and of a model plus value assignment
as an extended model that assigns those names referents; satisfaction is then
simply truth relative to the extended model.

§

So much for the definitions of satisfaction and trewth. We come now to the
key point: an open wff can be trew on a model. Consider the wff Px and the
following model:

Domain: {Bill, Ben, Alice, Mary}
Extension of P : {Bill, Ben}
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Relative to a value assignment on this model that assigns Bill as the value of x,
Px is satisfied; relative to an assignment that assigns Alice as the value of x,
Px is unsatisfied. So Px is neither trew (satisfied relative to all assignments)
nor fawlse (unsatisfied relative to all assignments) in this model. But consider
the wff ∀xPx → Py. The antecedent is false in this model; hence, by what
we said above, the antecedent is unsatisfied relative to every value assignment
on this model, and so the whole conditional is satisfied relative to every value
assignment un this model. Hence, the conditional—an open wff—is trew in
this model.

Indeed, it is trew in every model. What we just said goes for any model in
which the antecedent is false. For a model in which the antecedent is true—
that is, in which everything in the domain is in the extension of P —the
consequent Py is satisfied no matter what object is assigned as the value of
y, and so the whole conditional is satisfied relative to every value assignment.
Hence, ∀xPx → Py is a logical trewth (trew on every model).

Other analogues of our key semantic notions can likewise be defined in
terms of trewth and fawlsity: just as logical trewth is trewth in every model,
so a conclusion is a logical conseqwence of some premises just in case there is
no model in which the premises are trew and the conclusion fawlse, and so on.

Now return to the problem of what property to require in a system that
allows us to derive open wffs, given that we cannot require that it be sound.
We require that it be sownd, where a system A is sownd just in case:

If α1, . . . , αn �A β, then β is a logical conseqwence of α1, . . . , αn

To show that an axiomatic system is sownd, we need to show that its axioms
are all logical trewths and its rules are all trewth-preserving.

Note that the second approach to the problem of finding a suitable substi-
tute for soundness for systems that allow derivations of open wffs ultimately
comes to the same thing as the first approach. For an open wff α(x) is trew
in a model just in case it is satisfied by every value assignment on that model.
That is, in terms of our intuitive gloss, just in case, treating x as a name, α(x)

is true in every extension of the model that assigns a referent to x. But that, as
we have also seen, is precisely what it takes for the closure of α(x) to be true in
the model in question.25

15.1.4 Completeness

We have indicated strategies for showing that an axiomatic system is sound/
closure-sound/sownd. We now indicate a strategy for showing that an ax-
iomatic system is complete. We want to show that if β is a logical consequence
of α1, . . . , αn, then β is derivable from assumptions α1, . . . , αn. In proving
completeness for trees—if β is a logical consequence of α1, . . . , αn, then a
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finished tree beginning with α1, . . . , αn and ¬β closes—we showed the con-
trapositive: if a finished tree remains open, then β is not a logical consequence
of α1, . . . , αn. Here too, we aim to establish the contrapositive: if β is not
derivable from assumptions α1, . . . , αn, then β is not a logical consequence
of α1, . . . , αn.26

Now think about what happens when we try to show using trees that
α1, . . . , αn/∴ β is valid, when in fact it is not valid. The attempt leaves us with
something valuable: a saturated open path. It is valuable because we can read
off from it a model in which the premises are true and the conclusion false—
and this model plays a key role in the completeness proof (§14.1.3). In the
case of an axiomatic system, however, when we try to derive β from assump-
tions α1, . . . , αn when in fact β is not a logical consequence of α1, . . . , αn, we
are left with nothing. We simply fail to find a derivation, and that’s it: we get
nothing useful, such as a saturated open path, for our efforts. So in proving
completeness for an axiomatic system, first we play catch-up, to get us to the
stage of having something (call it X for now) that will play the role of a satu-
rated open path. From there we proceed as in the case of trees: we construct
a model from X and then show that in this model, α1, . . . , αn are true and β

is false.
Different completeness proofs for different systems will construct different

Xs (e.g., maximal consistent sets of wffs), but we can illustrate the point in
a way that will make it easier to understand—easier, that is, for those who
have already seen the completeness proof for trees—by supposing that the X

we construct is a saturated consistent set of wffs containing α1, . . . , αn and
¬β. We explain the notions of a consistent set and a saturated set in turn. A
saturated consistent set is then simply one that is saturated and consistent.

A set � of wffs is consistent relative to axiomatic system A—or A-
consistent—if there is no wff α such that one can both derive α in system
A from assumptions in � and derive ¬α in system A from assumptions in �.
When it is obvious from context which proof system A is meant, we may just
refer to consistent sets (instead of A-consistent sets).

To explain the notion of a saturated set, we first introduce the notion of an
uncrossed tree. An uncrossed tree is simply a tree in which we never close any
paths: we just keep on applying rules until all paths are saturated, without ever
checking for closure. So in an uncrossed tree, a path might have α in it, and
then later ¬α is added, but we do not close the path and stop applying rules:
we keep right on going. Now, a set � of wffs is saturated if there is a saturated
path in an uncrossed tree such that � contains all and only wffs appearing on
that path. For example, consider a tree beginning with (A ∨ B) ∧ ¬(A ∨ B).
If we check for closure, we add (A ∨ B) and ¬(A ∨ B) and then close
the path:
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(A ∨ B) ∧ ¬(A ∨ B) �
(A ∨ B)

¬(A ∨ B)

×
However, the set {(A∨B)∧¬(A∨B), (A∨B), ¬(A∨B)} is not saturated.
Rather, we need to suppose that we go on applying rules as long as we can,
forgetting about closing paths. So we add ¬A and ¬B and then add a branch
with A on one side and B on the other:

            (A ∨ B) ∧ ¬(A ∨ B) �
         (A ∨ B) �
    ¬(A ∨ B) �

¬A
¬B

BA
Now there are no more rules that can be applied. We have two saturated paths,
giving two saturated sets: {(A ∨ B) ∧ ¬(A ∨ B), (A ∨ B),
¬(A ∨ B), ¬A, ¬B , A} and {(A ∨ B) ∧ ¬(A ∨ B), (A ∨ B), ¬(A ∨ B),
¬A, ¬B , B}. So if a saturated set contains (α ∨ β), then it also contains α

or β; if it contains ∀xα(x), then it also contains α(a/x) for every name a that
occurs in any wff in the set, and so on.

§

Our strategy for proving completeness is now to show the following (where
α1, . . . , αn ��A β means that there is no derivation in system A of β from
assumptions α1, . . . , αn):

(A) If α1, . . . , αn ��A β, then there is a saturated A-consistent set of wffs
containing α1, . . . , αn and ¬β.

This is the catch-up step; from here, we just link in with the completeness
proof for trees. For note that if a set � is A-consistent, then it cannot con-
tain both α and ¬α, for any wff α. (If it did, then there would be one-line
derivations of α and of ¬α from assumptions in �.)27 But then our saturated
consistent set of wffs is just like a saturated open path, and we know how to
read off a model from such a path (set). In addition, we know (from the com-
pleteness proof for trees) how to prove that every wff on the path (in the set)
is true in that model. Hence, in particular, α1, . . . , αn and ¬β are true in the
model; hence, α1, . . . , αn are true, and β is false. And that is exactly what we
need to show to establish completeness: if α1, . . . , αn ��A β, then there is a
model in which α1, . . . , αn are true, and β is false.

15.1 Axiomatic Systems 403



It only remains, then, to establish (A). We need to show that there is a set
with three properties: (i) it contains α1, . . . , αn and ¬β, (ii) it is saturated,
and (iii) it is A-consistent. Suppose we write α1, . . . , αn and ¬β at the top
of a tree and then apply rules—without crossing any paths—until every path
in the tree is saturated (there may be some infinite paths). (For the remainder
of this section, “tree” means “uncrossed tree.”) As every path in this tree is
saturated and contains α1, . . . , αn and ¬β, properties (i) and (ii) will hold if
we take as our set the wffs on some path in the tree. That just leaves property
(iii) to consider. What we need to show is:

(B) If α1, . . . , αn ��A β, then any tree starting with α1, . . . , αn and ¬β has at least
one A-consistent path.

(For brevity, we say that a path is A-consistent when the set of all wffs on the
path is A-consistent.) Establishing (B) completes the proof of (A): if there is
an A-consistent path through our tree, then there is a saturated A-consistent
set of wffs containing α1, . . . , αn and ¬β (i.e., the set of wffs on this path).

We establish (B) by proving three claims:
(i) The initial tree (i.e., at stage 0—recall §14.1.2), which contains just

α1, . . . , αn and ¬β, has only one path, which is A-consistent. For sup-
pose otherwise: suppose there is some α such that α1, . . . , αn, ¬β �A α and
α1, . . . , αn, ¬β �A ¬α. We now show how to turn these derivations into a
derivation of β from assumptions α1, . . . , αn.28

(ii) The tree rules all preserve A-consistency. More precisely, suppose we are
applying some rule at the bottom of a path p. Our nonbranching rules, which
will extend p to p′, all have this property:

If p is A-consistent, then p′ is A-consistent

and our branching rules, which will create two paths q and r, all have this
property:

If p is A-consistent, then either q is A-consistent, or r is A-consistent, or both

We establish these properties by considering each tree rule in turn. For ex-
ample, take the rule for unnegated conjunction. We want to show that if
� , α ∧ β , α , β �A γ and � , α ∧ β , α , β �A ¬γ , then � , α ∧ β �A γ and
� , α ∧ β �A ¬γ . This will be easy to show, as long as α ∧ β �A α and α ∧
β �A β.

It follows from (i) and (ii) that at every stage n of its construction, any
tree starting with α1, . . . , αn and ¬β has at least one A-consistent path. To
complete the proof of (B)—which applies to any tree, not just any finite tree—
we need to show:
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(iii) If every stage n in the construction of an infinite path is A-consistent,
then the infinite path itself is A-consistent (i.e., A-consistency cannot vanish
only at infinity).29 So suppose we have an infinite path that is not A-consistent.
Then we have derivations of α and ¬α from assumptions in this path. But
every derivation is a finite list of wffs, involving at most finitely many assump-
tions. So there must be a stage n in the construction of our infinite path at
which all the assumptions in both derivations have appeared in the path; but
then at this stage n, the path is not A-consistent.

§

We conclude our discussion of axiomatic systems by mentioning some of their
main advantages and disadvantages. The principal disadvantages of axiomatic
systems are as follows. Formal proofs and derivations can be very long; they
can also be very difficult to find (unlike the tree method, axiomatic systems do
not come with a built-in effective procedure for finding proofs; recall §14.3.4).
In addition, when an argument is not valid, the attempt to prove that it is valid
yields nothing, as opposed to something useful, such as an open path (unlike
trees, axiomatic systems provide no proofs of invalidity or other s-properties;
recall §14.3.2). So if our concern is to find out whether a certain proposition
is a logical truth, or whether a certain argument is valid, an axiomatic system
will not in general be the best choice of proof method.

Axiomatic systems are, however, well suited to certain metalogical projects.
Derivations have an especially simple structure: they are finite sequences of
wffs. Sound and complete axiomatic systems, then, give us a particularly
tractable handle on the relation of logical consequence.

Axiomatic systems are also the standard format for the presentation of ax-
iomatic theories (compare §11.3). An axiomatic theory may be obtained from
an axiomatic logical system simply by adding some extra nonlogical axioms—
statements that, intuitively, characterize the subject matter of the theory in
question. When thinking in this way, it is also common to start with a logical
language that contains only logical vocabulary (i.e., its signature is the empty
set) and then regard a theory as bringing with it not only its own nonlogi-
cal axioms but also any nonlogical vocabulary featured in them. For example,
the theory of linear orders has the following nonlogical axioms (and one non-
logical predicate, R):30

∀xRxx reflexivity
∀x∀y∀z((Rxy ∧ Ryz)→ Rxz) transitivity
∀x∀y((Rxy ∧ Ryx)→ x = y) antisymmetry

∀x∀y(Rxy ∨ Ryx) connectedness

They characterize the subject matter of the theory (linear orders) in the sense
that if we ask “what is a linear order?,” the answer is “any model that makes
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true all the axioms.” So, for example, the set of natural numbers ordered in the
usual way is a linear order (all the axioms are true in a model with a domain
consisting of the set of natural numbers and 〈x , y〉 in the extension of R just in
case x ≤ y), and the set of towns on the Hume Highway ordered by distance
from Melbourne is a linear order (all the axioms are true in a model with a
domain consisting of the set of towns on the Hume Highway and 〈x , y〉 in
the extension of R just in case x is at least as close as y to Melbourne). In
just the way that axiomatic logical systems give us a tractable handle on the
logical consequence relation, axiomatizing a theory—encapsulating it in some
nonlogical axioms, which are added to a base axiomatic proof system for pure
logic—gives us a tractable handle on the class of models in which the theory
is true.

15.1.5 Exercises

1. Show the following in A1 by producing formal proofs.

(i) ¬P →Q, ¬P �Q

(ii) P � ¬Q→ P

(iii) ¬Q � (¬P →Q)→ P

(iv) � P → P

(v) ¬(P →¬Q) �Q

(vi) P , ¬P �Q

(vii) P ∧Q � (P →¬Q)→¬(P →¬Q)

2. Show the following in A1 by producing formal or informal proofs.

(i) � ¬(P →¬Q)→Q

(ii) � P → (P ∨Q)

(iii) � ((P →Q)→ (P → R))→ (P → (Q→ R))

(iv) � (P →Q)→ (¬Q→¬P)

(v) P →Q, P →¬Q � ¬P

(vi) P →Q, ¬Q→ P �Q

(vii) � (P → (Q→ R))→ (Q→ (P → R))

3. Show the following in A2 by producing formal or informal proofs.

(i) � P →¬¬P

(ii) P →¬P � ¬P

(iii) P →Q � ¬Q→¬P

(iv) � ¬Q→ (Q→ P)

(v) P ∧Q � P →Q

(vi) ¬Q � (P ∨Q)→ P

(vii) ¬P ∧ ¬Q � ¬(P ∨Q)

(viii) ¬(P ∨Q) � ¬P ∧ ¬Q

(ix) � ¬(P ∧ ¬P)

(x) � (P ∧ ¬P)→Q

(xi) � P ↔ P

(xii) � P → (¬P →Q)

4. Show the following in A∀=
1 by producing formal or informal proofs.

(i) ∀x(Fx →Gx), Fa �Ga
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(ii) ∀xFx � ∀x(Gx ∨ Fx)

(iii) ∀x∀y(Rxy → Ryx), Rab � Rba

(iv) ∃xFx →¬Ga �Ga →∀x¬Fx

(v) � Fa →∃xFx

(vi) Fa , a = b � Fb

(vii) ∀x∀yx = y � a = b

(viii) a = b, a = c � c = b

(ix) � a = b→ b = a

(x) Fa , ¬Fb � ¬a = b

(xi) ¬b = a , ∀x(¬Fx → x = a) � Fb

(xii) � ∀xFx →∀yFy

5. Explain why the original unrestricted deduction theorem does not hold
in A∀=

1 and why the restricted version stated at the end of §15.1.1.1 does
hold.

15.2 Natural Deduction

Natural deduction systems are superficially similar to axiomatic systems that
allow derivations from assumptions, but there are fundamental differences
between the two kinds of proof system. The most crucial difference is that
although both kinds of system allow assumptions to feature in derivations,
only in natural deduction systems may assumptions be discharged. To see
what this means, consider the deduction theorem in an axiomatic system
(e.g., system A1). Consider the derivation in Figure 15.5, which establishes
P →Q, Q→ R , P �A1

R. The deduction theorem allows us to conclude
P →Q, Q→ R �A1

P → R. That is, it allows us to conclude that there is
a derivation in A1 of P → R (from assumptions P →Q and Q→ R), but it
does not give us such a derivation. This is crucially important: the deduction
theorem does not allow us to write in P → R as the next line at the end of the
derivation in Figure 15.5; it just tells us that there is a derivation with last line
P → R.31 The deduction theorem does not indicate what such a derivation
looks like (although the proof of the deduction theorem does this)—it just
establishes that such a derivation exists in the abstract.

Now a thought along the following lines might occur to you. A perfectly
good way of showing that the conditional P → R is true (given assumptions
P →Q and Q→R) is precisely to assume P (as well as P →Q and Q→R)
and then derive R. That is precisely how we establish the truth of conditionals
in ordinary reasoning: we assume the antecedent and then derive the conse-
quent. (There are many examples of this procedure in this book. For example,
in the completeness proof in §14.1.3, we want to establish the conditional “if
there is an open path in a finished tree that begins with α1, . . . , αn, then there
is a model in which α1, . . . , αn are all true.” So we assume that the antecedent
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is true, and then show, given this assumption, that the consequent is true.)
So a formal system of proof that reflects our ordinary reasoning practice—a
natural deduction system—would allow us to do precisely what the deduc-
tion theorem does not allow: to write in the conditional P → R as the next
line in our derivation, after deriving R from the assumption P . The idea is
that the way we establish a conditional is precisely by deriving its consequent
from its antecedent. Once that is done, we actually have established the condi-
tional in that derivation. So we can write in the conditional as the next line in
that derivation, rather than simply concluding that there must be some other
derivation in which the conditional is the last line.

Now think about what happens to the assumption P after we derive R from
it and then conclude—on the basis of this derivation—the conditional P →
R. The derivation of R depends on the assumption that P , but the conclusion
P → R does not. We do not conclude P → R given the assumption that P .
We conclude R given the assumption that P , and then from this we conclude
P →R (i.e., we conclude P →R precisely on the basis of having derived R on
the assumption that P : that derivation itself is the reasoning establishing the
conditional). So the assumption P is discharged. The intermediate conclusion
R depends on this assumption, but the conclusion P → R does not.

So the first characteristic of natural deduction proof methods is that they
not only allow assumptions but also have a system for keeping track of what
conclusions depend on what assumptions—a method for keeping track of
when each assumption is in force (i.e., when the reasoning is proceeding only
given that assumption) and when it has been discharged.

The second characteristic of natural deduction systems is that they typically
have few axioms and many rules of inference. In fact, canonical natural de-
duction systems have no axioms, and two rules of inference for each logical
operator: an introduction rule and an elimination rule.

§

We can best explain these two features by introducing a particular natural
deduction system. In this system, when we make an assumption, we write it
in the top section of a box, separated from the bottom section of the box by a
line. For example, here we assume P →Q:

P → Q

We start a new box when we make an assumption. So if we later want to make
another assumption, we have to enclose it in a new box. For example, here
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we initially assume P →Q, and then as the next step of our proof we assume
Q→ R:

Q → R

P → Q

A wff or a box is in a box b if it is immediately enclosed in b, that is, enclosed
in b and not also enclosed in any box that is enclosed in b. A wff or a box is
inside a box b if it is enclosed in b at any depth: whether immediately in it, or
enclosed in a box that is in it, and so on. So in our previous example, if we call
the outer box a and the inner box b, P →Q is both in and inside box a, and
it is not in or inside box b; Q→ R is inside but not in box a, and it is both in
and inside box b; box a is not in or inside box a or box b; box b is both in and
inside box a; and box b is not in or inside box b.

We said that any natural deduction system needs a way of keeping track of
when assumptions are in force and when they have been discharged. This is the
point of the boxes in the present system. An assumption is in force everywhere
inside the box it is in. An assumption is discharged when we close the box it is
in: when we move outside a box, the assumption written at the top of that box
is no longer in force.

Now we need to introduce the rules of inference of the system. As before, we
begin by restricting our attention to propositional logic. Figure 15.10 shows
a system of natural deduction rules for propositional logic [Bergmann et al.,
2009, pp. 160–239]; we refer to this system as N1. Note that in some cases
the input to the rule is a single wff; for example, given α as input, the rule
of ∨-introduction gives α ∨ β (or β ∨ α) as output. In some cases the input
is two wffs; for example, given α and β as input (in either order), the rule of
∧-introduction gives α ∧ β as output. In some cases the input is a subproof,
contained in its own box; for example, given a subproof whose assumption
(i.e., the first entry in the box, above the line) is α and whose last entry is β,
the rule of → introduction gives α → β as output (note that this output is
written outside the box, not inside it). Finally, in some cases the input is a
combination of wffs and subproofs; for example, given a wff α ∨ β and two
subproofs, one of which has assumption α and last entry γ and the other of
which has assumption β and last entry γ , the rule of ∨-elimination gives γ as
output. Rules that take subproofs as inputs allow us to discharge assumptions.
For when the rule is applied, the output is written outside the box; when we
move out of a box, the assumption at the top of that box is no longer in force.
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Connective Introduction rule Elimination rule

→
α

α → β

β

… α

α → β

� β

∧
α

β

� α ∧ β

α ∧ β

� α (or β)

¬

α

¬α

β

¬β

…

¬α

α

β

¬β

…

∨ α

� α ∨ β (or β ∨ α)

β

α ∨ β

γ

γ

…

α

γ

…

Figure 15.10. Natural deduction rules for system N1.

Figure 15.11 shows an example of a natural deduction proof. To facilitate
writing, we draw in only the left sides of boxes, and only the left ends of the
horizontal lines under assumptions.32 To facilitate reading, we number the
lines of the proof on the left and annotate them on the right to indicate where
they come from. In these annotations, subproof inputs are indicated by a range
of numbers; for example, 2–5 indicates the subproof whose assumption is the
wff on line 2 and whose last entry is the wff on line 5. We do not need to
annotate assumptions (e.g., by “A”): the fact that a wff occurs at the top of
a box and has a line immediately under it already indicates clearly that it is
an assumption. Introduction rules are indicated by the connective followed by
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1
2
3
4
5
6
7
8
9

10
11
12

2 (∨I)
2 (∨I)

3, 4 (∧I)

6 (∧E)
6 (∧E)
7 (∨I)
8 (∨I)

9, 10 (∧I)

A ∨ B
A ∨ C

A
A ∨ (B ∧ C)

(A ∨ B) ∧ (A ∨ C)

(A ∨ B) ∧ (A ∨ C)
B ∧ C

A ∨ C
A ∨ B
C
B

Figure 15.11. A proof in system N1.

1
2
3
4
5

1 (RI)
2–3 (→I)

A
B

A

B → A

Figure 15.12. A proof in system N1.

I (e.g., (∨I )); elimination rules are indicated by the connective followed by E

(e.g., (∧E)).
The proof in Figure 15.11 establishes A∨ (B ∧ C) �N1

(A∨ B)∧ (A∨ C).
In general, a natural deduction proof establishes α1, . . . , αn � β when β is the
last line of the proof, and α1, . . . , αn are all the assumptions that, as of that
last line, have not been discharged. There may be one such assumption (as in
the proof in Figure 15.11), more than one, or none. Figure 15.12 shows an
example of a proof with no undischarged assumptions. It also illustrates the
new rule repetition inward (RI), which is discussed below. Note that the final
line of this proof occurs outside all boxes: by the time we reach the final line,
every box has been closed; that is, every assumption has been discharged. This
proof establishes �N1

A→ (B → A).
What about the rule (RI), which is applied at line 3 of the proof? At line 1, we

assume A (starting a new box—call it box 1). At line 2, we assume B (starting
a second box—call it box 2). Now to close box 2 and conclude B → A using
the rule (→I ), we have to be able to derive A within box 2. But when we are in
box 2, we are still inside box 1 (box 2 is in box 1), so the assumption A is still
in play. So we can trivially “derive” A within box 2, because A is something
we are already assuming. The rule (RI) just makes this explicit. It allows us to
repeat any wff in a proof inside any box in which that wff appears. (It does
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1
2
3
4
5
6
7
8
9

10

1, 3 (→E)

1, 5 (∧I)
2, 6 (→E)

8 (RI)

A → (B ∨ C)
B ∨ C

(A ∧ B) → C
A

B
A ∧ B

C
C
C
C

Figure 15.13. A proof in system N1.

not allow a wff to be brought outside a box: repetition can only occur inward.)
Unlike the other rules, (RI) is not a substantive rule of inference but is merely
a bookkeeping rule: it simply makes explicit at a certain stage of a proof that a
certain assumption is indeed in play at that stage.

Figure 15.13 shows a third example of a natural deduction proof. This proof
establishes A, (A ∧ B)→ C , A→ (B ∨ C) �N1

C.
The system N1 does not contain rules for↔. With regard to such additional

connectives, we have the same choices in natural deduction systems as we
had in axiomatic systems: we can supplement our rules of inference with
definitions of the connectives that do not feature in the rules in terms of
connectives that do, or we can add additional rules (typically, an introduction
rule and an elimination rule for each additional connective).

§

We saw that there is not just one possible set of axioms and rules for propo-
sitional or predicate logic. There are various different axiomatic systems—
different combinations of axioms and rules—that are sound and complete
with respect to logical truth and/or validity. The situation is the same in natu-
ral deduction. Systems may differ, for example, concerning (i) which connec-
tives feature in the rules and (ii) which particular rules are used. Let’s look at
some examples. Consider the rules in Figure 15.14; names for these rules are
shown in parentheses.33 Let N−

1 be the set of rules of our original system N1

(shown in Figure 15.10) without the two negation rules (¬I ) and (¬E). Then
we can define the following systems:

. N2 is N−
1 plus (¬I ′), (¬E′), (¬¬I ), and (¬¬E);

. N3 is N−
1 plus (⊥E) and (TND);

. N4 is N−
1 plus (⊥E) and (NCD); and

. N5 is N−
1 plus (⊥E) and (RAA).
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α

¬α (¬I ′)

β ∧ ¬β

… α ∧ ¬α

� β (¬E′)

α

� ¬¬α (¬¬I )

¬¬α

� α (¬¬E)

� α ∨ ¬α (TND) ¬α

β (NCD)

β

…
α

β

…

⊥
� α (⊥E)

¬α

α (RAA)

⊥

…

Figure 15.14. More natural deduction rules.

In systems N3, N4, and N5, ⊥ is a primitive symbol of the system, and ¬ is
defined in terms of ⊥ and →, as in §6.6:

. ¬α := α →⊥

So in N3, for example, (TND) becomes α ∨ (α →⊥) when the negation is
defined out.

We said earlier that canonical natural deduction systems have no axioms,
and two rules of inference—an introduction rule and an elimination rule—
for each logical operator. We see now that not all natural deduction systems
fit this pattern. System N2 does not have just two rules for each connective:
∧ features in the rules (¬I ′) and (¬E′), as well as in (∧I ) and (∧E). And
N3 does not fit the model of having no axioms, because the rule (TND) has
no inputs and hence is simply an axiom—it allows us to write an instance of
α ∨ ¬α at any point in a proof.
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α(a/x)

� ∀xα(x) (∀I )

(Restrictions on a)

∀xα(x)

� α(a/x) (∀E)

α(a/x)

� ∃xα(x) (∃I )

α(a/x)

(Restrictions on a)

β (∃E)

β

…

∃xα(x)

� a = a (= I )

α(a)

a = b (or b = a)

� α(b//a) (= E)

Figure 15.15. Natural deduction rules for quantifiers and identity.

We turn now to predicate logic. Figure 15.15 shows rules for the quan-
tifiers and for identity; adding them to N1, for example, yields the system
N∀∃=

1 . As was the case with trees and axiomatic systems, we need to impose
some restrictions on the quantifier rules to avoid being able to prove argu-
ments/propositions that are not in fact valid/logically true. For (∀I ), a must
not occur in any assumption undischarged at the point we write the output
of the rule, and a must not occur in that output (i.e., in ∀xα(x)). For (∃E),
a must not occur in any assumption undischarged at the point we write the
output of the rule, and a must not occur in that output (i.e., in β), and it must
not occur in the input ∃xα(x). Figure 15.16 shows a proof in this system; the
proof establishes that ¬∃x(Fx ∧ ¬Gx) �

N∀∃=
1

∀x(Fx →Gx).

15.2.1 Soundness and Completeness

The primary notion of tree proofs is the satisfiability of a set of prop-
ositions, the primary notion of a system of axiomatic proof (i.e., without
assumptions) is a proposition being a logical truth, and that of a system of
axiomatic derivation (i.e., where assumptions are allowed) is the validity of an
argument (the argument whose premises are the assumptions of the deriva-
tion and whose conclusion is the last line of the derivation). Natural deduction
proofs are like axiomatic derivations from assumptions in this respect: their
principal notion is the validity of the argument whose conclusion is the last
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1
2
3
4
5
6
7
8
9

2, 3 (∧I)

1 (RI)
3–6 (¬E)

4 (∃I)

2–7 (→I)

¬Ga
Fa ∧ ¬Ga
∃x(Fx ∧ ¬Gx)
¬∃x(Fx ∧ ¬Gx)

Ga
Fa → Ga

Fa
¬∃x(Fx ∧ ¬Gx)

Figure 15.16. A proof in system N∀∃=
1 .

line of the proof and whose premises are all the assumptions that remain
undischarged as of that last line. Of course, although the notion of valid-
ity is foremost, natural deduction systems can still be used to answer other
questions of interest: α is a logical truth if we can prove it with no (undis-
charged) assumptions; a set � of wffs is unsatisfiable if we can prove both
α and ¬α from assumptions in � (for some wff α); two wffs α and β are
equivalent if we can both prove α from the assumption that β and prove β

from the assumption that α. However, like axiomatic systems—and unlike tree
systems—natural deduction systems do not provide proofs of the presence of
s-properties (e.g., invalidity); in other words, they do not provide proofs of
the absence of a-properties (e.g., validity). If one tries to prove β on the as-
sumption that α, when in fact β is not a logical consequence of α, one will
never end up with a proof that β does not follow from α: one will simply end
up with no proof at all. (In a tree system, in contrast, one might end up with a
proof that β does not follow from α: a finite finished tree with an open path.)34

To show that a natural deduction system is complete with respect to validity,
we can follow the strategy used in §15.1.4 for axiomatic systems. To show that
a natural deduction system is sound, however, we cannot proceed by trying
to show that each of its axioms (if it has any) is a logical truth, and that
each of its rules is truth-preserving (in the sense that for any model M, if
the inputs to the rule are all true in M, then the output is true in M). For
some rules take subproofs as inputs, and a subproof is not the kind of thing
that can be true or false in a model. What we do, then, is show by induction
that every line n of a natural deduction proof has the following property: if all
the assumptions in the proof that are undischarged as of line n are true in a
model M, then line n is true in that model. The base case concerns the first
line in a proof. This line must be either (i) an assumption α or (ii) an axiom
(if the system allows axioms). Of course α is true in any model in which it is
true, so case (i) is trivial; as long as the axioms are logical truths, case (ii) is
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equally straightforward. For the inductive step, we consider each possibility in
turn regarding the origin of line n: it is an assumption; it is an axiom; it is the
output of some rule. Let’s consider one example: line n is the output of (→I ):

α

α → β

β

j.

n.

k.

…
…

Let us use �i to denote the set of assumptions undischarged as of line i. Now
the part of the proof just shown might be nested within any number of boxes.
So we do not know exactly what assumptions are undischarged as of line n.
What we do know, however, is that �n contains everything �k contains except
perhaps α, because the assumption of α at line j is discharged when we write
α → β at line n on the basis of rule (→I ).35 The inductive hypothesis tells
us that �k

= β. Because the only thing �k could contain that �n does not is
α, it follows that �n ∪ {α} = β, where �n ∪ {α} is the set of wffs containing
everything in �n and (also) α.36 But if β is true in every model in which α and
every wff in �n are true, then α → β is true in every model in which every wff
in �n is true, because the only way α → β can be false is if α is true and β is
false. And that is precisely our desired result: �n

= α → β.
As with axiomatic systems, there are systems of natural deduction that allow

open wffs to appear in proofs. Comments analogous to those made in §15.1.3
apply concerning the interpretation of such proofs.

15.2.2 Boxes, Lists, and Stacks

The key characteristic of natural deduction proof methods is that they allow
assumptions to be discharged, and so a natural deduction system requires a
method for keeping track of when assumptions are in play and when they have
been discharged. Boxes are only one such method.37 Two other methods in
common use are lists and stacks.

In the list method, we write a proof as a flat list of wffs, as in axiomatic
proofs (in contrast to a nested list, as in the box method). However, in addition
to the line numbers and annotations, we have an additional column showing
the dependency set for each line of the proof.38 The dependency set of a line
n—written to the left of its line number—is a set of numbers: it contains the
line numbers of assumptions on which line n depends. When presenting rules
for such a system, we not only need to say what output each rule yields for
given inputs, we also must specify how the dependency set of the output is
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{1} 1. A→ (B → C) A
{2} 2. B A
{3} 3. A A
{1, 3} 4. B → C 1, 3 (→E)

{1, 2, 3} 5. C 2, 4 (→E)

{1, 2} 6. A→ C 3, 5 (→I )

{1} 7. B → (A→ C) 2, 6 (→I )

Figure 15.17. A list-style natural deduction
proof.

derived from the dependency sets of its inputs. For example, here is a rule for
→ elimination:

� n. α

 m. α → β

� ∪ k . β n, m (→E)

In this rule n, m, and k are line numbers; n and m may come in either order;
k comes after them both. On the left of the line numbers are dependency
sets. The idea is, when we conclude β from α and α → β, the conclusion
depends on everything on which the two inputs depend: no assumptions get
discharged. Contrast the rule for → introduction:

{n} n. α A
 ∪ {n} m. β

 k . α → β n, m (→I )

Here, n comes before m (because m depends on n—see on), and k comes after
them both. The idea is as follows. We assume α and derive β on the basis of
this assumption. The fact that β is derived on the basis of the assumption that
α is made clear by the dependency set for line m (β’s line) containing n (α’s
line number). Of course, β may also depend on earlier lines as well: that is the
point of the set  (it contains the numbers of all lines apart from α’s line on
which β depends). So β depends on α. But when we then conclude α → β—
on the basis of having derived β on the assumption that α—the conclusion
α→ β does not depend on the assumption of α at line n: that assumption gets
discharged. So the dependency set of line k (α → β’s line) does not include n

(α’s line): it includes only whatever other lines β’s line depends on (i.e., the
lines in ). Figure 15.17 show a proof illustrating the use of these rules.

