
P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

Computability and Logic
Fifth Edition

GEORGE S. BOOLOS

JOHN P. BURGESS
Princeton University

RICHARD C. JEFFREY

iii

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87752-7

ISBN-13 978-0-521-70146-4

ISBN-13 978-0-511-36668-0

© George S. Boolos, John P. Burgess, Richard C. Jeffrey 1974, 1980, 1990, 2002, 2007

2007

Information on this title: www.cambridge.org/9780521877527

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-36668-X

ISBN-10 0-521-87752-0

ISBN-10 0-521-70146-5

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York
www.cambridge.org

hardback

paperback
paperback

eBook (EBL)
eBook (EBL)

hardback

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

6

Recursive Functions

The intuitive notion of an effectively computable function is the notion of a function for
which there are definite, explicit rules, following which one could in principle compute its
value for any given arguments. This chapter studies an extensive class of effectively com-
putable functions, the recursively computable, or simply recursive, functions. According
to Church’s thesis, these are in fact all the effectively computable functions. Evidence
for Church’s thesis will be developed in this chapter by accumulating examples of ef-
fectively computable functions that turn out to be recursive. The subclass of primitive
recursive functions is introduced in section 6.1, and the full class of recursive functions
in section 6.2. The next chapter contains further examples. The discussion of recursive
computability in this chapter and the next is entirely independent of the discussion of
Turing and abacus computability in the preceding three chapters, but in the chapter
after next the three notions of computability will be proved equivalent to each other.

6.1 Primitive Recursive Functions

Intuitively, the notion of an effectively computable function f from natural numbers
to natural numbers is the notion of a function for which there is a finite list of
instructions that in principle make it possible to determine the value f (x1, . . . , xn)
for any arguments x1, . . . , xn . The instructions must be so definite and explicit that
they require no external sources of information and no ingenuity to execute. But the
determination of the value given the arguments need only be possible in principle,
disregarding practical considerations of time, expense, and the like: the notion of
effective computability is an idealized one.

For purposes of computation, the natural numbers that are the arguments and values
of the function must be presented in some system of numerals or other, though the
class of functions that is effectively computable will not be affected by the choice
of system of numerals. (This is because conversion from one system of numerals
to another is itself an effective process that can be carried out according to definite,
explicit rules.) Of course, in practice some systems of numerals are easier to work with
than others, but that is irrelevant to the idealized notion of effective computability.

For present purposes we adopt a variant of the primeval monadic or tally notation, in
which a positive integer n is represented by n strokes. The variation is needed because
we want to consider not just positive integers (excluding zero) but the natural numbers

63

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

64 RECURSIVE FUNCTIONS

(including zero). We adopt the system in which the number zero is represented by
the cipher 0, and a natural number n > 0 is represented by the cipher 0 followed by
a sequence of n little raised strokes or accents. Thus the numeral for one is 0′, the
numeral for two is 0′′, and so on.

Two functions that are extremely easy to compute in this notation are the zero
function, whose value z(x) is the same, namely zero, for any argument x , and the
successor function s(x), whose value for any number x is the next larger number. In
our special notation we write:

z(0) = 0 z(0′) = 0 z(0′′) = 0 · · ·
s(0) = 0′ s(0′) = 0′′ s(0′′) = 0′′′ · · · ·

To compute the zero function, given any any argument, we simply ignore the argument
and write down the symbol 0. To compute the successor function in our special
notation, given a number written in that notation, we just add one more accent at the
right.

Some other functions it is easy to compute (in any notation) are the identity
functions. We have earlier encountered also the identity function of one argument,
id or more fully id1

1, which assigns to each natural number as argument that same
number as value:

id1
1(x) = x .

There are two identity functions of two arguments: id2
1 and id2

2. For any pair of
natural numbers as arguments, these pick out the first and second, respectively, as
values:

id2
1(x, y) = x id2

2(x, y) = y.

In general, for each positive integer n, there are n identity functions of n arguments,
which pick out the first, second, . . . , and nth of the arguments:

idn
i (x1, . . . , xi , . . . , xn) = xi .

Identity functions are also called projection functions. [In terms of analytic geometry,
id2

1(x, y) and id2
2(x, y) are the projections x and y of the point (x, y) to the X-axis

and to the Y-axis respectively.]
The foregoing functions—zero, successor, and the various identity functions—are

together called the basic functions. They can be, so to speak, computed in one step,
at least on one way of counting steps.

The stock of effectively computable functions can be enlarged by applying certain
processes for defining new functions from old. A first sort of operation, composi-
tion, is familiar and straightforward. If f is a function of m arguments and each of
g1, . . . , gm is a function of n arguments, then the function obtained by composition
from f , g1, . . . , gm is the function h where we have

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) (Cn)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

6.1. PRIMITIVE RECURSIVE FUNCTIONS 65

One might indicate this in shorthand:

h = Cn[f, g1, . . . , gm].

Composition is also called substitution.
Clearly, if the functions gi are all effectively computable and the function f is

effectively computable, then so is the function h. The number of steps needed to
compute h(x1, . . . , xn) will be the sum of the number of steps needed to compute
y1 = g1(x1, . . . , xn), the number needed to compute y2 = g2(x1, . . . , xn), and so on,
plus at the end the number of steps needed to compute f (y1, . . . , ym).

6.1 Example (Constant functions). For any natural number n, let the constant function
constn be defined by constn(x) = n for all x . Then for each n, constn can be obtained from
the basic functions by finitely many applications of composition. For, const0 is just the zero
function z, and Cn[s, z] is the function h with h(x) = s(z(x)) = s(0) = 0′ = 1 = const1(x)
for all x , so const1 = Cn[s, z]. (Actually, such notations as Cn[s, z] are genuine function
symbols, belonging to the same grammatical category as h, and we could have simply
written Cn[s, z](x) = s(z(x)) here rather than the more longwinded ‘if h = Cn[s, z], then
h(x) = z(x)′’.) Similarly const2 = Cn[s, const1], and generally constn+1 = Cn[s, constn].

The examples of effectively computable functions we have had so far are admittedly
not very exciting. More interesting examples are obtainable using a different process
for defining new functions from old, a process that can be used to define addition
in terms of successor, multiplication in terms of addition, exponentiation in terms of
multiplication, and so on. By way of introduction, consider addition. The rules for
computing this function in our special notation can be stated very concisely in two
equations as follows:

x + 0 = x x + y′ = (x + y)′.

