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Preface

This course in Mathematical Logic reflects a third-year undergraduate module
that has been taught for a couple of decades at Queen Mary, University of
London. Both the authors have taught it (though never together). Many years
ago the first author put together a set of lecture notes broadly related to Dirk van
Dalen’s excellent text Logic and Structure (Springer-Verlag, 1980). The present
text is based on those notes as a template, but everything has been rewritten
with some changes of perspective. Nearly all of the text, and a fair number of
the exercises, have been tested in the classroom by one or other of the authors.

The book covers a standard syllabus in propositional and predicate logic.
A teacher could use it to follow a geodesic path from truth tables to the Com-
pleteness Theorem. Teachers who are willing to follow our choice of examples
from diophantine arithmetic (and are prepared to take on trust Matiyasevich’s
analysis of diophantine relations) should find, as we did, that Gödel’s Incomplete-
ness Theorem and the undecidability of predicate logic fall out with almost no
extra work. Sometimes the course at Queen Mary has finished with some appli-
cations of the Compactness Theorem, and we have included this material too.

We aimed to meet the following conditions, probably not quite
compatible:

• The mathematics should be clean, direct and correct.

• As each notion is introduced, the students should be given something rele-
vant that they can do with it, preferably at least a calculation. (For example,
parsing trees, besides supporting an account of denotational semantics, seem
to help students to make computations both in syntax and in semantics.)

• Appropriate links should be made to other areas in which mathematical
logic is becoming important, for example, computer science, linguistics and
cognitive science (though we have not explored links to philosophical logic).

• We try to take into account the needs of students and teachers who prefer
a formal treatment, as well as those who prefer an intuitive one.

We use the Hintikka model construction rather than the more traditional Henkin-
Rasiowa-Sikorski one. We do this because it is more hands-on: it allows us to set
up the construction by deciding what needs to be done and then doing it, rather
than checking that a piece of magic does the work for us.

We do not assume that our students have studied any logic before (though
in practice most will at least have seen a truth table). Until the more specialist
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matter near the end of the book, the set theory is very light, and we aim to
explain any symbolism that might cause puzzlement. There are several proofs
by induction and definitions by recursion; we aim to set these out in a format
that students can copy even if they are not confident with the underlying ideas.

Other lecturers have taught the Queen Mary module. Two who have cer-
tainly influenced us (though they were not directly involved in the writing of this
book) were Stephen Donkin and Thomas Müller—our thanks to them. We also
thank Lev Beklemishev, Ina Ehrenfeucht, Jaakko Hintikka, Yuri Matiyasevich
and Zbigniew Ras for their kind help and permissions with the photographs of
Anatolǐı Mal’tsev, Alfred Tarski, Hintikka, Matiyasevich and Helena Rasiowa
respectively. Every reasonable effort has been made to acknowledge copyright
where appropriate. If notified, the publisher will be pleased to rectify any errors
or omissions at the earliest opportunity.

We have set up a web page at
www.maths.qmul.ac.uk/∼wilfrid/mathlogic.html
for errata and addenda to this text.

Ian Chiswell
Wilfrid Hodges
School of Mathematical Sciences
Queen Mary, University of London
August 2006

www.maths.qmul.ac.uk/~wilfrid/mathlogic.html
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1 Prelude

1.1 What is mathematics?

Euclid Egypt, c. 325–265 bc.
For Euclid, mathematics consists of proofs and
constructions.

Al-Khwārizmı̄ Baghdad, c. 780–850.
For Al-Khwārizmı̄, mathematics consists of
calculations.



2 Prelude

G. W. Leibniz Germany, 1646–1716.
According to Leibniz, we can calculate whether a
proof is correct. This will need a suitable language
(a universal characteristic) for writing proofs.

Gottlob Frege Germany, 1848–1925.
Frege invented a universal characteristic. He called
it Concept-script (Begriffsschrift).

Gerhard Gentzen Germany, 1909–1945.
Gentzen’s system of natural deduction allows us to
write proofs in a way that is mathematically
natural.
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1.2 Pronunciation guide
To get control of a branch of mathematics, you need to be able to speak it. Here
are some symbols that you will probably need to pronounce, with some suggested
pronunciations:

⊥ ‘absurdity’
� ‘turnstile’
|= ‘models’
∀ ‘for all’
∃ ‘there is’
tA ‘the interpretation of t in A’
|=A φ ‘A is a model of φ’
≈ ‘has the same cardinality as’
≺ ‘has smaller cardinality than’

The expression ‘x �→ y’ is read as ‘x maps to y’, and is used for describing
functions. For example, ‘x �→ x2’ describes the function ‘square’, and ‘n �→
n+2’ describes the function ‘plus two’. This notation is always a shorthand; the
surrounding context must make clear where the x or n comes from.

The notation ‘A ⇒ B’ is shorthand for ‘If A then B’, or ‘A implies B’,
or sometimes ‘the implication from A to B’, as best suits the context. Do not
confuse it with the notation ‘→’. From Chapter 3 onwards, the symbol ‘→’ is
not shorthand; it is an expression of our formal languages. The safest way of
reading it is probably just ‘arrow’ (though in Chapters 2 and 3 we will discuss
its translation into English).

The notation ‘N’ can be read as ‘the set of natural numbers’ or as ‘the natural
number structure’, whichever makes better sense in context. (See Example 5.5.1
for the natural number structure. Note that our natural numbers are 0, 1, 2, . . . ,
starting at 0 rather than 1.)

The following rough pronunciations of personal names may help, though
they are no substitute for guidance from a native speaker:

Frege: FRAY-ga Peirce: PURSE
Hintikka: HIN-ticka Helena Rasiowa: he-LAY-na
Leibniz: LIBE-nits ra-SHOW-va
�Loś: WASH Scholz: SHOLTS
�Lukasiewicz: woo-ka-SHAY-vitch Dana Scott: DAY-na SCOTT
Matiyasevich: ma-ti-ya-SAY-vitch Sikorski: shi-COR-ski
Giuseppe Peano: ju-SEP-pe Van Dalen: fan DAH-len

pay-AH-no Zermelo: tser-MAY-low
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2 Informal natural deduction

In this course we shall study some ways of proving statements. Of course not
every statement can be proved; so we need to analyse the statements before we
prove them. Within propositional logic we analyse complex statements down
into shorter statements. Later chapters will analyse statements into smaller
expressions too, but the smaller expressions need not be statements.

What is a statement? Here is a test. A string S of one or more words or
symbols is a statement if it makes sense to put S in place of the ‘. . . ’ in the
question

Is it true that . . .?

For example, it makes sense to ask any of the questions

Is it true that π is rational?
Is it true that differentiable functions are continuous?
Is it true that f(x) > g(y)?

So all of the following are statements:

π is rational.
Differentiable functions are continuous.
f(x) > g(y).

For this test it does not matter that the answers to the three questions are
different:

No.
Yes.
It depends on what f , g, x and y are.

On the other hand, none of the following questions make sense:

Is it true that π?
Is it true that Pythagoras’ Theorem?
Is it true that 3 + cos θ?

So none of the expressions ‘π’, ‘Pythagoras’ Theorem’ and ‘3 + cos θ’ is a
statement.



6 Informal natural deduction

The above test assumes that we know what counts as a ‘symbol’. In practice,
we do know and a precise definition is hardly called for. But we will take for
granted (1) that a symbol can be written on a page—given enough paper, ink,
time and patience; (2) that we know what counts as a finite string of symbols;
(3) that any set of symbols that we use can be listed, say as s0, s1, s2, . . ., indexed
by natural numbers. In some more advanced applications of logic it is necessary to
call on a more abstract notion of symbol; we will discuss this briefly in Section 7.9.

2.1 Proofs and sequents
Definition 2.1.1 A mathematical proof is a proof of a statement; this statement
is called the conclusion of the proof. The proof may use some assumptions that
it takes for granted. These are called its assumptions. A proof is said to be a
proof of its conclusion from its assumptions.

For example, here is a proof from a textbook of pure mathematics:

Proposition Let z = r(cos θ+ i sin θ), and let n be a positive integer. Then

zn = rn(cosnθ + i sinnθ).

Proof Applying Theorem 6.1 with z1 = z2 = z gives

z2 = zz = rr(cos(θ + θ) + i sin(θ + θ)) = r2(cos 2θ + i sin 2θ).

Repeating, we get

zn = r · · · r(cos(θ + · · ·+ θ) + i sin(θ + · · ·+ θ)) = rn(cosnθ + i sinnθ).

The proof is a proof of the equation

zn = rn(cosnθ + i sinnθ)(2.1)

so this equation (2.1) is the conclusion of the proof. (Note that the conclusion
need not come at the end!) There are several assumptions:

• One assumption is stated at the beginning of the proposition, namely

z = r(cos θ + i sin θ), and n is a positive integer.

(The word ‘Let’ at the beginning of the proposition is a sign that what
follows is an assumption.)

• Another assumption is an earlier theorem, mentioned by name:
Theorem 6.1.

(Note that this assumption is referred to but not written out as a statement.)
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• Finally, there are a number of unstated assumptions about how to do arith-
metic. For example, the proof assumes that if a = b and b = c then a = c.
These assumptions are unstated because they can be taken for granted
between reader and writer.

When we use the tools of logic to analyse a proof, we usually need to write
down statements that express the conclusion and all the assumptions, including
unstated assumptions.

A proof P of a conclusion ψ need not show that ψ is true. All it shows is
that ψ is true if the assumptions of P are true. If we want to use P to show
that ψ is true, we need to account for these assumptions. There are several ways
of doing this. One is to show that an assumption says something that we can
agree is true without needing argument. For example, we need no argument to
see that 0 = 0.

A second way of dealing with an assumption is to find another proof Q
that shows the assumption must be true. In this case the assumption is called a
lemma for the proof P . The assumption no longer counts as an assumption of
the longer proof consisting of P together with Q.

Section 2.4 will introduce us to a third and very important way of dealing
with assumptions, namely to discharge them; a discharged assumption is no
longer needed for the conclusion. We will see that—just as with adding a proof
of a lemma—discharging an assumption of a proof will always involve putting
the proof inside a larger proof. So mathematical proofs with assumptions are
really pieces that are available to be fitted into larger proofs, like bricks in a
construction kit.

Sequents

Definition 2.1.2 A sequent is an expression

(Γ � ψ) (or Γ � ψ when there is no ambiguity)

where ψ is a statement (the conclusion of the sequent) and Γ is a set of statements
(the assumptions of the sequent). We read the sequent as ‘Γ entails ψ’. The
sequent (Γ � ψ) means

There is a proof whose conclusion is ψ and whose undischarged
assumptions are all in the set Γ.(2.2)

When (2.2) is true, we say that the sequent is correct . The set Γ can be empty,
in which case we write (� ψ) (read ‘turnstile ψ’); this sequent is correct if and
only if there is a proof of ψ with no undischarged assumptions.
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We can write down properties that sequents ought to have. For example:

Sequent Rule (Axiom Rule) If ψ ∈ Γ then the sequent (Γ � ψ) is correct.

Sequent Rule (Transitive Rule) If (∆ � ψ) is correct and for every δ in ∆,
(Γ � δ) is correct, then (Γ � ψ) is correct.

Sequent rules like these will be at the heart of this course. But side by side
with them, we will introduce other rules called natural deduction rules. The main
difference will be that sequent rules are about provability in general, whereas
natural deduction rules tell us how we can build proofs of a particular kind
(called derivations) for the relevant sequents. These derivations, together with
the rules for using them, form the natural deduction calculus. In later chapters we
will redefine sequents so that they refer only to provability by natural deduction
derivations within the natural deduction calculus. This will have the result that
the sequent rules will become provable consequences of the natural deduction
rules. (See Appendix A for a list of all our natural deduction rules.)

Derivations are always written so that their conclusion is their bottom line.
A derivation with conclusion φ is said to be a derivation of φ.

We can give one natural deduction rule straight away. It tells us how to
write down derivations to justify the Axiom Rule for sequents.

Natural Deduction Rule (Axiom Rule) Let φ be a statement. Then

φ

is a derivation. Its conclusion is φ, and it has one undischarged assumption,
namely φ.

Both sequent rules and natural deduction rules were introduced in 1934 by
Gerhard Gentzen as proof calculi. (A proof calculus is a system of mathematical
rules for proving theorems. See Section 3.9 for some general remarks about proof
calculi.) Gentzen’s sequents were more complicated than ours—he allowed sets
of statements on the right-hand side as well as the left. His sequent calculus lies
behind some other well-known proof calculi such as tableaux (truth trees), but
we will not study it in this course.

Exercises
2.1.1. What are the conclusion and the assumptions of the following

argument?

Theorem Let r be a positive real number. Then r has a square root.



Informal natural deduction 9

Proof Write f(x)=x2− r for any real x. Then f is a continuous function
on R. If x = 0 then f(x) = 0− r < 0 since r is positive. If x is very large
then f(x) = x2 − r > 0. So by the Intermediate Value Theorem there
must be x such that f(x) = 0. For this value x,

r = r + 0 = r + f(x) = r + (x2 − r) = x2.

2.1.2. A first-year calculus textbook contains the following paragraph:

Given that

1− x2

4
� u(x) � 1 +

x2

2
for all x �= 0,

we calculate lim
x→0

u(x). Since

lim
x→0

(1− (x2/4)) = 1 and lim
x→0

(1 + (x2/2)) = 1,

the Sandwich Theorem implies that lim
x→0

u(x) = 1.

What is the conclusion of this argument, and what are the assumptions?
(You can answer this question without knowing what all the expressions
in it mean.)

2.1.3. From your understanding of mathematical arguments, which (if any) of
the following possible sequent rules seem to be true? Give reasons.
Possible sequent rule A: If the sequent (Γ � ψ) is a correct sequent,
and every statement in Γ is also in ∆, then the sequent (∆ � ψ) is also
correct.
Possible sequent rule B: If the sequent ({φ} � ψ) is correct, then so
is the sequent ({ψ} � φ).
Possible sequent rule C: If the sequents (Γ � ψ) and (∆ � ψ) are
both correct, then so is the sequent ((Γ ∩∆) � ψ).

2.2 Arguments introducing ‘and’
Tell me about the word ‘and’ and its behaviour. Your knowledge of logic
won’t do you any good if you don’t know about this word. (Abu Sa’̄ıd
As-S̄ırāf̄ı, ad 941 )

We shall study how the word ‘and’ appears in arguments. We are mainly
interested in this word where it appears between two statements, as, for
example, in

v is a vector and α is a scalar.(2.3)
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We shall write this sentence as

(v is a vector ∧ α is a scalar)(2.4)

We shall write ∧ for ‘and’ (between statements). The parentheses are an essential
part of the notation; later we will adopt some rules for leaving them out, but
only in contexts where they can be reconstructed.

There are a number of things that we can say with the help of this notation,
even when the word ‘and’ does not appear between statements in the original
English. Here are some typical examples:

The function f is surjective and differentiable
(The function f is surjective ∧ the function f is differentiable)(2.5)

2 <
√
5 < 3

(2 <
√
5∧√

5 < 3)
(2.6)

The next example is a little subtler. If A and B are sets, then a necessary and
sufficient condition for A and B to be the same set is that every member of A is
a member of B (in symbols A ⊆ B) and every member of B is a member of A
(in symbols B ⊆ A). So we can use our new symbol:

A = B

(A ⊆ B ∧B ⊆ A)
(2.7)

This paraphrase is often useful in proofs about sets.
Now consider how we prove a statement made by joining together two other

statements with ‘and’.

Example 2.2.1 We prove that 2 <
√
5 < 3. (Compare with (2.6).)

(1) We prove that 2<
√
5 as follows. We know that 4< 5. Taking positive square

roots of these positive numbers, 2 =
√
4<

√
5.

(2) We prove that
√
5< 3 as follows. We know that 5< 9. Taking positive square

roots of these positive numbers,
√
5 <

√
9 = 3.

The moral of this example is that if we put together a proof of φ and a proof
of ψ, the result is a proof of (φ ∧ ψ). The assumptions of this proof of (φ ∧ ψ)
consist of the assumptions of the proof of φ together with the assumptions of
the proof of ψ. We can write this fact down as a sequent rule:

Sequent Rule (∧I) If (Γ � φ) and (∆ � ψ) are correct sequents then (Γ∪∆ �
(φ ∧ ψ)) is a correct sequent.

The name (∧I) expresses that this is a rule about ∧, and the symbol ∧ is
introduced (hence ‘I’) in the last sequent of the rule. We refer to this rule as
∧-introduction.
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We also adopt a schematic notation for combining the proofs of φ and ψ:

Proof
of
φ

Proof
of
ψ

(φ ∧ ψ)
This diagram represents a proof of (φ ∧ ψ), which appears at the bottom. This
bottom expression is called the conclusion of the proof.

The box notation is a little heavy, so we adopt a lighter version. We write

D

φ
(2.8)

to stand for a proof D whose conclusion is φ. Using this notation, we recast
the picture above as a rule for forming proofs. This new rule will be our second
natural deduction rule. We give it the same label (∧I) as the corresponding
sequent rule above.

Natural Deduction Rule (∧I) If

D

φ
and

D′

ψ

are derivations of φ and ψ respectively, then

D D′
φ ψ

(∧I)
(φ ∧ ψ)

is a derivation of (φ ∧ ψ). Its undischarged assumptions are those of D together
with those of D′.

Example 2.2.2 Suppose

D

φ

is a derivation of φ. Then

D D
φ φ

(∧I)
(φ ∧ φ)

is a derivation of (φ ∧ φ). Its undischarged assumptions are those of D.
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Example 2.2.3 Suppose

D

φ
,

D′

ψ
and

D′′

χ

are respectively derivations of φ, ψ and χ. Then

D D′
φ ψ

D′′(∧I)
(φ ∧ ψ) χ

(∧I)
((φ ∧ ψ) ∧ χ)

is a derivation of ((φ∧ψ)∧χ), got by applying ∧-introduction twice; the second
time we apply it withD′′ as the second derivation. The undischarged assumptions
of this derivation are those of D, those of D′ and those of D′′.

Remark 2.2.4 The following points will apply (with obvious adjustments) to all
future derivations too.

• The conclusion of a derivation is the statement written in the bottom line.

• If the conclusion of an application of (∧I) is (φ ∧ ψ), then the derivation of
φ must go on the left and the derivation of ψ on the right.

• In Example 2.2.2 we used the same derivation of φ twice. So the derivation
must be written twice.

• As we go upwards in a derivation, it may branch. The derivation in
Example 2.2.3 has at least three branches (maybe more, depending on what
branches the derivations D, D′ and D′′ have). The branches stay separate
as we go up them; they never join up again. A derivation never branches
downwards.

• The name of the rule used in the last step of a derivation is written at the
right-hand side of the horizontal line above the conclusion of the derivation.
In our formal definition of derivations (Definition 3.4.1) these rule labels will
be essential parts of a derivation.

Now by the Axiom Rule for natural deduction (Section 2.1), φ by itself
is a derivation of φ with undischarged assumption φ. So in Example 2.2.3 the
derivation D could be this derivation, and then there is no need to write ‘D’.
Similarly we can leave out ‘D′’ and ‘D′′’, regarding ψ and χ as derivations with
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themselves as conclusions. The result is the derivation

φ ψ
(∧I)

(φ ∧ ψ) χ
(∧I)

((φ ∧ ψ) ∧ χ)
(2.9)

Now the undischarged assumptions of this derivation are those of D, D′ and D′′

together; so they are φ, ψ and χ. Thus the derivation (2.9) shows that there is
a proof of ((φ ∧ ψ) ∧ χ) with undischarged assumptions φ, ψ and χ. In other
words, it shows that the following sequent is correct:

{φ,ψ,χ} � ((φ ∧ ψ) ∧ χ).(2.10)

Likewise if we cut out the symbol ‘D’ from Example 2.2.2, what remains is a
derivation of (φ ∧ φ) from φ and φ, establishing the correctness of

{φ} � (φ ∧ φ).(2.11)

There is no need to put φ twice on the left of �, since Γ in a sequent (Γ � ψ) is
a set, not a sequence.

Remark 2.2.5 The derivation (2.9) is a proof of its conclusion ((φ∧ψ)∧χ) from
certain assumptions. It is also a proof of the sequent (2.10), by showing that
(2.10) is correct. In mathematics this is par for the course; the same argument can
be used to establish many different things. But in logic, where we are comparing
different proofs all the time, there is a danger of confusion. For mental hygiene
we shall say that (2.9) is a derivation of its conclusion, but a proof of the
sequent (2.10).

Exercises
2.2.1. Express the following using ∧ between statements:

(a) The real number r is positive but not an integer.

(b) v is a nonzero vector.

(c) φ if and only if ψ. [Here φ and ψ stand for statements.]

2.2.2. Write out derivations that prove the following sequents:
(a) {φ,ψ,χ} � (φ ∧ (ψ ∧ χ)).
(b) {φ,ψ} � (ψ ∧ φ).
(c) {φ} � ((φ ∧ φ) ∧ φ).
(d) {φ,ψ} � ((φ ∧ ψ) ∧ (φ ∧ ψ)).
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2.3 Arguments eliminating ‘and’
Often in arguments we rely on a statement of the form (φ and ψ) to justify the
next step in the argument. The simplest examples are where the next step is to
deduce φ, or to deduce ψ.

Example 2.3.1 We prove that every prime greater than 2 is odd. Let p be a
prime greater than 2. Since p is prime, p is not divisible by any integer n with
1 < n < p. Since p is greater than 2, 1 < 2 < p. So p is not divisible by 2, in
other words, p is odd.

In this argument we assume

(p is prime ∧ p is greater than 2)(2.12)

(the first passage in italics). From (2.12) we deduce

p is prime(2.13)

(the second passage in italics).
Reflecting on this example, we extract another natural deduction rule:

Natural Deduction Rule (∧E) If

D

(φ ∧ ψ)

is a derivation of (φ ∧ ψ), then

D
(φ ∧ ψ)

(∧E)
φ

and
D

(φ ∧ ψ)
(∧E)

ψ

are derivations of φ and ψ, respectively. Their undischarged assumptions are
those of D.

In the label (∧E) the E stands for Elimination, and this rule is known as
∧-elimination. The reason is that in the derivations of φ and ψ, the occurrence
of the symbol ∧ in the middle of (φ∧ψ) is eliminated in the conclusion (together
with one of the statements φ and ψ). This is the opposite to (∧I), where an
occurrence of ∧ is introduced in the conclusion.

In sequent terms, this natural deduction rule tells us:

Sequent Rule (∧E) If the sequent (Γ� (φ ∧ ψ)) is correct, then so are both
the sequents (Γ�φ) and (Γ�ψ).
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We can use both of the rules (∧I) and (∧E) in a single derivation, for
example:

Example 2.3.2
(φ ∧ ψ) (φ ∧ ψ)

(∧E) (∧E)
ψ φ

(∧I)
(ψ ∧ φ)

This derivation proves the sequent {(φ ∧ ψ)} � (ψ ∧ φ).

Example 2.3.3

(φ ∧ (ψ ∧ χ))
(∧E)

(φ ∧ (ψ ∧ χ)) (ψ ∧ χ) (φ ∧ (ψ ∧ χ))
(∧E) (∧E) (∧E)

φ ψ (ψ ∧ χ)
(∧I) (∧E)

(φ ∧ ψ) χ
(∧I)

((φ ∧ ψ) ∧ χ)
This derivation proves the sequent {(φ ∧ (ψ ∧ χ))} � ((φ ∧ ψ) ∧ χ).

Exercises
2.3.1. Write out derivations that prove the following sequents:

(a) {(φ ∧ ψ)} � (φ ∧ φ).
(b) {((φ ∧ ψ) ∧ χ)} � (φ ∧ (ψ ∧ χ)).
(c) {φ, (ψ ∧ χ)} � (χ ∧ φ).
(d) {(φ ∧ (ψ ∧ χ))} � ((χ ∧ φ) ∧ ψ).

2.3.2. Fill in the blanks (marked �) in the derivation below. Then show that
the derivation can be shortened to a derivation with the same conclusion
and no extra assumptions, but with fewer applications of (∧I) and (∧E).

D D′

� ψ
(∧I)

�
(∧E)

φ

[The moral is that there is never any point in doing an (∧E) immediately
after an (∧I).]

2.3.3. Show that {φ1,φ2} � ψ if and only if {(φ1 ∧ φ2)} � ψ.



16 Informal natural deduction

2.4 Arguments using ‘if’
We write (φ → ψ) for ‘If φ then ψ’, where φ and ψ are statements. There are
two natural deduction rules for →, an introduction rule (→I) and an elimination
rule (→E). As with ∧, these rules are based on the ways that we use the words
‘if . . . then’ in arguments.

We begin with the introduction rule. How does one prove a conclusion of
the form ‘If φ then ψ’? Here is a typical example.

Example 2.4.1 Write p for the statement that if x is real then x2 + 1 � 2x. We
prove p as follows. Assume x is real. Then x− 1 is real, so

0 � (x− 1)2 = x2 − 2x+ 1 = (x2 + 1) − 2x

So

2x � x2 + 1 �

It may help to arrange this proof in a diagram:

(2.14)

Assume x is real.

Then x− 1 is real, so

0 � (x− 1)2 = x2 − 2x+ 1 = (x2 + 1) − 2x

So, 2x � x2 + 1.

So, if x is real then x2 + 1 � 2x.

We have two proofs here. The larger proof consists of the whole of (2.14), and
its conclusion is

If x is real then x2 + 1 � 2x.(2.15)

The smaller proof is inside the box, and its conclusion is

2x � x2 + 1.(2.16)

The smaller proof assumes that x is real. But the larger proof does not assume
anything about x. Even if x is

√−1, it is still true (but uninteresting) that if x
is real then x2 + 1 � 2x. We say that in the larger proof the assumption ‘x is
real’ is discharged—it is no longer needed, because the assumption has been put
as the ‘if’ part of the conclusion.
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In the natural deduction calculus we have a notation for discharging assump-
tions. Every assumption of a derivation D is written somewhere in D, perhaps in
several places. (Remember from Section 2.1 that for logicians it is important to
make our assumptions explicit.) We shall discharge occurrences of assumptions.
We do it by writing a line through the text of the assumption. We call this line a
dandah. (This is the authors’ terminology, taken from Sanskrit grammar; there
is no standard name for the discharging symbol.)

Thus if φ is an assumption written somewhere in D, then we discharge φ
by writing a dandah through it: �φ. In the rule (→I) below, and in similar rules
later, the �φ means that in forming the derivation we are allowed to discharge any
occurrences of the assumption φ written in D. The rule is still correctly applied
if we do not discharge all of them; in fact the rule is correctly applied even if φ
is not an assumption of D at all, so that there is nothing to discharge. Example
2.4.4 will illustrate these points.

Natural Deduction Rule (→I) Suppose

D

ψ

is a derivation of ψ, and φ is a statement. Then the following is a derivation of
(φ → ψ):

φ�
D
ψ

(→I)
(φ → ψ)

Its undischarged assumptions are those of D, except possibly φ.

We can also express (→I) as a sequent rule:

Sequent Rule (→I) If the sequent (Γ ∪ {φ} � ψ) is correct then so is the
sequent (Γ � (φ → ψ)).

Discharging is a thing that happens in derivations, not in sequents. Instead
of being discharged, the assumption φ in the first sequent of the sequent rule
(→I) is allowed to drop out of the assumptions of the second sequent. But note
that φ could be one of the assumptions in Γ, and in this case it will still be an
assumption of the second sequent. This corresponds to the fact that the natural
deduction rule (→I) allows us to discharge any occurrence of the assumption φ

when we form the derivation of (φ → ψ).

Remark 2.4.2 Thanks to the rule (→I), a derivation D can have assumptions
of two kinds: discharged assumptions and undischarged assumptions. (It is quite
possible for the same statement to appear as a discharged assumption in one
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Antoine Arnauld France, 1612–1694.
His Port-Royal Logic, written in 1662 with Pierre
Nicole, introduced the rule (→I) as a way of
rewriting arguments to make them more ‘beautiful’.

part of a derivation and an undischarged assumption in another.) We say that
D is a derivation of its conclusion from its undischarged assumptions. We count
D as proving a sequent Γ � ψ when ψ is the conclusion of D and all the undis-
charged assumptions of D lie in Γ. The discharged assumptions have fulfilled
their purpose by being discharged when (→I) is used, and they need not be
mentioned again. In particular, we can now have derivations with no undis-
charged assumptions at all; these derivations prove sequents of the form (� φ)
(recall Definition 2.1.2).

We can combine the rule (→I) with the rules for ∧ to give new derivations.

Example 2.4.3 A proof of the sequent � (φ → (ψ → (φ ∧ ψ))):

φ��
�2

ψ��
�1
(∧I)

(φ ∧ ψ)
(→I)�1

(ψ → (φ ∧ ψ))
(→I)�2

(φ → (ψ → (φ ∧ ψ)))

In this derivation the top step is an application of (∧I) to assumptions φ
and ψ. Since φ and ψ are assumed, we have no proofs to write above them, so
we do not write the D and D′ of the rule (∧I). Next we extend the derivation
downwards by applying (→I) once, adding ‘ψ →’ on the left of the conclusion.
This allows us to discharge the assumption ψ. To show that ψ is discharged at
this step, we number the step 1 (by writing 1 in a circle at the left side of the
step), and we attach the same label ‘1’ to the dandah through ψ at top right.
Finally we apply (→I) once more; this discharges φ, and so we number the step
2 and put the label 2 on the dandah through φ at top left.
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Example 2.4.4 Here we prove the sequent � (φ → (φ → φ)).

��
�?

φ
(→I)�1

(φ → φ)
(→I)�2

(φ → (φ → φ))

The sequent has no assumptions, so we need to discharge φ somewhere. But
there are two steps where we can discharge it, and it does not matter which
we use. We could discharge it when we first apply (→I), so that ‘?’ becomes
1; in this case there is nothing to discharge at the second application of (→I).
Alternatively we could leave it undischarged at the first application of (→I) and
discharge it at the second, writing 2 for ‘?’. Both ways are correct.

Turning to the rule for eliminating ‘if’, suppose we have proved something
of the form ‘If φ then ψ’. How do we use this to deduce something else? Suppose,
for example, that we have proved a lemma saying

If q � 1 then f(q) = π(2.17)

The most straightforward way to apply (2.17) is to prove q � 1, and then deduce
from (2.17) that f(q) = π. In short, if we have proved both φ and ‘If φ then ψ’,
then we can deduce ψ. This idea goes over straightforwardly into the following
natural deduction rule.

Natural Deduction Rule (→E) If

D

φ
and

D′

(φ → ψ)

are derivations of φ and (φ → ψ), respectively, then

D D′
φ (φ → ψ)

(→E)
ψ

is a derivation of ψ. Its undischarged assumptions are those of D together with
those of D′.

In sequent terms:

Sequent Rule (→E) If (Γ � φ) and (∆ � (φ → ψ)) are both correct sequents,
then the sequent (Γ ∪∆ � ψ) is correct.

We can combine (→E) with other rules to make various derivations.
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Example 2.4.5 A derivation to prove the sequent {(φ → ψ), (ψ → χ)} �
(φ → χ).

��
�1

φ (φ → ψ)
(→E)

ψ (ψ → χ)
(→E)

χ
(→I)�1

(φ → χ)

Exercises
2.4.1. Write the following using → between statements:

(a) f is continuous if f is differentiable.

(b) Supposing x is positive, x has a square root.

(c) ab/b = a provided a �= 0.

2.4.2. In the following two derivations, the names of the rules are miss-
ing, and so are the dandahs and step numbers for the assumptions
that are discharged. Write out the derivations, including these missing
pieces.
(a) A proof of � ((φ ∧ ψ) → (ψ ∧ φ))

(φ ∧ ψ) (φ ∧ ψ)
ψ φ

(ψ ∧ φ)
((φ ∧ ψ) → (ψ ∧ φ))

(b) A proof of � ((ψ → χ) → ((φ → ψ) → (φ → χ)))

φ (φ → ψ)

ψ (ψ → χ)

χ

(φ → χ)

((φ → ψ) → (φ → χ))

((ψ → χ) → ((φ → ψ) → (φ → χ)))
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2.4.3. Each of the following derivations proves a sequent. Write out the sequent
that it proves.
(a)

��
�1

φ
(→I)

(ψ → φ)
(→I).�1

(φ → (ψ → φ))

(b)
φ

(→I)
(ψ → φ)

(→I).
(φ → (ψ → φ))

(c)

�1
��

(φ ∧ ψ)
(∧E)

ψ φ
(∧I).

(ψ ∧ φ)�1 (→I)
(ψ → (ψ ∧ φ))

(d)
��

�1
φ

(→I).�1
(φ → φ)

2.4.4. Write out derivations to prove each of the following sequents.
(a) � (φ → (ψ → ψ)).

(b) � ((φ → φ) ∧ (ψ → ψ)).

(c) � ((φ → (θ → ψ)) → (θ → (φ → ψ))).

(d) {(φ → ψ), (φ → χ)} � (φ → (ψ ∧ χ)).
(e) {(φ → ψ), ((φ ∧ ψ) → χ)} � (φ → χ).

(f) {(φ → (ψ → χ))} � ((φ ∧ ψ) → χ).

(g) � ((φ → ψ) → ((ψ → θ) → (φ → θ))).

(h) � ((φ → (ψ ∧ θ)) → ((φ → θ) ∧ (φ → ψ))).

2.4.5 Show that {φ} � ψ if and only if � (φ → ψ). [Prove the directions ⇒ and
⇐ separately.]

2.4.6 Let φ and ψ be statements and Γ a set of statements. Consider the two
sequents

(a) Γ ∪ {φ} � ψ.

(b) Γ � (φ → ψ).
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Show that if D1 is a derivation proving (a), then D1 can be used to
construct a derivationD′

1 proving (b). Show also that ifD2 is a derivation
proving (b), then D2 can be used to construct a derivation D′

2 proving
(a). (Together these show that (a) has a proof by derivation if and only
if (b) has a proof by derivation. The previous exercise is the special case
where Γ is empty.)

2.5 Arguments using ‘if and only if’
We shall write

(φ ↔ ψ)(2.18)

for ‘φ if and only if ψ’. We saw already in Exercise 2.2.1(c) that ‘φ if and only if
ψ’ expresses the same as

(if φ then ψ ∧ if ψ then φ)(2.19)

Thanks to this paraphrase, we can use the introduction and elimination rules for
∧ to devise introduction and elimination rules for ↔, as follows.

Natural Deduction Rule (↔I) If

D

(φ → ψ)
and

D′

(ψ → φ)

are derivations of (φ → ψ) and (ψ → φ), respectively, then

D D′
(φ → ψ) (ψ → φ)

(↔I)
(φ ↔ ψ)

is a derivation of (φ ↔ ψ). Its undischarged assumptions are those of D together
with those of D′.

Natural Deduction Rule (↔E) If

D

(φ ↔ ψ)

is a derivation of (φ ↔ ψ), then

D
(φ ↔ ψ)

(↔E)
(φ → ψ)

and
D′

(φ ↔ ψ)
(↔E)

(ψ → φ)
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are derivations of (φ → ψ) and (ψ → φ), respectively. Their undischarged
assumptions are those of D.

Example 2.5.1 A proof of the sequent {(φ ↔ ψ)} � (ψ ↔ φ). (Compare Exam-
ple 2.3.2, and make sure to get the left and right branches of the derivation the
right way round.)

(φ ↔ ψ) (φ ↔ ψ)
(↔E) (↔E)

(ψ → φ) (φ → ψ)
(↔I)

(ψ ↔ φ)

Exercises
2.5.1. Give derivations to prove the following sequents:

(a) {φ, (φ ↔ ψ)} � ψ.
(b) � (φ ↔ φ).

(c) {(φ ↔ ψ), (ψ ↔ χ)} � (φ ↔ χ).

(d) � ((φ ↔ (ψ ↔ χ)) ↔ ((φ ↔ ψ) ↔ χ)).

(e) {(φ ↔ (ψ ↔ ψ))} � φ.
2.5.2. Let S be any set of statements, and let ∼ be the relation on S defined

by: for all φ, ψ ∈ S,

φ ∼ ψ if and only if � (φ ↔ ψ).

Show that ∼ is an equivalence relation on S. That is, it has the three
properties:
• (Reflexive) For all φ in S, φ ∼ φ.

• (Symmetric) For all φ and ψ in S, if φ ∼ ψ then ψ ∼ φ.

• (Transitive) For all φ, ψ and χ in X, if φ∼ψ and ψ∼χ then φ∼χ.
[For reflexivity use (b) of Exercise 2.5.1. With a little more work, (c) and
Example 2.5.1 give transitivity and symmetry.]

2.5.3 Show that if we have a derivation D of ψ with no undischarged assump-
tions, then we can use it to construct, for any statement φ, a derivation
of ((φ ↔ ψ) ↔ φ) with no undischarged assumptions.

2.5.4 Devise suitable sequent rules for ↔.
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2.6 Arguments using ‘not’
The rules for ‘not’ and ‘or’ are not quite as straightforward as the rules we have
encountered so far. But in the spirit of natural deduction, they do all correspond
to moves commonly made in mathematical arguments. We consider ‘not’ in this
section and ‘or’ in the next.

If φ is a statement, we write (¬φ) for the statement expressing that φ is
not true. The symbol ¬ is pronounced ‘not’ or ‘negation’, and (¬φ) is called the
negation of φ.

How is ¬ used in arguments? We take our first cue not from the mathemati-
cians, but from a statement of Ian Hislop, the editor of the journal Private Eye.
In 1989 the journal lost a libel case and was instructed to pay £600,000 damages.
Coming out of the trial, Ian Hislop stood on the courthouse steps and said

If that’s justice then I’m a banana.(2.20)

He meant ‘That’s not justice’. He was using the following device.
We write ⊥ (pronounced ‘absurdity’ or ‘bottom’ according to taste) for a

statement which is definitely false, for example, ‘0 = 1’ or ‘I’m a banana’. In
derivations we shall treat (¬φ) exactly as if it was written (φ → ⊥).

How does this work in practice? Suppose first that we have proved or
assumed (¬φ). Then we can proceed as if we proved or assumed (φ → ⊥).
The rule (→E) tells us that from φ and (φ → ⊥) we can deduce ⊥. So we will
deduce ⊥ from φ and (¬φ).

This gives us our first natural deduction rule for ¬:

Natural Deduction Rule (¬E) If

D

φ
and

D′

(¬φ)

are derivations of φ and (¬φ) respectively, then

D D′
φ (¬φ)

(¬E)
⊥

is a derivation of ⊥. Its undischarged assumptions are those of D together with
those of D′.

Second, suppose we want to prove (¬φ). Then we proceed as if we were
using (→I) to prove (φ → ⊥). In other words, we assume φ and deduce ⊥. The
assumption φ is discharged after it has been used.
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Natural Deduction Rule (¬I) Suppose

D

⊥
is a derivation of ⊥, and φ is a statement. Then the following is a derivation
of (¬φ):

φ�
D
⊥

(¬I)
(¬φ)

Its undischarged assumptions are those of D, except possibly φ.

Example 2.6.1 The following derivation proves � (φ → (¬(¬φ))).

φ
�2

� (¬φ)
�1

���
(¬E)

⊥�1 (¬I)
(¬(¬φ))�2 (→I)

(φ → (¬(¬φ)))

At the application of (¬I) we discharge the assumption (¬φ) to get the conclusion
(¬(¬φ)).

Just to say that (¬φ) behaves like (φ → ⊥), without adding anything about
how ⊥ behaves, leaves rather a lot unexplained. Surprisingly, we were able to
carry out the derivation in Example 2.6.1 without using any information about ⊥.
But to go any further, we need to know how absurdity behaves in proofs. The
following argument is a case in point.

Example 2.6.2

Theorem There are infinitely many prime numbers.

Proof Assume not. Then there are only finitely many prime numbers

p1, . . . , pn

Consider the integer

q = (p1 × · · · × pn) + 1
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The integer q must have at least one prime factor r. But then r is one of the pi,
so it cannot be a factor of q. Hence r both is and is not a factor of q; absurd! So
our assumption is false, and the theorem is true. �

A close inspection of this argument shows that we prove the theorem φ

by assuming (¬φ) and deducing an absurdity. The assumption (¬φ) is then
discharged. This form of argument is known as reductio ad absurdum, RAA for
short. In natural deduction terms it comes out as follows.

Natural Deduction Rule (RAA) Suppose we have a derivation

D

⊥

whose conclusion is ⊥. Then there is a derivation

(¬φ)���

D

⊥
(RAA)

φ

Its undischarged assumptions are those of D, except possibly (¬φ).
Example 2.6.3 We prove � ((¬(¬φ)) → φ).

�1
(¬φ)���

(¬E)

�2
(¬(¬φ))�����

⊥�1 (RAA)
φ�2 (→I)

((¬(¬φ)) → φ)

Although Examples 2.6.2 and 2.6.3 are reasonably straightforward, the use
of (RAA) can lead to some very unintuitive proofs. Generally, it is the rule of
last resort, if you cannot find anything else that works.

Here are the sequent rules corresponding to (¬E), (¬I) and (RAA):

Sequent Rule (¬E) If (Γ � φ) and (∆ � (¬φ)) are both correct sequents,
then the sequent (Γ ∪∆ � ⊥) is correct.

Sequent Rule (¬I) If the sequent (Γ ∪ {φ} � ⊥) is correct, then so is the
sequent (Γ � (¬φ)).
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Sequent Rule (RAA) If the sequent (Γ ∪ {(¬φ)} � ⊥) is correct, then so is
the sequent (Γ�φ).

Exercises
2.6.1. Find natural deduction proofs for the following sequents (none of which

need (RAA)):
(a) � (¬(φ ∧ (¬φ))).
(b) � ((¬(φ → ψ)) → (¬ψ)).
(c) � ((φ ∧ ψ) → (¬(φ → (¬ψ)))).
(d) {((¬(φ ∧ ψ)) ∧ φ)} � (¬ψ).
(e) {(φ → ψ)} � ((¬ψ) → (¬φ)).
(f) {(φ → ψ)} � (¬(φ ∧ (¬ψ))).

2.6.2. Find natural deduction proofs for the following sequents (all of which
need (RAA)):
(a) {((¬ψ) → (¬φ))} � (φ → ψ).

[Assume φ and ((¬ψ) → (¬φ)). Prove ψ by (RAA), assuming (¬ψ)
and deducing ⊥.]

(b) � ((¬(φ → ψ)) → φ).

(c) � (φ → ((¬φ) → ψ)).

(d) {(¬(φ ↔ ψ))} � ((¬φ) ↔ ψ). (Hard.)

2.7 Arguments using ‘or’
We write (φ ∨ ψ) for ‘Either φ or ψ or both’. The symbol ‘∨’ is read as ‘or’. For
example, (x = 0 ∨ x > 0) says

Either x is 0 or x is greater than 0 or both.

In this case (as often) the ‘or both’ doesn’t arise and can be ignored. The whole
statement is equivalent to ‘x � 0’.

There are introduction and elimination rules for ∨. The introduction rule is
much easier to handle than the elimination rule.

Sequent Rule (∨I) If at least one of (Γ � φ) and (Γ � ψ) is a correct sequent,
then the sequent (Γ � (φ ∨ ψ)) is correct.

Natural Deduction Rule (∨I) If

D

φ
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is a derivation with conclusion φ, then

D

φ

(φ ∨ ψ)
is a derivation of (φ∨ψ). Its undischarged assumptions are those ofD. Similarly if

D

ψ

is a derivation with conclusion ψ, then

D

ψ

(φ ∨ ψ)
is a derivation with conclusion (φ ∨ ψ). Its undischarged assumptions are
those of D.

Example 2.7.1 We prove the sequent � (¬(¬(φ ∨ (¬φ)))). Since the conclusion
begins with ¬, common sense suggests we try using (¬I) to derive it. In other
words, we should try first to derive ⊥ from (¬(φ∨ (¬φ))). We can do this by first
proving (φ∨ (¬φ)) from the assumption (¬(φ∨ (¬φ))). This looks like a curious
thing to do, but it works:

φ
�1

�
(∨I)

(φ ∨ (¬φ)) (¬(φ ∨ (¬φ)))
�2

�������

(¬E)
⊥

�1 (¬I)
(¬φ)

(∨I)
(φ ∨ (¬φ)) (¬(φ ∨ (¬φ)))

�2
�������

(¬E)
⊥

�2 (¬I)
(¬(¬(φ ∨ (¬φ))))

(2.21)

At first sight it looks as if the two ¬ signs at the beginning of the conclusion have
made extra work for us. This is not so. The sequent (� (φ ∨ (¬φ))) is certainly
valid, but it is just as hard to prove; in fact the proof needs (RAA).

You might guess that the sequent (� (φ∨(¬φ))) could be proved immediately
by (∨I). But reflection shows that this would involve proving either φ or (¬φ),
and since we have not said what statement φ is, it is hardly likely that we could
prove either one of φ and (¬φ). This leaves us with no obvious strategy. In such
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cases, a sensible move is to try to prove a contradiction from the negation of the
conclusion, and then finish with (RAA). The derivation below does exactly this.

(¬φ)
�1

���
(∨I)

(φ ∨ (¬φ)) (¬(φ ∨ (¬φ)))������� �3

(¬E)
⊥�1 (RAA)
φ

φ
�2

� (∨I)
(φ ∨ (¬φ)) (¬(φ ∨ (¬φ)))������� �3

(¬E)
⊥�2 (¬I)

(¬φ)
(¬E)

⊥�3 (RAA)
(φ ∨ (¬φ))

(2.22)

We turn to the elimination rule for ∨. How do we use assumptions of the
form (φ∨ ψ) in mathematical arguments? Here is an example. We leave out the
technical details—they can be found in calculus texts.

Example 2.7.2 Consider how we show that if n is an integer �= 0 and x �= 0 then

dxn

dx
= nxn−1.

There is a well-known proof when n is positive. But this argument will not work
when n is negative. So a different argument is needed for this case. The resulting
proof has the following form

We assume n �= 0, and so either n > 0 or n < 0.

Case One: n > 0, etc., so dxn/dx = nxn−1.

Case Two: n < 0, etc., so dxn/dx = nxn−1.

Since the conclusion holds in both cases, and at least one of the cases
must apply, the conclusion holds.

Natural Deduction Rule (∨E) Given derivations

D

(φ ∨ ψ) ,
D′

χ
and

D′′

χ

we have a derivation

�φ �ψ

D D′ D′′

(φ ∨ ψ) χ χ

χ



30 Informal natural deduction

Its undischarged assumptions are those of D, those of D′ except possibly φ, and
those of D′′ except possibly ψ.

Sequent Rule (∨E) If (Γ∪{φ} � χ) and (∆∪{ψ} � χ) are correct sequents,
then the sequent (Γ ∪∆ ∪ {(φ ∨ ψ)} � χ) is correct.

Exercises
2.7.1. Give natural deduction proofs of the following sequents (none of which

need (∨E)):
(a) � (φ → (φ ∨ ψ)).
(b) {(¬(φ ∨ ψ))} � ((¬φ) ∧ (¬ψ)).
(c) � ((φ → ψ) → ((¬φ) ∨ ψ)).

2.7.2. Give natural deduction proofs of the following sequents. (These
need (∨E).)
(a) {(φ ∨ ψ)} � (ψ ∨ φ).
(b) {(φ ∨ ψ), (φ → χ), (ψ → χ)} � χ.
(c) {(φ ∨ ψ), (¬φ)} � ψ.
(d) {((¬φ) ∧ (¬ψ))} � (¬(φ ∨ ψ)).
(e) {(φ ∧ ψ)} � (¬((¬φ) ∨ (¬ψ))).
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We have now proved a wide range of statements. For example, in Section 2.4 we
proved the correctness of the sequent � (φ → (ψ → (φ ∧ ψ))) (Example 2.4.3).

Strictly this is not correct. The Greek letters ‘φ’ and ‘ψ’ are not statements;
they are variables ranging over statements (just as x, y can be variables ranging
over real numbers). We could put any statement in place of φ and any statement
in place of ψ.

Nevertheless, we did prove something. What we proved in Example 2.4.3
was that

Every statement of the form (φ → (ψ → (φ ∧ ψ))) is true.

Likewise the natural deduction ‘proof’ of (φ → (ψ → φ)) is strictly not a proof
of a statement; it is a pattern of infinitely many proofs of different statements.
Such patterns are called formal proofs.

So we are studying patterns that infinitely many different statements could
have. These patterns are the real subject matter of mathematical logic. To study
them closer, we work with formal languages which are designed to express the
patterns that are important for arguments.

To design a language, we need to describe three things.

• The lexicon is the set of ‘words’ of the language. In a formal language the
words are called symbols.

• The syntax describes how the words are built up into sentences. A sentence
of a formal language is called a formula. (In Chapter 5 we will introduce a
particular class of formulas that we call ‘sentences’. Having two meanings of
‘sentence’ is unfortunate, but the terminology is well established and there
is little danger of confusion.)

• The semantics is the correlation between symbols and their meanings. In
our formal languages the symbols fall into two classes. Some of the symbols
are symbolisations of expressions in ordinary English, such as ‘and’, ‘not’
and ‘for all’. These symbols could be—and some of them often are—used in
ordinary mathematical writing. We can study their meanings by seeing how
they are used in mathematical arguments. These are the ‘pattern’ words.
Other symbols of our language have no fixed meaning, but we have ways of
attaching temporary meanings to them. In the formal semantics of logical
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languages, we give formal necessary and sufficient conditions for a statement
to be true, depending on how the temporary meanings are assigned.

Augustus De Morgan London, 1806–1871.
He proposed the name ‘mathematical logic’ for the
mathematical study of patterns that guarantee the
correctness of arguments.

You should bear in mind throughout this chapter that we will be doing
calculations. The meanings of symbols may motivate this or that calculation,
but the calculations themselves do not involve meanings; they operate entirely
with the lexicon and the syntax.

3.1 LP, the language of propositions
We begin with LP, a formal language for expressing propositions.

The first step in constructing LP is to choose a set of symbols that can stand
for statements. We call this set the signature (or more strictly the propositional
signature, though in this chapter we use the shorter name). In theory, it can be
any set of symbols; but in practice we should avoid putting into it symbols that
already have other uses. We should certainly not put into it any of the symbols

∧ ∨ → ↔ ¬ ⊥(3.1)

(we call these the truth function symbols) and the parentheses

( )(3.2)

The symbols in the signature are called propositional symbols. The usual custom
is to choose them to be lower-case letters near p, sometimes with indices or
dashes, for example,

p q r p1 q215 r′ r′′′′(3.3)
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In computer science applications of logic one often meets propositional symbols
that are several letters long, like MouseEvent. The infinite set of symbols

p0, p1, p2, . . .(3.4)

will serve as a default signature in this chapter.
For each choice of signature σ there is a dialect LP(σ) of LP.

Definition 3.1.1 For each signature σ:

(a) The lexicon of LP(σ) is the set of symbols consisting of the truth function
symbols (3.1), the parentheses (3.2) and the symbols in σ.

(b) An expression of LP(σ) is a string of one or more symbols from the lexicon of
LP(σ). The length of the expression is the number of occurrences of symbols
in it. (Often the same symbol will occur more than once.)

It will be useful to be able to say things like ‘If φ is an expression then
so is (¬φ)’, where the Greek letter φ is not an expression itself but a variable
ranging over expressions.

Definition 3.1.2 When we are studying a language L, we distinguish between
(1) symbols of L and (2) symbols like φ above, that are not in L but are used to
range over expressions of L. The symbols in (2) are called metavariables. They
will usually be Greek letters such as φ, ψ, χ.

We need to say which of the expressions of LP(σ) are ‘grammatical sen-
tences’ of the language. These expressions are known as formulas. There is a
short and sweet definition, as follows.

• ⊥ is a formula of LP(σ), and so is every symbol in σ.
• If φ is a formula of LP(σ) then so is (¬φ).
• If φ and ψ are formulas of LP(σ), then so are (φ ∧ ψ), (φ ∨ ψ),
(φ → ψ) and (φ ↔ ψ).

• Nothing else is a formula of LP(σ).

(3.5)

Definitions, such as (3.5), that describe a set by saying that certain things are
in it and it is closed under certain operations are known as inductive definitions.
They require some mathematical explanation, for example, to make sense of the
last bullet point. Even with that explanation taken as read, this definition of
‘formula’ is not necessarily the most helpful. It presents the formulas as a set of
strings, and it hides the fact that formulas (like the sentences of any language)
have a grammatical structure that underpins the uses we make of them. So in this
and the next section we will follow an approach that has become standard in the
study of natural languages, taking the grammatical structure as fundamental.
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We begin with a particular formula of LP(σ) where σ contains p:

(p → (¬(¬p)))(3.6)

This formula comes from the statement proved in Example 2.6.1 of Section 2.6,
by putting p in place of φ throughout. It has the form (φ → ψ) with p for φ and
(¬(¬p)) for ψ. We can write this analysis as a diagram:

� →

�
�

�

� p �
�

�

� (¬(¬p))
(3.7)

The formula on the left in (3.7) cannot be analysed any further. But on the
right, (¬(¬p)) has the form (¬φ) where φ is (¬p). So we can extend the diagram
downwards:

� →

�
�

�

� p �
�

�

� ¬

� (¬p)

(3.8)

One more step analyses (¬p) as the result of negating p:

� →

�
�

�

� p �
�

�

� ¬

� ¬

� p

(3.9)

So we have a diagram (3.9) of small circles (we call them nodes) joined by lines,
with labels on the right of the nodes. The labels on the two bottom nodes are
one-symbol formulas (in this case both p). The other nodes carry the labels →, ¬
and ¬. The diagram with its labels analyses how formula (3.6) was put together.
This kind of grammatical analysis is traditionally known as parsing. The diagram
branches downward, rather like a family tree, and so it will be called the parsing
tree of the formula.
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Given the tree diagram, we can reconstruct the formula that it came from.
We illustrate this with a different tree that uses the signature {p0, p1}:

� →

�
�

�
��

��
�

�
��

�

�
�

�

��
�

�

�

�

� p0

¬p1

¬ p0

→(3.10)

We reconstruct the formula by starting at the bottom tips of the tree and working
upwards. As we go, we record our progress by writing labels on the left side of
the tree nodes. The first step is to copy each propositional symbol on the left
side of its node:

� →

�
�

�
��

�p0
�

�
�

��

�

�
�

�

��
�

�

�p1

�

�p0 p0

¬p1

¬ p0

→(3.11)

In the middle branch, the ¬ on the node just above p0 shows that we form the
formula (¬p0). We write this formula on the left of the node:

� →

�
�

�
��

�p0
�

�
�

��

�

�
�

�

�(¬p0)
�

�
�

�p1

�

�p0 p0

¬p1

¬ p0

→(3.12)
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Now the → on the left joins p1 and (¬p0) together to give (p1 → (¬p0)), and we
attach this on the left of the node that carries the →:

� →

�
�

�
��

�p0
�

�
�

��

�

�
�

�

�(¬p0)
�

�
�

�p1

�

�p0 p0

¬p1

¬ p0

→(p1 → (¬p0))(3.13)

With two more moves to incorporate the remaining ¬ and →, we finally reach
the tree

� →((¬(p1 → (¬p0))) → p0)

�
�

�
��

�p0
�

�
�

��

�

�
�

�

�(¬p0)
�

�
�

�p1

�

�p0 p0

¬p1

¬(¬(p1 → (¬p0))) p0

→(p1 → (¬p0))(3.14)

with ((¬(p1 → (¬p0))) → p0) on the left of the top node. This is the formula
constructed by the tree. If we started with this formula and decomposed it to
form a tree, the result would be (3.10). So the tree and the formula go hand in
hand; we say the formula is associated with the tree, and the tree is the parsing
tree of the formula. The labels on the left sides of nodes in (3.14) form the syntax
labelling of the parsing tree; the next section will define this more rigorously.