Note that a new assumption depends only on itself. This highlights the im-
portant point that the set of assumptions on which a given line n depends (in
list-style natural deduction proofs) cannot be equated with the set of assump-
tions that are undischarged as of line n (in box-style natural deduction proofs).
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For example, suppose we make two assumptions in a row. In a list proof the
second assumption depends only on itself, whereas in a box proof the first as-
sumption is still in play at the time of making the second assumption. In fact,
the idea of an assumption being in play for a while (viz., as long as we are in-
side the box it is at the top of) and then (perhaps) being discharged (when that
box is closed) does not pertain to list-style natural deduction systems. Instead,
it is replaced by the idea that a line may depend on some assumptions but not
others. So in a list proof, the “scope” of an assumption—the area where it is
in force—is not a connected region (like the interior of a box): it is the (pos-
sibly disjointed) group of lines that depend on that assumption. For example,
in Figure 15.17, the scope of the assumption of B at line 2 is lines 2, 5, and 6
(these are the lines which have line 2 in their dependency set). This differ-
ence between box- and list-style proofs has significance for the interpretation
of proofs. The idea behind a box proof is that each line is a logical consequence
of the set of assumptions that are undischarged as of that line. The idea behind
a list proof is that each line is a logical consequence of the set of assumptions
on which it depends.

A point related to the one just noted is that there are no subproofs in list-
style natural deduction proofs. In box-style natural deduction proofs, rules
can take as inputs wffs (represented in annotations as numbers), subproofs
(represented in annotations as ranges of numbers), or both. In list-style natu-
ral deduction proofs, the inputs of rules are always wffs, represented in annota-
tions as numbers. The guiding idea, that in (say)→ introduction we conclude
α → β on the basis of having derived β from α, shows up in box-style natu-
ral deduction in the fact that (→I ) takes a subproof—which proceeds from
α as assumption to β as conclusion—as input. In list-style natural deduction,
(→I ) takes as input simply the wffs α and β, but the guiding idea still shows
up in the requirement that the rule can be applied only when β’s line includes
α’s line in its dependency set.

§

The third commonly used style of natural deduction proof is the stack style.39

Proofs in this style are written as layers of wffs, with horizontal lines separating
the inputs of rules from their outputs. They have one wff at the bottom—the
conclusion of the proof—and grow bigger as we move up the page. Assump-
tions are represented as topmost wffs in the stack: wffs with nothing above
them. Assumptions may (of course) be discharged; when an assumption is dis-
charged, we draw square brackets around it. We can see which assumptions a
wff α in the stack depends on by tracing down from the assumptions (topmost
wffs) to α: if we can get from an assumption β to α by moving down only (i.e.,
without moving sideways or up at any point), then α depends on β—unless of
course β has already been discharged by the time we reach α. An example will
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A → (B → C)
(→E)

(→E)
(→I)1

(→I)2
A → C

B → C [B]2

[A]1

C

Figure 15.18. A stack-style natural deduction
proof.

help make these ideas clear. We go through the example presented in list style
in Figure 15.17, presenting it this time in stack style. First, here are the rules
for → elimination and introduction:

α α → β

β
(→E)

[α]n...
β

α → β
(→I )n

Note that the assumption α is discharged—placed in square brackets—when
we apply the rule (→I ). The numerical subscript n on the square brackets
is matched by a subscript on the annotation showing which rule has been
applied: the subscripts show exactly which application of which rule results
in the discharge of a particular assumption. Figure 15.18 shows our proof
re-presented in stack style. Note that the assumption A is discharged at the
first application of (→I ). So the step C, for example, depends on this assump-
tion, but then this assumption is discharged, and lower steps do not depend
on it. The step B → C also depends on the assumption of A, but it does not
depend on the assumption of B, because one cannot get from the B assump-
tion to B → C by going only down: one would have to go sideways. The final
step depends only on A→ (B → C): although we can move from the A as-
sumption down to the final step, by the time we get there, that assumption
has been discharged; similarly for the B assumption. The proof therefore es-
tablishes A→ (B → C) � B → (A→ C). In general, a proof with last line α

establishes � � α, where � contains all assumptions that remain undischarged
at the end of the proof.40

§

We conclude our discussion of natural deduction systems by mentioning some
of their main advantages and disadvantages. Like axiomatic systems—and
unlike trees—natural deduction systems do not provide proofs of invalidity
or other s-properties. If we try to prove α on the assumption that β, when in
fact α is not a logical consequence of β, we do not end up with something
useful, such as a saturated open path: we simply end up with nothing.
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One important advantage of natural deduction systems is that the structure
of formal proofs in them closely mirrors the kinds of informal proofs typi-
cally found in mathematics and logic books. One consequence is that finding
proofs in natural deduction systems is typically easier than finding proofs in
axiomatic systems. Of course it is not easier than finding proofs in tree sys-
tems, where we have an effective proof-search procedure—and in fact it can
still be hard to find natural deduction proofs in practice. (Introductory books
that focus on natural deduction typically discuss heuristics for finding proofs
of wffs of given forms. For example, to prove a conditional, try assuming the
antecedent and then deriving the consequent.)

The structure of natural deduction proofs is more complex than the struc-
ture of axiomatic proofs. Although this is a disadvantage from one point of
view—natural deduction proofs do not give us such a simple handle on the
relation of logical consequence—from another point of view it makes natural
deduction proofs intrinsically interesting objects of study, and considerable at-
tention is paid to them in the area of proof theory (the study of formal proofs
and formal proof systems).

15.2.3 Exercises

1. Show the following in N1.

(i) � (¬P → P)→ P

(ii) A→ C , B → C , A ∨ B � C

(iii) � ¬¬P → P

(iv) ¬(A ∨ B) � ¬A ∧ ¬B

(v) A, ¬A � B

(vi) A→ B , B → C � A→ C

(vii) P →Q � ¬Q→¬P

(viii) A ∨ B , ¬A � B

(ix) P → R , Q→ R , P ∨Q � R

(x) P →Q � ¬(P ∧ ¬Q)

2. Establish each of the following in each of the systems N2 through N5.

(i) � A ∨ ¬A

(ii) A ∧ ¬A � B

(iii) � ¬¬A→ A

(iv) � ¬(A ∧ ¬A)

3. Show the following in N∀∃=
1 .

(i) � ∀x(Fx → Fx)

(ii) ∃x(Fx ∧Gx) � ∃xFx ∧ ∃xGx

(iii) ∀x(Fx →Gx), ¬∃xGx � ¬∃xFx

(iv) ∀x(Fx → x = a) � Fb→ a = b

(v) ∀x∀yx = y , Raa � ∀x∀yRxy

(vi) � ∀xRxx →∀x∃yRxy

(vii) � ∃xFx →¬∀x¬Fx

(viii) ¬∃xFx � ∀x¬Fx
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(ix) ∀xx = a � b = c

(x) � ∀x∀y((Fx ∧ ¬Fy)→¬x = y)

4. (i) Reformulate the rules of system N1 in list style. Re-present your
answers to question 1 above as proofs in the list style.

(ii) Reformulate the rules of system N1 in stack style. Re-present your
answers to question 1 above as proofs in the stack style.

5. State natural deduction rules (i.e., introduction and elimination rules)
for ↔.

15.3 Sequent Calculus

In all the proof methods we have looked at so far, the basic objects that ap-
pear in proofs are wffs. The final proof method we shall look at—sequent
calculus—differs from the others in this respect: in sequent calculus, the basic
objects that appear in proofs are sequents. A sequent looks like:

� ⇒

where � and  are sets of wffs. The set � is called the left side (or antecedent)
of the sequent, and  is the right side (or succedent). We say that a sequent
holds in a model M just in case the following condition is satisfied:

If all wffs on the left side are true in M, then some wff on the right side is true
in M.

It may be easier to think about this in reverse: a sequent does not hold in a
model when all wffs on its left side are true and all wffs on its right side are
false; otherwise (i.e., when some wff on the left side is false, or some wff on
the right side is true, or both) it does hold. And here is a third way of thinking
about sequents holding, which can also be useful: the sequent {α1, . . . , αn}⇒
{β1, . . . , βm} holds in a model just in case the corresponding conditional
(α1∧ . . . ∧ αn)→ (β1∨ . . . ∨ βm)—whose antecedent is the conjunction of
the wffs on the sequent’s left side and whose consequent is the disjunction
of the wffs on the sequent’s right side—is true in that model.41

In a system of proof where wffs are the basic objects, the aim is that the
last line of any proof should be logically true.42 In a system of proof where
sequents are the basic objects, the aim is that the last line of any proof should
hold logically; that is, it should hold in every model.

We can define other concepts of interest in terms of the concept of a sequent
holding logically. For example,

The argument α1, . . . , αn/∴ β is valid just in case the sequent {α1, . . . , αn} ⇒ {β}
holds logically.
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The reasoning behind this statement is as follows. The sequent holds logically
just in case in every model in which all wffs in {α1, . . . , αn} are true, some wff
in {β} is true. But β is the only wff in {β}, so to say that some wff in {β} is true
is simply to say that β is true. So we can rephrase as follows: the sequent holds
logically just in case in every model in which all of α1, . . . , αn are true, β is
true. That is exactly what is required for the argument α1, . . . , αn/∴ β to be
valid.

Consider a second example:

α is a logical truth just in case ∅⇒ {α} holds logically.

The reasoning behind this statement is as follows. The sequent holds logically
just in case in every model in which all wffs in ∅ are true, some wff in {α}
is true. There are no wffs in ∅, and recall (Exercises 9.4.3, question 5(i)) that
“all F s are Gs” is true when there are no F s, so the condition “all wffs in ∅
are true in M” obtains for every model M. Thus, the sequent holds logically
just in case in every model, some wff in {α} is true—that is, α is true. That is
exactly what is required for α to be a logical truth.

A third example is:

The set � of wffs is unsatisfiable just in case � ⇒∅ holds logically.

The reasoning behind this statement is as follows. The sequent holds logically
just in case in every model in which all wffs in � are true, some wff in ∅ is true.
There are no wffs in ∅, and “some F s are Gs” is false when there are no F s, so
the condition “some wff in ∅ is true in M” obtains for no model M. Thus, the
sequent holds logically just in case there is no model in which all wffs in � are
true. That is exactly what is required for � to be unsatisfiable.

§

The goal, then, is to set up a system in which we can prove all and only those
sequents that hold logically. Restricting ourselves initially to propositional
logic, Figure 15.19 presents rules for one such system, which we call S1. Let’s
think through why each of these rules is hold-preserving: if the input sequent(s)
hold in a model, then the output sequent holds in that model too. The first rule
has no inputs, so it is an axiom. It allows us to write {α} ⇒ {α} anywhere in
a sequent proof. Obviously any such sequent holds in every model: if every
wff on the left side is true—that is, if α is true (α being the only wff on the
left side)—then some wff on the right side is true—that is, α is true (α being
the only wff on the right side). Or think about it this way: the conditional
corresponding to the sequent {α} ⇒ {α} is α → α, which is true in every
model.
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Axiom {α} ⇒ {α}

Thinning
� ⇒

� ∪ � ⇒ ∪�
(Th)

Connective Introduction on left Introduction on right

→ � ⇒ ∪ {α} {β} ∪ � ⇒

{α → β} ∪ � ⇒
(→⇒)

{α} ∪ � ⇒ ∪ {β}
� ⇒ ∪ {α → β} (⇒→)

∧ {α , β} ∪ � ⇒

{α ∧ β} ∪ � ⇒
(∧⇒)

� ⇒ ∪ {α} � ⇒ ∪ {β}
� ⇒ ∪ {α ∧ β} (⇒∧)

¬ � ⇒ ∪ {α}
{¬α} ∪ � ⇒

(¬⇒)
{α} ∪ � ⇒

� ⇒ ∪ {¬α} (⇒¬)

∨ {α} ∪ � ⇒ {β} ∪ � ⇒

{α ∨ β} ∪ � ⇒
(∨⇒)

� ⇒ ∪ {α , β}
� ⇒ ∪ {α ∨ β} (⇒∨)

Figure 15.19. Sequent calculus S1.

The Thinning rule (aka Weakening) is equally obvious: expanding (i.e.,
adding wffs to) the left or right side of a sequent that holds in a model will
always result in a sequent that also holds in that model, because if every
wff in the expanded left side holds, then a fortiori every wff in the original
unexpanded left side holds. But then, given the input to the rule, some wff
in the original unexpanded right side holds, so a fortiori some wff in the
expanded right side holds.

The remaining rules come in pairs: two rules for each logical operator. One
rule tells us how to derive a sequent with the connective on its left side; the
other tells us how to derive a sequent with the connective on its right side.
The easiest way to see that each of these rules is hold-preserving is to read it
from the bottom up: suppose the output does not hold, and then show that in
that case, at least one of the inputs must also not hold. In fact, when we read
the rules this way, it is easy to see that they correspond precisely to our tree
rules: the left introduction rule for a given connective is just like the unnegated
tree rule for that connective; the right one is just like the negated tree rule for
that connective.

For example, consider the rules for the conditional. Ignore � and —
they are just whatever other wffs are in the left and right side of the sequent,
besides the conditional α → β and its components α and β—and just focus
on α → β, α, and β. Look at the left introduction rule, and read it from the
bottom up. Suppose the output sequent does not hold; that is, every wff on its
left side is true and every wff on its right side is false. So in particular, α → β,
which is on the left side, is true. Then the rule tells us (reading from the bottom
up) that at least one of the input sequents does not hold. The first input has α

on the right side, so if it does not hold, α is false. The second input has β on
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the left side, so if it does not hold, β is true. So in sum, the rule says: if α → β

is true, then either α is false or β is true (or both). That is exactly what the
tree rule for unnegated conditional says: if α → β is true, then either ¬α is
true—that is, α is false—or β is true.

Now look at the right introduction rule for →, and again read it from the
bottom up. Suppose the output sequent does not hold; that is, every wff on its
left side is true and every wff on its right side is false. So in particular, α → β,
which is on the right side, is false. Then the rule tells us (reading from the
bottom up) that the input sequent does not hold. The input has α on the left
side and β on the right side, so if it does not hold, α is true and β is false. So
the rule says: if α→ β is false, then α is true and β is false. That is exactly what
the tree rule for negated conditional says: if ¬(α → β) is true (i.e., α → β is
false), then α is true and ¬β is true (i.e., β is false).

If one works through the sequent rules for the other connectives, one can
see that they too correspond to the tree rules and so are hold-preserving for
the same reasons that the tree rules are truth-preserving.

§

Figure 15.20 gives an example of a proof in S1. The proof establishes
�S1

{(A ∧ B) ∨ ¬(A→ B)} ⇒ {C → A}. We have set out the proof in the
form of a stack (recall §15.2.2). The proof could also be set out in list form, as
in Figure 15.21. The advantage of setting out proofs as stacks is that it leads to a
natural method of finding proofs. The method works from the bottom up: we
write the sequent we wish to prove at the bottom of the page. We now suppose
that it does not hold, and consider what must then be the case, and we write
the answer above the original sequent. The answer depends on what are the
main connectives of the wffs on the left and right sides of the original sequent.
For example, if the sequent has on its left side a wff whose main connective is
∨, then the rule (∨⇒) tells us that if this sequent does not hold, then at least
one of two other sequents must not hold: one with the left disjunct on its left
side, and one with the right disjunct on its left side. For another example, if
the sequent has on its right side a wff whose main connective is ¬, then the
rule (⇒¬) tells us that if this sequent does not hold, then another sequent
must not hold: one with the negand on its left side. And so on. What we are
doing, of course, is perfectly analogous to building a tree, only upside down
(recall the correspondence between sequent rules and tree rules). In particu-
lar, the process has this feature: the wffs written down as we go up the page
become simpler. For the sequent rules introduce connectives (on the left or
the right), so when we apply them in reverse, in our current method for find-
ing proofs, connectives are eliminated. Eventually, we obtain sequents whose
left and right sides contain wffs with no connectives. At this point, these top-
most sequents might be of one of two sorts: (i) some wff α is on both the left
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⇒{A} {A}

⇒{(A ∧ B) ∨ ¬(A → B), C} {A}

⇒{C, A} {A, B}
⇒{C} {A, A → B}
⇒{¬(A → B), C} {A}

⇒{A} {A}
(Th)

(Th)

(∧ ⇒) (¬ ⇒)
(∨ ⇒)

(⇒ →)⇒{A, B, C} {A}
⇒{(A ∧ B), C} {A}⇒

(⇒ →)

Figure 15.20. A proof in S1.

1. {A} ⇒ {A} Axiom
2. {A, B , C} ⇒ {A} 1 (Th)
3. {(A ∧ B), C} ⇒ {A} 2 (∧⇒)

4. {C , A} ⇒ {A, B} 1 (Th)
5. {C} ⇒ {A, A→ B} 4 (⇒→)

6. {¬(A→ B), C} ⇒ {A} 5 (¬⇒)

7. {(A ∧ B) ∨ ¬(A→ B), C} ⇒ {A} 3, 6 (∨⇒)

8. {(A ∧ B) ∨ ¬(A→ B)} ⇒ {C → A} 7 (⇒→)

Figure 15.21. The proof of Figure 15.20 in list form.

and right sides or (ii) no wff is on both sides. (In trees the analogue of situ-
ation (i) is a path containing α and ¬α; the analogue of situation (ii) is an
open finished path.) A sequent of type (i) holds logically: if every wff on the
left (including α) is true, then some wff on the right (namely, α) is true. Such
sequents can be proved by Thinning from the axiom {α} ⇒ {α}. In contrast,
a sequent of type (ii) does not hold logically and cannot be proven. So now
we are in the following situation: if all topmost wffs are of type (i), we add
axioms and Thinning steps above them, and we now have a proof of the initial
sequent at the bottom. If even one topmost wff is of type (ii), then there can
be no such proof: the initial sequent at the bottom does not hold logically.

Let’s look at a couple of examples of this method for finding proofs. First,
we can see the proof in Figure 15.20 as having been arrived at via this method.
We begin by writing down the sequent at the bottom. The left side contains
one wff, whose main connective is ∨, and the right side contains one wff,
whose main connective is →. As in the case of trees, we begin with the latter,
because it involves no branching. (Remember, left sequent rules are like tree
rules for unnegated connectives, and right sequent rules are like tree rules for
negated connectives. The tree rule for unnegated ∨ branches; the tree rule
for negated → does not branch.) Now we are at the sequent that is one up
from the bottom of the stack. The only compound wff now is on the left side;
its main connective is ∨. Applying the relevant rule, the stack forks (in the
upward direction). On the left side, we have a sequent whose left side contains
a wff whose main connective is∧. Applying the relevant rule leads to a sequent
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⇒{B} {A}⇒{B} {A}
⇒{A → B, B} {A}

(→ ⇒)
(⇒ →)

Figure 15.22. Unsuccessful search
for a proof in S1.

of type (i): it has A on the left and right sides. So we add the axiom {A}⇒ {A}
at the top of this branch, and it is finished. Going back to the right side of the
fork, we work up it in a similar fashion and eventually reach another type (i)
sequent. Thus, all branches lead to type (i) sequents, and so our method finds
us a proof of the sequent at the bottom of the stack.

Now let’s look at an example where the sequent we set out to prove does
not hold logically, and the method (of constructing stacks from the bottom
up) does not yield a proof. Consider Figure 15.22. We start at the bottom with
{A→ B} ⇒ {B → A}. Working first on the conditional on the right gives us
the first line up from the bottom. Working on the conditional on the left side
of this sequent then leads to a branching of the stack. As it happens, both sides
of the branch contain the same sequent, {B} ⇒ {A}.43 This sequent is of type
(ii): it features no logical operators, and no wff appears on both its left and
right sides. So in this case our method does not yield a proof—but it does
yield something useful: a counterexample. Just as in the case of trees with open
paths, for stacks with one or more type (ii) topmost sequents, we can read off
a counterexample. We can read it off directly from the type (ii) sequent: the
countermodel is a model that makes every wff on the left side true and every
wff on the right side false. In this case, then, the countermodel makes B true
and A false. We can easily verify that in such a model, every wff on the left side
of our target sequent (i.e., just A→ B) is true and every wff on the right side
(i.e., just B → A) false—and so the sequent does not hold.

The system S1 does not contain rules for ↔. With regard to such addi-
tional connectives, we have the same choices in sequent calculus as we had
for axiomatic systems and natural deduction: we can supplement the rules of
inference with definitions of the connectives that do not feature in the rules in
terms of connectives that do, or we can add additional rules for the additional
connectives.

§

Turning now to predicate logic, Figure 15.23 shows rules for the quantifiers
and for identity; adding them to S1 yields the system S∀∃=1 . Let’s consider
the quantifier rules first. As with the rules for the connectives, there are two
equivalent ways to read them: from top to bottom (the rules should be such
that for any model in which the upper sequent holds, the lower sequent holds)
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Quantifier Introduction on left Introduction on right

∀ {α(a/x), ∀xα(x)} ∪ � ⇒

{∀xα(x)} ∪ � ⇒
(∀⇒)

� ⇒ ∪ {α(a/x)}
� ⇒ ∪ {∀xα(x)} (⇒∀)

(a nowhere in lower sequent)

∃ {α(a/x)} ∪ � ⇒

{∃xα(x)} ∪ � ⇒
(∃⇒)

(a nowhere in lower sequent)

� ⇒ ∪ {∃xα(x), α(a/x)}
� ⇒ ∪ {∃xα(x)} (⇒∃)

Identity

Axiom ∅⇒ {a = a}

SI left
{α(b//a), a = b, α(a)} ∪ � ⇒

{a = b, α(a)} ∪ � ⇒
(SI ⇒)

SI right
{a = b} ∪ � ⇒ ∪ {α(a), α(b//a)}
{a = b} ∪ � ⇒ ∪ {α(a)} (⇒ SI)

Figure 15.23. Sequent calculus rules for quantifiers and identity.

or from bottom to top (the rules should be such that for any model in which
the lower sequent does not hold, the upper sequent does not hold). When we
search for proofs in accordance with the method outlined above, we start by
writing the target sequent at the bottom of the page, and we work upward—so
we think of the rules in the second way. When read from bottom to top in this
way, sequent rules correspond precisely to tree rules: left introduction rules
to rules for unnegated operators; right introduction rules to rules for negated
operators.

So (∀⇒) and (∃⇒) correspond to the tree rules for unnegated quantifiers.
In particular, two points of analogy are worth mentioning. First, in the rule
(∀⇒) (read from bottom to top) the quantified formula is retained in the se-
quent, alongside its instance; whereas in the rule (∃⇒) (read from bottom
to top) the quantified formula is dropped from the sequent, and only its in-
stance appears. This corresponds to the fact that when applying the tree rule to
an existentially quantified formula, we check off the formula—we never come
back and apply the rule again to get another instance of the same formula—
whereas when applying the tree rule to a universally quantified formula, we
do not check off the formula and so can obtain another instance of it. Sec-
ond, there is no restriction on the name used in the rule (∀⇒), but there is a
restriction on the name used in (∃⇒).

The right introduction rules (⇒∀) and (⇒∃) correspond to the tree rules
for negated quantifiers—although the correspondence is not as direct as in the
case of the left introduction rules. Consider the existential quantifier first. The
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⇒{∀x¬α(x)} ∪ � �
(⇒ ∃′)

Figure 15.24. The rule (⇒∃′).

⇒{∀x¬α(x)} ∪ � � ∪ {α(a/x)}
(¬ ⇒)⇒

⇒
{¬α(a/x), ∀x¬α(x)} ∪ � �

(∀ ⇒)
{∀x¬α(x)} ∪ � �

(⇒ ∃′)

⇒� � ∪ {∃xα(x), α(a/x)}
(∀ ⇒′)

Figure 15.25. Obtaining the result of (⇒∃) using (⇒∃′).

tree rule converts ¬∃xα(x) to ∀x¬α(x). The basic idea here is that if ∃xα(x)

is false, then ∀x¬α(x) is true (if it is false that something is F , then it is true
that everything is non-F ). A sequent rule that directly corresponds to this is
given in Figure 15.24 (note the prime symbol ′ in the name of the rule, to
distinguish it from the rule (⇒∃) given in Figure 15.23). Remember, when
reading sequent rules from bottom to top, we suppose that every wff on the
left side of the lower sequent is true and every wff on the right side is false, and
then we see what follows from these assumptions: whatever must be true goes
on the left side of the upper sequent, and whatever must be false goes on the
right side. So for the rule given in Figure 15.24, the idea is that if ∃xα(x) is false
(note that this wff is on the right side of the lower sequent), then ∀x¬α(x) is
true (note that this wff is on the left side of the upper sequent). If we now apply
(∀⇒), we obtain ¬α(a/x) on the left side; if we then apply (¬⇒), we get
α(a/x) on the right side. Finally, if we apply a new rule (∀⇒′), which reverses
(⇒∃′), the result is as shown in Figure 15.25. The rule (⇒∃) compresses all
these steps into one, moving (upward) directly from ∃xα(x) on the right side
to α(a/x) on the right side. (As in the case of (∀⇒), the quantified formula
itself is also retained where it is in the sequent—this time, on the right side—
as we may want to apply the rule again to that formula.) Note that this rule
also makes perfectly good sense in its own right (not just as a compression of
other rules): if “something is F ” is false, then it is false that a is F , whatever
a is. Note also that the rule (⇒∃), unlike (⇒∃′), does not involve operators
other than ∃.

Similar comments apply to (⇒∀). We can view it as a compression of a
rule (⇒∀′), which corresponds directly to the tree rule, followed by (∃⇒)

(which is where the restriction on a enters), and then followed by (¬⇒)—see
Figure 15.26. The rule (⇒∀) also makes sense in its own right: if “everything is
F ” is false, then there must be something—call it a, but make sure you haven’t
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⇒{¬α(a/x)} ∪ � �
(∃ ⇒)⇒{∃x¬α(x)} ∪ � �

(⇒ ∀′)

⇒� � ∪ {α(a/x)}
(¬ ⇒)

Figure 15.26. Obtaining the result of
(⇒∀) using (⇒∀′).

already attributed any other properties to a (i.e., make a a new name)—such
that it is false that a is F .

§

Now let’s consider the rules for identity (Figure 15.23). Recall that α is a logical
truth just in case ∅⇒ {α} holds logically. The statement a = a is indeed a
logical truth, so the axiom holds logically. Hence, read from the top down,
it is indeed appropriate to begin a sequent proof with this axiom. Read from
the bottom up, the axiom corresponds precisely to the tree rule allowing us
to close a path when we encounter a �= a. If we arrive (moving upward) at a
sequent with a = a on its right side, a = a must be false if the sequent is not to
hold. This can, of course, never happen. Accordingly, the axiom allows us to
stop developing this branch of the stack: we just add the axiom (by Thinning)
and then stop.

As for the SI rules, they are exactly like the tree rule (SI), except that we now
have two versions: one for the case where a = b is true and α(a) is true (i.e.,
appears on the left) and another for the case where a = b is true and α(a) is
false (i.e., appears on the right). Note that in the SI rules (read from bottom
to top), the formulas to which the rules are applied—a = b and α(a)—are
retained in the sequent (in their original position, left or right) when the rule is
applied. This corresponds to the fact that in trees we do not check off formulas
when applying SI: rather, these formulas are still available for subsequent use.

Figure 15.27 shows a proof in the system S∀∃=1 . This proof establishes:

�S∀∃=
1

{∃xFx , ∃yGy , ∀x∀yx = y} ⇒ {∃x(Fx ∧Gx)}

Reading from bottom to top, note the use of SI to obtain the formula Ga,
which already appears on the right side of a sequent, onto the left side as well;
this then allows us to reach the axiom {Ga} ⇒ {Ga} via Thinning.

Figure 15.28 shows an unsuccessful search for a proof of the sequent
{∃xFx , ∃yGy}⇒ {∃x(Fx ∧Gx)}. The stack has three branches. The left and
right branches top out in axioms. The central branch tops out in the sequent
{Fa , Gb}⇒ {∃x(Fx ∧Gx), Ga , Fb}. This sequent is not an axiom, nor does
it follow from an axiom by Thinning. Furthermore, the only nonatomic wff in
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(∃ ⇒)
(∃ ⇒)⇒{Fa, ∃yGy, ∀x∀yx = y} {∃x(Fx ∧ Gx)}

(⇒ ∃)
(⇒ ∧)
(∀ ⇒)

⇒{Fa, Gb, ∀x∀yx = y} {∃x(Fx ∧ Gx)}
⇒{Fa, Gb, ∀x∀yx = y} {∃x(Fx ∧ Gx), Fa ∧ Ga)}

(Th)⇒{Fa, Gb, ∀x∀yx = y} {∃x(Fx ∧ Gx), Fa}
⇒{Fa} {Fa}

⇒{Fa, Gb, ∀x∀yx = y} {∃x(Fx ∧ Gx), Ga}
⇒{Fa, Gb, ∀ya = y, ∀x∀yx = y} {∃x(Fx ∧ Gx), Ga}

(∀ ⇒)
⇒{Fa, Gb, a = b, ∀ya = y, ∀x∀yx = y}

(SI ⇒)
{Ga, Fa, Gb, a = b, ∀ya = y, ∀x∀yx = y}

{∃x(Fx ∧ Gx), Ga}
⇒{∃x(Fx ∧ Gx), Ga}

(Th)
{Ga}⇒{Ga}

Figure 15.27. A proof in S∀∃=1 .

{Fa, Gb}⇒{∃x(Fx ∧ Gx), Ga, Gb}{Fa, Gb}⇒{∃x(Fx ∧ Gx), Ga, Fb}
(Th)
(⇒ ∧)

{Fa, Gb}⇒{∃x(Fx ∧ Gx), Ga, Fb ∧ Gb}
(⇒ ∃)

{Fa, Gb}⇒{∃x(Fx ∧ Gx), Ga}
(⇒ ∧)

{Gb}⇒{Gb}

{Fa, Gb}⇒{∃x(Fx ∧ Gx), Fa}
(Th)

{Fa}⇒

(⇒ ∃)
{Fa, Gb}⇒{∃x(Fx ∧ Gx), Fa ∧ Ga}

(∃ ⇒)
{Fa, Gb}⇒{∃x(Fx ∧ Gx)}

(∃ ⇒)
{Fa, ∃yGy}⇒{∃x(Fx ∧ Gx)}

⇒
{Fa}

Figure 15.28. Unsuccessful search for a proof in S∀∃=1 .
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this sequent is ∃x(Fx ∧Gx), which appears on the right side—and we have
already applied (⇒∃) (in reverse, building up the stack from the bottom) for
every name that appears in the sequent (a and b). So there is nothing more we
can do: the search for a proof has terminated.

However, this situation is not analogous to that in axiomatic or natural
deduction systems when we fail to find a proof; instead, it is like having an
open path in a finished finite tree. That is, we do not simply lack a proof that
the sequent holds logically; we can read off from the stack a model in which
the sequent we were trying to prove does not hold. We can read off the model
from the topmost sequent in the branch that does not top out in an axiom.
Just as when reading off a model from an open path, we look at atomic wffs in
the path that appear as entire formulas, and hence are supposed to be true,44

so too, when reading off a model from a sequent, we look at atomic wffs on its
left side, that is, at wffs that are supposed to be true. In the present example Fa

and Gb are on the left side, so we have two objects in the domain—one as the
referent of a, and one as the referent of b—and the extension of F contains the
referent of a (to make Fa true), and the extension of G contains the referent
of b (to make Gb true):

Domain: {1, 2}
Referents: a: 1 b: 2
Extensions: F : {1} G: {2}

It is easy to verify that in this model, both the wffs on the left side of the sequent
we wanted (but failed) to prove are true (i.e., ∃xFx and ∃yGy), while the wff
on the right side (i.e., ∃x(Fx ∧Gx)) is false—hence, this sequent does not
hold.

Of course, once we move from propositional to predicate logic, just as trees
may be infinite, so too the search for a sequent proof may not terminate.

15.3.1 Soundness and Completeness

A sequent calculus is sound (with respect to the property of sequents of hold-
ing logically) if every provable sequent holds logically. We could establish
soundness by a strategy mirroring that used in the soundness proof for trees
(§14.1.2). However, there is a more direct way, because a sequent proof, when
read from the top down, is just like an axiomatic proof: it proceeds from ax-
ioms, by rules of inference, down to the target sequent at the bottom. So to
establish soundness, we just need to establish that the axioms hold logically
and that the rules preserve the property of holding logically (i.e., if the inputs
to a rule hold logically, so does the output, reading the rule from top to bot-
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tom). This is obvious for the axioms and the Thinning rule. For the other rules,
the easiest way to establish the result is to look at the rules from the bottom up
and show that if the lower sequent does not hold in some model, then the up-
per sequent (or at least one of them, if there is more than one) does not hold
in some model. (The desired result then follows: if the inputs to a rule hold
in every model, so does the output.) In each case, showing this involves essen-
tially the same reasoning as that involved in showing that the corresponding
tree rule is truth-preserving.

As with axiomatic and natural deduction systems, there are versions of
sequent calculus that allow open wffs to appear in (sequents in) proofs; see,
for example, Kleene [1952, pp. 440–48]. Comments analogous to those made
in §15.1.3 apply concerning the interpretation of such proofs.

A sequent calculus is complete (with respect to the property of sequents
of holding logically) if every sequent that holds logically is provable. We can
establish completeness by a strategy mirroring that used in the completeness
proof for trees (§14.1.3). Here, in outline, are the steps:

(1) Let’s call a stack of the sort obtained when searching for a proof of
a sequent S from the bottom up a “search stack for S.” Our first step is to
define the notion of a fully developed search stack (this is the analogue of a
finished tree): every branch either tops out in an axiom (analogous to a closed
path) or is such that every rule that can usefully be applied (in reverse, from
bottom to top) has been applied (analogous to a finished path). Note that a
fully developed search stack—like a finished tree—might be infinite.

(2) We show that if there is a branch in a fully developed search stack for S

that does not top out in an axiom (either because it tops out in a nonaxiom—
analogous to a finite saturated open path, or because it goes up forever—
analogous to an infinite path), then there is a model in which S does not
hold. Completeness follows immediately: if S holds in every model, then every
branch in a fully developed search stack for S must top out in an axiom; that
is (looking at the search stack from the top down), there is a proof of S.