To see how these equations enable us to compute sums consider adding 2 = 0′′

and 3 = 0′′′. The equations tell us:

0′′ + 0′′′ = (0′′ + 0′′)′ by 2nd equation with x = 0′′ and y = 0′′

0′′ + 0′′ = (0′′ + 0′)′ by 2nd equation with x = 0′′ and y = 0′

0′′ + 0′ = (0′′ + 0)′ by 2nd equation with x = 0′′ and y = 0
0′′ + 0 = 0′′ by 1st equation with x = 0′′.

Combining, we have the following:

0′′ + 0′′′ = (0′′ + 0′′)′

= (0′′ + 0′)′′

= (0′′ + 0)′′′

= 0′′′′′.

So the sum is 0′′′′′ = 5. Thus we use the second equation to reduce the problem of
computing x + y to that of computing x + z for smaller and smaller z, until we arrive
at z = 0, when the first equation tells us directly how to compute x + 0.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

66 RECURSIVE FUNCTIONS

Similarly, for multiplication we have the rules or equations

x · 0 = 0 x · y′ = x + (x · y)

which enable us to reduce the computation of a product to the computation of sums,
which we know how to compute:

0′′ · 0′′′ = 0′′ + (0′′ · 0′′)

= 0′′ + (0′′ + (0′′ · 0′))

= 0′′ + (0′′ + (0′′ + (0′′ · 0)))

= 0′′ + (0′′ + (0′′ + 0))

= 0′′ + (0′′ + 0′′)

after which we would carry out the computation of the sum in the last line in the way
indicated above, and obtain 0′′′′′′.

Now addition and multiplication are just the first two of a series of arithmetic
operations, all of which are effectively computable. The next item in the series is ex-
ponentiation. Just as multiplication is repeated addition, so exponentiation is repeated
multiplication. To compute x y , that is, to raise x to the power y, multiply together
y xs as follows:

x · x · x· · · · ·x (a row of y xs).

Conventionally, a product of no factors is taken to be 1, so we have the equation

x0 = 0′.

For higher powers we have

x1 = x

x2 = x · x
...

x y = x · x· · · · ·x (a row of y xs)

x y+1 = x · x· · · · ·x · x = x · x y (a row of y + 1 xs).

So we have the equation

x y′ = x · x y .

Again we have two equations, and these enable us to reduce the computation of a
power to the computation of products, which we know how to do.

Evidently the next item in the series, super-exponentiation, would be defined as
follows:

x x xx..
.

(a stack of y xs).

The alternative notation x ↑ y may be used for exponentiation to avoid piling up of
superscripts. In this notation the definition would be written as follows:

x ↑ x ↑ x ↑ . . . ↑ x (a row of y xs).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

6.1. PRIMITIVE RECURSIVE FUNCTIONS 67

Actually, we need to indicate the grouping here. It is to the right, like this:

x ↑ (x ↑ (x ↑ . . . ↑ x . . .))

and not to the left, like this:

(. . . ((x ↑ x) ↑ x) ↑ . . .) ↑ x .

For it makes a difference: 3 ↑ (3 ↑ 3) = 3 ↑ (27) = 7 625 597 484 987; while (3 ↑ 3) ↑
3 = 27 ↑ 3 =19 683. Writing x ⇑ y for the super-exponential, the equations would be

x ⇑ 0 = 0′ x ⇑ y′ = x ↑ (x ⇑ y).

The next item in the series, super-duper-exponentiation, is analogously defined, and
so on.

The process for defining new functions from old at work in these cases is called
(primitive) recursion. As our official format for this process we take the following:

h(x, 0) = f (x), h(x, y′) = g(x, y, h(x, y)) (Pr).

Where the boxed equations—called the recursion equations for the function h—
hold, h is said to be definable by (primitive) recursion from the functions f and g. In
shorthand,

h = Pr[f, g].

Functions obtainable from the basic functions by composition and recursion are called
primitive recursive.

All such functions are effectively computable. For if f and g are effectively com-
putable functions, then h is an effectively computable function. The number of steps
needed to compute h(x, y) will be the sum of the number of steps needed to com-
pute z0 = f (x) = h(x, 0), the number needed to compute z1 = g(x, 0, z0) = h(x, 1),
the number needed to compute z2 = g(x, 1, z1) = h(x, 2), and so on up to zy =
g(x, y − 1, zy−1) = h(x, y).

The definitions of sum, product, and power we gave above are approximately in
our official boxed format. [The main difference is that the boxed format allows one,
in computing h(x , y′), to apply a function taking x , y, and h(x , y) as arguments. In the
examples of sum, product, and power, we never needed to use y as an argument.] By
fussing over the definitions we gave above, we can put them exactly into the format
(Pr), thus showing addition and multiplication to be primitive recursive.

6.2 Example (The addition or sum function). We start with the definition given by the
equations we had above,

x + 0 = x x + y′ = (x + y)′.

As a step toward reducing this to the boxed format (Pr) for recursion, we replace the ordinary
plus sign, written between the arguments, by a sign written out front:

sum(x, 0) = x sum(x, y′) = sum(x, y)′.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

68 RECURSIVE FUNCTIONS

To put these equations in the boxed format (Pr), we must find functions f and g for which
we have

f (x) = x g(x, y, —) = s(—)

for all natural numbers x , y, and —. Such functions lie ready to hand: f = id1
1, g = Cn

[s, id3
3]. In the boxed format we have

sum(x, 0) = id1
1(x) sum(x, s(y)) = Cn

[
s, id3

3

]
(x, y, sum(x, y))

and in shorthand we have

sum = Pr
[
id1

1, Cn
[
s, id3

3

]]
.

6.3 Example (The multiplication or product function). We claim prod = Pr[z, Cn[sum,
id3

1, id3
3]]. To verify this claim we relate it to the boxed formats (Cn) and (Pr). In terms of

(Pr) the claim is that the equations

prod(x, 0) = z(x) prod(x, s(y)) = g(x, y, prod(x, y))

hold for all natural numbers x and y, where [setting h = g, f = sum, g1 = id3
1, g2 = id3

3 in
the boxed (Cn) format] we have

g(x1, x2, x3) = Cn
[
sum, id3

1, id3
3

]
(x1, x2, x3)

= sum
(
id3

1(x1, x2, x3), id3
3(x1, x2, x3)

)

= x1 + x3

for all natural numbers x1, x2, x3. Overall, then, the claim is that the equations

prod(x, 0) = z(x) prod(x, s(y)) = x + prod(x, y)

hold for all natural numbers x and y, which is true:

x · 0 = 0 x · y′ = x + x · y.