Pause for a moment to think about the way we constructed the labels on
the left of the nodes. We started at the bottom of the tree and worked upwards.
At each node we knew how to write the label on its left, depending only on the
symbol written on its right and the left-hand labels on the nodes (if any) one
level down. A set of instructions for writing a left labelling in this way is called
a compositional definition. If δ is a compositional definition and we apply it to a
parsing tree π, the thing we are trying to find is the left label on the top node;
we call this label the root label and we write it δ(π).

In the example above, the labels on the left of nodes were expressions. But
there are also compositional definitions that put other kinds of label on the left
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of nodes. For example, this is a compositional definition:

Put 0 on the left of each node at the bottom of the tree. Next, if you
have left labelled the nodes immediately below a given node ν, say
with numbers m1, . . . ,mn, then write

(3.15) max{m1, . . . ,mn}+ 1
on the left of ν.

This definition does not involve labels on the right at all. The label that it puts
on the left of a node is called the height of the node; the root label is called the
height of the tree.

Remark 3.1.3 Parsing trees were first designed by Frege in 1879 for his
Begriffsschrift. Here is Frege’s own version of (3.10):

a

a

b(3.16)

Our top is his top left. His signature used a and b instead of our p0 and p1.
He marked ¬ with a short line jutting out downwards, and → with an unla-
belled branching. Frege himself used his parsing trees as formulas. The problem
with this approach is that you cannot pronounce a parsing tree aloud, and even
writing it can use up paper and patience. Imagine writing out a natural deduc-
tion derivation with parsing trees as formulas! In this book we follow Frege in
using parsing trees to show the structure of formulas, but we do not try to use
them in place of formulas.

Exercises
3.1.1. For each of the following formulas, draw a parsing tree that has the for-

mula as its associated formula. (Trial and error should suffice, but later
we will give an algorithm for this.)

(a) (p ∧ q).
(b) p.

(c) (p → (q → (r → s))).

(d) ((¬(p2 → (p1 ↔ p0))) ∨ (p2 → ⊥)),

(e) ((p6 ∧ (¬p5)) → (((¬p4) ∨ (¬p3)) ↔ (p2 ∧ p1))).

(f) (((¬(p3 ∧ p7)) ∨ (¬(p1 ∨ p2))) → (p2 ∨ (¬p5))).

(g) (((¬(p1 → p2)) ∧ (p0 ∨ (¬p3))) → (p0 ∧ (¬p2))).
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3.1.2. Find the associated formula of each of the following parsing trees.

(a) � ¬
� ⊥

(b) � ¬
� ∨

�
�

�
�� p2

� p0

(c)

� p0�
�

� ∧
�

� � p1

�
�

� ∧
�

� � p2

�
�

� ∧
�

� � p4

�
�

� ∧
�

� � p5

�
�

� ∧
�

� � p6

3.1.3. For each of the formulas in Exercise 3.1.1, find a smallest possible
signature σ such that the formula is in the language LP(σ).

3.2 Parsing trees
In this section we make precise the ideas of Section 3.1. Note that the language
LP, as we have constructed it so far, consists of strings of symbols. In this chapter
we have not yet attached any meanings to these symbols, and we will not until
Section 3.5.

We will define the formulas of LP(σ) in terms of their parsing trees. So first
we need to define ‘tree’—or more precisely ‘planar tree’, because for our trees it
is important how they are written on the page.

Definition 3.2.1 A (planar) tree is an ordered pair (N ,D) where

(a) N is a finite non-empty set whose elements are called nodes;

(b) D is a function that takes each node µ in N to a sequence (possibly empty)
of distinct nodes:

D(µ) = (ν1, . . . , νn)(3.17)

the nodes ν1, . . . , νn are called the daughters of µ, and µ is called the mother
of ν1, . . . , νn;

(c) every node except one has exactly one mother; the exception is a node called
the root , in symbols √, which has no mother;

(d) there are no cycles, that is, sequences

ν1, ν2, . . . , νk (k > 1)(3.18)

where νk = ν1 and each νi with 1 � i < k has mother νi+1.
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To draw a tree (N ,D), we first draw a node for its root √. If D(√) =
〈µ1, . . . ,µn〉, then below the root we draw nodes µ1, . . . ,µn from left to right,
joined to √ by lines. Then we put the daughters of µ1 below µ1, the daughters
of µ2 below µ2, etc., and we carry on downwards until all the nodes are included.
This will happen sooner or later, because N is finite by Definition 3.2.1(a); and
if we start from any node and go to its mother, the mother of its mother and so
on, then by (d) we must eventually reach a node with no mother, which by (c)
must be √. The route from a node to the root is unique, since a node has at
most one mother.

Definition 3.2.2

(a) In a tree, an edge is an ordered pair of nodes (µ, ν), where µ is the mother
of ν. (So the lines in a tree diagram represent the edges.) Mixing metaphors,
we describe a node as a leaf of a tree if it has no daughters. (Botanically
speaking our trees are upside down, with their root at the top and their
leaves at the bottom.)

(b) The number of daughters of a node is called its arity . (So the leaves are the
nodes of arity 0.)

(c) We define a height for each node of a tree as follows. Every leaf has height 0.
If µ is a node with daughters ν1, . . . , νn, then the height of µ is

max{height(ν1), . . . , height(νn)}+ 1(3.19)

The height of a tree is defined to be the height of its root (cf. (3.15)).

(d) A path from node ν to node µ is a set of nodes {ν0, . . . , νk} where ν0 is ν,
νk is µ, and for each i < k, νi is the mother of νi+1. A path from the root
to a leaf µ is called a branch (to µ).

Here are three examples of trees:

�

�

�

�
�� ��� �

�
���

			� �
�� �� �� ��� � � �



 

 �� ��� � � �

(3.20)

The left-hand tree in (3.20) has one leaf and no non-leaves, and its height is 0.
The centre tree has two leaves, two nodes of arity 1 and one node of arity 2; the
root has height 3, so the height of the tree is also 3. The right-hand tree has
five leaves, two nodes of arity 1 and four nodes of arity 2; again the height of the
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tree is 3.
�������
������� �

���
			

���
			� � � �

�� ��� � � �

(3.21)

The tree (3.21) is strictly not the same tree as the third tree in (3.20), because
the two trees are on different pages; also the angles are different in the two
diagrams. But there is a unique correspondence between the nodes of one tree
and the nodes of the other, and likewise between the edges of one tree and those
of the others, which makes one tree a copy of the other (cf. Exercise 3.2.6). So it
will do no harm if we ‘identify’ the two trees, that is, count them as the same tree.

Definition 3.2.3 A labelling of a tree is a function f defined on the set of nodes.
We make it a right labelling by writing f(ν) to the right of each node ν, and a left
labelling by writing f(ν) to the left of ν. A labelled tree is a tree together with a
labelling; likewise we talk of left-labelled trees and right-labelled trees. (Sometimes
we refer to right labels as right-hand labels, to avoid confusion between right/left
and right/wrong.)

Definition 3.2.4 A parsing tree for LP(σ) is a right-labelled tree where

• every node has arity � 2;

• every leaf is labelled with either ⊥ or a symbol from σ;

• every node of arity 1 is labelled with ¬;

• every node of arity 2 is labelled with one of ∧,∨,→,↔.

Now you can easily check that all the parsing trees of Section 3.1 are parsing
trees in the sense of Definition 3.2.4. So we can define the formulas of LP(σ) by
saying how they are constructed from parsing trees. The method that we use,
working up from leaves to the root as in Section 3.1, will have many applications.
For example, we use it to set up alternative notations, and to define properties
of formulas, and to assign meanings to formulas. To make it precise, we make
the following definition.

Definition 3.2.5 A compositional definition δ is a set of rules that tell us how
to put a left labelling on any parsing tree, in such a way that the left label on
any node µ—write it δ(µ)—is determined by just two things:

• the right-hand label on µ and

• the sequence of values (δ(ν1), . . . , δ(νn)) where µ has daughters ν1, . . . , νn
from left to right.
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(In parsing trees for LP, n can only be 0, 1 or 2.) The rules must always
determine δ(µ) uniquely from this data, so that they define a unique left labelling
for any parsing tree π; the label on the root of π is called the root label , in
symbols δ(π).

Example 3.2.6 The rules that we used in Section 3.1 for recovering a formula
from its parsing tree form a compositional definition. For convenience we can
write it

χ � χ

� ¬(¬φ)

�φ

� �(φ�ψ)
�

�
��φ

�
�

� �ψ

where χ is ⊥ or a propositional symbol in σ, and � is a
truth function symbol ∧, ∨, → or ↔.

(3.22)

This is three instructions. The first says: at a leaf, copy the right-hand label
on the left. The second says: at a node with right-hand label ¬, write (¬φ)
where φ is the left label on the daughter. The third tells you what to do
at a node with two daughters. Together the three instructions cover all cases
unambiguously.

Definition 3.2.7

(a) If π is a parsing tree for LP(σ), then the formula associated to π is δ(π)
where δ is the compositional definition (3.22). We say that π is a parsing
tree for δ(π). The formulas of LP(σ) are the formulas associated to parsing
trees of LP(σ). A formula of LP is a formula of LP(σ) for some signature σ.

(b) The formula ⊥ and propositional symbols are called atomic formulas. (These
have parsing trees with just one node.) All other formulas are said to be
complex .

(c) A formula has complexity k if it is associated to a parsing tree of height k.
(So atomic formulas are those with complexity 0.)

For example, using the default signature, the following are atomic formulas:

⊥ p0 p2002 p999999999999

(Remember that in LP, each of these counts as a single symbol, even though, for
example, the last one is a string of length 13.) On the other hand the following
three expressions

(¬p1) (p0 → (p1 → p0)) ((p1 ∧ (¬p0)) ↔ p5)

are complex formulas. (It is easy to draw parsing trees for them.)
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WARNING: Suppose the same formula was associated to two different
parsing trees, one of height 17 and the other of height 18; what would the com-
plexity of the formula be, according to Definition 3.2.7(c)? In fact this strange
situation never occurs, but we should prove that it never does. That will be the
task of Section 3.3.

Remark 3.2.8 Let π be a parsing tree and ν a node of π. Then removing all
the nodes of π which are not ν and cannot be reached from ν by going down-
wards along edges, we get a smaller parsing tree. The left label on ν given
by (3.22) is the label on the root of this smaller tree, so it is itself a for-
mula. Thus all the left labels on nodes of a parsing tree given by (3.22) are
formulas.

The next notion, though very useful, is rather hard to formalise. In practice
there are indirect ways of formalising most of the information we get out of it.
For the moment we will fall back on an informal description.

Imagine we are travelling up a parsing tree, using (3.22) to attach formulas
on the left sides of nodes. Nothing gets thrown away: if we write a formula φ

against a node, then φ reappears in the label of its mother node. In fact we can
say what part of the label on the mother node is this φ, and we call this the
trace of φ. Take, for example, a part of a parsing tree:

� ∨(φ ∨ φ)
�

�
��φ

�
�

� �φ
(3.23)

We labelled both of the two lower nodes φ. Then the upper node gets the label
(φ∨φ). In this label the left-hand φ is the trace of the φ on the bottom left node,
and the right-hand φ is the trace of the φ on the bottom right node. We say in
this case that there are two occurrences of φ in the formula (φ ∨ φ); each trace
is a separate occurrence. If the parsing tree contains further nodes above the
top node in (3.23), then we can trace each of the φ’s in the labels on these
nodes too.

Definition 3.2.9 Let φ be the associated formula of a parsing tree P . Then the
subformulas of φ are the traces in φ of the left labels of all the nodes in P .
(The formula φ itself counts as the trace of the root label.)
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For example, the formula ((¬(p1 → (¬p0))) → p0) has the parsing tree

� →((¬(p1 → (¬p0))) → p0)

�
�

�
��

�p0
�

�
�

��

�

�
�

�

�(¬p0)
�

�
�

�p1

�

�p0 p0

¬p1

¬(¬(p1 → (¬p0))) p0

→(p1 → (¬p0))(3.24)

as we calculated in (3.14). The tree has seven nodes in its parsing tree, and hence
the formula has seven subformulas, illustrated as follows:

((¬(p1 → (¬p0))) → p0)

(3.25)

Note that the last two subformulas are the same formula, namely p0, but
occurring in different places.

Exercises
3.2.1. List all the subformulas of the following formula. (You found its parsing

tree in Exercise 3.1.1(d).)

((¬(p2 → (p1 ↔ p0))) ∨ (p2 → ⊥)).

3.2.2. Take σ to be the default signature {p0, p1, . . . }. Draw six parsing trees
π1, . . . ,π6 for LP(σ), so that each πi has i nodes. Keep your parsing
trees for use in later exercises of this section.
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3.2.3. Consider the following compositional definition, which uses numbers as
labels:

1 � χ

� ¬m+ 3

�m

� �m+ n+ 3
�

�
��m

�
�

� �n

where χ is atomic and � ∈ {∧,∨,→,↔}.

If π is any parsing tree for LP, and δ is the definition above, what is
δ(π)? Justify your answer. [You might find it helpful to try the definition
in your trees from Exercise 3.2.2.]

3.2.4. Construct a compositional definition δ so that for each parsing tree π,
δ(π) is the number of parentheses ‘(’ or ‘)’ in the associated formula
of π.

3.2.5. This exercise turns formulas into numbers. Let σ be the default signature
{p0, p1, p2, . . . }. We assign distinct odd positive integers �(s) to symbols
s of LP(σ) as follows:

s ∧ ∨ → ↔ ¬ ⊥ p0 p1 . . .

�(s) 1 3 5 7 9 11 13 15 . . .

The following compositional definition

2�(χ) � χ

� ¬2m × 39

�m

� �2m × 3n × 5�(�)

�
�

��m

�
�

� �n

where χ is atomic and � ∈ {∧,∨,→,↔}.
(3.26)

assigns a number to each node of any parsing tree. The number on the
root is called the Gödel number of the associated formula of the tree.
Explain how, if you know the Gödel number of a formula of LP(σ), you
can reconstruct the formula. [Use unique prime decomposition.] Illustrate
by reconstructing the formula with Gödel number

22215×39 × 3213 × 53

For goodness sake do not try to calculate the number!

3.2.6. Suppose (N1,D1) and (N2,D2) are planar trees. An isomorphism from
(N1,D1) to (N2,D2) is a bijection f : N1 → N2 such that for every node
µ ∈ N1, if D(µ) = (ν1, . . . , νn) then D(fµ) = (fν1, . . . , fνn). We say
that two planar trees are isomorphic if there is an isomorphism from the
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first to the second. (Then isomorphism is an equivalence relation.) Prove:
If f and g are two isomorphisms from (N1,D1) to (N2,D2) then f = g.
[If (N1,D1) has height n, prove by induction on k that for each k, the
functions f and g agree on all nodes of height n− k in N1.]

3.3 Propositional formulas
The main aim of this section is to prove that each formula of LP(σ) is associated
to a unique parsing tree. When we analysed the formula (p → (¬(¬p))) in
Section 3.1, we built a parsing tree for it. What has to be shown is that this
method of analysis always works in a unique way, and it recovers the parsing
tree that the formula is associated to.

By Definition 3.2.7 every formula φ of LP is the root label got by apply-
ing the compositional definition (3.22) to some parsing tree π. Looking at the
clause of (3.22) used at the root, we see that φ is either atomic or a complex
formula that can be written in at least one of the forms (¬φ), (φ ∧ ψ), (φ ∨ ψ),
(φ → ψ) or (φ ↔ ψ), where φ and ψ are formulas (using Remark 3.2.8). In the
complex cases the shown occurrence of ¬, ∧, ∨, → or ↔ is said to be a head
of the formula. To show that each formula has a unique parsing tree, we need
to prove that each complex formula has a unique head. In fact this is all we
need prove, because the rest of the tree is constructed by finding the heads of
the formulas on the daughter nodes, and so on all the way down. Our proof will
give an algorithm, that is, a mechanical method of calculation, for finding the
head.

Purely for this section, we call the symbols ¬,∧,∨,→,↔ the functors. So a
functor is a truth function symbol but not ⊥.

Definition 3.3.1 As in Definition 3.1.1(b), an expression is a string a1 · · · an of
symbols and its length is n. A segment of this expression is a string

ai · · · aj (with 1 � i � j � n)

This segment is initial if i = 1; so the initial segments are

a1 a1a2 a1 · · · a3 . . . a1 · · · an
The proper initial segments of the expression are those of length < n. For each
initial segment s we define the depth d[s] to be the number of occurrences of ‘(’
in s minus the number of occurrences of ‘)’ in s. The depth of an occurrence aj
of a symbol in the string is defined as the depth of a1 · · · aj .

Once again, remember that a propositional symbol is a single symbol. For
example, we count p31416 as one symbol, not as a string of six symbols.
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Example 3.3.2 In the string (p0 → (p1 → p0)) the depths of the initial segments
are as follows:

Initial segment Depth
( 1
(p0 1
(p0 → 1
(p0 → ( 2
(p0 → (p1 2
(p0 → (p1 → 2
(p0 → (p1 → p0 2
(p0 → (p1 → p0) 1
(p0 → (p1 → p0)) 0

Lemma 3.3.3 Let χ be any formula of LP. Then

(a) χ has depth 0, and every proper initial segment of χ has depth > 0;

(b) if χ is complex then exactly one occurrence of ∧, ∨, →, ↔ or ¬ in χ has
depth 1, and this occurrence is the unique head of χ.

Proof By Definition 3.2.7, χ is the associated formula of some parsing tree π.
If µ is a node of π, write µ for the formula assigned by (3.22) as left label of
µ. We show that for every node µ of π, µ has the properties (a) and (b) of the
lemma. The proof is by induction on the height of µ.

Case 1: µ has height 0. Then µ is a leaf, so µ is atomic, its depth is 0 and it
has no proper initial segments.

Case 2: µ has height k+1 > 0, assuming the result holds for all nodes of height
� k. Then µ has one of the forms (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), (φ ↔ ψ) or (¬φ),
depending on the right-hand label at µ. The cases are all similar; for illustration
we take the first. In this case, µ has two daughters ν1 and ν2, and µ is (ν1 ∧ ν2).
By induction assumption both ν1 and ν2 satisfy (a) and (b). The initial segments
of µ̄ are as follows:

(α) (
This has depth 1.

(β) (s where s is a proper initial segment of ν1.
Since ν1 satisfies (a), the depth d[s] is at least 1, so the depth d[(s] is at
least 2.

(γ) (ν1

Since ν1 satisfies (a), the depth is 1 + 0 = 1.

(δ) (ν1∧
The depth is 1 + 0 + 0 = 1; so the head symbol ∧ has depth 1.
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(ε) (ν1 ∧ s where s is a proper initial segment of ν2.
As in case (β), the fact that ν1 and ν2 satisfy (a) implies that the depth is
at least 2.

(ζ) (ν1 ∧ ν2

The depth is 1 + 0 + 0 + 0 = 1.

(η) µ itself
The depth is 1 + 0 + 0 + 0− 1 = 0 as required.

This proves that µ satisfies (a). To prove that it satisfies (b), we note from (δ)
that the head symbol has depth 1. If t is any other occurrence of a functor in µ,
then t must be inside either ν1 or ν2, and it’s not the last symbol since the last
symbol of a complex formula is always ‘)’. Hence t is the end of an initial segment
as in case (β) or (ε), and in both these cases the depth of t is at least 2.

Theorem 3.3.4 (Unique Parsing Theorem) Let χ be a formula of LP. Then χ
has exactly one of the following forms:

(a) χ is an atomic formula.

(b) χ has exactly one of the forms (φ∧ψ), (φ∨ψ), (φ → ψ), (φ ↔ ψ), where φ
and ψ are formulas.

(c) χ has the form (¬φ), where φ is a formula.

Moreover in case (b) the formulas φ and ψ are uniquely determined segments
of φ. In case (c) the formula φ is uniquely determined.

Proof Every formula of LP has a parsing tree. As noted at the start of this
section, from the possible forms in (3.22), it follows that every formula of LP has
at least one of the forms listed in the theorem. It remains to prove the uniqueness
claims.

Inspection shows whether χ is atomic. Suppose then that χ is complex.
By the lemma, χ has a unique head. The first symbol of χ is ‘(’. If the head is
¬, it is the second symbol of χ; if the head of χ is not ¬ then we are in case (b)
and the second symbol of χ is the first symbol of φ, which cannot ever be ¬. So
the second symbol determines whether we are in case (b) or (c).

In case (b) the occurrence of the head is uniquely determined as in the
lemma. So φ is everything to the left of this occurrence, except for the first ‘(’ of
χ; and ψ is everything to the right of the occurrence, except for the last ‘)’ of χ.
Similarly in case (c), φ is the whole of χ except for the first two symbols and the
last symbol.

The theorem allows us to find the parsing tree of any formula of LP, starting
at the top and working downwards.
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Example 3.3.5 We parse (p1 → ((¬p3) ∨ ⊥)). It is clearly not atomic, so we
check the depths of the initial segments in order to find the head. Thus

d[(] = 1, d[(p1] = 1, d[(p1 →] = 1

Found it! The third symbol is a functor of depth 1, so it must be the head.
Therefore, the formula was built by applying this head to p1 on the left and
((¬p3)∨⊥) on the right. The formula on the left is atomic. A check for the head
of the formula on the right goes

d[(]=1, d[((]=2, d[((¬]=2, d[((¬p3]=2, d[((¬p3)]=1, d[((¬p3)∨]=1

so again we have found the head. Then we need to find the head of (¬p3). After
this is done, we have analysed down to atomic formulas. So starting at the top,
we can draw the complete parsing tree:

� →

�
�

�
��

� p1
�

�
�

��

� ∨

�
�

�

� ¬ �
�

�

� ⊥

� p3

(3.27)

After your experience with Section 3.1, you could probably find this tree without
needing the algorithm. But the algorithm makes the process automatic, and even
experienced logicians can find this useful with complicated formulas.

Example 3.3.6 What happens if you try to use the algorithm above to find
the parsing tree of an expression s that is not a formula? If you succeed in
constructing a parsing tree, then s must be the associated formula of the tree,
which is impossible. So you cannot succeed, but what happens instead? There is
no question of going into an infinite loop; since the process breaks s down into
smaller and smaller pieces, it has to halt after a finite time. What must happen
is that you eventually hit an expression which is not an atomic formula and has
no identifiable head. At this point the algorithm is telling you that s is not a
formula.

For example, we try to parse (p0 → p1) → p2). The first → has depth 1, so
we can get this far:

� →
� p0 � p1) → p2
�

� �
�(3.28)
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But at bottom right we need to calculate a tree for p1) → p2. This expression
is not an atomic formula and it does not contain any functor of depth 1. So the
procedure aborts at this point and tells us that (p0 → p1) → p2) is not a formula
of LP.

The Unique Parsing Theorem often allows us to rewrite compositional
definitions in a simpler form. For example, the definition

1 � χ

� ¬m+ 3

�m

� �m+ n+ 3
�

�
��m

�
�

� �n

where χ is atomic and � ∈ {∧,∨,→,↔}.
(3.29)

shakes down to the equivalent definition of a function f giving the left labels:

f(φ) = 1 when φ is atomic
f((¬φ)) = f(φ) + 3;
f((φ�ψ)) = f(φ) + f(ψ) + 3 when � ∈ {∧,∨,→,↔}.

(3.30)

This second definition works because for each formula, exactly one case of the def-
inition of f applies, and the formulas φ and ψ are uniquely determined. Because
the definition of f needs only one line for each case, not a tree diagram, we say
that this definition is got by flattening the compositional definition. Definitions,
such as (3.30), that define some property of formulas by defining it outright for
atomic formulas, and then for complex formulas in terms of their smaller sub-
formulas, are said to be recursive, or by recursion on complexity . The name is
because the same clause may recur over and over again. For example, in the cal-
culation of f(φ), the clause for ¬ in (3.30) will be used once for each occurrence
of ¬ in φ.

Exercises
3.3.1. Calculate the depths of all the initial segments of the string

(¬(p22 ↔ (¬⊥))).

3.3.2. Prove the case when µ has the form (¬φ) in Case Two of the proof of
Lemma 3.3.3.

3.3.3. Calculate the heads of the following formulas of LP:
(a) ((((¬(¬p0)) ↔ (¬(p1 → ⊥))) → p1) → p1).

(b) (¬((¬p0) ↔ ((((¬p1) → ⊥) → p1) → p1))).

3.3.4. True or false?: Given a formula φ of LP, if you remove the parentheses,
then for every occurrence of ∧,∨,→ or ↔ in φ, there is a way of putting
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parentheses back into the formula so as to create a formula of LP in
which the given occurrence is the head.

3.3.5. For each of the following strings, either write down its parsing tree
(thereby showing that it is a formula of LP), or show by the method
of Example 3.3.6 that it is not a formula of LP.
(a) ((p3 ∧ (p3 ∧ p2)).

(b) ((((¬p1) ↔ ⊥) ∨ p1) ∧ p2).

(c) (((¬(p0 ∨ p1)) ∧ (p2 → p3))) → (p3 ∧ p4)).

(d) (p1 ∧ ¬¬(p2 ∨ p0)).

(e) ((¬p1) → (¬p2) ∧ p1)).

(f) ((p1 ∧ (p2 ∨ p3)) ↔ (¬(¬p0))).

(g) (((p1 ∧ p2)) ∧ (p3 ∧ p4)).

(h) ((p1 → (¬(p2))) ↔ p3).

(i) (p1 → (p2 → (p3 ∧ p4) → p5))).

3.3.6. Item (a) below gives us a second method for showing that a given expres-
sion is not a formula of LP(σ) for a given signature σ. Its advantage is
that you normally do not need parsing trees for it. Its disadvantage is
that you have to have an idea, unlike the method of Example 3.3.6 which
is an algorithm that could be done by a computer.
(a) Prove the following: let S be a set of expressions such that

(1) every atomic formula of LP(σ) is in S;

(2) if s and t are any expressions in S, then the expressions

(¬s) (s ∧ t) (s ∨ t) (s → t) (s ↔ t)

are all in S.

Then every formula of LP(σ) is in S.
[Let π be a parsing tree. Show (by induction on height of ν) that
if (1) and (2) are true then for every node ν of π, the formula ν at
ν is in S.]

(b) Use (a) to show that every formula of LP(σ) has equal numbers
of left parentheses ‘(’ and right parentheses ‘)’. [Put S = {s | s
has equal numbers of left and right parentheses}, and remember to
prove that (1) and (2) are true for this S.] Deduce that

(((p → q) ∨ (¬p))

is not a formula of LP(σ).
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3.3.7. In each case below, use Exercise 3.3.6(a) to show that the given
expression is not a formula of LP(σ) where σ = {p0, p1, . . . }, by finding
a set that satisfies (1) and (2) above but does not contain the given
expression. [The expressions all do have equal numbers of left and right
parentheses, so you cannot just use S from (b) of the previous exercise.
Avoid mentioning ‘formulas’ in the definition of your S.]
(a) p√

2 .

(b) )p0(.

(c) (p1 ∧ p2 → p3).

(d) (¬¬p1). [WARNING. The obvious choice S = {s | s does not have
two ¬ next to each other} does not work, because it fails (2); ¬ is
in S but (¬¬) is not.]

(e) (p1 → ((p2 → p3)) → p2).

(f) (¬p1)p2.

(g) (¬p1 → (p1 ∨ p2)).

3.3.8. The Unique Parsing Theorem makes essential use of the parentheses
‘(’ and ‘)’ in a formula. But there are other logical notations that do
not need parentheses. For example, Polish (also known as head-initial)
notation has the following compositional definition:

χ � χ

� ¬Nφ

�φ

� ��′φψ
�

�
��φ

�
�

� �ψ

where χ is atomic, ∧′ is K, ∨′ is A, →′ is C and ↔′ is E.

(3.31)

(a) Verify that in Polish notation the associated formula of the parsing
tree

� →

�
�

�

� p �
�

�

� ¬

� ¬

� p

(3.32)

is CpNNp.
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(b) Construct the parsing trees of the following Polish-notation
formulas:
(i) ENpq.

(ii) CCCpppp.

(iii) CNpAqKpNq.

(c) Translate the following formulas from LP notation to Polish
notation:
(i) (p ∨ (q ∧ (¬p))).
(ii) (((p → q) → p) → p).

(d) Translate the following formulas from Polish notation to LP
notation:
(i) EApqNKNpNq.

(ii) CCqrCCpqCpr.

3.3.9. Formulate a Unique Parsing Theorem for LP with Polish notation (cf.
Exercise 3.3.8), and prove your theorem. [The problem is to show, for
example, that if Kφψ and Kφ′ψ′ are the same formula then φ = φ′

and ψ = ψ′. Try using a different depth function d defined by: d[s] =
the number of symbols from K,A,C,E in s, minus the number of prop-
ositional symbols in s, plus 1.] If the examples in Exercise 3.3.8 are not
enough, you can test your algorithm and your eyesight on the following
sentence in a book by �Lukasiewicz:

CCCpqCCqrCprCCCCqrCprsCCpqs.

Jan �Lukasiewicz Poland, 1878–1956.
The inventor of Polish notation.

3.3.10. (a) We write NS(φ) for the number of occurrences of subformulas in φ.
Write out a compositional definition for NS(φ), and then flatten it
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to a recursive definition of NS(φ). (NS(φ) is equal to the number
of nodes in the parsing tree for φ, so your compositional definition
can be a slight adjustment of Exercise 3.2.3.)

(b) Write a recursive definition for Sub(φ), the set of formulas that occur
as subformulas of φ. (There is a compositional definition for Sub(φ),
but in fact a recursive definition is easier to write down directly.)

3.4 Propositional natural deduction
Intuitively speaking, derivations in this chapter are the same thing as deriv-
ations in Chapter 2, except that now we use formulas of LP instead of English
statements. But we need to be more precise than this, for two reasons. First, we
want to be sure that we can check unambiguously whether a given diagram is a
derivation or not. Second, we need a description of derivations that will support
our later mathematical analysis (e.g. the Soundness proof in Section 3.9, or the
general results about provability in Chapter 8).

Our starting point will be the fact that the derivations of Chapter 2 have
a tree-like feel to them, except that they have their root at the bottom and
they branch upwards instead of downwards. (From a botanical point of view, of
course, this is correct.) So we can borrow the definitions of Section 3.2, but with
the trees the other way up. We will think of derivations as a kind of left-and-
right-labelled tree, and we will define exactly which trees we have in mind. In
practice we will continue to write derivations in the style of Chapter 2, but we
can think of these derivations as a kind of shorthand for the corresponding trees.

To illustrate our approach, here is the derivation of Example 2.4.5:

��
�1

φ (φ → ψ)
(→E)

ψ (ψ → χ)
(→E)

χ
(→I)�1

(φ → χ)

(3.33)

Here is our tree version of it.

�φ � (A)

������ (φ → ψ) � (A)

������

ψ � (→E)

������

χ � (→E)

(φ → χ) � (→I)

(ψ → χ) � (A)

������
(3.34)
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The formulas are the left labels. The right-hand label on a node tells us
the rule that was used to bring the formula to the left of it into the deriv-
ation. Formulas not derived from other formulas are allowed by the Axiom
Rule of Section 2.1, so we label them (A). Also we leave out the num-
bering of the discharged assumptions, which is not an essential part of the
derivation.

With these preliminaries we can give a mathematical definition of ‘deriv-
ation’ that runs along the same lines as Definition 3.2.4 for parsing trees. The
definition is long and repeats things we said earlier; so we have spelt out only
the less obvious clauses. As you read it, you should check that the conditions in
(d)–(g) correspond exactly to the natural deduction rules as we defined them in
Chapter 2. (These rules are repeated in Appendix A.)

Definition 3.4.1 Let σ be a signature. Then a σ-derivation or, for short, a
derivation is a left-and-right-labelled tree (drawn branching upwards) such that
the following hold:

(a) Every node has arity 0, 1, 2 or 3.

(b) Every left label is either a formula of LP(σ), or a formula of LP(σ) with a
dandah.

(c) Every node of arity 0 carries the right-hand label (A).

(d) If ν is a node of arity 1, then one of the following holds:
(i) ν has right-hand label (→I), and for some formulas φ and ψ,

ν has the left label (φ → ψ) and its daughter has the left
label ψ;

(ii) ν has right-hand label (¬I) or (RAA), the daughter of ν has left
label ⊥, and if the right-hand label on ν is (¬I) then the left label
on ν is of the form (¬φ).

(iii),(iv),(v) Similar clauses for (∧E), (∨I) and (↔E) (left as an
exercise).

(e) If ν is a node of arity 2, then one of the following holds:
(i) ν has right-hand label (→E), and there are formulas φ and ψ such

that ν has the left label ψ, and the left labels on the daughters of
ν are (from left to right) φ and (φ → ψ).

(ii),(iii),(iv) Similar clauses for (∧I), (¬E) and (↔I) (left as an
exercise).

(f) If ν is a node of arity 3, then the right-hand label on ν is (∨E), and there
are formulas φ, ψ such that the leftmost daughter of ν is a leaf with left
label (φ ∨ ψ), and the other two daughters of ν carry the same left label
as ν,
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(g) If a node µ has left label χ with a dandah, then µ is a leaf, and the branch to
µ (Definition 3.2.2(d)) contains a node ν where one of the following happens:
(i) Case (d)(i) occurs with formulas φ and ψ, and φ is χ,

(ii) Case (d)(ii) occurs; if the right-hand label on ν is (¬I) then the left
label on ν is (¬χ), while if it is (RAA) then χ is (¬φ) where φ is the
left label on ν.

(iii) ν has label (∨E) with formulas φ and ψ as in Case (f), and either χ is
φ and the path from the root to ν goes through the middle daughter
of ν, or χ is ψ and the path goes through the right-hand daughter.

The conclusion of the derivation is the left label on its root, and its undischarged
assumptions are all the formulas that appear without dandahs as left labels on
leaves. The derivation is a derivation of its conclusion.

Theorem 3.4.2 Let σ be a finite signature, or the signature {p0, p1, . . . }. There
is an algorithm that, given any diagram, will determine in a finite amount of
time whether or not the diagram is a σ-derivation.

Proof Definition 3.4.1 tells us exactly what to look for. The diagram must
form a tree with both left and right labels, where every node has arity � 3. The
left labels must all be formulas of LP(σ) (possibly with dandahs); Section 3.3
told us how to check this. The right labels must all be from the finite set (→I),
(→E), etc. Each of the clauses (d)–(g) can be checked mechanically.

Leibniz would have been delighted. But in the seventeenth century, when
Leibniz lived, it was assumed that any calculation must be with numbers. So
when Leibniz asked for a way of calculating whether proofs are correct, he took
for granted that this would involve converting the proofs into numbers; in fact
he sketched some ideas for doing this. Exercise 3.2.5 was a modern version of the
same ideas, due to Kurt Gödel. Since a derivation is also a tree, the same idea
adapts and gives a Gödel number for each derivation. We will use this numbering
in Chapter 8 to prove some important general facts about logic.

Example 3.4.3 Suppose D is a σ-derivation whose conclusion is ⊥, and φ is a
formula of LP(σ). Let D′ be the labelled tree got from D by adding one new
node below the root of D, putting left label φ and right label (RAA) on the new
node, and writing a dandah on (¬φ) whenever it labels a leaf. We show that D′

is a σ-derivation. The new node has arity 1, and its daughter is the root of D.
Clearly (a)–(c) of Definition 3.4.1 hold for D′ since they held for D. In (d)–(f)
we need to only check for (d)(ii), the case for (RAA); D′ satisfies this since the
root of D carried ⊥. There remains (g) with (¬φ) for χ: here D′ satisfies (g)(ii),
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so the added dandahs are allowed. You will have noticed that we wrote D′ as

(¬φ)���

D

⊥
(RAA)

φ

(3.35)

in the notation of Chapter 2. We will continue to use that notation, but now
we also have Definition 3.4.1 to call on when we need to prove theorems about
derivations. (This example continues after Definition 3.4.4.)

We can now recast the definition of sequents, Definition 2.1.2, as follows.

Definition 3.4.4 Let σ be a signature. A σ-sequent , or for short just a sequent ,
is an expression

Γ �σ ψ(3.36)

where ψ is a formula of LP(σ) (the conclusion of the sequent) and Γ is a
set of formulas of LP(σ) (the assumptions of the sequent). The sequent (3.36)
means

There is a σ-derivation whose conclusion is ψ and whose undischarged
assumptions are all in the set Γ.(3.37)

(This is a precise version of Definition (2.1.2).) When (3.37) is true, we say that
the sequent is correct , and that the σ-derivation proves the sequent. The set Γ
can be empty, in which case we write the sequent as

�σ ψ(3.38)

This sequent is correct if and only if there is a σ-derivation of ψ with no
undischarged assumptions.

When the context allows, we leave out σ and write �σ as �. This is
innocent: Exercises 3.4.3 and 3.4.4 explain why the choice of signature σ is
irrelevant so long as LP(σ) includes the assumptions and conclusion of the
sequent.

Example 3.4.3 (continued) Let Γ be a set of formulas of LP(σ) and φ a for-
mula of LP(σ). We show that if the sequent Γ ∪ {¬φ} �σ ⊥ is correct, then
so is the sequent Γ �σ φ. Intuitively this should be true, but thanks to the
definition (3.37) we can now prove it mathematically. By that definition, the
correctness of Γ∪ {(¬φ)} �σ ⊥ means that there is a σ-derivation D whose con-
clusion is ⊥ and whose undischarged assumptions are all in Γ∪ {(¬φ)}. Now let
D′ be the derivation constructed from D earlier in this example. Then D′ has
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conclusion φ and all its undischarged assumptions are in Γ, so it proves Γ �σ φ as
required.

The Greek metavariables φ, ψ etc. are available to stand for any formulas
of LP. For example, the derivation in Example 2.4.5 whose tree we drew is strictly
not a derivation but a pattern for derivations. Taking σ as the default signature
{p0, p1, . . . }, an example of a genuine σ-derivation that has this pattern is

��
�1

p5 (p5 → p3)
(→E)

p3 (p3 → ⊥)
(→E)

⊥
(→I)�1

(p5 → ⊥)

This derivation is a proof of the sequent

{(p5 → p3), (p3 → ⊥)} �σ (p5 → ⊥).

In practice, we will continue to give derivations using Greek letters, as a way of
handling infinitely many derivations all at once.

Charles S. Peirce USA, 1839–1914.
A very inventive logician, one of the creators of modern
semantics.

Problem: How do we know we have all the rules we ought to have for
propositional natural deduction?

Example 3.4.5 The following example shows that this is not a fake problem.
In the late nineteenth century, Charles Peirce showed the correctness of the
sequent � (((φ → ψ) → φ) → φ). In fact, we can prove it by the following
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derivation:

φ
�1

� ���(¬φ)
�2

⊥
(¬E)

ψ
(RAA)

�1 (→I)
(φ → ψ) ((φ → ψ) → φ) �3

(→E)
φ ���(¬φ)

�2

(¬E)
�2

⊥
(RAA)

φ�3 (→I)
(((φ → ψ) → φ) → φ)

However, it is also possible to show that there is no derivation that proves this
sequent and uses just the rules for → and the Axiom Rule (cf. Exercise 3.9.2).
The derivation above needs the symbol ⊥ and the rule (RAA) as well. This raises
the depressing thought that we might be able to prove still more correct sequents
that use no truth function symbols except →, if we knew what extra symbols
and rules to add.

Fortunately, the situation is not as bad as this example suggests. The class of
acceptable rules of propositional logic is not open-ended; we can draw a boundary
around it.

Recall that our language LP for propositional logic consists of meaningless
statement-patterns, not actual statements. We can allow our propositional sym-
bols to stand for any statements that we want, true or false as required. This
gives us plenty of freedom for ruling out unwanted sequents: a sequent Γ � ψ is
unacceptable if there is a way of reading the propositional symbols in it so that
Γ becomes a set of truths and ψ becomes a falsehood.

Example 3.4.6 We show that the sequent {(p0 → p1)} � p1 is unacceptable.
To do this we interpret the symbols p0 and p1 by making them stand for certain
sentences that are known to be true or false. The following example shows a
notation for doing this:

p0 2 = 3
p1 2 = 3

(3.39)

Under this interpretation p1 is false, but (p0 → p1) says ‘If 2 = 3 then 2 = 3’,
which is true. So any rule which would deduce p1 from (p0 → p1) would be
unacceptable.
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Definition 3.4.7 Let (Γ � ψ) be a σ-sequent, and let I be an interpretation that
makes each propositional symbol appearing in formulas in the sequent into a
meaningful sentence that is either true or false. Using this interpretation, each
formula in the sequent is either true or false. (For the present, this is informal
common sense; in the next section we will give a mathematical definition that
allows us to calculate which formulas are true and which are false under a given
interpretation.) We say that I is a counterexample to the sequent if I makes all
the formulas of Γ into true sentences and ψ into a false sentence.

The moral of Example 3.4.6 is that if a sequent in propositional logic has
a counterexample, then the sequent is unacceptable as a rule of logic. This
suggests a programme of research: show that for every sequent of propositional
logic, either there is a derivation (so that the sequent is correct in the sense of
Definition 3.4.4) or there is a counterexample to it. If we can show this, then we
will have shown that we have a complete set of rules for natural deduction; any
new rules would either be redundant or lead to ‘proofs’ of unacceptable sequents.
David Hilbert proposed this programme in lectures around 1920 (though in terms
of a different proof calculus, since natural deduction hadn’t yet been invented).
The programme worked out well, and in sections 3.9 and 3.10 we will see the
results.

David Hilbert Germany, 1862–1943.
Hilbert’s Göttingen lectures of 1917–1922 were the first
systematic presentation of first-order logic.

Exercises
3.4.1. Add the missing clauses (d)(iii)–(v) and (e)(ii)–(iv) to Definition 3.4.1.

3.4.2. Let σ be the default signature {p0, p1, . . . }. Neither of the following two
diagrams is a σ-derivation. In them, find all the faults that you can, and
state which clause of Definition 3.4.1 is violated by each fault. (Consider
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the diagrams as shorthand for labelled trees, as (3.33) is shorthand for
(3.34).)

(a)

p0 (p0 → ⊥)

⊥
(→E)

p1

������

(¬E)

(→I)
(p1 → p0) (¬(p1 → p0))������

(→E)
⊥

(RAA)
⊥(¬(p0 → p1))

(→I)
((¬(p0 → p1)) → ⊥)

(b)

(¬p2)���

((¬p2) ∨ q)(¬((¬p2) ∨ q))
(∨I)

⊥
������

(¬I)

(¬E)

p2

p2� (p2 → q)�����

(→E)
q

((¬p2) ∨ q) (¬((¬p2) ∨ q))
(∨I)

⊥
������

(RAA)
(¬p2)

(¬I)
⊥

(¬I)
((¬p2) ∨ q)

3.4.3. Let ρ and σ be signatures with ρ ⊆ σ.

(a) Show that every parsing tree for LP(ρ) is also a parsing tree for
LP(σ).

(b) Show that every formula of LP(ρ) is also a formula of LP(σ).

(c) Show that every ρ-derivation is also a σ-derivation. [Use Definition
3.4.1.]

(d) Show that if (Γ �ρ ψ) is a correct sequent then so is (Γ �σ ψ). [Use
Definition 3.4.4.]

3.4.4. Let ρ and σ be signatures with ρ ⊆ σ.

(a) Suppose D is a σ-derivation, and D′ is got from D by writing ⊥ in
place of each symbol in D that is in σ but not in ρ. Show that D′ is
a ρ-derivation. [Use Definition 3.4.1.]

(b) Suppose Γ is a set of formulas of LP(ρ) and ψ is a formula of LP(ρ),
such that the sequent (Γ �σ ψ) is correct. Show that the sequent
(Γ �ρ ψ) is correct. [If D is a σ-derivation proving (Γ �σ ψ), apply
part (a) to D and note that this does not change the conclusion or
the undischarged assumptions.]
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3.4.5. Let σ be a signature, Γ a set of formulas of LP(σ) and φ a sentence of
LP(σ). Show the following, using Definitions 3.4.1 and 3.4.4:

(a) The sequent Γ ∪ {(¬φ)} �σ ⊥ is correct if and only if the sequent
Γ �σ φ is correct. (Left to right was proved in Example 3.4.3.)

(b) The sequent Γ ∪ {φ} �σ ⊥ is correct if and only if the sequent
Γ �σ (¬φ) is correct.

3.4.6. We have stated several rules about correct sequents, and verified them
informally. With our new formal definition of sequents we can prove them
mathematically. Do so using Definition 3.4.1. (The formulas mentioned
are all assumed to be in LP(σ).)

(a) The Axiom Rule: If ψ is a formula in Γ then (Γ �σ ψ) is correct.

(b) Monotonicity: If Γ ⊆ ∆ and (Γ �σ ψ) is correct, then (∆ �σ ψ) is
correct. (This was part of Exercise 2.1.3, but now we can do it with
proper precision.)

(c) The Transitive Rule: If (∆ �σ ψ) is correct and for every formula χ
in ∆, (Γ �σ χ) is correct, then (Γ �σ ψ) is correct.

(d) The Cut Rule: If (Γ �σ φ) is correct and (Γ ∪ {φ} �σ ψ) is correct,
then (Γ �σ ψ) is correct.

[The proofs of (c) and (d) involve taking derivations and fitting them
together to create a new derivation.]

3.4.7. (a) In some systems of logic (mostly constructive systems where ‘true’
is taken to mean ‘provable’) there is a rule

if (Γ � (φ ∨ ψ)) is a correct sequent then at least one of (Γ � φ) and
(Γ � ψ) is also correct.

By giving a counterexample to a particular instance, show that this
is unacceptable as a rule for LP. [Start by giving counterexamples
for both the sequents (� p0) and (� (¬p0)).]

(b) Aristotle (Greece, fourth century bc), who invented logic, once said
‘It is not possible to deduce a true conclusion from contradictory
premises’ (Prior Analytics 64b7). He must have meant something
subtler, but his statement looks like the following sequent rule:

if ({φ} � ψ) and ({(¬φ)} � ψ) are correct sequents, then so is the
sequent (� (¬ψ)).
By giving a counterexample to a particular instance, show that this
is unacceptable as a rule for LP.

3.4.8. One of the reasons for moving to derivations in a formal language is that
if we use sentences of English, then even the most plausibly valid sequents
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have irritating counterexamples. For instance, in Example 2.4.5 we proved
the sequent

{(φ → ψ), (ψ → χ)} � (φ → χ)

But the fourteenth century English logician Walter Burley proposed the
counterexample

φ is the statement ‘I imply you are a donkey’
ψ is the statement ‘I imply you are an animal’
χ is the statement ‘I imply the truth’.

What goes wrong in Burley’s example? Your answer should consider
whether we could construct a mathematical counterexample of this kind,
and how we can ensure that nothing like this example can appear in our
formal language.

3.5 Truth tables
Definition 3.5.1 We take for granted henceforth that truth and falsehood are
two different things. It will never matter exactly what things they are, but in
some contexts it is convenient to identity truth with the number 1 and falsehood
with 0. We refer to truth and falsehood as the truth values, and we write them
as T and F, respectively. The truth value of a statement is T if the statement is
true and F if the statement is false.

In Section 3.4, we suggested that we can give a formula φ of LP a truth
value by giving suitable meanings to the propositional symbols in φ. In fact, it
turns out that the truth value of φ depends only on the truth values given to
the propositional symbols, and not on the exact choice of meanings.

Example 3.5.2 We want to calculate the truth value of a statement (φ∧ψ) from
the truth values of φ and ψ. The following table shows how to do it:

φ ψ (φ ∧ ψ)
T T T
T F F
F T F
F F F

(3.40)

The table has four rows corresponding to the four possible assignments of truth
values to φ and ψ.
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The first row in (3.40) says that if φ is true and ψ is true, then (φ ∧ ψ) is
true. The second says that if φ is true and ψ is false, then (φ ∧ ψ) is false; and
so on down.

We can do the same for all the symbols ∨, →, ↔, ¬, ⊥, using the meanings
that we gave them when we introduced them in Chapter 2. The following table
shows the result:

φ ψ (φ ∧ ψ) (φ ∨ ψ) (φ → ψ) (φ ↔ ψ) (¬φ) ⊥
T T T T T T F F
T F F T F F
F T F T T F T
F F F F T T

(3.41)

The only part of this table that may raise serious doubts is the listing for
→. In fact not all linguists are convinced that the table is correct for ‘If . . . then’
in ordinary English. But the following argument confirms that the table for →
does correspond to normal mathematical usage.

In mathematics we accept as true that

if p is a prime > 2 then p is odd.(3.42)

In particular,

if 3 is a prime > 2 then 3 is odd. (If T then T.)(3.43)

This justifies the T in the first row. But also

if 9 is a prime > 2 then 9 is odd. (If F then T.)(3.44)

This justifies the T in the third row. Also

if 4 is a prime > 2 then 4 is odd. (If F then F.)(3.45)

This justifies the T in the fourth row. There remains the second row. But
everybody agrees that if φ is true and ψ is false then ‘If φ then ψ’ must be
false.

The table (3.41) tells us, for example, that (φ ∧ ψ) is true if we already
know that φ and ψ are both true. But we have to start somewhere: to calculate
whether a formula χ is true, we usually need to start by finding out which of
the propositional symbols in χ are true and which are false; then we can apply
(3.41), walking up the parsing tree for χ.

The propositional symbols in χ are just symbols; they do not mean any-
thing, so they are not in themselves either true or false. But in applications of
propositional logic, the propositional symbols are given meanings so that they
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will be true or false. As mathematicians we are not concerned with how meanings
are assigned, but we are interested in what follows if the symbols have somehow
been given truth values. So our starting point is an assignment of truth values
to propositional symbols.

Definition 3.5.3 Let σ be a signature. By a σ-structure we mean a function A

with domain σ, that assigns to each symbol p in σ a truth value A(p).

We call this object a ‘structure’ in preparation for Chapters 5 and 7, where
the corresponding ‘structures’ are much closer to what a mathematician usually
thinks of as a structure. For practical application and for comparison with the
later structures, we note that if σ is {q1, . . . , qn} (where the symbols are listed
without repetition), then we can write the structure A as a chart

q1 . . . qn
A(q1) . . . A(qn)

Every σ-structure A gives a truth value A�(χ) to each formula χ of LP(σ)
in accordance with table (3.41). It is useful to think of A�(χ) as the truth value
that χ has ‘in A’ . (Compare the way that the sentence ‘The rain stays mainly
on the plain’ is true ‘in Spain’.) We can calculate the value A�(χ) by climbing
up the parsing tree of φ as follows.

Example 3.5.4 Let χ be (p1 ∧ (¬(p0 → p2))). Given the {p0, p1, p2}-structure:

A :
p0 p1 p2

F T T

we calculate the truth value A�(χ) of χ thus. Here is the parsing tree of χ, with
the leaves marked to show their truth values in A:

� ∧

�
�

�
��

�T p1
�

�
�

��

� ¬

� →

�
�

�

�F p0
�

�
�

�T p2

(3.46)
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We work out the truth value at the node marked → by checking the third row
of (3.41) for →: F → T makes T. So we label this node T:

� ∧

�
�

�
��

�T p1
�

�
�

��

� ¬

�T →

�
�

�

�F p0
�

�
�

�T p2

(3.47)

and so on upwards, until eventually we reach the root. This is marked F, so χ is
false in A:

�F ∧

�
�

�
��

�T p1
�

�
�

��

�F ¬

�T →

�
�

�

�F p0
�

�
�

�T p2

(3.48)

As always, the compositional definition attaches the left-hand labels, starting at
the leaves of the parsing tree and working upwards.

The following table contracts (3.48) into two lines, together with an optional
bottom line showing a possible order for visiting the nodes. The truth value at
each node ν is written under the head of the subformula corresponding to ν. The
head of χ itself is indicated by ⇑. We call the column with ⇑ the head column of
the table; this is the last column visited in the calculation, and the value shown
in it is the truth value of χ.

p0 p1 p2 (p1 ∧ (¬ (p0 → p2)))
F T T T F F F T T

1 ⇑ 5 2 4 3
(3.49)

Table (3.49) shows the truth value of χ for one particular {p0, p1, p2}-structure.
There are eight possible {p0, p1, p2}-structures. The next table lists them on the
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left, and on the right it calculates the corresponding truth value for χ. These
values are shown in the head column.

p0 p1 p2 (p1 ∧ (¬ (p0 → p2)))
T T T T F F T T T
T T F T T T T F F
T F T F F F T T T
T F F F F T T F F
F T T T F F F T T
F T F T F F F T F
F F T F F F F T T
F F F F F F F T F

⇑

(3.50)

Definition 3.5.5 A table like (3.50), which shows when a formula is true in terms
of the possible truth values of the propositional symbols in it, is called the truth
table of the formula. Note the arrangement: the first column, under p0, changes
slower than the second column under p1, the second column changes slower than
the third, and T comes above F. It is strongly recommended that you keep to this
arrangement, otherwise other people (and very likely you yourself) will misread
your tables.

Truth tables were invented by Charles Peirce in an unpublished manuscript
of 1902, which may have been intended for a correspondence course in logic.

Models

Let σ be a signature and A a σ-structure. We have seen how A assigns a truth
value A�(χ) to each formula χ of LP(σ). This function A� is calculated by
climbing up the parsing tree of χ, so it has a compositional definition; (B.3) in
Appendix B shows how. But a flattened version by recursion on the complexity
of χ is a little easier to write down (not least because it avoids boolean functions,
which are explained in the Appendix). You should check that the parts of the
following definition are in accordance with table (3.41).

Definition 3.5.6

(a) If p is a propositional symbol in σ then A�(p) = A(p).

(b) A�(⊥) = F.

(c) A�((¬φ)) = T if and only if A�(φ) = F.

(d) A�((φ ∧ ψ)) is T if A�(φ) = A�(ψ) = T, and is F otherwise.

(e) A�((φ ∨ ψ)) is T if A�(φ) = T or A�(ψ) = T, and is F otherwise.