To establish step (2), we proceed as follows:
(2a) We show how to read off a model from any branch in a fully developed

search stack that does not top out in an axiom. Recall the way we read off a
model from a saturated open path by looking at unnegated atomic formulas
in the path. We read off a model from a branch in exactly the same way, taking
as our starting point all and only those unnegated atomic formulas that are
on the left side of any sequent in the branch. (An unnegated atomic formula
on the right side of a sequent is the analogue of a negated atomic formula in a
tree.)

(2b) We assume (for the purposes of establishing step (2)) the antecedent of
that step: there is a branch p in a fully developed search stack for S that does
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not top out in an axiom. We can read off a model M from p as in step (2a).
We now show:

. Every wff on the left side of any sequent on p is true in M.

. Every wff on the right side of any sequent on p is false in M.

Each of these claims is proved by an induction on complexity of formulas. The
cases in the induction for the right side are like the subcases for negation in the
induction used to prove completeness for trees; those for the left side are like
the cases for other kinds of wffs (i.e., not negations) in the induction used to
prove completeness for trees. It now follows, in particular, that every formula
on the left side of S is true in M and every formula on the right side of S is
false in M; that is, S does not hold in M. So step (2) is established: if there is
a branch p in a fully developed search stack for S that does not top out in an
axiom, then there is a model in which S does not hold.

15.3.2 Variants

15.3.2.1 CUT AND ITS ELIMINATION

In addition to rules more or less like those of S1, Gentzen [1935] discusses the
following rule, called Cut:

� ⇒ ∪ {α} {α} ∪�⇒�

� ∪�⇒ ∪�
(Cut)

Gentzen then shows that the Cut rule is inessential, in the sense that anything
that can be proved with it can also be proved without it. Here’s a quick way of
seeing that this must be the case. First, Cut is hold-preserving. (Suppose the
lower sequent � ∪�⇒ ∪� does not hold in some model, so all wffs in
� and � are true in that model, and all wffs in  and � are false. Now α is
either true or false: in the former case, the input sequent {α} ∪�⇒� does
not hold; in the latter case, the other input sequent � ⇒ ∪ {α} does not
hold. So for any model in which both input sequents hold, the output sequent
must hold too.) Thus, adding Cut to a sound system will not allow us to prove
any sequents that do not hold logically. But if our original system (without
Cut) was also complete, then we could already prove in it all sequents that do
hold logically. So, adding Cut does not allow us to prove anything we could
not already prove (given that the original system was sound and complete).

This proof that Cut is eliminable is nonconstructive. It shows that for any
sequent proof that uses Cut, there must be a proof (of the same sequent) that
does not use Cut, but it does not give us any idea what the Cut-free proof
looks like or how to find it. Contrast the proof of the deduction theorem
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in §15.1.1.1. The theorem tells us that if there is a derivation of γ from as-
sumptions α1, . . . , αn and β, then there exists a derivation of β → γ from
assumptions α1, . . . , αn. The theorem itself does not say anything about what
these derivations might look like—but the proof we sketched does. The proof
is constructive: it sets out a method that, given as input a derivation of γ from
assumptions α1, . . . , αn and β, allows us to construct a derivation of β → γ

from assumptions α1, . . . , αn. Gentzen gave a constructive proof that Cut is
eliminable: a proof based on a method for transforming a proof that uses Cut
into one that does not. He calls the result stating that any proof that uses
Cut can be transformed into one that does not the Hauptsatz.

Unlike ours, Gentzen’s proof of Cut elimination does not depend on a prior
proof that the original system of sequent proofs (without Cut) is sound and
complete. In fact, Cut elimination can be used as part of a strategy to establish
completeness, given a prior proof of the completeness of a suitable natural
deduction system. This is because adding Cut allows the sequent system to
mirror natural deduction proofs (we’ll see how this works in §15.3.2.2). So we
can then reason as follows: the natural deduction system is complete; anything
provable in the natural deduction system is provable in the sequent system
with Cut (the mirroring result); anything provable in the sequent system with
Cut is provable in the sequent system without Cut (Cut elimination); so the
sequent system without Cut is complete.

15.3.2.2 INTRODUCTION ON THE LEFT AND ELIMINATION ON THE RIGHT

The sequent rules introduced above were designed to mirror the tree rules
introduced earlier in this book. What would happen if we started instead with
natural deduction rules—say, those of system N1—and modeled our sequent
rules on them? In some cases we would end up with exactly the sequent rule
we already have, in other cases with a slightly different rule, and in yet other
cases with a completely different rule. To translate a natural deduction rule
into a sequent rule, let’s read a sequent � ⇒ {α} as meaning that α can be
derived from assumptions in �. Now let us look at the three types of case.
Consider, for instance, the natural deduction rule (→I ). It says that we can
conclude α → β, given a derivation of β from the assumption α. Translated
into sequent form, this rule becomes:

{α} ⇒ {β}
⇒ {α → β}

which is perfectly analogous to our sequent rule (⇒→).45 Next, consider
the natural deduction rule (¬I ). It says that we can conclude ¬α, given a
derivation of β and¬β from the assumption α. Translated into sequent form,
this rule becomes:
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{α} ⇒ {β , ¬β}
⇒ {¬α}

This is not perfectly analogous to our sequent rule (⇒¬), because it includes
{β , ¬β} on the right side of the input sequent—but it is at least somewhat
similar. Finally, however, consider the natural deduction elimination rules,
say, the rule (→E), which says that we can conclude β, given α and α → β.
Translated into sequent form, it becomes:

⇒ {α} ⇒ {α → β}
⇒ {β}

which is nothing like the sequent rule (→⇒). The relationship between nat-
ural deduction and sequent calculus, then, is that natural deduction rules that
eliminate operators on the right are replaced by sequent rules that introduce
operators on the left. The big advantage of having all the rules take the form
of introduction rules is that it makes possible the method, discussed earlier, of
finding proofs by working from the bottom up: the wffs written down as we
go up the page become simpler, and so eventually we reach sequents whose left
and right sides contain wffs with no connectives, and the search terminates.46

We said above that adding Cut allows the sequent system to mirror natural
deduction proofs. What we meant is that rules that eliminate on the right can
be simulated by rules that introduce on the left together with Cut. Consider,
for example, the case of → elimination. The following proof uses (→⇒)

(which introduces → on the left) together with Cut to achieve the effects of
the rule given most recently above (which eliminates → on the right):47

⇒{β} {β}

{β}
⇒{α → β} {β} ⇒{α → β}

⇒{α}
⇒{α, β}

(Th)
(→⇒)

(Cut)

15.3.2.3 STRUCTURAL RULES

In our sequents, the left and right sides are sets of wffs. In Gentzen’s original
presentation, the left and right sides are (finite) sequences of wffs.48 This dis-
tinction makes a significant difference to sequent calculus. Both {α} and {α , α}
are (two ways of writing) the same set—the one containing just the wff α, so
{α} ∪ � ⇒ and {α , α} ∪ � ⇒ are just (two expressions for) the same
sequent. In contrast, 〈α〉 and 〈α , α〉 are two different sequences, and so
〈α〉��⇒ and 〈α , α〉��⇒ are different sequents.49 Of course, these two
different sequents are logically equivalent, because whether a wff α appears at
all in the left or the right side of a sequent is relevant to whether all wffs on
the left side and some wff on the right side are true in a model; but if α does
appear (on a given side), then it does not make any further difference to this
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question whether it appears only once or multiple times on that side. Thus,
we need new rules of inference to derive one sequent from the other. To move
from 〈α , α〉�� ⇒ to 〈α〉�� ⇒, we use Contraction:

Contraction on left Contraction on right

〈α , α〉�� ⇒

〈α〉�� ⇒

� ⇒�〈α , α〉
� ⇒�〈α〉

To go the other way, we use Thinning (here reformulated in terms of sequences
rather than sets and separated into two rules, one for the left side and one for
the right):

Thinning on left Thinning on right

� ⇒

〈α〉�� ⇒

� ⇒

� ⇒�〈α〉

Gentzen calls rules like these—which, unlike the left and right introduction
rules, “refer [not] to logical symbols, but merely to the structure of the se-
quents” [Gentzen, 1935, 82]—structural rules. In addition to Contraction and
Thinning, his sequent calculus has structural rules of Interchange:

Interchange on left Interchange on right

��〈α , β〉�� ⇒

��〈β , α〉�� ⇒

� ⇒�〈α , β〉��

� ⇒�〈β , α〉��

When the left and right sides of sequents are sets, not sequences, we get the
effects of Contraction and Interchange for free. To illustrate this point for the
case of Interchange on the left: when sequents involve sets, we do not need a
rule allowing us to derive � ∪ {β , α} ∪ � ⇒ from � ∪ {α , β} ∪ � ⇒,
because � ∪ {α , β} ∪ � and � ∪ {β , α} ∪ � are simply (two ways of writing)
the same set, and hence � ∪ {α , β} ∪ � ⇒ and � ∪ {β , α} ∪ � ⇒ are
just (two ways of writing) the same sequent.

A third option is to have the left and right sides of sequents be multisets.
We can think of a set as being obtained from a sequence by ignoring both
ordering and repetition. A multiset ignores ordering but not repetition. That
is, a multiset is a collection of objects together with a record of how many times
each object occurs in the collection.50 When sequents employ multisets, we get
the effects of Interchange, but not Contraction, for free.

§
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We conclude our discussion of sequent calculus by mentioning some of its
main advantages and disadvantages. Like trees—and unlike axiomatic and
natural deduction systems—sequent calculi, when combined with the method
of searching for sequent proofs by working from the bottom up, (i) offer an
effective procedure for finding sequent proofs (where proofs exist; i.e., where
the sequent at the bottom does hold logically), and (ii) provide proofs of
the property of sequents of not holding logically (an s-property).51 Trees have
the advantage of requiring less paper and ink (because the same wffs are not
written down repeatedly, as they are in sequent proofs), but sequent proofs,
like axiomatic proofs, can be written out as flat sequences (of sequents). At the
same time—especially when the left and right sides of sequents are taken to be
sequences (not sets)—sequent proofs exhibit a structural richness that makes
them intrinsically interesting objects of study, and a great deal of attention is
paid to them in proof theory.

15.3.3 Exercises

1. Define the following notions in terms of sequents.

(i) The proposition α is:

(a) a contradiction
(b) satisfiable

(ii) Propositions α and β are:

(a) jointly satisfiable
(b) equivalent

2. Redo some of Exercises 7.3.1.1 and 7.3.2.1 using the sequent calculus S1

instead of trees.

3. Redo some of Exercises 10.2.2, 12.3.1, and 13.4.3 using the sequent calcu-
lus S∀∃=1 instead of trees.

4. State sequent rules (i.e., left and right introduction rules) for ↔.

5. State a (new) tree rule that is the analogue of Cut.
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16
Set Theory

This chapter—more in the nature of an appendix—explains basic concepts
from set theory, some of which have been employed earlier in this book; it is
not a full introduction to the field of set theory.

16.1 Sets

A set is a collection of objects. These objects are said to be members or elements
of the set, and the set is said to contain these objects.

If we are in a position to name all elements of a set, we can name the set
itself by putting braces (“{” and “}”) around them. For example, we denote
the set containing the numbers 1, 2, and 3 as {1, 2, 3} and the set containing
Alice, Bob, and Carol as {Alice, Bob, Carol}. If we cannot name all elements
of a set, we might do one of two things. If the elements come in some known
order, we can name the first few of them and then write an ellipsis (“. . .”).
For example, we denote the set of all positive integers as {1, 2, 3, . . .} and the
set of all even positive integers as {2, 4, 6, . . .}. Alternatively, we can state a
condition C that is satisfied by all and only the elements of the set, and we
then denote the set as {x : C} (or {x|C}). For example, the set of all red things
is denoted {x : x is red} (read as “the set of all x such that x is red”), and the
set of all even numbers is denoted {x : x is even} (read as “the set of all x such
that x is even”).

We use the symbol ∈ (epsilon) to denote membership, as in 1∈ {1, 2, 3} and
Alice ∈ {Alice, Bob, Carol}. To say that something is not a member of a set,
we use the symbol �∈, as in 4 �∈ {1, 2, 3} and Dave �∈ {Alice, Bob, Carol}. The
symbol ∈ is a two-place relation symbol, but as with=, we write it in between
its arguments (as in x ∈ S), not in front of them. The expression x �∈ S can be
seen as an abbreviation for ¬x ∈ S.

When asked to picture the set containing, say, Alice and Bob, many people
will simply picture Alice and Bob standing side by side. This isn’t the best way
to think of sets. Alice and Bob are the members of the set containing Alice



Alice Bob

Set containing Alice and Bob

Figure 16.1. Alice, Bob, and the set that contains them.

and Bob, but the set itself is a third thing, distinct from its two members. So
we should picture the situation as in Figure 16.1, where the arrows indicate
membership (i.e., the thing at the tail of an arrow is a member of the thing at
the head of that arrow). This is the guiding idea behind set theory: to treat a
collection of objects—that is, a set—as an object in its own right. Set theory is
then the theory of these objects—of sets. As Georg Cantor—the founder of set
theory—put it: a set is a many or multiplicity that can be conceived of as one
or single.1 Note that—unlike its members, Alice and Bob—the set containing
Alice and Bob is not visible or tangible. For this reason sets are often referred
to as abstract objects.

There is a set called the empty set or null set, symbolized by ∅, which has no
elements. This may sound odd. A set is supposed to be a collection of things—
but we cannot collect together nothing! So how can there be a set containing
no things? Actually, the idea makes perfect sense, once we think of it in the
right way—that is, once we remember to think of sets as objects, distinct from
their members, with membership indicated by arrows (as in Figure 16.1). We
then picture the empty set (i.e., the set with no members) as a dot—an object,
a thing, just like all other sets—that simply has no arrows pointing to it.

16.1.1 Extensionality

Suppose we have some kind of thing: P s. We make a first choice of a P —call
it x. We make a second choice of a P (maybe a different thing from our first
choice, or maybe we have chosen the same thing a second time)—call it y. An
identity condition for P s determines whether x = y; that is, whether we chose
the same thing twice or chose two different things, for any choices x and y.
Sets have a very simple identity condition: for any sets x and y, x and y are
identical (i.e., x = y) iff every member of x is a member of y, and vice versa.
This property of sets—that they are individuated by their members; that if
“two” sets have exactly the same members, then they are in fact one and the
same set—is known as extensionality.

Here are some examples:

{1, 2} = {2, 1}
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The set on the left has two elements (1 and 2), and each of them is a member
of the set on the right. The set on the right has two elements (2 and 1), and
each of them is a member of the set on the left. Thus, every member of the
set on the left is a member of the set on the right, and vice versa, so they are
two different ways of writing the same set. When we name a set by listing its
members with braces around them, the order in which we write the elements
of the set within the braces does not matter.

{1} = {1, 1}

The set on the left has one element (1), and it is a member of the set on the
right. The set on the right has just one element (1)—we have simply named
this element twice when writing the set on the right—and it is a member of the
set on the left. Thus, every member of the set on the left is a member of the set
on the right, and vice versa, so they are two different ways of writing the same
set. When we name a set by listing its members with braces around them, it
makes no difference whether we write a given element once or multiple times:
the only significant thing is whether a certain object is named as an element
at all.

{4} = {2+ 2}

The expressions “2+ 2” and “4” pick out the same number: thus, the only
element of the set on the left is a member of the set on the right, and vice
versa. Note here that even though extensionality fixes the facts as to whether
set x is identical to set y, for any sets x and y, it need not always enable us to
see whether sets x and y are identical. For example, because 2+ 2 and 4 are
the same number, extensionality fixes that the set {4} is the same object as the
set {2+ 2}. However, if someone does not know that 2+ 2= 4, then simply
knowing the principle of extensionality will not enable him to see that {4} and
{2+ 2} (described thus) are the same set.

{2, 4, 6, . . .} = {x : x is an even positive integer}

Again, the expressions on the left and right of the identity sign are just two
different ways of writing the same set.

Properties—in contrast with sets—are intensional. Consider a property, say,
the property of redness. The set of all things that possess a property is often
called the extension of the property; thus, the set containing all and only red
things is the extension of the property of redness.2 Now two distinct proper-
ties might be possessed by exactly the same objects; that is, they might have
the same extension. For example, the property of being a human being is not
(intuitively) the same as the property of being a featherless biped, but both
properties have the same extension (i.e., all humans are featherless bipeds and
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vice versa). Thus, we say that properties are intensional, as opposed to exten-
sional: knowing that properties P and Q are possessed by the same objects
does not allow you to conclude that properties P and Q are identical, whereas
knowing that sets S and T contain the same objects does allow you to conclude
that S and T are identical. So “being possessed by the same objects” is not the
identity condition for properties (whereas “containing the same objects” is the
identity condition for sets). In fact there is no obviously correct precise iden-
tity condition for properties. Certain cases might be clear enough—such as
the featherless biped example—but there is no widely accepted theory spelling
out a general precise identity condition for properties. One of the advantages
of working with sets—rather than properties—is their crystal clear identity
condition (i.e., extensionality).

16.1.2 Subsets

A set S is a subset of a set T —in symbols, S ⊆ T —iff every member of S is a
member of T :

S ⊆ T iff ∀x(x ∈ S → x ∈ T ) (16.1)

Note that this definition leaves open whether or not S = T : that depends upon
whether there is anything in T that is not in S. If there is nothing in T that is
not in S (i.e., if T ⊆ S as well as S ⊆ T ), then S = T . This is just the principle
of extensionality phrased in a new way. If there is something in T that is not
in S (i.e., S ⊆ T but not T ⊆ S), then S is a proper subset of T , symbolized by
S � T .3 Note that every set is (trivially) a subset of itself, but no set is a proper
subset of itself.

The null set is a subset of every set. Given any set T , it is automatically
true—because ∅ has no members—that every member of ∅ is a member of T .
Recall (Exercises 9.4.3, question 5(i)) that “all F s are Gs” is true when there
are no F s. Similarly, because x ∈ ∅ is false for every x, the following comes out
true no matter what set T is:

∀x(x ∈ ∅→ x ∈ T )

But this is just the condition required for ∅ to be a subset of T ; hence, for all
T , ∅ ⊆ T .

We can now see that the empty set is unique; that is, there is only one
empty set (there are not two different sets, each of which has no members).
For suppose there were two empty sets, a and b. For the reasons just given,
a ⊆ b and b ⊆ a—but then, by extensionality, a = b.

A set containing just one element—for example, {3}—is a singleton or
unit set.
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Note that 1 is an element of the set {1, 2, 3} but is not a subset of it, whereas
{1} is a subset of the set {1, 2, 3} but is not an element of it. Sometimes we
are given a set S and we want to consider a set of subsets of S. For example,
suppose we have the set S = {1, 2, 3, 4}, and we want to consider the set S2 of
all two-membered subsets of this set:

S2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

(Because {2, 3} = {3, 2}, we do not list {3, 2} separately. Similarly for {2, 1}
etc.) Note that:

{1, 2} ⊆ S

{1, 2} ∈ S2

That is, an element of S2 is a subset of S.
One very important set of subsets of any set S is the power set of S—the set

of all subsets of S—symbolized by ℘S:

℘S = {x : x ⊆ S}

For example, for S = {1, 2, 3},
℘S = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

16.1.3 Operations on Sets

The union of two sets S and T , denoted S ∪ T , contains everything in either
S or T (or both):

S ∪ T = {x : x ∈ S ∨ x ∈ T }

or visually:

S T

Here, the left circle represents the set S (i.e., think of the members of S as the
things within this circle; note that these elements of S are not shown in the
picture); the right circle represents the set T ; the union of S and T is shaded
gray.

The intersection of two sets S and T , denoted S ∩ T , contains everything
which is in both S and T :

S ∩ T = {x : x ∈ S ∧ x ∈ T }
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or visually:

S T

Here, the intersection of S and T is shaded gray.
Two sets S and T are disjoint if they have no members in common; that is,

if S ∩ T = ∅:

S T

Often when dealing with some sets, it is useful to consider them as subsets of
some background set (e.g., the background set might be the domain of some
model). The complement of a set S, denoted S ′, is the set of all things that are
not in S.4 Here it is important that we are restricting ourselves to the contents
of some background set: S ′ contains everything in the background set that is
not in S, not everything at all that is not in S:

S ′ = {x :¬x ∈ S}

or visually:

S

Here, the square represents the background set; the circle represents the set S;
the complement of S is shaded gray.

The set-theoretic difference of two sets S and T (taken in that order), de-
noted S \ T , is the set of things in S but not in T :

S \ T = {x : x ∈ S ∧ ¬x ∈ T }
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or visually:

S T

Here, the shaded area is S \ T . The set S \ T is also known as the relative
complement of T in S. Note that if we think of S and T as subsets of a
background set U , then S \ T = S ∩ T ′, and S′ = U \ S.5

Note that, for any sets S and T , S ∪ T = T ∪ S and S ∩ T = T ∩ S.6 It is
not the case, however, that for any sets S and T , S \ T = T \ S. Compare the
following picture of T \ S to the previous picture of S \ T :

S T

Of course, if S = T then S \ T = T \ S = ∅.7

There is an evident parallel between the set-theoretic operations of comple-
ment, union, and intersection and the logical operations of negation, disjunc-
tion, and conjunction, respectively: the complement of S contains all objects
not in S; the union of S and T contains all objects in S or in T ; the inter-
section of S and T contains all objects in S and in T . Recall (§6.6) that every
possible two-place connective can be defined in terms of ¬, ∨, and ∧. Simi-
larly, suppose we have two sets, S and T , that are subsets of a background set
U . Suppose we want to specify a third subset, V , such that for any object x

in U , whether x is in V is completely determined by whether x is in S and
whether x is in T . Then, any such V can be defined in terms of S and T and
the operations of complement, union, and intersection. We have already seen
an example of this: S \ T = S ∩ T ′. Here is a second example. The symmetric
difference of two sets S and T , denoted ST , contains everything that is in
exactly one of S and T :

S T
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This set may be defined in any of the following ways:

ST = (S ∪ T ) \ (S ∩ T )

ST = (S \ T ) ∪ (T \ S)

ST = (S ∪ T ) ∩ (S ∩ T )′

The third is a direct definition in terms of S and T and the operations of
complement, union, and intersection. The first two reduce to such definitions
when we define out the relative complement operation in these terms. Note
that, unlike the set-theoretic difference operation, the symmetric difference
operation is symmetric (hence its name); that is, for any sets S and T , ST =
TS.

You may notice that the symmetric difference operation is the set-theoretic
analogue of exclusive disjunction (§6.4). That is, we could specify the symmet-
ric difference of S and T as:

ST = {x : x ∈ S � x ∈ T }

If we take any other two-place connective, we can likewise obtain a corre-
sponding operation on sets. For example, corresponding to the conditional,
we could specify an operation

s→ on sets as follows (we put an “s” on top of
the arrow symbol to indicate that this new operation takes sets as arguments,
whereas the conditional → connects wffs):

S
s→ T = {x : x ∈ S → x ∈ T }

Remembering that α → β is equivalent to ¬α ∨ β and to ¬(α ∧ ¬β), the set
S

s→ T could be defined in either of the following ways:

S
s→ T = S ′ ∪ T

S
s→ T = (S ∩ T ′)′

As you can see by comparing the following picture of S
s→ T with the earlier

picture of S \ T , S
s→ T = (S \ T )′.

S T
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To take a second example, corresponding to the biconditional, we could
specify an operation

s↔ on sets as:

S
s↔ T = {x : x ∈ S ↔ x ∈ T }

Remembering that α ↔ β is equivalent to (α ∧ β) ∨ (¬α ∧ ¬β) and to
¬((α ∨ β) ∧ ¬(α ∧ β)), the set S

s↔ T could be defined in either of the fol-
lowing ways:

S
s↔ T = (S ∩ T ) ∪ (S ′ ∩ T ′)

S
s↔ T = ((S ∪ T ) ∩ (S ∩ T )′)′

As you can see by comparing the following picture of S
s↔ T with the earlier

one of ST , S
s↔ T = (ST )′. Also, S

s↔ T = (S
s→ T ) ∩ (T

s→ S). You can
see this identity by looking at the picture of S

s→ T , imagining a picture of
T

s→ S, and comparing them with the following picture of S
s↔ T , or by

noting that α ↔ β is equivalent to (α → β) ∧ (β → α).

S T

16.1.4 What Sets Exist?

An intuitively appealing principle is that every property has an extension: for
any property, there is a set of objects that have that property. (It may be the
empty set, but that is still a set.) We can make this idea more precise by replac-
ing the notion of “property” with that of a condition specifiable in a particular
formal language. Let’s take the fragment of GPLI including no nonlogical sym-
bols (no names, and no predicates apart from =) and add the set-theoretic
symbol ∈ (a two-place predicate). Call the resulting language GPLI with Set
Membership (GPLIS). An open formula α(x) of GPLIS—which contains free
occurrences of the variable x—can be thought of as a condition that objects
may or may not satisfy. Now the more precise version of the intuitive thought
is that for any such condition α(x), there exists a set containing all and only
the objects satisfying the condition—that is, the set:

{x : α(x)}
Note that the empty set can be specified in this way by giving a condition

α(x) in GPLIS:
∅ = {x :¬x = x}
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Because ∀xx = x is logically true, no object satisfies the condition ¬x = x;
hence, the set of all and only the objects that satisfy this condition is the empty
set. Assuming that sets S and T have been specified in this way—that is, that
we have introduced “S” as a name for a certain set specified by some condition
and “T ” as a name for a certain set specified by some condition—the sets S′,
S ∪ T , S ∩ T , and so on can also be specified in this way. That is precisely
how we did specify them in §16.1.3: with conditions stated using only logical
symbols of GPLI and the new symbol ∈ (and the names “S” and “T ”).

Let’s return to the precisified version of the intuitive thought. It is known as
the principle of unrestricted comprehension (or “unlimited comprehension”):

For any wff α(x) in GPLIS containing one or more free occurrences of x, there
exists a set:

{x : α(x)}

The term naı̈ve set theory is often used for the theory of sets that takes exten-
sionality and unrestricted comprehension as its basic principles. Unrestricted
comprehension determines which sets exist; extensionality determines when
sets x and y are one and the same set. Frege [1964, p. 105] took as an axiom
(Basic Law V) in his later formal system a principle that implies both a ver-
sion of unrestricted comprehension and extensionality. However—as Russell
[1902] pointed out to Frege in a now-famous letter, we can derive a contra-
diction from the principle of unrestricted comprehension. Let α(x) be the
formula ¬x ∈ x. Then the principle yields a set {x :¬x ∈ x}. Call this set R

(the Russell set). By pure logic, either R ∈ R or ¬R ∈ R. Suppose the for-
mer: then ¬R ∈ R (because the condition required for R to be in R is ¬R ∈
R). Suppose the latter: then it is not the case that ¬R ∈ R (again because
the condition required for R to be in R is ¬R ∈ R, so if R is not in R, it
must be that the condition is not satisfied); that is, R ∈ R. Thus, we have
R ∈ R ∨ ¬R ∈ R, R ∈ R →¬R ∈ R and ¬R ∈ R → R ∈ R. From these, the
contradiction R ∈ R ∧ ¬R ∈ R follows by pure logic. We have derived a con-
tradiction (R ∈ R ∧ ¬R ∈ R) from the principle of unrestricted comprehen-
sion. This is Russell’s Paradox.

We therefore need a new theory about which sets exist: unrestricted com-
prehension will not do. A common picture nowadays concerning which sets
exist is the iterative conception of set. In this view, sets are built up in stages. A
set S can only be built at stage x if all members of S already exist as of stage x.
In particular, a set that contains sets as members can only be built at stage x if
these member sets were built at some stage prior to x.

We start building sets at stage 0. At this stage—as we have not yet built any
sets—all we have available to put in the sets we are building are objects that
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are not sets; these are called urelements. There may be no urelements; as we
shall see, we can still build plenty of sets in this case. At stage 0 we can always
build the empty set. If there are no urelements, this is the only set we can build.
If there is one urelement, a, we can build the sets ∅ and {a}. If there are two
urelements, a and b, the possible sets are ∅, {a}, {b}, and {a , b}; and so on if
there are more urelements.

At stage 1, we can build any set containing urelements or sets built at stage 0,
that is, any set whose members are already available at the beginning of stage 1.
If there are no urelements, we can build ∅ and {∅}. (Note that ∅ was already
built at stage 0. At every stage, we can always build again everything built at any
earlier stage. In general, when talking about the stage at which a set is formed,
we mean the earliest stage at which it is formed.) If there is one urelement, a,
then at stage 1 we can build the following eight sets:

∅
{a} {∅} {{a}}

{a , ∅} {a , {a}} {∅, {a}}
{a , ∅, {a}}

(Two of these—∅ and {a}—were already built at stage 0.) If there are more
urelements, we can build even more sets at this stage.

At stage 2, we can build any set containing urelements, sets built at stage 0,
or sets built at stage 1, that is, any set whose members are already available at
the beginning of stage 2. If there are no urelements, we can build the following
four sets:

∅
{∅} {{∅}}
{∅, {∅}}

(The empty set ∅ was already built at stage 0 and at stage 1; {∅} was already
built at stage 1.) If there is one urelement, a, then at stage 2 we have nine
objects available to put into sets: a, and the eight sets built at stage 1 (the two
sets built at stage 0 were also built at stage 1, so we do not count them again).
Thus, we can build 29 = 512 sets (too many to show here). If we have more
urelements, we can build even more.

The progression of stages never stops: indeed, it extends to transfinite stages.
Thus, it is not just that there is a stage n for every finite n: after all these
finite stages (infinitely many of them), there is another stage, stage ω. At
this stage, we form sets whose members may be any urelement (if there are
any), or any set formed at any earlier stage (1, 2, 3, . . .). Next we have a
stage ω + 1, at which we form sets whose members may be any urelement (if
there are any), or any set formed at any earlier stage (1, 2, 3, . . . , ω); and so
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on, through stages ω+ 2, ω+ 3, . . . , ω+ ω(= ω.2), ω.2+ 1, ω.2+ 2, ω.2+
3, . . . , ω.2+ ω(= ω.3), . . . , ω.ω, . . . .

Sets built up in this way from no urelements are called pure sets. They can be
arranged into a hierarchy—known as the cumulative or iterative hierarchy—
according to the stage at which they are (first) formed. All the usual objects
considered in mathematics can be identified with sets in the cumulative hi-
erarchy. For example, the natural numbers 0, 1, 2, . . . can be identified with
the sets ∅, {∅}, {∅, {∅}}, . . . (note that each set in the sequence contains all
the earlier sets in the sequence). At the same time, certain problematic sets
are not built at any stage—and so they do not exist at all, in this conception.
For example, there is no Russell set. For note that no set in the cumulative
hierarchy is a member of itself: a set S can only have as members things that
have already been formed prior to the stage at which S is formed; so for S to
contain itself, S would have to be formed at some stage prior to the stage at
which S is formed—which is impossible. Thus, the set of all sets that are not
members of themselves would simply be the set of all sets in the cumulative hi-
erarchy. But there is no such set. For if there were, it would have to be formed
at some stage—and then it would not contain the sets formed at subsequent
stages (remember, the progression of stages never ends).

The iterative conception thus provides a theory about what sets exist that
yields enough sets for mathematics and promises to avoid contradictions, such
as Russell’s paradox. Of course, the theory—as we have presented it here—is
not precise. Greater precision may be attained by formulating axioms that are
true in the cumulative hierarchy and then working directly from the axioms;
this is known as axiomatic set theory.8

16.2 Ordered Pairs and Ordered n-tuples
Roughly speaking, an ordered pair consists of two objects, given in a partic-
ular order: one first, the other second. The ordered pair consisting of Alice
first and Bob second is represented as 〈Alice, Bob〉 or (Alice, Bob). An or-
dered triple consists of three objects, given in a particular order. The ordered
triple consisting of Alice first, Bob second and Carol third is represented as
〈Alice, Bob, Carol〉 or (Alice, Bob, Carol). In general, an ordered n-tuple (or
just an n-tuple, for short) consists of n objects in a particular order. The or-
dered n-tuple consisting of Alice first, Bob second, . . . , and Carol in nth
position is represented as 〈Alice, Bob, . . . , Carol〉 or (Alice, Bob, . . . , Carol).
“Ordered pair” is then just another term for an ordered 2-tuple, and “ordered
triple” is another term for an ordered 3-tuple.

I said “roughly speaking” because in fact an ordered pair does not have to
comprise two different objects, an ordered triple does not have to comprise
three different objects, and so on. For example, 〈1, 1〉, 〈Alice, Alice〉, and
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〈Bob, Bob〉 are perfectly good ordered pairs. Here we have just one object (in
each case) that occupies both positions in the pair. Thus, we should think of
an ordered pair not as “two objects” given in a certain order, but as an abstract
ranking or ordering with two positions, first and second: a stipulation of a first
object and a second object (which may or may not be the same object). There
is, in general, no reason why Alice (or any other individual) should not be
ranked first and second. For example, suppose that some children are working
out an ordering of who gets to go on the swing. If Alice has been sick in bed
for a week and has just rejoined the group, the children might deem that not
only should she have first go, she should have two goes in a row. Thus, she
occupies positions one and two in the ordering. The idea is not that she is
standing behind herself in a queue: that she is both first and second in line.
That is impossible. Rather, the ordering—in which she occupies both first and
second position—is an abstract thing.

The same point applies to ordered triples, and indeed to ordered n-tuples
in general. Thus, the following are all perfectly good ordered triples, and they
are all different triples:

〈1, 2, 3〉 〈1, 2, 1〉 〈1, 2, 2〉 〈3, 2, 3〉 〈1, 1, 1〉 〈3, 3, 3〉 〈2, 2, 1〉

In general, there must be at least one, and at most n, distinct objects in an or-
dered n-tuple. At one extreme we have the same object occupying all positions;
at the other extreme we have different objects in every position.