Our rigid format for recursion serves for functions of two arguments such as sum
and product, but we are sometimes going to wish to use such a scheme to define
functions of a single argument, and functions of more than two arguments. Where
there are three or more arguments x1, . . . , xn , y instead of just the two x , y that appear
in (Pr), the modification is achieved by viewing each of the five occurrences of x in
the boxed format as shorthand for x1, . . . , xn . Thus with n = 2 the format is

h(x1, x2, 0) = f (x1, x2)

h(x1, x2, s(y)) = g(x1, x2, y, h(x1, x2, y)).

6.4 Example (The factorial function). The factorial x! for positive x is the product
1 · 2 · 3· · · · ·x of all the positive integers up to and including x , and by convention 0! = 1.
Thus we have

0! = 1

y′! = y! · y′.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

6.1. PRIMITIVE RECURSIVE FUNCTIONS 69

To show this function is recursive we would seem to need a version of the format for
recursion with n = 0. Actually, however, we can simply define a two-argument function
with a dummy argument, and then get rid of the dummy argument afterwards by composing
with an identity function. For example, in the case of the factorial function we can define

dummyfac(x, 0) = const1(x)

dummyfac(x, y′) = dummyfac(x, y) · y′

so that dummyfac(x , y) = y! regardless of the value of x , and then define fac(y)=dummyfac
(y, y). More formally,

fac = Cn
[
Pr

[
const1, Cn

[
prod, id3

3, Cn
[
s, id3

2

]]]
, id, id

]
.

(We leave to the reader the verification of this fact, as well as the conversions of informal-
style definitions into formal-style definitions in subsequent examples.)

The example of the factorial function can be generalized.

6.5 Proposition. Let f be a primitive recursive function. Then the functions

g(x, y) = f (x, 0) + f (x, 1) + · · · + f (x, y) =
y∑

i=0

f (x, i)

h(x, y) = f (x, 0) · f (x, 1)· · · · · f (x, y) =
y∏

i=0

f (x, i)

are primitive recursive.

Proof: We have for the g the recursion equations

g(x, 0) = f (x, 0)

g(x, y′) = g(x, y) + f (x, y′)

and similarly for h.

Readers may wish, in the further examples to follow, to try to find definitions of
their own before reading ours; and for this reason we give the description of the
functions first, and our definitions of them (in informal style) afterwards.

6.6 Example. The exponential or power function.

6.7 Example (The (modified) predecessor function). Define pred (x) to be the predecessor
x − 1 of x for x > 0, and let pred(0) = 0 by convention. Then the function pred is primitive
recursive.

6.8 Example (The (modified) difference function). Define x .−y to be the difference x − y
if x ≥ y, and let x .−y = 0 by convention otherwise. Then the function .− is primitive
recursive.

6.9 Example (The signum functions). Define sg(0) = 0, and sg(x) = 1 if x > 0, and define
sg(0) = 1 and sg(x) = 0 if x > 0. Then sg and sg are primitive recursive.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

70 RECURSIVE FUNCTIONS

Proofs
Example 6.6. x ↑ 0 = 1, x ↑ s(y) = x · (x ↑ y), or more formally,

exp = Pr
[
Cn[s, z], Cn

[
prod, id3

1, id3
3

]]
.

Example 6.7. pred(0) = 0, pred(y′) = y.
Example 6.8. x .− 0 = x, x .− y′ = pred(x .− y).
Example 6.9. sg(y) = 1 .− (1 .− y), sg(y) = 1 .− y.

6.2 Minimization

We now introduce one further process for defining new functions from old, which
can take us beyond primitive recursive functions, and indeed can take us beyond
total functions to partial functions. Intuitively, we consider a partial function f to be
effectively computable if a list of definite, explicit instructions can be given, following
which one will, in the case they are applied to any x in the domain of f , arrive after
a finite number of steps at the value f (x), but following which one will, in the case
they are applied to any x not in the domain of f , go on forever without arriving at
any result. This notion applies also to two- and many-place functions.

Now the new process we want to consider is this. Given a function f of n + 1
arguments, the operation of minimization yields a total or partial function h of n
arguments as follows:

Mn[f](x1, . . . , xn) =






y if f (x1, . . . , xn, y) = 0, and for all t < y
f (x1, . . . , xn, t) is defined and &= 0

undefined if there is no such y.

If h = Mn[f] and f is an effectively computable total or partial function, then
h also will be such a function. For writing x for x1, . . . , xn , we compute h(x) by
successively computing f (x, 0), f (x, 1), f (x, 2), and so on, stopping if and when
we reach a y with f (x, y) = 0. If x is in the domain of h, there will be such a y, and
the number of steps needed to compute h(x) will be the sum of the number of steps
needed to compute f (x , 0), the number of steps needed to compute f (x, 1), and so
on, up through the number of steps needed to compute f (x, y) = 0. If x is not in the
domain of h, this may be for either of two reasons. On the one hand, it may be that
all of f (x, 0), f (x , 1), f (x, 2), . . . are defined, but they are all nonzero. On the other
hand, it may be that for some i , all of f (x, 0), f (x, 1), . . . , f (x, i − 1) are defined
and nonzero, but f (x, i) is undefined. In either case, the attempt to compute h(x) will
involve one in a process that goes on forever without producing a result.

In case f is a total function, we do not have to worry about the second of the two
ways in which Mn[f] may fail to be defined, and the above definition boils down to
the following simpler form.

Mn[f](x1, . . . , xn) =






the smallest y for which
f (x1, . . . , xn, y) = 0 if such a y exists

undefined otherwise.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

PROBLEMS 71

The total function f is called regular if for every x1, . . . , xn there is a y such that
f (x1, . . . , xn , y) = 0. In case f is a regular function, Mn[f] will be a total function.
In fact, if f is a total function, Mn[f] will be total if and only if f is regular.

For example, the product function is regular, since for every x , x · 0 = 0; and
Mn[prod] is simply the zero function. But the sum function is not regular, since
x + y = 0 only in case x = y = 0; and Mn[sum] is the function that is defined only
for 0, for which it takes the value 0, and undefined for all x > 0.