(f) A�((φ → ψ)) is F if A�(φ) = T and A�(ψ) = F, and is T otherwise.
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(g) A�((φ ↔ ψ)) is T if A�(φ) = A�(ψ), and is F otherwise.

Definition 3.5.7 Let σ be a signature, A a σ-structure and φ a formula of LP(σ).
When A�(φ) = T, we say that A is a model of φ, and that φ is true in A. (In
later chapters we will introduce the notation |=A φ for ‘A is a model of φ’.)

The process of checking whether a certain structure A is a model of a cer-
tain formula φ is known as model checking . This name is in use mostly among
computer scientists, who have in mind commercial applications using much more
intricate examples than our humble (3.49).

Several important notions are defined in terms of models.

Definition 3.5.8 Let σ be a signature and φ a formula of LP(σ).

(a) We say that φ is valid , and that it is a tautology , in symbols |=σ φ, if every
σ-structure is a model of φ. (So (|=σ φ) says that A�(φ) = T for all σ-
structures A.) When the context allows, we drop the subscript σ and write
|= φ.

(b) We say that φ is consistent , and that it is satisfiable, if some σ-structure is
a model of φ.

(c) We say that φ is a contradiction, and that it is inconsistent , if no σ-structure
is a model of φ.

If σ is the finite set {p1, . . . , pn}, then we can check mechanically which
of these properties φ has by calculating the truth table of φ, with all the
{p1, . . . , pn}-structures listed at the left-hand side. In fact φ is a tautology if
and only if the head column of the table has T everywhere; φ is consistent if and
only if the head column has T somewhere; and φ is a contradiction if and only
if the head column has F everywhere.

Example 3.5.9 We confirm that Peirce’s Formula, which we proved in Example
3.4.5, is a tautology:

p1 p2 (((p1 → p2) → p1) → p1)
T T T T T T T T T
T F T F F T T T T
F T F T T F F T F
F F F T F F F T F

⇑

(3.51)

The notions in Definition 3.5.8 set us on track to use the ideas of Hilbert
that we introduced at the end of Section 3.4. Simply put, the tautologies are the
formulas that we ought to be able to prove. We will return to this in Sections
3.9 and 3.10, after exploring some important facts about tautologies.
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In applications of the results of this section, the following fact is often used
silently:

Lemma 3.5.10 (Principle of Irrelevance) If σ is a signature, φ a formula of
LP(σ) and A a σ-structure, then A�(φ) does not depend on the value of A at
any propositional symbol that does not occur in φ.

This is obvious: the rules for assigning A�(φ) never refer to A(p) for any
symbol p not occurring in φ. A formal proof would run as follows:
Let σ and τ be signatures, φ a formula of LP(σ ∩ τ), and A and B a σ-structure
and a τ -structure respectively. Suppose that A(p) = B(p) for every propositional
symbol p ∈ σ ∩ τ . Then we prove, by induction on the complexity of φ, that
A�(φ) = B�(φ).
Propositional logic is simple enough that the formal proof has no great advantage.
But analogues of the Principle of Irrelevance apply also to more complicated
languages; the more complex the language, the more important it becomes to
check the Principle of Irrelevance formally.

Exercises
3.5.1. Prove by truth tables that the following are tautologies.

(a) (p ↔ p).

(b) (p → (q → p)).

(c) ((p1 → p2) ↔ ((¬p2) → (¬p1))).

(d) ((p1 → (¬p1)) ↔ (¬p1)).

(e) (p1 ∨ (¬p1)).

(f) (⊥ → p1).

(g) ((p1 → (p2 → p3)) ↔ ((p1 ∧ p2) → p3)).

3.5.2. Write out truth tables for the formulas in the following list. For each of
these formulas, say whether it is (a) a tautology, (b) a contradiction, (c)
satisfiable. (It can be more than one of these.)

(a) ((p0 → ⊥) ↔ (¬p0)).

(b) (p1 ↔ (¬p1)).

(c) ((p2 ∧ p1) → (¬p1)).

(d) (((p1 ↔ p2) ∧ ((¬p1) ↔ p3)) ∧ (¬(p2 ∨ p3))).

(e) ((((p → q) → r) → ((r → p) → q)) → ((q → r) → p)).

(f) ((p0 → p1) → ((¬(p1 ∧ p2)) → (¬(p0 ∧ p1)))).
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(g) (((p ∧ q) ∨ (p ∧ (¬r))) ↔ (p ∨ (r → q))).

(h) ((p ∧ (¬((¬q) ∨ r))) ∧ (r ∨ (¬p))).

3.5.3. You forgot whether the Logic class is at 11 or 12. Your friend certainly
knows which; but sometimes he tells the truth and at other times he
deliberately lies, and you know that he will do one of these but you do
not know which. What should you ask him? [Let p be the statement
that your friend is telling the truth, and let q be the statement that the
lecture is at 11. You want to ask your friend whether a certain formula
φ is true, where φ is chosen so that he will answer ‘Yes’ if and only if the
lecture is at 11. The truth table of φ will be that of q if p is true, and
that of (¬q) if p is false. Find an appropriate φ which contains both p

and q.]

3.5.4. Let ρ and σ be signatures with ρ ⊆ σ, and let φ be a formula of LP(ρ).
Explain how it follows from Lemma 3.5.10 (the Principle of Irrelevance)
that |=ρ φ if and only if |=σ φ.

3.5.5. Let σ be a signature containing k symbols. Calculate

(a) the number of σ-structures;

(b) the number α(k,n) of times that you need to write either T or F in
writing out a truth table for a formula φ of LP(σ) which uses all of
the propositional symbols in σ and has n nodes in its parsing tree;

(c) the largest value β(�) of α(k,n) given that the formula φ has
length �.

The calculation of (c) shows that in the worst case, the size of a truth
table of a formula of length � rises exponentially with �. Airline scheduling
easily creates truth table problems with signatures of size greater than a
million, and obviously for these one has to find some quicker approach if
possible, depending on exactly what the question is.

3.6 Logical equivalence
Lemma 3.6.1 Let σ be a signature and φ, ψ formulas of LP(σ). Then the
following are equivalent:

(i) For every σ-structure A, A is a model of φ if and only if it is a model of ψ.

(ii) For every σ-structure A, A�(φ) = A�(ψ).

(iii) |= (φ ↔ ψ).

Proof (i) and (ii) are equivalent by Definition 3.5.7.
(ii) and (iii) are equivalent by Definitions 3.5.6(g) and 3.5.8(a).
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Definition 3.6.2 Let σ be a signature and φ, ψ formulas of LP(σ). We say that
φ and ψ are logically equivalent , in symbols

φ eq ψ

if any of the equivalent conditions (i)–(iii) of Lemma 3.6.1 hold.

Example 3.6.3 Clause (ii) in Lemma 3.6.1 says that φ and ψ have the same head
column in their truth tables. We can use this fact to check logical equivalence.
For example, the following truth table shows that

(p1 ∨ (p2 ∨ p3)) eq ((p1 ∨ p2) ∨ p3)

p1 p2 p3 (p1 ∨ (p2 ∨ p3)) ((p1 ∨ p2) ∨ p3)
T T T T T T T T T T T T T
T T F T T T T F T T T T F
T F T T T F T T T T F T T
T F F T T F F F T T F T F
F T T F T T T T F T T T T
F T F F T T T F F T T T F
F F T F T F T T F F F T T
F F F F F F F F F F F F F

⇑ ⇑

(3.52)

Theorem 3.6.4 Let σ be a signature. Then eq is an equivalence relation on the
set of all formulas of LP(σ). In other words it is

• Reflexive: For every formula φ, φ eq φ.
• Symmetric: If φ and ψ are formulas and φ eq ψ, then ψ eq φ.
• Transitive: If φ, ψ and χ are formulas and φ eq ψ and ψ eq χ, then φ eq χ.

Proof All three properties are immediate from Lemma 3.6.1(ii).

Example 3.6.5 Here follow some commonly used logical equivalences.
Associative Laws

(p1 ∨ (p2 ∨ p3)) eq ((p1 ∨ p2) ∨ p3)
(p1 ∧ (p2 ∧ p3)) eq ((p1 ∧ p2) ∧ p3)

Distributive Laws

(p1 ∨ (p2 ∧ p3)) eq ((p1 ∨ p2) ∧ (p1 ∨ p3))
(p1 ∧ (p2 ∨ p3)) eq ((p1 ∧ p2) ∨ (p1 ∧ p3))

Commutative Laws

(p1 ∨ p2) eq (p2 ∨ p1)
(p1 ∧ p2) eq (p2 ∧ p1)
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De Morgan Laws

(¬(p1 ∨ p2)) eq ((¬p1) ∧ (¬p2))
(¬(p1 ∧ p2)) eq ((¬p1) ∨ (¬p2)

Idempotence Laws

(p1 ∨ p1) eq p1

(p1 ∧ p1) eq p1

Double Negation Law

(¬(¬p1)) eq p1

See also the equivalences in Exercise 3.6.2.

Exercises
3.6.1. Choose five of the equivalences in Example 3.6.5 (not including the first

Associative Law) and prove them by truth tables.

3.6.2. Prove the following equivalences.

(a) (p ∧ q) is logically equivalent to (¬((¬p) ∨ (¬q))), and to (¬(p →
(¬q))).

(b) (p∨q) is logically equivalent to (¬((¬p)∧(¬q))), and to ((p → q) →
q).

(c) (p → q) is logically equivalent to (¬(p ∧ (¬q))), and to ((¬p) ∨ q).
(d) (p ↔ q) is logically equivalent to ((p → q) ∧ (q → p)), and to

((p ∧ q) ∨ ((¬p) ∧ (¬q))).
3.6.3. Show the following logical equivalences.

(a) (p1 ↔ p2) eq (p2 ↔ p1).

(b) (p1 ↔ (p2 ↔ p3)) eq ((p1 ↔ p2) ↔ p3).

(c) (¬(p1 ↔ p2)) eq ((¬p1) ↔ p2).

(d) (p1 ↔ (p2 ↔ p2)) eq p1.

3.6.4. Suppose ρ and σ are signatures with ρ ⊆ σ, and φ and ψ are formulas
of LP(ρ). Show that φ and ψ are logically equivalent when regarded
as formulas of LP(ρ) if and only if they are logically equivalent when
regarded as formulas of LP(σ). [Use Lemma 3.6.1(iii) and Exercise 3.5.4.]

3.6.5. Show that the following are equivalent, for any formula φ of LP(σ):

(a) φ is a tautology.

(b) (¬φ) is a contradiction.
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(c) φ is logically equivalent to (¬⊥).

(d) φ is logically equivalent to some tautology.

3.7 Substitution
In this section we study what happens when we replace a part of a formula
by another formula. We begin by making a double simplification. First, we
limit ourselves to substitutions for propositional symbols. Second, we assume
that a substitution changes either all or none of the occurrences of any given
propositional symbol.

Definition 3.7.1 By a substitution S (for LP) we mean a function whose domain
is a finite set {q1, . . . , qk} of propositional symbols, and which assigns to each qj
(1 � j � k) a formula ψi of LP. We normally write this function S as

ψ1/q1, . . . ,ψk/qk(3.53)

Changing the order in which the pairs ψi/qi are listed does not affect the function.
(To remember that it is ψ1/q1 and not q1/ψ1, think of ψ1 as pushing down on
q1 to force it out of the formula.)

We apply the substitution (3.53) to a formula φ by simultaneously replacing
every occurrence of each propositional symbol qj in φ by ψj (1 � j � k), and we
write the resulting expression as φ[S], that is,

φ[ψ1/q1, . . . ,ψk/qk](3.54)

Example 3.7.2 Let φ be the formula

((p1 → (p2 ∧ (¬p3))) ↔ p3)

Let ψ1 be (¬(¬p3)), let ψ2 be p0 and let ψ3 be (p1 → p2). Then the expression

φ[ψ1/p1,ψ2/p2,ψ3/p3]

is

(((¬(¬p3)) → (p0 ∧ (¬(p1 → p2)))) ↔ (p1 → p2))(3.55)

The expression (3.55) is also a formula of LP, as we ought to expect. But from our
explanation of (3.54) it is not immediately clear how one should prove that the
expression φ[S] is always a formula of LP. So we need a more formal description
of φ[S]. To find one, we start from the fact that occurrences of a propositional
symbol p correspond to leaves of the parsing tree that are labelled p.
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A picture may help. Suppose we are constructing the expression φ[ψ/q]. Let
π be the parsing tree of φ, and ν1, . . . , νn the leaves of π which are labelled q.
Let τ be the parsing tree of ψ. Then we get a parsing tree of φ[ψ/q] by making
n copies of τ , and fitting them below π so that the root of the i-th copy of τ
replaces νi:
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(3.56)

Now what happens when we climb up the new tree to find its associated formula?
Starting at the bottom as always, we find the left labels on each of the copies of
τ , and ψ will be the left label on the root of each of these copies. Then we label
the rest of the tree; the process is exactly the same as when we label π except that
now the left labels on the nodes ν1, . . . , νn are ψ and not q. The situation with
φ[ψ1/q1, . . . ,ψk/qk] is very much the same but takes more symbols to describe.

In short, we build φ[ψ1/q1, . . . ,ψk/qk] by applying a slightly altered version
of (3.22), the definition of LP syntax, to the parsing tree of φ. The difference is
the clause for leaf nodes, which now says

χ′ ◦ χ

where χ′ =




⊥ if χ is ⊥,
ψi if χ is qi (1 � i � k),
p if χ is any other propositional symbol p.

(3.57)

Flattening this compositional definition down gives the following recursive defin-
ition, which is our formal definition of φ[ψ1/q1, . . . ,ψk/qk]. Like our previous
recursive definitions, it relies on the Unique Parsing Theorem.

Definition 3.7.3 Let q1, . . . , qk be propositional symbols, ψ1, . . . ,ψk formulas
and φ a formula of LP. We define φ[ψ1/q1, . . . ,ψk/qk] by recursion on the
complexity of φ as follows.

If φ is atomic then

φ[ψ1/q1, . . . ,ψk/qk] =

{
ψi if φ is qi (1 � i � k),

φ otherwise,
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If φ = (¬χ) where χ is a formula, then

φ[ψ1/q1, . . . ,ψk/qk] = (¬χ[ψ1/q1, . . . ,ψk/qk])

If φ = (χ1�χ2), where χ1 and χ2 are formulas and � ∈ {∧,∨,→,↔}, then

φ[ψ1/q1, . . . ,ψk/qk] = (χ1[ψ1/q1, . . . ,ψk/qk]�χ2[ψ1/q1, . . . ,ψk/qk])

From this definition one can check, by an induction on the complexity of
φ, that if φ is a formula of LP(σ ∪ {q1, . . . , qk}) and ψ1, . . . ,ψk are formulas of
LP(σ), then φ[ψ1/q1, . . . ,ψk/qk] is a formula of LP(σ).

Now we consider the effect on truth values when a substitution is made.
The truth value A�(φ[ψ/q]) of φ[ψ/q] in A is calculated by climbing up the tree
in (3.56), just as the formula φ[ψ/q] itself was. The calculation is the same as
for A�(φ), except that the truth value assigned to the nodes νi is A�(ψ) instead
of A(q). So the effect is the same as if we calculated the truth value of φ in a
structure A[ψ/q], which is the same as A except that A[ψ/q](q) is A�(ψ). This
motivates the following definition.

Definition 3.7.4 If A is a propositional structure and S is the substitution
ψ1/q1, . . . , ψk/qk, we define a structure A[S] by

A[S](p) =
{
A�(ψj) if p is qj where 1 ≤ j ≤ k;
A(p) otherwise.

Lemma 3.7.5 Let A be a σ-structure and S the substitution ψ1/q1, . . . ,ψk/qk
with ψ1, . . . ,ψk in LP(σ). Then for all formulas φ of LP(σ ∪ {q1, . . . , qk}),

A�(φ[S]) = A[S]�(φ)

Proof We prove this by induction on the complexity of φ.
Case 1: φ has complexity 0. If φ is a propositional symbol that is not one of
q1, . . . , qk, then

A�(φ[S]) = A(φ) = A[S]�(φ)

If φ is qi for some i then

A�(φ[S]) = A�(ψi) = A[S]�(φ)

If φ is ⊥ then both A�(φ[S]) and A[S]�(φ) are ⊥.
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Case 2: φ has complexity k + 1, assuming the lemma holds for all formulas of
complexity � k. Suppose first that φ is (χ1 ∨χ2) where χ1 and χ2 are formulas.
Then

A�(φ[S]) = T ⇔ A�((χ1[S] ∨ χ2[S])) = T

⇔ A�(χ1[S]) = T or A�(χ2[S]) = T

⇔ A[S]�(χ1) = T or A[S]�(χ2) = T

⇔ A[S]�(φ) = T

where the first step is by Definition 3.7.3, the second and final steps are by
Definition 3.5.6(e), and the third step is by the induction hypothesis (since χ1

and χ2 have complexity at most k). It follows that A�(φ[S]) = A[S]�(φ). The
other possibilities under Case Two are that φ = (χ1 � χ2) where � is ∧, → or
↔, and φ = (¬χ). These are similarly dealt with and left to the reader.

Lemma 3.7.5 allows us to increase our stock of tautologies and logical
equivalences dramatically.

Theorem 3.7.6

(a) (Substitution Theorem) Let S be a substitution and φ1, φ2 logically
equivalent formulas of LP. Then φ1[S] eq φ2[S].

(b) (Substitution Theorem) Let S1 and S2 be the following substitutions:

ψ1/q1, . . . ,ψk/qk, ψ′
1/q1, . . . ,ψ′

k/qk

where for each j (1 � j � k), ψj eq ψ′
j. Then for every formula φ, φ[S1]

eq φ[S2].

Proof We assume that the formulas in question are in LP(σ), so that we can
test logical equivalence by σ-structures.

(a) Let A be any σ-structure. Let B = A[S] and note that by assumption,
B�(φ1) = B�(φ2). By two applications of Lemma 3.7.5,

A�(φ1[S]) = B�(φ1) = B�(φ2) = A�(φ2[S])

It follows that φ1[S] eq φ2[S].
(b) Again let A be any σ-structure. Since ψj eq ψ′

j , A
�(ψj) = A�(ψ′

j) for
1 � j � k. Hence A[S1] = A[S2], and by Lemma 3.7.5,

A�(φ[S1]) = A[S1]�(φ) = A[S2]�(φ) = A�(φ[S2])

It follows that φ[S1] eq φ[S2].
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Example 3.7.7 of the Substitution Theorem. A formula is a tautology if and
only if it is logically equivalent to (¬⊥) (cf. Exercise 3.6.5), and (¬⊥)[S] is just
(¬⊥). Hence the Substitution Theorem implies that if φ is a tautology then so
is φ[S]. For example, the formula (p → (q → p)) is a tautology. By applying the
substitution

(p1 ∧ (¬p2))/p, (p0 ↔ ⊥)/q

we deduce that

((p1 ∧ (¬p2)) → ((p0 ↔ ⊥) → (p1 ∧ (¬p2))))

is a tautology. More generally, we could substitute any formula φ for p and any
formula ψ for q, and so by the Substitution Theorem any formula of the form

(φ → (ψ → φ))

is a tautology.

Example 3.7.8 of the Replacement Theorem. We know that

(p1 ∧ p2) eq (¬((¬p1) ∨ (¬p2)))(3.58)

We would like to be able to put the right-hand formula in place of the left-hand
one in another formula, for example, ((p1 ∧ p2) → p3). The trick for doing this
is to choose another propositional symbol, say r, that does not occur in the
formulas in front of us. (This may involve expanding the signature, but that
causes no problems.) Then

((p1 ∧ p2) → p3) is (r → p3)[(p1 ∧ p2)/r]
((¬((¬p1) ∨ (¬p2))) → p3) is (r → p3)[(¬((¬p1) ∨ (¬p2)))/r]

Then the Replacement Theorem tells us at once that

((p1 ∧ p2) → p3) eq ((¬((¬p1) ∨ (¬p2))) → p3)

Example 3.7.9 of the Substitution Theorem. Starting with the same logical
equivalence (3.58) as in the previous example, we can change the symbols p1 and
p2, provided that we make the same changes in both formulas of (3.58). Let φ
and ψ be any formulas, and let S be the substitution

φ/p1,ψ/p2

Then (p1 ∧ p2)[S] is (φ ∧ ψ), and (¬((¬p1) ∨ (¬p2)))[S] is (¬((¬φ) ∨ (¬ψ))). So
we infer from the Substitution Theorem that

(φ ∧ ψ) eq (¬((¬φ) ∨ (¬ψ))).
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How to remember which is the Substitution Theorem and which the Replace-
ment? In the Substitution Theorem it is the Same Substitution on both
Sides.

Exercises
3.7.1. Carry out the following substitutions.

(a) (p → q)[p/q].

(b) (p → q)[p/q][q/p].

(c) (p → q)[p/q, q/p].

(d) (r ∧ (p ∨ q))[((t → (¬p)) ∨ q)/p, (¬(¬q))/q, (q ↔ p)/s].

3.7.2. (a) Using one of the De Morgan Laws (Example 3.6.5), show how the
following equivalences follow from the Replacement and Substitu-
tion Theorems:

(¬((p1 ∧ p2) ∧ p3)) eq ((¬(p1 ∧ p2)) ∨ (¬p3))
eq (((¬p1) ∨ (¬p2)) ∨ (¬p3)).

(b) Show the following generalised De Morgan Law, by induction on n:
If φ1, . . . ,φn are any formulas then

(¬(· · · (φ1 ∧ φ2) ∧ · · · ) ∧ φn)) eq (· · · ((¬φ1) ∨ (¬φ2)) ∨ · · · ) ∨ (¬φn)).
(And note that by the other De Morgan Law, the same goes with
∧ and ∨ the other way round.)

(c) The four formulas below are logically equivalent. Justify the equiva-
lences, using the Replacement and Substitution Theorems, the
De Morgan and Double Negation Laws (Example 3.6.5) and (a),
(b) above.

(i) (¬((p1 ∧ (¬p2)) ∨ (((¬p1) ∧ p2) ∧ p3)))
(ii) eq ((¬(p1 ∧ (¬p2))) ∧ (¬(((¬p1) ∧ p2) ∧ p3)))
(iii) eq (((¬p1) ∨ (¬(¬p2))) ∧ (((¬(¬p1)) ∨ (¬p2)) ∨ (¬p3)))
(iv) eq (((¬p1) ∨ p2) ∧ ((p1 ∨ (¬p2)) ∨ (¬p3)))

3.7.3. We know that (p → q) is logically equivalent to ((¬p)∨q), and hence (by
the Substitution Theorem) for all formulas φ and ψ, (φ → ψ) is logically
equivalent to ((¬φ) ∨ ψ).
(a) Deduce that every formula of LP is logically equivalent to one

in which → never occurs. [Using the Substitution and Replace-
ment Theorems, show that if φ contains n occurrences of → with
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n > 0, then φ is logically equivalent to a formula containing n − 1
occurrences of →.]

(b) Illustrate this by finding a formula that is logically equivalent to

((((p → q) → r) ↔ s) → t)

in which → never appears.

3.7.4. By Exercise 3.6.2, both (p ∧ q) and (p ∨ q) are logically equivalent to
formulas in which no truth function symbols except → and ¬ occur.

(a) Show that each of (p ↔ q) and ⊥ is logically equivalent to a formula
in which no truth function symbols except → and ¬ occur.

(b) Find a formula of LP logically equivalent to

(q ∨ (((¬p) ∧ q) ↔ ⊥))

in which no truth function symbols except → and ¬ occur.

3.7.5. Let φ be a propositional formula using no truth function symbols except
↔ and ¬. Show that φ is a tautology if and only if φ satisfies the following
two conditions:

(a) Every propositional symbol occurs an even number of times in φ.

(b) The negation sign ¬ occurs an even number of times in φ.

[Exercise 3.6.3 should help.]

3.7.6. Suppose S and T are substitutions. Show that there is a substitution ST
such that for every formula φ,

φ[ST ] = φ[S][T ]

3.8 Disjunctive and conjunctive normal forms
So far we have been careful to write formulas of LP correctly according to the
definition of the language. But some abbreviations are commonly used, and in
this section they will help to make some formulas clearer.

Definition 3.8.1

(a) A conjunction of formulas is a formula

(· · · (φ1 ∧ φ2) ∧ · · · ) ∨ φn)(3.59)

where φ1, . . . , φn are formulas; these n formulas are called the conjuncts of
the conjunction. We allow n to be 1, so that a single formula is a conjunction
of itself. We abbreviate (3.59) to

(φ1 ∧ · · · ∧ φn)
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leaving out all but the outside parentheses.

(b) A disjunction of formulas is a formula

(· · · (φ1 ∨ φ2) ∨ · · · ) ∨ φn)(3.60)

where φ1, . . . , φn are formulas; these n formulas are called the disjuncts of
the conjunction. We allow n to be 1, so that a single formula is a disjunction
of itself. We abbreviate (3.60) to

(φ1 ∨ · · · ∨ φn)

leaving out all but the outside parentheses.

(c) The negation of a formula φ is the formula

(¬φ)(3.61)

We abbreviate (3.61) to

¬φ

A formula that is either an atomic formula or the negation of an atomic
formula is called a literal .

It can be shown (though we will not show it) that even after these paren-
theses are left off, unique parsing still holds. In fact we can also safely leave
off the outside parentheses of any complex formula, provided that it is not a
subformula of another formula.

Remark 3.8.2 It is easily checked that (d) and (e) of Definition 3.5.6 generalise
as follows:

(d) A�(φ1 ∧ · · · ∧ φn) = T if and only if A�(φ1) = · · · = A�(φn) = T.

(e) A�(φ1 ∨ · · · ∨ φn) = T if and only if A�(φi) = T for at least one i.

Definition 3.8.3 Let σ be a signature and φ a formula of LP(σ). Then φ deter-
mines a function |φ| from the set of all σ-structures to the set {T,F} of truth
values, by:

|φ|(A) = A�(φ) for each σ-structure A

This function |φ| is really the same thing as the head column of the truth
table of φ, if you read a T or F in the i-th row as giving the value of |φ|
for the σ-structure described by the i-th row of the table. So the next the-
orem can be read as ‘Every truth table is the truth table of some formula’.
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Emil Post Poland and USA, 1897–1954.
‘It is desirable . . . to have before us the vision of
the totality of these [formulas] streaming
out . . . through forms of ever-growing complexity’
(1921).

Theorem 3.8.4 (Post’s Theorem) Let σ be a finite non-empty signature and g
a function from the set of σ-structures to {T,F}. Then there is a formula ψ of
LP(σ) such that g = |ψ|.
Proof Let σ be {q1, . . . , qm} with m � 1. We split into three cases.
Case 1: g(A) = F for all σ-structures A. Then we take ψ to be (q1 ∧¬q1), which
is always false.
Case 2: There is exactly one σ-structure A such that g(A) = T. Then take ψ
to be q′

1 ∧ · · · ∧ q′
m where

q′
i =

{
qi if A(qi) = T,
¬qi otherwise.

We write ψA for this formula ψ. Then for every σ-structure B,

|ψA|(B) = T ⇔ B�(ψA) = T
⇔ B�(q′

i) = T for all i (1 � i � m), by Remark 3.8.2
⇔ B(qi) = A(qi) for all i (1 � i � m)
⇔ B = A

⇔ g(B) = T.

So |ψA| = g.

Case 3: g(A) = T exactly when A is one of A1, . . . ,Ak with k > 1. In this case
let ψ be ψA1 ∨ · · · ∨ ψAk

. Then for every σ-structure B,

|ψ|(B) = T ⇔ B�(ψ) = T
⇔ B�(ψAj ) = T for some j (1 � j � k), by Remark 3.8.2
⇔ B = Aj for some j (1 � j � k)
⇔ g(B) = T.

So again |ψ| = g.
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Example 3.8.5 We find a formula to complete the truth table

p1 p2 p3 ?
T T T F
T T F T
T F T T
T F F F
F T T T
F T F F
F F T F
F F F F

There are three rows with value T:

p1 p2 p3 ?
T T T F
T T F T ⇐ A1

T F T T ⇐ A2

T F F F
F T T T ⇐ A3

F T F F
F F T F
F F F F

The formula ψA1 is p1 ∧ p2 ∧ ¬p3. The formula ψA2 is p1 ∧ ¬p2 ∧ p3. The
formula ψA3 is ¬p1 ∧ p2 ∧ p3. So the required formula is

(p1 ∧ p2 ∧ ¬p3) ∨ (p1 ∧ ¬p2 ∧ p3) ∨ (¬p1 ∧ p2 ∧ p3)

Our proof of Post’s Theorem always delivers a formula ψ in a certain form.
The next few definitions will allow us to describe it.

Definition 3.8.6
• A basic conjunction is a conjunction of one or more literals, and a basic
disjunction is a disjunction of one or more literals. A single literal counts as
a basic conjunction and a basic disjunction.

• A formula is in disjunctive normal form (DNF) if it is a disjunction of one
or more basic conjunctions.

• A formula is in conjunctive normal form (CNF) if it is a conjunction of one
or more basic disjunctions.
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Example 3.8.7
(1)

p1 ∧ ¬p1

is a basic conjunction, so it is in DNF. But also p1 and ¬p1 are basic
disjunctions, so the formula is in CNF too.

(2)

(p1 ∧ ¬p2) ∨ (¬p1 ∧ p2 ∧ p3)

is in DNF.

(3) Negating the formula in (2), applying the De Morgan Laws and removing
double negations gives

¬((p1 ∧ ¬p2) ∨ (¬p1 ∧ p2 ∧ p3))
eq ¬(p1 ∧ ¬p2) ∧ ¬(¬p1 ∧ p2 ∧ p3)
eq (¬p1 ∨ ¬¬p2) ∧ (¬¬p1 ∨ ¬p2 ∨ ¬p3)
eq (¬p1 ∨ p2) ∧ (p1 ∨ ¬p2 ∨ ¬p3)

This last formula is in CNF. (See Exercise 3.7.2(c) for these equivalences.)

Theorem 3.8.8 Let σ be a non-empty finite signature. Every formula φ of LP(σ)
is logically equivalent to a formula φDNF of LP(σ) in DNF, and to a formula
φCNF of LP(σ) in CNF.

Proof From the truth table of φ we read off the function |φ|. The proof of Post’s
Theorem constructs a formula ψ of LP(σ) such that |ψ| = |φ|. By inspection,
the formula ψ is in DNF. Now if A is any σ-structure, then

A�(ψ) = |ψ|(A) = |φ|(A) = A�(φ)

and hence ψ eq φ. So we can take φDNF to be ψ.
To find φCNF , first use the argument above to find (¬φ)DNF , call it θ.

Then θ eq ¬φ, so ¬θ is logically equivalent to ¬¬φ and hence to φ. Hence ¬θ is
a formula of LP(σ) which is logically equivalent to φ.

Now apply the method of Example 3.8.7(3) above to ¬θ, pushing the neg-
ation sign ¬ inwards by the De Morgan Laws and then cancelling double
negations, to get a logically equivalent formula in CNF.

Corollary 3.8.9 Let σ be any signature (possibly empty). Every formula φ of
LP(σ) is logically equivalent to a formula of LP(σ) in which no truth function
symbols appear except ∧, ¬ and ⊥.
Proof First suppose φ contains some propositional symbol, so that σ is not
empty. The theorem tells us that φ is logically equivalent to a formula φDNF of
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LP(σ) in which no truth function symbols appear except ∧, ∨ and ¬. So we only
need to get rid of the ∨. But we can do that by applying to φDNF the logical
equivalence

(p ∨ q) eq ¬(¬p ∧ ¬q)(3.62)

with the help of the Replacement Theorem.
Next, if φ contains no propositional symbols, then φ must be built up

from ⊥ using truth function symbols. But every such formula has the value
T or F, independent of any structure. So φ is logically equivalent to one
of ¬⊥ and ⊥.

Satisfiability of formulas in DNF and CNF

A formula in DNF is satisfiable if and only if at least one of its disjuncts is
satisfiable. Consider any one of these disjuncts; it is a basic conjunction

φ1 ∧ · · · ∧ φm.

This conjunction is satisfiable if and only if there is a σ-structure A such that

A�(φ1) = . . . = A�(φm) = T

Since the φi are literals, we can find such an A unless there are two literals among
φ1, . . . ,φn which are respectively p and ¬p for the same propositional symbol p.
We can easily check this condition by inspecting the formula. So checking the
satisfiability of a formula in DNF and finding a model, if there is one, are trivial.
(See Exercise 3.8.3(b) for a test of this.)

The situation with formulas in CNF is completely different. Many signifi-
cant mathematical problems can be written as the problem of finding a model
for a formula in CNF. The general problem of determining whether a formula
in CNF is satisfiable is known as SAT. Many people think that the question
of finding a fast algorithm for solving SAT, or proving that no fast algorithm
solves this problem, is one of the major unsolved problems of twenty-first century
mathematics. (It is the ‘P = NP’ problem.)

Example 3.8.10 A proper m-colouring of a map is a function assigning one of
m colours to each country in the map, so that no two countries with a common
border have the same colour as each other. A map is m-colourable if it has a
proper m-colouring.

Suppose a map has countries c1, . . . , cn. Write pij for ‘Country ci has the j-
th colour’. Then finding a proper m-colouring of the map is equivalent to finding
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a model of a certain formula θ in CNF. Namely, take θ to be the conjunction of
the following formulas:

pi1 ∨ pi2 ∨ · · · ∨ pim (for all i from 1 to n);
¬pik ∨ ¬pjk (for all i, j, k where countries ci, cj have a

common border).
(3.63)

More precisely, if A is a model of θ, then we can colour each country ci with the
first colour j such that A�(pij) = T.

Exercises
3.8.1. For each of the following formulas φ, find a formula φDNF in DNF, and

a formula φCNF in CNF, which are both equivalent to φ.

(a) ¬(p1 → p2) ∨ ¬(p2 → p1).

(b) (p2 ↔ (p1 ∧ p3)).

(c) ¬(p1 → p2) ∨ (p0 ↔ p2).

(d) ¬(p1 ∧ p2) → (p1 ↔ p0).

(e) ¬(p ∧ q) → (q ↔ r).

(f) ((p0 → p1) → p2) → (p0 ∧ p1).

(g) ((p ↔ q) → r) → q.

(h) (p0 → p1) → (¬(p1 ∧ p2) → ¬(p0 ∧ p2)).

(i) (p1 ∧ p2) → ¬(p3 ∨ p4).

(j) p1 → (p2 → (p3 → p4)).

3.8.2. The formulas φDNF got by the method of Theorem 3.8.8 are not
necessarily the most efficient. For example, consider the formula

(p1 ∧ ¬p2 ∧ p3 ∧ ¬p4) ∨ (p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4)

Here the two conjuncts are identical except that one has p3 where as the
other has ¬p3. In this case we can leave out p3; the whole formula is
logically equivalent to p1 ∧ ¬p2 ∧ ¬p4.
(a) Justify the statement above. [By the Distributive Law in Example

3.6.5, (φ∧ψ)∨ (φ∧¬ψ) is logically equivalent to φ∧ (ψ ∨¬ψ), and
this in turn is logically equivalent to ψ.]

(b) Use this method to find a shorter formula in DNF that is logically
equivalent to the following:

(p1 ∧ ¬p2 ∧ ¬p3 ∧ p4) ∨ (p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4) ∨ (p1 ∧ p2 ∧ p3 ∧ ¬p4).
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3.8.3. (a) For each of the following formulas in DNF, either find a model if there
is one, or show that there is none. Do not write out truth tables for the
formulas.

(i) (p1 ∧ p2 ∧ ¬p1) ∨ (p2 ∧ ¬p3 ∧ p3) ∨ (¬p1 ∧ p3).

(ii) (p2 ∧¬p1 ∧ p3 ∧¬p5 ∧¬p2 ∧ p4)∨ (¬p2 ∧ p1 ∧¬p3 ∧ p5 ∧¬p8 ∧¬p1)

(b) In your own words, write instructions for your younger sister (who is
not a mathematician) so that she can answer (i), (ii) and similar questions
by herself.

3.8.4. Let σ be a signature containing k symbols. The relation eq splits the set of
formulas of LP(σ) into classes, where each class consists of a formula and
all the other formulas logically equivalent to it. (These are the equiva-
lence classes of the equivalence relation eq.) Calculate the number of
equivalence classes of the relation eq. [By Post’s Theorem, every possible
head column in a truth table for σ describes an equivalence class.]

3.8.5. Let σ be a non-empty signature. Show that every formula of LP(σ) is
logically equivalent to a formula of LP(σ) in which no truth function
symbols are used except → and ¬.

3.8.6. Let σ be a non-empty signature. Let LP| be the result of expanding LP
by adding a new truth function symbol | (known as the Sheffer stroke)
with the truth table

φ ψ (φ|ψ)
T T F
T F T
F T T
F F T

(3.64)

Show that every formula of LP|(σ) is logically equivalent to a formula of
LP|(σ) which contains no truth function symbols except |.

3.8.7. Show that ¬p is not logically equivalent to any formula whose only truth
function symbols are ∧, ∨, → and ↔. [Show that for any signature σ, if
A is the structure taking every propositional symbol to T, and φ is built
up using at most ∧, ∨, → and ↔, then A�(φ) = T.]

3.9 Soundness for propositional logic
In Definition 3.4.4 of Section 3.4 we defined exactly what is meant by the sequent

Γ �σ ψ(3.65)
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where σ is a signature, Γ is a set of formulas of LP(σ) and ψ is a formula of
LP(σ). It will be convenient to write

Γ ��σ ψ

to express that (3.65) is not correct.
We also described a programme, proposed by Hilbert, for checking that

the provable sequents (3.65) are exactly those that on grounds of truth and
falsehood we ought to be able to prove. In this section and the next, we make
the programme precise and carry it through for propositional logic.

Definition 3.9.1 Let σ be a signature, Γ a set of formulas of LP(σ) and ψ a
formula of LP(σ).

(a) We say that a σ-structure A is a model of Γ if it is a model of every formula
in Γ, that is, if A�(φ) = T for every φ ∈ Γ.

(b) We write

Γ |=σ ψ(3.66)

to mean that for every σ-structure A, if A is a model of Γ then A is a model
of ψ. The expression (3.66) is called a semantic sequent .

(c) We write

Γ �|=σ ψ

to mean that (3.66) is not true.

When the context allows, we will ignore the subscript and write Γ |= ψ

instead of Γ |=σ ψ. Using the Principle of Irrelevance, one can show that the
choice of σ makes no difference as long as it contains all the propositional symbols
in Γ and ψ (cf. the proof of Exercise 3.5.4).

Our aim will be to establish that for all Γ and ψ,

Γ �σ ψ ⇔ Γ |=σ ψ.(3.67)

The two directions in (3.67) say very different things.
Going from left to right, (3.67) says that if there is a derivation with undis-

charged assumptions in Γ and conclusion ψ, then every model of Γ is a model
of ψ. What would it mean for this to fail? It would mean that there is such a
derivation D, and there is also a structure A in which all the formulas in Γ are
true but ψ is false. Hence we would have derived a formula that is false in A from
formulas that are true in A. This would be a devastating breakdown of our rules
of proof: they should never derive something false from something true. So the
left-to-right direction in (3.67) is verifying that we did not make some dreadful
mistake when we set up the rules of natural deduction. The second half of this
section will be devoted to this verification.
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The direction from right to left in (3.67) says that if the truth of Γ guarantees
the truth of ψ, then our natural deduction rules allow us to derive ψ from Γ.
That is to say we do not need any more natural deduction rules besides those
that we already have. We return to this in the next section.

Both directions of (3.67) are best read as saying something about our system
of natural deduction. There are other proof calculi, and they have their own
versions of (3.67). We can write Γ �C ψ to mean that ψ is derivable from Γ in
the proof calculus C. Then

Γ �C ψ ⇒ Γ |= ψ

is called Soundness of the calculus C, and the converse

Γ |= ψ ⇒ Γ �C ψ

is called Adequacy of the calculus C. The two directions together are called
Completeness of C.

The main other proof calculi in common use among mathematical logicians
are Hilbert-style calculi, the sequent calculus and tableaux. In Hilbert-style
calculi one begins with axioms and draws consequences until one reaches the
conclusion; there are no rules for discharging assumptions. The sequent calcu-
lus derives sequents from sequents rather than formulas from formulas. Tableau
proofs prove ψ from Γ by trying systematically to describe a model of Γ that is
not a model of ψ, and showing that there is no such model. Some other styles of
proof calculus are more suitable for machine use.

Theorem 3.9.2 (Soundness of Natural Deduction for Propositional Logic) Let
σ be a signature, Γ a set of formulas of LP(σ) and ψ a formula of LP(σ). If
Γ �σ ψ then Γ |=σ ψ.

Proof The theorem states that

If D is a σ-derivation whose conclusion is ψ and whose undis-
charged assumptions all lie in Γ, then every σ-structure that is a
model of Γ is also a model of ψ.

(3.68)

Recall from Section 3.4 that D is a tree. We prove (3.68) for all Γ, ψ and D by
induction on the height of this tree, as given by Definition 3.2.2(c). (Although
we have turned the trees upside down, the definition of height is unchanged.)
Case 1: D has height 0. Then D is the derivation

ψ

which has ψ as both conclusion and undischarged assumption. So ψ ∈ Γ, and
any model of Γ must be a model of ψ in particular.
Case 2: D has height k � 1, where we assume that (3.68) is true for all deriva-
tions D with height < k. Let R be the right label on the bottom node of D,
which indicates what natural deduction rule was used to derive ψ. We divide
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into subcases according to R. We consider only some typical cases, leaving the
rest to the reader.
Case 2 (a): R is (→I), so that by Definition 3.4.1(d)(i), D has the form

φ�
D′

χ
(→I)

(φ → χ)

where D′ is a derivation of height < k with conclusion χ. By Definition 3.4.1(g)
the only formulas which can owe their dandahs to the bottom node of D are
occurrences of φ (this is the meaning of the discharged φ written above at the top
of D). So the undischarged assumptions of D′ all lie in Γ ∪ {φ}. Let A be any
σ-structure that is a model of Γ; we must show that it is also a model of (φ → χ).
If it is not, then by the truth table for →, we have A�(φ) = T and A�(χ) = F.
But this is impossible, since A is now a model of Γ∪{φ} in which χ is false, and
the induction assumption on D′ says that there is no such model.
Case 2 (b): R is (→E), so that by Definition 3.4.1(e)(i), D has the form

D1 D2
φ (φ → ψ)

(→E)
ψ

where D1 is a derivation of φ and D2 a derivation of (φ → ψ), both with their
undischarged assumptions in Γ (since by (g), (→E) authorises no dandahs). Both
D1 and D2 have height < k. Let A be any σ-structure that is a model of Γ. We
must show that it is also a model of ψ. Now the induction assumption on D1

and D2 implies that A is a model of both φ and (φ → ψ). It follows by truth
tables that A is a model of ψ as required.
Case 2 (c): R is (RAA), so that by Definition 3.4.1(d)(ii), D has the form

(¬ψ)���

D′

⊥
(RAA)

ψ

where D′ is a derivation of height < k with conclusion ⊥. By (g) the only formula
that can be discharged thanks to the bottom node of D is (¬ψ), as indicated in
the diagram. So the undischarged assumptions of D′ all lie in Γ∪{(¬ψ)}. Let A
be any σ-structure that is a model of Γ; we must prove that A is a model of ψ.
We know that A is not a model of ⊥, since no structure is a model of ⊥. So by
the induction assumption on D′, A cannot be a model of Γ ∪ {(¬ψ)}. But A is
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a model of Γ by assumption; hence it cannot be a model of ¬ψ—in other words,
it must be a model of ψ.

Exercises
3.9.1. In the proof of Theorem 3.9.2, add clauses dealing with the cases where

R is (∧I) and where R is (∨E).

3.9.2 The following argument shows that Peirce’s Formula (((p → q) → p) →
p) (from Example 3.4.5) can’t be proved using just the Axiom Rule and
the rules (→I) and (→E); your task is to fill in the details. Instead of two
truth values T and F, we introduce three truth values 1, 1

2 , 0. Intuitively
1 is truth, 0 is falsehood and 1

2 is somewhere betwixt and between. If φ
has the value i and ψ has the value j (so i, j ∈ {1, 1

2 , 0}), then the value
of (φ → ψ) is

the greatest real number r � 1 such that min{r, i} � j(3.69)

(a) Write out the truth table for → using the three new truth values.
(For example, you can check that (p → q) has the value 1

2 when p

has value 1 and q has value 1
2 .)

(b) Find values of p and q for which the value of (((p → q) → p) → p)
is not 1.

(c) Show that the following holds for every derivation D using at most
the Axiom Rule, (→I) and (→E): If ψ is the conclusion of D and
A is a structure with A�(ψ) < 1, then A�(φ) � A�(ψ) for some
undischarged assumption φ of D. [The argument is very similar to
the proof of Theorem 3.9.2, using induction on the height of D.]

3.10 Completeness for propositional logic
Our target in this section is the following theorem. Throughout the section, σ
is assumed to be the default signature {p0, p1, . . . }. We will briefly discuss this
assumption at the end of the section.

Theorem 3.10.1 (Adequacy of Natural Deduction for Propositional Logic)
Let Γ be a set of formulas of LP(σ) and ψ a formula of LP(σ). If Γ |=σ ψ then
Γ �σ ψ.

For simplicity the proof will use a stripped-down version of LP in which the
only truth function symbols are

∧ ¬ ⊥
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Adding the other truth function symbols of LP makes the proof a bit longer but
does not add any substantial new ideas. In any case we know from Corollary
3.8.9 that every formula of LP(σ) is logically equivalent to one in which the only
truth function symbols are ∧, ¬ and ⊥.

The proof will go in three steps, which we label as lemmas.

Definition 3.10.2 We say that a set Γ of formulas of LP(σ) is syntactically
consistent if Γ ��σ ⊥. (This notion is independent of what signature σ we choose,
so long as LP(σ) contains all of Γ; cf. Exercises 3.4.3, 3.4.4.)

Lemma 3.10.3 To prove the Adequacy Theorem it is enough to show that every
syntactically consistent set of formulas of LP(σ) has a model.

Proof of lemma Suppose every syntactically consistent set of formulas has
a model. Let Γ be a set of formulas of LP(σ) and ψ a formula of LP(σ), and
assume

Γ |=σ ψ(3.70)

Then we claim that

Γ ∪ {(¬ψ)} has no models(3.71)

For by (3.70) every model of Γ is a model of ψ, and so not a model of (¬ψ).
Since we assume that every syntactically consistent set has a model, it

follows from (3.71) that Γ ∪ {(¬ψ)} is not syntactically consistent, that is,

Γ ∪ {(¬ψ)} �σ ⊥(3.72)

Then the correctness of the sequent Γ �σ ψ follows by Example 3.4.3. �

Jaakko Hintikka Finland and USA, living.
How to construct a set of formulas that gives an
exact description of a situation.
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The remaining steps of the proof rest on the following definition.

Definition 3.10.4 We say that a set Γ of formulas of (the stripped-down) LP is
a Hintikka set (for LP) if it has the following properties:

(1) If a formula (φ ∧ ψ) is in Γ then φ is in Γ and ψ is in Γ.

(2) If a formula (¬(φ ∧ ψ)) is in Γ then at least one of (¬φ) and (¬ψ) is in Γ.

(3) If a formula (¬(¬φ)) is in Γ then φ is in Γ.

(4) ⊥ is not in Γ.

(5) There is no propositional symbol p such that both p and (¬p) are in Γ.

Lemma 3.10.5 Every Hintikka set has a model.

Proof of lemma Let Γ be a Hintikka set whose formulas are in LP(σ). Let A
be the following σ-structure:

A(p) =
{

T if p ∈ Γ
F otherwise

(3.73)

We will show that for every formula φ of LP(σ), both (a) and (b) are true:

(a) If φ is in Γ then A�(φ) = T
(b) If (¬φ) is in Γ then A�(φ) = F(3.74)

We prove this by induction on the complexity of φ, using Definition 3.5.6.
Case 1: φ is a propositional symbol p. Then A�(p) = A(p). If φ ∈ Γ then
A�(p) = T by (3.73), proving (a). If (¬p) ∈ Γ then by property (5) of Hintikka
sets, p /∈ Γ, so A�(p) = F by (3.73), proving (b).
Case 2: φ is ⊥. Then by property (4) of Hintikka sets, ⊥ /∈ Γ, so (a) of (3.74)
holds trivially. Also by truth tables A�(⊥) = F so that (b) holds too.
Case 3: φ is (¬ψ) for some proposition ψ; by induction assumption (3.74) holds
for ψ. If φ ∈ Γ then (¬ψ) ∈ Γ, so A�(ψ) = F by (b) for ψ, and hence A�(φ) = T.
This proves (a) for φ. For (b), suppose (¬φ) ∈ Γ. Then (¬(¬ψ)) ∈ Γ, and so by
property (3) of Hintikka sets, ψ ∈ Γ, so that A�(ψ) = T by (a) for ψ. But then
A�(φ) = A�((¬ψ)) = F, proving (b) for φ.
Case 4: φ is (ψ ∧ χ); by induction assumption (3.74) holds for both ψ and
χ. To prove (a) for φ, if φ ∈ Γ then by property (1) of Hintikka sets, ψ ∈ Γ
and χ ∈ Γ. So by induction assumption (a), A�(ψ) = A�(χ) = T. But then
A�((φ∧ψ)) = T, proving (a) for φ. For (b), suppose (¬φ) ∈ Γ. Then by property
(2) of Hintikka sets, at least one of (¬ψ) and (¬χ) is in Γ; say (¬ψ) ∈ Γ. Then by
induction assumption (b) for ψ, A�(ψ) = F. It follows that A�(φ) = F, proving
(b) for φ.

This proves (3.74) for every formula φ of LP(σ). By (a) of (3.74), A is a
model of Γ. �
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Lemma 3.10.6 If Γ is a syntactically consistent set of formulas of LP(σ), then
there is a Hintikka set ∆ of formulas of LP(σ) with Γ ⊆ ∆.

Proof of lemma This is quite a busy proof, because we have to work to build
∆. We start by assuming that Γ is syntactically consistent.

In Exercise 3.2.5 we saw how to assign to each formula φ of LP(σ) a distinct
positive integer GN(φ), called its Gödel number . (This is the only place in this
proof where we use the assumption that σ is the set {p0, p1, . . . }.) So we can list
all the formulas of LP(σ) in increasing order of their Gödel numbers, say as

ψ0,ψ1,ψ2, . . .

We need a slightly different listing of the formulas, got by taking them as follows:

ψ0,
ψ0,ψ1,

ψ0,ψ1,ψ2,
ψ0,ψ1,ψ2,ψ3,

. . .

Write

φ0,φ1,φ2,φ3, . . .

for this listing of the formulas of LP(σ). It has the property that every formula
appears infinitely often in the list.

We shall build a sequence of sets Γ0 ⊆ Γ1 ⊆ · · · , one by one. The idea of
the construction is to take the requirements for a Hintikka set, one by one; as we
come to each requirement, we build the next Γi so that the requirement is met.

We put Γ0 = Γ. Then when Γi has just been defined, we define Γi+1 as
follows, depending on the formula φi.

(α) If φi is not in Γi, or is ⊥ or ¬⊥ or either p or (¬p) for some propositional
symbol p, we put Γi+1 = Γi. (The reason is that in these cases the definition
of a Hintikka set does not tell us to do anything with φi if we want to make
Γi into a Hintikka set.)

(β) If φi is in Γi and is (χ1 ∧ χ2), then we put Γi+1 = Γi ∪ {χ1,χ2}. (By (1) in
the definition of Hintikka sets, any Hintikka set containing Γi would have to
contain these two formulas.)

(γ) If φi is in Γi and is (¬(χ1 ∧χ2)), and Γi ∪ {¬χ1} is syntactically consistent,
then we put Γi+1 = Γi ∪ {¬χ1}; if it is not syntactically consistent, then
instead we put Γi+1 = Γi ∪ {¬χ2}. (A similar reason applies, using (2) in
the definition of Hintikka sets.)
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(δ) If φi is in Γi and is (¬(¬φ)), we put Γi+1 = Γi ∪ {φ}. (Similarly, using (3)
in the definition of Hintikka sets.)

We take ∆ to be the union Γ0 ∪Γ1 ∪· · · (in other words, the set of all things
that are members of Γn for at least one natural number n). We claim:

∆ is syntactically consistent(3.75)

If this claim is false, then there is some derivation D of ⊥ whose undischarged
assumptions are in ∆. Since derivations contain only finitely many symbols,
there are finitely many undischarged assumptions in D, and so they must all be
already in some Γi. So the claim follows if we prove, by induction on i, that each
Γi is syntactically consistent.

Case 1: i = 0. We chose Γ0 to be Γ, which was assumed to be syntactically
consistent.
Case 2: i = k + 1, assuming Γk is syntactically consistent. Here the argument
depends on how Γk+1 was constructed.

Suppose first that Γk+1 = Γk. Then by induction hypothesis Γk+1 is
syntactically consistent.

Next suppose Γk+1 was made by adding one or two formulas to Γk,
depending on φk. There are three separate cases for the possible forms of φk.

(i) Suppose φk is in Γk and is (χ1 ∧ χ2). This was case (β) in the construction
of Γk+1, so that Γk+1 = Γk ∪ {χ1,χ2}. Assume for contradiction that there
is a derivation D of ⊥ from Γk+1. Then at each place in D where χ1 occurs
as an undischarged assumption of D, replace χ1 by

χ1

(∧E)
(χ1 ∧ χ2)

and similarly with χ2. The result is a derivation of ⊥ whose undischarged
assumptions all lie in Γk. This contradicts the induction hypothesis that Γk
was syntactically consistent.

(ii) Suppose φk is in Γk and is (¬(χ1∧χ2)). This was case (γ) above. Assume for
contradiction that there is a derivation D whose conclusion is ⊥ and whose
undischarged assumptions all lie in Γk+1. In the construction of Γk+1 at (γ),
we took Γk+1 to be Γk∪{(¬χ1)} if this set was syntactically consistent; since
Γk+1 is not syntactically consistent, we infer that

Γk ∪ {(¬χ1)} is not syntactically consistent.

Hence by (γ), Γk+1 is Γk ∪ {(¬χ2)}. Therefore,

Γk ∪ {(¬χ2)} is not syntactically consistent.
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So for j = 1, 2 there are derivations Dj of ⊥ whose undischarged
assumptions are in Γk ∪ {(¬χj)}. Then we have the following derivation

(¬χ1)���

D1

⊥
(RAA)

χ1

(¬χ2)���

D2

⊥
(RAA)

χ2
(∧I)

(χ1 ∧ χ2) (¬(χ1 ∧ χ2))
(¬E)⊥

which proves Γk �σ ⊥ and so contradicts the induction hypothesis that Γk
was syntactically consistent.