We saw that for sets, the order in which one writes the members is irrelevant;
for example, {1, 2} = {2, 1}, and {1, 2, 3} = {2, 1, 3}. For ordered n-tuples,
this is not the case: 〈1, 2〉 �= 〈2, 1〉 and 〈1, 2, 3〉 �= 〈2, 1, 3〉. We also saw that
{1, 1} is just another way of writing {1}, {1, 1, 2, 2} is just another way of
writing {1, 2}, and so on. For ordered n-tuples, this is not the case: 〈1, 1〉 �= 〈1〉
and 〈1, 1, 2, 2〉 �= 〈1, 2〉. The n-tuple 〈1, 1〉 is an ordered pair with 1 in both
positions (first and second); 〈1〉 is an ordered 1-tuple with 1 in its first (and
only) position. Similar remarks apply to 〈1, 1, 2, 2〉 and 〈1, 2〉.

For any object and any set, there are only two possibilities: the object is
either in the set, or it isn’t. So, a is in the set {a , c}, b isn’t, and c is. If we write
something like {a , a , c}, we have just written the same set as before—the one
that has a and c in it, and nothing else—only in a more long-winded way. We
can write a twice, but a can’t be in the set twice: it is either in, or it isn’t—
there are no different grades or ways of being in a set. For an object and an
ordered n-tuple, however, the question is not simply whether the object is in
the n-tuple. The question is: where in the n-tuple is the object? The following
are therefore three different n-tuples:

〈a , c〉 〈a , a〉 〈a , a , c〉
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The first is a 2-tuple (i.e., an ordered pair) in which a appears in first position,
c appears in second position, and no other object appears. The second is also a
2-tuple, but this time, a appears twice—in first and second positions—and no
other object appears. The third is a 3-tuple (i.e., an ordered triple), in which a

appears in first and second positions, c appears in third position, and no other
object appears.

For any sets S and T , their Cartesian product S × T is the set of all ordered
pairs whose first member is an element of S and whose second member is an
element of T . For example, if S = {1, 2} and T = {3, 4}, then

S × T = {〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉}
Where S and T are the same set, the Cartesian product S × S is denoted S2.
For example, if S = {1, 2, 3}, then

S2 = {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉}
The set of all ordered triples of elements of S is denoted S3, and in general
the set of all ordered n-tuples of elements of S is denoted Sn. For example, if
S = {1, 2}, then

S3 = {〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 1〉, 〈1, 2, 2〉, 〈2, 1, 1〉, 〈2, 1, 2〉, 〈2, 2, 1〉, 〈2, 2, 2〉}
Note that the rows in the matrix of a truth table for a proposition (or collection
of propositions) containing n basic propositions are precisely the ordered n-
tuples in {T, F}n, where {T, F} is the set of truth values. (In each row of the
matrix, the first entry is the truth value of the first basic proposition, the
second entry is the truth value of the second basic proposition, . . . , and
the final—nth—entry is the truth value of the nth basic proposition. The
rows cover all possible assignments of values to these propositions—that is,
all possible n-tuples of values.)

16.2.1 Reduction to Sets

Ordered pairs do not have to be thought of as a new kind of primitive entity:
they can be identified with sets of a certain sort. This can be done in various
ways; the now-standard approach is due to Kuratowski [1921, 171]:9

〈a , b〉 = {{a , b}, {a}}
The essential thing about an ordered pair is that it specifies which object
comes first and which comes second. In other words, the identity condition
for ordered pairs is: if we have an ordered pair x and an ordered pair y, they
are one and the same ordered pair iff x’s first object is the same as y’s first
object and x’s second object is the same as y’s second object. In symbols:

〈x , y〉 = 〈z, w〉 ↔ (x = z ∧ y = w)
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The key aspect of a reduction of ordered pairs to sets is that this identity
condition should then follow from the identity condition (i.e., extensionality)
for the sets to which 〈x , y〉 and 〈z, w〉 are reduced (i.e., here, {{x , y}, {x}} and
{{z, w}, {z}}). That is, it should follow from extensionality that:

{{x , y}, {x}} = {{z, w}, {z}} ↔ (x = z ∧ y = w)

The right-to-left direction holds trivially. For the left-to-right direction, sup-
pose that {{x , y}, {x}} = {{z, w}, {z}} (call this identity A). We want to show
that x = z and y = w. There are two cases to consider:

(i) x = y. In this case, {x , y} = {x , x} = {x}, so {{x , y}, {x}} = {{x}, {x}} =
{{x}}. So A becomes {{x}} = {{z, w}, {z}}, from which it follows, by extension-
ality, that both {z, w} and {z} are in {{x}}; that is, {z, w} = {x}, and {z} = {x}.
By extensionality the former yields z = x (and so x = z) and w = x; from
x = y and w = x we get y = w.

(ii) x �= y. Hence, {x , y} is a two-membered set, so {x , y} �= {x} (as {x} is
a one-membered set, and by extensionality a two-membered set cannot be
identical to a one-membered set), and so {{x , y}, {x}} is a two-membered
set. Hence, given A, {{z, w}, {z}} must also have two members, so z �= w.
Furthermore, one of the members of {{z, w}, {z}} must be {x , y}, and the
other must be {x}. As {x , y} and {z, w} are both two-membered and {x} and
{z} are one-membered, (a) {x , y} = {z, w}, and (b) {x} = {z}. From (b), x = z.
From (a), and x �= y and z �= w and x = z, it follows that y = w.

Other reductions would also work—for example, we could say that 〈a , b〉 =
{{a , b}, {b}}. Not anything would work, however—for example, if we said that
〈a , b〉 = {{a}, {b}} then it would turn out that 〈a , b〉 = 〈b, a〉 (even when
a �= b).

What about ordered n-tuples, where n is a number other than 2? An ordered
1-tuple 〈x〉 can simply be identified with the set {x}. An ordered triple 〈x , y , z〉
can be identified with the ordered pair 〈〈x , y〉, z〉. Note that the first member
of this ordered pair is itself an ordered pair. An ordered 4-tuple 〈x , y , z, w〉
can then be identified with the ordered pair 〈〈x , y , z〉, w〉. Note that the first
member of this ordered pair is an ordered triple. Given that we have seen how
to reduce an ordered triple to ordered pairs, this representation shows how
to reduce an ordered 4-tuple to ordered pairs. In general, we can reduce the
ordered (n+ 1)-tuple 〈x1, . . . , xn, y〉 to the ordered pair 〈〈x1, . . . , xn〉, y〉,
and thus all ordered n-tuples (n > 2) may ultimately be reduced to ordered
pairs—which, as we have seen, may be reduced to sets.10

A second approach to ordered n-tuples, for n > 2, is to view an ordered n-
tuple as a sequence of length n—in the precise sense of “sequence” introduced
in §16.5. As we shall see, a sequence in this sense is a certain sort of function,
and a function may be seen as a certain sort of set of ordered pairs. Thus, it

452 Chapter 16 Set Theory



would be circular to identify ordered pairs with sequences of length 2. How-
ever, once we identify ordered pairs with sets in the way discussed above, we
are then free to identify ordered n-tuples, for n > 2, with sequences of length n.

16.3 Relations

An n-place relation is a condition that an n-tuple of objects may or may not
satisfy; thus, we think of it as a set of n-tuples. For example, consider the
relation “x is a brother of y.” Let’s say Bill is a brother of Ben, and vice versa;
Bill is a brother of Carol, but not vice versa; and Ben is a brother of Carol,
but not vice versa. Then we can think of this relation as the following set of
ordered pairs:

{〈Bill, Ben〉, 〈Ben, Bill〉, 〈Bill, Carol〉, 〈Ben, Carol〉}

A 2-place relation is also called a binary relation; a 3-place relation is also called
a ternary relation.

Often we want to be quite specific about the sets from which the elements
of the ordered n-tuples in a relation (a set of n-tuples) are drawn. We say that
a binary relation from a set S to a set T is a subset of S × T , that is, a set of
ordered pairs whose first elements are in S and whose second elements are in
T . Where S and T are the same set, a binary relation from S to T —that is,
from S to itself—is also called a binary relation on S. A binary relation on S is
a subset of S2. Similarly, a ternary relation on S is a subset of S3 (i.e., a set of
ordered triples of elements of S), and in general an n-place relation on S is a
subset of Sn.

There are various properties that a binary relation R on S may have. For
example,

Reflexivity: for every x in S, 〈x , x〉 ∈ R. That is, the relation holds between
every object x and itself.

Irreflexivity: for every x in S, 〈x , x〉 �∈ R. That is, the relation holds between
no object x and itself.

Transitivity: for every x, y, and z in S, if 〈x , y〉 ∈ R and 〈y , z〉 ∈ R, then
〈x , z〉 ∈ R. That is, if the relation holds between x and y and between y

and z, then it holds between x and z.

Symmetry: for every x and y in S, if 〈x , y〉 ∈ R, then 〈y , x〉 ∈ R. That is, if
the relation holds between x and y in one order, then it holds between
them in the other order as well.

Antisymmetry: for every x and y in S, if 〈x , y〉 ∈ R and 〈y , x〉 ∈ R, then
x = y. That is, the only case in which the relation holds between x and y

in both directions is the case where x and y are one and the same object.11
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Asymmetry: for every x and y in S, if 〈x , y〉 ∈ R then 〈y , x〉 �∈ R. That is, if
the relation holds between x and y in one direction, then it does not hold
in the other direction.12

Connectedness: for every x and y in S such that x �= y, either 〈x , y〉 ∈ R or
〈y , x〉 ∈R (or both). That is, for any distinct objects x and y, the relation
holds between them in at least one direction.13

Relations having certain groups of these properties are important in certain
contexts and hence have been given special names. Three examples of such
relations are equivalence relations, partial orders, and linear orders.

R is an equivalence relation if it is reflexive, symmetric, and transitive. Note
that if R is an equivalence relation, then it divides S into subsets—equivalence
classes—with the following features: every member of S is in exactly one equiv-
alence class (i.e., the equivalence classes are nonoverlapping and between them
they cover all of S; i.e., they constitute a partition of S); for any x and y in S

(including the case x = y), 〈x , y〉 ∈ R iff x and y are in the same equivalence
class. The identity relation on any set S is an equivalence relation; each equiv-
alence class contains exactly one object. The relation of logical equivalence on
the set of wffs of PL is an equivalence relation; if an equivalence class contains
a wff α, then it also contains all and only the wffs that are logically equivalent
to α.

R is a partial order if it is reflexive, transitive, and antisymmetric. It is a
strict partial order if it is irreflexive and transitive (it follows that it must also
be asymmetric). R is a (strict) linear order if it is a (strict) partial order that is
also connected. The relation ≤ on the natural numbers is a linear order (and
hence also a partial order); the relation < on the natural numbers is a strict
linear order (and hence also a strict partial order). For any set S, the relation
⊆ on ℘S is a partial order (but not in general a linear order);14 the relation �

on ℘S is a strict partial order (but not in general a strict linear order). Note
that given any partial order, if we remove all pairs 〈x , x〉, the result will be a
strict partial order; given any strict partial order, if we add all pairs 〈x , x〉 (for
all x in S), the result will be a partial order. An analogous result holds for linear
orders and strict linear orders.

16.4 Functions

A function (aka map, mapping, operation) f from a set S to a set T , written:15

f : S → T

assigns particular objects in T to objects in S. S is called the domain of the
function and T the codomain. The essential feature of a function is that it never
assigns more than one object in T to any given object in S. If x is a member of
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S
f

T

Figure 16.2. Picturing a function as a collection
of arrows.

S, f (x) is the object in T that the function f assigns to x. We say that f (x) is
the value or output of the function f for the argument or input x, or it is the
value at x; we also say x is sent to f (x), that f (x) is hit by x, or that f (x) is
the image of x under f . Note that S and T may be the same set. In this case
we call a function from S to T —that is, from S to itself—a function on S.

A function f : S → T is commonly identified with the set of ordered pairs
〈x , f (x)〉, where x is an object in S that is sent to some object in T by f , and
f (x) is the object in T to which x is sent. For example, consider the successor
function on the set of natural numbers, which, given a number as input, yields
as output the next number in the sequence of natural numbers. Represented
as a set of ordered pairs, it is:

{〈0, 1〉, 〈1, 2〉, 〈2, 3〉, . . .}

The crucial feature of a function—that it never assigns more than one object in
T to any given object in S—emerges here as the requirement that no element
of S appears more than once as the first element of an ordered pair in the set.

Another useful way to picture a function f : S → T is as a collection of ar-
rows pointing from objects x in S to objects f (x) in T (Figure 16.2). Binary
relations can also usefully be pictured as collections of arrows. In this depic-
tion, functions are distinguished from relations in general by the requirement
on functions that no object has more than one arrow departing from it.

As with relations, there are various properties which a function f : S → T

may have. For example:
A function f : S → T is said to be total if it satisfies the condition that every

member of S is sent to some member of T . A function that is not total is
called partial. Such a function assigns nothing to some member(s) of S. In
the representation of a function as a set of ordered pairs, to say that x ∈ S is
assigned no value by the partial function f : S → T means that x does not
appear as the first element of any ordered pair in the set; in the representation
of a function as a collection of arrows, it means that x has no arrow leading
from it.16
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S
function
(we never see two arrows
leaving the same object)

S
total
(every object has an
arrow leaving it)

T
one-one
(we never see two arrows
hitting the same object)

T
onto
(every object gets hit by
an arrow)

Figure 16.3. Kinds of function from S to T .

A function f : S → T is said to be onto (aka surjective, a surjection) if it
satisfies the condition that every member of T is hit at least once; one-one (aka
one-to-one, into, injective, an injection) if no member of T is hit more than
once; and a correspondence (aka bijective, a bijection) if it is total, onto, and
one-one. (See Figure 16.3. Note that the top property in the table, unlike the
three below it, is a sine qua non for functions: if a subset of S × T does not
possess this property, then it is not a function. Also, do not be misled by the
picture of an onto function: a function can be onto without being one-one.)

Note that if (as discussed above) we identify a function f with the set of all
ordered pairs 〈x , y〉 such that f (x)= y, then the following identity condition
for functions holds: f = g iff f assigns values to all and only the objects to
which g assigns values, and for all such objects x, f (x)= g(x). This condition
follows from the identity condition for sets (extensionality) together with the
identity condition for ordered pairs given in §16.2.1 (which itself follows from
extensionality, if we identify ordered pairs with sets in the way discussed in
§16.2.1).
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So far we have considered functions that take a single object as argument
and assign to it an object as value. What about functions, such as addition or
multiplication, that take two objects as arguments and assign to them an object
as value? (These are called binary functions.) In general, what about functions
that take three, four, or in general n objects as arguments? One common way
of conceiving of such functions, which brings them within the framework
articulated above for one-place functions, is to conceive of an apparently n-
place function from S to T as a (one-place) function from Sn to T . That is, it
is a one-place function that takes as input an n-tuple of objects. (An n-tuple,
like a set, is considered to be a single object.) So, for example, the addition
function, which we normally think of as taking two numbers as input, may be
thought of as taking a single input: an ordered pair of numbers.

16.4.1 Operations on Functions

Given a function f : S → T , we can invert the function: switch the first and
second members of each ordered pair (make each arrow point the opposite
way). If the result of this process is a function (from T to S), this resulting
function is called the inverse function of f and is denoted by f−1. If the result
is not a function, we say f−1 does not exist. (Of course, the set of switched-
around ordered pairs always exists: it’s just that it might not be a function:
f−1 names the inverse function, if it exists.) It’s not too hard to see that
the condition required for the set of switched-around ordered pairs to be a
function is that f is one-one. Furthermore, provided f−1 exists:

. f−1 is one-one (because f is a function).

. If f is total, then f−1 is onto.

. If f is onto, then f−1 is total.

To see why these statements are true, it is helpful to recall Figure 16.3.
Given a function f : S → T and a function g : T → U , the composite func-

tion g ◦ f (read as “g after f ”) from S to U is defined thus: for every x in S,
(g ◦ f )(x)= g(f (x)). The idea here is that we first apply f to the input x (a
member of the set S) and then apply g to the result (i.e., to the output of f for
input x, which is a member of T ). In terms of arrows, the composite function
is found by taking each f arrow from an object x in S to an object y in T and
extending it so that it hits whatever object z in U the g arrow from y hits. (If
there is no g arrow from y, then in the composite function there is no arrow
from x.) Think through why the following must be true:

. If f and g are both total, so is g ◦ f .

. If f and g are both onto, so is g ◦ f .
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. If f and g are both one-one, so is g ◦ f .

. If f and g are both bijections, so is g ◦ f .

16.4.2 Characteristic Function of a Set

Given a subset S of a background set U , the characteristic (or indicator) func-
tion of S is a total function IS : U → {0, 1} defined as follows. For all x in U :

IS(x)=
{

1 if x ∈ S

0 if x �∈ S

We can think of the characteristic function as answering “yes” (1) or “no” (0),
for every object in U , to the question whether that object is in S.

Instead of the set {0, 1}, we might take the set {T, F} of truth values as the
codomain of the characteristic function (with T being “yes” and F being “no”).
Conversely, it is also common to take {0, 1} as the set of truth values: that is,
to use 1 everywhere we have used T and 0 everywhere we have used F (e.g., in
truth tables).

Think through why the following are true for any subsets S and T of a
background set U .

For every x ∈ U , IS∪T (x)=max{IS(x), IT (x)}
= IS(x)+ IT (x)− [IS(x)× IT (x)]

Note here that where x and y are numbers, max{x , y} is the greater of x and
y; if x = y, then max{x , y} = x.

For every x ∈ U , IS∩T (x)=min{IS(x), IT (x)}
= IS(x)× IT (x)

Note here that where x and y are numbers, min{x , y} is the lesser of x and y;
if x = y, then min{x , y} = x.

For every x ∈ U , IS′(x)= 1− IS(x)

S ⊆ T iff for every x ∈ U , IS(x)≤ IT (x)

For every 〈x , y〉 ∈ U 2, IS×T (〈x , y〉)= IS(x)× IT (y)

In relation to the last of these facts, note that S × T is a subset of U 2, so the
characteristic function of S × T is a function from U 2 to {0, 1}.

16.5 Sequences

Whereas a set is a collection of objects, a sequence is a collection of objects
given in a particular order: first, second, third, and so on—either up to nth (for
a finite sequence of length n), or forever (for an infinite sequence). Intuitively,
the idea of a finite sequence of length n of members of a set S is just the idea of
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an ordered n-tuple of members of S under a new name. The idea of an infinite
sequence of members of S, however, is something new.

It is standard to cash out the intuitive idea of a sequence (finite or infinite)
in the following precise way. Consider the set Z+ = {1, 2, 3, . . .} of positive
integers. For each n ∈ Z+, there is an initial segment Z+

n
of Z+ containing all

and only the numbers up to and including n. In order of increasing size, these
initial segments are Z+1 = {1}, Z+2 = {1, 2}, Z+3 = {1, 2, 3}, and so on. A finite
sequence of length n of members of the set S is a total function from Z+

n
to S.

An infinite sequence of members of the set S is a total function from Z+ to S.17

Note how this formal definition captures the intuitive idea. The first object
in the sequence is the value of the function (with which the sequence is identi-
fied) for input 1; the second object in the sequence is the value of the function
for input 2; and so on. The process continues either up to the nth and final
object in the sequence (in the case of a finite sequence, whose domain is Z+

n
)

or forever (in the case of an infinite sequence). For an infinite sequence, the
inputs to the function never run out (its domain is Z+) and so, because the
function is total, there is an ith entry in the sequence for every i.

A sequence may involve repetitions: there is no requirement that the func-
tion (with which the sequence is identified) be one-one, so the same object
may appear at multiple positions. Thus, even if there is only one thing in S, we
can have a sequence of any length of members of S: it will just have that same
object in every position. (Given that the function must be total, however, we
cannot have a sequence of any length of members of the empty set.)

Suppose we take as S the set containing the first seven letters of the alphabet:

S = {a , b, c, d , e, f , g}

Here are some examples of sequences of members of S.

f (1)= a , f (2)= b, f (3)= c, f (4)= d , f (5)= e, f (6)= f , f (7)= g

f is a sequence of length 7; its domain is Z+7 . We can also write this sequence
as 〈a , b, c, d , e, f , g〉 or (a , b, c, d , e, f , g). In this notation, the first object
shown is the first object in the sequence (the value of f for input 1), the second
object shown is the second object in the sequence (the value of f for input 2),
and so on.

g(1)= c

g is a sequence of length 1; its domain is Z+1 . We can also write this sequence
as 〈c〉 or (c).

h(1)= a , h(2)= b, h(3)= a , h(4)= b, h(5)= a , h(6)= b, . . .

16.5 Sequences 459



h is an infinite sequence; its domain is Z+. We can also write this sequence as
〈a , b, a , b, a , b, . . .〉 or (a , b, a , b, a , b, . . .).

Two finite sequences f and g may be concatenated; that is, the elements of
f (in order) placed before the elements of g (in order), so as to form a new
sequence whose length is that of f plus that of g. Concatenation is represented
using the symbol �. Thus, 〈a , b〉�〈a , b〉 = 〈a , b, a , b〉, 〈a〉�〈a , b, c〉 =
〈a , a , b, c〉, and so on. More formally, concatenation is a binary operation
on sequences, defined as follows. Where f and g are sequences of lengths m

and n, respectively, of members of S; that is, f : Z+
m
→ S and g : Z+

n
→ S:

(f �g)(i)=
{

f (i) for 1≤ i ≤m

g(i −m) for m+ 1≤ i ≤m+ n

Note how this definition specifies the sequence (function) f �g by specifying
which object is in each position i of the sequence (i.e., which object the func-
tion assigns as value for input i). For i such that this definition does not specify
what is in position i of f �g (i.e., does not specify a value for the function
f �g for input i), we are to understand that f �g has no position i (meaning
that f �g is a total function from some set that does not include i—as op-
posed to a partial function from some set that does include i). It then follows
from the definition that f �g is of length m+ n (i.e., it is a total function from
Z+

m+n
to S).

Given this definition, it can be shown that for any sequences f , g, and h

f �(g�h)= (f �g)�h

Hence, we are free to omit parentheses, as in f �g�h.

16.6 Multisets

As mentioned in §15.3.2.3, we can think of a set as being obtained from a se-
quence by ignoring both ordering and repetitions. A multiset ignores ordering
but not repetition. That is, a multiset is a collection of objects together with a
record of how many times each object occurs in the collection.

More formally, a multiset S, all of whose elements are members of a back-
ground set U , may be thought of as a total function from U to the set N =
{0, 1, 2, 3, . . .} of natural numbers. (Note that N, unlike Z+, includes 0.)
The number assigned to each object x in U indicates how many times x oc-
curs in S. This idea is a generalization of the notion of characteristic function
(§16.4.2). The characteristic function of a normal set S has only two possible
values for any input x: 0 (“x is not in S”) or 1 (“x is in S”). The characteris-
tic function of the multiset S has infinitely many possible values: 0 (“x occurs
zero times in S”), 1 (“x occurs once in S”), 2 (“x occurs twice in S”), and
so on.
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For example, suppose we take as the background set U the set containing
the first seven letters of the alphabet:

U = {a , b, c, d , e, f , g}

Here are some examples of multisets of members of U .

f (a)= 3, f (b)= 2, f (c)= 1, f (d)= 0, f (e)= 0, f (f )= 0, f (g)= 0

We can also write this multiset as [a , a , a , b, b, c].

f (a)= 2, f (b)= 2, f (c)= 2, f (d)= 2, f (e)= 2, f (f )= 2, f (g)= 2

We can also write this multiset as [a , a , b, b, c, c, d , d , e, e, f , f , g , g].

f (a)= 0, f (b)= 0, f (c)= 0, f (d)= 0, f (e)= 0, f (f )= 0, f (g)= 0

We can also write this multiset as [ ]. It is the empty multiset on U .
Note that [a , a , b] �= [a , b], and [a , a , b]= [a , b, a]. If we identify multisets

with functions in the way indicated above, then these facts follow from the
identity condition on functions given in §16.4. The multiset [a , a , b] is a
function that assigns 2 to a, and [a , b] is a function that assigns 1 to a, so they
are different functions. In contrast, [a , a , b] is a function that assigns 2 to a

and 1 to b, and [a , b, a] is a function that assigns 2 to a and 1 to b, so they are
the same function. (We assume here that the domain of these two functions
is the same.) Thus, as indicated at the outset, multisets (unlike sequences)
ignore ordering of elements, but (unlike sets) they do not ignore repetition
of elements.

We can define operations on, and relations between, multisets by mimicking
certain facts about characteristic functions of normal sets. For example, recall
from §16.4.2 that

IS∩T (x)=min{IS(x), IT (x)}

If we take the Is here to be multiset functions—which take values in N, not
{0, 1}—then we can take this formula to define the intersection of multisets
S and T . For example, the intersection of [a , a , b] and [a , b, c] will then be
[a , b]. (Here a occurs once in the intersection, because 1 is the minimum value
assigned to a by [a , a , b] and [a , b, c]; the former assigns it 2 and the latter 1.
And c occurs no times in the intersection, because 0 is the minimum value
assigned to c by [a , a , b] and [a , b, c]; the former assigns it 0 and the latter 1.
Similar points apply to b.)18 To take a second example, recall from §16.4.2 that

S ⊆ T iff for every x ∈ U , IS(x)≤ IT (x)

If we once again take the Is here to be multiset functions, then this formula can
define the subset relation between multisets. The multiset [a , b] is a subset of
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[a , a , b], because the value assigned to a by the former is less than or equal to
the value assigned to a by the latter, and similarly for b. In contrast, [a , a , b]
is not a subset of [a , b, b], because the value assigned to a by the former is
greater than the value assigned to a by the latter.19

16.7 Syntax

Let us return now to specifications of the syntax of our various logical lan-
guages and try to get a clearer understanding of them. We’ll take as an example
the syntax of GPL (§12.1.3); the same essential points apply to PL, GPLI, and
the others.

The presentation of the syntax comes in two main parts. First, we give the
symbols of the language: names a , b, c, . . .; variables x , y , z, . . .; predicates
A1, B1, . . ., A2, B2, . . .; connectives ¬, ∧, ∨, →, and ↔; quantifier symbols
∀ and ∃; and parentheses ( and ). Second, we specify the wffs: where P n is any
n-place predicate and t1 . . . tn are any names and/or variables, P nt1 . . . tn is a
wff; where α and β are wffs and x is a variable,¬α, (α ∧ β), (α ∨ β), (α→ β),
(α ↔ β), ∀xα and ∃xα are wffs.

We should understand this presentation as follows. Each symbol is a par-
ticular object, and each wff is a finite sequence of these objects. The first part
of the definition gives us a set S of objects (the symbols). Given S, we may
consider the set S∗ of all finite sequences of members of S. The second part
of the definition then specifies a particular subset W of S∗: the wffs. It first
tells us (in the clause for atomic wffs) that any sequence of length n+ 1 that
has an n-place predicate in first position and n names and/or variables in the
remaining positions is in W .20 It then specifies that for any sequences in W ,
certain other sequences formed from them (and from length-1 sequences of
certain of the basic symbols) by concatenation are also in W . For example, if
α is a sequence in W , then the sequence 〈¬〉�α is also in W . (Note that con-
catenation is defined on sequences, so we cannot concatenate α directly with
the symbol¬: we have to concatenate it with the length-1 sequence 〈¬〉 whose
only entry is the symbol ¬.) If α and β are sequences in W , then the sequence
〈(〉�α�〈∧〉�β�〈)〉 is also in W . If α is a sequence in W , and x is any one of
the variable symbols, then 〈∀〉�〈x〉�α is in W ,21 and so on.

Note that the syntax does not stipulate what the symbols of the language
look like. In a sense, it does not tell us which objects they are. What the
specification of the symbols really amounts to is as follows:

. There is a certain object—the negation symbol. When I write something
of the same shape as:

¬
it is to be understood that I am picking out this negation object.
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. There are certain objects—the variable symbols. When I write something
of the same shape as:

x

it is to be understood that I am picking out the first of these objects. When
I write something of the same shape as:

y

it is to be understood that I am picking out the second of these objects,
and so on.

. There is a certain object—the universal quantifier symbol. When I write
something of the same shape as:

∀
it is to be understood that I am picking out this universal quantifier
object.

Similar statements hold for the other symbols. The symbols themselves—the
actual objects, as opposed to the ink shapes we use to pick them out—might
be abstract objects, for example, pure sets. In that case, they have no shapes
at all. They might be physical objects, in which case they have shapes, but the
negation object might not actually look like the ink shape “¬” we use to pick
it out. The convention is that when I write something with the shape of “¬,”
I pick out the negation object; this does not mean that the negation object
itself has this shape. (Consider the following analogy. When you blow your
whistle—or any whistle that sounds just like it—Rover comes. This does not
mean that Rover himself sounds like the whistle: Rover may make no noise—
or a completely different noise, such as a bark or a snuffle.)

So the first part of the syntax (the part listing the symbols) states that there
are certain objects, and it also (implicitly) sets down a convention for picking
out these objects using ink marks of certain shapes. The second part then
specifies which sequences of these objects are wffs. It also implicitly sets down
a convention, which is that when we write the shape that picks out symbol
x immediately to the left of the shape that picks out symbol y, the resulting
bigger shape (comprising those two shapes next to each other) is to pick out
the sequence that is the concatenation of the length-1 sequence whose only
entry is x with the length-1 sequence whose only entry is y. The convention is
actually a bit more complex than that, because it also involves the use of wff
variables. It would be an interesting exercise to write out the convention in
full—but the result would be far less comprehensible than the specification of
the syntax as given in §12.1.3. That is, of course, why we actually present the
syntax in that simpler way. The point now is to clarify what that presentation
of the syntax is really doing. Wffs are not lines of ink marks: they are abstract
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objects—sequences of basic symbols. (Even if the symbols are not abstract
objects, sequences of them are: they are functions from initial segments of
Z+ to the set S of symbol objects.) These symbols are particular objects, and
there is only one of each: one negation symbol, one first variable, one second
variable, and so on. When we write ¬¬A2xx, we use two ink marks of the
shape “¬” and two of the shape “x,” but both of the former pick out the same
object (the one and only negation object) and both of the latter pick out the
same object (the first variable object). The whole shape “¬¬A2xx” picks out
the length-5 sequence whose entries are:

1. the negation object,

2. the negation object (i.e., the same object that is in first position),

3. the first two-place predicate object,

4. the first variable object, and

5. the first variable object (i.e., the same object that is in fourth position).

Note that an abbreviation is just an extension of the conventions that as-
sociate certain ink shapes with certain wffs (sequences of symbol objects).
The presentation of the syntax establishes the convention that the ink shape
“(P 1a ∧ P 1b)” picks out a particular sequence of symbols. When we introduce
the abbreviation that omits outermost parentheses, we are simply extending
this convention in such a way that the ink shape “P 1a ∧ P 1b” will pick out
the same sequence of symbols that the ink shape “(P 1a ∧ P 1b)” picks out.

16.7.1 Models

We have been using S for the set of symbols of the logical language. Let’s
use S ′ to denote the subset of S that contains the nonlogical symbols. (In
Chapter 9, n. 6 we mentioned that S ′, thus defined, is the signature of the
logical language.)

In light of the foregoing discussion, we can now also clarify what a model
is. We said that a model comprises a domain, together with a specification of a
referent for each name and an extension for each predicate. The domain is a set
D of objects. We can now see that the rest of the model is a total function from
S ′—which is a set of objects (symbols)—to objects of the appropriate sorts.
The members of S ′ are names, one-place predicates, two-place predicates, and
so on. Names are sent to members of D by the function (i.e., the value of a
name in a model is an object in the domain); one-place predicates are sent
to members of ℘D (i.e., the value of a one-place predicate in a model is a
subset of the domain); and n-place predicates for n > 1 are sent to members
of ℘(Dn) (i.e., the value of an n-place predicate in a model is a set of n-tuples
of members of the domain).
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16.7.2 Definitions of Logical Operators

We mentioned in Chapter 15, n. 8 that there are two quite different ways
of interpreting the definition of one logical operator in terms of others, for
example, (α ∧ β) := ¬(α →¬β), or ∃xα := ¬∀x¬α. We are now in a posi-
tion to explain these two ways. I’ll present the discussion in terms of the first
example—in the context of propositional logic—but the point is general.

Recall the context: we have a proof apparatus (e.g., a system of axioms and
rules) that mentions only certain connectives, say ¬ and →. To prove tau-
tologies stated using other connectives, (e.g., ¬(P ∧ ¬P)), we first define out
these other connectives (in this case∧) in terms of¬ and→ (see the definition
above). We then prove the resulting formula—in this case, ¬¬(P →¬¬P).

At this point we need a preliminary definition. The language PL was defined
in §2.5. Imagine a definition of a language (call it PL∗) that is completely
analogous except that the only connectives mentioned are¬ and→: the other
connectives of PL (∧, ∨, and ↔) are not symbols of PL∗, and so there are
no wffs of PL∗ featuring these symbols. That is, the set of symbols of PL∗ is a
proper subset of the set of symbols of PL: there are objects in the latter that are
not in the former.

The first way of understanding the process of defining out ¬(P ∧ ¬P) as
¬¬(P →¬¬P) is as follows. Our logical language is PL∗. When we give the
syntax for PL∗, we introduce the convention that ink shapes like “¬α” and
“(α → β)” pick out certain sequences of symbol objects. When we now intro-
duce the definition (α ∧ β) := ¬(α→¬β), we are extending the convention,
so that ink shapes like “(α ∧ β)” will pick out the same sequences of symbols
that shapes like “¬(α →¬β)” pick out. Thus, the definition allows us to use
new ink shapes in a meaningful way. It gives us a new kind of handle with
which to manipulate the logical language PL∗. It is thus exactly the same in
character as the abbreviation that allows us to omit outermost parentheses.