The functions that can be obtained from the basic functions z, s, idn
i by the pro-

cesses Cn, Pr, and Mn are called the recursive (total or partial) functions. (In the
literature, ‘recursive function’ is often used to mean more specifically ‘recursive
total function’, and ‘partial recursive function’ is then used to mean ‘recursive total
or partial function’.) As we have observed along the way, recursive functions are all
effectively computable.

The hypothesis that, conversely, all effectively computable total functions are re-
cursive is known as Church’s thesis (the hypothesis that all effectively computable
partial functions are recursive being known as the extended version of Church’s the-
sis). The interest of Church’s thesis derives largely from the following fact. Later
chapters will show that some particular functions of great interest in logic and mathe-
matics are nonrecursive. In order to infer from such a theoretical result the conclusion
that such functions are not effectively computable (from which may be inferred the
practical advice that logicians and mathematicians would be wasting their time look-
ing for a set of instructions to compute the function), we need assurance that Church’s
thesis is correct.

At present Church’s thesis is, for us, simply an hypothesis. It has been made some-
what plausible to the extent that we have shown a significant number of effectively
computable functions to be recursive, but one can hardly on the basis of just these
few examples be assured of its correctness. More evidence of the correctness of the
thesis will accumulate as we consider more examples in the next two chapters.

Before turning to examples, it may be well to mention that the thesis that every ef-
fectively computable total function is primitive recursive would simply be erroneous.
Examples of recursive total functions that are not primitive recursive are described
in the next chapter.

Problems

6.1 Let f be a two-place recursive total function. Show that the following functions
are also recursive:
(a) g(x, y) = f (y, x)
(b) h(x) = f (x, x)
(c) k17(x) = f (17, x) and k17(x) = f (x, 17).

6.2 Let J0(a, b) be the function coding pairs of positive integers by positive integers
that was called J in Example 1.2, and from now on use the name J for the
corresponding function coding pairs of natural numbers by natural numbers, so
that J (a, b) = J0(a + 1, b + 1) − 1. Show that J is primitive recursive.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

72 RECURSIVE FUNCTIONS

6.3 Show that the following functions are primitive recursive:
(a) the absolute difference |x − y|, defined to be x − y if y < x , and y − x

otherwise.
(b) the order characteristic, χ≤(x, y), defined to be 1 if x ≤ y, and 0 otherwise.
(c) the maximum max(x, y), defined to be the larger of x and y.

6.4 Show that the following functions are primitive recursive:
(a) c(x, y, z) = 1 if yz = x , and 0 otherwise.
(b) d(x, y, z) = 1 if J (y, z) = x , and 0 otherwise.

6.5 Define K (n) and L(n) as the first and second entries of the pair coded (under the
coding J of the preceding problems) by the number n, so that J (K (n), L(n)) = n.
Show that the functions K and L are primitive recursive.

6.6 An alternative coding of pairs of numbers by numbers was considered in
Example 1.2, based on the fact that every natural number n can be written
in one and only one way as 1 less than a power of 2 times an odd number,
n = 2k(n)(2l(n) .− 1) .− 1. Show that the functions k and l are primitive recursive.

6.7 Devise some reasonable way of assigning code numbers to recursive functions.
6.8 Given a reasonable way of coding recursive functions by natural numbers, let

d(x) = 1 if the one-place recursive function with code number x is defined and
has value 0 for argument x , and d(x) = 0 otherwise. Show that this function is
not recursive.

6.9 Let h(x, y) = 1 if the one-place recursive function with code number x is defined
for argument y, and h(x, y) = 0 otherwise. Show that this function is not recursive.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7

Recursive Sets and Relations

In the preceding chapter we introduced the classes of primitive recursive and recursive
functions. In this chapter we introduce the related notions of primitive recursive and
recursive sets and relations, which help provide many more examples of primitive recur-
sive and recursive functions. The basic notions are developed in section 7.1. Section 7.2
introduces the related notion of a semirecursive set or relation. The optional section 7.3
presents examples of recursive total functions that are not primitive recursive.

7.1 Recursive Relations

A set of, say, natural numbers is effectively decidable if there is an effective procedure
that, applied to a natural number, in a finite amount of time gives the correct answer
to the question whether it belongs to the set. Thus, representing the answer ‘yes’ by 1
and the answer ‘no’ by 0, a set is effectively decidable if and only if its characteristic
function is effectively computable, where the characteristic function is the function
that takes the value 1 for numbers in the set, and the value 0 for numbers not in the
set. A set is called recursively decidable, or simply recursive for short, if its char-
acteristic function is recursive, and is called primitive recursive if its characteristic
function is primitive recursive. Since recursive functions are effectively computable,
recursive sets are effectively decidable. Church’s thesis, according to which all
effectively computable functions are recursive, implies that all effectively decidable
sets are recursive.

These notions can be generalized to relations. Officially, a two-place relation R
among natural numbers will be simply a set of ordered pairs of natural numbers, and
we write Rxy—or R(x, y) if punctuation seems needed for the sake of readability—
interchangeably with (x , y) ∈ R to indicate that the relation R holds of x and y,
which is to say, that the pair (x , y) belongs to R. Similarly, a k-place relation is a set
of ordered k-tuples. [In case k = 1, a one-place relation on natural numbers ought to
be a set of 1-tuples (sequences of length one) of numbers, but we will take it simply
to be a set of numbers, not distinguishing in this context between n and (n). We
thus write Sx or S(x) interchangeably with x ∈ S.] The characteristic function of a
k-place relation is the k-argument function that takes the value 1 for a k-tuple if the
relation holds of that k-tuple, and the value 0 if it does not; and a relation is effectively

73

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

74 RECURSIVE SETS AND RELATIONS

decidable if its characteristic function is effectively computable, and is (primitive)
recursive if its characteristic function is (primitive) recursive.

7.1 Example (Identity and order). The identity relation, which holds if and only if x =
y, is primitive recursive, since a little thought shows its characteristic function is 1 −
(sg(x .− y) + sg(y .− x)). The strict less-than order relation, which holds if and only if x < y,
is primitive recursive, since its characteristic function is sg(y .− x).

We are now ready to indicate an important process for obtaining new recursive
functions from old. What follows is actually a pair of propositions, one about primitive
recursive functions, the other about recursive functions (according as one reads the
proposition with or without the bracketed word ‘primitive’). The same proof works
for both propositions.

7.2 Proposition (Definition by cases). Suppose that f is the function defined in the
following form:

f (x, y) =






g1(x, y) if C1(x, y)
...