(iii) Suppose φk is in Γk and is (¬(¬φ)). This was case (δ), so that Γk+1 =
Γk ∪ {φ}. Assume for contradiction that there is a derivation D of ⊥
whose undischarged assumptions are in Γk+1. By adding a derivation of
φ from (¬(¬φ)) (cf. Example 2.6.3) at every undischarged occurrence of the
assumption φ in D, we turn D into a derivation of ⊥ from Γk. Again this
contradicts the induction hypothesis that Γk is syntactically consistent.

Claim (3.75) is proved.

Since Γ0 = Γ, we have Γ ⊆ ∆. We check that ∆ meets all the conditions for
a Hintikka set.

Condition (1) says that if (φ∧ψ) is in ∆ then φ and ψ are also in ∆. Suppose
then that (φ ∧ ψ) is in ∆; then by construction of ∆ it must already be in some
Γi. Now in the listing of formulas the formula (φ ∧ ψ) appears as φj for some
j � i. We consider what happens in the construction of Γj+1. By case (β) in the
construction, both φ and ψ are in Γj+1, so they are in ∆ as required.

Condition (2) says that if (¬(φ ∧ ψ)) is in ∆ then at least one of (¬φ) and
(¬ψ) is in ∆. We prove this in the same way as condition (1), but using (γ) in
the construction of ∆. Likewise, condition (3) is proved using (δ).

Condition (4) says that ⊥ is not in ∆. This follows from the fact that ∆ is
syntactically consistent, which was the claim (3.75). Finally condition (5) says
that there is no propositional symbol p for which both p and (¬p) are in ∆.
But if there were, then (¬E) would immediately give us a derivation of ⊥ from
assumptions in ∆, contradicting claim (3.75). �

Proof of the Adequacy Theorem By Lemma 3.10.3 it is enough to show that
every syntactically consistent set of formulas of LP(σ) has a model. Suppose Γ
is a syntactically consistent set of formulas of LP(σ). By Lemma 3.10.6 there is
a Hintikka set ∆ of formulas of LP(σ) with Γ ⊆ ∆. By Lemma 3.10.5, ∆ has
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a model A. Since every formula in Γ is also in ∆, A is a model of Γ too, as
required. �

Theorem 3.10.7 (Completeness Theorem) Let Γ be a set of formulas of LP(σ)
and ψ a formula of LP(σ). Then

Γ �σ ψ ⇔ Γ |=σ ψ.

Proof This is the Soundness and Adequacy Theorems combined.

We should comment on the assumption that σ is the default signature
{p0, p1, . . . }. If you have a signature τ that is different from this, then prob-
ably the ‘symbols’ in τ are literally symbols that can be written on a page. So
with a little ingenuity it must be possible to list them, say as

q0, q1, . . .

If there are infinitely many, then our proof of the Adequacy Theorem works with
qi’s in place of the corresponding pi’s. If τ has only finitely many symbols, the
proof still works, since the assumption that there are infinitely many pi’s was
never used.

Problems arise only if your signature has more abstract ‘symbols’. For
example, if you want to regard each real number as a symbol in σ, then it
follows from Cantor’s Theorem, Corollary 7.8.6, that the formulas cannot be
listed in the way our proof assumed. Apart from the problem of writing formu-
las down, the theorems of this chapter do still hold in this generalised setting.
But they need generalised proofs that employ more set theory than we want to
assume in this book.

Exercises
3.10.1. If we kept the truth function symbols ∧, ∨ and ↔ in the language, we

would need
(a) clauses for them in the Definition 3.10.4 of Hintikka sets,

(b) clauses for them in the proof of Lemma 3.10.5 and

(c) clauses for them in the proof of Lemma 3.10.6.
Write the required clauses, using the examples in the text as a guide.

3.10.2. Let σ and τ be signatures. Suppose Φ is a set of formulas of LP(σ) and
Ψ is a set of formulas of LP(τ). We say that (Φ,Ψ) is a Craig pair if
there is no formula θ of LP(σ ∩ τ) such that Φ �σ θ and Ψ �τ ¬θ.
(a) Show that if (Φ,Ψ) is a Craig pair then both Φ and Ψ are

syntactically consistent.
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(b) Show that if (Φ,Ψ) is a Craig pair and both Φ and Ψ are Hintikka
sets of formulas of LP(σ) and LP(τ), respectively, then Φ ∪ Ψ is a
Hintikka set.

(c) Show that if (Φ,Ψ) is a Craig pair, then there are Hintikka sets
Φ′ of formulas of LP(σ), and Ψ′ of formulas of LP(τ), such that
Φ ⊆ Φ′ and Ψ ⊆ Ψ′ and (Φ′, Ψ′) is a Craig pair. [The proof is very
similar to that of Lemma 3.10.6. List all the formulas of LP(σ∪ τ).]

(d) Deduce from (a)–(c) that if φ is a formula of LP(σ), ψ is a formula
of LP(τ) and {φ} |=σ∪τ ψ, then there is a formula θ of LP(σ ∩ τ),
such that {φ} �σ θ and {θ} �τ ψ. (This result is known as
Craig’s Interpolation Theorem; the formula θ is the interpolant.
Craig’s Interpolation Theorem can be extended to first-order logic,
by a very similar proof to that in this exercise.)



4 First interlude: Wason’s
selection task

You will be shown four cards. Each of these cards has a number written on one
side and a letter on the other. You will also be shown a statement S about the
cards. Then you must answer the following question:

Which card or cards must I turn over in order to check whether the statement
S is true?

Here is the statement S:

S: If a card has a vowel on one side,
it has an even number on the other side.

Here are the cards:

E K 4 7

Write down your answer to the question before continuing.

Logical analysis

The following table shows when the statement ‘If the card has a vowel on one
side then it has an even number on the other side’ is true.

Vowel Even (Vowel → Even)
T T T
T F F
F T T
F F T
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What do we need to check in order to be sure that the statement S is true for
each card? In the table, we must check that no card is in the second row, that is,

Every card has either a consonant or an even number (or both).

With this in mind:

Card Verdict
E No consonant or even number visible: MUST CHECK
K Has consonant, NEED NOT CHECK FURTHER
4 Has even number, NEED NOT CHECK FURTHER
7 No consonant or even number visible: MUST CHECK

So the cards to check are E and 7.

Psychological analysis

When we gave this question to our logic class, after they had studied Chapter 3,
they gave the following answers:

E and 7 (right answer) 0%
E 50%
E and 4 20%
K and 7 15%
7 5%
K 5%
All cards 5%

These results are fairly typical. There are several ways of adjusting the experi-
ment, and a good deal is known about which adjustments make it easier or
harder to reach the ‘logically correct’ answer.

One possible explanation is that human beings do not have any built-in
understanding of truth tables. We can make quick decisions on the basis of
rules that evolution built into us, and for some reason these rules tell us to
choose card E but not card 7 in this experiment. Psychologists have made various
suggestions of why this should be. An explanation should also explain why certain
versions of the experiment make the task easier and some make it harder. See, for
example, Keith E. Stanovich,Who is Rational? Studies of Individual Differences
in Reasoning, Lawrence Erlbaum, Mahwah, NJ, 1999, or Keith Stenning, Seeing
Reason: Image and Language in Learning to Think, Oxford University Press,
Oxford, 2002.
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This experiment is known as theWason Selection Task . It was first devised
by Peter Wason in 1966, and since then it has been one of the most intensely
researched experiments in cognitive science.

Of course, the psychologists’ results do not mean we cannot do truth tables.
But they do seem to show that in order to use truth tables reliably, we need
to take enough time to train ourselves, and then to make the appropriate
calculations, preferably on paper.
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5 Quantifier-free logic

Here are two simple-minded arguments that we might meet any day in a piece
of mathematics:

(a) x = y, so cosx = cos y.

(b) All positive real numbers have real square roots, and π is a positive real
number, so π has a real square root.

Though the arguments are simple, they are beyond the capacities of Chapters
2 and 3. In the present chapter we will formalise (a), and Chapter 7 will take
care of (b).

Our formalisation will use a language LR, the ‘Language of Relations’. Like
LP, it allows different choices of signature. The languages LR(σ), for any sig-
nature σ, are known as first-order languages. (The name contrasts them with
second-order languages; see (7.43).) The proof rules and semantics of first-order
languages are known as first-order logic or as predicate logic.

5.1 Terms
A term is an expression that can be used for naming something. (Well, any
expression can be used for naming your cat. But we are talking about names
within the usual conventions of mathematics.)

The most common examples of terms are constant symbols, variables,
definite descriptions and complex mathematical terms.

(a) Constant symbols: These are single mathematical symbols that are used
as fixed names of particular numbers, functions or sets. For example,

0, 1, 42, π, ∞, R, ∅, cos .

(b) Variables: These are letters that are used to stand for any numbers or any
elements of some particular set. For example,

x, y, z, etc. ranging over real numbers,
m, n, p, etc. ranging over integers,
f , g, F , G, etc. ranging over functions of some kind.
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(c) Definite descriptions: These are singular expressions of the form ‘the . . . ’
or ‘this . . . ’ or ‘our . . . ’, etc. For example,

the number,
the number

√
π,

the last nonzero remainder in the above steps,
this graph G,
our original assumption,
its top node,
Proposition 2.6.

(Think of the last as short for ‘the proposition numbered 2.6’.)

(d) Complex mathematical terms: These are mathematical expressions
that do the same job as definite descriptions, but in purely mathematical
notation. For example,

3
√
x+ y

is a complex mathematical term; it means the same as ‘the cube root of the
result of adding x to y’.

Also, ∫ π

−π
z2 dz

is a complex mathematical term meaning the same as ‘the integral from −π
to π of the function (z �→ z2)’.

Free and bound variables

Consider the integral ∫ y

x

z2 dz(5.1)

There are three variables in (5.1): x, y, z. The variable z occurs twice.
There is an important difference between x and y on the one hand, and z on

the other. We can meaningfully read x and y as naming particular numbers. For
example, the integral still makes sense if we have already put x = 1 and y = 2.
We can check this by replacing x and y:∫ 2

1
z2 dz

We cannot do the same with z. For example, this is nonsense:∫ 2

1
π2 dπ
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To make sense of it, we would have to forget that π means a certain number
between 3 and 4. (These rewritings are examples of the rewriting test for freedom
and boundness.)

Definition 5.1.1 An occurrence of a variable in a piece of mathematical text is
said to be free if the text allows us to read the variable as a name. If not free, the
occurrence is bound . When an occurrence of a variable in the text is bound, there
must always be something in the text that prevents us taking the occurrence as
a name. For example, the integral sign in (5.1) causes both occurrences of z to
be bound; we say that the integral binds the occurrences.

The talk of occurrences in Definition 5.1.1 is necessary, because it can hap-
pen that the same variable has free occurrences and bound occurrences in the
same text. For example:

3z +
∫ 2

1
z2 dz

Here the first z is free but the other two occurrences of z are bound by the
integral.

It is also necessary to mention the surrounding text. An occurrence of a
variable can be free in text T1 but bound in text T2 that contains T1. For example,
the integral (5.1) contains the expression

z2(5.2)

In (5.2), z is free, although it is bound in (5.1). This is a very common situation:
probably most occurrences of variables become bound if we take a large enough
piece of surrounding text.

The rewriting test must be used with care. For example, it makes sense to
write ∫ y

x

π2 dz

which suggests that the first occurrence of z in (5.1) was really free. But this
is wrong. There is no way that we can read the first z in the integral (5.1) as
standing for π and the second z as the variable of integration. As mathematicians
say, the two occurrences are ‘the same z’. In order to make Definition 5.1.1
precise, we would need to restrict it to a precisely defined language. In Section 7.2
we will replace it by a precise formal definition for the language LR(σ).

Integrals are not the only expressions that bind variables. For example,

{c | |c| > 2}(5.3)
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Here both occurrences of c are bound by the set expression.

For every integer n there is an integer m > n(5.4)

In this example the variable n is bound by the expression ‘For every integer’;
it does not make sense to say ‘For every integer 13.5’, for example. Also the
variable m is bound by the expression ‘there is an integer’.

For every ε > 0 there is a δ > 0 such that for every
real x with |x| < δ we have f(x) < ε(5.5)

Here the variable ε is bound by ‘For every’ and the variable δ is bound by
‘there is’. The symbol f is free in the sentence—for example, it could stand for
the sine function.

More examples of free and bound occurrences are in the exercises.
The language LR(σ) will have symbols to stand as variables. It will also have

a symbol ∀ to stand for the expression ‘for every’, and a symbol ∃ for the expres-
sion ‘there is’. (You may have noticed that ∀ and ∃ come from the capitalised
letters in ‘for All’ and ‘there Exists’, rotated through angle π.) The symbol ∀
is known as the universal quantifier symbol , and the symbol ∃ as the existential
quantifier symbol . These two quantifier symbols will be part of the lexicon of the
language LR, and in fact they will be the only symbols in LR that bind variables.

In Chapter 7 we will see how to interpret the quantifier symbols in the
semantics of LR, and we will give a precise definition of ‘free’ and ‘bound’ occur-
rences of variables in formulas of LR. But for later sections of the present chapter
we will confine ourselves to formulas of LR in which no quantifier symbols occur,
that is, to quantifier-free (qf) formulas. In these formulas there are no bound
variables.

Exercises
5.1.1. Find all the terms in the following paragraph:

“Putting θ = π
9 and c = cos π9 , Example 6.3 gives

cos 3θ = 4c3 − 3c.

However, cos 3θ = cos π3 = 1
2 . Hence 1

2 = 4c3 − 3c. In other words,
c = cos π9 is a root of the cubic equation

8x3 − 6x− 1 = 0.”
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5.1.2. Which occurrences of variables are free and which are bound in the fol-
lowing statements? Where an occurrence of a variable is bound, explain
what binds it.
(a) v = 3.

(b) lim
t→0

sin t+ x

t
= y.

(c) For all real r, er > r.

(d) For some real r, er > r.

(e) z
d2y

dx2 = x2 + z + 1.

5.1.3. Find 10 occurrences of terms in the following text. For each one, say
whether it is (a) a constant symbol, (b) a variable, (c) a definite descrip-
tion, (d) a complex mathematical term. If it is a variable, say whether it
is free or bound in the text.

“Since

f(x) = x3 − x2 − 2x = x(x+ 1)(x− 2),

the zeros of the function f are 0, −1 and 2. The zeros partition the
interval [−1, 2] into two subintervals: [−1, 0] and [0, 2]. We integrate
f over each subinterval. The integral over [−1, 0] is

∫ 0

−1
(x3 − x2 − 2x)dx =

[
x4

4
− x3

3
− x2

]0

−1
=

5
12

.”

5.1.4. For each of the following expressions, write a true mathematical sentence
containing the expression, so that all the variables in the expression are
bound in your sentence.
(a) x < y + z.

(b) |u− v|.
(c) cosn θ.
[The variables in (c) are n and θ.]

5.2 Relations and functions
Definition 5.2.1 The arity (also called rank) of a statement or a term is the
number of variables that have free occurrences in it. (If a variable has two or
more free occurrences, it still counts for just one in the arity.) We say that a
statement or term of arity n is n-ary ; binary means 2-ary. A statement of arity
≥1 is called a predicate.
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Example 5.2.2 The statement

If p > −1 then (1 + p)n � 1 + np

is a binary predicate, with free variables p and n. The term∫ y

x

tan z dz

is also binary, with free variables x and y.

Definition 5.2.3 Suppose X is a set and n is a positive integer. Then an n-ary
relation on X is a set of ordered n-tuples of elements of X. (And henceforth we
abbreviate ‘ordered n-tuple’ to ‘n-tuple’.)

There are two main ways of naming a relation. The first is to list the n-tuples
that are in it. For example, here is a binary relation on the set {0, 1, 2, 3, 4, 5}:

{(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4),
(1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}(5.6)

This is the ‘less than’ relation on {0, 1, 2, 3, 4, 5}.
This method is of no use when the relation has too many n-tuples to list.

In such cases, we name the relation by giving an n-ary predicate. We need a
convention for fixing the order of the variables. For example, if we take the
predicate

y � x

and ask what relation it defines on {0, 1, 2, 3}, does x go before y (so that (0, 1)
is in the relation) or the other way round (so that (1, 0) is in the relation)?
One standard solution to this problem is to give the definition of the relation as
follows:

R(x, y) ⇔ y � x(5.7)

The variables on the left are listed with x first, so we know that x corresponds
to the first place in the ordered pairs. After this definition has been given, we
can use R as a name of the relation defined.

More precisely, we test whether a pair (3, 2) is in the relation R by putting
3 for x and 2 for y in the defining predicate:

2 � 3(5.8)

This statement (5.8) is false, so the pair (3, 2) is not in the relation R. But ‘2 � 2’
is true, so (2, 2) is in R. In view of this and similar examples, if R is a binary
predicate, we often write ‘xRy’ instead of ‘R(x, y)’.
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A definition of a relation in the form (5.7) has to meet certain conditions, or
it will not work (see Exercise 5.2.3). First, we must be told what set the variables
range over. (For (5.7) this set is {0, 1, 2, 3}.) Second, the variables listed inside
parentheses after R must all be distinct from each other. And third, every free
variable in the predicate on the right should appear among these variables listed
inside the parentheses.

A particular kind of relation which will interest us is known as a (strict)
linear order.

Definition 5.2.4 Suppose X is a set. A strict linear order on X is a binary
relation R on X such that
(1) for all x ∈ X, xRx is false;

(2) for all x, y and z ∈ X, if xRy and yRz then xRz;

(3) for all x, y ∈ X, either xRy or yRx or x = y.

As an example, let X be a subset of R, and define

xRy ⇔ x < y

on X (where < is the usual linear order of the real numbers).
If R is a strict linear order on X, and Y is a subset of X, then the restriction

of R to Y is a strict linear order on Y .

Definition 5.2.5 Suppose R is a strict linear order on a set X. An element y ∈ X

is called a least element of X if yRx whenever x ∈ X and x �= y. An element
z ∈ X is called a greatest element of X if xRz whenever x ∈ X and x �= z.

It is easy to see that there can be at most one least element and at most
one greatest element in a strict linear order.

Example 5.2.6 We consider strict linear orders on a finite set. Suppose X is a
finite non-empty set and R is a strict linear order on X. Then we claim that
there is a least element in X. For if not, let y1 ∈ X. Since y1 is not least, there
is an element y2 ∈ X such that y2Ry1, by (3) in Definition 5.2.4. Since y2 is
not least, we can choose y3 ∈ X such that y3Ry2. Continuing, we construct
y4, y5, . . . . By repeated use of (2), we see that yiRyj whenever i > j, so yi �= yj
by (1). This contradicts the finiteness of X.

Now let x1 be a least element of X. Then X \ {x1} (the set consisting of
everything in X except x1) is also finite, so if non-empty it has a least elem-
ent x2, and x1Rx2. Similarly X \ {x1,x2}, if non-empty, has a least element
x3 and x2Rx3. Since X is finite, this procedure must stop eventually to give
X = {x1, . . . ,xn} with

x1Rx2, x2Rx3, . . . , xn−1Rxn(5.9)
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By repeated use of (2), xiRxj whenever i < j. So X can be listed in R-increasing
order.

Conversely, if X is any finite set and we enumerate X without repetitions
as X = {x1, . . . ,xn}, and define

xRy ⇔ x = xi and y = xj for some i < j,

then we obtain a strict linear order R on X.

The symbol < is often used for strict linear orders, even if they have nothing
to do with the usual order on the real numbers. Correspondingly, when we come
to define the signature of linear order in Example 5.3.2(c), we will put the symbol
< in its signature, to stand for any strict linear order relation. (Likewise if you
have studied groups you will know that the symbol · in x · y refers to different
functions in different groups.)

We have assumed familiarity with the idea of a function. A function can
actually be viewed as a special kind of relation, as follows.

Definition 5.2.7 Suppose n is a positive integer, X is a set and R is an (n+1)-
ary relation on X. We say that R is an n-ary function on X if the following
holds:

For all a1, . . . , an in X there is exactly one b in X such
that (a1, . . . , an, b) is in R(5.10)

When this condition holds, the unique b is called the value of the function at
(a1, . . . , an).

For example, the relation (5.6) is not a function on {0, 1, 2, 3, 4, 5}: there is
no pair with 5 on the left, and there are five pairs with 0 on the left. But the
following is a 1-ary function on {0, 1, 2, 3, 4, 5}:

{(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0)}(5.11)

This function is sometimes known as ‘plus one mod 6’.
Since a function is a kind of relation, we can define particular functions in

the same ways as we define particular relations. But there is another way that
is particularly appropriate for functions. Instead of an (n+ 1)-ary predicate, we
use an n-ary term, as in the following example:

F (x, y) = the remainder when y − x is divided by 6(5.12)

We use = instead of ⇔. But again for an n-ary function we have n variables
listed on the left, and the order of the listing shows which places they belong to
in the n-tuples. Also after this definition has been given, the function symbol F
is available as a name of the defined function. For example, on {0, 1, 2, 3, 4, 5},
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the remainder when 4− 3 is divided by 6 is 1, whereas the remainder when 3− 4
is divided by 6 is 5, so that

F (3, 4) = 1, F (4, 3) = 5.

Remark 5.2.8 Overloading means using an expression with two different arities.
For example, in ordinary arithmetic we have

−6

with − of arity 1, and

8− 6

with − of arity 2. So the symbol − is overloaded. Likewise, some computer
languages deliberately use overloading. But in this course overloading is likely
to cause confusion, so we avoid it. A relation or function symbol has only one
arity.

There is another kind of overloading. Compare

(a) cos(π) = −1.

(b) cos is differentiable.

In the first case, cos is a 1-ary function symbol; in the second it is a term. The
difference is between applying the function and talking about it. Again we will
not allow this in our formal languages. In the terminology of the next section,
cos in (a) is a function symbol and not a constant symbol, and vice versa in (b).

Substitutions

To test whether a pair (a, b) is in the relation R of (5.7), we substituted a name
of a for x and a name of b for y in the predicate ‘y � x’, and we asked whether
the resulting sentence is true. Normally this method works. But here is a case
where we get strange results by substituting a name for a variable in a predicate.

Consider the equation ∫ 2

1
2(x+ y) dx = 5(5.13)

which is a 1-ary predicate with the variable y. To integrate (5.13), we regard
y as constant and we get

5 =
[
x2 + 2xy

]2
1 = (4 + 4y)− (1 + 2y) = 3 + 2y

which you can solve to get y = 1.
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Now suppose we give x the value 1, and we try to say that 1 is a solution
for y in equation (5.13), by writing x in place of y. We get

5 =
∫ 2

1
2(x+ x) dx =

∫ 2

1
4x dx =

[
2x2]2

1 = 8 − 2 = 6.

So 5 = 6. What went wrong?
Our mistake was that when we put x in place of the free occurrence of y in

the equation, x became bound by the integration over x.

Definition 5.2.9 When a term t can be substituted for all free occurrences of a
variable y in an expression E, without any of the variables in t becoming bound
by other parts of E, we say that t is substitutable for y in E. (Some logicians
say ‘free for’ rather than ‘substitutable for’.)

The problem with our integral equation (5.13) was that the term x is not
substitutable for y in the equation.

Definition 5.2.10 Suppose E is an expression, y1, . . . , yn are distinct variables
and t1, . . . , tn are terms such that each ti is substitutable for yi in E. Then we
write

E[t1/y1, . . . , tn/yn](5.14)

for the expression got from E by simultaneously replacing each free occurrence
of each yi in E by ti. If some ti is not substitutable for yi in E, we count the
expression E[t1/y1, . . . , tn/yn] as meaningless. The expression

t1/y1, . . . , tn/yn

in (5.14) is called a substitution for variables, or a substitution for short.

In the present chapter we will start to use substitution in Section 5.4, in a
limited context where all terms are substitutable for all variable occurrences. At
that point we will give a formal definition of (5.14) for this limited context. But
the notion of ‘substitutable for’ will become important in Chapter 7, when we
begin to use formal languages that have quantifier symbols.

Exercises
5.2.1. State the arities of the following predicates and terms.

(a) x < y.

(b) x < y < z.
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(c) x is positive.

(d) limx→0
h sin x
x .

5.2.2. Suppose R is defined on the set {1, 2, 3, 4} by

R(x, y, z) ⇔ x is a number strictly between y and z.

List all the 3-tuples in R.

5.2.3. Consider how we define relations R on R. Neither of the following
definitions will work. Explain what goes wrong in each case.

(a) R(x, y, y) ⇔ y = x+ 2.

(b) R(x, y, z) ⇔ x+ y = z + w.

[In each case you should give a triple (a, b, c) of real numbers where the
definition fails to tell us whether or not the triple is in the relation R.]

5.2.4. How many different n-ary relations are there on a set of k elements?

5.2.5. For each of the following expressions E, say whether the term x2 − yz is
substitutable for the variable y in E. If it is, say what E[x2−yz/y] is.
(a) y.

(b) z.

(c)
∫ z
y
sin(w) dw.

(d)
∫ z
w
sin(y) dy.

(e)
∫ 2

1 (x+ y) dx.

5.2.6. For each of the following expressions E, say whether the term y+cos(z)
is substitutable for the variable x in E. If it is, say what E[y +
cos(z)/x] is.
(a) x.

(b) x = y.

(c) For all integers x, 5 �= x2.

(d) For all integers y, 5 �= (x+ y)2.

(e) The set of reals z such that |z − x| < 1.

5.3 The language of first-order logic
We are going to introduce a language called LR (Language of Relations), that
is much closer to normal mathematical language than LP was. For example, LR
will have function and relation symbols. As with LP, the choice of signature is
left to the user. We assume you have the good sense not to put parentheses or
commas into your signature, since these symbols are needed for punctuation.
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Definition 5.3.1 A first-order signature (shortened to signature when there is
no danger of confusion with propositional signatures) is a 4-tuple (Co,Fu, Re, r)
where:

(1) Co is a set (possibly empty) of symbols called the constant symbols;

(2) Fu is a set (possibly empty) of symbols called the function symbols;

(3) Re is a set (possibly empty) of symbols called the relation symbols;

(4) Co, Fu, Re are pairwise disjoint;

(5) r is a function taking each symbol s in Fu ∪ Re to a positive integer r(s)
called the rank (or arity) of s. We say a symbol is n-ary if it has arity n;
binary means 2-ary.

Example 5.3.2

(a) The following signature will play an important role later and will serve as
a concrete example for the present. The signature of arithmetic, σarith, has
the following symbols:

(i) a constant symbol 0̄;

(ii) a function symbol S̄ of arity 1;

(iii) two binary function symbols +̄ and ·̄.
We will usually present signatures in this informal style. To match Definition
5.3.1 we would put:

(1) Coarith = {0̄}.
(2) Fuarith = {S̄, +̄, ·̄}.
(3) Rearith = ∅.
(4) rarith(S̄) = 1, rarith(+̄) = rarith(̄·) = 2.

Then σarith = (Coarith,Fuarith,Rearith, rarith). Later we will use this signa-
ture to talk about the natural numbers. Then 0̄ will name the number 0, and
the function symbols +̄, ·̄ will stand for plus and times. The symbol S̄ will
stand for the successor function (n �→ n+ 1).

(b) The signature of groups, σgroup, has a constant symbol and two function
symbols, namely,

(i) a constant symbol ‘e’;

(ii) a binary function symbol ‘·’;
(iii) a 1-ary function symbol ‘−1’.

(c) Neither of the previous signatures has any relation symbol; here is one
that does. The signature of linear orders, σlo, has no constant symbols,
no function symbols, and one binary relation symbol <.
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Parsing

Suppose F is a 1-ary function symbol. Then the expression

∃x(F (F (x)) = x)(5.15)

is a formula of LR, as will soon become clear. (It expresses that for some element
x, F (F (x)) is equal to x.) If we parse it, we get the following parsing tree:

� ∃x
� =

�
�

�
�� F � x

� F

� x

(5.16)

Just as in Chapter 3, we can reconstruct the formula by labelling the nodes of
the parsing tree, starting at the leaves and working upwards.

The three nodes in the left-hand branch of the tree are the parsing tree of
the term F (F (x)). It will make life simpler if we split the syntax of LR into two
levels. The lower level consists of the terms of LR; the upper level consists of the
formulas. Most formulas have terms inside them (the formula ⊥ is one of the
exceptions). But in first-order logic, terms never have formulas inside them. So
we can describe the terms first, and then treat them as ingredients when we go
on to build formulas. Thus we split (5.16) into two parsing trees:

� F

� F

� x

� ∃x
� =����
				� F (F (x)) � x

(5.17)

The first is a parsing tree for a term and the second is a parsing tree for a
formula.

Definition 5.3.3 (a) The variables of LR are the infinitely many symbols

x0,x1,x2, . . .

which we assume are not in σ.
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(b) Let σ be a signature. A parsing tree for terms of LR(σ) is a right-labelled
tree where
• if a node has arity 0 then its label is either a constant symbol of σ or a

variable;

• if a node has arity n > 0 then its label is a function symbol of σ with
arity n.

In the heat of battle we will often use x, y, z, etc. as variables of LR, because
this is common mathematical notation. But strictly the variables of LR are just
the variables in (a) above.

We can read a term from its parsing tree by the following compositional
definition:

α � α

� FF (β1, . . . ,βn)
�

�
�






�
�

�β1

�
�

�. . . �βn

where α is a constant symbol or variable, and F is a
function symbol of arity n.

(5.18)

For example, on the parsing tree

� +̄����
				� �·̄ S̄

�
�

�
�� �x0 x1

� 0̄

(5.19)

we build up the following labelling:

�+̄(̄·(x0,x1), S̄(0̄)) +̄
�

�
�

�

�
�

�
�� �·̄ S̄(0̄) S̄·̄(x0,x1)

�
�

�
�

�
�

�
�� �x0 x0 x1 x1

�0̄ 0̄

(5.20)

The left label on the root node is

+̄(̄·(x0,x1), S̄(0̄)).(5.21)

So this is the term associated to the parsing tree (5.19). In normal mathematical
notation we would usually write (5.21) as x0x1 +S(0); for purposes of logic it is
helpful to think of x0x1 + S(0) as a shorthand for (5.21).
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Definition 5.3.4 Let σ be a signature. Then a term of LR(σ) is the associated
term of a parsing tree for terms of LR(σ). A term of LR is a term of LR(σ) for
some signature σ.

For example, the following are terms of LR(σarith):

0̄ S̄(S̄(x5)) +̄(S̄(0̄),x2) S̄(̄·(x4, 0̄))(5.22)

In normal mathematical shorthand these would appear as

0 S(S(x5)) S(0) + x2 S(x4 · 0)(5.23)

Likewise when we do algebra in LR we should strictly write

(2 + 3x0)4

as

4(+(2, ·(3,x0)))

But in practice nobody can understand expressions like that, so we will generally
stick to the usual notation, though we always regard it as a shorthand.

Formulas are more complicated than terms; there are more ways of building
them up. To save repetition we will introduce formulas with quantifiers here,
although we will not need them until the next chapter.

Definition 5.3.5 Let v be a variable. An expression ∀v (read ‘for all v’) is called
a universal quantifier . An expression ∃v (read ‘there is v’) is called an existen-
tial quantifier . Quantifiers are universal quantifiers and existential quantifiers.
(WARNING: Some logicians also refer to the quantifier symbols ∀ and ∃ as
‘quantifiers’. We will avoid doing this.)

Definition 5.3.6 Let σ be a signature. A parsing tree for formulas of LR(σ) is a
right-labelled tree where

• every leaf is labelled with either ⊥ or a term of LR(σ);

• every node that is not a leaf is labelled with one of the symbols =,
¬,∧,∨,→, ↔ or a relation symbol of σ, or a quantifier;

• every node labelled with a quantifier has arity 1, and its daughter node is
not labelled with a term;

• every node labelled with ¬ has arity 1 and its daughter node is not labelled
with a term;

• every node labelled with one of ∧,∨,→,↔ has arity 2 and neither of its
daughters is labelled with a term;
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• if a node is labelled with =, its arity is 2 and its daughter nodes are labelled
with terms;

• if a node is labelled with a relation symbol R, its arity is the arity of R and
its daughter nodes are labelled with terms.

The compositional definition for building the associated formula of a parsing
tree for formulas is as follows. It includes the clauses of (3.22) for the nodes
labelled by truth function symbols, together with four new clauses for the leaves
and the nodes labelled by a quantifier, ‘=’ or a relation symbol:

t � t

� QvQvφ

�φ

� =(t1 = t2)
�

�
�

�
�

�� �t1 t2

� RR(t1, . . . , tn)
�

�
�






�
�

�t1

�
�

�. . . �tn

where t is a term, Qv is a quantifier and R is a relation
symbol of σ with arity n.

(5.24)

For example, here is an example of a parsing tree for a formula of LR(σarith):

� ∀x
� ∃y
� =

�
�

�
�� S̄(x) � +̄(y, 0̄)

(5.25)

Applying (5.24) to (5.25) yields the following left labelling (where the right-hand
labels are omitted to save clutter):

�∀x∃y(S̄(x) = +̄(y, 0̄))

�∃y(S̄(x) = +̄(y, 0̄))

�(S̄(x) = +̄(y, 0̄))
�

�
�

��
S̄(x)

�
+̄(y, 0̄)

(5.26)
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So the associated formula of (5.25), the label of the root, is

∀x∃y(S̄(x) = +̄(y, 0̄))(5.27)

In normal mathematical practice we would write (5.27) as

∀x∃y (S(x) = y + 0)(5.28)

As with terms, we regard (5.28) as shorthand for (5.27).
We note another very common shorthand: s �= t for the formula ¬(s = t).

Definition 5.3.7 Let σ be a signature. Then a formula of LR(σ) is the associated
formula of a parsing tree for formulas of LR(σ). A formula of LR is a formula of
LR(σ) for some signature σ.

If the parsing trees were not of interest to us in their own right, we could boil
down the definitions of ‘term’ and ‘formula’ to the following inductive definitions
in the style of (3.5). First the terms:

(a) Every constant symbol of σ is a term of LR(σ).

(b) Every variable is a term of LR(σ).

(c) For every function symbol F of σ, if F has arity n and t1, . . . , tn are terms
of LR(σ) then the expression F (t1, . . . , tn) is a term of LR(σ).

(d) Nothing is a term of LR(σ) except as implied by (a), (b), (c).

Then the formulas:

(a) If s, t are terms of LR(σ) then the expression (s = t) is a formula of LR(σ).

(b) If R is a relation symbol of arity n in σ, and t1, . . . , tn are terms of LR(σ),
then the expression R(t1, . . . , tn) is a formula of LR(σ).

(c) ⊥ is a formula of LR(σ).

(d) If φ and ψ are formulas of LR(σ), then so are the following expressions:

(¬φ) (φ ∧ ψ) (φ ∨ ψ) (φ → ψ) (φ ↔ ψ)

(e) If φ is a formula of LR(σ) and v is a variable, then the expressions ∀vφ and
∃vφ are formulas of LR(σ).

(f) Nothing is a formula of LR(σ) except as implied by (a)–(e).

Unique parsing for LR

If someone gives us a term or a formula of LR(σ), then we can reconstruct its
parsing tree by starting at the top and working downwards. This is intuitively
clear, but as in Section 3.3 we want to prove it by showing a calculation that
makes the construction automatic.
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The first step is to find the head , that is, the symbol or quantifier that comes
in at the root node. For terms this is easy: the head is the leftmost symbol in the
term. If this symbol is a function symbol F , then the signature tells us its arity
n, so we know that the term has the form F (t1, . . . , tn). But this does not tell
us how to chop up the string t1, . . . , tn to find the terms t1, t2, etc. It is enough
if we can locate the n− 1 commas that came with F , but this is not trivial since
the terms t1, etc. might contain commas too. Fortunately, the reasoning differs
only in details from what we did already with LP, so we make it an exercise
(Exercise 5.3.6). The corresponding reasoning for formulas is more complicated
but not different in principle. The outcome is the following theorem, which we
state without proof. It guarantees that each term or formula of LR(σ) has a
unique parsing tree.

Theorem 5.3.8 (Unique Parsing Theorem for LR) Let σ be a signature. Then
no term of LR(σ) is also a formula of LR(σ). If t is a term of LR(σ), then
exactly one of the following holds:

(a) t is a variable.

(b) t is a constant symbol of LR(σ).

(c) t is F (t1, . . . , tn) where n is a positive integer, F is a function symbol of
σ with arity n, and t1, . . . , tn are terms of LR(σ). Moreover, if t is also
G(s1, . . . , sm) where G is an m-ary function symbol of LR(σ) and s1, . . . , sm
are terms of LR(σ), then n = m, F = G and each ti is equal to si.

If φ is a formula of LR(σ), then exactly one of the following is true:

(a) φ is R(t1, . . . , tn) where n is a positive integer, R is a relation symbol of
σ with arity n, and t1, . . . , tn are terms of LR(σ). Moreover, if φ is also
P (s1, . . . , sm) where P is an m-ary relation symbol of LR(σ) and s1, . . . , sm
are terms of LR(σ), then n = m, R = P and each ti is equal to si.

(b) φ is (s = t) for some terms s and t of LR(σ). Moreover, if φ is also (s′ = t′)
where s′ and t′ are terms of LR(σ), then s is s′ and t is t′.

(c) φ is ⊥.
(d) φ has exactly one of the forms (φ1 ∧ φ2), (φ1 ∨ φ2), (φ1 → φ2), (φ1 ↔ φ2),

where φ1 and φ2 are uniquely determined formulas.

(e) φ is (¬ψ) for some uniquely determined formula ψ.
(f) φ has exactly one of the forms ∀xψ and ∃xψ, where x is a uniquely
determined variable and ψ is a uniquely determined formula.

In the light of this theorem, we can define properties of terms and formulas
by using properties of their parsing trees. For clauses (b) and (c) below, recall
Definition 3.2.9.
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Definition 5.3.9

(a) The complexity of a term or formula is the height of its parsing tree. A term
or formula with complexity 0 is said to be atomic; all other terms and
formulas are said to be complex .

(b) Let t be a term of LR. Then the subterms of t are the traces in t of the left
labels on the nodes of the parsing tree of t. The proper subterms of t are
all the subterms except t itself. The immediate subterms of t are the traces
coming from the daughters of the root of the parsing tree.

(c) Let φ a formula of LR. Then the subformulas of φ are the traces in φ of the
left labels on the nodes of the parsing tree of φ. The proper subformulas of
φ are all the subformulas except φ itself. The immediate subformulas of φ
are the traces coming from the daughters of the root of the parsing tree.

(d) Let φ be a formula of LR. We say that φ is quantifier-free if ∀ and ∃ never
occur in φ (or equivalently, if no nodes of the parsing tree of φ are right
labelled with quantifiers). We say qf formula for quantifier-free formula. We
say qf LR to mean the terms and qf formulas of LR.

By this definition the atomic terms are exactly those that have no proper
subterms; in other words, they are the variables and the constant symbols. Like-
wise the atomic formulas are exactly those with no proper subformulas; in other
words, they are ⊥ and formulas of the forms (s = t) or R(t1, . . . , tn). Every
atomic formula is quantifier-free. But there are qf formulas that are not atomic;
the smallest is the formula (¬⊥).

For example, the expression

+̄(S̄(S̄(0̄)), +̄(0̄,x1))

is a term of LR(σarith), and it has the parsing tree

� +̄
����

				� S̄
� S̄

� 0̄

� +̄
�

��
�

� �0̄ x1

It is a complex term with complexity 3. It has seven subterms, as follows:

+̄(S̄(S̄(0̄)), +̄(0̄,x1))

(immediate subterm)

(immediate subterm)
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Exercises
5.3.1. Suppose σ is a signature. What are the symbols in the lexicon of

LR(σ)? (Cf. the introduction to Chapter 3, and Definition 3.1.1(a) for
propositional logic.)

5.3.2. Determine which of the following expressions are terms of LR(σarith).
For those which are, give parsing trees. For those which are not, say why
they are not. (Shorthand terms are not allowed here.)

(a) S̄S̄0̄.

(b) ·̄(S̄(0̄), x̄).
(c) +̄(̄·(y, S̄(x)), S̄(x), 0̄).
(d) S̄(̄·(+̄(x, S̄(S̄(0̄))), +̄(y,x))).

5.3.3. Determine which of the following expressions are formulas of LR(σarith).
For those which are, give parsing trees. For those which are not, say why
they are not. (Shorthand formulas are not allowed here.)

(a) (+̄(S̄(S̄(0̄)), S̄(S̄(0̄))) = 0̄).

(b) ∀x1(∃x2(x1 = x)).

(c) ∃x1∀x2∀x3((x1 = ·̄(x2,x3)) → ((x2 = 0̄) ∨ (x3 = 0̄))).

(d) (+̄(S̄(0̄), S̄(0̄)) = S̄(S̄(0̄)))).

5.3.4. Identify all the subterms of the following term of LR(σgroup). Say which
are immediate subterms, and which are atomic.

· (e, · (−1(y),−1(−1(x))))

5.3.5. (a) Group theorists are more inclined to write ·(x, y) as (x·y) and −1(x)
as (x)−1. Write a compositional definition that works like (5.18)
except that the terms are written in group theorists’ notation.

(b) One variation of the notation in (a) is to write xy in place of ·(x, y)
and x−1 in place of −1(x). Show that with this notation, unique
parsing fails. When the notation is used for groups, does the failure
of unique parsing matter?

5.3.6. (a) Let the signature σ include function symbols F , G, H of arities 3,
3 and 2, respectively, and a relation symbol R of arity 4. Then

R(G(H(x,x), y,F (x, y, z)),H(G(u, v,u), v),w,F (y,H(u,H(v, v)),w))
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is an atomic formula of LR(σ). Calculate the depths of all the
commas in this formula (where depth is defined as in Defini-
tion 3.3.1).

(b) Formulate and prove a theorem about how to find the three commas
associated with the relation symbol R.

5.4 Proof rules for equality
Atomic formulas of the form (s = t) are called equations, and the symbol ‘=’
is known as equality or identity . Some logicians regard it as a binary relation
symbol that needs to be mentioned in the signature, but for us the formulas of
LR(σ) always include equations, regardless of what σ is.

The natural deduction rules for qf formulas are exactly the same as for
LP, except that we also have introduction and elimination rules (=I), (=E) for
equality. This may be a good place to remark that the symbols s and t in the
derivations of this section are metavariables ranging over terms. So, for example,
(5.29) is not a derivation but a pattern for infinitely many derivations, depending
on what terms of LR we put for s and t.

Natural Deduction Rule (=I) If t is a term then

(=I)
(t = t)

(5.29)

is a derivation of the formula (t = t). It has no assumptions.

The line above (t = t) indicates that this is a derivation of (t = t) from no
assumptions, not a derivation of (t = t) from (t = t) using the Axiom Rule.

Example 5.4.1 At first sight it seems unrealistic to think that we would ever
start a proof by asserting that 0 = 0. But rules for manipulating formulas have
to be taken as a package; this rule will interact with the other rule for equality.
In any case, one can construct realistic arguments which use the fact that 0 = 0.

For example, suppose the function f is defined by

f(x) =
x2 + 2x

x

Strictly this function is undefined at x = 0 since you cannot divide by 0. But
there is an obvious way of extending it to be defined on all reals:

g(x) =
{
f(x) if x �= 0,
2 if x = 0.

Now we calculate g(0) from this definition:

0 = 0, so the second line of the definition applies, and g(0) = 2.
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Note how we used the fact that 0 = 0 in order to apply a case of the
definition.

The second rule of equality uses substitutions (as in Definition 5.2.10).

Natural Deduction Rule (=E) If φ is a formula, s and t are terms
substitutable for x in φ, and

D

(s = t)
,

D′

φ[s/x]

are derivations, then so is

D D′

(s = t) φ[s/x]
(=E)

φ[t/x]
(5.30)

Its undischarged assumptions are those of D together with those of D′. (The
reference to substitutability will not make any difference until Chapter 7, because
if φ is quantifier-free then any term is substitutable for x in φ.)

The rule (=E) is sometimes called Leibniz’s Law . The idea behind it is that
if s and t are the identically same object, and something is true about s, then the
same thing is true about t. This rule has an important new feature. The formula
φ[s/x] does not by itself tell you what φ, s and x are, because ‘[/]’ is our notation
for substitutions, not part of the formula. The same applies with φ[t/x]. So to
check that you do have an example of (5.30), you have to find appropriate φ, s,
t and x so that φ[s/x] and φ[t/x] work out as the required formulas. (Exercise
5.4.3 will give you some practice.)

Example 5.4.2 We prove the sequent {(s = t)} � (t = s) by the following
derivation:

(=I)
(s = t) (s = s)

(=E)
(t = s)

(5.31)

Above the central line in (5.31), the derivation on the left (which is D in the
notation of (5.30)) consists of the formula (s = t); it is both conclusion and
undischarged assumption. The derivation on the right (the D′ of (5.30)) is an
application of (=I). The bottom line of (5.31) follows by an application of (=E),
but we have to analyse a little in order to see this. We have to find a qf formula
φ such that

φ[s/x] is the formula (s = s)
φ[t/x] is the formula (t = s)

(5.32)
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A small amount of pencil-and-paper work shows that if φ is the formula (x = s),
then (5.32) holds, completing the proof.

Suppose now that D is a derivation with conclusion (s = t). Then the
following is a derivation of (t = s), with exactly the same undischarged assump-
tions as D:

D (=I)
(s = t) (s = s)

(=E)
(t = s)

(5.33)

It follows that we could without any qualms introduce another natural deduction
rule (=symmetric) as follows:

If s, t are terms and

D

(s = t)

is a derivation then so is

D

(s = t)
(=symmetric)

(t = s)

(5.34)

This rule gives us nothing new, because every time we use (5.34) in a derivation,
we can rewrite it as (5.33) without affecting either the conclusion or the undis-
charged assumptions. However, (5.34) has one line less than (5.33), and this is a
bonus.

Here are two more rules that we can justify in similar ways to (=symmetric).
The justifications are left to Exercise 5.4.5. (And what are the undischarged
assumptions of the constructed derivations?)

(1) The rule (=transitive): If s, t,u are terms and

D

(s = t)
and

D′

(t = u)

are derivations then so is

D D′

(s = t) (t = u)
(=transitive)

(s = u)

(5.35)

(2) The rule (=term): If r, s, t are terms and

D

(s = t)
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is a derivation then so is

D

(s = t)
(=term)

r[s/x] = r[t/x]

(5.36)

Example 5.4.3 Consider a group G with identity element e, and write xy for
the product of the elements x and y. Then the equations

yx = e, xz = e

imply y = z. The usual proof is brief and to the point:

y = ye = y(xz) = (yx)z = ez = z.

The natural deduction proof is longer but it does cover the same ground. The
derivation below uses a more relaxed notation than LR(σgroup), but the applica-
tions of the natural deduction rules (including the derived rules (=symmetric),
(=transitive) and (=term)) are strictly accurate. Besides the assumptions yx = e

and xz = e, the derivation uses assumptions that are guaranteed by the definition
of ‘group’, for example, ye = y and y(xz) = (yx)z.

yx = e

(yx)z = ez ez = zxz = e

y(xz) = (yx)z (yx)z = ze = xz

ye = y(xz) y(xz) = zye = y

y = ye ye = z

y = z

(5.37)

Exercise 5.4.6 invites you to say which rule is used at each step in (5.37).

Formalising natural deduction for qf LR

To formalise the natural deduction calculus, our first step must be to give the
promised formalisation of substitution (Definition 5.2.10) for the case of terms
and qf formulas. In this case, there is nothing to bind variables, so every term
is substitutable for every variable. This allows us to copy Definition 3.7.3 by
recursion on complexity. (Conscientious logicians prove, by induction on com-
plexity, that in each case below E[t1/y1, . . . , tk/yk] really is a term or a formula
as required; but we will take this result as obvious.)
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Definition 5.4.4 Let E be a term or qf formula, y1, . . . , yn distinct variables and
t1, . . . , tn terms.

(a) If E is a variable or a constant symbol, then

E[t1/y1, . . . , tk/yk] is
{
ti if E is yi (1 � i � k),
E otherwise.

(b) If E is F (s1, . . . , sn) where F is a function symbol of arity n, then
E[t1/y1, . . . , tk/yk] is

F (s1[t1/y1, . . . , tk/yk], . . . , sn[t1/y1, . . . , tk/yk] ).

The same applies with a relation symbol R in place of the function symbol
F . (The spacing above is just for readability.)

(c) If E is (s1 = s2) then E[t1/y1, . . . , tk/yk] is (s1[t1/y1, . . . , tk/yk] =
s2[t1/y1, . . . , tk/yk]).

(d) If E is (¬φ) where φ is a formula, then E[t1/y1, . . . , tk/yk] is (¬φ[t1/y1,
. . . , tk/yk]). Similar clauses apply when E is (φ ∧ ψ), (φ ∨ ψ), (φ → ψ) or
(φ ↔ ψ).

Next, we adapt to qf LR our definition of σ-derivations (Definition 3.4.1).

Definition 5.4.5 Let σ be a first-order signature. The definition of σ-derivation
for qf LR is the same as the definition of σ-derivation in Definition 3.4.1 with
the following changes. We have qf LR(σ) in place of LP(σ) throughout. Clause
(c) becomes:

(c) Every node of arity 0 carries as right-hand label either (A) or (=I).

Under (e) we have the new clause:

(v) ν has right-hand label (=E), and for some formula φ, variable x and terms
s, t, the left labels on the daughters of ν are (from left to right) (s = t) and
φ[s/x], and the left label on ν is φ[t/x].

The definition of conclusion is as before, but the undischarged assumptions
are now the formulas that appear without dandahs as left labels on leaves
labelled (A).

Theorem 5.4.6 Let σ be a finite signature. There is an algorithm that, given any
diagram, will determine in a finite amount of time whether or not the diagram
is a σ-derivation for qf LR.

The proof follows that of Theorem 3.4.2, but using Definition 5.4.5.
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Definition 5.4.7

(a) The definitions of qf σ-sequent , conclusion of a sequent, assumptions of a
sequent and correctness of a sequent, and of a derivation proving a sequent,
are all as in Definition 3.4.4 with the obvious changes from LP to qf LR.

(b) A derived rule of natural deduction is a possible natural deduction rule that
is not among the rules (Axiom Rule), (∧I), (∧E), (∨I), (∨E), (→I), (→E),
(↔I), (↔E), (¬I), (¬E), (RAA), (=I), (=E) (or the rules (∀I), (∀E), (∃I),
(∃E) to be introduced in Chapter 7), but is valid in the sense that if it is
added to those rules, no new sequents become provable. (So (=symmetric)
is a derived rule.)

(c) A set Γ of qf sentences of LR(σ) is syntactically consistent if Γ ��σ ⊥, that
is, if there is no derivation of ⊥ whose undischarged assumptions are in Γ.
As before, when the context allows, we leave out σ and write �σ as �.

Exercise 5.4.7 explains why the choice of signature σ is irrelevant so long as qf
LR(σ) includes the assumptions and conclusion of the sequent.

It remains to state the two sequent rules that describe what sequents are
proved by the natural deduction rules (=I) and (=E):

Sequent Rule (=I) For every term t, the sequent (� (t = t)) is correct.

Sequent Rule (=E) For every pair of terms s and t, every variable x, every
formula φ and all sets of formulas Γ, ∆, if s and t are both substitutable for x
in φ, and the sequents (Γ � φ[s/x]) and (∆ � (s = t)) are both correct, then
(Γ ∪∆ � φ[t/x]) is a correct sequent.

Exercises
5.4.1. Evaluate the following:

(a) +̄(x1,x2)[x2/x1, 0̄/x2].

(b) +̄(x1,x2)[x2/x2, 0̄/x1].

(c) +̄(x1,x2)[0̄/x2, S̄(0̄)/x3].

(d) (+̄(x1,x2) = x0)[x2/x1][0̄/x1, S̄(0̄)/x2].

5.4.2. In LR(σarith):
(a) Find a term t such that +̄(S̄(x),x)[t/x] is +̄(S̄(̄·(x, S̄(x))), ·̄(x, S̄(x))).
(b) Find a term t such that (S̄(x) = S̄(S̄(y)))[t/y] is the formula

(S̄(x) = S̄(S̄(̄·(y, y)))).
(c) Find a term t in which x occurs, such that t[+̄(y, y)/x] is

+̄(+̄(y, y), y).
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(d) Find a formula φ in which 0̄ occurs exactly once, such that φ[0̄/z]
is (0̄ = ·̄(0̄, 0̄)). [There is more than one possible answer.]

5.4.3. In LR(σarith) but using relaxed notation:
(a) Find a formula φ and terms s, t so that

φ[s/x] is SSS0 = z and φ[t/x] is SSSS0 = z.

(b) Find a formula φ and terms s, t so that

φ[s/x] is y = x+ z and φ[t/x] is y = z + z.

(c) Find a formula φ and terms s, t so that

φ[s/x, t/y] is (0 + SS0) + SSSS0 = SS(0 + SS0) and
φ[t/x, s/y] is SSS0 + S(0 + SS0) = SSSSS0.

5.4.4. The following derivation is part of a proof that 2 + 2 = 4, but consider
it simply as a derivation using formulas of LR(σarith).

SS0 + SS0 = S(SS0 + S0)

SS0 + 0 = SS0 SS0 + S0 = S(SS0 + 0)
(=E)

SS0 + S0 = SSS0
(=E

SS0 + SS0 = SSSS0
(i) Explain what substitutions are used at each of the applications

of (=E).

(ii) Show how to extend the derivation to one whose conclusion is
SS0 + SSS0 = SSSSS0, using the assumption SS0 + SSS0 =
S(SS0 + SS0) in addition to those already used.

5.4.5. Give derivations to show that all sequents for qf LR of the following forms
are correct, where r, s, t,u are any terms of LR.

(a) {(s = t), (t = u)} � (s = u).

(b) {(s = t)} � (r[s/x] = r[t/x]).

Use your results to justify the derived rules (=transitive) and (=term).

5.4.6. Consider the derivation (5.37). Say which rule is used at each step. For
the applications of (=term), say what substitutions are made.

5.4.7. Let σ be a signature, r a term of qf LR(σ), y a variable and φ a formula
of qf LR(σ). Let D be a qf σ-derivation, and write D′ for the diagram
got from D by replacing each occurrence of the formula φ in D by φ[r/y].
Show that D′ is also a qf σ-derivation. [A full proof will check that D′

satisfies every clause of Definition 5.4.5. But since the argument is nearly
the same in most cases, you might take a representative sample. It should
include (e)(v), the case of (=E).]
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5.4.8. Suppose ρ and σ are LR signatures with ρ ⊆ σ. Let Γ be a set of formulas
of qf LR(ρ) and ψ a formula of qf LR(ρ). Show that the sequent (Γ �ρ ψ)
is correct if and only if the sequent (Γ �σ ψ) is correct. [From left to
right is essentially the same as Exercise 3.4.3. From right to left is like
Exercise 3.4.4, but longer because now we have more kinds of symbols.
Remove atomic formulas beginning with a relation symbol not in ρ by
replacing them by ⊥. Remove a function symbol F not in ρ by replacing
each occurrence of a term F (s1, . . . , sn) (even inside another term) by
the variable x0; this case needs checking with care. The method that
works for function symbols works also for constant symbols. In each of
these cases, write t′, φ′ for the term or formula that results from making
the replacement in a term t or a formula φ. You can give a recursive
definition of t′ or φ′ just as in Definition 5.4.4.]