The second way of understanding the process of defining out ¬(P ∧ ¬P)

as ¬¬(P →¬¬P) is as follows. Our logical language is PL, not PL∗. So the
language contains a conjunction object, and we could always use ink shapes
like “(α ∧ β)” right from the start: the presentation of the syntax for PL im-
plicitly introduces conventions governing what sequences these shapes pick
out, as discussed in §16.7. However, our proof apparatus gives as outputs (i.e.,
proved wffs) only sequences that do not contain the objects ∧, ∨, or↔ at any
position. As we said in §15.1 (and subsequently in the same chapter), we could
extend the proof apparatus so that it also outputs (some) wffs featuring these
symbols (i.e., the ones that are in fact tautologies)—for example, by adding
axioms and/or rules that feature ∧, ∨, and↔. However, we are now consider-
ing the alternative, which is to leave the proof apparatus as it is and introduce
such definitions as (α ∧ β) := ¬(α →¬β). We now understand these defini-
tions as follows. If we want to prove a wff of a kind the proof apparatus cannot

16.7 Syntax 465



prove (a wff involving ∧, ∨, or ↔), we must first find an equivalent wff of a
kind the proof apparatus does handle and then prove it. (Note that if α and β

are equivalent, then if the proof system proves that α is a tautology, it follows
that β is a tautology, because something equivalent to a tautology is itself a
tautology.) Such definitions as (α ∧ β) := ¬(α →¬β) (in this second way of
understanding them) specify how to find such equivalent wffs. (The process
of replacing any occurrence of ∧ in a formula, using an equivalence such as
(α ∧ β) := ¬(α →¬β), is illustrated in §6.6.) They thus have the same char-
acter as the equivalences in §12.5 and §12.5.3, which enable us to find a prenex
equivalent of any given formula.

16.7.3 Operations on Wffs

As discussed in §3.5, the terms “negation,” “conjunction,” “conditional,” and
so on can be used to refer to three different types of objects. We illustrate with
the case of conjunction, but the point is general. The term “conjunction” can
be thought of as picking out:

1. a connective: a symbol in the logical language—a particular object;

2. a compound proposition: a wff—a sequence of symbol objects whose
main connective is “conjunction” in sense (1) (each such sequence may
be called a “conjunction”); or

3. a truth function: the function from {T, F}2 to {T, F}, which sends 〈T, T〉
to T and all other inputs to F.

We can now see that there is a fourth kind of object that the term “conjunc-
tion” can be used to pick out: a binary function on the set of wffs, which, given
wffs α and β as input (in that order) returns the wff (α ∧ β) as output. (In
other words, given sequences α and β as input, it gives as output the sequence
〈(〉�α�〈∧〉�β�〈)〉.) Note that the output of this function is always a conjunc-
tion in sense (2) above.

We can now interpret the syntax specification “when α and β are wffs,
(α ∧ β) is a wff” as stating that the set W of wffs is closed under the operation
of conjunction (in this fourth sense of conjunction). That is, for any two
objects (sequences) in W , the output of this function when fed those two
objects as input (in either order) is also in W .

We can also now see that when constructing a wff of PL as in §2.5.3, we
reach it, starting from basic propositions by (i) feeding these basic proposi-
tions (which are symbol objects, not sequences) as inputs to the clause stating
that length-1 sequences of basic propositions are wffs (see n. 20) and then
(ii) feeding the outputs of stage (i) as inputs to the functions on sequences just
discussed (i.e., conjunction, negation, etc., in the fourth senses of these terms).
We then repeat stage (ii), using the outputs of any earlier stages as inputs, until
the desired wff (sequence) is attained.
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NOTES

Chapter 1: Propositions and Arguments

1. For example, the opening sentence of the classic Jevons [1870] is “logic may be
most briefly defined as the Science of Reasoning.” Similar formulations occur right
across the wide range of modern introductions to logic, from the mathematically
oriented Mendelson [1987], which opens “one of the most popular definitions of
logic is that it is the analysis of methods of reasoning,” to the philosophically and
linguistically oriented Gamut [1991a], which opens “logic, one might say, is the science
of reasoning.”

2. That is, we do not mean something done by people wearing lab coats and safety
glasses. There is a narrower usage of the term “science,” by which it means some-
thing like the systematic study of the structure and behavior of the physical and natu-
ral world carried out through observation and experiment—and a broader usage, by
which it means something like the systematic pursuit of knowledge. I am using “sci-
ence” in the broader of these two senses.

3. Our usage of the term “proposition” is a technical one—but it is related to one
of the multiple ordinary meanings of this term. Ordinarily, “proposition” can mean
a number of things—for example, an offer of terms for a transaction, a suggested
scheme or plan of action, or a statement that expresses an opinion. Our technical us-
age is related to (but not the same as—see §1.2.2) the last-mentioned of these ordinary
meanings. This sort of situation—where we take an ordinary term and give it a tech-
nical meaning related to one of its ordinary uses—is very common. (E.g., consider the
term “body” as used in physics. The systematic study of the motions of objects and the
forces that affect these motions is called “mechanics,” and the term “body” is used for
the objects of this science: bodies, in this technical sense, are those things which can
move and are subject to forces. This is a technical usage of the term “body,” but it is
abstracted from one of the ordinary meanings of the term.)

4. Doesn’t “open the door!” represent the door as being shut? No: if the door is
already open, saying “open the door!” is inappropriate, but it isn’t false.

5. As explained in the Preface, some parts of this book cover core material, and some
parts cover additional material which will be of interest to some readers. The Preface
gives details concerning which parts of the book are core material, and which of the
noncore parts might be relevant to a given reader, depending upon her interests. This is



the first of the noncore sections. This note will not be repeated in subsequent noncore
sections.

6. Instead of talking of what the sentence says when uttered in a certain context, one
might prefer to talk of what a speaker says by uttering the sentence in a certain context.
That is, one might think that sentences do not say things: speakers do (by uttering
sentences). As far as what follows is concerned, it makes no difference whether we
think of sentences or speakers as making claims, and so I shall use both formulations
interchangeably. It is the claims themselves (i.e., the propositions) in which we shall be
interested.

7. This distinction is originally due to Peirce [1906, para. 537].
8. For further discussion of the notion sequence involved here, see §16.5 and §16.7.
9. Tokens of a type need to be distinguished from occurrences of a type. Suppose that

we are talking about opening lines of novels, and we note that the word “was” occurs
eleven times—or has eleven occurrences—in the opening sentence of Dickens’s A Tale
of Two Cities. What are we counting? Not word types: the eleven occurrences are all
of the single word type “was.” Not word tokens: we are not talking about a particular
printed copy of the novel, counting tokens of “was”—we are talking about the sentence
type of which the opening lines of countless printed editions of the novel are tokens
(even if all printed copies of the book were destroyed, our claim would still be true);
thus, we are not counting tokens of “was”—for tokens are physical objects (e.g., strings
of ink marks), and there are none of these in the picture when we are talking about the
sentence type. So what are we counting? Well, the idea is as follows. A sentence type
is a sequence of word types (in the particular sense of “sequence” explained in §16.5),
and the same word type may appear at multiple points in the sequence. For example,
the opening sentence of A Tale of Two Cities is a sequence of 119 words—and the word
“was” (i.e., the single word type “was”—an abstract object) occupies positions 2, 8,
14, 20, 26, and so on in the sequence: eleven positions in all. When we say that “was”
occurs eleven times in this sentence, what we are counting is the number of positions
in the sequence that are occupied by the word type “was.” Note that when we produce
a token of the sentence type, there is a token of “was” for each occurrence of the type
“was” in the sentence type: thus, in a printed copy of A Tale of Two Cities, there will be
eleven different tokens of “was” on the opening page, before the first full stop. In the
sentence type itself, however—which is an abstract object—there are no tokens of the
word type “was”: there are eleven occurrences of this word type.

10. A note on terminology. In ordinary usage, an “utterance” could be either the
action of saying something or the spoken words produced by this action; likewise, an
“inscription” could be either the action of inscribing something or the inscribed words
produced by this action. In keeping with much of the literature on these matters, I
shall use “utterance” and “inscription” for the token word or sentence produced (not
for the act of producing it), and furthermore I shall ignore the ordinary restriction
of “utterance” to spoken words and of “inscription” to written words, instead using
both terms simply as synonyms of “token.” Likewise, I ignore the ordinary restriction
of “speaker” to someone who produces spoken words: by “speaker” I simply mean a
producer of tokens.

11. However, if two persons make claims, and it turns out that there cannot be a
situation in which what one of them says is true while what the other says is false, this
does not automatically mean that they say the same thing (make the same claim about
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the world or express one and the same proposition). It might be that they express two
different propositions that are equivalent (cf. §4.3). (Compare a situation in which you
are trying to determine whether the person walking in the door is the same person
who walked out a minute ago. If the person who walked out was six feet tall, and the
person who is walking in is five feet tall, you know they are different persons. But if
the person walking in has the same height as the person who walked out, this does not
automatically mean it is the very same person: they might be different persons who
have the same height.)

12. The sentence “I am hungry” is obviously one that can be used to state different
propositions on different occasions—for it contains a word (“I”) that picks out a
different person, depending on who utters the sentence. (“I” refers to me when I utter
the sentence, to you when you utter the sentence, and so on). Word types that pick
out different things depending on the context of utterance are indexicals. Examples
include “I,” “you,” “now,” “yesterday,” and “here.” As we have just seen, if someone
uses a sentence type containing an indexical to make a claim about the world, it
is no good trying to identify the claim he makes—the proposition he expresses—
with the sentence type that he utters: for the same sentence type could be used on
another occasion to make a quite different claim about the world. But can we identify
propositions with sentence types that do not contain any indexicals? That will not
work either. Consider the sentence “it is snowing.” It does not contain any (obvious)
indexicals. Yet it behaves in the same way as the sentence “it is snowing here now,”
which contains two indexicals (“here” and “now”): when uttered in London at 11 pm
on 4 March 1901 it makes the claim that it is snowing in London at 11 pm on 4 March
1901; when uttered in Hobart at 9 a.m. on 2 November 1854 it makes the claim that
it is snowing in Hobart at 9 a.m. on 2 November 1854; and so on. Now contrast “it is
snowing” with “snow falls in Sydney, Australia, at 10:55 a.m. (local time) on 4 April
2011.” The former sentence does not specify, in itself, a time or a place that it talks
about: generally speaking, it can be used to make a claim about any time or place, by
uttering it at that time in that place. The second sentence, in contrast, is fully specific:
it includes a specification of the place and time it talks about. As a consequence, no
matter where or when the sentence is uttered, it makes the same claim about the world.
So can we identify propositions with such fully specific sentence types? To make good
on this proposal, we should of course need to say precisely what it takes for a sentence
to be fully specific, and this may well prove difficult. (The notion of a fully specific
sentence is related to, but not the same as, the notion of eternal sentences: “sentences
that stay forever true, or forever false, independently of any special circumstances
under which they happen to be uttered or written” [Quine, 1986, 13].) In any case,
there is a more fundamental problem for this proposal. Let us suppose that John, who
speaks only English, says “snow falls in Sydney, Australia at 10:55 a.m. on 4 April
2011,” while Johann, who speaks only German, says “Schnee fällt um 10:55 a.m. am
4 April 2011 in Sydney, Australien.” Note that John’s sentence is a correct translation of
Johann’s sentence into English and Johann’s sentence is a correct translation of John’s
sentence into German. John and Johann utter different fully specific sentence types:
one a sentence in English, one in German. Yet (it seems obvious) they make the same
claim about the world: they express the same proposition. Two different sentences,
one proposition: so we cannot identify the proposition with both sentences. We could
identify it with just one of the sentences—say, the English one—but this would be
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arbitrary, and it would also have the strange consequence that the claim Johann makes
about the world is a sentence in English: a language he does not speak or understand.
Thus, we cannot happily identify propositions with fully specific sentence types.

13. If we have two distinct objects B and C, then we cannot say of an object A both
that it is the same thing as B and that it is the same thing as C—for if that were so, then
this one object A would at the same time be two different objects, B and C, which is
impossible. (E.g., given that your mother and father are different persons, and that “the
prime minister of New Zealand” picks out a single individual, it cannot be the case that
the prime minister of New Zealand is your mother and that the prime minister of New
Zealand is your father.) See Chapter 13.

14. For a more detailed discussion, see, for example, Cartwright [1987].
15. If any: it is of course an open possibility that some combinations of sen-

tence, speaker, and context do not determine any proposition at all. It is also pos-
sible that some combinations of sentence, speaker, and context determine multiple
propositions—that is, that by uttering a certain sentence in a specific context one
might simultaneously make multiple claims about the world.

16. The proper home of these controversies is philosophy of language, where they
can be found under headings including “semantics versus pragmatics” and “minimal-
ism versus contextualism.”

17. We noted earlier (n. 3) that our usage of the term “proposition” is a technical
one, related to but distinct from one of the multiple ordinary meanings of this term.
To prevent confusion that might otherwise arise when the reader consults other works,
it is also worth noting that even within philosophy and logic, the term “proposition”
has been used in a number of different technical senses. Some of the most common of
these are as follows (we shall discuss the question of what a “declarative sentence” is in
a moment): (1) A proposition is what is said by an utterance of a declarative sentence in
a context: it is a claim about how things are—it represents the world as being some way.
(2) A proposition is the information content of an utterance of a declarative sentence in
a context. (3) A proposition is the literal meaning of a declarative sentence type. (4) A
proposition is that which is in common between synonymous declarative sentences—
that is, that single thing which each of the various synonymous sentences expresses.
There are various views about how these notions relate to one another (e.g., whether
some of them amount to different ways of phrasing the same essential idea), and also
about how they relate to various other notions in the literature—most notably Frege’s
notion of a Thought (Gedanke) [Frege, 1892, 1918–19]—which, although introduced
using terms other than “proposition,” are clearly related in some way to one or more
of the above notions. A couple of further factors add to the terminological complexity.
First, some writers (often those who think of propositions in terms of sense (1) above)
use “statement” as a synonym for “proposition,” while others contrast statements
and propositions. Among the latter, there are further distinctions between those who
use “statement” as a synonym for “declarative sentence” (see below), those who use
“statement” for the act of uttering a declarative sentence (recall n. 10), and those (often
the ones who think of propositions in terms of sense (4) above) for whom statements
are rather like (but not exactly the same as) propositions in sense (1) above. Second,
those who employ the notion of a declarative sentence need to say what such a thing is.
Often a declarative sentence is defined as one that makes a statement—which takes
us back to the previous point—but the notion is also sometimes defined in other
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ways, for example: “A declarative sentence of English is defined to be a grammatical
English sentence which can be put in place of ‘x’ in ‘Is it true that x?’ so as to yield
a grammatical English question” [Hodges, 1977, 19]. The task of explaining all these
notions in detail and then sorting out the relationships among them is a vast one—but
it is not a task that we wish to take on in this book. The purpose of the present note
is simply to alert the reader to the complexity of the situation with regard to the term
“proposition.” When this term is encountered elsewhere, it must not be assumed that
it is being used in the technical sense in which we use it in this book.

18. For discussion—and quotations from Sextus Empiricus, Samuel Taylor Co-
leridge, and others—see Anderson and Belnap [1975, §25.1].

19. We have just given the term “NTP” two slightly different uses. Sometimes we
shall use “NTP” as a label for a property that arguments might have (the property
of necessary truth-preservation) and sometimes as a label for arguments with this
property (i.e., those which are necessarily truth-preserving). It will always be clear
from the context what is meant in any given case.

20. A kelpie is a particular breed of dog (a sheepdog with smooth coat and upright
ears).

21. We use the terms “form” and “structure” interchangeably.
22. It would be unusual for a boy to be named “Susan,” but no doubt it has hap-

pened. For the sake of argument, however, let us suppose that it is impossible for a
male to be named “Susan.”

23. If the glass contained no H2O (i.e., the conclusion were false), then the glass
could not contain water (i.e., the premise would have to be false) for water is just H2O.

24. The situation regarding validity is thus exactly the same as the situation regard-
ing propositions (§1.2.2): in advance of our study of logic, we set out a rough guiding
idea; a precise account is then one of the goals of our subsequent study.

25. The notes in the quotation are mine, not Tarski’s.
26. This is the idea that the argument should be NTP.
27. This is the idea that the argument should be NTP by virtue of its form.
28. That is, (1) NTP, (2) guaranteed by form.
29. More precisely, what we want is an effective procedure for determining validity

that always yields the correct answer. A procedure is said to be “effective” if it can be
encapsulated in a finite set of instructions, to be followed in a specified order, where
each instruction is (1) mechanical (no ingenuity or insight is required to carry it out—
a computer could be programmed to do it); (2) deterministic (it involves no random
devices, e.g., coin tosses); and (3) finitely achievable (only a finite amount of time is
required to complete it). For further discussion, see §14.2.

30. Inductive reasoning in this sense should not be confused with reasoning by
mathematical induction: the latter is a form of deductive reasoning that will be dis-
cussed in §14.1.1.

31. As we shall see, there are certain special cases where logic does tell us that a
particular proposition is true or false—for it turns out that the laws of truth ensure that
certain propositions must be true no matter what and that certain other propositions
must be false no matter what. Hence, there are certain arguments—involving these
special kinds of propositions—such that logic does tell us that they are, or are not,
sound. That is why I said that logic has very little—as opposed to nothing—to say
about soundness.
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32. Although I have given a brief definition of the notion, I do not expect it to be
clear at this point what it means for a connective to be truth functional. This will
become clear as we proceed and see some examples. But it is important to state in
advance that we shall be looking at connectives of a particular sort—namely, the truth-
functional ones. Otherwise, our selection of connectives below might seem arbitrary
and unmotivated. (This is another point where those who say that logic is the sci-
ence of reasoning face difficulties. If logic is the science of reasoning, why focus on
truth-functional connectives, when they are far from the only connectives that figure
in ordinary reasoning? If we regard logic as the science of truth, however, then it is ob-
vious why truth-functional connectives are of the first importance: these connectives
are concerned only with the truth or falsity of the propositions they are connecting.)

33. A note on terminology: In grammar, the term “conjunction” is used as a general
term for what we call “connectives”—whereas in logic, “conjunction” is used as a name
for one particular connective.

34. The same issue arises in Exercises 1.6.4.1. We regard (1) “if that’s pistachio ice
cream, it doesn’t taste the way it should” as a conditional with antecedent “that is
pistachio ice cream” (A) and consequent “that does not taste the way it should.” The
consequent is itself the negation of “that tastes the way it should” (B). So (1) is formed
from A and B using negation and conditional. Now consider (2): “that tastes the way
it should only if it isn’t pistachio ice cream.” We regard this as a conditional whose
antecedent is B and whose consequent is the negation of A. So (2) is also formed from
A and B using negation and conditional. But (1) and (2) are different propositions,
because although they have the same ingredients, these ingredients are put together in
different ways: (1) is “if A, then not B,” and (2) is “if B, then not A.” However, as we
shall see later, (1) and (2) are equivalent.

Chapter 2: The Language of Propositional Logic

1. Of course, for other purposes—e.g., everyday communication—English is an
excellent vehicle for making claims about the world. Compare Frege’s comment in the
Preface to the work in which he first introduced his symbolic logical language:

I believe that I can best make the relation of my ideography to ordinary language
clear if I compare it to that which the microscope has to the eye. Because of the
range of its possible uses and the versatility with which it can adapt to the most
diverse circumstances, the eye is far superior to the microscope. . . . But, as soon
as scientific goals demand great sharpness of resolution, the eye proves to be
insufficient. The microscope, on the other hand, is perfectly suited to precisely
such goals, but that is just why it is useless for all others. [Frege, 1879, 6]

2. I say “languages” because later we introduce further languages in addition to PL.
3. We never have a glossary that pairs two different sentence letters on the left with

the same proposition on the right.
4. Normally we would read this expression as “not P ” rather than “neg P .” Some-

times we need to refer to the symbol ¬ itself, in which case it is useful to have the
name “neg” rather than having to say, for example, “the negation sign.” Mostly, how-
ever, we do not use the names of the connective symbols: we read out these symbols
using words in English that express the same connective.

5. Again, normally we would read this as “P and Q” rather than “P caret Q.”
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6. Parentheses are suppressed here to avoid excess clutter (see §2.5.4). For a further
set of alternatives, see §2.5.5. Note that the third option for conjunction is not a mis-
print: the symbol for conjunction has not accidentally been left out. Rather, the idea is
that there is no symbol for conjunction: the conjunction of P and Q is represented by
concatenating P and Q, that is, by writing Q immediately after P . Compare the way
multiplication can be written as x × y, x . y, or simply xy.

7. Nevertheless, it is worth noting that certain symbols have nice features. For
example, using∨ and∧—symbols that are inversions of one another—for disjunction
and conjunction draws attention to the fact that these two connectives are related in
a fundamental way (they are duals—see §6.6). It also calls attention to the analogies
between disjunction and the notion of the union of two sets—symbolized ∪—and
between conjunction and the notion of the intersection of two sets—symbolized ∩.
(These notions are explained in §16.1.3.) Likewise, using → and ↔ for conditional
and biconditional reminds us of the relationship between the biconditional A↔ B

and the two conditionals A→ B and B →A (as discussed in §1.6.5, the biconditional
is equivalent to the conjunction of the two conditionals). (Note that← is not a symbol
in our logical language: the conditional with B as antecedent and A as consequent
must be written as B → A; it cannot be written as A← B.)

8. The same point applies to basic propositions. We have symbolized them using
capital letters—or more specifically, capital Roman letters in italics (A, B , C , . . .).
Some other books use capital Roman letters in sans serif (A, B, C, . . .), or lowercased
Roman letters in italics (p , q , r , . . .) or in sans serif (p, q, r, . . .), or capital Greek
letters (�, �, �, �)—and so on. We have said that if we need additional basic propo-
sitions, we can add numerical subscripts to the letters (A2, A3, . . . , B2, B3, . . .). Some
books use numerical superscripts (A2, A3, . . . , B2, B3, . . .), or a prime symbol ′, which
may be repeated any number of times (p′, p′′, . . . , q ′, q ′′, . . .)—and so on. As in the
case of connectives, making a choice of symbols—and sticking to it consistently—is
important; what choice we make is not nearly so important.

9. Wff variables are also known as metavariables (or metalinguistic variables) in the
literature. The idea behind this terminology is as follows. We noted that α, β, and so
on are not new symbols of PL: they are symbols we use in talking about PL. When
we are talking about a language, a distinction is often made between the language
we are talking about—the object language—and the language in which the discussion
(of the object language) is carried out, that is, the language used for the discussion—
the metalanguage. When we use α, β, and so on to talk about propositions of PL, PL
is the object language, and the symbols α and β are part of the metalanguage used
to talk about PL. Hence, the term “metavariable”—for a variable that is part of the
metalanguage.

10. This use of “argument” has nothing to do with our earlier use of the term:
these are simply two quite different uses of the same word. Whenever we use the term
“argument” in this book, the sense in which we mean it will be clear from context.

11. The sort of ambiguity I have in mind here is explained in §2.5.4.
12. Furthermore, there is never any uncertainty regarding the arguments of the main

connective. Thus, every nonbasic wff is either of the form ¬α for unique α (i.e., the
formula has to be read as a negation—there is no choice of main connective—and it
has to be read as a negation of α—there is no choice as to the argument of the negation
sign) or of the form (α ∗ β) for unique α and β, where ∗ is a unique choice from among
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our two-place connectives (i.e., the formula has to be read as having exactly one two-
place connectives as its main connective—there is no choice of main connective—and
there is no choice as to the arguments of this connective: they have to be α and β, in
that order). This important property of wffs is known as unique readability. Note that
a consequence of unique readability is that every wff can be decomposed (down to its
simplest components: basic propositions and connectives) in essentially just one way:
every wff divides into a unique main connective together with its uniquely specified
argument(s); each argument is itself a wff (it is a subformula of the original wff) and
so itself divides into a unique main connective (of that subformula) together with its
uniquely specified argument(s); and so on down to basic propositions. (We say “essen-
tially” just one way, because, as we have seen, in constructing a wff there are sometimes
multiple possible choices for the order in which certain steps are performed: but these
choices ultimately make no difference, in the sense that every acceptable construction
yields the same target wff and the same subformulas along the way—it’s just that these
subformulas are written in different orders in different constructions).

13. Exactly what is going on when we introduce abbreviations of this sort is ex-
plained in §16.7.

14. “The principle of my notation is to write the functors before the arguments.
In this way I can avoid brackets. This symbolism without brackets, which I invented
and have employed in my logical papers since 1929 . . . ” [Łukasiewicz, 1957, 78].
Łukasiewicz used the following symbols for the connectives: N for ¬, K for ∧, A for
∨, C for →, and E for ↔. (Obviously he did not also use capital Roman letters for
basic propositions! Recall n. 8.)

15. xy is x with y appended at the right-hand end (not x multiplied by y).

Chapter 3: Semantics of Propositional Logic

1. It is also common in the literature to symbolize truth as 1 and falsity as 0. On
bivalence: we said in Chapter 1 that a proposition is a claim about how things are—it
represents the world as being some way. It is true if things are the way it represents them
to be, and otherwise it is false. There are some utterances, however, that appear to make
claims about the world, but are such that there seems to be no sharp division between
ways the world might be that would make the claim true and ways that would make it
false. For example, if I say “Bob is tall,” there are ways things could be that would clearly
make my claim true (Bob’s height being six feet and four inches), and ways things could
be that would clearly make my claim false (Bob’s height being four feet), but there
seems to be no sharp division between the two kinds of case. (Just think: when exactly,
in the process of growing up, did Bob become tall?) This is the problem of vagueness.
Note that it is different from the issue of context sensitivity. Suppose I say “Bill Bradley
is tall.” If we are engaged in a discussion of current and former basketball players, my
claim would seem to be false, because Bill Bradley is below the average height of current
and former basketball players. If we are engaged in a discussion of past presidential
candidates, my claim would seem to be true, because Bill Bradley is among the tallest
of past presidential candidates. It seems that in the first context, “tall” excludes persons
who are not of a height significantly greater than the average height of current and
former basketball players, while in the second context “tall” excludes persons who
are not of a height significantly greater than the average height of past presidential
candidates. In other words, “tall” is context sensitive: who counts as tall depends on the
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context. Now this sort of context sensitivity is different from vagueness—for vagueness
emerges within a fixed context of the sort just considered. For example, it seems that
there is no sharp division between the tall basketball players and the nontall ones.
There are different accounts of vagueness in the literature. Options concerning what to
say about vague utterances, such as “Bob is tall,” include the following: (i) the utterance
expresses a single proposition, which is either true or false—although we have no way
of knowing which; (ii) the utterance simultaneously expresses a number of different
propositions, some of which are true and the rest of which are false; (iii) the utterance
expresses a single proposition, which is neither true nor false (it has no truth value);
and (iv) the utterance expresses a single proposition, which is neither true nor false (it
has a truth value other than T or F). Thus, some accounts of vagueness are compatible
with the assumption that each proposition is either true or false—i.e., bivalence—
and some are not. A proper discussion of these issues is beyond the scope of this
book, which seeks to introduce classical logic, of which bivalence is a fundamental
assumption. For an introduction to the issues—and an argument for the view that an
accurate theory of vagueness must in fact involve additional truth values, apart from
T and F (and hence must involve moving beyond classical logic)—see Smith [2008].

2. When we refer to the rows in this way, we do not count the header row: so row 1
is the first row after the header row, row 2 is the row after that, and so on.

3. The clauses referred to in the third column are those of §2.5 (as in the construc-
tions of wffs in §2.5.3). The term “tv” is short for “truth value,” and “tt” is short for
“truth table.”

4. This section makes use of the notions of set and function; these notions are
explained in §16.1 and §16.4. In §16.7.3 we shall see that there is also a fourth kind
of entity that such terms as “negation,” “conjunction,” and “conditional” can be used
to denote.

5. These are not all the one-place and two-place truth functions: they are just some
arbitrarily chosen truth functions, taken as examples to illustrate the discussion to
follow. It will become clear in §6.6 exactly how many one-place and two-place truth
functions there are.

6. Conjunction is sometimes known as logical product and disjunction as logical
sum. If you look at the truth functions associated with these connectives—and write
1 in place of T and 0 in place of F—you can see why: the value of the conjunction
function, for inputs x and y, is x × y; the value of the disjunction function is x

.+ y. (
.+

is a capped version of addition, whose maximum value is 1. Thus, 0
.+ 0= 0+ 0= 0,

0
.+ 1= 0+ 1= 1 and 1

.+ 0= 1+ 0= 1; but although 1+ 1= 2, 1
.+ 1= 1. The reason

for capping addition in this way is to ensure that the result of applying this operation
to a pair of truth values is always a truth value—i.e., 0 or 1.)

Chapter 4: Uses of Truth Tables

1. Throughout this book I use “scenario” in a special sense: as an abbreviation for
“way of making propositions true or false.” (The notion of a possible way of making
propositions true or false plays an important role in what follows, so it is convenient
to have a shorter term for it: “possible scenario.”)

2. Note the lack of a space in the latter term. We do not call it a “nonlogical truth,”
because this would suggest that it is a truth, just not a logical one. In contrast, a
nontautology need not be true in the actual row or indeed in any row: a contradiction
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is one kind of nontautology. We do not call it a “logical nontruth,” because this term
would suggest something that is always false—a logical falsehood. In contrast, the
mark of a nontautology is simply that it is not the case that it is true in every row:
a contradiction is just one kind of nontautology; another kind is a proposition that is
true in some rows and false in others.

3. There is a variant usage of “contingent” in which a contingent proposition is one
that is true in some rows and false in others; thus, the contingent propositions—in this
sense—are the ones that are both satisfiable and nontautologies: the central region in
the diagram in Figure 4.1. There is no mention of the actual row in this definition:
truth tables provide a foolproof test of contingency in this variant sense.

4. See §16.1 for a more detailed introduction to the notion of set.
5. The fact that the first conjunct is false is enough to make the whole conjunction

false, so we need not work out the value of the second conjunct.
6. There are nonclassical logics called relevance logics (aka relevant logics), which

are motivated in part by the thought that such arguments as S/∴ (G→ G) and
S , ¬S/∴ G should not be counted as valid, because the premises are not relevant to
the conclusion. See, for example, Anderson and Belnap [1975].

Chapter 5: Logical Form

1. That is why, in describing the truth table test for argument forms, I spoke of rows
in which the premises or conclusion of an argument form “have a T” or “have an F”—
rather than of situations in which they are true or false.

2. Or at least any number that is a power of 2—recall §3.3.
3. We also discussed two other notions: that of two propositions being contradicto-

ries and that of two propositions being contraries. These are both compound notions:
two propositions are contradictories if they are jointly unsatisfiable and their negations
are jointly unsatisfiable; two propositions are contraries if they are jointly unsatisfi-
able and their negations are jointly satisfiable. Here we discuss only the components
of these compound notions. (A similar point applies to the variant sense of ‘contin-
gent’ mentioned in n. 3 of Chapter 4. A proposition is contingent in this sense if it
is both satisfiable and a nontautology—or equivalently, both it and its negation are
satisfiable.)

4. The “s” stands for “some” and the “a” for “all.”

Chapter 6: Connectives: Translation and Adequacy

1. Note that we are interested in assessing utterances, not in assessing speakers.
Suppose a speaker produces an utterance that is not (in the given circumstances) a
good one. This does not automatically mean that the speaker is to be blamed: a mark
against an utterance is not the same thing as a mark against the speaker who produced
it. This sort of distinction—between assessing the thing produced and assessing the
producer—is quite general: it does not apply only when the thing produced is an
utterance. For example, someone who produces a bad piece of pottery may deserve
praise, if it is his first try at the wheel; someone who tells some tourists that the best
way to reach a certain lookout is by taking a certain trail gives bad advice if the trail
turns out to be blocked by a fallen tree—but she could not be blamed for giving this
advice if the trail she indicated would indeed have been the best route had it not been
for the fallen tree, and if there was no reason for her to think the tree would be there;
someone who steps on your foot and injures it does a bad thing (injuring your foot)
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but cannot be blamed for doing it, if it was a genuine accident and in no way due to
carelessness.

2. Identifying implicatures and distinguishing them from what is said and from what
is implied was Grice’s distinctive contribution; he also coined the term “implicature.”

3. In contrast, what is implied are those things that follow from the assumption
that what is said is true. As we saw above, one can say something true but still not
speak correctly. In general, therefore, one will implicate things that one does not
imply: things will follow from the assumption that one speaks correctly that do not
follow from the assumption that one speaks the truth. Conversely, one may imply
things that one does not implicate. The Maxim of Quality says that one should try
to make one’s contribution one that is true: one should not say what one believes to be
false; one should not say something for which one lacks adequate evidence. So, if we
assume someone is speaking correctly—and, in particular, conforming to the Maxim
of Quality—it follows that she believes that what she says is true. It does not, however,
follow that what she says is true (she may be mistaken). Hence, things may follow from
the assumption that what one says is true that do not follow from the assumption that
one speaks correctly.

4. Note that this information is again an implicature. What she says is that she will
have a second lunch. She does not say, or imply, that she would like to have the lunch
you are offering—but she does implicate this.

5. Stated more carefully, what I mean here is the following: “Necessarily, if James is a
human being, then James is mortal” apparently expresses a proposition of the form ∗α,
where ∗ is the one-place connective expressed by “necessarily,” and α is the proposition
expressed by “if James is a human being, then James is mortal.” Similar comments
apply to the other examples.

6. If there is a single such connective. If not, we take some combination of connec-
tives of PL that yields the desired truth table.

7. In the future, for the sake of readability, material of the sort placed in parentheses
in this sentence will generally be taken for granted rather than being stated explicitly.

8. If it is possible for what is said by one utterance to be true while what is said by
another utterance is false, then the two utterances cannot be saying the same thing (i.e.,
expressing the same proposition). Hence, they cannot be translated in the same way:
recall that the translation of an utterance into PL is a representation of the proposition
expressed by that utterance.

9. Note that this is a conventional, as opposed to conversational, implicature: it
stems from a particular norm of correct use attached to the word “but.”

10. Burgess [2009, 91] gives another reason in favor of viewing “most poor people
are not honest” as an implicature—rather than a third conjunct—of “she was poor but
honest”:

If it were such a conjunct, the suggestion that there is a contrast [between
being poor and being honest] would go away as soon as assertion is replaced
by questioning or denial. But it does not. Anyone who takes offense at “she’s poor
but honest” on the grounds that the rich are at least as likely to be dishonest as the
poor will equally take offense at “is she poor but honest?” and “she isn’t poor but
honest.”