...
gn(x, y) if Cn(x, y)

where C1, . . . , Cn are (primitive) recursive relations that are mutually exclusive, meaning
that for no x , y do more than one of them hold, and collectively exhaustive, meaning that for
any x , y at least one of them holds, and where g1, . . . , gn are (primitive) recursive total
functions. Then f is (primitive) recursive.

Proof: Let ci be the characteristic function of Ci . By recursion, define hi (x , y, 0)
= 0, hi (x , y, z′) = gi (x , y). Let ki (x , y) = hi (x , y, ci (x , y)), so ki (x , y) = 0 un-
less Ci (x , y) holds, in which case ki (x , y) = gi (x , y). It follows that f (x , y) =
k1(x, y) + . . . + kn(x , y), and f is (primitive) recursive since it is obtainable by
primitive recursion and composition from the gi and the ci , which are (primitive)
recursive by assumption, together with the addition (and identity) functions.

7.3 Example (The maximum and minimum functions). As an example of definition by
cases, consider max(x , y) = the larger of the numbers x , y. This can be defined as follows:

max(x, y) =
{

x if x ≥ y
y if x < y

or in the official format of the proposition above with g1 = id2
1 and g2 = id2

2. Similarly,
function min(x , y) = the smaller of x , y is also primitive recursive.

These particular functions, max and min, can also be shown to be primitive re-
cursive in a more direct way (as you were asked to do in the problems at the end of
the preceding chapter), but in more complicated examples, definition by cases makes
it far easier to establish the (primitive) recursiveness of important functions. This is
mainly because there are a variety of processes for defining new relations from old
that can be shown to produce new (primitive) recursive relations when applied to
(primitive) recursive relations. Let us list the most important of these.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.1. RECURSIVE RELATIONS 75

Given a relation R(y1, . . . , ym) and total functions f1(x1, . . . , xn), . . . , fm(x1, . . . ,
xn), the relation defined by substitution of the fi in R is the relation R∗(x1, . . . , xn)
that holds of x1, . . . , xn if and only if R holds of f1(x1, . . . , xn), . . . , fm(x1, . . . , xn),
or in symbols,

R∗(x1, . . . , xn) ↔ R(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

If the relation R∗ is thus obtained by substituting functions fi in the relation R, then
the characteristic function c∗ of R∗ is obtainable by composition from the fi and the
characteristic function c of R:

c∗(x1, . . . , xn) = c(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

Therefore, the result of substituting recursive total functions in a recursive relation is
itself a recursive relation. (Note that it is important here that the functions be total.)

An illustration may make this important notion of substitution clearer. For a given
function f , the graph relation of f is the relation defined by

G(x1, . . . , xn, y) ↔ f (x1, . . . , xn) = y.

Let f ∗(x1, . . . , xn, y) = f (x1, . . . , xn). Then f ∗ is recursive if f is, since

f ∗ = Cn
[

f, idn+1
1 , . . . , idn+1

n

]
.

Now f (x1, . . . , xn) = y if and only if

f ∗(x1, . . . , xn, y) = idn+1
n+1(x1, . . . , xn, y).

Indeed, the latter condition is essentially just a long-winded way of writing the former
condition. But this shows that if f is a recursive total function, then the graph relation
f (x1, . . . , xn) = y is obtainable from the identity relation u = v by substituting the
recursive total functions f ∗ and idn+1

n+1. Thus the graph relation of a recursive total
function is a recursive relation. More compactly, if less strictly accurately, we can
summarize by saying that the graph relation f (x) = y is obtained by substituting the
recursive total function f in the identity relation. (This compact, slightly inaccurate
manner of speaking, which will be used in future, suppresses mention of the role of
the identity functions in the foregoing argument.)

Besides substitution, there are several logical operations for defining new relations
from old. To begin with the most basic of these, given a relation R, its negation or
denial is the relation S that holds if and only if R does not:

S(x1, . . . , xn) ↔ ∼R(x1, . . . , xn).

Given two relations R1 and R2, their conjunction is the relation S that holds if and
only if R1 holds and R2 holds:

S(x1, . . . , xn) ↔ R1(x1, . . . , xn) & R2(x1, . . . , xn)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

76 RECURSIVE SETS AND RELATIONS

while their disjunction is the relation S that holds if and only if R1 holds or R2 holds
(or both do):

S(x1, . . . , xn) ↔ R1(x1, . . . , xn) ∨ R2(x1, . . . , xn).

Conjunction and disjunctions of more than two relations are similarly defined. Note
that when, in accord with our official definition, relations are considered as sets of
k-tuples, the negation is simply the complement, the conjunction the intersection, and
the disjunction the union.

Given a relation R(x1, . . . , xn , u), by the relation obtained from R through bounded
universal quantification we mean the relation S that holds of x1, . . . , xn , u if and only
if for all v < u, the relation R holds of x1, . . . , xn , v . We write

S(x1, . . . , xn, u) ↔ ∀v < u R(x1, . . . , xn, v)

or more fully:

S(x1, . . . , xn, u) ↔ ∀v(v < u → R(x1, . . . , xn, v)).

By the relation obtained from R through bounded existential quantification we mean
the relation S that holds of x1, . . . , xn , u if and only if for some v < u, the relation
R holds of x1, . . . , xn , v . We write

S(x1, . . . , xn, u) ↔ ∃v < u R(x1, . . . , xn, v)

or more fully:

S(x1, . . . , xn, u) ↔ ∃v(v < u & R(x1, . . . , xn, v)).

The bounded quantifiers ∀v ≤ u and ∃v ≤ u are similarly defined.
The following theorem and its corollary are stated for recursive relations (and recur-

sive total functions), but hold equally for primitive recursive relations (and primitive
recursive functions), by the same proofs, though it would be tedious for writers and
readers alike to include a bracketed ‘(primitive)’ everywhere in the statement and
proof of the result.

7.4 Theorem (Closure properties of recursive relations).

(a) A relation obtained by substituting recursive total functions in a recursive relation
is recursive.

(b) The graph relation of any recursive total function is recursive.
(c) If a relation is recursive, so is its negation.
(d) If two relations are recursive, then so is their conjunction.
(e) If two relations are recursive, then so is their disjunction.
(f) If a relation is recursive, then so is the relation obtained from it by bounded

universal quantification.
(g) If a relation is recursive, then so is the relation obtained from it by bounded

existential quantification.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.1. RECURSIVE RELATIONS 77

Proof:
(a), (b): These have already been proved.
(c): In the remaining items, we write simply x for x1, . . . , xn . The characteristic

function c∗ of the negation or complement of R is obtainable from the characteristic
function c of R by c∗(x) = 1 .− c(x).