5.5 Interpreting signatures

George Peacock England, 1791–1858.
We can calculate with mathematical symbols, and then
‘interpret’ them afterwards.

The truth function symbols ⊥, ∧, etc. in LR mean the same as they meant
in LP. Also we know what ‘=’ means. But the symbols in a signature are just
symbols; they do not mean anything. As we said before, the formulas of LR are
not statements so much as patterns of statements.

This is not something peculiar to logic. When a group theorist proves

(x · y)−1 = y−1 · x−1 for all x, y

the symbols ‘·’ and ‘−1’ are meaningless until we make them refer to a particular
group. So we can say to the group theorist ‘Give me an example’, and the group
theorist gives us a group. In other words, she tells us (1) what are the group elem-
ents, (2) what counts as multiplying them and (3) what the inverse function is.
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Exactly the same holds with signatures in general. To interpret a signature
σ, we provide a mathematical structure called a σ-structure. The same signa-
ture σ has many different σ-structures, just as group theory has many different
groups.

Example 5.5.1 Recall the signature σarith of Example 5.3.2(a). One possible way
of interpreting the symbols in σarith is to write the following chart:

domain the set of all natural numbers {0, 1, 2, . . . };
0̄ the number 0;
S̄(x) x+ 1;
+̄(x, y) x+ y ;
·̄(x, y) xy.

(5.38)

We analyse this chart, starting at the top row.
When we discuss a topic, some things are relevant to the topic and some

are not. The collection of all relevant things is called the domain. The members
of the domain are known as the elements of the structure; some logicians call
them the individuals. So the first line of (5.38) fixes the subject-matter: σarith

will be used to talk about natural numbers.
Thus the domain is a set of objects. The remaining lines of (5.38) attach

features of this set to the various symbols in the signature. The symbol S̄, for
example, is a function symbol of arity 1, and (5.38) attaches to it the 1-ary
function defined by the term x+1. (See Section 5.2 for the use of terms to define
functions.) Likewise the chart assigns 2-ary functions to +̄ and ·̄ by giving terms
that define the functions. It tells us that +̄ is interpreted as addition on the
natural numbers, and ·̄ as multiplication.

Definition 5.5.2 Given a signature σ, a σ-structure A consists of the following
ingredients:

(a) A domain, which is a non-empty set. We refer to the elements of the domain
as the elements of A.

(b) For each constant symbol c of σ, an element of the domain; we write this
element as cA.

(c) For each function symbol F of σ with arity n, an n-ary function on the
domain; we write this function as FA.

(d) For each relation symbol R of σ with arity n, an n-ary relation on the
domain; we write this relation as RA.

Example 5.5.1 (continued) The σarith-structure in Definition 5.5.2 is known
as N, the natural number structure. Then +̄N is the function + on the natural
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numbers, and ·̄N is multiplication of natural numbers. The element 0̄N is the
number 0, and S̄N is the successor function (n �→ n+ 1). (The symbol N is also
used for the set of natural numbers, that is, the domain of the structure N.
In practice this ambiguity does not cause serious problems.)

Our next example is a different interpretation of the same signature σarith.

Example 5.5.3 Letm be a positive integer. Then N/mN, the structure of integers
mod m, is defined to be the following σarith-structure.

domain the set of natural numbers {0, 1, . . . ,m− 1};
0̄ the number 0;

S̄(x)
{
x+ 1 if x < m− 1;
0 if x = m− 1;

+̄(x, y) the remainder when x+ y is divided by m;
·̄(x, y) the remainder when xy is divided by m.

(5.39)

Consider the following formula of LR(σarith):

(S̄(0̄) = S̄(S̄(S̄(S̄(0̄)))))(5.40)

or in a natural shorthand

S0 = SSSS0.

Interpreted in N, this says

0 + 1 = (((0 + 1) + 1) + 1) + 1

In other words, 1 = 4. This is a false statement. But in N/3N the calculation is
different:

S0 means 0 + 1, i.e. 1
SS0 means 1 + 1, i.e. 2
SSS0 means 2 + 1, i.e. 0
SSSS0 means 0 + 1, i.e. 1

(5.41)

So in N/3N, the formula (5.40) makes the true statement that 1 = 1.
Comparing N and N/mN yields three morals:

(1) Two very different structures can have the same signature.

(2) The same formula can be true in one structure and false in another.

(3) Sometimes the same element is named by many different terms. For example
in N/3N the element 1 is named by

S0, SSSS0, SSSSSSS0, SSSSSSSSSS0, . . .
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Bernard Bolzano Bohemia, 1781–1848.
The truth value of ‘It’s snowing’ depends on the time and
place where it is used.

In calculating the value of SSSS0 in N, we used some commonsense assump-
tions, for example, that if the function S is written four times then it is supposed
to be applied four times. This is exactly the kind of assumption that logicians
need to make explicit, because it will be needed in proofs of logical theorems.
Section 5.6 will develop this point.

Neither of the two charts (5.38) and (5.39) has any relation symbols, because
their signatures had no relation symbols. Here is another signature that does
have one.

Definition 5.5.4 The signature σdigraph has just one symbol, the binary relation
symbol E. A σdigraph-structure is known as a directed graph, or a digraph for
short. Suppose G is a directed graph. The elements of the domain of G are
called its vertices. The binary relation EG is called the edge relation of G, and
the ordered pairs in this relation are called the edges of G. The convention is to
draw the vertices as small circles, then to draw an arrow from vertex µ to vertex
ν if and only if the ordered pair (µ, ν) is in the edge relation of G.

For example, here is a digraph:

��
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��
���

1 � 2

�3 � 4

�
	
�

�
�

�
��


(5.42)

The following chart is the digraph (5.42) written as an LR(σdigraph)-structure.

domain {1, 2, 3, 4};
E(x, y) {(1, 1), (1, 2), (2, 3), (3, 1)}.(5.43)
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Note how we name the edge relation by listing it in the style of (5.6). For some
other digraphs it would be more sensible to name the edge relation by using a
predicate.

Exercises
5.5.1. Draw the following digraphs:

(a)

domain {1, 2, 3, 4, 5};
E(x, y) y is either x+ 1 or x− 4.

(5.44)

(b)

domain {1, 2, 3, 4, 5};
E(x, y) {(1, 1), (1, 4), (1, 5), (2, 2), (2, 3), (3, 2), (3, 3),

(4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5)}.
(5.45)

5.5.2. Another way to describe a digraph is to introduce new constant symbols
to stand for its vertices, and then write down a description in the resulting
language LR(σ′) (where σ′ is σdigraph together with the added symbols).
For example, to describe a digraph with five vertices 1, 2, 3, 4, 5, we can
introduce symbols 1̄, 2̄, 3̄, 4̄ and 5̄ to name these vertices, and then write
the qf formula

(E(1̄, 1̄) ∧ ¬E(1̄, 2̄) ∧ ¬E(1̄, 3̄) ∧ E(1̄, 4̄) ∧ ¬E(1̄, 5̄) ∧
¬E(2̄, 1̄) ∧ E(2̄, 2̄) ∧ E(2̄, 3̄) ∧ ¬E(2̄, 4̄) ∧ E(2̄, 5̄) ∧
¬E(3̄, 1̄) ∧ E(3̄, 2̄) ∧ E(3̄, 3̄) ∧ ¬E(3̄, 4̄) ∧ E(3̄, 5̄) ∧
E(4̄, 1̄) ∧ ¬E(4̄, 2̄) ∧ ¬E(4̄, 3̄) ∧ E(4̄, 4̄) ∧ ¬E(4̄, 5̄) ∧
¬E(5̄, 1̄) ∧ E(5̄, 2̄) ∧ E(5̄, 3̄) ∧ ¬E(5̄, 4̄) ∧ E(5̄, 5̄))

(We could also add 1̄ �= 2̄ ∧ 1̄ �= 3̄ ∧ . . . , but here let us take that as
assumed.) Draw the digraph that has this description.

5.5.3. Here is the multiplication table of a cyclic group of order 3:

e a b

e e a b

a a b e

b b e a

We can rewrite this multiplication in the style of Exercise 5.5.2. For this
we take the cyclic group as a σgroup-structure (see Example 5.3.2(b)),
and we add to the signature two constant symbols ā and b̄ to serve as
names for a and b (σgroup already gives us the name e for the identity).



Quantifier-free logic 133

Then we write the conjunction of all the true equations expressed by the
multiplication table (such as ā · b̄ = e). Write out this conjunction.

5.5.4. Consider the σgroup-structure

domain the interval (−1, 1) in the real numbers;
e 0;
x · y x+y

1+xy ;
x−1 −x.

(5.46)

(WARNING: The chart is giving new meanings to the symbols on the
left. The symbols on the right have their usual meanings in the real
numbers—otherwise how would we understand the chart?)
(a) Is this σgroup-structure a group? Give reasons.

(b) Using the new constant symbol r̄ to name a real number r, which
of the following formulas are true in the structure above, and which
are false? Show your calculations.

(i) 1/3 · 1/3 = 1/9.

(ii) 1/3 · 1/3 = 2/3.

(iii) 1/2 · 1/2 = 4/5.

(iv) 1/4
−1 · −1/4 = e.

(v) 1/2 · −1/3 = 1/5.

(The structure in this exercise describes addition of velocities in special
relativity.)

5.5.6 Suppose π is a permutation of the set {1, 2, 3, 4, 5}, and G is the digraph
of Exercise 5.5.1(b). We can apply π to G by putting π(1) in place of 1
in G, π(2) in place of 2 and so on.
(a) Find a permutation π that turns G into the digraph of Exercise

5.5.2.

(b) Without going through all the possible permutations, explain why
there could not be a permutation that turns G into the digraph of
Exercise 5.5.1(a).

5.5.7. This exercise generalises Exercise 5.5.6. Suppose σ is a signature and A,
B are two σdigraph-structures. An isomorphism from A to B is a bijection
f from the domain of A to the domain of B such that for any two elements
a, a′ of A,

(a, a′) ∈ EA ⇔ (f(a), f(a′)) ∈ EB .
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An isomorphism from A to A is called an automorphism of A.
(a) How many automorphisms does the digraph of Exercise 5.5.1(a)

have?

(b) How many automorphisms does the digraph of Exercise 5.5.1(b)
have?

(c) Draw a digraph with four vertices which has no automorphisms
except the identity permutation.

5.6 Closed terms and sentences
Definition 5.6.1 We say that a term or qf formula of LR is closed if it has no
variables in it. A closed qf formula is also called a qf sentence.

More generally, a formula of LR will be called a sentence if it has no free
occurrences of variables in it. We keep this definition in reserve, to be used in
Chapter 7; but note that qf formulas of LR contain no expressions that can bind
variables, so all occurrences of variables in a qf formula are automatically free.

Suppose σ is a signature, A is a σ-structure and t is a closed term of LR(σ).
Then A gives a meaning to each symbol in t (except the punctuation), so that
we can read t and work out what it means. In the previous section we read the
closed terms S̄(0̄) and S̄(S̄(S̄(S̄(0̄)))) of LR(σarith) using the σarith-structure N,
and we saw that each of them names some element of N. This is the normal
situation: the closed term t of LR(σ), interpreted by A, names an element of A.
We call this element tA, and now we will see how to calculate it.

The following definition defines tA for each closed term t, by recursion on
the complexity of t. Note that if t is closed, then all subterms of t are closed
too, so the definition makes sense. Also the value assigned to a complex term tA
depends only on the head of t and the values (ti)A for the immediate subterms
ti of A.

Definition 5.6.2 Let σ be a signature and A a σ-structure. Then for each closed
term t of LR(σ) we define the element tA of A by:

(a) if t is a constant symbol c, then tA = cA;

(b) if F is an n-ary function symbol of σ and t1, . . . , tn are closed terms of
LR(σ), then F (t1, . . . , tn)A = FA((t1)A, . . . , (tn)A).

(Here cA and FA are given by A as in Definition 5.5.2.) The value of tA
can be calculated compositionally by working up the parsing tree for t; see
Exercise 5.6.3.
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For example, in N we defined an element 0̄N and functions S̄N, +̄N and ·̄N.
With their help and Definition 5.6.2 we have

0̄N = 0,
S̄(0̄)N = S̄N(0̄N) = 1,

S̄(S̄(0̄))N = S̄N(S̄(0̄)N) = 2,
·̄(S̄(S̄(0̄)), S̄(S̄(0̄)))N = ·̄N(2, 2) = 4

and so on. The next theorem is also an application of Definition 5.6.2. Note the
notation n̄, which we will use constantly when discussing N.

Theorem 5.6.3 Write n̄ for the term

S̄(S̄(. . . S̄(0̄) . . . )

of LR(σarith) with exactly n S̄’s. Then n̄N = n.

Proof We use induction on n.
Case 1: n = 0. Then n̄ is 0̄, and we know that 0̄N = 0.
Case 2: n = k + 1, assuming the result holds when n = k. We have:

k + 1N = S̄(k̄)N = S̄N(k̄N) = k + 1,

where the middle equation is by Definition 5.6.2.

We turn now to qf sentences. If φ is a qf sentence of LR(σ) and A is a
σ-structure, then A interprets the symbols in φ so that φ becomes a true or false
statement about A. In Chapter 3 we wrote A�(φ) for the truth value of φ in A,
where φ was a formula of LP. But from now on we write

|=A φ

to mean that A makes φ true, and we read it as ‘A is a model of φ’.

Definition 5.6.4 Let σ be a signature, A a σ-structure and χ a qf sentence of
LR(σ). Then the following definition (by recursion on the complexity of χ) tells
us when ‘|=A χ’ holds.

(a) If χ is R(t1, . . . , tn), where R is an n-ary relation symbol of σ and t1, . . . , tn
are terms (necessarily closed since χ is closed), then

|=A χ if and only if RA((t1)A, . . . , (tn)A).

(Here ‘RA((t1)A, . . . , (tn)A)’ means that the n-tuple ((t1)A, . . . , (tn)A) is in
the relation RA mentioned in Definition 5.5.2.)

(b) If χ is (s = t) where s and t are terms (again necessarily closed), then

|=A χ if and only if sA = tA.

(c) If χ is ⊥ then |=A χ does not hold (i.e. χ is false in A).
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(d) If χ is (¬φ) then

|=A χ if and only if it is not true that |=A φ.

(e) If χ is (φ ∧ ψ) then

|=A χ if and only if both |=A φ and |=A ψ.

(f)–(h) Similar clauses when χ is (φ ∨ ψ), (φ → ψ) or (φ ↔ ψ).

We say that A is a model of χ (or that χ is true in A) when |=A χ.

Remark 5.6.5 Since ‘|=A φ’ is just another notation for ‘A�(φ) = T’, the def-
inition above is the counterpart for qf LR of Definition 3.5.6 for LP. (You can
reconstruct the missing clauses (f)–(h) above from their counterparts (e)–(g) in
Definition 3.5.6.) We will keep the notation with A� for the compositional def-
inition of the truth value of a qf sentence in Appendix B, where it helps to give
a clean and algebraic formulation. But the notation ‘|=A χ’, though formally a
little clumsier, seems closer to how most mathematicians think.

Example 5.6.6
(1) We know how to calculate that +̄(1̄, ·̄(3̄, 2̄))N = 7 and +̄(3̄, 4̄)N = 7.

Hence

|=N (+̄(1̄, ·̄(3̄, 2̄)) = +̄(3̄, 4̄)).

Usually we would write this as

|=N 1 + (3 · 2) = 3 + 4.

(2) If φ is the formula x1 + x2 = x3 + Sx4 then we can turn it into a qf
sentence by substituting closed terms for the variables. We have:

|=N φ[2/x1, 66/x2, 67/x3, 0/x4],
but not |=N φ[5/x1, 6/x2, 7/x3, 8/x4].

(3) For greater variety of examples, we introduce the signature σoring.
(‘oring’ stands for ‘ordered ring’, but you will not need to know this.) At the
same time we describe a particular σoring-structure, namely the ordered field of
real numbers R. Notice that we can save space this way: σoring can be inferred
from the chart for R. Its symbols are listed on the left, and their interpretations
on the right show whether they are constant, function or relation symbols, and
their arities.
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The σoring-structure R is as follows:

domain the set of all real numbers;
0̄ the number 0;
1̄ the number 1;
−(x) minus x;
+̄(x, y) x+ y ;
·̄(x, y) xy;
< (x, y) x is less than y.

(5.47)

The qf sentence

(−((1 + 1) + 1) < (1 + (1 + (1 + 1))) · (−1) ∨ 1 = 1 + 0)

says that

−3 < −4 or 1 = 1,

which is true in R. So

|=R −((1 + 1) + 1) < (1 + (1 + (1 + 1))) · (−1) ∨ 1 = 1 + 0.

Just as in Section 3.5, we can use the definition of models to introduce
several other important notions.

Definition 5.6.7 Let σ be a signature and qf φ a sentence of LR(σ).

(a) We say that φ is valid , in symbols |=σ φ, if every σ-structure is a model of
φ. (The word ‘tautology’ is used only for valid formulas of LP.)

(b) We say that φ is consistent , and that it is satisfiable, if some σ-structure is
a model of φ.

(c) We say that φ is a contradiction, and that it is inconsistent, if no σ-structure
is a model of φ.

(d) If Γ is a set of qf sentences of LR(σ), then we say that a σ-structure A is a
model of Γ if A is a model of every sentence in Γ. We write

Γ |=σ φ(5.48)

to mean that every σ-structure that is a model of Γ is also a model of φ. We
call (5.48) a semantic sequent .

Exercise 5.6.4 will invite you to prove that, just as with LP, the subscript σ in
(Γ |=σ φ) makes no difference as long as φ and the formulas in Γ are all in LR(σ).

The following fundamental lemma tells us that if a qf sentence φ contains a
closed term t, then the only contribution that t makes to the truth or otherwise
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of φ in a structure A is the element tA. If we replaced t in φ by a closed term
s with sA = tA, then this would make no difference to the truth value in A. The
reason for this is the compositional definition of semantics: in the definition of
‘|=A φ’, t contributes no information beyond tA.

Lemma 5.6.8 Let σ be a signature and A a σ-structure. Let t1, . . . , tn and
s1, . . . , sn be closed terms of LR(σ) such that for each i (1 � i � n), (si)A =
(ti)A.

(a) Let t be a term of LR(σ) with distinct variables x1, . . . ,xn. Then

t[t1/x1, . . . , tn/xn]A = t[s1/x1, . . . , sn/xn]A.

(b) Let φ be a qf formula of LR(σ) with distinct variables x1, . . . ,xn. Then

|=A φ[t1/x1, . . . , tn/xn] if and only if |=A φ[s1/x1, . . . , sn/xn].

Proof We write T for the substitution t1/x1, . . . , tn/xn and S for the substi-
tution s1/x1, . . . , sn/xn. The proof of (a) is by induction on the complexity of
the term t.

Case 1: t has complexity 0. There are three subcases.

(i) t is a constant symbol c. Then t[T ]A = cA = t[S]A.

(ii) t is xi with 1 � i � n. Then t[T ]A = (ti)A = (si)A = t[S]A.

(iii) t is a variable not among x1, . . . ,xn. Then t[T ]A = tA = t[S]A.

Case 2: t has complexity k > 0, where (a) holds for all terms of complexity
< k. Then t is F (r1, . . . , rm) for some terms r1, . . . , rm all of complexity < k.
We have

t[T ]A = F (r1[T ], . . . , rm[T ])A = FA(r1[T ]A, . . . , rm[T ]A)
= FA(r1[S]A, . . . , rm[S]A) = . . . = t[S]A

where the first equation is by Definition 5.4.4(c), the second by Definition 5.6.2(b)
and the third by induction hypothesis.

The proof of (b) is similar, by induction on the complexity of φ.

Exercises
5.6.1. Write suitable clauses (f)–(h) for Definition 5.6.4. [See Remark 5.6.5.]

5.6.2. Which of the following are true and which are false? (In (b)–(d) we allow
ourselves names m for numbers m.)

(a) |=N (·(4̄, 3̄) = S̄(S̄(̄·(2̄, 5̄)))).
(b) |=N/5N 4̄+̄4̄ = 2̄.
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(c) |=R 7̄ ·̄π̄ = 22 → 8̄̄·π̄ = 23.

(d) |=R 9̄ < π̄·̄π̄ ∧ π̄·̄π̄ < 10.

5.6.3. Write a compositional definition of tA for closed terms t of LR(σ) and a
σ-structure A.

5.6.4. (a) (A version of the Principle of Irrelevance for qf LR) Suppose ρ and σ
are signatures with ρ ⊆ σ, A is a σ-structure and B is a ρ-structure
with the same domain as A, and sA = sB for every symbol s ∈ ρ.
Show that if φ is a qf sentence of LR(ρ), then |=A φ if and only
if |=B φ. [Adapt the proof of Lemma 5.6.8, starting with closed
terms.]

(b) Using (a), show that if ρ and σ are signatures with ρ ⊆ σ, Γ is a
set of qf sentences of LR(σ) and ψ is a qf sentence of LR(σ), then
(Γ |=ρ ψ) holds if and only if (Γ |=σ ψ) holds. [This is the analogue
for qf LR of Exercise 3.5.4, and the strategy of the proof is the
same.]

5.6.5. Let φ be a qf sentence of LR(σ) which uses all the symbols in σ, and � the
length of φ (i.e. the number of symbols in φ), such that |=A φ for some
σ-structure A. Build a σ-structure B with at most � elements, which is
also a model of φ. [Let T be the set of all closed terms that occur in
φ, including subterms of other terms. Then T has < � members. Let W
be the set of elements of A that are of the form tA for some t ∈ T ; so
again W has < � members. By Definition 5.5.2(a) the domain of A is
not empty; choose an element a of A. The σ-structure B has domain
W ∪ {a}. The constant symbols are interpreted in B the same way as
in A. The function symbols F are also interpreted the same way, except
that if b1, . . . , bn are in W ∪ {a} and FA(b1, . . . , bn) is not in W ∪ {a},
then put FB(b1, . . . , bn) = a. You can work out what to do with the
relation symbols, and how to show that this construction answers the
question.]

5.7 Satisfaction
We say that the natural number 4 satisfies the condition 2 < x < 6. One way
of explaining this is as follows: if we take the name 4̄ of 4 and write it in the
formula (2 < x ∧ x < 6) in place of x, we get a statement (2 < 4̄ ∧ 4̄ < 6) which
is true.

Example 5.7.1 Suppose φ is the formula

(¬(S̄(x) = S̄(S̄(0̄))))
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of LR(σarith), or in shorthand

S(x) �= 2̄

Then it expresses the condition that x + 1 �= 2, in other words x �= 1. The
numbers 0 and 2 satisfy φ in N, but the number 1 fails to satisfy it. Likewise:

• Every natural number satisfies (x = x) in N.

• No natural number satisfies (⊥ ∧ (x = x)) in N.

• 0 and 1 are the only numbers satisfying (x · x = x) in N.

• 0 and 2 are the only numbers not satisfying (¬(x · x = x+ x)) in N.

We would like to generalise this idea to n-tuples of elements. For example,
it would be useful to be able to say that the ordered pair (3.5, 5.5) satisfies the
condition x < y in R, but the ordered pair (88, 42) does not. But we run into
two problems.

Problem 5.7.2 First, how do we tell which item in the pair goes with which
variable? In the case of (3.5, 5.5) and x < y it is a reasonable guess that 3.5
goes with x and 5.5 goes with y. But, for example, this is no help for deciding
whether the pair (3.5, 5.5) satisfies z < 4; does z pick up 3.5 or 5.5?

In mathematical practice the same problem arises with functions of more
than one variable, and the usual solution there will work for us too.

Definition 5.7.3 Let y1, . . . , yn be distinct variables. If we introduce a formula
φ as φ(y1, . . . , yn), this means that when we apply an n-tuple (a1, . . . , an) of
elements to φ, we attach a1 to y1, a2 to y2 and so on. (The listed variables should
include all the variables free in φ, though sometimes it is useful to include some
other variables as well.)

So, for example, if φ is x + y = z, then (2, 3, 5) satisfies φ(x, y, z) and
φ(y,x, z) in N. It does not satisfy φ(z, y,x), but (5, 3, 2) does. Also (2, 3, 5, 1)
satisfies φ(x, y, z,w); in fact, (2, 3, 5,n) satisfies φ(x, y, z,w) regardless of what
natural number n is.

Problem 5.7.4 Second, our explanation of satisfaction assumed that we have
closed terms naming the elements in question; we substitute these names for the
variables and then see whether the resulting sentence is true. This works in the
structure N because every natural number n has a name n̄ in LR(σarith). But,
for example, the signature σdigraph has no constant symbols and hence no closed
terms. So if G is a digraph, no element at all of G is named by a closed term
of LR(σdigraph). But we surely want to be able to ask whether an element of a
digraph satisfies a formula.
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The next definition shows a way of doing it: we choose a new symbol and
add it to the signature as a name of the element.

Definition 5.7.5 Let σ be a signature. A witness is a new constant symbol that
is added to σ. We use the notation ā for a witness added to name the element a
in a σ-structure A; so āA = a.

Definition 5.7.6 Suppose φ(y1, . . . , yn) is a qf formula of LR(σ), A is a
σ-structure and a1, . . . , an are elements in the domain of A. We define the rela-
tion ‘(a1, . . . , an) satisfies φ in A’ by the following recursion on the complexity
of φ:

(a) If φ is atomic then (a1, . . . , an) satisfies φ in A if and only if

|=A φ[t1/y1, . . . , tn/yn](5.49)

where t1, . . . , tn are closed terms (possibly witnesses) such that for each
i, (ti)A = ai. (For this definition to make sense, we have to know that
the truth of (5.49) depends only on a1, . . . , an and not on the choice of
terms used to name them. But Lemma 5.6.8(b) guarantees this.)

(b) If φ is (¬ψ), then (a1, . . . , an) satisfies φ if and only if (a1, . . . , an) does
not satisfy ψ(y1, . . . , yn).

(c) If φ is (ψ ∧ χ), then (a1, . . . , an) satisfies φ if and only if (a1, . . . , an)
satisfies both ψ(y1, . . . , yn) and χ(y1, . . . , yn).

(d) If φ is (ψ ↔ χ), then (a1, . . . , an) satisfies φ if and only if either
(a1, . . . , an) satisfies both ψ(y1, . . . , yn) and χ(y1, . . . , yn), or it satisfies
neither.

(e), (f) Similar clauses for (ψ ∨ χ) and (ψ → χ), tracking the truth tables for ∨
and →.

Consider, for example, the real numbers in the form of the σoring-structure
R, and let φ(x, y) be the formula (y < x). To check whether the pair (e,π)
satisfies φ in R, we ask whether the sentence

(π̄ < ē)

is true in R (where ē and π̄ are witnesses naming the transcendental numbers e
and π). Since e = 2.7 . . . and π = 3.1 . . . , the answer is ‘No,’ and hence (e,π)
does not satisfy the formula in R. But the condition for ¬ in Definition 5.7.6(b)
tells us that (e,π) does satisfy the formula (¬φ).
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Definition 5.7.7 Let φ(y1, . . . , yn) and ψ(y1, . . . , yn) be qf formulas of LR(σ)
and A a σ-structure. We say that φ and ψ are equivalent in A if

for all elements a1, . . . , an of A, (a1, . . . , an) satisfies φ in A if and only if
it satisfies ψ in A.

We say that φ and ψ are logically equivalent if they are equivalent in every
σ-structure.

When we extend this definition to formulas with quantifiers in Section 7.3, we
will find various important logical equivalences. But for the moment we note one
obvious example.

Lemma 5.7.8 Let s and t be any terms of LR(σ). Then (s = t) and (t = s) are
logically equivalent formulas.

Proof Let y1, . . . , yn be all the variables that occur in s or t, listed without
repetition. Let φ(y1, . . . , yn) be (s = t) and let ψ(y1, . . . , yn) be (t = s). Let A
be a σ-structure and a1, . . . , an elements of A. We must show that (a1, . . . , an)
satisfies φ if and only if it satisfies ψ. Take witnesses ā1, etc. to name the elements
a1, etc.

Now φ[ā1/y1, . . . , ān/yn] is the result of putting ā1 for y1 etc. everywhere
through (s = t); so it is a sentence of the form (s′ = t′) for some closed terms s′

and t′. Since the same substitutions are made in the formula ψ[ā1/y1, . . . , ān/yn],
this formula is the sentence (t′ = s′). But

|=A (s′ = t′) ⇔ (s′)A = (t′)A by Definition 5.6.4(b)
⇔ (t′)A = (s′)A
⇔ |=A (t′ = s′) by Definition 5.6.4(b) �

We remark that in the statement ‘φ(x1, . . . ,xn) and ψ(x1, . . . ,xn) are
equivalent in A’, the listing of the variables is not really needed. To test logi-
cal equivalence, one needs to make sure that the same term is put for x1 in both
φ and ψ, and similarly for the other variables; but for this the order does not
matter. The same applies to logical equivalence. However, in the proof of Lemma
5.7.8 it was convenient to have a listing of the variables.

Exercises
5.7.1. For each of the following formulas, say what is the set of natural numbers

that satisfy the formula in N.
(a) (x = x+̄x).
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(b) (S̄(x) = x̄·x).
(c) (¬((x = 7̄) ∨ (x = 9̄))).

(d) (x̄·S̄(x) = x+̄25).

5.7.2. For each of the following formulas φ(x, y), say what is the set of pairs
(m,n) of natural numbers that satisfy the formula in N.

(a) (x̄·y = 0̄).

(b) ((x = 4̄) ∧ (y = 1066)).

(c) (x = 4̄).

(d) (x = S̄(y)).

(e) (x̄·S̄(y) = S̄(x)̄·y).
(f) ((x̄·x)̄·(ȳ·y) = 36).

5.7.3. In each of the following cases, describe the set of pairs (a, b) of elements
that satisfy φ in the given structure. In this exercise we use ordinary
mathematical notation, but the formulas can be written as qf formulas
of LR.

(a) φ(x, y) is x2 + y2 = 1, the structure is R.

(b) φ(x, y) is x2 + y2 < 1, the structure is R.

(c) φ(x, y) is y < 1, the structure is R.

(d) φ(x, y) is x+ y = 1, the structure is N/5N.

(e) φ(x, y) is x2 + y2 = 4, the structure is N/5N.

(f) φ(x, y) is x2y2 = 2, the structure is N/7N.

5.7.4. Show that the two formulas (x = y) and (S̄(x) = S̄(y)) are equivalent
in N.

5.7.5. Show that the two formulas ((x = 0̄) ∧ (y = 0̄)) and (x2 + y2 = 0̄) are
equivalent in R.

5.7.6. Let φ(x) be a qf formula of LR(σarith). Show that the set of natural
numbers that satisfy φ in N consists of either finitely many numbers, or
all the natural numbers except finitely many. [This asks for an induction
on the complexity of φ.]

5.8 Diophantine sets and relations
Diophantine relations provide some excellent insight into the notion of satisfac-
tion. This is one reason why we explore them here. But later we will discover
some powerful facts about them that are directly relevant to Leibniz’s project
of doing logic by calculation. In the next definition, remember from Definition
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5.2.3 that an n-ary relation on a set X is the same thing as a set of n-tuples of
elements of X.

Definition 5.8.1 Let n be a positive integer and X a set of n-tuples of natural
numbers. We say that X is diophantine if

there is an equation φ(x1, . . . ,xn, y1, . . . , ym) of LR(σarith) such that for
every n-tuple (k1, . . . , kn) of natural numbers,

(k1, . . . , kn) ∈ X ⇔ for some numbers �1, . . . , �m,
|=N φ(k̄1, . . . , k̄n, �̄1, . . . , �̄m).

For example, the set of natural numbers that can be written as the sum of
three squares is the set of natural numbers k such that

for some �1, �2, �3, k = �21 + �22 + �23(5.50)

Consider the equation

x = y2
1 + y2

2 + y2
3(5.51)

We can write (5.51) as the following equation φ(x, y1, y2, y3) of LR(σarith):

(x = +̄(+̄(̄·(y1, y1), ·̄(y2, y2)), ·̄(y3, y3)))(5.52)

Then for every k,

k is the sum of three squares ⇔ for some numbers �1, �2, �3,
|=N φ(k̄, �̄1, �̄2, �̄3).

So the set of sums of three squares is diophantine.
As this example illustrates, a direct proof that a relation is diophantine

involves finding an equation of LR(σarith). But by now you should know which
equations in ordinary mathematical notation can be rewritten as equations of
LR(σarith), so we will use the ordinary notation.

Theorem 5.8.2 The following sets and relations on the natural numbers are
diophantine.

(a) x is even.

(b) x is a cube.

(c) x1 � x2.

(d) x1 < x2.
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(e) x1 divides x2.

(f) x1 + 1,x2 + 1 are relatively prime.

(g) x1 �= x2.

(h) x is not a power of 2.

Proof (a) x is even if and only if for some natural number y, x = 2y.
(c) x1 � x2 if and only if for some natural number y, x1 + y = x2.
The rest are exercises.

Theorem 5.8.3 Let s1 = t1 and s2 = t2 be two equations in LR(σarith). Then

(1) the formula s1 = t1 ∧ s2 = t2 is equivalent in N to an equation;

(2) the formula s1 = t2 ∨ s2 = t2 is equivalent in N to an equation.

The proof will use the following device. Suppose E is an equation in the
integers, and one of the terms of E has the form −t. Then by adding t to both
sides and cancelling, we can remove the occurrence of −. The medieval Arab
mathematicians referred to this operation as al-jabr . By reducing both sides of
E to simplest terms and then applying al-jabr enough times, we can reach an
equation E′ that is equivalent to E in the integers and has no occurrences of −.
The operation is mathematically trivial, but our reason for applying it is not: in
order to prove a fact about N we pass to Z (the integers), and then we need a
device for getting back to N.

(The name ‘al-jabr’ originally meant applying force. It became specialised to
the application of force to a broken or dislocated bone to push it back into place.
Then the mathematicians took it over, with the idea that a term −t has got
itself dislocated onto the wrong side of an equation. The word then evolved from
‘al-jabr’ into ‘algebra’. Another word from the same root is the name Gabriel,
‘God is my force’.)

Proof (a) We have the equivalences

s1 = t1 ∧ s2 = t2 (in N)
⇔ (s1 − t1) = 0 = (s2 − t2) (in Z)
⇔ (s1 − t1)2 + (s2 − t2)2 = 0 (in Z)
⇔ s2

1 + t21 + s2
2 + t22 = 2s1t1 + 2s2t2 (in N by al-jabr)

(b) Likewise

s1 = t1 ∨ s2 = t2 (in N)
⇔ (s1 − t1) = 0 or (s2 − t2) = 0 (in Z)
⇔ (s1 − t1)(s2 − t2) = 0 (in Z)
⇔ s1s2 + t1t2 = s1t2 + t1s2 (in N by al-jabr)
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So, for example, the set of natural numbers n that are not prime is
diophantine:

n not prime ⇔ for some y, z,
(n = 0) ∨ (n = 1) ∨ ((y < n) ∧ (z < n) ∧ (n = yz))

⇔ for some y, z,u, v,
(n = 0) ∨ (n = 1)∨
((n = y + Su) ∧ (n = z + Sv) ∧ (n = yz)).

We turn to an interesting description of the diophantine sets.

Definition 5.8.4 Let n be a positive integer and let X be a set of n-tuples
(k1, . . . , km) of natural numbers.

We say that X is computably enumerable, or c.e. for short, if a digital com-
puter with infinitely extendable memory and unlimited time can be programmed
so that it lists (not necessarily in any reasonable order) all and only the n-tuples
that are in X. (Imagine it programmed so that every time you press the Return
key, it prints out another n-tuple from the list.)

We say that X is computable if a digital computer with infinitely extendable
memory and unlimited time can be programmed so that if you type in an n-tuple
in X, the computer prints YES, and if you type in an n-tuple not in X then it
prints NO.

Computably enumerable sets used to be known as recursively enumerable, or
r.e. for short. Likewise computable sets have often been called recursive. There
is a move to replace these old names, because being computable or c.e. has little
to do with recursion and everything to do with computation.

We write Nn for the set of all n-tuples of natural numbers. We write A \B
for the set of elements of A that are not in B.

Lemma 5.8.5 Let n be a positive integer and X a set of n-tuples of natural
numbers. Then the following are equivalent:

(a) X is computable.

(b) Both X and Nn \X are c.e.

Proof (a) ⇒ (b): Assuming (a), we can program a computer so that it runs
through all n-tuples of natural numbers in turn, tests each one to see if it is in
X, then prints out the n-tuple when the answer is YES. This shows that X is
c.e.; the same argument applies to Nn \X, using the answer NO.

(b) ⇒ (a): Assume X and Nn \ X are both c.e. Then we can program a
computer to test any n-tuple K for membership of X as follows. The computer
simultaneously makes two lists, one of X and one of Nn \X, until K turns up in
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one of the lists (as it must eventually do). If the list that K appears in is that
of X, the computer prints YES; if the list is of Nn \X then it prints NO.

Since at least one of X and Nn \X is infinite, we have no guarantee that K
is going to turn up in either list before the human race becomes extinct. So this
is not a helpful computer program. But it does give the right answer.

Yuri Matiyasevich Russia, living.
There is no algorithm for telling whether a diophantine
equation has a solution.

Theorem 5.8.6 (Matiyasevich’s Theorem) Let n be a positive integer and X a
set of n-tuples of natural numbers. Then the following are equivalent:

(a) X is computably enumerable.

(b) X is diophantine.

Proof (b) ⇒ (a) is clear: we program a computer to test all (n+m)-tuples of
natural numbers in turn, and whenever it reaches one such that

|=N φ(k̄1, . . . , k̄n, �̄1, . . . , �̄m),(5.53)

it prints out (k1, . . . , kn). How does the computer check whether (5.53) holds?
Since φ is an equation in natural numbers, the computer only has to calculate
the values of the left side and the right side and then check that they are equal.

The proof of direction (a) ⇒ (b) is difficult and we omit it. The idea is
that an n-tuple K is in X if and only if there is a computation C according to
a given computer program, that returns the answer YES when we type in K.
Using Alan Turing’s analysis of computing, we can code up the computation C

as a set of numbers satisfying certain conditions. To express these conditions by
a natural number equation involves a deep study of diophantine relations. (For
further information see Yuri V. Matiyasevich, Hilbert’s Tenth Problem, MIT
Press, Cambridge, MA, 1993.)
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Exercises
5.8.1. Show that the empty set of natural numbers and the set of all natural

numbers are both diophantine.

5.8.2. Prove the remaining cases of Theorem 5.8.2.

5.8.3. Show that the following relations are diophantine.
(a) x3 is the remainder when x1 is divided by x2 + 1.

(b) x3 is the integer part of the result of dividing x1 by x2 + 1.

5.8.4. Show that if n is a positive integer and R, S are diophantine n-ary rela-
tions on the natural numbers, then R∩S and R∪S are also diophantine.
[Use Theorem 5.8.3.]

5.8.5. The two following statements are equivalent:
(i) F (G(x1)) = x2.

(ii) There is y such that G(x1) = y and F (y) = x2.
After you have satisfied yourself that this is true, use this idea (and the
proof of Theorem 5.8.3) to show that every diophantine relation can be
written as in Definition 5.8.1 using an equation φ of the form s = t in
which both s and t are polynomials in x1, . . . , y1, . . . of degree � 4.

5.9 Soundness for qf sentences
Suppose Γ is a set of qf formulas of LR(σ) and ψ is a qf formula of LR(σ). In
Definition 5.4.7 we defined what

Γ �σ ψ(5.54)

means, in terms of derivations. In Definition 5.6.7(d) we defined what

Γ |=σ ψ(5.55)

means, in terms of models.

Theorem 5.9.1 (Soundness of Natural Deduction with qf Sentences) Let σ
be a signature, Γ a set of qf sentences of LR(σ) and ψ a qf sentence of LR(σ).
If Γ �σ ψ then Γ |=σ ψ.

Proof We show that

If D is a σ-derivation whose conclusion is ψ and whose undis-
charged assumptions all lie in Γ, and which uses no formulas
except qf sentences of LR(σ), then every σ-structure that is a
model of Γ is also a model of ψ.

(5.56)
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As in the proof of Soundness for propositional logic (Theorem 3.9.2) we use the
fact that D is a tree; so we can prove (5.56) for all Γ, ψ and D by induction on
the height of D.

The cases covered in the proof of Theorem 3.9.2 go exactly as before, but
using Definition 5.4.5 of σ-derivations. There remain the two cases where the
right label R on the bottom node of D is either (= I) or (= E). We assume
D has height k and (5.56) is true for all derivations of height < k (and all Γ
and ψ).

Case 2 (d): R is (=I). In this case ψ has the form (t = t) where t is a
closed term (because it is in a qf sentence). Let A be any σ-structure. Then by
Definition 5.6.4(b),

|=A (t = t) ⇔ tA = tA(5.57)

But tA is trivially equal to tA, so |=A (t = t) as required.
Case 2 (e): R is (=E). Then D has the form

D1 D2

(s = t) φ[s/x]
φ[t/x]

No assumptions are discharged here, so that both D1 and D2 are derivations
whose undischarged assumptions all lie in Γ. They have height < k, so by induc-
tion hypothesis, every model of Γ is also a model of (s = t) and φ[s/x]. Thus if
A is any model of Γ then sA = tA by the first, and

|=A φ[s/x]

by the second. Since sA = tA, Lemma 5.6.8(b) guarantees that

|=A φ[t/x]

as well. But φ[t/x] is ψ, as required.
So (5.56) is proved. This is not quite the end of the story, because there

could be a σ-derivation D that proves the sequent Γ � ψ and contains formulas
that are not sentences. To deal with this case, let τ be a signature containing a
constant symbol c, such that σ ⊆ τ . (If σ already contains a constant symbol,
take τ to be σ.) As in Exercise 5.4.7 we can put c in place of every variable, so
as to get a τ -derivation that proves Γ � ψ and uses only sentences. So by the
case already proved, Γ |=τ ψ. Then Γ |=σ ψ as in Exercise 5.6.4(b) (basically the
Principle of Irrelevance).
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5.10 Adequacy and completeness for qf sentences
As in Section 3.10, and for the same reason, we assume that the symbols of the
signature σ can be listed as S0,S1, . . . . We will also assume that the signature
σ contains at least one constant symbol—but see the comment at the end of
the section.

Theorem 5.10.1 (Adequacy of Natural Deduction for qf Sentences) Let Γ be
a set of qf sentences of LR(σ) and ψ a qf sentence of LR(σ). Then

Γ |=σ ψ ⇒ Γ �σ ψ.
As in Section 3.10, for simplicity our proof applies to a stripped-down version

of LR that never uses ∨, → or ↔. As in Lemma 3.10.3, it will suffice to show
that if Γ is a syntactically consistent set (Definition 5.4.7), then Γ has a model.
To show that this suffices, we previously used Example 3.4.3 for propositional
logic, but the natural deduction rules used there are still valid for our expanded
logic.

Definition 5.10.2 Let σ be a signature and let ∆ be a set of qf sentences of
LR(σ). We say that ∆ is a Hintikka set (for our stripped-down LR(σ)) if it
meets the following conditions:

(1) If a formula (φ ∧ ψ) is in ∆ then φ is in ∆ and ψ is in ∆.

(2) If a formula (¬(φ ∧ ψ)) is in ∆ then either (¬φ) is in ∆ or (¬ψ) is in ∆.

(3) If a formula (¬(¬φ)) is in ∆ then φ is in ∆.

(4) ⊥ is not in ∆.

(5) There is no atomic sentence φ such that both φ and (¬φ) are in ∆.

(6) For every closed term t of LR(σ), (t = t) is in ∆.

(7) If φ is atomic and s, t are closed terms such that both (s = t) and φ[s/x] are
in ∆, then φ[t/x] is in ∆.

Lemma 5.10.3 If ∆ is a Hintikka set for LR(σ), then some σ-structure is a
model of ∆.

Proof Let ∆ be a Hintikka set for LR(σ). We write C for the set of closed
terms of LR(σ), and we define a relation ∼ on C by

s ∼ t ⇔ (s = t) ∈ ∆.(5.58)

We claim that ∼ is an equivalence relation on C.
The relation ∼ is reflexive by (6). It is symmetric by (6), (7) and the cal-

culation in Example 5.4.2, and it is transitive by a similar calculation. So the
claim is true. We write t∼ for the set of all the closed terms s in C such that
s ∼ t. (This set is the equivalence class of t for the equivalence relation ∼.)
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Now we can describe the required σ-structure A. We take as typical symbols
of σ a constant symbol c, a 1-ary function symbol F and a 2-ary relation symbol
R. Then A is defined by the following chart.

domain the set of all t∼ with t in C;
c the element c∼;
FA(a) the element F (t)∼ where a is t∼;
RA(a1, a2) R(t1, t2) ∈ ∆, where a1 is t∼1 and a2 is t∼2 .

(5.59)

The domain is non-empty—as required by Definition 5.5.2—because of our
assumption that σ has a constant term.

There is a pitfall here in the interpretation of the function symbol F . The
interpretation tells us that if a is an element of A, then we can find the element
FA(a) as follows:

Find the closed term t such that a is t∼ (we know that all the elements
of A have this form), write the term F (t) and then take F (t)∼; this
element of A is the required value FA(a).

(5.60)

If you do not see at once what the problem is, probably you should stop reading
and spend some time getting it into focus while we show you a picture of Leopold
Kronecker, who first proved a version of Lemma 5.10.3.

Leopold Kronecker Germany, 1823–1891.
To build a model of a set of equations, make the model
out of the symbols in the equations.

The problem with (5.60) is that there are in general many closed terms t
such that t∼ = a. In fact every term in the equivalence class t∼ will do. To
justify our interpretation of F , we have to show that it does not matter which
t you choose in the equivalence class; all of them lead to the same F (t)∼. We
show this as follows.

Suppose s ∼ t. Then by (5.58),

(s = t) is in ∆(5.61)
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Now by (6) we have

(F (s) = F (s)) is in ∆

So by (7) applied with φ the atomic formula (F (s) = F (x)), where x is a variable,
and (5.61),

(F (s) = F (t)) is in ∆

Then by (5.58) again,

F (s) ∼ F (t)(5.62)

so F (s)∼ = F (t)∼ as required.
The same problem arises with the interpretation of R. We need to show that

when a1, a2 are elements of A, then the question whether RA(a1, a2) holds does
not depend on the choice of closed terms t1 and t2 with a1 = t∼1 and a2 = t∼2 .

Suppose s∼
1 = t∼1 and s∼

2 = t∼2 . We need to show that R(s1, s2) ∈ ∆ if and
only if R(t1, t2) ∈ ∆. Assume R(s1, s2) ∈ ∆. By (5.58), (s1 = t1) ∈ ∆. Then by
(7) with s1, t1 in place of s, t and φ equal to R(x, s2), where x is a variable, we
see that R(t1, s2) ∈ ∆. Also (s2 = t2) ∈ ∆. By a second application of (7) with
s2, t2 in place of s, t and φ equal to R(t1,x), it follows that R(t1, t2) ∈ ∆.

Now a symmetrical argument, swapping s1 and s2 with t1 and t2, shows
that if R(t1, t2) ∈ ∆ then R(s1, s2) ∈ ∆, as required.

In general, if F is a function symbol of arity n and a1, . . . , an are elements
of A, then we interpret F so that FA(a1, . . . , an) = F (t1, . . . , tn)∼, where ti is a
closed term with t∼i = ai for 1 ≤ i ≤ n. Likewise, if R is a relation symbol of arity
n, then we define RA(a1, . . . , an) to be true in A if and only if R(t1, . . . , tn) ∈ ∆,
where again t∼i = ai. Similar but more elaborate arguments show that these
definitions do not depend on the choice of closed terms ti such that t∼i = ai (see
Exercise 5.10.1).

So the σ-structure A is defined. It remains to show that every qf sentence
in the Hintikka set ∆ is true in A.

A key observation is that for every closed term t,

tA = t∼.(5.63)

This is proved by induction on the complexity of t. If t is a constant symbol c
then cA = c∼ by definition. If t is F (t1, . . . , tr) then

tA = FA((t1)A, . . . , (tr)A) by Definition 5.6.2(b)
= FA(t∼1 , . . . , t∼r ) by induction hypothesis
= F (t1, . . . , tr)∼ = t∼ by definition of FA.

This proves (5.63).
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Now we show for each qf sentence φ, by induction on the complexity
of φ, that

(a) if φ is in ∆ then A is a model of φ, and
(b) if ¬φ is in ∆ then A is not a model of φ.(5.64)

Case 1: φ is an atomic sentence of the form (s = t). If (s = t) ∈ ∆ then s ∼ t,
so using (5.63),

sA = s∼ = t∼ = tA

and hence |=A (s = t) by Definition 5.6.4(b).
If ¬(s = t) is in ∆ then (s = t) is not in ∆, by clause (5), so s �∼ t and

Definition 5.6.4(b) again shows that A is not a model of (s = t).

Case 2: φ is an atomic sentence of the form R(t1, . . . , tn). This is very similar
to Case 1, but a little simpler.

Case 3: φ is ⊥ or (¬ψ) or (ψ ∧ χ). These cases are exactly as in the proof of
Lemma 3.10.5 for LP, except that now we write |=A φ instead of A�(φ) = T .

Now by (5.64)(a) we have checked that A is a model of ∆, so the lemma is
proved.

Lemma 5.10.4 If Γ is a syntactically consistent set of qf sentences of LR(σ),
there is a Hintikka set ∆ for LR(σ), such that Γ ⊆ ∆.

Proof The proof is similar to that of Lemma 3.10.6 for LP. We make a listing

θ0, θ1, . . .

where each θi is

EITHER a qf sentence of LR(σ) not containing →, ↔ or ∨,

OR a triple of the form (φ,x, s = t) where φ is an atomic formula of LR(σ)
with the one variable x, and s, t are closed terms of LR(σ).

We arrange the list so that each of these sentences or triples occurs infinitely
often.

We define a sequence of sets Γi of qf sentences, where Γ0 = Γ and the
definition of each Γi+1 depends on Γi and θi. Suppose Γi has just been defined.

• If θi is a sentence of one of the forms (ψ ∧ χ) or ¬(ψ ∧ χ) or ¬¬ψ, then we
proceed exactly as in the proof of Lemma 3.10.6.
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• If θi is of the form (t = t) then we put Γi+1 = Γi ∪ {(t = t)}.
• If θi is (φ,x, s = t) and the qf sentences (s = t) and φ[s/x] are in Γi, then

we put Γi+1 = Γi ∪ {φ[t/x]}.
• In all other cases, Γi+1 = Γi.

After all the Γi have been defined, we take ∆ to be the union Γ0 ∪Γ1 ∪ · · · .
We claim that ∆ is syntactically consistent. As in the proof of Lemma 3.10.6,
this reduces to showing by induction on i that for each i, if Γi is syntactically
consistent then so is Γi+1.

Besides the cases (i), (ii) and (iii) in the proof of Lemma 3.10.6 there are
two new cases to consider.

(iv) Suppose θi is (t = t). In this case Γi+1 = Γi ∪ {(t = t)}. Assume for
contradiction that there is a σ-derivation D of ⊥ whose undischarged assump-
tions are in Γi ∪ {(t = t)}. In D, put the right-hand label (=I) on each leaf
with left label (t = t) and no dandah; in other words, turn all undischarged
assumptions of this form into conclusions of (=I). The result is a σ-derivation of
⊥ from assumptions in Γi, which contradicts the inductive assumption that Γi
is syntactically consistent.

(v) Suppose θi is (φ,x, s = t) where the sentences (s = t) and φ[s/x] are
in Γi. Then Γi+1 = Γi ∪ {φ[t/x]}. Suppose for contradiction that there is a
σ-derivation D with conclusion ⊥ and undischarged assumptions all in Γi ∪
{φ[t/x]}. Every undischarged assumption of D of the form φ[t/x] can be derived
from (s = t) and φ[s/x] by (=E), and this turns D into a σ-derivation of ⊥ from
assumptions in Γi. But by induction hypothesis there is no such derivation.

The claim is proved.
It remains to show that ∆ is a Hintikka set. Properties (1)–(5) are satisfied

as in the proof of Lemma 3.10.6.
For property (6), suppose t is a closed term of LR(σ). Then some θi is

equal to (t = t), and we chose Γi+1 to be Γi ∪ {(t = t)}. So (t = t) is in Γi+1,
hence in ∆, and property (6) holds.

For property (7), suppose φ is atomic and s, t are closed terms such that
both (s = t) and φ[s/x] are in ∆. Then (s = t) is in Γi and φ[s/x] is in Γj for
some i, j. Let k be the maximum of i, j, so that both sentences are in Γk. There
is � with � ≥ k such that θ� is (φ,x, s = t). We chose Γ�+1 to be Γ� ∪ {φ[t/x]},
so φ[t/x] is in Γ�+1, hence in ∆. This shows (7) is satisfied and completes the
proof that ∆ is a Hintikka set.

As in Section 3.10, these two lemmas prove the Adequacy Theorem.
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Theorem 5.10.5 (Completeness Theorem for qf Sentences) Let Γ be a set of
sentences of LR(σ) and ψ a sentence of LR(σ). Then

Γ �σ ψ ⇔ Γ |=σ ψ.

Proof This is the Soundness and Adequacy Theorems combined.

Theorem 5.10.6 (Decidability Theorem for qf Sentences) There is an algo-
rithm which, given a finite set of qf sentences, will decide whether or not the set
has a model.

Proof We sketch the proof. Let φ be a qf sentence and � its length. Let σ be
the smallest signature so that φ is in LR(σ); so σ is finite. By Exercise 5.6.5, if
φ has a model then it has one with at most � elements. Now we can list all the
σ-structures with domain {1}, all the σ-structures with domain {1, 2}, and so
on up to those with domain {1, . . . , �}. The list is finite because σ is finite and
there are only finitely many ways of interpreting each symbol in σ. We can check
each listed σ-structure to see whether it is a model of φ. If none are, then φ has
no model.

When σ is a signature with no constant symbols, the Adequacy and Decid-
ability Theorems still hold but for a trivial reason. The only qf sentences
of LR(σ) are formulas of propositional logic, built up from ⊥. Such formu-
las are either tautologies or contradictions, so that the structures become
irrelevant and the arguments of this section collapse down to truth table
calculations.