11. I say “partially,” because it is not “but” alone that is expressing the conditional:
it is “but” used together with “never” in this particular way.
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12. “Albert took off his shoes and then went inside” cannot be translated as S ∧W ,
because it is sufficient for the truth of the latter that “Albert took off his shoes” and
“Albert went inside” are true, whereas it is necessary for the truth of the former that
the time at which Albert took off his shoes precedes the time at which Albert went
inside. In fact, if we treat “and then” as a two-place connective, it cannot be translated
into PL at all, because it is not truth functional: settling the truth values of A and B does
not determine whether A happened before B. The two main options for treating such
claims as “Albert took off his shoes and then went inside” in logic are (i) to translate
into the language of classical predicate logic, where the proposition will be represented
as having a more complex form than α ∗ β, or (ii) to translate into the language of
tense logic, which is nonclassical. For further details, see §14.4.

13. Compare Grice [1989, 47–49]. More precisely, this argument is one instance
of a general argumentative strategy, and it is the general strategy—rather than this
particular instance of it—that is known as “Grice’s Razor.”

14. Of course, in one sense there are as many kinds of conditional sentence as you
like: those that have been uttered on a Monday, those that contain eleven words, those
that mention ice cream, and so on. What we mean when we say that there are two
different kinds of conditional in English is that conditionals of these two sorts must
be treated differently from the logical point of view. That there are (in this sense) two
kinds of conditionals in English is the orthodox view—but a nonnegligible number of
thinkers reject this view.

15. The most popular theories of counterfactuals employ logics that go beyond the
classical logic presented in this book. For an introduction, see Burgess [2009] or Priest
[2008].

16. I mean here no other possible truth table for a two-place connective—not just
none of the other truth tables we have encountered so far (those for conjunction,
disjunction, etc.). In §6.6 we shall see that there are sixteen such possible truth tables.

17. Remember that we are talking about truth here, not assertibility. In many con-
texts, “if it is raining, it is raining” is not an appropriate or interesting thing to say—but
it could hardly be said to be false.

18. Given our assumption of bivalence (introduced at the beginning of Chapter 3),
any proposition that is not true is false.

19. Recall from §4.1.3 that when we speak in this way of a proposition of PL being
true, we mean that it has the value T in the actual row of its truth table.

20. The foregoing defense of the translation of the indicative conditional as → in
the face of the problematic examples comes more or less from Grice [1989, essay 4;
see especially pp. 61–62]. The issue of whether indicative conditionals are correctly
translated using → is probably the most controversial of all the issues surrounding
translation from English into PL, and a vast amount has been written about it. What we
have presented are just the opening moves from a long, ongoing debate. For a detailed
introduction to the issues, see Bennett [2003]; here we indicate a few further land-
marks. One idea that has found wide support is Adams’s Thesis: the degree to which
the conditional “if A then B” is assertible (by a speaker S) equals S’s conditional sub-
jective probability of B given A [Adams, 1965]. (To explain the notion of conditional
probability: the probability of drawing an ace from a shuffled deck is 4/52. But what
if you have already drawn one card—and not returned it—and are drawing a second
card? If you drew a non-ace the first time, the probability is 4/51. If you drew an ace
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the first time, the probability is 3/51. Thus, the conditional probability of drawing an
ace given that you drew a non-ace is 4/51; the conditional probability of drawing an
ace given that you drew an ace is 3/51. In general, the conditional probability of B

given A is denoted P(B/A). Now let us explain the notion of subjective probability.
It is a widely held view that beliefs need not be all-or-nothing: they can be weaker or
stronger; they can come in degrees. For those who hold such a view, it is common
to model an agent’s degrees of belief as probabilities. When probabilities are viewed
in this way—as a measure of an agent’s degrees of belief—they are called “subjective
probabilities.”) Defenders of the idea that indicative conditionals have the same truth
conditions as material conditionals have sought a story that explains why Adams’s The-
sis is true. That is, the story takes as input (i) the idea that “if A then B” is true iff A

is false or B is true (or both) and (ii) a theory about correctness of utterances; it then
yields as output Adams’s Thesis. Lewis [1976] tells such a story, where ingredient (ii)
is simply Grice’s conversational maxims. In contrast, Jackson [1979, 1987] adds to (ii)
a special norm governing the correctness of utterances of indicative conditionals. The
norm is that one should assert “if A then B” only if one’s confidence in A→ B is ro-
bust with respect to A: that is, one would not abandon belief in A→ B were one to
discover that A. Thus, where Lewis—and the Gricean story told in the text above—
would explain the phenomena (e.g., the intuitive incorrectness of certain conditionals
that are true when interpreted as material conditionals) in terms of conversational im-
plicatures, Jackson would explain them in terms of conventional implicatures. For a
number of reasons, Jackson’s approach has found greater favor among those who ar-
gue that it is correct to translate indicative conditionals as→ (indeed Lewis [1986, 105,
n. 6] abandons his earlier view in favor of Jackson’s). Among those opposed to the view
that indicative conditionals have the same truth conditions as material conditionals,
the major positions defended in the literature are (i) that indicative conditionals are
nontruth-functional connectives (e.g., Stalnaker [1968]) or (ii) that indicative condi-
tionals do not have truth conditions at all (e.g., Edgington [1986]). In the latter view,
“if A then B” does not express a proposition: it does not make a claim about the world
and so is not the sort of thing that is true or false.

21. Alternative symbols for the same notion include |≡, ∨, ⊕, �, and XOR.
22. As Gamut [1991a, 200] also note, a similar comment applies to the following

example from Tarski [1946, 21]:
If . . . a child has asked to be taken on a hike in the morning and to a theater in
the afternoon, and we reply: no, we are going on a hike or we are going to the theater,
then our usage of the word “or” is obviously of the [exclusive] kind since we intend
to comply with only one of the two requests.

The correct translation here (using the glossary H : We are going on a hike; T : We are
going to the theater) is ¬(H ∧ T ) ∧ (H ∨ T ), so the “or” here is translated as ∨. The
key point is the presence of the initial “no”: it is translated as ¬(H ∧ T )—that is, as
stating “no: we are not going on a hike and going to the theater.” It thus plays the same
role in this example as “but not both” plays in the example given in the text above.

23. “Or, conj. 1,” [OED Online, March 2011].
24. The reasoning here is similar to that we went through in §6.3.2, when we showed

that to be in a position to assert A→ B, one must not believe ¬A or B.
25. Cases of this sort also raise the issue of whether there is something wrong with

the entire PL framework, given that it deems possible a scenario in which “you roll a 3”
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and “you roll a 4” are both true—that is, it countenances a truth table row in which
both these propositions are true—when it quite clearly seems impossible for a die to
come up showing both 3 and 4. In fact there is no problem here: see the discussion in
Chapter 11.

26. For a critique of some other supposed examples of exclusive disjunction in
English, see Barrett and Stenner [1971].

27. Recall §5.7. If we apply the truth table test for equivalence to the logical forms
(α → β) and (¬α ∨ β), we see that they have the same value in every row; that
is, they are equivalent*. It follows that any instance of (α → β) is equivalent to the
corresponding instance of (¬α ∨ β).

28. The reason is as follows. When we calculate the truth value of γ , the contribution
of the subformula α is complete once it has supplied a truth value as input to the
subsequent calculation. If we replace α by an equivalent formula β—that is, one that
supplies the same truth value as α in all situations—then the subsequent calculation
will not be affected by the replacement.

29. Note that by “first,” “second,” and so on I simply mean first (second, etc.) in our
ordering of the columns in the second table above—which is arbitrary. So there is no
deep sense in which the connective 1©1 comes before the connective 1©2.

30. There are no obvious examples of three-place connectives in English—but we
can imagine introducing some. The film Wayne’s World popularized the use of a
trailing “not” to express negation, as in “I’m having a good time . . . not.” We can
imagine a two-place version of the connective (“A, B, . . . not”), a three-place ver-
sion (“A, B, C, . . . not”), and so on. We would of course need to specify the truth
conditions of these connectives—for example, whether “A, B, . . . not” denies both
A and B (i.e., has the same truth table as (¬A ∧ ¬B)) or just denies that they
are both true (i.e., has the same truth table as ¬(A ∧ B)). Church [1956, 129ff.]
discusses a three-place connective [p , q , r] whose truth table is the same as that of
(q → p) ∧ (¬q → r). Church [1956, 129, n. 203] writes that “a convenient oral
reading of ‘[p , q , r]’ is ‘p or r according as q or not q’.” Another possible reading
would be “if q then p, otherwise r ,” or again “p if q, else r .” However, none of
these English constructions is naturally interpreted as involving a three-place con-
nective (Church was not suggesting otherwise): they are most naturally translated as
(q → p) ∧ (¬q → r).

31. Note that this truth table is just a randomly chosen example. There is no special
reason I chose this particular truth table. I just need some truth table to use as an
example, to illustrate the general method—a method that can be applied to any truth
table.

32. Recall our precise definition of what it takes for the connective ∗ to be definable
in terms of the connectives †1, . . . , †n: for any formula γ containing one or more
occurrences of ∗, there is a formula δ that contains no occurrences of ∗ but may
contain †1, . . . , †n, and is equivalent to γ . Note that the defining formula may contain
occurrences of †1, . . . , †n; it need not contain them all. The crucial point is simply that
it does not contain ∗.

33. Again, this is a randomly chosen example to illustrate the general method: there
is no special significance to this table.

34. Other common symbols for this connective are ↑ and NAND.
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Chapter 7: Trees for Propositional Logic

1. We should not get overly excited about the speed of trees. First, although trees are
faster than truth tables for many typical everyday logic problems, there are also cases
for which trees are slower than truth tables [D’Agostino, 1992]. For example, once you
have learned how to construct trees in this chapter, come back and test whether the
following formula is satisfiable, both by tree and by truth table: (A ∨ B ∨ C) ∧ (A ∨
B ∨¬C)∧ (A∨¬B ∨C)∧ (A∨¬B ∨¬C)∧ (¬A∨B ∨C)∧ (¬A∨B ∨¬C)∧
(¬A ∨ ¬B ∨ C) ∧ (¬A ∨ ¬B ∨ ¬C). How many rows does your truth table have—
and how many branches does your tree have? Second, a problem is intractable if one
or more effective procedures for solving it exist, but these procedures all require so
much time (or space) to complete that they cannot be used successfully in practice.
One idea that has found wide support is the view (often attributed to Cobham [1964]
and/or Edmonds [1965]) that a problem is tractable iff it is in the complexity class
P: that is (roughly—for a proper introduction to the issues touched on in this note,
see Sipser [2006]), there is a procedure for solving it whose running time is bounded
by a polynomial function of the length of the input to the procedure. The running
time of the truth table procedure for testing whether a given formula is satisfiable is
not bounded by a polynomial function of the length of the formula being tested—and
neither is the running time of the tree method. Thus, the tree method is not so fast that
its existence establishes that the satisfiability problem (i.e., the problem of deciding
whether a formula of propositional logic is satisfiable) is tractable. (If there were a
procedure for solving the satisfiability problem in polynomial time, then—because
this problem is NP-complete—it would follow that P = NP. Whether P = NP is “one
of the greatest unsolved problems in theoretical computer science and contemporary
mathematics” [Sipser, 2006, 270].)

2. More precisely, if the input proposition is of the form ¬α, then it is not ¬ that is
eliminated, but the main connective of α.

3. More precisely, in some cases it is only required that some outputs must be true,
assuming that the input is true.

4. More precisely, we may have several such groups, and we know that if the original
propositions at the top of the tree are all true, then there must be at least one group
such that all propositions in that group are true.

5. There are three rows of its truth table in which (α ∨ β) is true—the row in which
α and β are true, the row in which α is true and β is false, and the row in which α is
false and β is true—so you may wonder why the rule is not as follows:

(α ∨ β)

α

β

α

¬β

¬α

β

Well, we could have a tree system with rules like this—but our rules are simpler, and
they do the job (as we shall see in §14.1). In the alternative rule just given, the three
branches are jointly exhaustive (i.e., between them, they cover all the ways in which
(α ∨ β) could be true) and also mutually exclusive (i.e., it is impossible for all the
propositions on two different branches to be true). In contrast, the branches of our
tree rules are always jointly exhaustive (recall the second of the two essential features of
tree rules mentioned in the opening part of this chapter) but not necessarily mutually
exclusive.
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6. Or perhaps we should say it gets us too far: it would make our trees go on forever,
as we apply the rule to the output of the previous application of the rule ad infinitum.

7. We do not apply rules to propositions on paths that have already been closed: see
§7.2.4.

8. To avoid confusion, we should note why we impose this requirement. It is not
because it makes any deep difference at this stage: our trees might be longer if we
waited until the end (after all rules had been applied) before checking which paths
close, but they would still yield the same results. However, in predicate logic, we shall
see that sometimes trees can go on forever. In this new context, the requirement that
one check for closure at each step (rather than waiting until the end—which may never
come) plays an important role. (In particular, it plays a crucial role in the proof of the
soundness of the tree method in §14.1.2, via its role in the discussion in §10.3.7, where
we show that a path cannot close at infinity.) We impose the requirement now—in
the context of propositional logic, where it makes no real difference—just to get into a
habit that will be important later.

9. A more precise statement of what the tree rules ensure is given in §10.1, in the
context of predicate logic.

10. Indeed, an open path represents an assignment on which all propositions on that
path are true—not just the ones at the top, which are on every path through the tree.
In practice, however, it is often only the propositions we start with that are of interest.

11. Recall the second of the two essential features of tree rules mentioned in the
opening part of this chapter and n. 5.

12. This also explains why we deem the methods introduced above for handling
unparenthesized strings of ∨s or ∧s to be unofficial abbreviations, rather than adding
them to the official rules: the less official rules we have, the easier it is to prove things
about all (official) trees.

Chapter 8: The Language of Monadic Predicate Logic

1. Recall that in the case of propositional logic, a possible scenario—a possible
way of making propositions true or false—is a truth table row. A truth table row is
determined by an assignment of truth values to basic propositions; the truth tables
for the connectives then determine the truth value of every compound proposition in
every truth table row.

2. A note on terminology: Something is simple if it has no parts. A proposition is
basic if it has no propositions as parts. In Part 1, we treated basic propositions as if they
were simple. Now we move beyond this simplification: that is, we look at the parts of
basic propositions, at their internal structure. So we no longer treat basic propositions
as simple—but they are still basic.

3. It is not essential that we throw out the simple symbols for basic propositions:
although we shall not do so, it would be possible to retain them alongside the new
symbols for components of basic propositions. We mention a particular way of doing
this in §12.1.2.

4. There are two reasons for treating monadic predicate logic separately, before
turning to general (polyadic) predicate logic. First, the learning curve is flattened if
the material is presented in stages rather than all at once. Second, the approach makes
it clear that predicate logic is not a monolithic whole but has a modular structure. This
is useful both for later studies in logic and in introductory logic itself: for example, it
is enlightening to see that simply introducing many-place predicates, while keeping
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the quantifiers the same as in monadic predicate logic, vastly increases the expressive
power of the language.

5. Note that here we are not bringing back the symbols for basic propositions that we
had in PL. We are re-using the uppercased letters for a completely different purpose.
Thus, as we shall see, (A ∨ B) for example is not a well-formed formula of MPL—for
in MPL (unlike in PL), A and B are not wffs (they are only parts of wffs), and to form
a wff using ∨, we need to put the latter symbol between two wffs.

6. That is, the novel.
7. Section 2.2.1 is listed in the Preface as noncore material. To understand the basic

point of the present section, you do not need to have read §2.2.1. However, if you want
a deeper understanding of the points made here—and you did not read §2.2.1—go
back and read it now.

8. Word types that pick out different things depending on the context of utterance
are called “indexicals” (see Chapter 1, n. 12).

9. It is often thought that predicates, as well as singular terms, can be context-
sensitive. Recall the example from Chapter 3, n. 1: if I say “Bill Bradley is tall” in the
context of a discussion of current and former basketball players, my claim would seem
to be false; if I say the same sentence in the context of a discussion of past presidential
candidates, my claim would seem to be true. Suppose that on each occasion I express
an atomic proposition. I am talking about the same individual both times—so if I
utter different propositions (one true, one false), it must be because I am attributing
different properties to this individual on the two occasions. If that is what is going
on, then the expression “is tall” is context sensitive, and we have to translate its two
occurrences as different predicates of MPL, for example:

T : is tall (for a basketball player)
U : is tall (for a presidential candidate)

If we also have the glossary entry b: Bill Bradley, then the two propositions come out
in MPL as T b and Ub.

10. If you look at other logic books, you will find that other symbols are sometimes
used for the quantifiers. Alternatives to ∀x include (∀x) (note the parentheses, which
are not present in our symbolism), (x), (Ax), �x,

∧
x, and �x. Alternatives to ∃x

include (∃x) (note the parentheses), (Ex), Vx,
∨

x, and �x.
11. “Spondulix” is the name of a famous gold nugget, found in 1872.
12. The notion of the scope of a quantifier is explained in detail in §8.4.4.
13. Or the set of persons who signed up for today’s excursion, or the set of persons

on the tour who are staying in this hotel, and so on—which set, exactly, will depend
on the context.

14. In other examples, it might be other maxims that generate the implicature—for
example, the Maxim of Relation. If the guide says “let’s wait a minute before we start—
not everyone is ready,” the unrestricted claim that not everyone in the whole world is
ready is true. Presumably, however, it is not relevant in the circumstances. Hence we
shall infer that what the guide is actually trying to contribute is some relevant piece of
information, such as that not everyone on the tour is ready.

15. This does not mean that the English has to contain corresponding predicates—
only that it has to contain corresponding expressions. In the case of “everyone” and
“someone” (as opposed to “everything” and “something”), we take the expression
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“one” (as opposed to “thing”) to correspond to the predicate “is a person.” Thus, we
translate “everyone is special” as ∀x(Px → Sx), not as ∀xSx.

16. In §13.6.2 and §13.7.1 we will see that there can—in languages richer than
MPL—be more complex kinds of terms.

17. The underlining is explained in §8.4.2.
18. We refer to the first line of clause (3ii)—the one featuring ¬—as clause (3ii¬),

the second line—the one featuring ∧—as clause (3ii∧), and so on.
19. In practice, it is often possible to omit the underlining on syntactic variables

without causing any confusion (because it is obvious from the context that the partic-
ular symbol one writes is serving as an exemplar of all symbols of its kind). This is, in
fact, one of the advantages of this symbolism.

20. Some books use an alternative terminology, according to which the variable
in a quantifier is neither free nor bound. Using this terminology, the second two
occurrences of x in ∀x(Rx →Qx) are bound (by the quantifier ∀x), while the first
(the one in the quantifier ∀x) is neither free nor bound.

21. In the literature, closed wffs—as opposed to open wffs—are often called “sen-
tences.” We shall not adopt this terminology in this book.

Chapter 9: Semantics of Monadic Predicate Logic

1. In the literature, models are also referred to as “interpretations,” “structures,” and
“model structures.” When the term “interpretation” is employed, the term “model” is
then sometimes used in a different sense (i.e., not as a synonym for “interpretation”),
according to which a model of a set of wffs is an interpretation in which all those wffs
are true.

2. See §16.1.2 for an explanation of the notion “subset.”
3. Is there a model in which the name a refers to Santa Claus, to the number 3,

or to beauty (considered as an abstract object)? We make no rulings on these matters
here. Our only requirement on what can be in the domain of a model is this: any-
thing can go in; “mere nothings” cannot. Suppose someone says, “consider a model
whose domain contains Santa Claus, Bugs Bunny, and Aristotle.” Now with each of
these expressions (“Santa Claus,” “Bugs Bunny,” and “Aristotle”), the person may have
picked out something, or she may have failed to pick out anything at all. In the for-
mer case, there’s no problem. In the latter case, her attempt to specify a model has
gone astray, in this sense: if “Santa Claus,” singles out nothing at all, then when she
says that the domain is to include “Santa Claus,” nothing is actually added to the do-
main of the model. So, in talking about models, we assume only that the members
of the domain are objects or things of some sort. We make no rulings on (i) which
words in English pick out things (as opposed to failing to pick out anything at all),
or (ii) what kinds of things exist (and hence are available to go in the domains of
models). Topic (i) involves questions in the philosophy of language—for example, does
“Santa Claus” refer to something (a fictional entity, an abstract object, a guy in a
suit at the shopping mall) or does it fail to refer to anything at all? Topic (ii) in-
volves questions for metaphysics—for example, assuming “Aristotle” (as uttered now)
picks out some thing (rather than failing to pick out anything at all), what kind of
thing is it: the real flesh and blood Aristotle, or an abstract object (e.g., a collection
of properties that Aristotle alone possessed)? None of these questions are our concern
here. We assume only that when we specify models, the names that we use to do so
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do indeed select “things” in some sense. (If you think that some of the examples of
models given in this book are specified using English expressions that in fact fail to
pick out anything at all, then you should simply substitute different examples in their
place.)

Although it is beyond the scope of this book to explain the following points (for
explanations, see e.g., Boolos et al. [2007, Chapter 12]), it is worth mentioning that
from a purely logical point of view, we can focus solely on models whose domains
contain either all the natural numbers {0, 1, 2, . . .} or some initial segment of them
{0, 1, 2, . . . , n} (and furthermore, these domains can be thought of as purely set-
theoretic entities, i.e., as sets in the iterative hierarchy; see §16.1.4). This is so because
of two results: the Löwenheim-Skolem theorem, which states that if a proposition is true
in some model (i.e., satisfiable), then it is true in some model with a countable domain;
and the isomorphism lemma, which states that if a proposition is true in a model M,
then it is true in any model that is isomorphic to M.

4. Although it is a requirement on models that each name be assigned a referent, it
is not a requirement that different names get different referents. So the only general
requirement on domains is that they have at least one member. In a model with fewer
objects in the domain than there are names to be assigned referents, some names will
have the same referent; in a model with only one object in the domain, all names will
refer to that one object.

It should be noted that the reason given in the text as to why the domain must be
nonempty is deliberately oversimplified: the true story is more complex. Below we shall
see that not every model has to assign a referent to every name in the full language
MPL: we countenance models of fragments of the language. We also countenance frag-
ments containing no names (only predicates). So why can’t models of these fragments
have domains with nothing in them? Well, every model must determine a truth value
for every proposition made up from logical vocabulary together with those items of
nonlogical vocabulary that are assigned values in that model. So, for example, a model
that assigns an extension to P must determine a truth value for ∃xPx and ∀xPx. The
story that we tell (in §9.3) about how quantified propositions are assigned truth val-
ues in models makes essential use of the idea of assigning values to certain new names
(ones not assigned values on the original model). For these new names to be assigned
values, there must be at least one object in the domain of the original model—even
if that model itself assigns values to no names. (The situation actually becomes more
complex. In §15.1.3 we look at a different account of how quantified propositions are
assigned truth values in models: one which does not make use of the idea of assign-
ing values to certain new names. However, it does make use of the idea of assigning
values to variables. These values are drawn from the domain of the model. So again,
for the account to work, the original model needs to have at least one thing in its do-
main, so that each variable can be assigned a value.) Note that there are nonclassical
logics that relax our requirements on models: free logics drop the requirement that ev-
ery name must have a referent drawn from the domain of the model; inclusive (aka
empty, or universally free) logics drop this requirement, and the requirement that the
domain be nonempty (for further details, see, e.g., Bencivenga [2002] and Lehmann
[2002]).

5. It is thought that the Big Bang occurred about 13 billion years ago.

6. The set of nonlogical symbols in a fragment is the signature of that fragment.
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7. Where σ is the signature of a fragment, a model that assigns referents/extensions
to all and only the names/predicates in that fragment (i.e., in σ ) is said to be of
signature σ .

8. In Chapter 13, we look at the logical language GPLI, which includes an identity
predicate. This predicate is part of the logical vocabulary. Thus, there are fragments of
GPLI with no nonlogical symbols.

9. The distinction between the full language and fragments thereof applies also to
PL. In PL, to obtain fragments containing propositions, we need to include at least one
basic proposition. When we were translating into PL, we used fragments of the full
language (in each case, the fragment containing just those basic propositions featured
in our glossary); likewise, our truth tables were all for fragments of the full language
(in each case, the fragment containing just those basic propositions that appear in the
matrix).

10. In §15.1.3 we discuss a different way of proceeding, according to which some
open wffs can have truth values.

11. That is, the set of positive integers.
12. That is, the set of odd numbers.
13. That is, the set of even numbers.
14. As already mentioned, there is an alternative way of treating the truth conditions

of quantified formulas, which uses the notion of an assignment of values to variables.
We discuss it in §15.1.3. The alternative treatment is probably more common in logic
textbooks—although the treatment to be given here can be found in such canonical
works as Boolos et al. [2007]. My reason for giving the following treatment precedence
is that it maintains a clear conceptual distinction between the semantic functions of
names (singular terms) and variables—and (a not unrelated point) it is easier for
newcomers to grasp. See also Chapter 15, n. 25.

15. What happens to our procedure of considering a new name—one not already
assigned a referent on M—in the case where M already assigns a referent to every
name in the full language MPL? Well, we could add an extra stock of names—say,
a′, a′′, a′′′, . . .—reserved for the purpose of evaluating quantified propositions.

16. Except in the special case where the domain contains expressions of English (or
some other language).

17. I owe this analogy (used originally in a different context) to Sybille Smith.
18. That is, the set of prime numbers.
19. That is, every model that assigns referents/extensions to all the names and

predicates featured in the argument. Recall (§9.1) that if a model does not assign a
referent/extension to some name or predicate in a proposition, then that proposition
has no truth value in that model.

20. A couple of terminological points: (i) the term “tautology” is usually restricted
to formulas of propositional logic that are logically true, and (ii) it is quite common to
call a wff that is true on all models a “valid formula,” or simply “valid.”

21. For reasons mentioned in n. 3, the facts about validity do not actually depend
sensitively on the facts about what sets exist. As long as we have available all the sets
{0, 1, 2, . . . , n} (for finite n) and the set {0, 1, 2, . . .}, the facts about which arguments
are valid will not change if we add additional sets. For if an argument has a counter-
model whose domain is one of the original sets, then a fortiori it has a countermodel
among the expanded range of models. Conversely, if an argument has no counter-
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model whose domain is one of the original sets, then it cannot have a countermodel
among the expanded range of models: if it has a countermodel with an uncountable
domain, then it has a countermodel with a countable domain (Löwenheim-Skolem);
and if it has a countermodel with a countable domain, then it has a countermodel
whose domain is one of the original sets (isomorphism).

22. Here (and in corresponding places below) I assume without loss of generality
that a (or whatever name symbol is used) is not assigned a referent in M. That is,
you can view a here as a proxy for the first name alphabetically that is not assigned a
referent in M.

Chapter 10: Trees for Monadic Predicate Logic

1. In Chapter 7, we said that tree rules should have a second feature as well: the
output propositions should be simpler than the input proposition—in particular, the
main operator of the input should be eliminated. We return to this point after the rules
for the quantifiers have been presented.

2. Reasoning in this sort of way is especially common in mathematics.
3. The principle that the truth of a formula involving a name depends on the name’s

referent, not on what name it is, is nicely expressed by Juliet in the famous speech in
Romeo and Juliet in which she says “What’s in a name? that which we call a rose/ By
any other name would smell as sweet;/ So Romeo would, were he not Romeo call’d,/
Retain that dear perfection which he owes/ Without that title.” Note that we are saying
that on a given model, a formula involving a will have the same truth value as any
formula obtained from it by replacing some or all of the as with bs, provided that a

and b have the same referent on that model. This is quite compatible with the fact that,
for example, Fa → Fa is logically true, whereas Fa → Fb is not. In a model in which
a and b have the same referent, Fa → Fa and Fa → Fb have the same truth value.
There are, however, models in which a and b do not have the same referent—and in
some of these models, Fa→ Fb is false. In every model, however, Fa→ Fa is true—
because in any given model, the two occurrences of a in Fa → Fa must always have
the same referent.

4. Recall n. 1. We can now see the extent to which the rules for the quantifiers have
the feature that they eliminate the quantifiers—and the extent to which they do not.
The rules for the negated quantifiers do not eliminate the quantifier—but they switch
the quantifier from existential to universal or vice versa and put it in front, where the
rule for the unnegated quantifier of the relevant sort can operate on it. So the question
becomes: do the rules for the unnegated quantifiers eliminate the quantifier? The rule
for the unnegated existential quantifier does indeed eliminate the quantifier. At first
glance, it might seem that the rule for the negated universal quantifier does too: but
the appearance is misleading. For the original formula is not checked off: it remains
in play, and the rule for the universal quantifier can potentially be applied to it again.
Thus, its universal quantifier is not actually eliminated from the path. As we shall see
(§10.3), this means that in predicate logic—unlike in propositional logic—trees need
not always terminate; that is, they may continue forever. This fact turns out to have a
rather deep significance (§14.2).

5. In §7.2.5, we imposed this closure-checking requirement on trees for proposi-
tional logic, but in n. 8 of that section we noted that it would not actually make any
difference if we waited until the tree was finished before closing paths. Now—in the
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context of predicate logic—the closure-checking requirement takes on real impor-
tance. As mentioned in n. 4, trees for predicate logic need not always terminate—in
which case we cannot wait until the tree is “finished” before closing paths.

6. The “first” in “first name” refers to the alphabetical ordering of our name sym-
bols, not to the order in which the names appear in the path. We could do it the latter
way, but the former is easier to keep track of in general.

7. See Jeffrey [2006, Supplement B, pp. 151–55] for a description of the method.
8. That is, α is of one of the forms ¬¬β, (β ∗ γ ), or ¬(β ∗ γ ), where ∗ is ∨, ∧, →,

or ↔.
9. That is, α is of one of the forms ¬∃xβ(x) or ¬∀xβ(x).
10. That is, α is of the form ∃xβ(x).
11. We actually need to specify exactly what we mean by “alphabetically first” here—

for example, is a2 before or after b? Let’s specify that the alphabetical ordering of the
names is: a , b, c, . . . , t , a2, . . . , t2, a3, . . . , t3, a4, . . . .

12. That is, α is of the form ∀xβ(x).
13. For example, if α is ∀xFx, α lies on an open path, and somewhere on this path

the name b appears (in some formula), then we add Fb at the bottom of the path,
unless Fb already appears somewhere on this path, in which case we do not write it
again.

14. Note that as you work through step (1), new propositions may be added to
the tree. These will always be added below the proposition you are currently visiting,
so their addresses will come later. You visit them later, in order; that is, you do not
only visit propositions that were already in the tree when you started step (1). Note,
however, that you never backtrack: you never revisit—within the same iteration of step
(1)—a proposition you have already visited on that round.

15. That is, make another round of visiting all propositions in the tree, once each, in
order of address, and dealing with each one in accordance with the instructions given
in step (1).

16. Recall the two examples of infinite unfinished trees discussed earlier: the one
in §10.3.1, where we repeatedly applied the universal quantifier rule to ∀x∃y(Fx ∧
Gy) (with a new name each time) and never applied the conjunction rule to (Fa ∧
¬Fa) (which would close the path immediately) and the one in §10.3.4, where we
extended the tree in accordance with the pattern 1a , 1b, 1c, . . . and so never applied
the universal quantifier rule to proposition (2). The procedure just given ensures that
these problems never happen: the procedure requires you to visit every proposition
in the tree on each iteration of step (1). It therefore ensures that no propositions are
permanently overlooked.

17. More precisely, there cannot be such a procedure that applies to trees in GPL as
well as in MPL. We shall discuss this issue in more detail in §14.2.

18. The reasoning proceeds in exactly the same way if ¬δ comes first.
19. At this stage, of course, we are not assuming that it has any infinitely long path:

that is what we want to show. We are assuming only that it has infinitely many entries,
arranged in some way.

20. One form of König’s Lemma says that an infinite tree in which each entry has
only a finite number of immediate descendants must have an infinite path. This is a
generalization of what we have just shown, which is that an infinite tree of our sort—
in which each entry has at most two immediate descendants—must have an infinite
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path. König’s Lemma can be proven by a simple generalization of the reasoning given
in the text.

Chapter 11: Models, Propositions, and Ways the World Could Be

1. No doubt there are other possible ways of giving content to wffs, but these are
the ones that are commonly employed. Although they are all in common use, it is very
uncommon for a clear distinction to be drawn among the three methods. In fact, I am
not aware of any prior discussion that tries to clarify the methods in the way presented
in this chapter.

2. We do not mean here that if, in those imagined circumstances, someone were to
utter the words “Mount Everest is tall,” what they said would be false. We are talking
about the proposition expressed by some actual utterance of “Mount Everest is tall,”
and we are saying that this proposition (not the sentence actually used to express it),
while true given the way the world actually is, would be false were the world different in
certain ways. In the imagined circumstances, speakers might use an entirely different
language—one in which “is tall” has a quite different meaning from its actual one—
or there might be no language users at all. None of this affects what we are saying: we
are not imagining the words “Mount Everest is tall” being spoken in these imagined
circumstances. Instead we are talking about the proposition expressed by some actual
utterance of these words, and considering whether the way it claims the world to be is
the way the world would be in the imagined circumstances.

3. “Possible world” is the standard term, but use of this term can be distracting,
if not misleading—it has connotations that go far beyond anything we are assuming
about wws. See also n. 21.

4. The notion of a function is explained in §16.4.
5. We here assume compositionality of content (aka Frege’s Principle): the content of

a proposition is determined by the contents of its parts, together with their mode of
composition (i.e., the way the proposition is formed from those parts).

6. The term “intension” and the essential idea behind this definition (although not
its exact details) are from Carnap [1956].

7. Often the intension of a name is called an “individual concept,” the intension
of a predicate is called a “property,” and the intension of a closed wff is called a
“proposition.” We shall not adopt these terms here (although we return to this use
of “proposition” in §11.4).