(d), (e): The characteristic function c∗ of the conjunction or intersection of R1

and R2 is obtainable from the characteristic functions c1 and c2 of R1 and R2 by
c∗(x) = min(c1(x), c2(x)), and the characteristic function c† of the disjunction or
union is similarly obtainable using max in place of min.

(f), (g): From the characteristic function c(x , y) of the relation R(x , y) the charac-
teristic functions u and e of the relations ∀v ≤ y R(x1, . . . , xn , v) and ∃v ≤ y R(x1,
. . . , xn , v) are obtainable as follows:

u(x, y) =
y∏

i=0

c(x, i) e(x, y) = sg

(
y∑

i=0

c(x, i)

)

where the summation
(∑)

and product
(∏)

notation is as in Proposition 6.5. For the
product will be 0 if any factor is 0, and will be 1 if and only if all factors are 1; while
the sum will be positive if any summand is positive. For the strict bounds ∀v < y and
∃v < y we need only replace y by y .− 1.

7.5 Example (Primality). Recall that a natural number x is prime if x > 1 and there do
not exist any u, v both <x such that x = u · v . The set P of primes is primitive recursive,
since we have

P(x) ↔ 1 < x & ∀u < x ∀v < x(u · v -= x).

Here the relation 1 < x is the result of substituting const1 and id into the relation y < x ,
which we know to be primitive recursive from Example 7.1, and so this relation is primitive
recursive by clause (a) of the theorem. The relation u · v = x is the graph of a primitive
recursive function, namely, the product function; hence this relation is primitive recursive by
clause (b) of the theorem. So P is obtained by negation, bounded universal quantification,
and conjunction from primitive recursive relations, and is primitive recursive by clauses (c),
(d), and (f) of the theorem.

7.6 Corollary (Bounded minimization and maximization). Given a (primitive) recur-
sive relation R, let

Min[R](x1, . . . , xn, w) =






the smallest y ≤ w for which
R(x1, . . . , xn, y) if such a y exists

w + 1 otherwise

and

Max[R](x1, . . . , xn, w) =






the largest y ≤ w for which
R(x1, . . . , xn, y) if such a y exists

0 otherwise.

Then Min[R] and Max[R] are (primitive) recursive total functions.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

78 RECURSIVE SETS AND RELATIONS

Proof: We give the proof for Min. Write x for x1, . . . , xn . Consider the (primitive)
recursive relation ∀t ≤ y ∼R(x, t), and let c be its characteristic function. If there is
a smallest y ≤ w such that R(x, y), then abbreviating c(x, i) to c(i) we have

c(0) = c(1) = · · · = c(y − 1) = 1 c(y) = c(y + 1) = · · · = c(w) = 0.

So c takes the value 1 for the y numbers i < y, and the value 0 thereafter. If there is
no such y, then

c(0) = c(1) = · · · = c(w) = 1.

So c takes the value 1 for all w + 1 numbers i ≤ w . In either case

Min[R](x, w) =
w∑

i=0

c(x, i)

and is therefore (primitive) recursive. The proof for Max is similar, and is left to the
reader.

7.7 Example (Quotients and remainders). Given natural numbers x and y with y > 0, there
are unique natural numbers q and r such that x = q · y + r and r < y. They are called the
quotient and remainder on division of x by y. Let quo(x, y) be the quotient on dividing x by
y if y > 0, and set quo(x, 0) = 0 by convention. Let rem(x, y) be the remainder on dividing
x by y if y > 0, and set rem(x, 0) = x by convention. Then quo is primitive recursive, as
an application of bounded maximization, since q ≤ x and q is the largest number such
that q · y ≤ x .

quo(x, y) =
{

the largest z ≤ x such that y · z ≤ x if y -= 0
0 otherwise.

We apply the preceding corollary (in its version for primitive recursive functions and re-
lations). If we let Rxyz be the relation y · z ≤ x , then quo(x, y) = Max[R](x, y, x), and
therefore quo is primitive recursive. Also rem is primitive recursive, since rem(x, y) = x−̇
(quo(x, y) · y). Another notation for rem(x, y) is x mod y.

7.8 Corollary. Suppose that f is a regular primitive function and that there is a primitive
recursive function g such that the least y with f (x1, . . . , xn, y) = 0 is always less than
g(x1, . . . , xn). Then Mn[f] is not merely recursive but primitive recursive.

Proof: Let R(x1, . . . , xn, y) hold if and only if f (x1, . . . , xn, y) = 0. Then

Mn[f](x1, . . . , xn) = Min[R](x1, . . . , xn, g(x1, . . . , xn)).

7.9 Proposition. Let R be an (n + 1)-place recursive relation. Define a total or partial
function r by

r (x1, . . . , xn) = the least y such that R(x1, . . . , xn, y).

Then r is recursive.

Proof: The function r is just Mn[c], where c is the characteristic function of ∼R.

Note that if r is a function and R its graph relation, then r (x) is the only y such
that R(x , y), and therefore a fortiori the least such y (as well as the greatest such y).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.1. RECURSIVE RELATIONS 79

So the foregoing proposition tells us that if the graph relation of a function is recur-
sive, the function is recursive. We have not set this down as a numbered corollary
because we are going to be getting a stronger result at the beginning of the next
section.

7.10 Example (The next prime). Let f (x) = the least y such that x < y and y is prime.
The relation

x < y & y is prime

is primitive recursive, using Example 7.5. Hence the function f is recursive by the preceding
proposition. There is a theorem in Euclid’s Elements that tells us that for any given number
x there exists a prime y > x , from which we know that our function f is total. But actually,
the proof in Euclid shows that there is a prime y > x with y ≤ x! + 1. Since the factorial
function is primitive recursive, the Corollary 7.8 applies to show that f is actually primitive
recursive.