Exercises
5.10.1. Justify (5.60) in full generality by establishing the following. Let ∆ be a

Hintikka set for LR(σ), and define ∼ by (5.58). Let s1, . . . , sn, t1, . . . , tn
be closed terms such that si ∼ ti whenever 1 ≤ i ≤ n. Then:

(a) If F is a function symbol of arity n, then F (s1, . . . , sn) ∼ F (t1,
. . . , tn). [Show that F (s1, . . . , sn) ∼ F (t1, . . . , ti−1, si, . . . , sn)
whenever 1 ≤ i ≤ n+1, by induction on i. Each step uses (7) as in
the proof of (5.62).]

(b) If R is a relation symbol of arity n then R(s1, . . . , sn) ∈ ∆ ⇔
R(t1, . . . , tn) ∈ ∆. [Use a similar induction argument.]

5.10.2. We write N(σ,n) for the number of distinct σ-structures whose domain
is the set {1, . . . ,n}.
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(a) Show that if σ consists of a single constant symbol then
N(σ,n) = n.

(b) Show that if σ consists of a single k-ary relation symbol then
N(σ,n) = 2n

k

.

(c) Show that if σ consists of a single k-ary function symbol then
N(σ,n) = nn

k

.

(d) Show that if σ consists of the i distinct symbols S1, . . . ,Si and we
write {Sj} for the signature with only the symbol Sj then N(σ,n)
= N({S1},n)× · · · ×N({Si},n).



6 Second interlude: the Linda
problem

‘Linda is 31 years old, single, outspoken, and very bright. She majored in philos-
ophy. As a student, she was deeply concerned with issues of discrimination and
social justice, and also participated in anti-nuclear demonstrations.

Please rank the following statements by their probability, using 1 for the
most probable and 8 for the least probable.

(a) Linda is a teacher in an elementary school.

(b) Linda works in a bookstore and takes Yoga classes.

(c) Linda is active in the feminist movement.

(d) Linda is a psychiatric social worker.

(e) Linda is a member of the League of Women Voters.

(f) Linda is a bank teller.

(g) Linda is an insurance salesperson.

(h) Linda is a bank teller and is active in the feminist movement.’

Please write down your answers before reading on.

Logical analysis

In fact most of the questions were a blind. The only answers that interest us are
those to the two questions

(f) Linda is a bank teller.
(h) Linda is a bank teller and is active in the feminist movement.

By (∧E) the statement

(h) Linda is a bank teller and is active in the feminist movement.

entails the statement

(f) Linda is a bank teller.

So (f) must be at least as probable as (h).
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In our logic class the percentage of people who made (h) more probable than
(f), even after completing Chapters 1–5, was 54%.

Psychological analysis

The quoted passage is from ‘Judgments of and by representativeness’ by Amos
Tversky and Daniel Kahneman (pages 84–98 of Daniel Kahneman, Paul Slovic
and Amos Tversky (eds), Judgment under Uncertainty: Heuristics and Biases,
Cambridge University Press, Cambridge, 1982). It has given rise to a large num-
ber of psychological studies and analyses under the name of the Linda Problem
or the Conjunction Fallacy . Tversky and Kahneman suggest that people tend
to estimate (h) as more probable than (f) because (h) is more ‘representative’ of
the kind of person that Linda is described as being.

Whatever the reason, this and several other examples given by Kahneman
and Tversky seem to show that we often make choices incompatible with logic,
even in situations where our choices have practical consequences. If most people
making commercial decisions or playing the stock market commit systematic
fallacies like this one, then anyone who can recognise and avoid the fallacies
stands to make a killing. In 2002 Kahneman was awarded the Nobel Prize in
Economics for his work with Tversky (who had died in 1996).
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Now we turn to arguments that involve quantifier expressions ‘There is’ and
‘For all’, as we promised at the beginning of Chapter 5. We study what these
expressions mean in mathematics (Sections 7.1–7.2), we build a formal semantics
that gives necessary and sufficient conditions for a first-order sentence to be true
in a structure (Section 7.3), we find natural deduction rules for these sentences
(Section 7.4) and we prove a completeness theorem for the proof calculus got by
adding these rules to those of earlier chapters (Section 7.6). The logic that we
reach by adding these expressions and rules is called first-order logic. Sometimes
you will also hear it called predicate logic or elementary logic or classical logic.
Do not confuse it with traditional logic, which is the logic that was studied up
till the middle of the nineteenth century—see (7.8) below.

Much of this chapter runs parallel to what we have already done in earlier
chapters; but not all of it—there is a kind of mathematical lift-off when quanti-
fiers become available. In Section 7.1 we will see how to express some arithmetic
by using quantifiers and ‘=’. Section 7.5 will take this idea much further, and
show that a significant amount of arithmetic can be done by using first-order
logic together with a small number of axioms expressing facts about the natural
numbers. Many familiar classes of structures in algebra, such as groups, fields,
rings or vector spaces, are defined by axioms that we can write in first-order
logic. A set of first-order sentences used in order to define a class of structures
is known as a theory , and in Section 7.7 we examine some theories.

One cannot go far in logic today without meeting infinity. In a first logic
course you probably do not want to hear too much about infinity. So we postpone
the details till Section 7.8, where they serve as a preparation for some brief
remarks in Section 7.9 about the role of logic in the classification of mathematical
structures.

7.1 Quantifiers
Definition 7.1.1 Suppose φ is a predicate and x a variable. Then we write

∀xφ(7.1)

for the statement ‘For all x, φ’. For example,

∀x x is prime(7.2)
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says ‘For all elements x, x is prime’. This is mathematicians’ talk; plain English
says ‘All elements are prime’.

We write

∃xφ(7.3)

for the statement ‘For some x, φ’, or equivalently ‘There is x such that φ’. Thus

∃x x is prime(7.4)

is read ‘There is an element x such that x is prime’, or ‘There is a prime element’.

In the terminology of Definitions 5.1.1 and 5.3.5, the universal quantifier ∀x
in (7.2) binds all the occurrences of x in (7.2) (including the occurrence of x in
∀x itself). The same applies in (7.1). Likewise the existential quantifier ∃x in
(7.4) binds all occurrences of x in (7.4), and the same holds in (7.3). In Section
7.2 we will give a precise test of when an occurrence of a variable is bound.

Here are some examples of statements using quantifiers.

∃y (y > x)(7.5)

says that some element is greater than x. Both occurrences of y in (7.5) are
bound by the quantifier, but x is free because there is no quantifier ∀x or ∃x.

∀x∃y (y > x)(7.6)

says that for every element x there is an element which is greater than x; in other
words, there is no maximal element. All the occurrences of variables in (7.6) are
bound.

∀x (x is prime → x > 13)(7.7)

says that every element, if it is prime, is greater than 13; in other words, every
prime element is greater than 13.

The next examples are from traditional logic; the letters A, E, I, O are
medieval names for the sentence forms.

(A) ∀x (x is a man → x is mortal) Every man is mortal.
(E) ∀x (x is a man → ¬ (x is mortal)) No man is mortal.
(I) ∃x (x is a man ∧ x is mortal) Some man is mortal.
(O) ∃x (x is a man ∧ ¬ (x is mortal)) Some man is not mortal.

(7.8)

Note how ∀ goes with → and ∃ goes with ∧ in these examples.
Algebraic laws are generally about ‘all elements’ of the relevant structure,

so they use universal quantifiers:

∀x∀y∀z (x+ (y + z) = (x+ y) + z)(7.9)
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But a few laws say that some element exists, so they need an existential
quantifier. For example, in a field, every nonzero element has a multiplicative
inverse:

∀x (x �= 0 → ∃y (x · y = 1))(7.10)

In all these examples the quantifiers appear where we would expect to see them.
But the next example is different: the English sentence that we are paraphrasing
does not contain an ‘all’ or a ‘some’ or any similar phrase.

Bertrand Russell England, 1872–1970. Definite
descriptions can be expressed with = and quantifiers.

We paraphrase

The snark is a boojum(7.11)

thus, following Bertrand Russell:

(1) There is at least one snark, and
(2) there is at most one snark, and
(3) every snark is a boojum.

(7.12)

Expressing this with quantifiers, we take the conjunction of three sentences:

(1) ∃x x is a snark.
(2) ∀x∀y ((x is a snark ∧ y is a snark) → x = y).
(3) ∀x (x is a snark → x is a boojum).

(7.13)

Note how Russell’s paraphrase uses the same predicate ‘x is a snark’ several
times, and not always with the same variables.

In examples, such as (7.11)–(7.13), where the quantifiers do not simply
translate phrases of the original statement, we say that the paraphrase (7.13)
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using quantifiers is an analysis of the original. Analyses of this kind are important
at all levels of logic, even at the frontiers of research.

Exercises
7.1.1. Use quantifiers to express the following, using the predicates ‘x is a triffid’

(T (x) for short) and ‘x is a leg of y’ (L(x, y)):
(a) There is at most one triffid. [See (7.12).]

(b) There are at least two triffids. [The negation of (a).]

(c) There are at least three triffids.

(d) There are exactly two triffids.

(e) Every triffid has at least two legs.

(f) Every triffid has exactly two legs.

(g) There are at least two triffids that have a leg. [Not necessarily the
same leg!]

(h) There is a leg that at least two triffids have.

7.1.2. We write ∃�nx P (x) for ‘There are at least n elements x such that P (x)’.
For example, ∃�1x P (x) says the same as ∃x P (x). Show that, given any
positive integer n, the statement ∃�n+1xP (x) can be expressed using
∃, ∃�n and = (and of course P (x)).

7.1.3. Using quantifiers and the predicates ‘x is male’, ‘x is female’, ‘x is a child
of y’, express the following:
(a) x is a father.

(b) x has a daughter.

(c) x has exactly two children.

(d) x is a grandparent of y.

(e) x is a brother of y. (I.e. a full brother: both parents the same.)

(f) x is a maternal aunt of y.

7.1.4. Using the predicate (x < y) and quantifiers where needed, express the
following:
(a) x is less than or equal to y.

(b) If x < y then there is an element strictly between x and y.

(c) x is less than every other element.

(d) x is a minimal element. (I.e. there is no element strictly less
than x.)



First-order logic 163

(e) There is no least element.

(f) y is the immediate successor of x. (In a linear order.)

(g) Every element has an immediate successor. (Again in a linear order.)

7.1.5. In this exercise, F is a function from the set A to the set B, A(x) means ‘x
is in the set A’ and B(x) means ‘x is in the set B’. Express the following
in mathematical English without quantifier symbols:
(a) ∀x∀y (F (x) = F (y) → x = y).

(b) ∀x (B(x) → ∃y(F (y) = x)).

(c) ∀x (B(x) → ∃y∀z ((F (z) = x) ↔ (z = y))).

(d) ∃x (F (x) = x).

(e) ∀x (A(x) ↔ B(x)).

7.2 Scope and freedom
Definition 7.2.1 Let ψ be a formula of LR(σ).

(a) Consider an occurrence of a quantifier ∀x or ∃x in ψ. The scope of this
occurrence is the subformula of ψ that starts at this occurrence.

(b) We say that an occurrence of a variable x in ψ is bound in ψ if it lies within
the scope of a quantifier ∀x or ∃x with the same variable x. We say that the
occurrence is free in ψ if it is not bound in ψ.

(c) A sentence of LR(σ) is a formula of LR(σ) in which no variable has a free
occurrence. (This extends Definition 5.6.1 from qf formulas to the whole
of LR.)

To see what Definition 7.2.1 is about, suppose this is the parsing tree of a
formula ψ with a quantifier in it (with only the relevant details shown):

�
����

				�

� ∀x
�

�
�

�
�φ

(7.14)

The scope of the ∀x shown in the middle is the subformula ∀xφ associated with
the node marked ∀x. Our explanation of the meaning of the quantifier ∀x in
Definition 7.1.1 was in terms of this subformula ∀xφ. No occurrence of x in ∀xφ
can be free in ψ. The same would apply if we had ∃ rather than ∀.
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Note that in (7.14) there could be another quantifier ∀x, with the same
variable x, inside φ. The occurrences of x in the scope of this second occurrence
of ∀x will still be bound in ψ, but not because of the first occurrence of ∀x (since
they are already bound in φ). The same would apply if there was an occurrence
of ∃x in φ.

Example 7.2.2 We determine which occurrences of variables are free and which
are bound in the following formula (where c is a constant symbol, F is a function
symbol and P is a relation symbol):

((x = y) → ∀y(∃z(x = F (z, c,w)) ∧ P (y, z)))(7.15)

Here is the parsing tree, taken as far as formulas that contain no quantifiers:
� →

����
				� (x = y) � ∀y

� ∧
����

				� ∃z � P (y, z)
�(x = F (z, c,w))

(7.16)

From the tree we can read off the scopes of the two quantifier occurrences; they
are shown by the lines below the formula in (7.17). Then finally we can label the
occurrences as F (free) or B (bound), as shown in (7.17). For example, the third
occurrence of z is not in the scope of ∃z, so it is free.

F F B B F B F B F
((x = y) → ∀y(∃z(x = F (z, c,w)) ∧ P (y, z)))

y
z

(7.17)

After a little practice you should be able to work out, given any reasonable
formula, which variable occurrences are free and which are bound.

Knowing which occurrences of variables are free and which are bound in
(7.15), you can check what terms are substitutable for the variables in this for-
mula (cf. Definition 5.2.9). For example, the term F (y, c, c) is not substitutable
for x in (7.15); this is because there is a free occurrence of x inside the scope
of a quantifier with y. On the other hand, F (z, c, c) is substitutable for y in
(7.15), since there is no free occurrence of y inside the scope of a quantifier
with z.

When a formula φ has free occurrences of variables, it does not make sense
to ask whether φ is true in a given structure A, because we do not know what
elements the variables stand for. But if φ is a sentence, then the explanations of
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quantifiers in Definition 7.1.1, together with our earlier explanations of logical
symbols, completely determine whether φ makes a true statement about A when
its symbols from σ are interpreted by means of A. Just as in Section 5.6, when
φ does make a true statement about A, we say that A is a model of φ, or
that φ is true in A, in symbols |=A φ. As after Definition 3.5.7, the process
of checking whether a given sentence is true in a given structure is known as
model checking .

Example 7.2.3 We do some model checking. Let φ be the following sentence of
σarith:

∀x0∃x1 (̄·(x0,x1) = S̄(0̄))

or in shorthand

∀x0∃x1 (x0x1 = 1̄).

Is φ true in N/3N? We answer the question as follows.

Step One. The sentence begins with a quantifier ∀x0. Removing this quantifier
reveals the predicate

∃x1 (x0 × x1 = 1̄)(7.18)

which has one free occurrence of x0. Since the domain of N/3N consists of the
three numbers 0, 1, 2, Definition 7.1.1 tells us that φ is true in N/3N if and only
if all of the following three sentences are true in N/3N:

(1) ∃x1 (0̄× x1 = 1̄)
(2) ∃x1 (1̄× x1 = 1̄)
(3) ∃x1 (2̄× x1 = 1̄)

(7.19)

Step Two. We check whether the sentences in (7.19) are true, starting with the
first. Again we strip away the quantifier and find the predicate

(0̄× x1 = 1̄)

This predicate has a free occurrence of x1. By Definition 7.1.1 again, the first
sentence of (7.19) is true in N/3N if and only if at least one of the following three
sentences is true in N/3N:

(1) (0̄× 0̄ = 1̄)
(2) (0̄× 1̄ = 1̄)
(3) (0̄× 2̄ = 1̄)

(7.20)

Similarly for the other two sentences in (7.19).
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Step Three. Now we check the truth of the atomic sentences in (7.20). As in
Chapter 5, we evaluate in N/3N the two sides of each equation, and we check
whether they are equal. As it happens, each of the equations in (7.20) evaluates
to 0 on the left and 1 on the right, so they are all false. Hence the first sen-
tence of (7.19) is false, and this shows that the sentence φ is false in A. (If the
first sentence of (7.19) had been true, we would have checked the second and if
necessary the third.)

Remark 7.2.4 We could finish the model checking in Example 7.2.3 because the
structure N/3N has a finite domain. To do a similar calculation with N would
involve checking infinitely many numbers, which is clearly impossible. There
is no way around this problem. Gödel showed (Theorem 8.2) that there is no
algorithm for determining whether a given sentence of LR(σarith) is true in N.

Remark 7.2.5 Did you notice that the model checking in Example 7.2.3 went in
the opposite direction from the way we assigned a truth value to a propositional
formula in a structure? In the LP case we determined truth values by walking
up the parsing tree, starting at the atomic formulas. But in Example 7.2.3 we
started with the whole sentence and worked our way down to atomic sentences.

There are advantages to working from the outside inwards. The model check-
ing procedure of Example 7.2.3 has been marketed as a game (Tarski’s world ,
by Jon Barwise and John Etchemendy). The players are student and computer;
together they strip down the sentence, and as they go they assign elements of
the structure to the free variables. At the very least, the game is a good way of
learning the symbolism of first-order logic.

Nevertheless, a proper mathematical definition of ‘model’ needs to go in the
other direction, climbing up the parsing tree. We find such a definition in the
next section and Appendix B. To prepare for it we now give a mathematical
definition of FV (φ), the set of variables that have free occurrences in φ. The
definition is recursive, and it starts by defining the set FV (t) of variables that
occur in a term t.

Definition 7.2.6 Let σ be a signature. We define FV (t) when t is a term
of LR(σ):

(a) If t is a constant symbol c then FV (t) = ∅.
(b) If t is a variable x then FV (t) = {x}.
(c) If t is F (t1, . . . , tn) where F is a function symbol of arity n and t1, . . . , tn

are terms, then FV (t) = FV (t1) ∪ · · · ∪ FV (tn).

We define FV (φ) when φ is a formula of LR(σ):

(a) If φ is R(t1, . . . , tn) where R is a relation symbol of arity n and t1, . . . , tn
are terms, then FV (φ) = FV (t1) ∪ · · · ∪ FV (tn).
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(b) If φ is (s = t) where s, t are terms, then FV (φ) = FV (s) ∪ FV (t).

(c) FV (⊥) = ∅.
(d) FV ((¬ψ)) = FV (ψ).

(e) FV ((ψ ∧ χ)) = FV ((ψ ∨ χ)) = FV ((ψ → χ)) = FV ((ψ ↔ χ)) = FV (ψ) ∪
FV (χ).

(f) FV (∀xψ) = FV (∃xψ) = FV (ψ) \ {x}. (Here X \ Y means the set of all
elements of X that are not elements of Y .)

Inspection shows that FV (t) is the set of all variables that occur in t, and
FV (φ) is the set of all variables that have free occurrences in φ. But note that
the definition of FV never mentions occurrences or freedom. In the same spirit
we can write a recursive definition of ‘term t is substitutable for variable y in
formula φ’; see Exercise 7.2.7.

We extend the definition of substitution (Definition 5.4.4) to first-order logic
as follows.

Definition 7.2.7 Let E be a term or formula of LR. Let y1, . . . , yn be distinct
variables and t1, . . . , tn terms such that each ti is substitutable for yi in E.
Then E[t1/y1, . . . , tn/yn] is defined recursively as in Definition 5.4.4, but with
the following new clause to cover formulas with quantifiers:

(e) Suppose E is ∀xφ. If x is not in {y1, . . . , yn} then E[t1/y1, . . . , tn/yn] is

∀x(φ[t1/y1, . . . , tn/yn])

(using extra parentheses to remove an ambiguity). If x is yn then
E[t1/y1, . . . , tn/yn] is

∀x(φ[t1/y1, . . . , tn−1/yn−1])

and similarly for the other variables yi. The same holds with ∃x in place
of ∀x.

Recall that E[t1/y1, . . . , tn/yn] is undefined unless each ti is substitutable for yi
in E (Definition 5.2.10). Because of this, we need to check that in the recursive
definition, if this condition is met on the left side of each clause then it is still
met on the right side. For example, in (e) when x is yn and i < n, the term ti is
substitutable for yi in φ since it is substitutable for yi in ∀xφ, because the free
occurrences of yi in φ are exactly those in ∀xφ (since we assumed yi �= yn), and
all quantifier occurrences in φ are also in ∀xφ.

Exercises
7.2.1. Identify the free and bound occurrences of variables in the following for-

mulas of LR(σ). (Here c is a constant symbol, F ,G are function symbols,
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and P ,Q,R,< are relation symbols. Some of the formulas are written in
shorthand.)
(a) ∀x(Q(F (F (y)),G(y, z)) → ∀zR(x, y,F (F (F (z))))).

(b) ∃x1(∀x2P (F (x2)) → Q(x2,x3)).

(c) ((∃xP (x, y) ∨ ∀yP (y, z)) → P (x, z)).

(d) x = c ∧ ∀x(P (G(G(x, y), y)) → ∃yQ(y,G(x,x))).

(e) (∀x(x = y) ∧ ∀y(y = z)) → (x = z).

(f) ∃x∀y(x < y) ∨ ∀x(x = y).

7.2.2. The signature σ has 1-ary relation symbols A and P , a 2-ary relation
symbol R and a constant symbol c. Which of the following formulas of
LR(σ) are sentences?
(a) ∀x(A(x) ∧ P (x)) ∨ ¬(P (x)).

(b) A(c) ∧ (P (c) → ∀x(x = c)).

(c) ∀z (∀xR(x, z) ↔ ∃xR(x,x)).

(d) ∀y∃z (R(y, c) → R(x, z)).

7.2.3. Use model checking to determine whether ∃x(+̄(̄·(x,x), S̄(0̄)) = 0̄) (or
in shorthand ∃x(x2 + 1 = 0)) is true (a) in N/5N, (b) in N/7N. [This
exercise is asking you to determine whether −1 has a square root mod 5
or mod 7.]

7.2.4. (a) Adjust Definition 7.2.6 to give a definition of the set BV (φ) of all
variables that have bound occurrences in φ.

(b) Use Definition 7.2.6 and your definition in (a) to calculate FV (φ)
and BV (φ) for each of the following formulas φ:

(i) ∃x0(∀x1P (F (x1,x2)) ∧Q(x0,x1)).

(ii) ∀x∀yP (x, y) ∨ ∀xP (y, y).

(iii) ∀x(R(x, y) → ∃yW (x, y,w)).

7.2.5. (a) Definition 7.2.6 of FV (φ) for formulas φ can be written as a
compositional definition. Here is one of the compositional clauses:

� �X ∪ Y
�

�
��X

�
�

� �Y

where � ∈ {∧,∨,→,↔}.

Write down the remaining clauses (assuming it has been done for
terms).

(b) Do the same for your definition of BV in Exercise 7.2.4(a).



First-order logic 169

7.2.6. For each of the following formulas, determine whether the term F (x, y)
is substitutable for the variable x in the given formula.
(a) ((∀yP (y, y) → P (x, y)) ∨ ∃yP (y, y)).

(b) (∀yP (y, y) → ∃yR(x, y)).

(c) ∀x(Q(x) → ∃yP (y,x)).

7.2.7. Let Sub(t, y,φ) mean ‘the term t is substitutable for the variable y in the
formula φ’. Define Sub(t, y,φ) by recursion on the complexity of φ. The
first clause is
• If φ is atomic then Sub(t, y,φ).
(But the interesting clauses are those where φ starts with a quantifier.)

7.2.8. An important fact about first-order languages LR is that the scope of
a quantifier occurrence never reaches outside the formula containing the
occurrence. In natural languages this is not so; for example,

Every farmer has a donkey. He keeps an eye on it.(7.21)

(The pronoun ‘it’, which functions as a variable, is bound by ‘a donkey’
in the previous sentence.) Because of examples like this (which go back
to Walter Burley), this phenomenon is known as donkey anaphora. Find
two examples of donkey anaphora in mathematical textbooks.

7.3 Semantics of first-order logic
Suppose σ is a signature, φ(y1, . . . , yn) is a formula of LR(σ), A a σ-structure
and (a1, . . . , an) an n-tuple of elements of A. Recall from Section 5.7 that we
say that (a1, . . . , an) satisfies φ in A, in symbols

|=A φ[ā1/y1, . . . , ān/yn](7.22)

if the sentence φ[ā1/y1, . . . , ān/yn] is true in A, where each āi is a constant
symbol (if necessary a witness) naming ai. We will carry this idea over from
qf LR to first-order logic. There is a twist, first noticed by Alfred Tarski. We
explained ‘satisfies’ in terms of ‘true’. But in order to give a formal definition of
truth for LR, it seems that we need to go in the opposite direction: first we define
satisfaction by recursion on complexity, and then we come back to truth as a
special case. Definition 7.3.1 will define satisfaction and then truth. Theorem
7.3.2 will confirm that after these notions have been set up, satisfaction can still
be explained in terms of truth.

A temporary notational device will be useful. Suppose (y1, . . . , yn) are dis-
tinct variables and x is a variable. We write (y1, . . . , yn,x) for the sequence got
from (y1, . . . , yn) by adding x at the end, and removing yi if yi was also the
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variable x. For example,

(x2,x3,x4) is (x2,x3,x4), but
(x2,x3,x2) is (x3,x2).

If a1, . . . , an, b are elements correlated to y1, . . . , yn,x, respectively, then we
write (a1, . . . , an, b) for the sequence (a1, . . . , an, b), but with ai left out if
x is yi.

Definition 7.3.1 (Tarski’s Truth Definition) Let σ be a signature, φ(y1, . . . , yn)
a formula of LR(σ), A a σ-structure and (a1, . . . , an) an n-tuple of elements of
A. Then we define ‘(a1, . . . , an) satisfies φ in A’ by recursion on the complexity
of φ. Clauses (a)–(f) of the definition are exactly as Definition 5.7.6. We add two
more clauses for quantifiers.

(g) If φ is ∀xψ, then (a1, . . . , an) satisfies φ in A if and only if for every element
a of A, (a1, . . . , an, a) satisfies ψ(y1, . . . , yn,x).

(h) If φ is ∃xψ, then (a1, . . . , an) satisfies φ in A if and only if for some element
a of A, (a1, . . . , an, a) satisfies ψ(y1, . . . , yn,x).

Suppose φ is a sentence. Then we say φ is true in A, and that A is a model of
φ, in symbols |=A φ, if the empty sequence () satisfies φ in A.

A special case of this definition is that if φ(x) is a formula of LR(σ) and A
is a σ-structure, then ∀xφ is true in A if and only if for every element a of A,
the 1-tuple (a) satisfies φ. Ignoring the difference between a and (a), this agrees
with our informal explanation of ∀ in Definition 7.1.1. The same goes for ∃.

Appendix B recasts Definition 7.3.1 as a compositional definition. In
some sense, the question whether an n-tuple (a1, . . . , an) satisfies a formula
φ(y1, . . . , yn) in a structure A can be calculated by tree-climbing, just like the
truth values of complex formulas. But unfortunately the amount of information
that has to be carried up the parsing tree is in general infinite, as we noted

Alfred Tarski Poland and USA, 1901–1983. We can
give a mathematical definition of truth, though not for
all languages at once.
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in Remark 7.2.4; so literal calculation is out of the question except for finite
structures.

Theorem 7.3.2 Suppose A is a σ-structure and φ(y1, . . . , yn) is a formula of
LR(σ). Let a1, . . . , an be elements of A, and for each i let ti be a closed term
(possibly a witness) that names ai in the sense that (ti)A = ai. Then the following
are equivalent:

(a) (a1, . . . , an) satisfies φ in A.

(b) φ[t1/y1, . . . , tn/yn] is true in A.

Proof This is proved by induction on the complexity of φ. Where φ is atomic,
it holds by Definition 5.7.6(a). The truth function cases are straightforward. We
give here the cases where φ begins with a quantifier, say φ is ∀xψ for some
formula ψ(y1, . . . , yn,x). To avoid some fiddly details we assume x is not among
y1, . . . , yn, so that we can ignore the underlining. (Conscientious readers can fill
in these details.) We write ψ′(x) for ψ[t1/y1, . . . , tn/yn]. Then the following are
equivalent (where ‘in A’ is understood throughout):

(a) (a1, . . . , an) satisfies ∀xψ.
(b) For every element a, (a1, . . . , an, a) satisfies ψ.
(c) For every closed term t,ψ[t1/y1, . . . , tn/yn, t/x] is true.
(d) For every closed term t,ψ′[t/x] is true.
(e) For every element a, the 1-tuple (a) satisfies ψ′.
(f) ∀xψ′ is true.
(g) φ[t1/y1, . . . , tn/yn] is true.

Here (a) ⇔ (b) and (e) ⇔ (f) are by Definition 7.3.1; (b) ⇔ (c) and (d) ⇔ (e)
are by induction hypothesis (since both ψ and ψ′ have lower complexity than
φ); (c) ⇔ (d) is by the definition of ψ′ and (f) ⇔ (g) is by Definition 7.2.7.

The case with ∃ in place of ∀ is closely similar.

One consequence of Theorem 7.3.2 is that the truth of φ[t1/y1, . . . , tn/yn]
in A depends only on the elements (t1)A, . . . , (tn)A, and not on the choice of
closed terms t1, . . . , tn to name these elements.

The Principle of Irrelevance for LR says that the question whether or not
(a1, . . . , an) satisfies φ(y1, . . . , yn) in A is not affected by (1) changing sA where
s is a symbol of the signature of A that does not occur in φ, or by (2) changing
ai when yi does not have a free occurrence in φ. As far as (1) goes, it can be
read off from the compositional definition of the semantics—but you can save
yourself the effort of reading Appendix B by giving an argument by recursion on
complexity. Matters are a little trickier with (2), and here we spell out just one
case (though a representative one).

Lemma 7.3.3 Let φ(y1, . . . , yn) be a formula of LR(σ) where y1, . . . , yn are
the variables occurring free in φ, and let φ′(y1, . . . , yn+1) be the same formula
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but with one more variable listed. Let a1, . . . , an+1 be elements of A. Then
(a1, . . . , an) satisfies φ in A if and only if (a1, . . . , an+1) satisfies φ′ in A.

Proof The proof is by induction on the complexity of φ. The interesting case
is where φ begins with a quantifier ∀x or ∃x which binds at least one other
occurrence of x. Suppose φ is ∀xψ for some formula ψ(y1, . . . , yn,x). We note
that x cannot be among the variables y1, . . . , yn, but it could be yn+1. To cover
this possibility we write ψ as ψ′(y1, . . . , yn+1,x) when yn+1 is considered as one
of its listed variables.

Now (a1, . . . , an) satisfies φ in A if and only if:

for every element a, (a1, . . . , an, a) satisfies ψ(y1, . . . , yn,x).

By induction hypothesis if x is not yn+1, and trivially if x is yn+1, this is
equivalent to

for every element a, (a1, . . . , an+1, a) satisfies ψ′(y1, . . . , yn+1,x),

which in turn is equivalent to:

(a1, . . . , an+1) satisfies φ′(y1, . . . , yn+1).

A similar argument applies with ∃.
Now that we have extended the notion of model from qf LR to LR, several

other notions generalise at once. First-order sentences are gregarious animals;
they like to travel in sets. We will see a number of examples of this in Section 7.7.
So it makes sense to generalise Definition 5.6.7 not just from qf LR to LR, but
also from single sentences to sets of sentences.

Definition 7.3.4 Let σ be a signature.

(a) A set of sentences of LR(σ) is called a theory .

(b) If Γ is a theory in LR(σ), then we say that a σ-structure A is a model of Γ if
A is a model of every sentence in Γ. Given a sentence ψ of LR(σ), we write

Γ |=σ ψ(7.23)

to mean that every σ-structure that is a model of Γ is also a model of ψ. We
call (7.23) a semantic sequent . A special case is where Γ is empty; we say
that ψ is valid, in symbols |=σ ψ, if every σ-structure is a model of ψ.

(c) By a counterexample to the sequent (Γ �σ ψ) we mean a σ-structure that is
a model of Γ but not of ψ. (So one way to show that a semantic sequent is
not correct is to construct a counterexample to it.)
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(d) We say that a theory Γ is consistent or satisfiable if at least one σ-structure
is a model of Γ. We say that Γ is inconsistent if no σ-structure is a
model of Γ.

Exercise 5.6.4 can be proved for the whole of LR, not just for qf LR. In
this sense, the subscript σ in |=σ in the definition above is redundant, and we
will usually leave it out unless we want to emphasise that we are discussing
σ-structures.

Theorem 7.3.5 Let σ be a signature and let φ(y1, . . . , yn) and ψ(y1, . . . , yn)
be formulas of LR(σ). Suppose A is a σ-structure. Then the following are
equivalent:

(i) If (a1, . . . , an) is any n-tuple of elements of A, then (a1, . . . , an) satisfies φ
in A if and only if it satisfies ψ in A.

(ii) |=A ∀y1 · · · ∀yn (φ ↔ ψ).

Proof By the clause for ↔ in Definition 7.3.1 (in fact Definition 5.7.6(d)), (i)
is equivalent to the statement

Every n-tuple (a1, . . . , an) satisfies (φ ↔ ψ) in A(7.24)

This in turn is equivalent to the statement that for every (n − 1)-tuple
(a1, . . . , an−1),

For every element an of A, (a1, . . . , an) satisfies (φ ↔ ψ) in A(7.25)

and (7.25) is equivalent by Definition 7.3.1(g) to

Every (n− 1)-tuple (a1, . . . an−1) satisfies ∀yn(φ ↔ ψ) in A(7.26)

Applying Definition 7.3.1(g) n times, we reach (ii).

Definition 7.3.6 When the conditions (i), (ii) of Theorem 7.3.5 hold, we say that
φ and ψ are equivalent in A. We say that φ and ψ are logically equivalent (in
symbols φ eq ψ) if they are equivalent in all σ-structures. Equivalence in A and
logical equivalence are both equivalence relations on the set of formulas of LR(σ).

Note that when we say two formulas φ and ψ are logically equivalent, we
always intend φ(y1, . . . , yn) and ψ(y1, . . . , yn) with the same listed variables. By
the Principle of Irrelevance, any choice of variables will do provided it contains
all variables occurring free in either φ or ψ.

We list some useful logical equivalences:

Theorem 7.3.7

(a) ∃xφ eq ¬∀x¬φ.
(b) ∀xφ eq ¬∃x¬φ.
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(c) ∀x(φ ∧ ψ) eq (∀xφ ∧ ∀xψ).
(d) ∃x(φ ∨ ψ) eq (∃xφ ∨ ∃xψ).
(e) ∀x∀yφ eq ∀y∀xφ.
(f) ∃x∃yφ eq ∃y∃xφ.
(g) If the variable x has no free occurrences in φ then all of φ, ∀xφ and ∃xφ are
logically equivalent.

(h) Suppose the variable y has no free occurrences in φ, and is substitutable for
x in φ. Then ∀xφ eq ∀yφ[y/x], and ∃xφ eq ∃yφ[y/x].

(i) If the variable x has no free occurrences in φ then ∀x(φ ∧ ψ) eq (φ ∧ ∀xψ)
and ∀x(ψ∧φ) eq (∀xψ∧φ). This equivalence still holds if we make either or
both of the following changes: (1) Put ∃ in place of ∀; (2) put ∨ in place of
∧. (WARNING: The theorem does not claim that the equivalences hold with
→ or ← in place of ∧.)

Proof As a sample we take (d) and (h).
(d) Let φ(y1, . . . , yn,x) and ψ(y1, . . . , yn,x) be formulas of LR(σ), where

y1, . . . , yn lists the variables with free occurrences in ∃x(φ ∨ ψ). Let A be a
σ-structure and (a1, . . . , an) an n-tuple of elements of A. Then the following are
equivalent:

(i) (a1, . . . , an) satisfies (∃x(φ ∨ ψ))(y1, . . . , yn) in A.

(ii) For some element a of A, (a1, . . . , an, a) satisfies (φ ∨ ψ)(y1, . . . , yn,x)
in A.

(iii) For some element a of A, either (a1, . . . , an, a) satisfies φ in A or it satisfies
ψ in A.

(iv) Either for some element a of A, (a1, . . . , an, a) satisfies φ in A, or for some
element a of A, (a1, . . . , an, a) satisfies ψ in A.

(v) Either (a1, . . . , an) satisfies (∃xφ)(y1, . . . , yn) in A or it satisfies
(∃xψ)(y1, . . . , yn) in A.

(vi) (a1, . . . , an) satisfies (∃xφ ∨ ∃xψ)(y1, . . . , yn) in A.

(h) For simplicity, we suppose that x is the only free variable in φ(x). Then y
is the only free variable in φ[y/x], and we can write φ[y/x] as ψ(y). The following
are equivalent:

(i) ∀xφ is true in A.

(ii) For every closed term t naming an element of A, φ[t/x] is true in A.

(iii) For every closed term t naming an element of A, ψ[t/y] is true in A.

(iv) ∀yψ is true in A.
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The equivalence (ii) ⇔ (iii) holds because the conditions on y imply that φ[t/x]
and ψ[t/y] are one and the same formula.

The Replacement Theorem for Propositional Logic (Theorem 3.7.6(b)) gen-
eralises to first-order logic. It tells us that if φ is logically equivalent to ψ, and
a formula χ′ comes from a formula χ by replacing a subformula of the form φ

by one of the form ψ, then χ and χ′ are logically equivalent. So, for example,
we can use the logical equivalences in Exercise 3.6.2 to find, for every first-order
formula χ, a formula χ′ that is logically equivalent but does not use certain truth
function symbols, along the lines of Example 3.7.8. In particular, each first-order
formula is logically equivalent to one not containing either → or ↔. But with
Theorem 7.3.7 some new kinds of logical equivalence become available, as illus-
trated in the next two examples. (WARNING: If some variable occurs free in ψ
but not in φ, it can happen that χ is a sentence but χ′ is not.)

Example 7.3.8 (Changing bound variables) Take the formula

∀y(y < x → ∃xR(x, y))(7.27)

The first occurrence of x here is free but the second and third are bound. This
is ugly; it goes against our feeling that the same variable should not be used
to talk about different things in the same context. We can repair it as follows.
Take a variable z that occurs nowhere in (7.27). By Theorem 7.3.7(h), ∃xR(x, y)
eq ∃zR(z, y). So by the Replacement Theorem, (7.27) is logically equivalent to
∀y(y < x → ∃zR(z, y)).

Example 7.3.9 (Prenex formulas) Take the formula

(∃xR(x) ∧ ∃x¬R(x))(7.28)

This formula is logically equivalent to each of the following in turn:

(∃xR(x) ∧ ∃z¬R(z)) as in Example 7.3.8
∃z(∃xR(x) ∧ ¬R(z)) by Theorem 7.3.7(i)
∃z∃x(R(x) ∧ ¬R(z)) by applying Theorem 7.3.7(i) to

(∃xR(x) ∧ ¬R(z)),
then using Replacement Theorem

A formula is said to be prenex if either it is quantifier-free, or it comes from a
quantifier-free (qf) formula by adding quantifiers at the beginning. So we have
shown that (7.28) is logically equivalent to the prenex formula

∃z∃x(R(x) ∧ ¬R(z))(7.29)



176 First-order logic

In fact, every formula of LR is logically equivalent to a prenex formula, by
applying Theorem 7.3.7 repeatedly as above. For example, the formula ¬∀xφ is
logically equivalent to ¬∀x¬¬φ [using the Double Negation Law (Example 3.6.5)
and Replacement Theorem] and hence to ∃x¬φ (by Theorem 7.3.7(a)). Likewise,
(∀xR(x) → Q(w)) eq ((¬∀xR(x)) ∨ Q(w)) (Exercise 3.6.2(c)), eq (∃x¬R(x) ∨
Q(w)) (as above and using Replacement), eq ∃x(¬R(x) ∨ Q(w)) (by Theorem
7.3.7(i)).

Exercises
7.3.1. Show that none of the following semantic sequents are correct, by

constructing counterexamples to them.
(a) {P (0̄),∀x(P (x) → P (S(x)))} |= ∀xP (x).

(b) {∀x∃yR(x, y)} |= ∃y∀xR(x, y).

(c) {∀x∃y(F (y) = x)} |= ∀x∀y(F (x) = F (y) → x = y).

(d) {∀x(P (x) → Q(x)),∀x(P (x) → R(x))} |= ∃x(Q(x) ∧R(x)).
[See section 5.5 on how to describe a structure.]

7.3.2. Which of the following formulas are logically equivalent to which? Give
reasons.
(a) x = y.

(b) x = y ∧ w = w.

(c) x = y ∧R(x).

(d) x = x ∧ w = w.

(e) (x = y ∧R(x)) ∨ (y = x ∧ ¬R(x)).

(f) (x = y ∧ ∀x(x = x)).

7.3.3. Find a formula in which no variable occurs both free and bound, which
is logically equivalent to the following formula.

P (x, y) ∨ ∀x∃y (R(y,x) → ∃xR(x, y))

7.3.4. For each of the following formulas, find a logically equivalent prenex
formula.
(a) R(x) → (R(y) → ∃xP (x, y)).

(b) ∃xP (x) → ∃xQ(x).

(c) ∃xP (x) ↔ ∃xQ(x).

(d) ∃x∀yR(x, y) ∨ ∀x∃y Q(x, y).

7.3.5. Prove (a)–(c), (e)–(g) and (i) of Theorem 7.3.7.



First-order logic 177

7.3.6. Show that if t is a term, x a variable and φ a formula, then there is a
formula ψ logically equivalent to φ, such that t is substitutable for x in
ψ. [Use the method of Example 7.3.8.]

7.3.7. Show: If φ eq ψ, x is a variable and c is a constant symbol, then φ[c/x]
eq ψ[c/x].

7.4 Natural deduction for first-order logic
Natural deduction for first-order logic works the same way as for LP and LR,
except that we have new rules for introducing and eliminating the quantifiers.

We will need four new rules: (∀I), (∀E), (∃I) and (∃E). In these rules the
distinction between free and bound occurrences of variables becomes important.
When a formula has free variables, we treat them (for purposes of proving things)
as if they were constant symbols.

The first two rules hardly need any mathematical examples to illustrate
them. The first rests on the fact that if something is true for all elements, then
it is true for any named element. The second rests on the fact that if something
is true for a particular named element, then it is true for at least one element.

Natural Deduction Rule (∀E) Given a derivation

D

∀xφ
and a term t that is substitutable for x in φ, the following is also a derivation:

D

∀xφ
φ[t/x]

Its undischarged assumptions are those of D.

Natural Deduction Rule (∃I) Given a derivation

D

φ[t/x]

where t is a term that is substitutable for x in φ, the following is also a derivation:

D

φ[t/x]
∃xφ

Its undischarged assumptions are those of D.
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Example 7.4.1 Since (x = x) is also (x = x)[x/x], we have the derivation

∀x(x = x)
(∀E)

(x = x)
(∃I)∃x(x = x)

(7.30)

showing that {∀x(x = x)} � ∃x(x = x). Now everything is always identical
with itself, so every structure is a model of ∀x(x = x). But if the domain of A
was allowed to be the empty set, then ∃x(x = x) would be false in A. So we
would have derived a false statement from a true one, and the natural deduction
calculus would have failed the Soundness property. This is one reason why in
Definition 5.5.2 we required the domain of a structure to be a non-empty set.

Not everybody is happy that the natural deduction calculus manages to
prove the existence of something from nothing. There are proof calculi (e.g.
forms of the tableau calculus) that avoid this. Sometimes in mathematics one
would like to allow structures with empty domains, but these occasions are too
few to justify abandoning natural deduction.

We turn to the introduction rule for ∀. Suppose φ is a predicate with a free
variable x. To prove that φ is true for every element x, a standard move is to
write

Let c be an element.(7.31)

and then prove φ[c/x] without using any information about c. Then φ[c/x] must
be true regardless of what element c is, so ∀xφ is proved.

For the natural deduction form of this move, we require that c does not
occur in φ or in any of the assumptions used to deduce φ[c/x]. This is a formal
way of ensuring that we have not used any information about c in deriving φ[c/x].
There is no need to discharge the assumption (7.31), because we will never need
to state this assumption in a derivation.

In (7.31) we could have equally well used a variable y in place of c. For
our formal rule we make the same condition on the variable y as we did on the
constant c, namely that it never occurs in φ or in the assumptions from which
φ[y/x] is derived.

Natural Deduction Rule (∀I) If

D

φ[t/x]
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is a derivation, t is a constant symbol or a variable, and t does not occur in φ or
in any undischarged assumption of D, then

D

φ[t/x]
∀xφ

is also a derivation. Its undischarged assumptions are those of D.

We turn to (∃E). This is the most complicated of the natural deduction
rules, and many first courses in logic omit it. We will never use it after this
section.

How can we deduce something from the assumption that ‘There is a snark’?
If we are mathematicians, we start by writing

Let c be a snark.(7.32)

and then we use the assumption that c is a snark in order to derive further
statements, for example,

c is a boojum.(7.33)

If we could be sure that (7.33) rests only on the assumption that there is a
snark, and not on the stronger assumption that there is a snark called ‘c’, then
we could discharge the assumption (7.32) and derive (7.33). Unfortunately, (7.33)
does explicitly mention c, so we cannot rule out that it depends on the stronger
assumption. Even if it did not mention c, there are two other things we should
take care of. First, none of the other assumptions should mention c; otherwise
(7.33) would tacitly be saying that some other element already mentioned is a
snark, and this was no part of the assumption that there is a snark. Second, the
name c should be free of any implications; for example, we cannot write cos θ in
place of c, because then we would be assuming that some value of cos is a snark,
and again this assumes more than that there is a snark. However, these are all
the points that we need to take on board in a rule for eliminating ∃. As with
(∀I), we allow a variable in place of the constant c, with the same conditions
applying.

Natural Deduction Rule (∃E) If

D

∃xφ
and D′

χ
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are derivations and t is a constant symbol or a variable which does not occur in
χ, φ or any undischarged assumption of D′ except φ[t/x], then

φ[t/x]�

D D′

∃xφ χ

χ

is also a derivation. Its undischarged assumptions are those of D′ except possibly
φ[t/x], together with those of D.

Example 7.4.2 We prove the sequent

{∀x(P (x) → Q(x)),∀x(Q(x) → R(x))} � ∀x(P (x) → R(x))

∀x(P (x) → Q(x))
(∀E)

P (c)���
�1

(P (c) → Q(c))
(→E)

∀x(Q(x) → R(x))
(∀E)

Q(c) (Q(c) → R(c))
(→E)

R(c)�1 (→I)
(P (c) → R(c))

(∀I)
∀x(P (x) → R(x))

Note how we used a witness c in order to apply (∀I) at the final step.

Example 7.4.3 We prove the sequent {∃x∀yR(x, y)} � ∀y∃xR(x, y).

�1
∀yR(u, y)

(∀E)
R(u, z)

(∃I)
∃xR(x, z)

(∀I)
∃x∀yR(x, y)�1

∀y∃xR(x, y)
(∃E)

∀y∃xR(x, y)

(7.34)

We should check the conditions on (∀I) and (∃E). It is important to remem-
ber that the undischarged assumptions referred to in these rules are not the
undischarged assumptions of (7.34); they are the assumptions that are not yet
discharged at a certain node in the derivation. So the condition we have to check
for the application of (∀I) is that z does not occur in ∃xR(x, y) or in ∀yR(u, y);
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the fact that ∀yR(u, y) is discharged in (7.34) is irrelevant, because it was dis-
charged at the application of (∃E), which comes below (∀I). At the application
of (∃E) we have to check that u does not occur in ∀y∃xR(x, y) or in ∀yR(x, y);
the formula ∀yR(u, y) is undischarged at the occurrence of ∀y∃xR(x, y) in the
right-hand column, but the conditions on (∃E) allow ∀yR(u, y) to contain u.

At this point one expects a definition of σ-derivations, telling us how to
recognise whether a diagram is or is not a σ-derivation. But Example 7.4.3 shows
that we have a problem here. When we check whether rule (∀I) or rule (∃E) has
been applied correctly, we need to know which are the undischarged assumptions
at the place where the rule is applied, not the undischarged assumptions of the
whole derivation. So we cannot follow the strategy of Definitions 3.4.1 and 5.4.5,
first checking the applications of the rules and then identifying the undischarged
assumptions. A subtler approach is needed.

The simplest remedy, and the usual one, is to recast the definition of deriv-
ations so that the dandah numbers become parts of the derivation. Each node
will have three labels. As before, the left label at a node is a formula and the
right node states the rule that justifies the formula. The third label—maybe a
front label—indicates whether the formula on the left carries a dandah, and if
so gives the number on the dandah; it also indicates whether the rule on the
right is used to put dandahs on other formulas, and if so it gives the number on
these dandahs. Now when we check a rule at a node ν, we use the front labels
on higher nodes as raw data, to tell us which are the undischarged assumptions
at ν. The correctness of these front labels is checked elsewhere, when we check
the rules where the formulas were discharged. So everything gets checked, and
there is no circularity.

It should be clear in principle how to write down a definition of ‘σ-derivation’
along these lines. But this is as far as we will go towards a definition in this book.
If you have some experience in programming, you can probably see how to code
up a tree with three labels on each node. Then you can write an exact definition
of σ-derivation in the form of a computer program to check whether a given
tree is or is not a σ-derivation. As a computing project this is not trivial but
not particularly hard either. At the end of the project you can claim to have a
precise and thorough proof of the next theorem.

Theorem 7.4.4 Let σ be a signature that is a computable set of symbols (e.g. a
finite set). There is an algorithm that, given any diagram, will determine in a
finite amount of time whether or not the diagram is a σ-derivation.

Proof Exactly as the proof of Theorem 3.4.2, but using a definition of σ-
derivations as three-labelled trees satisfying appropriate conditions matching the
natural deduction rules.
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Definition 7.4.5 The definitions of σ-sequent , conclusion of a sequent, assump-
tions of a sequent, correctness of a sequent, a derivation proving a sequent, and
syntactically consistent set of sentences are all as in Definition 5.4.7, but using
a suitable update of Definition 5.4.5 for LR.

When Γ is a set of qf sentences and ψ is a qf sentence, we have one definition
of Γ �σ ψ in Definition 5.4.7 and another in Definition 7.4.5. The two definitions
are not the same; in the sense of Definition 7.4.5, the sequent (Γ �σ ψ) could be
proved by a derivation using formulas that are not quantifier-free. Fortunately,
this is only a temporary problem. The Soundness Theorem for LR (Theorem
7.6.1) will show that if there is such a derivation then Γ |= ψ; so it follows from
the Adequacy Theorem for qf LR (Theorem 5.10.1) that the sequent (Γ �σ ψ) is
proved by some derivation containing only qf sentences.

Our final result in this section shows that derivations can be converted into
other derivations that prove the same sequent, but using only formulas of some
restricted kind.

Theorem 7.4.6

(a) Suppose ρ ⊆ σ, and all the symbols in σ but not in ρ are constant symbols.
Let Γ be a set of formulas of LR(ρ) and ψ a formula of LR(ρ). Then Γ �ρ ψ
if and only if Γ �σ ψ.

(b) Suppose σ is a signature with infinitely many constant symbols. Let Γ be
a theory in LR(σ) and ψ a sentence of LR(σ), such that Γ �σ ψ. Then
there is a σ-derivation D proving (Γ �σ ψ), such that all formulas in D are
sentences.

Proof (a) From left to right is straightforward: if D is a ρ-derivation then D

is also a σ-derivation, from the definition of σ-derivations. For the converse, we
suppose we have a σ-derivation D with conclusion ψ and whose undischarged
assumptions are all in Γ. We will construct a ρ-derivation D′ with the same
conclusion and undischarged assumptions as D. Since D is a labelled planar
graph, it uses only finitely many symbols. Hence D uses at most finitely many
symbols that are in σ but not in ρ. By assumption these symbols are constant
symbols; we list them without repetition as c1, . . . , cn. Again becauseD uses only
finitely many symbols, the fact that LR has infinitely many variables (Definition
5.3.3(a)) guarantees that there are distinct variables y1, . . . , yn, none of which
are used in D.

We construct a diagram D1 as follows. For each term t, we write t′ for
the term got from t by replacing each occurrence of c1 by an occurrence of y1;
likewise we write θ′ for the result of the same replacement in a formula θ. (One
can define t′ and θ′ recursively from t and θ and prove that t′ is a term and θ′ is a
formula. The recursive definition is a slight simplification of that in the solution
to Exercise 5.4.8, with a clause added for quantifiers.) The diagram D1 is D with
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each left label θ replaced by θ′. We can check that D1 is a σ-derivation. This
means checking each node to see that the rule named in the right-hand label
on the node is correctly applied. For the propositional rules this is fairly trivial,
since the replacement of c1 by y1 leaves the truth function symbols unchanged.
Also (=I) is very straightforward. We will examine (=E) and the rules for ∀.

First, let ν be a node of D carrying the right label (=E). Then at node ν in
D′ we have the formula φ[t/x], and at its daughters we have φ[s/x] and (s = t),
where s and t are substitutable for x in φ. The variable x serves only to mark
the place where substitutions are made, so we can choose it to be a variable
that never appears in any formulas of D or D′, or in s or t. By construction the
corresponding nodes in D′ have the formulas φ[t/x]′, φ[s/x]′ and (s = t)′. We
need to show that (s = t)′ is (s′ = t′), φ[t/x]′ is φ′[t′/x] and φ[s/x]′ is φ′[s′/x].
By the definition of the function θ �→ θ′, (s = t)′ is (s′ = t′). The cases of φ[t/x]′

and φ[s/x]′ are similar, so we need prove only one. The first thing to check is
that t′ is substitutable for x in φ′; otherwise φ′[t′/x] is meaningless. If t′ is not
substitutable for x in φ, then some quantifier occurrence ∀y or ∃y in φ′ has
within its scope a free occurrence of x, and the variable y occurs in t′. Since the
variable x never appears in any formula of D, there are no quantifiers ∀x or ∃x
in φ, so x has a free occurrence in φ. Hence t does occur in φ[t/x], and so y1 is
different from any variable in t, and in particular it is not y. By the definitions of
φ′ and t′ it follows that y already occurred in t and that x already occurred free
inside the scope of ∀y or ∃y in φ; so t was not substitutable for x in φ, contrary
to assumption. This establishes that φ′[t′/x] makes sense. The proof that it is
equal to φ[t/x]′ proceeds like the corresponding argument in Exercise 5.4.7.

Second, let ν be a node of D carrying the right label (∀E). Then the unique
daughter of ν carries a formula ∀xφ and ν itself has the formula φ[t/x], where t is
some term substitutable for x in φ. In D′ the corresponding formulas are (∀xφ)′
and φ[t/x]′. We have to show that (∀xφ)′ is ∀x(φ′), that t′ is substitutable for x
in φ′ and that φ[t/x]′ = φ′[t′/x]. The fact that (∀xφ)′ is ∀x(φ′) is immediate from
the definition of θ �→ θ′. For the rest, there are two cases according to whether or
not x does have a free occurrence in φ. If it does not, then φ[t/x] is φ; also φ′[t′/x]
is φ′, since y1 was chosen different from every variable occurring in D, so that
φ′ does not contain any free occurrence of x either. Then φ[t/x]′ = φ′ = φ′[t′/x]
as required. If x does have a free occurrence in φ then t appears in φ[t/x], so we
know that y1 is distinct from every variable in t. The rest of this case is like the
previous one.