8. There are cases—involving made-up words, for example—where (expressions
that behave grammatically like) names and predicates have no content. There are other,
more problematic cases, where names and predicates seem to have content, but this
content is not sufficient to determine an intension—at least, not if intensions are
thought of as total functions from wws to values. (The notion of a total—as opposed to
partial—function is explained in §16.4.) For example, there are cases involving vague
predicates: it might seem that there are wws relative to which the proposition expressed
by some actual utterance of “Bill Bradley is tall” is neither true nor false—because
of the facts, according to those wws, concerning the (relative) height of Bill Bradley
(here the content of the predicate seems not to determine a total function from wws to
extensions, where extensions are precise sets of objects). For another example, it might
seem that there are wws relative to which the proposition expressed by some actual
utterance of “Bill Bradley is a professional basketball player” is neither true nor false—
because according to those wws, the man we call “Bill Bradley” was never born (here
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the content of the name seems not to determine a total function from wws to objects).
We have already mentioned vague predicates in Chapter 3, n. 1; we return to the issue
of singular terms that seem to lack a referent (relative to some wws) in §13.6.3.

9. Sometimes we also speak of the content of an utterance (of some sentence in a
context). By this we mean the proposition expressed by that utterance—which itself
has a content, in the (different) sense of content just explained.

10. Well, they must at least determine intensions—but in keeping with our simpli-
fying assumption, we take them just to be intensions.

11. I am supposing that a ww specifies which non-sets (urelements) exist. Given the
urelements specified by a ww, a hierarchy of sets is then specified in the way discussed
in §16.1.4. The set-theoretic story—the recipe for generating the hierarchy—does not
vary from ww to ww: only the initial set of urelements varies. The domain of the model
generated by a ww together with some intensions is then a set in the hierarchy built
up from the urelements specified by that ww; in the simplest case, it is just the set
containing all and only the urelements. (Note that if we took a ww to specify that all
the sets in the hierarchy exist, then we could not have a model whose domain is the
set containing all the things specified to exist by that ww: for, as discussed in §16.1.4,
there is no set of all sets in the hierarchy.)

12. We assume throughout that there is a fixed collection of wws, representing all
the ways the world could be.

13. The analogue of the actual model in the case of propositional logic is the actual
row (§4.1.3).

14. Well, generally speaking. Of course, logical truths are true in all models and
logical falsehoods are true in no models.

15. An axiom system that does fix its models up to isomorphism is said to be
categorical.

16. Of course, there are models that are different from these four but are isomorphic
to one of them. For example, the following model is isomorphic to the first of our
earlier models—it arises from it by switching 1 for Alice:

Domain: {Alice}
Extensions: A: {Alice} B: ∅ C: {Alice}
17. In the philosophical literature, this definition is usually phrased as follows: a

proposition is a set of possible worlds. The two definitions are interchangeable, given
that “possible worlds” and “wws” are terms for the same things (recall n. 3) and
that sets go hand in hand with characteristic functions (see §16.4.2): a set of wws
determines a function from wws to truth values (the function that assigns True to all
wws in the set and False to all wws not in the set) and vice versa.

18. The notion of an equivalence relation is explained in §16.3.
19. In the philosophy of language, there is talk of Fregean propositions as opposed

to Russellian (or singular) propositions. Propositions in our sixth sense are a version
of Fregean propositions; those in our seventh sense are a version of Russellian propo-
sitions.

To make these models of propositions fully coherent, we need to replace logical
symbols with something that stands in relation to them as intensions/values stand
in relation to nonlogical symbols (otherwise, our propositions are a strange mix of
symbols and intensions/values). But we have not countenanced values for the logical
vocabulary. Our approach has been to treat these symbols syncategorematically: we

490 Notes to Pages 245--256



show how to assign values to closed wffs involving these symbols without assigning
values to the logical symbols themselves. So if logical symbols were to be assigned
values—that is, if they were to be treated categorematically—what would these values
be? (Once we have values, intensions are then simply functions from wws to these
values.) In the case of connectives, one simple answer is: truth functions (§3.5). In
the case of quantifiers, a simple answer is: the value of a quantifier is a function from
subsets of the domain to truth values. Specifically, the universal quantifier picks out
that function that sends the entire domain to True and all other subsets to False; the
existential quantifier picks out that function that sends the empty set to False and all
other subsets to True. (Note that if we regard P as picking out a subset of the domain,
then ∀xPx will then be true just in case P picks out the entire domain, while ∃xPx

will then be true just in case P picks out a nonempty subset of the domain.) For further
details of this kind of approach, see, for example, Gamut [1991b].

20. Recall the intuitive idea: a proposition represents the world as being a certain
way; it is true if the world is that way and otherwise false. Our wws are just the ways
the world could be that feature in this intuitive idea.

21. It is wws in this sense that are called “possible worlds” in the philosophical
literature. (Recall n. 3.)

22. For more details on intensional logics, see, for example, Gamut [1991b], Hughes
and Cresswell [1996].

23. That validity implies NTP is to be expected, given that validity is supposed to be
NTP by virtue of form, that is, a special sort of NTP.

24. Some people distinguish logical and metaphysical possibility in the following
sort of way: they think that there is a big set of possible worlds—the logically possible
worlds—in which pretty much anything can happen (e.g. red things can be colourless)
and then think of what I have conceived of as the set of all possible worlds (wws)
as a subset of this big set—the metaphysically possible worlds. The view presented
in this book is rather different. First, there is just one set of possible worlds (wws),
representing all the ways the world could be. What we do have, however, is a distinction
between all models and ww-models (relative to a given set of intensions). Second, I
have not introduced any notion of “logical” possibility, as opposed to the notion of
possibility introduced above (a proposition—closed wff under a glossary—is possibly
true if it is true in some ww-model). What we do have, however, is the notion of
satisfiability: a proposition—closed wff (intensions are irrelevant here)—is satisfiable
if it is true on some model.

25. A word of clarification is in order about the idea that logical truths are true
by virtue of their form (and that valid arguments are NTP by virtue of their form,
and so on). This idea does not mean that there is a special way of generating truth
values for logical truths that takes as input only the form of the proposition, not the
values of its components. There is no special “way of making true” for logical truths:
there is just one set of rules for making propositions true—summarized in §9.4.2—
and these rules apply to all propositions, logical truths, and non-logicaltruths alike.
(For example, consider a model in which the referents of a and b are in the extension
of R. What makes Ra ∨¬Ra true in this model is exactly what makes Ra ∨¬Rb true
in this model: the disjunction is true because its first disjunct is true; the first disjunct,
which is an atomic proposition, is in turn true because the referent of the name is in the
extension of the predicate.) What is special about logical truths is that their structure
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determines that when these rules are applied, the result will always be true, no matter
what the values are of the components of the proposition. Nevertheless, in every model
the truth value of the proposition comes from the values of its components, via the
standard rules.

26. There is an area of logic (modal logic) in which the notions of necessity and
possibility are studied. (For an introduction, see, e.g., Hughes and Cresswell [1996].)
In modal logic, we enrich the logical language with two one-place connectives: �,
which intuitively means “necessarily,” and ♦, which intuitively means “possibly.” A
model of the extended language—a modal model—comprises a set of possible worlds
together with a two-place accessibility relation on this set, and an assignment of a
referent to each name at each world and an extension to each predicate at each world.
Propositions without � or ♦ in them are assigned truth values at worlds in much the
way as in models in predicate logic. (There is some extra complexity regarding the
quantifiers: we can regard each world in the model as having its own domain, or we
can think of the modal model as having just one domain for all worlds in the model.)
As for propositions with � or ♦ in them, �α is true at a world w just in case α is true at
every world accessible from w, and ♦α is true at w just in case α is true at some world
accessible from w. Now even in modal logic, we do not (in general) find out whether
particular propositions are necessarily true. In predicate logic, we study logical truth—
not actual truth (truth in the actual model). Similarly, modal logic studies the logical
truth of formulas of the modal language—that is, it asks which formulas are true in
all modal models. It does not offer any way of determining which modal model is the
actual one (and which world in that model is the actual world). Thus, it does not offer
us any way of finding out whether some formula �α actually is true or whether the
formula α is necessarily true (α will be necessarily true just in case �α is true in
the actual world of the actual modal model).

27. Up to isomorphism; this qualification will henceforth be left implict.

Chapter 12: General Predicate Logic

1. We mentioned in Chapter 8, n. 3, that we do not have to throw away sentence
letters when moving from propositional logic to predicate logic: we can retain them,
alongside the symbols for predicates and names. One way of doing this is to allow zero-
place predicates: P 0, Q0, R0, . . . . An n-place predicate, when followed by n names,
makes a wff. Thus, a zero-place predicate by itself makes a wff. Hence, zero-place
predicates function like sentence letters. Note that we do not actually have zero-place
predicates in GPL (the full syntax of which is given in §12.1.3), but we could have
had them if desired. Recall the discussion at the end of §2.2.1: in applications of logic,
ignoring structure irrelevant for one’s particular purposes can sometimes be useful.
Thus, it might be convenient to be able to represent a complex proposition (e.g., the
one expressed by “Bill and Ben are friends”) using a simple symbol (say, P 0) in contexts
where the structure of this proposition is irrelevant to the purposes at hand. In this
book, however—where we are introducing logic—we shall not have cause to do this
sort of thing, and so we shall not have need for zero-place predicates.

2. We shall see the point of this exception in Chapter 13.
3. In §6.2.2 we encountered examples of phrasal conjunction, such as “Bill and Ben

are brothers.” This example could be read as saying simply that Bill is a brother (i.e.,
he has a sibling) and Ben is a brother, or it could be read as saying that Bill and Ben
are brothers of one another—and we promised a translation of the second reading into
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GPL that would be more illuminating than the translation into PL (where this claim
came out as a basic proposition). Using the glossary:

l: Bill
n: Ben
Bxy: x is a brother of y

we translate as Bln ∧ Bnl (or equivalently, Bnl ∧ Bln). Note that all two-place pred-
icates in GPL express what we might call directed relations. The proposition Rab says
that relation R holds between a and b in that order: from a to b, as it were. (What this
means will become fully clear in §12.2 when we look at the semantics of GPL and see
that the value of a two-place predicate is an ordered pair of objects.) Thus, we translate
the claim that Bill and Ben are brothers (i.e., of one another—Bill is a brother of Ben
and Ben is a brother of Bill) as a conjunction of two directed relational claims. See also
§12.4.

4. I put “different” in parentheses here, because the point I have just been making
is that any two-place predicate is always different from any one-place predicate. So if
“tall” is translated by a one-place predicate, and “is taller than” is translated by a two-
place predicate, it follows immediately that they are translated by different predicates.

5. It is important that x be replaced with a variable that does not already occur
in the wff we are considering (in this case, a variable other than y). The proposition
∃y∀yLyy is not equivalent to ∃x∀yLxy.

6. Given n. 5, it is important that these replacements occur simultaneously. That
is, we do not first replace the xs by ys, resulting in ∃y∀yLyy, and then replace the
ys by xs, resulting in ∃x∀xLxx. Neither ∃y∀yLyy nor ∃x∀xLxx is equivalent to the
original proposition ∃x∀yLxy.

7. Read “himself” here as gender-neutral—that is, the claim is that no one self-
admires.

8. Read “himself” here as gender-neutral—that is, the claim is that Dave admires
anyone who doesn’t self-admire.

9. Parentheses are often used instead of angle brackets to indicate ordered pairs,
that is, (Alice, Bob). This point about notation also applies to the general notion of
an ordered n-tuple (introduced below).

10. For further discussion of ordered pairs, see §16.2.
11. There need not be n distinct objects in an ordered n-tuple: one object may

appear at more than one position. There must be at least one object, and at most n

objects. Note that we sometimes refer to ordered n-tuples simply as n-tuples.
12. For further discussion of ordered n-tuples, see §16.2.
13. Clause (3) talks about wffs in general; recall that by “proposition” we mean a

closed wff.
14. That is, the set of prime numbers.
15. That is, the set of all pairs 〈x , y〉 such that x is less than y. A more compact

way of writing this set is {〈x , y〉 : x < y}. See §16.1 for an explanation of this kind of
notation for sets.

16. Remember that an intension is a function from wws to values. So the intension
of an n-place predicate is a function from wws to sets of n-tuples.

17. The foregoing points were already illustrated in Exercises 12.3.1, questions (3i)
and (3ii). The argument “Alice is older than Bill, and Bill is older than Carol, so
Alice must be older than Carol” is invalid. If we add as a premise “anyone older than
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someone is older than everyone whom that someone is older than”—the translation
of which into GPL is a postulate for “older than” analogous to our second postulate for
“taller than” in the text above—then the result is valid.

18. This is a venerable, and still popular, view about belief—but it is also controver-
sial. The relevant debates can be found in the philosophical literature under headings
including “propositional attitudes” and “content of belief.”

19. Recall (§2.2.1, §8.2.2) that we face no such problems in the logical language
itself—because our logical languages are not context-sensitive: there is never any ques-
tion whether (for example) the two occurrences of a (or of T ) in T a → T a pick out
the same thing.

20. There are extensions of classical predicate logic in which there are more kinds of
symbol: in which, for example, predicates can be constructed out of simpler compo-
nents, in a way analogous to the way in which the complex expression “walks slowly” is
constructed in English from the simpler expressions “walks” and “slowly.” These richer
logical languages are especially useful in linguistics. For an introduction, see for exam-
ple, Dowty et al. [1981] and Gamut [1991b].

21. Here we assume the fact that if γ1 is equivalent to γ2, and δ1 is equivalent to δ2,
then γ1∧ δ1 is equivalent to γ2 ∧ δ2.

22. There is also a second issue: (12.5) is an open wff; hence it is meaningless to
say it is equivalent to anything: our definition of equivalence in §9.5 applies only to
propositions, that is, closed wffs. We can avoid this problem by defining the notion
of equivalence in a more general way: one that applies to open wffs as well as closed
wffs, but gives exactly the same results for closed wffs as our existing definition. The
definition is as follows [Boolos and Jeffrey, 1989, 108]. For any wffs α and β, α is
equivalent to β just in case α∗ and β∗ have the same truth value in every model (i.e., are
equivalent in our original sense), where α∗ and β∗ result from α and β by uniformly
substituting new names a1, . . . , an (i.e., names that do not occur in α or β) for all free
variables x1, . . . , xn, respectively.

23. Here we assume the fact that if γ is equivalent to δ, then ∃xγ is equivalent to
∃xδ.

Chapter 13: Identity

1. For example Parfit [1987, 201]: “There are two kinds of sameness, or identity. I
and my Replica are qualitatively identical, or exactly alike. But we may not be numeri-
cally identical, or one and the same person.”

2. We return to the final two—“there are two dogs” and “there are between ten and
twenty dogs”—in §13.5.

3. Claim (7) would certainly be an odd thing to say, if Mark Twain were not a
novelist. But would it be false in this case? Is the information that Mark Twain is a
novelist implied by claim (7), or is it an implicature (recall §6.1)? In general, in this
book we have tended to favor weaker translations: ones that do not imply things that
could reasonably be regarded as implicatures. We follow that pattern here: Nt (“Mark
Twain is a novelist”) does not follow logically from the translation of claim (7) given in
the text. Note that GPLI is perfectly capable of representing the stronger claim “Mark
Twain is a novelist, and he is taller than some other novelist,” which quite clearly
includes as part of what is said (not merely as an implicature) the information that
Mark Twain is a novelist. This claim is translated as Nt ∧ ∃x((Nx ∧ ¬I 2xt) ∧ T tx).
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Those who think that claim (7) implies—rather than merely implicates—that Mark
Twain is a novelist will take the latter to be its correct translation.

4. Here again (cf. n. 3) we take it as an implicature that Mark Twain is not taller than
Samuel Langhorne Clemens: ¬T ms does not follow logically from our translation.
GPLI is, however, perfectly capable of representing the stronger claim “Mark Twain
is taller than everyone except Samuel Langhorne Clemens, and he is not taller than
Samuel Langhorne Clemens.” Similar comments apply in subsequent examples.

5. Many books introduce = as the official symbol for identity—rather than (as
here) an informal abbreviation of the official symbol (which is I 2). My reason for
introducing I 2 as the official symbol is to make clear that, from the point of view
of syntax, the identity predicate is simply a two-place predicate like any other (a fact
that is obscured if, right from the start, we write “x is identical to y” in a completely
different way from that in which we write “x is taller than y;” i.e., as x = y and
T xy, respectively). But from the point of view of semantics and of proofs (trees), the
identity predicate will be treated differently from all other predicates, because it is part
of the logical vocabulary. It therefore makes sense to write it differently from other
predicates, to make its special status salient. (Furthermore, identity in our logical sense
is precisely what the familiar symbol=means in arithmetic, as in 2+ 2= 4. Thus, it is
natural to use this familiar symbol in logic as a symbol for identity.) Having I 2 as the
official symbol and = as an informal abbreviation is an attempt to give each of these
conflicting impulses its due.

6. To say that y is free for x in α(x) means that if we replaced all free occurrences
of x in α(x) by occurrences of y, these occurrences of y (i.e., the ones we put in place
of free occurrences of x) would all be free. In other words, no free occurrence of x in
α(x) lies within the scope of a quantifier that contains the variable y. Examples: (i) y

is not free for x in ∀yRxy: if we substitute y for all free occurrences of x in ∀yRxy, we
get ∀yRyy, in which the occurrence of y that we put in place of the free occurrence of
x is bound. (ii) z is free for x in ∀yRxy: if we substitute z for all free occurrences of x

in ∀yRxy, we get ∀yRzy, in which the occurrence of z that we put in place of the free
occurrence of x is free. In general, y is always free for x in α(x) if y is a variable that
does not occur in α(x). (iii) y is free for x in (∃yTy ∧ T x): if we substitute y for all
free occurrences of x in (∃yTy ∧ T x), we get (∃yTy ∧ Ty), in which the occurrence
of y that we put in place of the free occurrence of x is free. To be sure, there are other
occurrences of y in this formula that are bound—but this does not matter: the point
is that all occurrences of y that we put in place of free occurrences of x are free (in this
case there is only one such occurrence of y).

7. That is, is or is not in certain extensions, and is or is not the referent of certain
names—which ones, exactly, depends on what α(a) says. For example, if α(a) is
(Pa → Rab), then a model in which α(a) is true is one in which the referent of a

is not in the extension of P , or the pair consisting of the referent of a followed by the
referent of b is in the extension of R; whereas if α(a) is (Pa ∨ ∃xRax), then a model
in which α(a) is true is one in which the referent of a is in the extension of P , or the
referent of a is in the first position of some pair in the extension of R; and so on.

8. For example, if α(b//a) is Pb→ Rab, then a model in which α(b//a) is true is
one in which the referent of b is not in the extension of P , or the pair consisting of the
referent of a followed by the referent of b is in the extension of R.

9. In this application of SI, line 12 is α(a), line 10 is a = b, and line 13 is α(b//a).
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10. In general, it is fine to have a model in which some objects in the domain are not
the referent of any name. However, in the special case of models read off from open
paths, we need to avoid this sort of situation. Otherwise, our procedure for putting
objects into the extensions of predicates might yield models in which some formulas
on the path are false. For example, suppose that our path contains ∀xGx, and it also
contains the names a, b, and c (and no other names). Then, by the requirement on
saturation related to universally quantified formulas, it must contain the formulas Ga,
Gb, and Gc. Suppose the path also contains a = c: so when reading off a model, we
make a and c refer to 1 and b refer to 2. But suppose we leave the object 3—the object
that was the referent of c, before we made the referent of c the same as the referent of
a—in the domain, that is, the domain is {1, 2, 3}. Notice what goes wrong. We put into
the extension of G the referent of each name that occurs after G in a standalone atomic
formula: in this case, the referents of a, b, and c. So the extension of G is {1, 2}. But
the domain of the model is {1, 2, 3}. So ∀xGx is false in this model. But we want the
model that we read off from a saturated open path to be one in which every formula
on the path is true. Hence, when we make c refer to what a refers to, we also need to
strike out the original referent of c (object 3) from the domain.

11. Note that {a}, {a , a}, and {a , a , a} are just three ways of writing the same set—
the set containing a, that {a , b} and {a , a , b, b} are just two ways of writing the same
set—the set containing a and b, and so on. For ordered n-tuples, however—as opposed
to sets—the situation is quite different: 〈a , a〉 is an ordered pair with a in both first
and second place. And 〈a , a , a〉 is something quite different: an ordered triple with a

in first, second and third place. For further discussion, see §16.1 and §16.2.
12. Given that the symmetry of identity is a logical law (§13.3), we do not have to

say separately that x �= y and y �= x: we need say only one of these, and the other
follows automatically. Also, we do not want nonidentity statements in our formula
with the same variable on both sides (e.g., x �= x) because these are logically false.
That is why we need one nonidentity statement for each nonordered pairing of the
variables in the formula (i.e., one for each set containing two of these variables), not
one for each ordered pair of variables. For further discussion of the distinction between
two-membered sets and ordered pairs, see §16.2.

13. Thus there are
(
n
2

)
nonidentity statements. The formula

(
n
2

)
—read as “n choose

2”—represents the number of nonordered pairs of n things; that is, the number of
two-element subsets of a set of size n. Note that

(
n
2

)= 1+ 2+ . . . + (n− 1).

14. Thus, there are
(
n+1

2

)
identity statements.

Each of these translations is equivalent to one beginning with a negation followed by
n+ 1 existential quantifiers: (13.5) is equivalent to¬∃x∃y(Dx ∧Dy ∧ x �= y), (13.6)
is equivalent to ¬∃x∃y∃z(Dx ∧Dy ∧Dz ∧ x �= y ∧ x �= z ∧ y �= z), and so on.

15. That is,
(
n
2

)
nonidentity statements.

16. Recall that this notion was defined in n. 6.
17. See Russell [1905] and Whitehead and Russell [1910, pp. 181–95].
18. Alternatively, we could translate the uniqueness assumption (“there is exactly

one inventor of Post-it notes”) in the first way discussed in §13.5 (i.e., as the conjunc-
tion of “there is at least one inventor of Post-it notes” and “there is at most one inventor
of Post-it notes”): ∃xIx ∧ ∀x∀y((Ix ∧ Iy)→ x = y). Then we could translate the
whole claim “the inventor of Post-it notes is rich” either as ∃xIx ∧ ∀x∀y((Ix ∧ Iy)→
x = y)∧ ∃x(Ix ∧Rx) or as ∃xIx ∧ ∀x∀y((Ix ∧ Iy)→ x = y)∧ ∀x(Ix →Rx). The

496 Notes to Pages 317--328



former adds to the uniqueness assumption the further claim that some inventor of
Post-it notes is rich; the latter instead adds the claim that all inventors of Post-it notes
are rich. In the context of the uniqueness assumption, both claims come to the same
thing: these two translations are equivalent—and each is equivalent to the original
translation given in the text. A fourth equivalent translation is ∃x(Ix ∧ ∀y(Iy → x =
y) ∧ Rx); a fifth is ∃x∀y((Iy ↔ y = x) ∧ Rx).

19. Furthermore, the former part can itself be seen as involving two parts: an exis-
tence condition, which claims that there is at least one inventor of Post-it notes; and a
solitude condition, which claims that there is at most one inventor of Post-it notes.

20. In some books, ι (i.e., the Greek letter iota itself) is used instead.
21. We also need to extend the system of tree proofs, but we do not discuss this here.
22. That is, the value of ιxα(x) in a model M is the unique object o in the domain of

M such that α(a/x) is true in M
a
o , where a is some name not assigned a referent in M,

and M
a
o is a model just like M except that in it the name a is assigned the referent o.

23. That is, the one and only object o in the domain such that the ordered pair
〈o, the-referent-of-s〉 is in the extension of S.

24. See Frege [1892, p. 170, n. 13] and Frege [1964, pp. 49–51, §11]. Compare also
Carnap [1956, pp. 35–39, §8].

25. After developing this treatment, I came across a different, but related proposal
in Quine [1982, pp. 274–77, §43].

26. More precisely, we translate expressions that would be closed definite descrip-
tions in GPLID as names. Expressions that would be open definite descriptions in
GPLID may be treated using function symbols (§13.7).

27. Once a replaces x, the initial quantifier ∃x becomes vacuous and so can be
removed, giving ∀y(Iy ↔ y = a). The ys here can then be uniformly replaced with
xs, giving the uniqueness postulate as presented above.

28. Of course, we can also be more specific: we can deny just the existence part of
the uniqueness assumption (there is at least one inventor of Post-it notes) or just the
solitude part (there is at most one inventor of Post-it notes).

29. More precisely, what needs to be true is the version of the uniqueness assump-
tion that involves an existential quantifier, rather than the name that translates the
definite description. For example, suppose the description is “the inventor of Post-it
notes,” and suppose we translate this description as a. Then what needs to be true is
not ∀x(Ix ↔ x = a), but ∃x∀y(Iy ↔ y = x). For the former cannot be true—that is,
true in the actual model—when the intension of a sends the actual ww to no referent
at all; that is, when there is no actual model. So what we want to do is set aside the
name a and just consider the intension of I . Now consider the actual model of the
fragment containing I . If ∃x∀y(Iy ↔ y = x) is true in this model, then there will in-
deed be an actual model of the expanded fragment that also includes a. The idea is that
this is the sort of check we should go through before using a—before using a definite
description.

30. We should drop the name a (retreat to a smaller fragment; withdraw the glossary
entry for a) and deny ∃x∀y(Iy ↔ y = x): we should not deny ∀x(Ix ↔ x = a),
because the latter still involves a. (Recall the previous footnote, and the discussion
in the text preceding n. 28, of different ways of denying claims made using definite
descriptions.)

31. Precisely what this means will be made clear in §13.7.1.
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32. We mentioned in Chapter 12, n. 1 that zero-place predicates could play the role
of sentence letters. Likewise, zero-place function symbols could play the role of names.

33. For the distinction between total and partial functions, see §16.4.
34. The problem actually affects the function symbols f and m in the above example

as well. True, all persons have exactly one father and exactly one mother—if we inter-
pret “mother” and “father” in the biological sense; but not everything in the world has
a mother and father—for example, my first car has neither a father nor a mother. Note
that the following is not a simple fix to the issue: “Let the value of a function symbol on
a model be a partial function.” This solution is certainly possible—it is just not a sim-
ple one: it leads to issues similar to those we face if we allow ιxα(x) to lack a referent
in some models. As mentioned at the end of §13.6.2, there are several ways to proceed,
but they all lead outside standard classical logic and hence are beyond the scope of this
book.

35. For details, see, for example, Jeffrey [2006, pp. 85–98].
36. Compare Boolos et al. [2007, pp. 255–57].
37. In the special case where no wff in � contains any function symbols, �′ = �.
38. Note that we mean “equivalent” here in the sense of Chapter 12, n. 22.
39. What we mean here is that if we replace all free variables in f (t1, . . . , tn)= x and

Rt1 . . . tnx by new names, then the former is true in any model just like M except that
it assigns referents to the new names iff the latter is true in the corresponding model
just like M′ except that it assigns those same referents to the new names.

40. Recall the point noted in §13.7.2: the value of an n-place function is similar
to the value of an (n + 1)-place relation, but is not exactly the same. The value of
an (n+ 1)-place relation can be any set of ordered (n+ 1)-tuples of members of the
domain. The value of an n-place function, in contrast, cannot be just any set of ordered
(n+ 1)-tuples of members of the domain: it must be one that contains exactly one
(n+ 1)-tuple x ′ for each n-tuple x of members of the domain, where the first n entries
of x ′ constitute x. That the extension of each R is a set of (n+ 1)-tuples of this special
sort is precisely what the truth of its associated postulate ensures.

41. That is, {〈1, 2〉, 〈1, 3〉, 〈2, 3〉, 〈1, 4〉, 〈2, 4〉, 〈3, 4〉, 〈1, 5〉, 〈2, 5〉, 〈3, 5〉,
〈4, 5〉, . . .}.

42. That is, {〈1, 1〉, 〈2, 4〉, 〈3, 9〉, 〈4, 16〉, . . .}.
43. That is, {〈1, 1, 2〉, 〈2, 1, 3〉, 〈2, 2, 4〉, 〈1, 2, 3〉, 〈3, 1, 4〉, 〈3, 2, 5〉, 〈3, 3, 6〉,

〈2, 3, 5〉, 〈1, 3, 4〉, 〈4, 1, 5〉, . . .}.
44. That is, {〈1, 1, 1〉, 〈2, 1, 2〉, 〈2, 2, 4〉, 〈1, 2, 2〉, 〈3, 1, 3〉, 〈3, 2, 6〉, 〈3, 3, 9〉,

〈2, 3, 6〉, 〈1, 3, 3〉, 〈4, 1, 4〉, . . .}.

Chapter 14: Metatheory

1. The term “sound” is used here in a new sense, different from the sense in which it
was used earlier in the book. Confusion can be avoided by noting that the two senses of
the term apply to different things. An argument is said to be sound if it is valid and its
premises are true (§1.5). The tree method is said to be sound (with respect to validity)
because if it tells you that an argument is valid, the argument really is valid.

2. We have said that the complexity C(α) of a wff α is the number of logical op-
erators that α contains. Equivalently, we can define C(α) as follows (note that this
definition has one clause for each clause in the definition of a wff, thereby ensuring
that it assigns a complexity to every wff):

498 Notes to Pages 344--360



(i) where α is atomic, C(α)= 0;
(ii) C(¬α)= C(∀xα)= C(∃xα)= C(α)+ 1;

(iii) C((α ∧ β))= C((α ∨ β))= C((α → β))= C((α ↔ β))= C(α)+ C(β)+ 1.
Note that the identity symbol is part of the logical vocabulary, but it is not an operator
(i.e., a connective or a quantifier) it is a predicate. So a = b, x = y, and so on are atomic
wffs and have complexity 0; a �= b, x �= y, and so on are abbreviations of ¬a = b,
¬x = y, and so on and have complexity 1.

3. A conditional α → β is equivalent to its contrapositive ¬β →¬α. Thus, (S)
follows immediately once its contrapositive is established. Do not confuse “contrapos-
itive” and “converse.” The converse of the conditional α → β is β → α. In general,
these are not equivalent.

4. Applying this rule may involve—depending on the particulars of the rule ap-
plied and the proposition(s) to which it is applied—writing down some new prop-
osition(s) and/or marking some proposition with a check mark, backslash, and/or a
name.

5. It may even happen at stage 0, if the tree closes immediately, or if the initial set of
formulas contains no formula to which any tree rule can be applied.

6. That is, stage 1 looks like this for one way of constructing a tree starting with
∃xFx, ∃xGx, and ¬∃x(Fx ∧Gx). Of course, there are other ways in which a tree
could be constructed from these propositions—remember that we are placing no re-
strictions on the order in which rules may be applied—and for some of these other
ways, stage 1 is different from what is shown here. The point at present is simply that
however one constructs a tree, the construction can be seen as progressing through a
series of stages.

7. When we first described how to read off a model from an open path in §10.2.1, we
said that the domain can be any set of objects. Where there are n names on the path,
we write the domain as {1, . . . , n}, and we assign object 1 as the referent of the first
name on the path, object 2 as the referent of the second name on the path, and so on
(modulo any trimming in light of identity statements on the path). But it may occur
to you that there is an issue here in relation to our present proof of (C). Given only the
assumption that there is an open path in a finished tree that begins with α1, . . . , αn,
we want to establish that there is a model in which α1, . . . , αn are all true. But if all
we are allowed to assume is that there is an open path, then it seems that we cannot
assume that any objects exist at all—so we cannot assume that we have anything to put
in the domain, and hence our model building never gets going. But hang on a minute:
if we have an open path, then we do know that some things exist; that is, the wffs on the
path, and the symbols that make them up. So we can let our domain comprise name
symbols that appear on our path: the first name symbol on the path will then refer to
itself in our model, the second name symbol will refer to itself, and so on (modulo any
trimming).

8. That is, rule (3) in §12.2.1.2. Other references below to rules governing the
truth of wffs (with such-and-such main operator) in models refer to other rules in
§12.2.1.2.

9. Suppose a path contains just Rcd , a = c, and b = d . Then a model read off from
this path in accordance with the procedure of §13.4.2 has a domain containing two ob-
jects, 1 and 2; it assigns 1 as the referent of a and c and 2 as the referent of b and d ; and
it assigns {〈1, 2〉} as the extension of R. So the n-tuple 〈referent-of-a , referent-of-b〉
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is in the extension of R, even though Rab does not appear in our path—contrary to
the claim in the text. But this sort of counterexample to our claim is irrelevant in the
present context; because it turns on the fact that the path in the example we have just
considered is not saturated. To saturate it, we need to apply SI three times, adding Rad ,
Rcb, and Rab to the path (recall §13.4.1), and then Rab does appear in the path.

10. Again, you might think that a counterexample is provided by a path containing
just a = b and b = c: in a model read off from this path, a and c have the same
referent, even though a = c does not appear on the path. Again, however, this path
is not saturated: SI allows us to add a = c to it.

11. The procedure given in §10.3.5 now needs to be updated to take into account the
new tree rules for identity. I leave this task as a challenge; if you have problems with it,
see Jeffrey [2006, 77].

12. In §4.1, we said that the first step in determining whether an argument is valid is
to translate it into the logical language, if the argument is given in English. The process
of translation is certainly not mechanical. What we are interested in here is whether the
process of testing the validity of an argument that is already in the logical language is
mechanical.

13. Failing to say Yes is not to be equated with saying No, and vice versa. Think of
Yes as a green light and No as a red light. The green light not coming on is not the same
as the red light coming on, and vice versa.

14. When we say a decision procedure “exists,” we do not mean that we necessarily
know what it is: we mean that it exists in the abstract.

15. Think of Yes (valid)—a green light—as a closed tree, and No (not valid)—a red
light—as a finished tree with an open path. When a tree is infinite, neither light comes
on in a finite amount of time.

16. For details, see Börger et al. [1997, pp. 249–57].

17. See Partee et al. [1990, pp. 229–30].

18. Strictly speaking, what each proved is that there is no effective procedure for
deciding validity in GPL, given a certain precise analysis of effective procedure.

19. For a proof, see, for example, Boolos et al. [2007, pp. 126–36].

20. In fact it does not, by itself, provide such a test in MPL; however, it can be
supplemented to yield such a test in MPL, but not in GPL.