7.11 Example (Logarithms). Subtraction, the inverse operation to addition, can take us
beyond the natural numbers to negative integers; but we have seen there is a reasonable
modified version −̇ that stays within the natural numbers, and that it is primitive recursive.
Division, the inverse operation to multiplication, can take us beyond the integers to fractional
rational numbers; but again we have seen there is a reasonable modified version quo that
is primitive recursive. Because the power or exponential function is not commutative, that
is, because in general x y -= yx , there are two inverse operations: the yth root of x is the z
such that zy = x , while the base-x logarithm of y is the z such that xz = y. Both can take
us beyond the rational numbers to irrational real numbers or even imaginary and complex
numbers. But again there is a reasonable modified version, or several reasonable modified
versions. Here is one for the logarithms

lo(x, y) =
{

the greatest z ≤ x such that yz divides x if x, y > 1
0 otherwise

where ‘divides x’ means ‘divides x without remainder’. Clearly if x , y > 1 and yz divides
x, z must be (quite a bit) less than x . So we can agrue as in the proof of 7.7 to show that lo
is a primitive recursive function. Here is another reasonable modified logarithm function:

lg(x, y) =
{

the greatest z such that yz ≤ x if x, y > 1
0 otherwise.

The proof that lg is primitive recursive is left to the reader.

The next series of examples pertain to the coding of finite sequences of natural
numbers by single natural numbers. The coding we adopt is based on the fact that
each positive integer can be written in one and only one way as a product of powers
of larger and larger primes. Specifically:

(a0, a1, . . . , an−1) is coded by 2n3a0 5a1 · · · π (n)an−1

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

80 RECURSIVE SETS AND RELATIONS

where π (n) is the nth prime (counting 2 as the 0th). (When we first broached the
topic of coding finite sequences by single numbers in section 1.2, we used a slightly
different coding. That was because we were then coding finite sequences of positive
integers, but now want to code finite sequences of natural numbers.) We state the
examples first and invite the reader to try them before we give our own proofs.

7.12 Example (The nth prime). Let π (n) be the nth prime, counting 2 as the 0th, so π (0) =
2, π (1) = 3, π (2) = 5, π (3) = 7, and so on. This function is primitive recursive.

7.13 Example (Length). There is a primitive recursive function lh such that if s codes a
sequence (a0, a1, . . . , an−1), then the value lh(s) is the length of that sequence.

7.14 Example (Entries). There is a primitive recursive function ent such that if s codes a
sequence (a0, a1, . . . , an−1), then for each i < n the value of ent(s, i) is the i th entry in that
sequence (counting a0 as the 0th).

Proofs
Example 7.12. π (0) = 2, π (x ′) = f (π (x)), where f is the next prime function of

Example 7.10. The form of the definition is similar to that of the factorial function:
see Example 6.4 for how to reduce definitions of this form to the official format for
recursion.

Example 7.13. lh(s) = lo(s, 2) will do, where lo is as in Example 7.11. Applied to

2n3a0 5a1 · · · π (n)an−1

this function yields n.
Example 7.14. ent(s, i) = lo(s, π (i + 1)) will do. Applied to

2n3a0 5a1 · · · π (n)an−1

and i , this function yields ai .

There are some further examples pertaining to coding, but these will not be needed
till a much later chapter, and even then only in a section that is optional reading, so
we defer them to the optional final section of this chapter. Instead we turn to another
auxiliary notion.

7.2 Semirecursive Relations

Intuitively, a set is (positively) effectively semidecidable if there is an effective pro-
cedure that, applied to any number, will if the number is in the set in a finite amount
of time give the answer ‘yes’, but will if the number is not in the set never give an
answer. For instance, the domain of an effectively computable partial function f is
always effectively semidecidable: the procedure for determining whether n is in the
domain of f is simply to try to compute the value f (n); if and when we succeed, we
know that n is in the domain; but if n is not in the domain, we never succeed.

The notion of effective semidecidability extends in the obvious way to relations.
When applying the procedure, after any number t of steps of computation, we can
tell whether we have obtained the answer ‘yes’ already, or have so far obtained no

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.2. SEMIRECURSIVE RELATIONS 81

answer. Thus if S is a semidecidable set we have

S(x) ↔ ∃t R(x, t)

where R is the effectively decidable relation ‘by t steps of computation we obtain the
answer “yes”’. Conversely, if R is an effectively decidable relation of any kind, and
S is the relation obtained from R by (unbounded) existential quantification, then S is
effectively semidecidable: we can attempt to determine whether n is in S by checking
whether R(n, 0) holds, and if not, whether R(n, 1) holds, and if not, whether R(n, 2)
holds, and so on. If n is in S, we must eventually find a t such that R(n, t), and will
thus obtain the answer ‘yes’; but if n is not in S, we go on forever without obtaining
an answer.

Thus we may characterize the effectively semidecidable sets as those obtained
from two-place effectively decidable relations by existential quantification, and more
generally, the n-place effectively semidecidable relations as those obtained from
(n + 1)-place effectively decidable relations by existential quantification. We define
an n-place relation S on natural numbers to be (positively) recursively semidecidable,
or simply semirecursive, if it is obtainable from an (n + 1)-place recursive relation
R by existential quantification, thus:

S(x1, . . . , xn) ↔ ∃y R(x1, . . . , xn, y).

A y such that R holds of the xi and y may be called a ‘witness’ to the relation S hold-
ing of the xi (provided we understand that when the witness is a number rather than
a person, a witness only testifies to what is true). Semirecursive relations are effec-
tively semidecidable, and Church’s thesis would imply that, conversely, effectively
semidecidable relations are semirecursive.

These notions should become clearer as we work out their most basic properties,
an exercise that provides an opportunity to review the basic properties of recursive
relations. The closure properties of recursive relations established in Theorem 7.4
can be used to establish a similar but not identical list of properties of semirecursive
relations.

7.15 Corollary (Closure properties of semirecursive relations).

(a) Any recursive relation is semirecursive.
(b) A relation obtained by substituting recursive total functions in a semirecursive

relation is semirecursive.
(c) If two relations are semirecursive, then so is their conjunction.
(d) If two relations are semirecursive, then so is their disjunction.
(e) If a relation is semirecursive, then so is the relation obtained from it by bounded

universal quantification.
(f) If a relation is semirecursive, then so is the relation obtained from it by existential

quantification.

Proof: We write simply x for x1, . . . , xn .
(a): If Rx is a recursive relation, then the relation S given by Sxy ↔ (Rx & y = y)

is also recursive, and we have R(x) ↔ ∃y Sxy.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

82 RECURSIVE SETS AND RELATIONS

(b): If Rx is a semirecursive relation, say Rx ↔ ∃ySxy where S is recursive, and
if R∗x ↔ R f (x), where f is a recursive total function, then the relation S∗ given
by S∗xy ↔ S f (x)y is also recursive, and we have R∗x ↔ ∃y S∗xy and R∗ is semi-
recursive.