Third, let ν be a node of D carrying the right label (∀I). Then there are a
formula φ, a term t and a variable z such that ν has left label ∀zφ, the daughter
ν′ of ν has left label φ[t/z] and t is a constant symbol or variable which occurs
nowhere in φ or any formula that is undischarged at ν′. If t is not c1 then this
condition is still met when each formula θ is replaced by θ′. If t is c1, then the
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condition still holds but with y1 in place of c1. The other matters to check are
similar to the previous case.

In sum, D1 is a σ-derivation. Since c1 never appears in ψ or any formula in
Γ, D1 is again a derivation proving (Γ �σ ψ). By construction the only symbols
of σ that are in D1 but not in ρ are c2, . . . , cn. So by repeating the construction
n times to construct σ-derivations D1, . . . ,Dn, we can remove all the constant
symbols c1, . . . , cn. Then Dn will be a ρ-derivation proving (Γ �ρ ψ).

(b) is proved similarly. Given a σ-derivation D that proves (Γ �σ ψ), we list
as y1, . . . , yn the variables that have free occurrences in formulas of D, and we
find distinct constant symbols c1, . . . , cn of σ that never appear in D. Then we
replace each formula θ inD by θ[c1/y1], etc. The argument is essentially the same
as that for (a), because the conditions on the term t in (∀I) and (∃E) are exactly
the same regardless of whether t is a variable or a constant symbol.

Remark 7.4.7 The two rules (∀I) and (∃E) are often given in a more general form
with weaker conditions on the term t. Namely (referring to the statements of (∀I)
and (∃E) above), in (∀I), t is allowed to be a variable with no free occurrence
in φ or undischarged assumptions of D, provided that t is substitutable for x
in φ. Likewise in (∃E), t is allowed to be a variable with no free occurrence in
χ, φ or any undischarged assumption of D′ except φ[t/x], but again t must be
substitutable for x in φ. These more general rules have a technical justification: if
D is any derivation using them, then we can construct a derivation D′ which has
the same conclusion and undischarged assumptions as D, but is a σ-derivation
in the sense we described earlier. This can be proved by a slight adjustment of
the proof of Theorem 7.4.6. So we can count these more general rules as derived
rules of our system of natural deduction.

On the other hand, informal mathematical arguments that correspond to
these more general rules are generally frowned on. For example, if you start a
proof by writing:

For every real number x, x2 + 1 � 2x. Suppose x is nonzero but
pure imaginary . . .(7.35)

your readers will try to read this as a donkey anaphora (compare (7.21)) and
will wonder how a real number can be nonzero pure imaginary.

Exercises
7.4.1. (a) Show that asymmetric relations are always irreflexive; in other

words, prove the following by natural deduction.

{∀x∀y(R(x, y) → ¬R(y,x))} � ∀x¬R(x,x).
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(b) Show that a function with a left inverse is injective; in other words,
prove the following by natural deduction.

{∀xF (G(x)) = x} � ∀x∀y(G(x) = G(y) → x = y).

7.4.2. Give natural deduction derivations to prove the following sequents.
(a) {∀xF (G(x)) = x} � ∀x∃y x = F (y).

(b) {∀x∀y∀z ((R(x, y) ∧R(y, z)) → R(x, z))} � ∀x∀y∀z∀w (R(x, y) ∧
R(y, z) ∧R(z,w) → R(x,w)).

(c) {¬∃xP (x)} � ∀x¬P (x).

(d) {¬∀x¬P (x)} � ∃xP (x) [Use (c)].

7.4.3. The following derivation proves the statement 2 �= 3
from the two assumptions ∀x Sx �= 0 and ∀x∀y(Sx = Sy → x = y). (In
Example 7.7.3 we will learn that these assumptions are two of the axioms
of Peano Arithmetic (PA).)
(a) Label each step with the name of the rule that it uses.

(b) Discharge any assumption that needs discharging, and show the
step which cancels it.

(c) For each step of the form (=E), give the formula φ such that
(for appropriate s, t and x) φ[s/x] is an assumption of the step
and φ[t/x] is the conclusion.

(d) Rewrite the proof as a proof in ordinary mathematical English,
but using the same steps where possible.

∀x∀y(Sx = Sy → x = y)

∀y(SS0 = Sy → S0 = y)

SS0 = SSS0

SS0 = SSS0 → S0 = SS0

S0 = SS0

∀x∀y(Sx = Sy → x = y)

∀y(S0 = Sy → 0 = y)

S0 = SS0 → 0 = S0

0 = S0 0 = 0 ∀x Sx �= 0

S0 = 0 S0 �= 0

⊥
SS0 �= SSS0

7.4.4. Why is the following diagram not a correct derivation? (It proves the
sequent {∀x∃yR(x, y)} � ∃y∀xR(x, y), which is unacceptable because
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the corresponding semantic sequent has a counterexample; see
Exercise 7.3.1(b).)

R(z,u)
�1

����

∀x∃yR(x, y)
(∀E)

∃yR(z, y)

(∀I)
∀xR(x,u)

(∃I)
�1

∃y∀xR(x, y)
(∃E)

∃y∀xR(x, y)

7.5 Proof and truth in arithmetic
Definition 7.5.1 By a diophantine formula we mean a formula of LR(σarith) of
the form

∃y1 · · · ∃ym (s = t).

A diophantine sentence is a diophantine formula that is a sentence.
Let n be a positive integer andX an n-ary relation on N (i.e. a set of n-tuples

of natural numbers). It is clear that X is diophantine (as defined by Definition
5.8.1) if and only if there is a diophantine formula φ such that X is the set of
all n-tuples that satisfy φ in N. For example, the set of even natural numbers is
the set of n such that (n) satisfies φ(x) in N, where φ is ∃y x = 2y.

In this section we will examine what we can prove about diophantine formu-
las, using natural deduction. The following set of sentences is important for this:

Definition 7.5.2 We write PA0 for the following set of sentences. (Example 7.7.3
will show the reason for this notation.)

(1) ∀x (x+ 0 = x)
(2) ∀x∀y (x+ Sy = S(x+ y))
(3) ∀x (x · 0 = 0)
(4) ∀x∀y ((x · Sy) = (x · y) + x)

(7.36)

Richard Dedekind Germany, 1831–1916. We can give
recursive definitions for plus and times.
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Theorem 7.5.3 (Dedekind’s Theorem) For every diophantine sentence φ,

|=N φ ⇔ PA0 �σarith φ.

Proof Right to left follows from the fact that all the sentences in PA0 are true
in N. (Here we are taking for granted that natural deduction has the Sound-
ness property. We will prove it in the next section, without using Dedekind’s
Theorem.)

To prove left to right, we prove it first for sentences that are equations, by
induction on the number of occurrences of function symbols S̄, +̄ or ·̄ in the
equations when they are written as equations of LR(σarith). There are several
cases, according to the form of φ.

Case 1: φ is k + m = n where k,m,n ∈ N. If m is 0 then, since φ is true,
k must be n and the sentence follows from (1) in PA0 by (∀E). If m is Sm′

then, since φ is true, n must be of the form Sn′ and m + n′ = k′. Now the
equation (+̄(k̄,m′) = n′) has two fewer function symbols than (+̄(k̄, m̄) = n̄).
So the induction hypothesis applies and tells us that PA0 � k + m′ = n′. By
(=term) this implies that PA0 � S(k + m′) = S(n′). By (2) and (∀E), PA0 �
k+m = S(k+m′). So by (=transitive), PA0 � k+m = S(n′). But n is S(n′), so
PA0 � k +m = n.

Example 7.5.4 PA0 � 2 + 2 = 4. Exercise 5.4.4 was to explain the substitutions
made in the applications of (=E) in the lower parts of this derivation. Here we
have added applications of (∀E) to deduce the assumptions from PA0.

∀x∀y x+ Sy = S(x+ y)

∀y SS0 + Sy = S(SS0 + y)

SS0 + SS0 = S(SS0 + S0)

∀x∀y x+ Sy = S(x+ y)

∀x x+ 0 = x ∀y SS0 + Sy = S(SS0 + y)

SS0 + 0 = SS0 SS0 + S0 = S(SS0 + 0)

SS0 + S0 = SSS0

SS0 + SS0 = SSSS0

Case 2: φ is k · m = n where k,m,n ∈ N. The argument is like the previous
case, using (3), (4) and the fact that Case One is proved.

Case 3: φ is s+t = n or s·t = n or St = n where n ∈ N and s, t are closed terms.
First suppose φ is s+t = n and is true in N. The expressions s and t have number
values p and q, and the equations s = p and t = q are true equations with fewer
function symbols than φ (because the truth of φ implies that p � n and q � n).
So by induction assumption these two equations are provable from PA0. Since φ
is true, the sentence p+ q = n is true; hence by Case One, PA0 � p+ q = n. We
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deduce s+ t = n by:

s = p
(=I)

s+ t = s+ t
(=E)

t = q s+ t = p+ t
(=E)

p+ q = n s+ t = p+ q
(=E)

s+ t = n

When t has a value of at least 1, the case where φ is s ·t = n is similar, using
Case Two. When t has value 0, the equation t = 0 has fewer function symbols
than s · t = 0, so by induction hypothesis it is provable from PA0, and then
s · t = 0 is provable using (3).

If φ is St = n, then since φ is true, n is Sq for some q. Then the equation
t = q is true and has fewer function symbols than St = n, so by induction
hypothesis it is provable from PA0; then St = Sq is provable using (=term).
Case 4: φ is s = t where s, t are closed terms. Let n be the number value of
s. Then the equations s = n and t = n are true, and by the preceding cases
they are provable from PA0. So φ is provable from PA0 by (=symmetric) and
(=transitive).

This completes the proof when φ is quantifier-free. In the general case,
suppose

∃y1 · · · ∃ynψ
is true in N, where ψ is an equation and the variables y1, . . . , yn are distinct.
Then there are numbers k1, . . . , kn in N such that

|=N ψ[k̄1/y1, . . . , k̄n/yn]

and hence

PA0 � ψ[k̄1/y1, . . . , k̄n/yn]

by the quantifier-free case already proved.
We deduce that

PA0 � ∃y1 · · · ∃ynψ
as follows:

ψ[k̄1/y1, . . . , k̄n/yn]
(∃I)∃ynψ[k̄1/y1, . . . , k̄n−1/yn−1]

(∃I)∃yn−1∃ynψ[k̄1/y1, . . . , k̄n−2/yn−2]
...

∃y2 · · · ∃ynψ[k̄1/y1]
(∃I) �∃y1 · · · ∃ynψ
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Exercises
7.5.1. Determine which of the following sentences are true in the structure N.

Give reasons for your answers.
(a) ∀x∃y(x = y + y ∨ x = S(y + y)).

(b) ∀x∃y∃z(SSy · SSz = SSSSx).

(c) ∀x∀y∃z(SSy + SSz = SSSSx).

(d) ∀x∃y∃z(x = y2 + z2).

(e) ∃x∃y (x · Sy = x+ Sy).

(f) ∃x∃y (x · x = Sx+ (y + y)).

7.5.2. Describe a structure of the same signature as N, but in which the
following sentence (which is false in N) is true:

∃x∃y SSS0 = x · x+ y · y.
Justify your answer.

7.6 Soundness and completeness for first-order logic
Here we extend the results of Sections 5.9 and 5.10 from qf sentences to arbitrary
sentences of LR. We say only what changes are needed.

We continue with the simplifying assumption that the truth function sym-
bols are just ∧, ¬ and ⊥. We also assume that the only quantifier symbol is ∀.
Theorem 7.3.7(a) guarantees that every formula of LR is logically equivalent to
one in which the quantifier symbol ∃ never occurs.

Theorem 7.6.1 (Soundness of Natural Deduction for LR) Let σ be a signature,
Γ a set of sentences of LR(σ) and ψ a sentence of LR(σ). If Γ �σ ψ then Γ |=σ ψ.

Proof We first assume that there is a σ-derivation D that proves (Γ �σ ψ)
and uses only sentences. Then we argue by induction on the height of D, as
for Theorem 5.9.1 but with two new cases, viz. where the right label R on the
bottom node of D is (∀I) or (∀E).

Case 2(f): R is (∀I) and the conclusion of D is ∀xφ. Assuming x does occur
free in φ, D must have the form

D′

φ[c/x]
∀xφ

where D′ is a derivation of φ from assumptions in Γ, and c is a constant symbol
that does not occur in φ or any undischarged assumption of D′. Let ∆ ⊆ Γ be
the set of undischarged assumptions of D′; let A be a model of Γ and hence of ∆.
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For each element a of A, write A(a) for the structure got from A by changing
the interpretation of c to be a, so that cA(a) = a. Since c never appears in the
sentences in ∆, each of the structures A(a) is also a model of ∆ by the Principle
of Irrelevance (see before Lemma 7.3.3). So by induction hypothesis each A(a)
is a model of φ[c/x]. But by Theorem 7.3.2 this means that each element a of A
satisfies φ(x). Hence by Definition 7.3.1, A is a model of ∀xφ.

If x does not occur free in φ then there is a more trivial argument using
Theorem 7.3.7(g).

Case 2(g): R is (∀E). Then D has the form

D′

∀xφ
φ[t/x]

where all the undischarged assumptions of D′ lie in Γ. Let A be a model of Γ.
Then by induction hypothesis A is a model of ∀xφ. If x does not occur in φ, then
A is a model of φ by Theorem 7.3.7(g). If x does occur in φ, then t must be a
closed term since φ[t/x] is a sentence; hence A has an element tA. By Definition
7.3.1, since A is a model of ∀xφ, every element of A satisfies φ. So in particular
tA satisfies φ, and hence by Theorem 7.3.2, A is a model of φ[t/x].

This proves the theorem under the assumption that D contains only sen-
tences. To remove this assumption we take an infinite set W of witnesses, and we
write σW for the signature got by adding these witnesses to σ. By Theorem 7.4.6
parts (a) (left to right) and (b), there is a σW -derivation which proves (Γ � ψ)
and uses only sentences. By the case already proved, Γ |=σW ψ, and so Γ |=σ ψ

since Γ and ψ lie in LR(σ).

Theorem 7.6.2 (Adequacy of Natural Deduction for LR) Let Γ be a set of
sentences of LR(σ) and ψ a sentence of LR(σ). Then

Γ |=σ ψ ⇒ Γ �σ ψ.
As in Section 5.10, we prove this by showing that if a set of sentences Γ

of LR(σ) is syntactically consistent (i.e. Γ ��σ ⊥), then Γ can be extended to a
Hintikka set, and every Hintikka set has a model.

Definition 7.6.3 We need to update Definition 5.10.2 to accommodate sentences
with quantifiers. We say that a set ∆ of sentences of LR(σ) is a Hintikka set for
RL(σ) if it obeys conditions (1)–(7) of Definition 5.10.2 together with two new
clauses:

(8) If ∀xφ is in ∆ and t is a closed term of LR(σ), then φ[t/x] is in ∆.

(9) If ¬∀xφ is in ∆ then there is a constant symbol c of σ such that ¬φ[c/x] is
in ∆.
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Lemma 7.6.4 If ∆ is a Hintikka set for LR(σ), then some σ-structure is a model
of ∆.

Proof We construct a σ-structure A from ∆ exactly as in Lemma 5.10.3. Then
we argue as before, using induction on complexity of sentences.

Besides the properties that we proved for A in the case of qf sentences, we
have two more things to prove:

(a) If ∀xφ is in ∆ then |=A ∀xφ.
(b) If ¬∀xφ is in ∆ then ∀xφ is false in A.(7.37)

To prove (a), if ∀xφ is in ∆ then by clause (8), ∆ contains φ[t/x] for every closed
term t. So by induction hypothesis each sentence φ[t/x] is true in A, and hence
every element tA of A satisfies φ. (A subtle point: φ[t/x] could very well be a
longer expression than ∀xφ, if t is a large term. But we are going by induction
on complexity of formulas—see Definition 5.3.9(a).) Since every element of A is
named by a closed term, this proves that ∀xφ is true in A.

To prove (b), if ¬∀xφ is in ∆ then by clause (9), ∆ contains ¬φ[c/x] for some
constant symbol c. Since φ[c/x] has lower complexity than ∀xφ, the induction
hypothesis gives that φ[c/x] is false in A. So the element cA fails to satisfy φ in
A, and thus ∀xφ is false in A.

The next step is to show how to extend any syntactically consistent set to a
Hintikka set, generalising Lemma 5.10.4. The new clause (9) gives us a headache
here: in order to be sure that the set of sentences is still syntactically consistent
after the sentence ¬φ[c/x] is added, we need to choose a constant symbol c
that has not yet been used. Since the signature σ may not contain any spare
constant symbols, we form a new signature σW by adding to σ an infinite set
W = {c0, c1, . . . } of witnesses.

Lemma 7.6.5 Given a syntactically consistent set Γ of sentences of LR(σ), there
is a Hintikka set ∆ for LR(σW ) with Γ ⊆ ∆.

Proof We note first that by Theorem 7.4.6(a), Γ is syntactically consistent in
LR(σW ). We make a list θ0, θ1, . . . which contains (infinitely often) each sentence
of LR(σW ), and also contains (infinitely often) each triple (φ,x, s = t) as in the
proof of Lemma 5.10.4. We also make sure that the list contains (infinitely often)
each pair of the form (∀xφ, t) where t is a closed term.

The sets Γi are constructed as before, but with two new cases. We check as
we go that each Γi contains only finitely many witnesses from W . The set Γ0

contained no witnesses, and each step will add just finitely many sentences and
hence only finitely many new witnesses.
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The two new cases are as follows.

• If θi is (∀xφ, t) and ∀xφ is in Γi, then we put Γi+1 = Γi ∪ {φ[t/x]}.
• If θi is ¬∀xφ and θi ∈ Γi, then let c be the first witness from W not used in

Γi. (Here we use the induction hypothesis that Γi uses only finitely many
of the witnesses.) We put Γi+1 = Γi ∪ {¬φ[c/x]}.

We have to show that if Γi is syntactically consistent in LR(σW ), then so
is Γi+1. We need only consider the two new cases above, since the argument
proceeds as before in the other cases.

Case (∀xφ, t). Suppose there is a derivation D of ⊥ whose undischarged
assumptions are in Γi+1. Then wherever φ[t/x] occurs as an undischarged
assumption of D, extend the derivation upwards so as to derive the assump-
tion from ∀xφ by (∀E). The result is a derivation proving (Γi �σW ⊥), which
implies that Γi was already syntactically inconsistent.

Case (¬∀xφ). Suppose we have a derivation D of ⊥ from Γi+1, that is, from
Γi and (¬φ[c/x]). Since c never occurs in Γi, we can construct the derivation

�1
�����
(¬φ[c/x])

D

⊥
(RAA)

φ[c/x]
(∀I)

∀xφ (¬∀xφ)

�1

(¬E)
⊥

(7.38)

This is a derivation proving (Γi �σW ⊥), which shows that Γi was already
syntactically inconsistent.

As in Lemma 5.10.4, we take ∆ to be the union Γ0 ∪ Γ1 ∪ · · · , and we confirm
that ∆ is a Hintikka set for LR(σW ).

We can now state the following, for later use.

Theorem 7.6.6 A set of sentences Γ of LR(σ) is syntactically consistent if and
only if it is consistent (i.e. has a model).

Proof If Γ is syntactically consistent then we showed that Γ extends to a
Hintikka set in an expanded signature σW , and that some σW -structure A is a
model of Γ. The Principle of Irrelevance assures that A remains a model of Γ if
we remove the interpretations of the symbols not in σ.
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Conversely, assume Γ has a model. Then it is false that (Γ |= ⊥), because if
A is a model of Γ, all sentences of Γ are true in Γ, but ⊥ is false. By Soundness,
(Γ �⊥) is false, that is, Γ is syntactically consistent.

Arguing just as in Lemma 3.10.3, the Adequacy Theorem follows from
Theorem 7.6.6. �

Combining Theorems 7.6.1 and 7.6.2 we get Theorem 7.6.7.

Theorem 7.6.7 (Completeness of Natural Deduction for LR) If Γ is a set of
sentences of LR(σ) and φ is a sentence of LR(σ), then

Γ |=σ φ ⇔ Γ �σ φ.
Theorem 7.6.8 (Compactness Theorem for LR) If Γ is a set of sentences of
LR, and every finite subset of Γ has a model, then Γ has a model.

Proof Suppose Γ has no model. Then every model of Γ is a model of ⊥, so
Γ |= ⊥. It follows by the Adequacy Theorem that there is a derivation D whose
conclusion is ⊥ and whose undischarged assumptions all lie in Γ. Let Γ′ be the
set of all undischarged assumptions of D. Since D is a finite object, Γ′ is finite.
Also since Γ′ � ⊥, the Soundness Theorem tells us that Γ |= ⊥, and hence Γ′

has no model. But we saw that Γ′ ⊆ Γ.

The Compactness Theorem is so-called because it can be interpreted as
saying that a certain topological space associated to LR(σ) is compact. It would
be too great a digression to elaborate.

Exercises
7.6.1. By an EA sentence we mean a sentence of the form

¬∀y1 · · · ∀yk¬∀z1 · · · ∀zmψ
where ψ is quantifier-free. Suppose φ is an EA sentence in a signature
with no function symbols, and � is the length of φ. Calculate in terms
of � an upper bound on the number of steps needed in Lemma 7.6.5 to
construct a Hintikka set containing φ under the assumption that {φ} is
syntactically consistent. [Thus k � � steps are needed for applications of
(9) in Definition 7.6.3, yielding a sentence with at most � constants; then
each of m � � variables zj needs to be replaced by each constant symbol
in applications of (8); and so on.] Explain why it follows that if σ has
no function symbols, then there is an algorithm for testing whether any
given EA sentence of LR(σ) is satisfiable.
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7.7 First-order theories
First-order theories have two main uses. The first is to serve as definitions of
classes of structures.

Example 7.7.1

(a) In Example 5.3.2(b) we introduced the signature σgroup for groups. The
standard definition of groups can be written as a set of sentences in
LR(σgroup), using universal quantifiers.

∀x∀y∀z (x · (y · z) = (x · y) · z)
∀x ((x · e = x) ∧ (e · x = x))
∀x ((x · x−1 = e) ∧ (x−1 · x = e))

(7.39)

The class of groups is exactly the class of models of (7.39).

(b) In Example 5.3.2(c) we defined the signature of linear orders, σlo. The
definition of a strict linear order (Definition 5.2.4) can be written using
sentences of LR(σlo):

∀x (¬(x < x))
∀x∀y∀z ((x < y) ∧ (y < z) → (x < z))
∀x∀y (((x < y) ∨ (y < x)) ∨ (x = y))

(7.40)

By a linearly ordered set we mean a set together with a strict linear order
on it. In other words, the class of linearly ordered sets is the class of all
models of (7.40).

(c) The class of abelian groups is the class of models of the theory

∀x∀y∀z (x+ (y + z) = (x+ y) + z)
∀x (x+ 0 = x)
∀x (x+ (−x) = 0)
∀x∀y (x+ y = y + x)

(7.41)

We have not said what the signature is, but you can work it out from the
sentences in the theory.

(d) Let K be a finite field. For each element k of K we introduce a 1-ary
function symbol k. Consider the theory consisting of (7.41) together with
all sentences of the following forms:

∀x∀y (k(x+ y) = k(x) + k(y))
∀x (k + h(x) = k(x) + h(x))
∀x (kh(x) = k(h(x)))
∀x (1(x) = x)

(7.42)
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for all elements k and h of K. The sentences (7.41) and (7.42) together
express the usual definition of vector spaces over K. The reason for restrict-
ing to a finite field is that this allows us to have (at least in principle) a
symbol for each element of the field. There are too many real numbers for
us to symbolise them by expressions from a language with a finite lexicon,
and it follows that we cannot define ‘vector space over R’ by first-order
axioms without a more abstract notion of ‘symbol’ than we have envisaged
so far. We come back to this in Section 7.9.

Definition 7.7.2 Suppose Γ is a theory in LR(σ). The class of all σ-structures
that are models of Γ is called the model class of Γ, and it is written Mod(Γ). We
say also that Γ is a set of axioms for the class Mod(Γ).

In the terminology of Definition 7.7.2, each of the theories (7.39)–(7.41) is a
set of axioms for a well-known class of mathematical structures, and the class is
the model class of the theory. Of course, these three classes do not need formal
sentences to define them. But first-order logic does provide a standard format for
definitions of this kind. Also the fact that a class is a model class, with axioms of
a particular form, often allows us to use methods of logic to prove mathematical
facts about the structures in the class. We give a very brief sample in Section
7.9. (Also in Section 7.9 we comment on why Definition 7.7.2 speaks of ‘model
classes’ rather than ‘model sets’.)

The second main use of first-order theories is to record a set of facts about
a particular structure. For example, here is a theory that states properties of the
natural number structure N.

Example 7.7.3 The σarith-structure N is a model of the following infinite set of
sentences:

(1) ∀x (0 �= Sx).

(2) ∀x∀y (Sx = Sy → x = y).

(3) ∀x (x+ 0 = x).

(4) ∀x∀y (x+ Sy = S(x+ y)).

(5) ∀x (x · 0 = 0).

(6) ∀x∀y (x · Sy = (x · y) + x).

(7) For every formula φ with FV (φ) = {x, y1, . . . , yn},
the sentence ∀y1 . . .∀yn ((φ[0/x] ∧ ∀x(φ → φ[Sx/x])) → ∀xφ).

This set of sentences is called first-order Peano Arithmetic, or PA for short. You
recognise (3)–(6) as the sentences of PA0 in Definition 7.5.2.



196 First-order logic

Here (7) is as near as we can get within first-order logic to an axiom that
Giuseppe Peano wrote down in 1889. In place of (7) he had a single sentence
expressing:

IfX is any set that contains 0, and is such that {if a natural
number n is inX then so is n+1}, then all natural numbers
are in X.

(7.43)

We cannot express (7.43) as a first-order sentence about N, because it needs a
universal quantifier ∀X where X is a variable for sets of numbers, not single
numbers. Languages with quantifiers ranging over sets of elements, or over rela-
tions or functions on the domain, are said to be second-order . We can use them
to say more than we could express in first-order logic, but at a cost: various
valuable facts about first-order logic, such as the existence of proof calculi with
the Completeness property, are not true for second-order logic.

Giuseppe Peano Italy, 1858–1932. Logic and arithmetic
can be reduced to a few primitive notions.

Example 7.7.4 Here is an important notion that can be expressed in second-
order logic; we will see in Exercise 7.9.3 that it cannot be expressed in first-order
logic. A well-ordered set is a model of the following set of sentences of LR(σlo),
and its order relation <A is called a well-order. The quantifier ∀X ranges over
sets of individuals, and X(y) means that y is in the set X.

(1) ∀x (¬(x < x)).

(2) ∀x ∀y∀z((x < y ∧ y < z) → (x < z)).

(3) ∀x ∀y((x < y) ∨ (x = y) ∨ (y < x)).

(4) ∀X (∃yX(y) → ∃y (X(y) ∧ ∀z(z < y → ¬X(z)))).

Sentences (1)–(3) are (7.40), the axioms for a linearly ordered set. Sentence (4)
says that every non-empty set of elements of the ordered set has a least element.
So, for example, the natural numbers with their usual linear order form a well-
ordered set. But the real numbers with their usual linear order do not, because
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there is no least real number. Also the set of non-negative real numbers is not a
well-ordered set; it has a least element, but the subset consisting of the positive
real numbers is non-empty and has no least element.

Complete theories

Definition 7.7.5 Let Γ be a theory in LR(σ).
(a) A consequence of Γ is a sentence φ of LR(σ) such that Γ |= φ. We write Γ

for the set of consequences of Γ.

(b) The theory Γ is called complete if for every sentence φ of LR(σ), exactly
one of φ and (¬φ) is a consequence of Γ.

Definition 7.7.6

(a) If A is a σ-structure, the theory of A, written Th(A), is the set of all
sentences φ of LR(σ) that are true in A. (So A is a model of Th(A).)

(b) IfA andB are σ-structures, we say that A andB are elementarily equivalent
(written A ≡ B) if Th(A) = Th(B). Then ≡ is an equivalence relation
on the class of σ-structures; its equivalence classes are called elementary
equivalence classes. (So each σ-structure A belongs to one equivalence class,
namely the class of all σ-structures elementarily equivalent to A.)

Theorem 7.7.7 Let Γ be a theory in LR(σ). The following are equivalent:
(a) Γ is complete.

(b) Γ is consistent (Definition 7.3.4(d)), and for every sentence φ of LR(σ),
at least one of φ and (¬φ) is a consequence of Γ.

(c) Γ is consistent, and if A, B are models of Γ then A ≡ B.

(d) Γ = Th(A) for some σ-structure A.

Proof (a) ⇒ (b): Suppose Γ is not consistent. Then Γ has no models, and so
trivially every model of Γ is a model of both ⊥ and (¬⊥), proving that both ⊥
and (¬⊥) are consequences of Γ. So (a) implies that Γ is consistent. The second
part of (b) is immediate from (a).

(b) ⇒ (c): Assume (b) and let A, B be models of Γ. If φ is a consequence
of Γ then φ is in both Th(A) and Th(B); if (¬φ) is a consequence of Γ then (¬φ)
is in both Th(A) and Th(B). By (b), one or other of these alternatives holds for
every sentence φ of LR(σ). Since Th(A) and Th(B) are clearly both consistent,
neither of them contains both φ and (¬φ) for any sentence φ, and so we infer
that Th(A) = Th(B).

(c) ⇒ (d): Assume (c). Then Γ has a model A; we claim that Γ = Th(A).
If φ is a consequence of Γ then |=A φ since A is a model of Γ. If φ ∈ Th(A) then
by (c), φ ∈ Th(B) for every model B of Γ, and so φ is a consequence of Γ.
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(d) ⇒ (a): Assume (d) and suppose Γ = Th(A). Then for every sentence
φ of LR(σ), φ is a consequence of Γ if and only if φ is true in A. But for every
sentence φ of LR(σ), exactly one of φ and (¬φ) is true in A.

Exercises
7.7.1. Construct a suitable signature for talking about abelian groups.

7.7.2. We write σequiv for the signature consisting of one binary relation symbol
E. In the language LR(σequiv), write a theory expressing that E is an
equivalence relation, so that a σequiv-structure A is a model of your theory
if and only if the relation EA is an equivalence relation on the domain
of A.

7.7.3. The finite spectrum of a theory Γ is the set {n ∈ N | Γ has a model with
exactly n elements}.
(a) Write a first-order theory whose finite spectrum is the set of positive

multiples of 3.

(b) Write a first-order theory whose finite spectrum is the set of all
positive integers ≡ 1 (mod 3).

(c) Write a first-order theory whose finite spectrum is the set of positive
integers of the form n2.

(d) Write a first-order theory whose finite spectrum is the set of all
prime powers > 1.

(e) Write a first-order theory whose finite spectrum is the set of all
positive integers of the form 5n.

(An old unsolved problem of Heinrich Scholz asks whether for every finite
spectrum X of a finite first-order theory, the set N \ (X ∪{0}) is also the
finite spectrum of a finite first-order theory.)

7.7.4. Consider Example 7.7.1(b), the theory of linear ordered sets.
(a) A linearly ordered set is called discrete without endpoints if for every

element a there are a greatest element < a and a least element > a.
Write a sentence φ so that (7.40) together with φ are a set of axioms
for the class of discrete linearly ordered sets without endpoints.

(b) Describe all discrete linearly ordered sets without endpoints. [If
A is a discrete linearly ordered set without endpoints, define an
equivalence relation ∼ on the domain of A by: a ∼ b if and only
if there are at most finitely many elements between a and b. What
can you say about the equivalence classes?]
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7.8 Cardinality
We can write down a name for each natural number. More precisely, if n is a
natural number then, given enough time and paper, we could write down the
arabic numeral for n. Our language for arithmetic, LR(σarith), contains a name
n̄ for each natural number n, and in several places we have used this fact. Can
one write down a name for each real number?

The answer is no. Again more precisely, there is no system of expressions
for all real numbers so that if r is any real number, then given enough time and
paper, we could eventually write down the expression for r. This was proved by
Georg Cantor in the nineteenth century. He showed that there are too many real
numbers; the number of real numbers is greater than the number of expressions
of any language with a finite lexicon. This fact is a theorem of set theory, a
subject that Cantor created. Set theory not only tells us that we cannot name
each real number by a written expression; it also tells us where to find collections
of ‘abstract’ symbols of any size we want. But this is not a course in set theory,
so here we will mostly confine ourselves to the facts needed to explain and prove
the result of Cantor just mentioned.

According to Cantor, the set X has the same size as the set Y (in symbols
X ≈ Y ) if and only if there is a binary relation R consisting of ordered pairs
(x, y) with x ∈ X and y ∈ Y , such that each x ∈ X is the first term of exactly
one pair in R and each y ∈ Y is the second term of exactly one pair in R. A
relation of this form is known as a one-to-one correspondence between X and Y .
By Definition 5.2.7 such a relation R is in fact a function from X to Y (taking
x to y if and only if the pair (x, y) is in R). We will refer to a function of this
form as a bijective function from X to Y , or more briefly a bijection from X to
Y . The relation ≈ is an equivalence relation on the class of all sets. For example,
the identity function from X to X shows that X ≈ X; see Exercise 7.8.1.

Cantor also proposed that we count the set X as having smaller size than
the set Y (in symbols X ≺ Y ) if X and Y do not have the same size but there
is an injective function g : X → Y .

At first sight it seems that Cantor must have made a mistake, because there
are pairs of sets that are in the relation ≈ but clearly have different sizes. For
example, the function

tan−1 :
(
−π

2
,
π

2

)
→ R

is a bijection from the bounded interval (−π/2,π/2) to the set of all real numbers.
Fortunately, Cantor was not distracted by examples like this. He took the sensible
view that there are different kinds of size. The kind of size that is measured by ≈
is called cardinality. Today Cantor’s definitions of ‘same size’ and ‘smaller size’
in terms of ≈ and ≺ are widely accepted.
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Another objection that Cantor had to meet is that his definition of ‘same
cardinality’ does not answer the question ‘What is a cardinality?’ We do not
propose to give an answer to this question; every available answer uses a serious
amount of set theory. But we can set down here what we are going to assume. For
a start, we will assume that each set X has a cardinality card(X). The objects
card(X) that are used to represent cardinalities are known as cardinals.

For finite sets the natural numbers serve as cardinals. We say that a set
X is finite if there is a natural number n such that X can be listed without
repetition as

X = {x0, . . . ,xn−1}(7.44)

and in this case we count the number n (which is unique) as the cardinality of
X. The function i �→ xi is a bijection from {0, . . . ,n − 1} to X. Also if X and
Y are finite sets then X ≺ Y if and only if card(X) < card(Y ). The empty set
is the only set with cardinality 0. We say that a set is infinite if it is not finite.

According to standard axioms of set theory, the cardinals are linearly
ordered by size, starting with the finite cardinalities (the natural numbers) and
then moving to the infinite ones. We have

card(X) = card(Y ) if and only if X ≈ Y ;
card(X) < card(Y ) if and only if X ≺ Y .

So by the definitions of ≈ and ≺, card(X) � card(Y ) if and only if there is
an injective function f : X → Y .

Also the cardinals are well-ordered: every non-empty set of cardinals has a
least member. We can deduce from this that if there are any infinite cardinals
then there is a least one; it is known as ω0. If there are any cardinals greater
than ω0, then there is a least one, known as ω1; and so on. So the ordering of
the cardinals starts like this:

0, 1, 2, . . . ,ω0,ω1,ω2, . . .

at least if infinite cardinals exist. But they do: the set N is infinite, so its cardin-
ality card(N) is an infinite cardinal. Again according to standard axioms of set
theory, card(N) = ω0; the set of natural numbers is as small as an infinite set
can be, reckoned by cardinality. Also a theorem of Cantor states that there is
no greatest cardinal (Exercise 7.8.7); so ω1 must exist too, and likewise ω2 and
onwards.

We begin our detailed treatment by discussing the sets of cardinality ω0.
Then we will prove Cantor’s Theorem stating that the cardinality of R is greater
than ω0.
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Definition 7.8.1

(a) A set X is countably infinite if X ≈ N; in other words, X is countably
infinite if it can be listed without repetition as

X = {x0,x1, . . . }(7.45)

where the indices 0, 1 etc. run through the natural numbers. (So the
countably infinite sets are those of cardinality ω0.)

(b) A set X is countable (or enumerable) if it is either finite or countably infinite;
in other words, X is countable if it can be listed without repetition as in
(7.45) where the list may or may not go on for ever. A set is said to be
uncountable if it is not countable. (So all uncountable sets are infinite.)

In this definition, ‘without repetition’ means that if i �= j then xi �= xj .
Listing a set of things without repetition, using natural numbers as indices, is
the main thing we do when we count the set; this is the idea behind the word
‘countable’. Note also that if f : X → Y is bijective and X is listed without
repetition as {x0,x1, . . . }, then {f(x0), f(x1), . . . } is a corresponding listing of
Y . So if X is countable and Y ≈ X then Y is countable too (and likewise with
finite and countably infinite).

Lemma 7.8.2 Let X be a set. The following are equivalent:

(a) X is countable.

(b) X is empty or has an infinite listing as {x0,x1, . . . }, possibly with repetitions.
(c) There is an injective function f : X → N.

Proof (a) ⇒ (b): If X is finite and not empty, say X = {x1, . . . ,xn}, then
we can list X as {x0, . . . ,xn,xn,xn, . . . }.

(b) ⇒ (c): If X is empty then the empty function from X to N is injective.
(The empty function f takes nothing to nothing; so in particular there are no
distinct x and y with f(x) = f(y).) If X is not empty then, given the listing of
X, define a function h : X → N by

h(x) = the least n such that x = xn.

Then h is an injective function from X to N.
(c) ⇒ (a): First suppose that Y is any subset of N. Then Y can be listed

in increasing order, say as

Y = {y0, y1, . . . }.(7.46)

How do we know this? Using the well-order of N (Example 7.7.4), take y0 to be
the least element of Y , y1 the least element of Y \ {y0}, y2 the least element of
Y \ {y0, y1} and so on. There is no harm if after some yn there are no elements
of Y left; this just means Y is finite. We need to check that every element of
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Y appears eventually in the list. If not, then by well-ordering there is a least
element y that is not listed. But by the way the list elements are chosen, y will be
the least element of Y \ {y0, . . . , yk} as soon as we have listed among y0, . . . , yk
all the elements of Y that are less than y; so y will in fact be listed after all.

Now assume (c), and take Y to be the image {f(x) | x ∈ X} of X in N.
Then using (7.46) we can list X without repetition as

X = {f−1(y0), f−1(y1), . . . }

so that X is countable too.

Next we show that various operations on countable sets lead to countable
sets. If X and Y are sets, we write X × Y for the set of all ordered pairs (x, y)
where x ∈ X and y ∈ Y ; X × Y is the cartesian product of X and Y .
Theorem 7.8.3

(a) A subset of a countable set is countable. More generally if f : X → Y is an
injective function and Y is countable then X is countable too.

(b) The cartesian product of two countable sets X,Y is countable.

(c) If f : X → Y is surjective and X is countable then Y is countable.

(d) The union of two countable sets is countable.

Proof (a) Suppose Y is countable and f : X → Y is injective. Then by Lemma
7.8.2 there is an injective function g : Y −→ N, and so the composite function
g ◦ f is an injective function from X to N. Hence Y is countable by Lemma 7.8.2
again. (If X is a subset of Y , take f to be the identity function on X.)

(b) Suppose X and Y are countable. Then their elements can be listed
without repetition as X = {x0,x1, . . . } and Y = {y0, y1, . . . }. We define a
function F : X × Y → N by

F (xi, yj) = 2i3j

By unique prime decomposition F is injective. Hence X × Y is countable.
(c) Suppose f : X → Y is surjective. If X is empty then so is Y . Suppose

X is non-empty and countable, so that by Lemma 7.8.2 we can list the elements
of X as an infinite list {x0,x1, . . . }. Then {f(x0), f(x1), . . . } is a listing of Y . It
follows that Y is countable by Lemma 7.8.2 again.

(d) If either X or Y is empty the result is obvious; so assume neither
is empty. Since X is countable, by Lemma 7.8.2 it has an infinite listing as
{x0,x1, . . . }. Likewise Y has an infinite listing {y0, y1, . . . }. Now

{x0, y0,x1, y1, . . . }

lists X ∪ Y , so X ∪ Y is countable.
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These and similar arguments show that various sets are countable. For
example the set of positive integers, the set of squares and the set of integers are
all countably infinite (Exercise 7.8.2). The next example illustrates all the parts
of Theorem 7.8.3.

Corollary 7.8.4 The set Q of all rational numbers is countable.

Proof By Theorem 7.8.3(a,b) the set X of ordered pairs (m,n) of natural
numbers with n �= 0 is countable. There is a surjective function (m,n) �→ m/n

from X to the set Y of non-negative rational numbers, and so Y is countable by
Theorem 7.8.3(c). The bijection x �→ −x shows that the set Z of non-positive
rational numbers is countable too. Then Q = Y ∪ Z is countable by Theorem
7.8.3(d).

Georg Cantor Germany, 1845–1918. Founder of set
theory and the arithmetic of infinite numbers.

By now you may be wondering whether all infinite sets are countable. The
famous Cantor’s Theorem shows that this is not the case. The full theorem is
Exercise 7.8.7; the following is an important special case.

Theorem 7.8.5 Let m and w be two distinct objects, and let F be the set of all
functions f : N → {m,w}. Then F is uncountable.
Proof Suppose {f0, f1, . . . } is an infinite listing of elements of F . We show
that the listing does not list the whole of F , by finding an element g that is not
included. The element g is defined as follows: For each natural number n,

g(n) =
{
m if fn(n) = w

w if fn(n) = m
(7.47)

Then for each n, g �= fn since g(n) �= fn(n). This shows that F is not
countable.

A historical curiosity is that Cantor seems to have chosen m and w to stand
for man and woman (Mann and Weib in German)! His proof is known as the
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diagonal argument , because we can imagine forming g by choosing the opposites
of the elements in the NW/SE diagonal of the infinite matrix

f0(0) f0(1) f0(2) f0(3) . . .

f1(0) f1(1) f1(2) f1(3) . . .

f2(0) f2(1) f2(2) f2(3) . . .

f3(0) f3(1) f3(2) f1(3) . . .
...

...
...

...

We can now exhibit another uncountable set.

Corollary 7.8.6 The set R of all real numbers is uncountable.

Proof In Theorem 7.8.5 choose m and w to be 5 and 6. Then each function f
in F describes a real number with decimal expansion

0 . f(0) f(1) f(2) . . .

consisting entirely of 5s and 6s. This gives an injective function h : F → R. Since
F is not countable, neither is R, by Theorem 7.8.3(a).

By Corollary 7.8.6, card(R) is at least ω1. The question whether card(R)
is exactly ω1 is known as the continuum problem (referring to the real numbers
as the continuum). We know that the set-theoretic axioms that are commonly
assumed today are not strong enough to answer this question.

The more general version of Theorem 7.8.5 in Exercise 7.8.7 implies that for
every set X there is a set with greater cardinality than X. We get into trouble
if we take X to be the whole universe of mathematics, since there is nothing
greater than the universe. This is why today we distinguish between sets (which
have cardinalities) and proper classes (which are classes that are too large to
have cardinalities). The class of all sets is a proper class, and so is the class of
all cardinals. If X is a proper class and X ⊆ Y then Y is a proper class too.

Although we are barred from speaking of the class of all subclasses of a
proper class X, there is nothing to prevent us defining and using particular
subclasses of X. Likewise we can introduce binary relations on X; already in
this section we have discussed the equivalence relation ≈ on the proper class of
all sets, and Section 7.9 will discuss some other equivalence relations on proper
classes.

Exercises
7.8.1. Show that the relation ≈ is an equivalence relation on the class of sets.

[For reflexive, use the identity function from a set to itself. For symmetric,
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use the inverse of a bijection. For transitive, use the composition of two
bijections.]

7.8.2. (a) Write down a bijection from the interval [0, 1] to the interval [0, 2]
in R.

(b) Write down a bijection from the set N to the set of positive integers.

(c) (Galileo’s Paradox) Write down a bijection from N to the set of
squares of integers.

(d) Describe a bijection from N to the set Z of integers.

(e) Describe a bijection from the closed interval [0, 2π] in R to the set
of points of the unit circle x2 + y2 = 1.

7.8.3. LetX0,X1,X2, . . . be countable sets (the list may or may not terminate).
Prove that the union X0 ∪ X1 ∪ X2 · · · is countable. (This is usually
expressed by saying ‘a countable union of countable sets is countable’.)

7.8.4. (a) Prove that the set S of all finite sequences of natural numbers is
countable. [Define F : S → N by

F (k1, . . . , kn) = 2k1+1 · 3k2+1 · . . . · pkn+1
n

where pn is the n-th prime.]

(b) Deduce that the set of all finite sets of natural numbers is countable.

(c) Show that if σ is a first-order signature with countably many sym-
bols, then the set of terms of LR(σ) is countable and the set of
formulas of LR(σ) is countably infinite.

7.8.5. The algebraic numbers are the complex numbers that satisfy some poly-
nomial equation with integer coefficients. Prove that the set of algebraic
numbers is countable.

7.8.6. The Unrestricted Comprehension Axiom of set theory states that if P (x)
is any predicate, there is a set {a | P (a)} consisting of all objects a
such that P (a) is true. Show that if P (x) is the predicate ‘x /∈ x’
and b = {a | a �∈ a}, then b ∈ b if and only if b �∈ b. (This is the
Russell–Zermelo paradox, which has led most set theorists to reject the
Unrestricted Comprehension Axiom.)

7.8.7. Let X be a set; we write PX for the set of all subsets of X.
(a) Show that card(X) � card(PX). [Take x to {x}.]
(b) (Cantor’s Theorem) Prove that card(X) < card(PX). [By (a) it

suffices to show that the cardinalities are not equal; in fact we show
that no function h : X → PX is surjective. Consider Y = {x ∈
X | x �∈ h(x)}, and show that Y must be different from each set in
the image of h.]
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7.8.8. The purpose of this exercise is to show that Exercise 7.8.7 generalises
the diagonal argument in Theorem 7.8.5. For every subset Z of X the
characteristic function χZ is defined by

χZ(x) =
{

1 if x ∈ Z

0 if x /∈ Z

Writing F for the set of all functions from X to {0, 1}, show that the
function Z �→ χZ is a bijection from PX to F , so that PX ≈ F . Show
that the set Y in Exercise 7.8.7 is defined by putting, for each x,

χY (x) = 1− χh(x)(x).

So if X = N and fn = χh(n) then χY is the diagonal function g of the
proof of Theorem 7.8.5 (with 1 for m and 0 for w).

7.9 Things that first-order logic cannot do
How far can you pin down a mathematical structure A by giving its first-order
theory Th(A)?

In a sense, you cannot at all. For example, take the natural number structure
N, and replace the number 0 by Genghis Khan. The arithmetic is just the same
as before, except that now 2 − 2 is Genghis Khan, Genghis Khan times 2 is
Genghis Khan, Genghis Khan plus 3 is 3 and so on. This just goes to show that
for mathematical purposes the identity of the elements of a structure is generally
irrelevant; all that interests us is the relationships between the elements in the
structure. To make this thought precise, we introduce the idea of an isomorph-
ism, which is a translation from one structure to another that preserves all the
mathematically interesting features.

Definition 7.9.1 Let A, B be σ-structures. By an isomorphism from A to B we
mean a bijection f from the domain of A to the domain of B such that

(1) For all constant symbols c of σ,

f(cA) = cB

(2) If F is a function symbol of σ with arity n, and a1, . . . , an are elements of
A, then

f(FA(a1, . . . , an)) = FB(f(a1), . . . , f(an))

(3) If R is a relation symbol of σ with arity n, and a1, . . . , an are elements of
A, then

RA(a1, . . . , an) ⇔ RB(f(a1), . . . , f(an))
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We say that A is isomorphic to B, in symbols A ∼= B, if there is an isomorphism
from A to B.

For example, if A and B are groups (taken as σgroup-structures, Exam-
ple 5.3.2(b)), then Definition 7.9.1 agrees with the usual notion of group
isomorphism. In Exercises 5.5.6 and 5.5.7 we saw some examples of isomorphisms
between digraphs. If σlo is the signature of linear orders (as in Example 5.3.2(c))
and the σlo-structures A, B are linearly ordered sets with order relations <A

and <B , then an isomorphism f from A to B is called an order-isomorphism; it
is a bijective function from the domain of A to the domain of B, such that for
all a, b in the domain of A, a <A b implies f(a) <B f(b).

The relation ∼= is an equivalence relation on the class of all σ-structures, and
its equivalence classes are known as isomorphism classes. As our argument with
Genghis Khan shows, each isomorphism class is as large as the whole universe,
because for any structure A and any object b not in A we can construct an
isomorphic copy of A that has b as an element. In the terminology of Section
7.8, isomorphism classes are always proper classes.

Theorem 7.9.2 Let A and B be isomorphic σ-structures. Then A ≡ B.

This is intuitively obvious, since A and B are mathematically speaking
identical. But one can also give a rigorous proof by induction on the complexity
of formulas of LR(σ). Theorem 7.9.2 tells us that an elementary equivalence class
of σ-structures is the union of one or more isomorphism classes. It is not hard
to see that every non-empty model class is the union of one or more elementary
equivalence classes; so non-empty model classes are always proper classes too.
This is why mathematicians talk about the class of all groups, not about the set
of all groups.

So we cannot identify a particular structure A by giving its first-order theory
Th(A). But can Th(A) identify the isomorphism class of A? In other words, does
the converse of Theorem 7.9.2 hold?

The answer is known to be Yes if A has finitely many elements: any other
model of Th(A) must be isomorphic to A. But if A has infinitely many elements,
the answer is always No; there are structures elementarily equivalent to A but
not isomorphic to it. Here is the reason why.

Definition 7.9.3

(a) We define the cardinality of a structure to be the cardinality of its domain.
The spectrum of a theory Γ is the class of cardinals κ such that Γ has a
model of cardinality κ.

(b) We define the cardinality of a language L to be the cardinality of the set
of sentences of L. (One can show that the cardinality of LR(σ) is the least
infinite cardinal � card(σ).)
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For the languages that we have considered so far in our general theory, the
cardinality is always ω0 (by Exercise 7.8.4). But one can give a more abstract
definition that allows the symbols in signatures to be any mathematical objects,
not necessarily shapes that can be written down; in this more general setting
the cardinality of LR(σ) might be any infinite cardinal. The theorems of Section
7.6—in particular, the Completeness Theorem and the Compactness Theorem—
remain true after this generalisation, though the proofs need to be adjusted to
use some devices of set theory.

The following theorem extracts parts of two other more detailed theorems
known as the Upward and Downward Löwenheim-Skolem Theorems.

Theorem 7.9.4 (Spectrum Theorem) Suppose LR(σ) has cardinality κ and Γ
is a theory in LR(σ).

(a) If Γ has a model with infinite cardinality then every cardinal � κ is in the
spectrum of Γ.

(b) If the spectrum of Γ contains infinitely many natural numbers, then Γ has a
model with infinite cardinality.

Proof We sketch the proof. It uses two main devices: the construction of mod-
els of Hintikka sets in the proof of Lemma 5.10.3, and the Compactness Theorem
(Theorem 7.6.8).

Consider the models of Hintikka sets first. If ∆ is a Hintikka set for LR(τ),
then the domain of a model A of ∆ consists of the equivalence classes t∼ of
closed terms t of LR(τ). One can prove from this that the cardinality of A is at
most that of the set of closed terms of LR(τ), and this in turn is at most the
cardinality of LR(τ). (When τ is countable, LR(τ) has countably many closed
terms—see Exercise 7.8.4(c). It follows by Theorem 7.8.3(c) that A is countable.)

Suppose λ is any cardinal � κ. Take a set W of witnesses, of cardinality λ.
(Here we use an abstract set-theoretic notion of symbols.) Write σW for σ with
the symbols of W added. Let Γ′ be Γ together with all the sentences

(c �= d) for all distinct witnesses c, d in W(7.48)

If ∆ is a Hintikka set for LR(σW ) with Γ′ ⊆ ∆, and A is the model of ∆
constructed in the proof of Lemma 5.10.3, then it can be shown that card(A) �
card(LR(σW )) = λ. But if c, d are distinct witnesses from W , then (c = d)
cannot be in ∆ because of (7.48), and so by (5.58) we have c∼ �= d∼. It follows
that the function c �→ c∼ from W to the domain of A is injective, hence λ �
card(A). Thus we have pinned down the cardinality of A to exactly λ.

It follows that Γ has a model of cardinality λ, provided that Γ′ has a model.
This is where the Compactness Theorem (Theorem 7.6.8) comes into play. To
show that Γ′ has a model, we need only show that every finite subset of it has
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a model. We can show this by proving that for every finite subset X of W , say
with n elements, there is a model of Γ together with the sentences (c �= d) where
c, d ∈ X.

If Γ has a model B with infinite cardinality, then we can choose n distinct
elements b1, . . . , bn of B and take the witnesses in X to name these elements.
This proves (a).

If there are infinitely many natural numbers m in the spectrum of Γ, then
choose m at least as great as n, take B to be a model of Γ with m ele-
ments, and again choose n distinct elements of B to be named by the witnesses.
This proves (b).

Anatolĭı Mal’tsev Russia, 1909–1967. A pioneer in
applications of logic to algebra, he was the first to
publish a construction of models with uncountable
cardinality.

It follows at once from Theorem 7.9.4, and the fact that there is no greatest
cardinal, that if a first-order theory has an infinite model then it has models
with different cardinalities. But two models with different cardinalities cannot
be isomorphic. So if a theory Γ has infinite models, then the most we can hope
for is that each model of Γ is isomorphic to all other models of Γ of the same
cardinality.

Definition 7.9.5 Let Γ be a consistent theory.

(a) We say that Γ is categorical if, for all models A, B of Γ, A is isomorphic to
B.

(b) Let κ be a cardinal. We say that Γ is κ-categorical if Γ has models of
cardinality κ, and all of them are isomorphic.

Categorical first-order theories do exist; but if Γ is such a theory then there
is a positive integer n such that all models of Γ have exactly n elements (as, for
example, in Exercise 7.9.1). Also κ-categorical theories do exist with κ infinite.
When κ is uncountable, the models of κ-categorical theories have some very
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interesting features that relate them to algebraic geometry. But here we confine
ourselves to an example of an ω0-categorical theory.