21. Throughout this book, we have taken an argument to have any finite number
of premises, and when we have spoken of sets of propositions being satisfiable or
unsatisfiable, we have been assuming that these sets are finite. The concepts of a set �

of propositions being satisfiable or unsatisfiable, and of a proposition α being a logical
consequence of a set � of propositions, can be generalized to the case where � is an
infinite set, but the issues which then arise lie beyond the scope of this book. Notable
among these issues is the fact that first-order logic is compact : if every finite subset of a
(possibly infinite) set � of propositions is satisfiable, then � is satisfiable. For a proof
and discussion of this fact, see, for example, Boolos et al. [2007, pp. 137–65].

22. By “some object” here we mean some object of the sort appropriate to P : an
argument, where P is validity; a proposition, where P is logical truth; and so on.

23. What we have called “completeness with respect to logical truth” is often called
“weak completeness;” what we have called “completeness with respect to validity” is
sometimes called “strong completeness.”
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24. Note that a tree indicates that something has an s-property by having an open
path (when the tree is finished—and we can then read off from this path a model that
establishes the s-property), whereas a tree indicates that something has an a-property
by having all paths closed—and recall that closed trees are always finite (§14.1.3), but
finished trees with open paths may be infinite.

25. Here is a simple example. Imagine that proofs are written out as plain text
without any punctuation apart from spaces between words: so the proof symbols are
just the twenty-six letters of the alphabet, plus the space; and an array of these symbols
is just a sequence of symbols. Think of the space as a twenty-seventh letter of the
alphabet—symbolized by “ .” Then we can generate all possible finite sequences of
proof symbols by first writing out the one-symbol sequences in alphabetical order: a, b,
c, . . . , x, y, z, ; then the two-symbol sequences in alphabetical order: aa, ab, ac, . . . ,
y, z, ; and so on. Any possible sequence of these proof symbols will eventually

be reached in this way. In the case of tree proofs—where there are more symbols,
which may be arranged in more complex ways (two-dimensional arrays instead of one-
dimensional sequences)—thinking up a procedure for generating every finite array of
tree-proof symbols, one after the other, is trickier, but it is possible. At this point, recall
§2.5.6. The point made there about PL applies also to our subsequent logical languages.

26. In the terminology of §13.7.3, where (14.3) is γ , (14.4) is γ ∗∗ conjoined with the
postulate for S, S being the three-place relation introduced to replace the two-place
function symbol s.

27. That is, the moment of time.
28. For details, see, for example, Burgess [2009, pp. 13–39]. Similar issues arise with

respect to modal claims, such as “Bob is neither a vet nor a dog; he could have been a
vet, but he could not have been a dog.” We can represent these in GPLI by quantifying
over and referring to wws and by adding an argument place for a ww to each predicate.
Or we can augment the logical language with new connectives—modal operators—
giving us a modal logic. See Chapter 11, n. 26.

29. For details, see, for example, Smith [2008].

Chapter 15: Other Methods of Proof

1. This chapter is written for readers who are already familiar with the material
covered earlier in this book. This book does not offer multiple first routes into logic
for the beginner: a route via trees, a route via natural deduction, and so on. It offers
one such route—which goes via trees—and then in this chapter provides an overview
of the other major proof methods for those who already have an understanding of logic
via trees.

2. In its ordinary meaning in English, a tableau—plural tableaux—is an arrange-
ment of objects representing a scene or story.

3. For the details of Beth tableaux, see Beth [1955]. Beth and Hintikka invented the
tableau style of proof independently at the same time; see also Hintikka [1955]. The
term “semantic tableau” is due to Beth. Tree proofs of the simpler sort presented in
this book—one-sided tableaux—are due to Smullyan; his major work on the subject
is Smullyan [1995] (first edition, 1968). Trees in this style (including a treatment of
identity) were made popular by Jeffrey [2006] (first edition, 1967). The tree rules
presented in this book are the same as Jeffrey’s.

4. The four kinds of proof system examined in this book are canonical, but they
are far from the only kinds. For example, other kinds of proof—notably resolution
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[Robinson, 1965]—are common in the field of automated theorem proving, where it
is computers that construct the proofs.

5. In a context where it is obvious, or does not matter, which proof system is in
play—or in which we wish to speak generally about various proof systems, rather than
about just one of them—we may omit the subscript on the turnstile, writing simply
� α. See also n. 15.

6. Note also that, for convenience, we have omitted outermost parentheses—but
strictly speaking, they should be there. (In future we shall leave such notes as this one
implicit.)

7. The expression P here is a wff of PL, the language of propositional logic. Because
we have temporarily switched back from predicate to propositional logic, capital letters
now represent wffs again, not predicates.

8. There are actually two quite different ways of interpreting the process of defining
some connectives in terms of others in the way just indicated. For a discussion, see
§16.7.2.

9. The biconditional ↔ does not appear and so would have to be defined out, or
else yet further axioms added.

10. You can establish each equivalence by the kind of reasoning used in §10.1.1 to
show that¬∃xα(x) and ∀x¬α(x) are equivalent and in §10.1.2 to show that¬∀xα(x)

and ∃x¬α(x) are equivalent.
11. In GPLID (§13.6.2) and GPLIF (§13.7.1) there are complex terms; but here we

are just talking about GPLI.
12. See Prior [1962, pp. 301–17] for a catalog of axiom systems (up to 1960). Note

that Prior uses Polish notation (§2.5.5).
13. The conditional is true unless the antecedent is true (which requires that each of

α1, . . . , αn be true) and β is false. So the conditional is a logical truth if this situation
never occurs. But that is precisely what is required for the argument to be valid.

14. Recall (§2.4) that we use lowercased Greek letters α (alpha), β (beta), γ

(gamma), and δ (delta) to stand for arbitrary wffs. We use the uppercased Greek letters
� (gamma),  (delta), � (theta), and � (lambda) to stand for arbitrary sets of wffs.

15. We may also say that α1, . . . , αn � β holds in system A. (The distinction here
is between saying that α1, . . . , αn �A β [note the subscript A on the turnstile] holds
[without qualification], and saying that α1, . . . , αn � β [note the plain turnstile, with
no subscript] holds in system A.) This formulation is especially convenient when we
wish to compare different systems.

16. More subtly, for axiom schemas, each instance of an axiom schema must be
a logical truth. We can establish this claim by showing that the axiom schema is a
logicaltruth* (compare the discussion of the notion of a tautology* in §5.7).

17. The difference, then, is between “in each model, preserving truth (in that
model)” and “preserving truth-in-all-models.”

18. Line numbers always refer to the prefixed list, before extra lines are inserted. So
by “line n” here I mean the wff on the nth line of the prefixed list before any extra lines
are inserted. Of course, after extra lines have been inserted it is on a higher-numbered
line.

19. See also Exercises 15.1.5, question 5. In fact a version of the deduction theorem
with a weaker restriction also holds in A∀=

1 , but the weaker restriction is complicated
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to state (see Mendelson [1987, p. 59]) and is irrelevant to the present point, which is
simply that the deduction theorem does not hold in its fully general form in A∀=

1 , but
it does hold in a restricted form.

20. By “exists” here we mean exists in the abstract: the point is precisely to show that
a formal proof could be produced without actually producing one.

21. Recall that a formal proof is a sequence of wffs, and wffs contain only symbols
of the logical language.

22. This definition of universal closure does not specify a unique wff as the universal
closure, for we have not specified the order in which the universal quantifiers are to be
prefixed. This will not matter for our purposes. If it did matter, we could easily specify
an ordering of the variables in the language and then say that the added quantifiers in
the universal closure must appear in order of the variables in them.

23. In other works, what I call “trewth” is just called “truth;” what I call “sowndness”
is just called “soundness;” and so on. That is, the “w” words—“trewth” and words
defined in terms of it, such as “sowndness” and others to be introduced below—are
not standard: they are unique to this book. However, the notions I refer to using these
words—notions defined below—are perfectly standard. I have two reasons for using
new terms for standard notions. The first is that the notion of truth in a model (as
defined earlier in this book—see, e.g., §12.2.1.2) is not defined in the same way as
trewth in a model (to be introduced below). Given their different definitions, it is
potentially confusing to label both these notions with the same word. As we shall see,
the two notions end up coinciding to a certain extent, so ultimately it will not make
much difference if we call them both by the same name, but doing so from the outset
is potentially confusing. The second reason is that if we are going to apply the ordinary
term “truth” to some precisely defined formal notion, then it would be a good idea if
that formal notion were in some sense a precise spelling-out or analysis of the ordinary
intuitive notion of truth, and as I explain in n. 25, I do not think that the notion of
trewth can be understood in this way.

24. If a wff is not satisfied relative to Mv, we say that it is unsatisfied relative to Mv.

25. I return now to my second reason (mentioned in n. 23) for refraining from
calling trewth “truth,” which is that the notion of trewth cannot be seen as a precise
spelling-out or analysis of the intuitive notion of truth. The reason is simple: open wffs
can be trew, but the analogues of open wffs in English (what you get if you translate
an open wff back into English, using some glossary) do not express propositions—
they make no claim about the world—and cannot be regarded as true or false (recall
§8.4.5). Thus, the precise notion is too inclusive: there are things that are trew that
cannot be regarded as (intuitively) true (and similarly for fawlsity). So trewth does not
correspond to the ordinary notion of truth.

What trewth does correspond to, it seems to me, is the notion of something that
would be true (in the intuitive sense) whatever its free variables denoted, if its free
variables were regarded as singular terms. That is why trewth coincides with (intuitive)
truth for closed wffs: wffs that have no free variables. For open wffs, however, the no-
tions come apart: an open wff that would be true no matter what (i.e., is such that if
it were converted into a proposition—a closed wff—by turning its free variables into
names, then it would be true no matter what those names denoted) is not actually true
(intuitively) as it stands (with free occurrences of variables in it), just as an unfinished
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manuscript by a famous writer does not actually have an interesting conclusion (be-
cause it has no conclusion at all), even if it is true that no matter how she had finished
it, the conclusion would have been interesting.

Some authors use the term “true” where I have used “trew” (i.e., they say that a wff
is true in a model iff it is satisfied in that model relative to every value assignment on
that model). Others use the term “true” slightly differently: they restrict it to closed
wffs but define it in the same way (i.e., they say that a closed wff is true in a model
iff it is satisfied in that model relative to every value assignment on that model; but
even if an open wff has this property, the term “true” is not applied to it). The latter
terminological move makes no difference to my point. For the property these authors
call “truth” in closed wffs is one that open wffs can also have. My point is that, because
open wffs can possess it, this property cannot be “truth” in the intuitive sense. Declin-
ing to call an open wff “true” when it has this property does not take away from the
fact that one has defined a property that open wffs can have. My point is that because
open wffs can also have this property, possessing it does not make something (not even
a closed wff) true in the ordinary sense.

So, I claim, the notion of trewth (satisfaction relative to all value assignments) does
not provide an analysis of the intuitive notion of truth. But that is not to say that
we should abandon it—it is only to say that we should understand it correctly. In
fact, we certainly should not abandon it: trewth and satisfaction are useful notions.
This is precisely because satisfaction is well defined (relative to a given model and
variable assignment) for all wffs, open and closed. The notion of satisfaction has uses
throughout logic, and not only in situations where we have proof systems that allow
open wffs. Even closed wffs have open wffs as subformulas, and often it is convenient
to be able to say things that apply to wffs and their subformulas alike.

26. Throughout the following, we assume that α1, . . . , αn and β are closed. This
assumption is not necessary, but it makes for a simpler presentation.

27. Likewise, if a set � is A-consistent, then it cannot contain a �= a, for any name
a, because any adequate axiomatic system A for identity will allow a = a to be proved,
for any name a.

28. The details of this will depend on the axioms and rules of A, but here’s one pos-
sibility. If the deduction theorem holds for A, then we have α1, . . . , αn �A ¬β →
α and α1, . . . , αn �A ¬β →¬α. If we can prove the logical truth (¬β → α)→
((¬β →¬α)→ β) in A, then if (MP) is a rule of A, we have α1, . . . , αn �A β.

29. We are assuming here that if a tree is infinite (i.e., it grows at stage n for every
n), then it has an infinite path; this result was established in §10.3.7.

30. Recall that = is part of the logical vocabulary. On linear orders, see also §16.3.

31. Recall the discussion of the informal proof in Figure 15.6. Although we may
write in the extra steps 6 and 7 at the end of our derivation, what results is not then a
derivation in system A1: it is a hybrid of a formal derivation (steps 1–5) with two extra
lines (6 and 7) that are outside system A1 and indicate what may be proved in system
A1. Furthermore, line 7 is not P → R: it is P →Q, Q→ R �A1

P → R, which says
precisely that there is a derivation in A1 whose last line is P → R.

32. This footnote is for readers who already have a knowledge of the literature,
who might otherwise misunderstand what I am doing at this point. The proof in
Figure 15.11 looks (at first glance) like the proofs in Fitch [1952], which employ scope
lines. Kalish et al. [1980], in contrast, present natural deduction proofs using boxes.
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The proofs in the two books just cited are not mere notational variants of one another:
some of the inference rules are different. Thus, readers who already have a knowledge
of the literature might get the mistaken impression that at this point I am switching
proof systems: from one like that in Kalish et al. [1980] to one like that in Fitch [1952].
I am, however, doing no such thing. I am not changing the proof system at this point:
I am simply saying that we may draw boxes in a quicker way, that is, without showing
all their lines in full. There is just one proof system in play (at the moment—we shall
consider others below), and it involves boxes. However, for convenience—just as we
omit outermost parentheses—we will omit some of the lines that make up a box: the
top line, the bottom line, the right line, and most of the line under the assumption.
What is left may look like something new (a scope line) but it is in fact just the left side
of a box.

33. “TND” is from the Latin “tertium non datur”; this rule is also commonly known
as the principle of excluded middle. “NCD” stands for “nonconstructive dilemma,”
and “RAA” for “reductio ad absurdum.” The rule (¬E′) is sometimes known as “ex
falso quodlibet,” which means “from a falsehood, [infer] whatever you like.”

34. I say “might,” because the finished tree might be infinite, and hence not a proof.
35. I say “except perhaps α,” because there may be another assumption of α earlier

in the proof, which is still in play. So �n may contain α—but we cannot assume that it
does.

36. The symbol ∪ represents the union of two sets. Given two sets � and , � ∪

is the set containing everything in � and everything in  and nothing else. So, for
example, {1, 2, 3} ∪ {4, 5, 6} = {1, 2, 3, 4, 5, 6}. For further discussion, see §16.1.3.
Note that � = β is another way of writing γ1, . . . , γn

= β, where γ1, . . . , γn are the
members of �.

37. The box method was invented by Jaśkowski [1934]. See also the books men-
tioned in n. 32.

38. The list method in this form was developed by Suppes [1957]; a different form
of the list method was originally invented by Jaśkowski [1934]. Here we discuss only
the rules for the conditional; for a complete presentation of a natural deduction sys-
tem of this style—including the other connectives, the quantifiers, and identity—see
Lemmon [1965].

39. This style of natural deduction proof was invented by Gentzen [1935]. It is
usually called the “tree” style of natural deduction proof, but I avoid the term “tree”
here, because using it might lead to confusion between this style of natural deduction
proof and the tree proofs used earlier in this book.

40. For a complete presentation of a natural deduction system of this style, including
the other connectives, the quantifiers, and identity, see van Dalen [2004].

41. Sequent calculus was invented by Gentzen [1935]. His stated aim was to come up
with a system that—like the original axiomatic systems examined in §15.1 (before we
introduced the idea of allowing assumptions in derivations)—does not allow assump-
tions, but that divides the rules of inference into an introduction rule and an elimi-
nation rule for each logical operator (as in natural deduction systems). Gentzen notes
that the most obvious way of eliminating assumptions in natural deduction proofs
would be to take such a proof, and wherever we find a formula α that depends on ear-
lier assumptions β1, . . . , βn, replace it with (β1∧ . . . ∧ βn)→ α. However, this then
makes the operators ∧ and → feature in (almost) all rules, and so we lose the desired
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feature that each operator should appear only in its own introduction and elimination
rules. Gentzen’s solution was to replace the wff (β1∧ . . . ∧ βn)→ α with the sequent
{β1, . . . , βn} ⇒ {α}, where the latter has the same intuitive meaning as the former;
that is, the sequent holds just in case its corresponding conditional is true.

42. If assumptions are allowed, then the aim is that the last line should be true in
any model in which all the (undischarged) assumptions are true; that is, the argument
whose premises are those assumptions and whose conclusion is the last line should be
valid.

43. Note that we write simply {B} ⇒ {A} on the left branch, not {B} ⇒ {A, A},
and likewise {B} ⇒ {A} on the right branch, not {B , B} ⇒ {A}. This is because a set
either contains something, or it does not: a set cannot contain the same thing twice.
So {B , B} is just another—more long-winded—way of writing the set {B} (i.e., the set
containing the wff B and nothing else). For further discussion, see §16.1.1.

44. We do not look, for example, at negated atomic formulas (i.e., atomic formulas
that are supposed to be false).

45. To increase readability, I omit auxiliary sets of wffs � and  on the left and right.
46. In predicate logic, of course, this is not the case: we can have an infinite search

for a sequent proof, just as we can have infinite trees.
47. The proof also makes use of Thinning and the axiom {β} ⇒ {β}.
48. The notion of a sequence is explained in §16.5.
49. The symbol � represents concatenation of sequences; see §16.5 for an explana-

tion of this notion. Note also that we have hitherto used � and  to represent sets of
wffs. In this last sentence, we use them to represent sequences of wffs. It will always
be clear from the context whether capital Greek letters are being used to represent se-
quences or sets.

50. The notion of a multiset is explained in more detail in §16.6.
51. Note that a terminated failed systematic search for a proof that a sequent holds

logically constitutes a proof that it does not hold logically (of course, as with trees, the
search might not terminate).

Chapter 16: Set Theory

1. “Unter einer ‘Mannigfaltigkeit’ oder ‘Menge’ verstehe ich nämlich allgemein jedes
Viele, welches sich als Eines denken läßt” [Cantor, 1932, 204].

2. This usage is not the same as—but clearly related to—the usage of “extension” to
mean the value of a predicate.

3. Some works use the symbol⊂ to indicate proper subset (and use⊆ in the way we
do here), but others use ⊂ to mean exactly what we mean by ⊆.

4. Sometimes S̄ or Sc is written instead of S ′.
5. Sometimes S − T is written instead of S \ T ; sometimes the former notation is

restricted to contexts where T ⊆ S.
6. Consider the definitions of union and intersection. For any x, x ∈ S ∪ T iff

x ∈ S ∨ x ∈ T , and x ∈ T ∪ S iff x ∈ T ∨ x ∈ S. But α ∨ β and β ∨ α are equivalent,
so x ∈ S ∪ T iff x ∈ T ∪ S—hence, S ∪ T = T ∪ S. Likewise, for any x, x ∈ S ∩ T iff
x ∈ S ∧ x ∈ T , and x ∈ T ∩ S iff x ∈ T ∧ x ∈ S. But α ∧ β and β ∧ α are equivalent,
so x ∈ S ∩ T iff x ∈ T ∩ S—hence, S ∩ T = T ∩ S.

7. Consider the definition of set-theoretic difference. For any x, x ∈ S \ T iff x ∈
S ∧ ¬x ∈ T , and x ∈ T \ S iff x ∈ T ∧ ¬x ∈ S. In general, α ∧ ¬β is not equivalent
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to β ∧ ¬α, so it is not in general the case that x ∈ S \ T iff x ∈ T \ S—hence, in
general S \ T �= T \ S. However, when α and β are equivalent, α ∧ ¬β is equivalent
to β ∧ ¬α: both are equivalent to the contradiction α ∧ ¬α. This corresponds to the
fact that when S = T (i.e., x ∈ S iff x ∈ T ), S \ T = T \ S = ∅.

8. There are various systems of axiomatic set theory. Not all of them feature axioms
that are true in the cumulative hierarchy. However, what is generally considered to
be the standard set of axioms for set theory—ZFC (Zermelo-Fraenkel set theory with
the axiom of Choice)—does: see Boolos [1971], Shoenfield [1977], and Devlin [1993,
pp. 29–65].

9. For the history of early reductions of ordered pairs to sets, see van Heijenoort
[1967, 224].

10. Of course, there are other equally good options; for example, we could reduce
the ordered (n+ 1)-tuple 〈x , y1, . . . , yn〉 to the ordered pair 〈x , 〈y1, . . . , yn〉〉.

11. In this case, “both” directions are really one and the same. If x = y, then R hold-
ing between x and y in that order, and R holding between x and y in the other order,
are just the same thing: R holding between x and x. While there are two ordered pairs
containing both the objects 1 and 2 (i.e., 〈1, 2〉 and 〈2, 1〉), there is just one ordered
pair containing the object 1 (i.e., 〈1, 1〉). This follows from the identity condition for
ordered pairs discussed in §16.2.1.

12. Given what we said in n. 11, evidently a relation that is asymmetric must also be
irreflexive.

13. This condition says nothing about the case x = y: all the different possibilities—
〈x , x〉 ∈R for all x (reflexivity), 〈x , x〉 ∈R for no x (irreflexivity), 〈x , x〉 ∈R for some
but not all x (neither reflexive nor irreflexive)—are compatible with connectedness.

14. That is, a partial order on ℘S, not on S.
15. This use of the arrow symbol has nothing to do with our use of this symbol

for the conditional: these are simply two different uses of the same symbol. This
phenomenon—where the same term or symbol means different things in different
contexts—is common in logic and mathematics.

16. Readers coming from certain backgrounds might not be used to thinking of
partial functions as functions at all. They might take a “function” from S to T to mean
a subset of S × T , where every element of S appears exactly once as the first element
of an ordered pair in the set. Here—and this is standard in logic—we take a function
from S to T to be a subset of S × T , where every element of S appears at most once
as the first element of an ordered pair in the set. If, in addition, every element of S

appears once as the first element of an ordered pair in the set, it is a total function; if
not, it is a partial function—but we still count it as a function. Partial functions arise
naturally at many points in logic.

17. It is also useful in some contexts to countenance the empty sequence of members
of S: the sequence with no entries, which has length zero (no positions). In the sense in
which we have just defined finite and infinite sequences, the empty sequence is neither
a finite sequence nor an infinite sequence (it is not a total function from any initial
segment—as we defined “initial segment”—of Z+ to S, nor is it a total function from
Z+ to S). We shall not consider the empty sequence further here, but note that if we
did wish to include it when we spoke of “all sequences of members of S” (which, as
mentioned, is useful in some contexts), we would need to alter or augment our existing
definition of a sequence to include it.
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18. If we chose instead to take the other fact about characteristic functions of inter-
sections stated in §16.4.2 as our starting point—that is, IS∩T (x)= IS(x)× IT (x)—
then we would obtain a very different notion of intersection of multisets: one ac-
cording to which the intersection of a multiset that contains a twice and a multiset
that contains a five times contains a ten times. Likewise, in the case of union, it is
more natural to take the first fact stated in §16.4.2 as our starting point—that is,
IS∪T (x)=max{IS(x), IT (x)}.

19. The notion of complement of multisets is a bit more subtle. For a start, the
fact about characteristic functions of complements stated in §16.4.2—that is, IS′(x)=
1− IS(x)—is not much help when I may take values greater than 1. For a discussion,
see Hickman [1980]. For more details about multisets, see, for example, Syropoulos
[2001].

20. In the case of PL, the corresponding clause says “any basic proposition is a wff.”
This clause tells us that for any basic proposition x in S, the length-1 sequence 〈x〉,
which has x in its only position, is in W .

21. Again, because concatenation is defined on sequences, we cannot concatenate
α directly with the symbols ∀ and x: we have to concatenate α with the length-1
sequences 〈∀〉 and 〈x〉.
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Russell’s paradox, 447

same, 305
satisfaction, 398–400, 503n24
satisfiability problem, 481n1
satisfiable. See also s-property

jointly (two propositions), 69–70, 74,
207

path, 362
proposition, 67–68, 69, 74, 207, 208,

491n24
set of propositions, 74, 95–96, 207

satisfiable*, 96
scenario, 63, 146, 163, 189–191,

192–193, 206, 211, 475n1
science, 4, 260–261, 467n2
scope, 178, 186–187, 334, 418
scope line, 504–505n32
search

brute force, 381
intelligent, 381
stack, 432

fully developed, 432
infinite, 431, 506n46

segment, initial, 459
semantics, 111, 163, 189–191, 204, 276–

277, 470n16. See also model;
truth, table

sentence, 8, 484n21. See also proposition,
versus sentence

declarative, 470n17
eternal, 469n12
fully specific, 469n12
letter, 33, 492n1

sequence, 256, 435–437, 452, 458–460,
506n49

empty, 507n17
finite, 458–459
infinite, 458–459

sequent, 421. See also holding
calculus, 421, 505–506n41, 506n51

predicate logic and identity,
426–431

propositional logic, 422–426
relationship between sequent rules
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and natural deduction rules,
434–435

relationship between sequent
rules and tree rules, 423–424,
427–429

left side, 421
right side, 421

set, 191, 435–436, 438–439, 506n49
background, 443
dependency, 416–417
empty, 439, 441
fuzzy, 384
infinite, 500n21
iterative conception of, 447–449
null, 439, 441
operations on, 442–444

relationships to logical operators,
444–446

power, 442
pure, 449
Russell, 447, 449
theory, 439

axiomatic, 449, 507n8
naı̈ve, 447

unit, 441
universal, 449, 490n11

Sheffer stroke, 132
SI, 312
signature

of a fragment, 485n6
of a model, 486n7

similarity, 299–300, 305
simple, 166, 482n2
singleton, 441
situation, 255
Smith, N.J.J., 475n1 (of Chapter 3)
Smullyan, R. M., 501n3
solitude condition, 497n19, 497n28
solutions, to exercises, xiv
someone, 172, 178, 483–484n15. See also

quantifier, existential
soundness

of an argument, 22, 66–67, 247, 342,
498n1

of axiomatic proof system, 397–398
with respect to logical truth, 387
with respect to validity, 392–393

closure-, 398
of natural deduction proof system,

415–416
of sequent calculus, 431–433
of tree method

with respect to properties other
than validity, 375, 378–379,
381–382

with respect to validity, 358,
361–364, 368, 498n1

sowndness, 398, 401, 503n23
speaker, 10–11, 468n10, 476n1
s-property, 95, 374–375, 501n24

and form, 95–96
proof of, 376, 405, 415, 419, 437

stack. See proof, stack style; search, stack
stage, 447–449
Stalnaker, R., 479n20
statement, 470n17
string, 48
structure, 484n1. See also form
subformula, 43, 185, 474n12, 504n25
subproof, 409, 418
subscript, 33, 473n8
subset, 441–442

proper, 441
substitution

rule, 391
uniform, 274
of variables, 274–275

succedent, 421
successor, 455
sum, logical, 475n6
superscript, 265–267, 473n8

omission of, 268–269
Suppes, P., 505n38
surjection, 455
syllogism

disjunctive, 95
hypothetical, 94

symbol, 39, 242, 462–464, 473n7, 473n8.
See also proof, symbol

auxiliary, 42
finite set, 501n25 (See also alphabet)
logical (See vocabulary, logical)
nonlogical (See vocabulary, nonlogical)
prime, 473n8
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symmetry, 445, 453
synonymy, 470n17
syntax, 40, 462–464. See also GPL,

syntax; GPLI, syntax; GPLID,
syntax; GPLIF, syntax; MPL,
syntax; PL, syntax

T (truth value), 49, 458, 475n6
tableau, 134, 501n2, 501n3

Beth, 386
one-sided, 501n3
semantic, 134, 501n3

Tarski, A., 18, 479n22
tautology, 67–68, 486n20. See also truth,

logical
tautology*, 96, 502n16
term, 183, 268, 332–334

closed, 334, 335
complex, 332
nonreferring, 336, 342–343, 489–

490n8, 498n34
open, 334
referring, 168 (See also name)
singular, 168, 172, 188

test, 135, 260–261. See also decision,
procedure

negative, 371
positive, 371

relationship to sound and complete
proof procedure, 379–381

theorem, 253, 357, 387
proving, automated, 502n4

theory, 253. See also axiomatic theory
thing, 168. See also object
thinning, 423, 436
Thought, 470n17
token, 7–8, 34, 468n9
tractable problem, 481n1
transitivity, 453
translation, 243–247, 248–250, 251,

289–293, 500n12
methodology, 101–103

tree, 134, 501n3
abbreviation, 159, 482n12
checking off entry, 136, 217, 223, 312,

487n4
closed, 368

construction (See also tree, finished,
systematic procedure for
constructing)

numbering stages, 361–362
core idea, 135–136, 146, 211, 213, 282
finished, 143, 221–222, 313, 488n16

(See also tree, unfinished)
systematic procedure for

constructing, 235–237,
367–369, 373, 381, 500n11

finite, 368, 370–371
infinite, 228–229, 238–240, 370–372,

487n4 (See also path, infinite)
method (See also tree, test)

completeness (See completeness, of
tree method)

soundness (See soundness, of tree
method)

speed of, 134–135, 481n1
whether it is an effective procedure,

369–370
official, 159
proof, 376–378, 386–387 (See also tree,

method)
rules, 136–140, 214–220, 311–312,

315, 501n3
application

ignoring irrelevant structure,
140–142

on multiple paths, 144–145, 148
order of, 145, 219–220

branching, 137, 145, 481n5
essential properties, 136, 212–214,

312–313, 363, 487n1, 487n4
nonbranching, 145, 219

semantic, 134
style of natural deduction proof,

418–419, 505n39
test, 155–156, 212, 282, 313–314, 349,

358, 402
contradiction, 151
contradictory, 151–152
contrary, 151–152
equivalence, 154–155
logical truth, 223
satisfiability, 147, 151
tautology, 152–153
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validity, 147–150, 224
truth, 134
uncrossed, 402, 404–405
unfinished, procedure for determining

whether infinite when finished,
373

trewth, 398–400, 503–504n25, 503n23
logical, 401
preservation, 401

triple, ordered, 279, 449. See also n-tuple,
ordered

truth, 5–6, 168, 242–243, 249, 503–
504n25, 503n23

actual, 67, 288, 342, 478n19, 492n26
condition, 103, 104–105, 120,

479n20
-functional (See connective, truth-

functional)
functionality (See conditional, and

truth functionality; connective,
truth-functional)

laws of, 4, 22, 190, 242
logical, 67–68, 95–96, 207, 254,

492n26 (See also a-property)
as conclusion, 77–78
preservation of, 387, 392

in a model (See model, truth in)
necessary, 260–261
possible, 260
preservation, 392, 415

necessary, 14–19, 257–263,
286–288, 471n19, 491n23

-preserving, necessarily, 14–19,
257–263, 286–288, 471n19,
491n23

science of, 4, 22, 190, 242
table (See also row, of truth table)

abbreviation, 58
for complex propositions, 54–57
for connectives, 49–51, 59–61
joint, for multiple propositions, 58
shortcuts, 75–77

unqualified notion of, 252–253
value, 30, 49, 475n1 (See also 0; 1;

F; T)
assignment, 63, 146, 163, 189–191,

192–193, 206, 211, 475n1

of complex proposition, calculating,
51–53

in virtue of form, 491–492n25
Turing, A., 373
turnstile

double, 387, 392
proof-theoretic, 387, 502n5,

502n15
semantic, 387, 392
single, 387, 502n5, 502n15

type, 7–8, 34, 468n9

undecidability, 373–374. See also
decision, procedure

underlining, 184–185, 484n19
union, 442, 444, 473n7, 505n36, 506n6
uniqueness, assumption, 327, 336–337,

343, 497n29
unless, 115–116
unsatisfiable. See also a-property;

satisfiable
jointly (two propositions), 69–70
proposition (See contradiction)
set of propositions, 74, 95–96

as premises, 78
urelement, 448–449, 490n11
utterance, 100, 289–291, 468n10, 476n1,

489n2, 490n9
correctness of, 97

vagueness, 383–384, 474–475n1,
489–490n8

valid*, 87–88, 93–94
validity, 16–19, 22, 63–65, 75–78, 95–

96, 206–207, 208–209. See also
a-property; formula, valid

and form, 79–81, 87–91, 254, 257–263,
287, 491n23

valuation, 243, 247–250, 251
value, 189, 245, 248

assignment, 398–399
of function, 455
of function symbol, 346–347, 498n34
of logical symbol, 490–491n19
of name (See referent)
of predicate (See extension)
of proposition (See truth, value)
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value (continued)
of variable, 196, 485n4, 486n14 (See

also value, assignment)
van Dalen, D., 505n40
variable, 39–40, 167, 188, 334

bound occurrence, 186–187, 334,
484n20

connective, 124
free for, 495n6
free occurrence, 186–187, 188, 334,

484n20
individual, 167, 174
metalinguistic, 473n9
name, 184, 185
predicate, 184
syntactic, 184–185, 309, 484n19
term, 184
uniform substitution, 274–275
variable, 184, 185
wff, 40, 41, 50, 81, 83, 184, 198,

388
vel, 36–37, 39
verum, 129
vocabulary

logical, 42–43, 183, 190, 268, 299, 304,
307, 311, 335, 344, 486n8

categorematic treatment, 490–
491n19

syncategorematic treatment,
490–491n19

nonlogical, 42–43, 183, 189–190, 268,
405, 486n8 (See also signature)

voice
active, 290–291
passive, 290–291

way the world could be, 242, 244. See
also ww

weakening, 423
website, for this book, xiv
wff, 40, 242, 332–334, 462–464

atomic, 183, 266–267, 268
closed, 187–188, 195–196, 211, 214,

242–243, 253–255, 267, 334,
398–400

complexity, 360, 498–499n2
consistent set, 402
construction, 43–44, 185–186, 466
maximal consistent set, 402
open, 187–188, 195–196, 267, 334,

397–398, 400–401, 416, 432,
503–504n25

saturated consistent set, 402
saturated set, 402–403
uninterpreted, 243

what is implied, 100, 477n3, 494–495n3
what is said, 11, 100. See also proposition
word, 7–8
world, possible, 489n3, 490n17, 491n21.

See also way the world could be
logically, 491n24
metaphysically, 491n24

ww, 244–247, 248, 255, 257, 490n12,
490n17, 491n20, 491n24

actual, 245, 247, 288, 342
function from (See intension)
-model, 258–261, 287, 341, 491n24
versus model, 246–247

Zermelo, E., 507n8
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