Recall σlo, the signature of linear orders, and let ∆ be the theory consisting
of the axioms for a linearly ordered set (Example 7.7.1(b)) and the following two
sentences:

∀x∀y (x < y → ∃z((x < z) ∧ (z < y)))
∀x∃y∃z ((y < x) ∧ (x < z))

A linearly ordered set X which is a model of the first sentence has the property
that between any two elements of X there is another element. Such a linearly
ordered set is said to be dense. If X is a model of the second sentence, then X

does not have a greatest or a least element (see Definition 5.2.5). Such a linearly
ordered set is said to be without endpoints.We call ∆ the theory of dense linearly
ordered sets without endpoints. (By Example 5.2.6 a finite linearly ordered set has
a least element; so linearly ordered sets without endpoints are always infinite.)

We use the usual notation for intervals in a linearly ordered set. Namely, if
a, b are elements of A and a <A b, we define

(a, b) = {x ∈ A | a <A x <A b}
(−∞, a) = {x ∈ A | x <A a}
(a,∞) = {x ∈ A | a <A x}

The following was proved by Cantor, though the proof we use was discovered
later by Edward Huntington and Felix Hausdorff.

Theorem 7.9.6 The theory of dense linearly ordered sets without endpoints is
ω0-categorical.

Proof In order to avoid confusion between intervals and ordered pairs, in this
proof we will write ordered pairs as 〈a, b〉. Let X, Y be countable dense linearly
ordered sets without endpoints. We can list the elements of X and Y without
repetition, say X = {x0,x1, . . . } and Y = {y0, y1, . . . }. We will define recursively
a sequence of pairs

〈a0, b0〉, 〈a1, b1〉, . . .
where each an is in X and each bn is in Y , such that

for all m and n, am <X an if and only if bm <Y bn.(7.49)

We begin by choosing 〈a0, b0〉 = 〈x0, y0〉.
Then for each even number n > 0, assuming the pairs up to 〈an−1, bn−1〉

have been chosen so that (7.49) holds, we choose an to be the first element
in the listing of X that does not appear among a0, . . . , an−1. Now the set
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{a0, . . . , an−1} is linearly ordered as a subset of X, say as xi0 <X xi1 <X · · · <X

xim−1 for some m � n (see Example 5.2.6). This divides X into m+ 1 intervals:
the intervals (xij ,xij+1) for 0 ≤ j < m− 1, and the two intervals (−∞,xi0) and
(xim−1 ,∞). The assumption (7.49) implies that the elements b0, . . . , bn−1 divide
Y into m + 1 intervals corresponding to the division of X. We chose an to be
distinct from a0, . . . , an−1, so it lies in one of the intervals of X. Suppose this
interval is (aj , ak). Then aj <X an <X ak, and we can use the denseness of Y
to find bn so that bj <Y bn <Y bk. For definiteness, let bn be the first element
in the listing of Y that lies in this interval. The argument when an lies in one
of the two end intervals is similar, using the fact that Y has no endpoints. In all
cases (7.49) is true up to the pair 〈an, bn〉.

For each odd number n, do the same but with X and Y the other way
round, so that we first choose bn and then find an to match.

Now each element xi of X was chosen to be an for some n � 2i, and likewise
each element yi of Y was chosen to be bn for some n � 2i+1. Also if bm �= bn then
am �= an, since if bm <Y bn then am <X an by (7.49) (and likewise if bn <Y bm).
So we can define a surjective function f : X → Y by putting f(an) = bn for each
n ∈ N. This function f is injective since am <X an implies bm <Y bn. By (7.49),
f is an order-isomorphism from X to Y .

Notice how the proof chose a1 to match b1, then b2 to match a2, then a3

to match b3 and so on. This alternation is known as back-and-forth, and it has
become enormously influential in applications of logic, particularly in theoretical
computer science.

Exercises
7.9.1. Let σ be the empty signature. Every σ-structure is just a set (its domain),

so that two σ-structures are isomorphic if and only if they have the same
cardinality. Show that for each positive integer n there is a sentence ψn
of LR(σ) whose models are exactly the sets of cardinality n (so that {ψn}
is categorical).

7.9.2. (a) Let Γ be a consistent theory in LR(σ), where σ is countable.
Assume
(1) For some infinite cardinal κ, Γ is κ-categorical;

(2) all models of Γ are infinite.
Show that the theory Γ is complete. [If not, then by the Spectrum
Theorem it would have two models of cardinality κ in which dif-
ferent sentences are true. The clauses (1) and (2) are sometimes
known as the �Loś-Vaught test for completeness.]
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(b) Deduce that if A and B are any two dense linearly ordered sets
without endpoints, then A ≡ B. (Taking the linearly ordered sets
of the rationals and the reals, which have different cardinalities,
this provides a concrete counterexample to the converse of Theorem
7.9.2.)

7.9.3. Show that the class of all well-ordered sets is not a model class. [The
proof is very similar to that of Theorem 7.9.4. For contradiction suppose
the class of well-ordered sets is Mod(Γ). Introduce countably many new
constant symbols c0, c1, . . . , add to Γ the sentences

. . . , c3 < c2, c2 < c1, c1 < c0

and use the Compactness Theorem (Theorem 7.6.8).]

7.9.4. Prove that every countable linearly ordered set X is order-isomorphic to
a subset Z of Q, where Z is ordered with the restriction of the usual
linear order on Q. [Use a simplified version of the argument for Theorem
7.9.6, with Y = Q. You only need to go forth, not back.]

7.9.5. Show that if f : A → B is an isomorphism of σ-structures then f−1 :
B → A exists and is also an isomorphism. If moreover g : B → C is an
isomorphism of σ-structures, show that the composed function g ◦ f :
A → C is an isomorphism.

7.9.6. As in Exercise 5.5.7, an automorphism of a σ-structure A is an isomorph-
ism from A to A. The identity function on the domain of a σ-structure
A is always an automorphism of A; we say A is rigid if this is the only
automorphism of A.

(a) Show that every finite linearly ordered set is rigid.

(b) Show that the linearly ordered set of the natural numbers is rigid.

(c) Show that if a linearly ordered set A is not rigid then it has
infinitely many automorphisms. [If f(a) < a then f(f(a)) < f(a),
so f and f ◦ f are distinct automorphisms.]

(d) Show that the linearly ordered set of the rationals has uncount-
ably many automorphisms.
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We say that a sentence of LR(σ) is valid if it is true in every σ-structure.
We will prove in a moment that, unlike LP, there is no algorithm for telling
whether a given sentence of LR is valid. Nevertheless we have the following.
Recall (Definition 7.7.5(a)) that φ is a consequence of Γ if Γ |= φ.

Theorem 8.1 For any finite signature σ, let Γ be a computably enumerable (c.e.)
set of sentences of LR(σ). Then the set of consequences of Γ is c.e.

Proof Since Γ is c.e., we can set up a computer C1 to list the sentences in Γ.
(When Γ is empty the list is empty.)

We claim that we can also set up a computer C2 to list all and only the
σ-derivations. In Section 3.4 we saw that every σ-derivation is a labelled tree,
and we saw in Exercise 3.2.5 how to give a labelled tree a Gödel number. So we
can devise a system giving each σ-derivation D a Gödel number GN(D); as with
formulas, each of D and GN(D) can be calculated from the other. The computer
C2 goes through the natural numbers, and at each n it checks whether n is
GN(D) for some σ-derivation D whose conclusion is a sentence; it can do this
by Theorem 7.4.4. When the answer is Yes, it prints out the derivation D.

Now to prove the theorem, set up a third computer C3 which does the
following for each natural number n in turn. It looks at each of the first n
derivations D listed by C2, and for each D it checks whether the undischarged
assumptions of D are all among the first n sentences listed by C1. If Yes, then
C3 prints out the conclusion of D. Thus C3 will enumerate all and only the
sentences φ such that Γ �σ ψ. By the Completeness Theorem (Theorem 7.6.7)
these sentences are precisely the consequences of Γ.

Theorem 8.2 (Gödel’s Diagonalisation Theorem) There is no computable set of
sentences of LR(σarith) true in N that includes all the true diophantine sentences.

Proof We will use the Gödel numbers of sentences in place of the sentences
themselves. This is allowable since each is computable from the other. Suppose
for contradiction that X is the set of Gödel numbers of a set of sentences true
in N that includes all the true diophantine sentences, and that X is computable.
Then the set Y = N\X is c.e., by Lemma 5.8.5(a)⇒ (b).
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Classification of sentences about N:
:

True False

False
diophantine

True
diophantine

For any m and n, let S(m,n) be the statement

m is the Gödel number of a formula θ of LR(σarith), and Y
contains the Gödel number of the formula θ[n̄/x].

Since Y is c.e., we can check that the set of pairs (m,n) such that S(m,n)
holds is also c.e.

So by Matiyasevich’s Theorem (Theorem 5.8.6) there is a diophantine for-
mula χ(x, y) which expresses S(x, y). We can assume by Example 7.3.8 that no
quantifier ∀x or ∃x (with the variable x) occurs in χ, so that x is substitutable for
y in χ. Let n be the Gödel number of the formula χ[x/y]. Then χ[n̄/x, n̄/y] is true
in N if and only if Y contains the Gödel number of the sentence χ[n̄/x, n̄/y]. So

GN(χ[n̄/x, n̄/y]) ∈ X ⇔ |=N χ[n̄/x, n̄/y] (since if θ is diophan-
tine, X contains GN(θ)
if and only if θ is true)

⇔ GN(χ[n̄/x, n̄/y]) ∈ Y (by choice of χ and n)
⇔ GN(χ[n̄/x, n̄/y]) /∈ X (since X is the comple-

ment of Y )

contradiction.

Corollary 8.3 (Matiyasevich’s solution of Hilbert’s Tenth Problem) There
is no algorithm to determine, given an equation of LR(σarith), whether the equa-
tion has a solution in N. (Hilbert’s Tenth Problem (1900) was: Either find such
an algorithm or show that none exists.)
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Kurt Gödel Austria and USA, 1906–1978.
The set of first-order sentences true in N is not
computably enumerable.

Proof Let Γ be the set of all diophantine sentences that are true in N. By
Theorem 8.2, Γ is not computable. But if there was an algorithm as described
in the Corollary, we could use it to compute whether or not a sentence is in Γ.
So there is no such algorithm.

Corollary 8.4 (Church’s Undecidability Theorem) There is no algorithm to
determine, given a sentence φ of first-order logic, whether or not φ is valid.

Proof Let θ be the conjunction of the four sentences of PA0 (Definition 7.5.2),
and let ψ be a diophantine sentence. Then the following are equivalent:

• ψ is true in N.

• {PA0} � ψ (by Dedekind’s Theorem, Theorem 7.5.3)

• � (θ → ψ) (⇒ by (∧E) and (→I), ⇐ by (→E) and (∧I))

• |= (θ → ψ) (by the Completeness Theorem, Theorem 7.6.7).

So an algorithm for deciding whether or not a sentence of LR(σarith) is valid
would give us an algorithm for deciding whether or not a diophantine sentence
ψ is true in N. But by Corollary 8.3 there is no such algorithm.

Alonzo Church USA, 1903–1995.
Computability is mathematically definable.
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Corollary 8.5 (Gödel’s Undecidability Theorem) For every c.e. set Γ of sen-
tences of LR(σarith) that are true in N, there is some sentence of LR(σarith) that
is true in N but is not in Γ.

Proof Suppose for contradiction that Γ is exactly the set of sentences of
LR(σarith) true in N. Then the set ∆ of sentences false in N is {φ | ¬φ ∈ Γ}, which
is computably enumerable using an enumeration of Γ. So using enumerations of
Γ and ∆, the set Γ is computable by Lemma 5.8.5(b)⇒ (a). But Theorem 8.2
tells us that Γ is not computable, since it is a set of true sentences and it contains
all true diophantine sentences.

In Example 7.7.3 we described a set PA of sentences that are true in N.

Corollary 8.6 (Gödel’s Incompleteness Theorem) There are sentences of
LR(σarith) that are true in N but are not consequences of PA.

Proof The set PA is a computable set of sentences that are true in N. So by
Theorem 8.1 the set of consequences of PA is a c.e. set of sentences true in N.
Now apply Corollary 8.5.

Gödel’s Undecidability Theorem saves us from the awful possibility that
someone might write a computer program that solves all problems of mathemat-
ics. Even for arithmetic no such program can exist.



Appendix A The natural deduction
rules

Natural Deduction Rule (Axiom Rule) Let φ be a statement. Then

φ

is a derivation. Its conclusion is φ, and it has one undischarged assumption,
namely φ.

Natural Deduction Rule (∧I) If

D

φ
and

D′

ψ

are derivations of φ and ψ, respectively, then

D D′
φ ψ

(∧I)
(φ ∧ ψ)

is a derivation of (φ ∧ ψ). Its undischarged assumptions are those of D together
with those of D′.

Natural Deduction Rule (∧E) If

D

(φ ∧ ψ)

is a derivation of (φ ∧ ψ), then

D
(φ ∧ ψ)

(∧E)
φ

and
D

(φ ∧ ψ)
(∧E)

ψ

are derivations of φ and ψ, respectively. Their undischarged assumptions are
those of D.
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Natural Deduction Rule (→I) Suppose

D

ψ

is a derivation of ψ, and φ is a formula. Then the following is a derivation of
(φ → ψ):

φ�
D
ψ

(→I)
(φ → ψ)

Its assumptions are those of D, except possibly φ.

Natural Deduction Rule (→E) If

D

φ
and

D′

(φ → ψ)

are derivations of φ and (φ → ψ), respectively, then

D D′
φ (φ → ψ)

(→E)
ψ

is a derivation of ψ. Its assumptions are those of D together with those of D′.

Natural Deduction Rule (↔I) If

D

(φ → ψ)
and

D′

(ψ → φ)

are derivations of (φ → ψ) and (ψ → φ), respectively, then

D D′
(φ → ψ) (ψ → φ)

(↔I)
(φ ↔ ψ)

is a derivation of (φ ↔ ψ). Its undischarged assumptions are those of D together
with those of D′.
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Natural Deduction Rule (↔E) If

D

(φ ↔ ψ)

is a derivation of (φ ↔ ψ), then

D
(φ ↔ ψ)

(↔E)
(φ → ψ)

and
D′

(φ ↔ ψ)
(↔E)

(ψ → φ)

are derivations of (φ → ψ) and (ψ → φ), respectively. Their undischarged
assumptions are those of D.

Natural Deduction Rule (¬E) If

D

φ
and

D′

(¬φ)
are derivations of φ and (¬φ), respectively, then

D D′
φ (¬φ)

(¬E)
⊥

is a derivation of ⊥. Its undischarged assumptions are those of D together with
those of D′.

Natural Deduction Rule (¬I) Suppose

D

⊥
is a derivation of ⊥, and φ is a statement. Then the following is a derivation of
¬φ):

φ�
D
⊥

(¬I)
(¬φ)

Its undischarged assumptions are those of D, except possibly φ.

Natural Deduction Rule (RAA) Suppose we have a derivation

D

⊥
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whose conclusion is ⊥. Then there is a derivation

(¬φ)���

D

⊥
(RAA)

φ

Its assumptions are those of D, except possibly (¬φ).
Natural Deduction Rule (∨I) If

D

φ

is a derivation with conclusion φ, then

D

φ

(φ ∨ ψ)
is a derivation of (φ∨ψ). Its undischarged assumptions are those ofD. Similarly if

D

ψ

is a derivation with conclusion ψ, then

D

ψ

(φ ∨ ψ)
is a derivation with conclusion (φ ∨ ψ). Its undischarged assumptions are those
of D.

Natural Deduction Rule (∨E) Given derivations

D

(φ ∨ ψ) ,
D′

χ
and

D′′

χ

we have a derivation

�φ �ψ

D D′ D′′

(φ ∨ ψ) χ χ

χ

Its undischarged assumptions are those of D, those of D′ except possibly φ, and
those of D′′ except possibly ψ.
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Natural Deduction Rule (=I) If t is a term then

(=I)
(t = t)

is a derivation of the formula (t = t). It has no assumptions.

Natural Deduction Rule (=E) If φ is a formula, s and t are terms
substitutable for x in φ, and

D

(s = t)
,

D′

φ[s/x]

are derivations, then so is

D D′

(s = t) φ[s/x]
(=E)

φ[t/x]

Its undischarged assumptions are those of D together with those of D′.

Natural Deduction Rule (∀E) Given a derivation

D

∀xφ
and a term t that is substitutable for x in φ, the following is also a derivation:

D

∀xφ
φ[t/x]

Its undischarged assumptions are those of D.

Natural Deduction Rule (∃I) Given a derivation

D

φ[t/x]

where t is a term that is substitutable for x in φ, the following is also a derivation:

D

φ[t/x]
∃xφ

Its undischarged assumptions are those of D.
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Natural Deduction Rule (∀I) If

D

φ[t/x]

is a derivation, t is a constant symbol or a variable, and t does not occur in φ or
in any undischarged assumption of D, then

D

φ[t/x]
∀xφ

is also a derivation. Its undischarged assumptions are those of D.

Natural Deduction Rule (∃E) If

D

∃xφ
and D′

χ

are derivations and t is a constant symbol or a variable which does not occur
in χ, φ or any undischarged assumption of D′ except φ[t/x], then

φ[t/x]�

D D′

∃xφ χ

χ

is also a derivation. Its undischarged assumptions are those of D′ except possibly
φ[t/x], together with those of D.



Appendix B Denotational
semantics

It is a very old idea that sentences are built up by two parallel processes: combin-
ing words on the page, and combining meanings in the mind. Already in the tenth
century the Arabic philosopher Al-Fārāb̄ı talked of ‘the imitation of the compo-
sition of meanings by the composition of expressions’. As long as people agreed
with Al-Fārāb̄ı that the meanings wear the trousers, there was no way in for
mathematics, because nobody had any idea where to look for the mathematical
structure of meanings.

During the period 1850–1930 the idea gradually took root that at least for
some artificial languages, we can describe the syntax independently of meanings,
and then we can describe how meanings of complex phrases are built up from the
meanings of words, using the syntax as a template. In 1933 Tarski showed exactly
how to build up a semantics in this way for most formal languages of logic. In 1963
Helena Rasiowa and Roman Sikorski popularised an algebraic version of Tarski’s
theory: formal languages are algebras with the rules of syntactic composition as
their operations, and we interpret a language by describing a homomorphism
from the algebra to a suitable structure (e.g. a boolean algebra).

Around 1970 these ideas spread into two new areas. First, Dana Scott
and Christopher Strachey showed how to extend Tarski’s framework to com-
puter languages. Second, Richard Montague and Barbara Partee launched a
programme to carry the same ideas over into natural languages. Scott and
Strachey advertised their scheme as ‘denotational semantics’, while Partee used

Helena Rasiowa Poland, 1917–1994.
We can handle logic by methods of algebra.
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the catchword ‘compositionality’, but the ideas involved had a good deal in com-
mon. (Both Scott and Montague had worked closely with Tarski.) The work
of these four people has been hugely influential in computer science and in
linguistics.

Like many people today, in this book we have taken the view that sentences
have an inner framework; we represent it by their parsing trees. We interpret
sentences by climbing up their parsing trees, and we also work out how to write
or speak them by climbing up their parsing trees. Somebody else can worry about
whether parsing trees themselves are really syntactic or semantic.

Our main aim in this appendix is to show how the tree-climbing analyses of
this book are related to more algebraic accounts of semantics.

Recall the truth table that described the behaviour of truth function
symbols. Here we write it using 1 for truth and 0 for falsehood:

φ ψ (φ ∧ ψ) (φ ∨ ψ) (φ → ψ) (φ ↔ ψ) (¬φ) ⊥
1 1 1 1 1 1 0 0
1 0 0 1 0 0
0 1 0 1 1 0 1
0 0 0 0 1 1

(B.1)

One can also read this table as a set of definitions of functions:

b∧ b∨ b→ b↔
1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 1 1 0
0 0 0 0 1 1

(B.2)

Here b∧ is a function which takes two truth values to a truth value; for example,
b∧(1, 1) = 1 and b∧(1, 0) = 0 according to the table. Also b¬ is a function of one
truth value, with b¬(1) = 0 and b¬(0) = 1; and b⊥ is the constant function with
value 0. The b stands for boolean function.

In Section 3.5 we saw how to use a σ-structure A to assign a truth value
to a propositional formula φ. The structure tells us what truth values to write
on the leaves, and the truth tables tell us how to put truth values as we climb
up the parsing tree of φ. Here are the rules for the assignment, written as a
compositional definition.
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Let σ be a signature and A a σ-structure. We write A� for the following
compositional definition:

A(χ) � χ 0 � ⊥
� ¬b¬(v)

�v

� �b�(v,w)
�

�
��v

�
�

� �w

where χ is a propositional symbol and � ∈ {∧,∨,→,↔}.
(B.3)

If φ is a formula with parsing tree π, we define A�(φ), the truth value of φ at A,
to be A�(π).

Linguists and computer scientists would comment at this point that we are
only halfway done. We have said what A�(χ) is; but A is not part of the language.
We need to assign to χ a semantic value, in symbols |χ|, that tells us what the
truth value of χ is for each possible structure A. In other words, |χ| should give
us A�(χ) as a function of A.

The following notation (called lambda-notation) is standard for this purpose.
We write λx(x− y) for x− y as a function of x. So, for example,

(λx(x− y))(6) = 6− y.

Taking the same idea a step further,

(λyλx(x− y))(6)(4) = λx(x− 4)(6) = 6− 4 = 2

whereas (λxλy(x− y))(6)(4) works out as −2. If C is a σ-structure then

(λA(A(p0)))(C) = C(p0)

so that λA(A(p0)) is the function that takes each σ-structure A to the value that
A gives to p0.

In this notation we have the following denotational semantics for propo-
sitional logic. We assume a signature σ, and A ranges over all possible
σ-structures.

λA(A(χ)) � χ 0 � ⊥
� ¬λA(b¬(v(A)))

�v

� �λA(b�(v(A),w(A)))
�

�
��v

�
�

� �w
(B.4)

Applying this compositional definition to the parsing tree of χ, we get |χ| as the
label on the root.

We turn to first-order logic. Just as with boolean functions, we need a more
functional notation than we used in the book. Given a structure A, we define an
assignment in A to be a function α whose domain is a set of variables, which
takes each variable to an element of A. If E is an expression whose free variables
are all in the domain of α, then we can regard α as a set of instructions for
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substituting a name α(v) for each free variable v in E. If E is a term, this
substitution leads to an element of A, whereas if E is a formula, it leads to a
truth value.

We first interpret terms, then formulas. The interpretation of a term t of
LR(σ) depends on a σ-structure A and an assignment α in A whose domain
includes FV (t). Treating A as fixed, we read off the interpretation of t in A from
the following compositional definition:

λα(α(v)) � v λα(cA) � c

� Fλα(FA(a1(α), . . . , an(α)))
�

�
�






�
�

�a1

�
�

�. . . �an

where v is a variable and F is a function symbol of arity n.

(B.5)

Applying this definition to a term t gets us a function tA which, applied to
an assignment α whose domain includes every variable in t, gives the element
of A named by t under this assignment. You can adapt the definition to get
|t| = λA(tA) as a function of the structure A. You might also consider what is
needed to make tA into a function defined only on the assignments whose domain
is exactly FV (t); but every piece of tidying adds a new layer of clutter to the
definition.

Next we consider relation symbols. If R is an n-ary relation symbol on a set
X, its characteristic function is the function χR : Xn → {1, 0} defined by:

χR(a1, . . ., an) =
{

1 if (a1, . . ., an) ∈ R

0 otherwise

Likewise, we define χ=, the characteristic function of equality, to be the function
from X2 to {1, 0} such that

χ=(a1, a2) =
{

1 if a1 = a2

0 otherwise

At atomic formulas the denotational semantics has the rules

λα0 �⊥
� =λα(χ=(a1(α), a2(α)))

�
�

��a1

�
�

� �a2

� Rλα(χR(a1(α), . . ., an(α)))
�

�
�






�
�

�a1

�
�

�. . . �an

where R is a relation symbol of arity n.

(B.6)

So again the left labels are functions f defined on assignments; but now the
values f(α) are truth values (1 or 0).



Appendix B 227

The definition extends to truth functions by adapting (B.3) to take into
account the assignments:

� ¬λαb¬(f(α))

�f

� �λαb�(f(α), g(α))
�

�
��f

�
�

� �g

where � ∈ {∧,∨,→,↔}.

(B.7)

It remains only to add clauses for the quantifiers. We write ‘a ∈ A’ as shorthand
for ‘a is an element of A’. We write α(a/x) for the assignment β defined by

β(y) =
{
a if y is x
α(y) if α(y) is defined and y is not x

If X is a non-empty subset of {0, 1} then minX and maxX are the minimum
and the maximum element of X.

� ∀xλαmin{f(α(a/x)) | a ∈ A}

�f

� ∃xλαmax{f(α(a/x)) | a ∈ A}

�f

where x is a variable.

(B.8)

When we add λA at the front of each left label as before, we create a function
that has all σ-structures in its domain, so that its domain is a proper class. This
move is legitimate, but it does create some set-theoretic complications. A course
in set theory is the place to discuss them.
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Appendix C Solutions to some
exercises

2.1.1. (Possible answer)
Conclusion: r has a square root.
Assumptions:

• r is a positive real number.

• x2 − r is a continuous function on R.

• The Intermediate Value Theorem.

• Various other arithmetical assumptions that are not spelt out.

2.1.2. (Possible answer)
Conclusion: lim

x→0
u(x) = 1.

Assumptions:
• 1− x2

4 � u(x) � 1 + x2

2 for all x �= 0.

• lim
x→0

(1− (x2/4)) = 1.

• lim
x→0

(1 + (x2/2)) = 1.

• The Sandwich Theorem.

• Various arithmetical assumptions.

2.1.3. Rule A: Intuitively correct; for the formal version see the solution to
Exercise 3.4.6(b).

Rule B: False. For example, if we are talking about the real
numbers,‘x = 1’ entails ‘x > 0’, the reverse entailment does not hold.

Rule C: False. For an example in the real numbers again, if Γ consists
of the statement x = 1 and ∆ consists of the statement x = 2, then each
of Γ and ∆ entails x > 0. But there is no statement that is in both Γ
and ∆, so (Γ ∩∆) is the empty set, which does not entail x > 0.

2.2.1. (a) (The real number r is positive ∧ the real number r is not an integer).
[Best to repeat ‘the real number r’ in the second clause, rather than
saying ‘it is not an integer’. The reason is that in logical manipu-
lations we want to be able to move the statements around, and
moving the second clause would break the link from ‘it’ to ‘the real
number r’.]
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(b) (v is a vector ∧ v �= 0).

(c) (If φ then ψ ∧ if ψ then φ).

2.3.2.

D D′

φ ψ
(∧I)

(φ ∧ ψ)
(∧E)

φ

The shorter derivation is
D
φ

2.4.1. (a) (f is differentiable → f is continuous). [There is a slight catch here.
Depending on the context, (a) could mean that the ‘If . . . then’ is
true for all appropriate f , as if it said

For all functions f : R → R, f is continuous if f is differentiable.

Propositional logic does not have any rules for handling ‘For all’. We
will meet the appropriate rules in Section 7.4.]

(b) (x is positive → x has a square root).

(c) (a �= 0 → ab/b = a).

2.4.2. (a)
�1

(φ ∧ ψ)����
(∧E)

�1
(φ ∧ ψ)����

(∧E)
ψ φ

(∧I)
(ψ ∧ φ)�1 (→I)

((φ ∧ ψ) → (ψ ∧ φ))

(b)

φ
�1

� (φ → ψ)
�2

�����

(→E)
����ψ (ψ → χ)

�3

(→E)
χ�1 (→I)

(φ → χ)�2 (→I)
((φ → ψ) → (φ → χ))�3 (→I)

((ψ → χ) → ((φ → ψ) → (φ → χ)))
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2.4.6. (a) ⇒ (b): Suppose D1 is a derivation of ψ whose undischarged assump-
tions are all in Γ∪{φ}. WriteD� for a copy ofD1 in which each occurrence
of the assumption φ is replaced by

φ�
�1

Then take D′
1 to be the derivation

D�

ψ
(→I)�1

(φ → ψ)

2.5.1. (b) � (φ ↔ φ)

φ�
�1

φ�
�2

�1 �2(→I) (→I)
(φ → φ) (φ → φ)

(↔I)
(φ ↔ φ)

2.5.3. Let D be a derivation of ψ with no undischarged assumptions. Then the
following is a proof of ((φ ↔ ψ) ↔ φ) with no undischarged assumptions.

D

D
(φ ↔ ψ)����� �1

(↔E)
ψ φ�

�2

(→I) (→I)
ψ (ψ → φ)

(→E)
(φ → ψ) (ψ → φ)

(↔I)
φ

�1 (→I)
(φ ↔ ψ)

�2 (→I)
((φ ↔ ψ) → φ) (φ → (φ ↔ ψ))

(↔I)
((φ ↔ ψ) ↔ φ)

2.6.1. (b) Proof of � ((¬(φ → ψ)) → (¬ψ)).

ψ

�1
�

(→I)
������

(φ → ψ) (¬(φ → ψ))
�2

(¬E)
⊥�1 (¬I)

(¬ψ)�2 (→I)
((¬(φ → ψ)) → (¬ψ))
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(c) Proof of � ((φ ∧ ψ) → (¬(φ → (¬ψ)))).

(φ ∧ ψ)
�2

���

(∧E)
ψ

(φ ∧ ψ)
�2

���
(∧E)

φ (φ → (¬ψ))
�1

�����

(→E)
(¬ψ)

(¬E)
⊥�1 (¬I)

(¬(φ → (¬ψ)))�2 (→I)
((φ ∧ ψ) → (¬(φ → (¬ψ))))

2.6.2. (b) Proof of � ((¬(φ → ψ)) → φ).

φ
�1

� (¬φ)
⊥

(¬E)

ψ

���
�2

(RAA)
�1 (→I)
(φ → ψ) (¬(φ → ψ))������ �3

�2

(¬E)
⊥

(RAA)
φ�3 (→I)

((¬(φ → ψ)) → φ)

2.7.1. (c) Proof of � ((φ → ψ) → ((¬φ) ∨ ψ)).

(¬φ)
�1

���

((¬φ) ∨ ψ) (¬(¬(φ ∨ ψ)))
(∨I)

⊥
������� �3

�1 (RAA)

(¬E)

φ

φ

�2
� (φ → ψ)�����

�4

(→E)
ψ

((¬φ) ∨ ψ) (¬((¬φ) ∨ ψ))
(∨I)

(¬E)
⊥

������ �3

�2 (¬I)
(¬φ)

�3

(¬E)
⊥

(RAA)
((¬φ) ∨ ψ)�4 (→I)

((φ → ψ) → ((¬φ) ∨ ψ))

2.7.2. (a) Proof of {(φ ∨ ψ)} � (ψ ∨ φ).

�φ

�1

(∨I)
�ψ

�1

(∨I)
(φ ∨ ψ) (ψ ∨ φ) (ψ ∨ φ)

(∨E)
(ψ ∨ φ)

�1
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3.1.1. (d)

� ∨
����

				� ¬ � →
� →

�
�

�
�� p2

� ⊥
�

�
�

�� p2
� ↔

�
�

�
�� p1

� p0

3.1.3. (f) {p1, p2, p3, p5, p7}.
3.2.3. δ(π) is the length of the associated formula φ of π, that is, the number

of symbols in φ.

3.2.4. The compositional definition is identical with the one in Exercise 3.2.3,
except that it has 0 instead of 1 and 2 instead of 3.

3.2.5. The formula with this number is ((¬p1) ∨ p0).

3.3.4. True.

3.3.7. (c) For example, S = {s | the number of occurrences of ‘(’ in s is equal
to the number of occurrences of functors}. Atomic formulas contain
neither parentheses nor functors, so they are in S and hence (1)
holds. For (2), if s is in S, then for some n it has n left parentheses
and n functors, so (¬s) has n+1 left parentheses and n+1 functors
and hence is also in S. The calculation for the remaining cases in (2)
is similar. Hence by Exercise 3.3.6(a), S contains every formula of
LP(σ). But the expression (p1 ∧ p2 → p3) has one occurrence of ‘(’
and two functors, so it is not in S. So the expression is not a formula
of LP(σ).

(f) For example, S = {s| either at least one of ∧,∨,→,↔ occurs in s, or
there is at most one occurrence of a propositional symbol in s}. For
this S, (1) holds since atomic formulas contain at most one occurrence
of a propositional symbol. Suppose s has at most one occurrence of a
propositional symbol; then likewise so does (¬s). Also if s contains ∧,
∨, → or ←, then so does (¬s). So S is closed under the first condition
in (2); it is also closed under the others, since they introduce ∧, ∨,
→ or ↔. Hence (2) is true for S. As before, all formulas of LP(σ)
are in S. But (¬p1)p2 is not in S, hence is not a formula of LP(σ).
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3.3.10. (b)

Sub(φ) = {φ} when φ is atomic,
Sub((¬φ)) = Sub(φ) ∪ {¬φ},
Sub((φ�ψ)) = Sub(φ) ∪ Sub(ψ) ∪ {(φ�ψ)} when � ∈ {∧,∨,→,↔}.

3.4.1. For example, (d)(iii): ν has right-hand label (∧E), and for some formulas
φ and ψ, ν has left label either φ or ψ and its daughter has left label
(φ ∧ ψ).

3.4.3. (c) We check that if D satisfies each clause of Definition 3.4.1 for ρ then
it satisfies each clause for σ too. For clause (b) it follows at once
from clause (b) of this Exercise. None of the other clauses mention
the signature, so their truth is independent of the signature.

(d) By Definition 3.4.4, if (Γ �ρ ψ) is correct then there is a ρ-derivation
D whose conclusion is ψ and whose undischarged assumptions all
lie in Γ. By (c) of this Exercise, D is also a σ-derivation, so by
Definition 3.4.4 again, (Γ �σ ψ) is correct too.

3.4.4. (a) For each formula φ of LP(σ), write φ′ for the result of replacing each
symbol in σ but not in ρ by ⊥; so D′ comes from D by replacing
each left label φ by φ′. We have to show that D′ satisfies Definition
3.4.1 for signature ρ. Clauses (a) and (c) are unaffected by passing
from D to D′. Clause (b) holds since every formula φ′ is in LP(ρ).
For (d), take, for example, (i); by assumption each node ν of D
with right label (→I) has left label (φ → ψ) where its daughter has
left label ψ. By construction D′ has left labels (φ → ψ)′ at ν and
ψ′ at the daughter of ν. But (φ → ψ)′ is (φ′ → ψ′), so (d)(iv) is
satisfied in D′. The remaining clauses of (d)–(f) are similar. Clause
(g) holds for D′ since it held for D and a leaf of D′ carries a formula
φ′ with a dandah if and only if D carried φ with a dandah. So D
satisfies all the clauses of Definition 3.4.1 for ρ. (You should also
show that φ′ is a formula, by induction on complexity.)

3.4.6. (b) Suppose (Γ �σ ψ) is correct. Then there is a σ-derivation D whose
conclusion is ψ and whose undischarged assumptions are all in Γ.
Given that Γ ⊆ ∆, the undischarged assumptions of D are also in
∆, so that D proves (∆ �σ ψ).

(d) By assumption there are σ-derivations D and D′ proving (Γ �σ
φ) and (Γ ∪ {φ} �σ ψ), respectively. Create a new diagram D′′

by taking each leaf µ of D′ that carries φ without dandah, and
attaching a copy of D so that the root of the copy takes the place
of the leaf. Since the root of D has left label φ, this does not affect
the left label at µ; but the right label of µ becomes the right label
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on the root of D. All the clauses (a)–(g) of Definition 3.4.1 hold
for D′′ since they held for D and D′; so D′′ is a σ-derivation. Its
conclusion is ψ. Its undischarged assumptions are those of D and
D′, except that the occurrences of φ without dandah on the leaves
of D′ have been removed. So the undischarged assumptions of D′′

are all in Γ as required.

3.5.2. (a) Tautology and satisfiable. (b) Contradiction. (c) Satisfiable. (d)
Contradiction.

3.5.4. ⇒: Suppose A�(φ) = T for every ρ-structure A. Let B be a σ-structure,
and let A be the ρ-structure got from B by ignoring the assignments
made by B to symbols not in ρ. By assumption A�(φ) = T, so B�(φ) =
T by the Principle of Irrelevance. ⇐: Similar, but instead of ignoring
the values for symbols in σ, we add them in an arbitrary way.

3.5.5. (a) 2k.

(b) 2k(k + n).

(c) For every �, β(�) � 2(�+3)/4
( 3�+5

4

)
; the maximum is achieved when

� ≡ 1 (mod 4).

3.6.2. Partial solution:

(a)

p q (p ∧ q) (¬ (p → (¬ q)))
T T T T T T T F F T
T F T F F F T T T F
F T F F T F F T F T
F F F F F F F T T F

⇑ ⇑

(b)

p q (p ∨ q) ((p → q) → q)
T T T T T T T T T T
T F T T F T F F T F
F T F T T F T T T T
F F F F F F T F F F

⇑ ⇑

(c)

p q (p ↔ q) ((p → q) ∧ (q → p))
T T T T T T T T T T T T
T F T F F T F F F F T T
F T F F T F T T F T F F
F F F T F F T F T F T F

⇑ ⇑
3.6.5. (a) ⇒ (c): both φ and (¬⊥) are true in all σ-structures. (c) ⇒ (d):

(¬⊥) is clearly a tautology. (d) ⇒ (a): Assume φ is logically equivalent
to tautology ψ in LP(σ). For any σ-structure A, A�(φ) = A�(ψ) = T.
So φ is a tautology.
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3.7.2. (c) (i) is equivalent to (ii) by applying to the first De Morgan Law
(Example 3.6.5) the substitution

(p1 ∧ (¬p2))/p1, (((¬p1) ∧ p2) ∧ p3)/p2

and then quoting the Substitution Theorem. To show the equivalence
of (ii) and (iii), first use De Morgan and Substitution to infer that
(¬(p1 ∧ (¬p2))) is logically equivalent to ((¬p1) ∨ (¬(¬p2))), and then
use Replacement to put the latter in place of the former inside (ii). Next
do the same with the subformula (¬(((¬p1) ∧ p2) ∧ p3)), but using (b)
above with n = 3 in place of De Morgan. To show the equivalence of
(iii) and (iv), use Substitution to infer from the Double Negation Law
(Example 3.6.5) that (¬(¬p2)) eq p2, and then use Replacement to make
this replacement in (iii); likewise Replacement allows us to write p1 in
place of (¬(¬p1)).

3.8.1. (b) The proof of Post’s Theorem finds the DNF

(p1 ∧ p2 ∧ p3) ∨ (p1 ∧ ¬p2 ∧ ¬p3)∨
(¬p1 ∧ ¬p2 ∧ p3) ∨ (¬p1 ∧ ¬p2 ∧ ¬p3)

The DNF of the negation of (b) is

(p1 ∧ p2 ∧ ¬p3) ∨ (p1 ∧ ¬p2 ∧ p3)∨
(¬p1 ∧ p2 ∧ p3) ∨ (¬p1 ∧ p2 ∧ ¬p3)

Putting ¬ at the beginning and moving it inwards by De Morgan gives
the CNF

(¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ ¬p3)∧
(p1 ∨ ¬p2 ∨ ¬p3) ∧ (p1 ∨ ¬p2 ∨ p3)

3.8.2. (b) (p1 ∧ ¬p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ p3 ∧ ¬p4). You cannot cancel ¬p2 ∧
¬p3 against p2 ∧ p3, because they involve more than one propositional
symbol.

3.8.6. Start by noting that (φ|φ) has the same truth table as ¬φ.
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3.9.2. (a)

→
1 1 1
1 1

2
1
2

1 0 0
1
2 1 1
1
2

1
2 1

1
2 0 0
0 1 1
0 1

2 1
0 0 1

(b) When p has value 1
2 and q has value 0.

(c) We write Γ for the set of undischarged assumptions of D. The only
tricky case is when D has the form

φ�
D′

ψ
(→I)

(φ → ψ)

where D′ has conclusion ψ and its undischarged assumptions all lie
in Γ∪{φ}. Let A be any structure with A�(φ → ψ) < 1, and suppose
for contradiction that A�(χ) > A�(φ → ψ) for all χ ∈ Γ. Since
A�(φ → ψ) < 1, we are in one of the cases (i) A�(φ) = 1, A�(ψ) = 1

2 ,
(ii) A�(φ) > 0 = A�(ψ). In case (i), A�(φ → ψ) = 0.5, so A�(χ) = 1
for all χ ∈ Γ, contradicting the inductive assumption on D′. In case
(ii) A�(χ) > A�(ψ) for all χ ∈ Γ ∪ {φ}, again contradicting the
inductive assumption.

5.1.1. The bold symbols below are some of the variables:
Putting θ = π

9 and c = cos π9 , Example 6.3 gives

cos 3θ = 4c3 − 3c.

However, cos 3θ = cos π3 = 1
2 . Hence 1

2 = 4c3 − 3c. In other words,
c = cos π9 is a root of the cubic equation

8x3 − 6x− 1 = 0.

The bold expressions below are definite descriptions:
Putting θ = π

9 and c = cos π9 , Example 6.3 gives

cos 3θ = 4c3 − 3c.
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However, cos 3θ = cos π3 = 1
2 . Hence 1

2 = 4c3 − 3c. In other words,
c = cos π9 is a root of the cubic equation

8x3 − 6x − 1 = 0.

The underlined expressions below are some of the complex mathematical
terms:

Putting θ = π
9 and c = cos π9 , Example 6.3 gives

cos 3θ = 4c3 − 3c.

However, cos 3θ = cos π3 = 1
2 . Hence 1

2 = 4c3 − 3c. In other words,
c = cos π9 is a root of the cubic equation

8x3 − 6x− 1 = 0.

5.1.2. (a) v is free.

(b) x and y are free, but all three occurrences of t are bound by the
limit operator.

(c) The only variable is r; its three occurrences are all bound by ‘For all’.

(d) Like (c), with ‘some’ instead of ‘all’.

(e) Leibniz’s calculus notation is brilliantly designed for calculations
but not always easy to analyse logically. The most straightforward
analysis of this equation makes y a free variable for a function of x,
and z a variable free at both occurrences. But d2/dx2 is an oper-
ator that binds the x in it (and an implied x in y(x)), though the
occurrence of x on the right of the formula is free.

5.2.3. (a) We cannot test whether (0, 2, 3) is in the relation, because y occurs
twice on the left, and the same number has to be put for y at both
occurrences.

(b) The condition for (0, 0, 0) to be in the relation is that 0+0 = 0+w.
But because w is not on the left, there is nothing to tell us what w
is, so we cannot tell whether (0, 0, 0) is in the relation.

5.2.5. (a) Substitutable. x2 − yz.

(b) Substitutable. z.

(c) Substitutable.
∫ z
x2−yz sin(w)dw.

(d) Substitutable (since (d) has no free occurrences of y).
∫ z
w
sin(y)dy.

(e) Not substitutable (since putting x2 − yz for y makes the integral
bind the x2).
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5.3.1. The lexicon of LR(σ) consists of the symbols in σ together with the
twelve symbols ‘¬’, ‘∧’, ‘∨’, ‘→’, ‘↔’, ‘⊥’, ‘=’, ‘∀’, ‘∃’, ‘(’, ‘)’ and ‘,’.

5.3.6. (b) Let t be a term of LR. As for Lemma 3.3.3, a proof by induction on
the heights of nodes in the parsing tree of t shows:
(i) Every initial segment of t has depth � 0; the initial segments with

depth 0 are t itself and the first symbol of t.

(ii) If t is F (t1, . . . , tn) where F is a function symbol of arity n and
t1, . . . , tn are terms of LR, then the n−1 commas shown are exactly
the occurrences of commas in t that have depth 1.

5.4.2. (a) t is ·̄(x, S̄(x)).
(b) t is ·̄(y, y).
(c) t is +̄(x, y).

(d) Possible answer: φ is (z = ·̄(0̄, z)).
5.4.6. Below the formulas are left out to save space.

(=term)

(=transitive)(=symmetric)

(=transitive)(=term)

(=transitive)(=symmetric)

(=transitive)

At the left-hand occurrence of (=term), t[e/v] = t[xz/v] is derived
from e = xz where t is yv. At the right-hand occurrence of (=term),
s[yx/v] = s[e/v] is derived from yx = e where s is vz.

5.4.7. For a cleaner notation we write t′ for t[r/y] and φ′ for φ[r/y].
Here is the case where a node ν in D carries the right label (=E) (case
(e)(v) in Definition 5.4.5). At node ν we have a formula φ[t/x], and at
its daughters we have the formulas φ[s/x] and (s = t). The variable
x here is used purely to mark the site for the substitutions, so we can
choose it arbitrarily; assume it is distinct from y and from every variable
occurring in D, s or t. The formulas at the corresponding nodes in D′

are φ[t/x]′ at ν and φ[s/x]′ and (s = t)′ at its daughters. To show
that the rule for (=E) is obeyed at ν, we note first that by Definition
5.4.4(c), (s = t)′ is (s′ = t′); so it will suffice to show that φ[t/x]′

is φ′[t′/x] and φ[s/x]′ is φ′[s′/x]. The argument in both cases is the
same. We start by showing that for every term u, u[t/x]′ is u′[t′/x],
using induction on the complexity of u in Definition 5.4.4. Suppose
first that u is y; then since x is not y and is not in t, u[t/x] = u, so
u[t/x]′ = u′ = r = r[t′/x] = u′[t′/x]. Next suppose that u is x; then
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u[t/x] = t so that u[t/x]′ = t′ = u[t′/x]. If u is any other variable then
u[t/x]′ = u′ = u = u[t′/x] = u′[t′/x]. Next suppose u is F (s1, . . . , sn)
where F is a function symbol and s1, . . . , sn are terms. Then u[t/x] =
F (s1[t/x], . . . , sn[t/x]), so

u[t/x]′ = F (s1[t/x], . . . , sn[t/x])′ = F (s1[t/x]′, . . . , sn[t/x]′)

= F (s′
1[t

′/x], . . . , s′
n[t

′/x]) = F (s′
1, . . . , s

′
n)[t

′/x] = u′[t′/x].

The cases for φ[t/x]′ are similar, using Definition 5.4.4 throughout.

5.4.8. Take, for example, the case of eliminating a function symbol F not in ρ.
For each term t of LR(σ) we define a term t′ by recursion on complexity:

t′ =




t if t is a variable or constant symbol,
x0 if t is F (s1, . . . , sn) for some terms s1, . . . , sn,
G(s′

1, . . . , s
′
n) if t is G(s1, . . . , sn) with G �= F .

Then for each formula φ of qf LR(σ) we define a formula φ′ by recursion
on complexity:

φ′ =




R(t′1, . . . , t
′
n) if φ is R(t1, . . . , tn),

(s′ = t′) if φ is (s = t),
⊥ if φ is ⊥,
(ψ′�χ′) if φ is (ψ�χ) with � ∈ {∧,∨,→,↔},
(¬ψ′) if φ is (¬ψ).

(Conscientious logicians can prove that t′ really is a term and φ′ really
is a formula.) The symbol F never appears in φ′; also if φ is in qf LR(ρ)
then φ′ is φ. The remainder of the argument is very similar to Exercise
5.4.7.

5.5.2.

��
�

��
���

2

��
�

��
��� 3

�

�

�������������

��������������
� �

�
��
���

5

��
�

��
���

1

��
�

��
���

4

�

�

5.5.7. (a) 5. (b) 6. (c) Draw the digraph with edge relation
{(1, 2), (2, 3), (3, 4)}.

5.6.2. (a) True, (b) false, (c) true, (d) true.
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5.6.3.

cA � c

� FFA(a1, . . . , an)
�

�
�






�
�

�a1

�
�

�. . . �an

where c is a constant symbol and F is a function symbol
of arity n.

5.7.1. (a) {0}. (b) ∅.
5.7.2. (c) {(4,n) | n ∈ N}. (f) {(1, 6), (2, 3), (3, 2), (6, 1)}.
5.8.2. (f) There are natural numbers y1, y2 such that y1(x1 +1) = 1+y2(x2 +

1). (By Euclid’s algorithm there are integers y1 and y2 as in this
equation. Replacing y1 by y1 +m(x2 +1) and y2 by y2 +m(x1 +1)
for a large enough m, we can ensure that y1 and y2 are natural
numbers.)

(g) x1 �= x2 ⇔ for some y, y + 1 = (x1 − x2)2. Multiplying out this
equation and applying al-jabr gives: There is a natural number y
such that y + 1 + 2x1x2 = x2

1 + x2
2.

5.10.1. (a) We show, by induction on i, that F (s1, . . . , sn) ∼
F (t1, . . . , ti−1, si, . . . , sn) whenever 1 ≤ i ≤ n+ 1.
Case 1: i = 1. The claim is that F (s1, . . . , sn) ∼ F (s1, . . . , sn), which
holds because ∼ is reflexive.
Case 2: i = k + 1, assuming it for i = k. The assumption is that
F (s1, . . . , sn) ∼ F (t1, . . . , tk−1, sk, . . . , sn). Take φ to be the formula

F (s1, . . . , sn) = F (t1, . . . , tk−1,x, sk+1, . . . , sn).

The assumption states that φ[sk/x] is in the Hintikka set ∆. So by
clause (7) for Hintikka sets, φ[tk/x] is in ∆, in other words,
F (s1, . . . , sn) ∼ F (t1, . . . , tk, sk+1, . . . , sn).
The last step of the induction, when i = n+1, shows that F (s1, . . . , sn)
∼ F (t1, . . . , tn).
(b) is similar but a little simpler.

7.1.1. (f) ∀x(T (x) → ∃y∃z((y �= z) ∧ ∀w(L(w,x) ↔ (w = y ∨ w = z)))).

(g) ∃x∃y(T (x) ∧ T (y) ∧ x �= y ∧ ∃wL(w,x) ∧ ∃wL(w, y)).

(h) ∃x∃y(T (x) ∧ T (y) ∧ x �= y ∧ ∃w(L(w,x) ∧ L(w, y))).
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7.1.2. ∃y(P (y) ∧ ∃�nx(P (x) ∧ x �= y))

7.1.3. (a) x is male ∧ ∃y (y is a child of x).

(b) ∃y (y is a child of x ∧ y is female).

7.1.5. Possible answers:
(a) F is an injective function.

(b) F is surjective. (Or: F is onto B.)

(c) F is a bijection from A to B.

(d) F has a fixed point.

(e) A and B are the same set. (Or: A = B.)

7.2.4. (b)(i) FV (φ) = {x1,x2}, BV (φ) = {x0,x1}.
7.2.5. (a)

FV (t) � t ∅ �⊥
� =X ∪ Y

�
�

��X

�
�

� �Y

� RY1 ∪ · · · ∪ Yn
�

�
�






�
�

�Y1

�
�

�. . . �Yn

� ¬Y

�Y

� QxY \ {x}

�Y

where t is a term, R is a relation symbol of arity n, Q is a
quantifier symbol and x is a variable.

7.2.7. Here is one of the quantifier clauses.
• If x is not y then Sub(t, y, ∀xψ) if and only if either (i) y /∈ FV (ψ) or

(ii) Sub(t, y,ψ) and x /∈ FV (t).
(This clause is famously easy to get wrong.)

7.3.1. (a)

domain {0, 1};
0̄ the number 0;
S(x) x;
P (x) x = 0.

7.3.2. (a), (b), (e) and (f) are logically equivalent; (c) and (d) are not logically
equivalent either to (a) or to each other.

7.4.4. The application of (∀I) is faulty. The variable z should not occur in
any assumption which is undischarged at the node carrying R(z,u).
But at that node, R(z,u) is itself an undischarged assumption, since
it becomes discharged only at the bottom node of the diagram. This is
the only error; the other rules, including (∃E), are correctly applied.

7.5.1. (f) False: x2 is even if and only if x is even.
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7.7.3. (a) ∀xE(x,x)
∀x∀y (E(x, y) → E(y,x))
∀x∀y∀z ((E(x, y) ∧ E(y, z)) → E(x, z))
∀x∃y∃z (x �= y ∧ x �= z ∧ y �= z ∧ ∀w (E(x,w)

↔ (w = x ∨ w = y ∨ w = z)))

7.7.4. (a) ∀x(∃y((y < x)∧∀z((z < x∧z �= y) → z < y))∧∃y((x < y)∧∀z((x <
z ∧ y �= z) → y < z))).

(b) Each equivalence class is ordered like the ordered set Z of integers.
If we shrink each equivalence class to a single element, the result is
again a linearly ordered set. Conversely if J is any linearly ordered
set, we construct a linearly ordered set J × Z as follows. The ele-
ments of the order are the ordered pairs (i,m) where i is an element
of J and m is an integer. The order relation on J × Z is defined by

(i,m) < (j,n) ⇔ either i < j, or i = j and m < n.

This linearly ordered set J × Z is discrete without endpoints, and
every discrete linearly ordered set without endpoints is a copy of
one of this form.

7.8.2. (e) Writing I for the unit circle, let f : [0, 2π] → I be the function

f(θ) =

{
eiθ if θ �= 1 − 2−n for all n ∈ N;
ei(1−2(−n−1)) if θ = 1 − 2−n.

7.8.5. Define the height of the polynomial a0 + a1x + · · · + anx
n over the

integers to be n+ |a0| + |a1| + · · · + |an|. There are only finitely many
polynomials of given height, and each has only finitely many roots. So
the set of algebraic numbers is the union of countably many finite sets,
whence countable.

7.9.1. Let φn be the sentence

∃x1∃x2 · · · ∃xn(x1 �= x2 ∧ · · · ∧ x1 �= xn ∧ x2 �= x3 ∧ · · · ∧ x2 �= xn ∧
· · · ∧ xn−1 �= xn)

and let ψn be (φn ∧ (¬φn+1)). (See also Exercise 7.1.2.)

7.9.6. (d) For each m ∈ N the interval (m,m + 1) in Q is a countable dense
linearly ordered set without endpoints. List its elements as {x0,x1, . . . }
and as {y0, y1, . . . } with x0 �= y0, and apply the proof of Theorem 7.9.6
to find an automorphism gm of this interval with gm(x0) = y0. Let hm be
the identity function on the interval. Then gm and hm are distinct auto-
morphisms of the interval. Now let F be as in Theorem 7.8.5 but taking
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values in {0, 1}, and for each f ∈ F define a function kf : Q → Q by

kf (q) =




gm(q) if q ∈ (m,m+ 1) with m � 0, and f(m) = 0,
hm(q) if q ∈ (m,m+ 1) with m � 0, and f(m) = 1,
q if q < 0 or q ∈ N.

Then if f �= f ′, the functions kf and kf ′ are distinct automorphisms
of the linearly ordered set of the rationals. Since F is uncountable by
Theorem 7.8.5, and the function f �→ kf is injective, the set of automor-
phisms of the linearly ordered set of the rationals is uncountable too.
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Löwenheim-Skolem Theorems 208
LP(σ) 31, 39
LP, Language of Propositions 32
LR(σ) 101
LR, Language of Relations 101, 111
�Lukasiewicz, Jan 52

Mal’tsev, Anatolĭı, 209
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