(c): If R1x and R2x are semirecursive relations, say Ri x ↔ ∃y Si xy where S1 and
S2 are recursive, then the relation S given by Sxw ↔ ∃y1 < w ∃y2 < w(S1xy1 &
S2xy2) is also recursive, and we have (R1x & R2 y) ↔ ∃w Sxw . We are using here
the fact that for any two numbers y1 and y2, there is a number w greater than both of
them.

(d): If Ri and Si are as in (c), then the relation S given by Sxy ↔ (S1xy ∨ S2xy) is
also recursive, and we have (R1 y ∨ R2x) ↔ ∃y Sxy.

(e): If Rx is a semirecursive relation, say Rx ↔ ∃y Sxy where S is recursive, and
if R∗x ↔ ∀u < x Ru, then the relation S∗ given by S∗xw ↔ ∀u < x ∃y < w Suy
is also recursive, and we have R∗x ↔ ∃w S∗xw . We are using here the fact that for
any finite number of numbers y0, y1, . . . , yx there is a number w greater than all of
them.

(f): If Rxy is a semirecursive relation, say Rxy ↔ ∃z Sxyz where S is recursive, and
if R∗x ↔ ∃y Rxy, then the relation S∗ given by S∗xw ↔ ∃y < w ∃z < w Sxyz is
also recursive, and we have R∗x ↔ ∃w S∗xw .

The potential for semirecursive relations to yield new recursive relations and func-
tions is suggested by the following propositions. Intuitively, if we have a procedure
that will eventually tell us when a number is in a set (but will tell us nothing if it is
not), and also have a procedure that will eventually tell us when a number is not in a
set (but will tell us nothing if it is), then by combining them we can get a procedure
that will tell us whether or not a number is in the set: apply both given procedures
(say by doing a step of the one, then a step of the other, alternately), and eventually
one or the other must give us an answer. In jargon, if a set and its complement are
both effectively semidecidable, the set is decidable. The next proposition is the formal
counterpart of this observation.

7.16 Proposition (Complementation principle, or Kleene’s theorem). If a set and
its complement are both semirecursive, then the set (and hence also its complement) is
recursive.

Proof: If Rx and ∼Rx are both semirecursive, say Rx ↔ ∃y S+xy and ∼Rx ↔
∃y S−xy, then the relation S∗ given by S∗xy ↔ (S+xy ∨ S−xy) is recursive, and
if f is the function defined by letting f (x) be the least y such that S∗xy, then f
is a recursive total function. But then we have Rx ↔ S+x f (x), showing that R is
obtainable by substituting a recursive total function in a recursive relation, and is
therefore recursive.

7.17 Proposition (First graph principle). If the graph relation of a total or partial func-
tion f is semirecursive, then f is a recursive total or partial function.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.3. FURTHER EXAMPLES 83

Proof: Suppose f (x) = y ↔ ∃z Sxyz, where S is recursive. We first introduce
two auxiliary functions:

g(x) =






the least w such that
∃y < w ∃z < w Sxyz if such a w exists

undefined otherwise

h(x, w) =






the least y < w such that
∃z < w Sxyz if such a y exists

undefined otherwise.

Here the relations involved are recursive, and not just semirecursive, since they are
obtained from S by bounded, not unbounded, existential quantification. So g and h
are recursive. And a little thought shows that f (x) = h(x , g(x)), so f is recursive also.

The converse of the foregoing proposition is also true—the graph relation of a
recursive partial function is semirecursive, and hence a total or partial function is
recursive if and only if its graph relation is recursive or semirecursive—but we are
not at this point in a position to prove it.

An unavoidable appeal to Church’s thesis is made whenever one passes from a
theorem about what is or isn’t recursively computable to a conclusion about what
is or isn’t effectively computable. On the other hand, an avoidable or lazy appeal
to Church’s thesis is made whenever, in the proof of a technical theorem, we skip
the verification that certain obviously effectively computable functions are recur-
sively computable. Church’s thesis is mentioned in connection with omissions of
verifications only when writing for comparatively inexperienced readers, who cannot
reasonably be expected to be able to fill in the gap for themselves; when writing for
the more experienced reader one simply says “proof left to reader” as in similar cases
elsewhere in mathematics. The reader who works through the following optional
section and/or the optional Chapter 8 and/or the optional sections of Chapter 15 will
be well on the way to becoming “experienced” enough to fill in virtually any such
gap.

7.3* Further Examples

The list of recursive functions is capable of indefinite extension using the machinery
developed so far. We begin with the examples pertaining to coding that were alluded
to earlier.

7.18 Example (First and last). There are primitive recursive functions fst and lst such that
if s codes a sequence (a0, a1, . . . , an−1), then fst(s) and lst(s) are the first and last entries in
that sequence.

7.19 Example (Extension). There is a primitive recursive function ext such that if s
codes a sequence (a0, a1, . . . , an−1), then for any b, ext(s, b) codes the extended sequence
(a0, a1, . . . , an−1, b).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

84 RECURSIVE SETS AND RELATIONS

7.20 Example (Concatenation). There is a primitive recursive function conc such that if
s codes a sequence (a0, a1, . . . , an−1) and t codes a sequence (b0, b1, . . . , bm−1), then
conc (s, t) codes the concatenation (a0, a1, . . . , an−1, b0, b1, . . . , bm−1) of the two sequences.

Proofs
Example 7.18. fst(s) = ent(s, 0) and lst(s) = ent(s, lh(s) .−1) will do.
Example 7.19. ext(s, b) = 2 · s · π (lh(s) + 1)b will do. Applied to

2n3a0 5a1 · · · π (n)an−1

this function yields

2n+13a0 5a1 · · · π (n)an−1π (n + 1)b.

Example 7.20. A head-on approach here does not work, and we must proceed a
little indirectly, first introducing an auxiliary function such that

g(s, t, i) = the code for (a0, a1, . . . , an−1, b0, b1, . . . , bi−1).

We can then obtain the function we really want as conc(s, t) = g(s, t , lh(t)). The
auxiliary g is obtained by recursion as follows:

g(s, t, 0) = s

g(s, t, i ′) = ext(g(s, t, i), ent(t, i)).

Two more we leave entirely to the reader.

7.21 Example (Truncation). There is a primitive recursive function tr such that if s codes
a sequence (a0, a1, . . . , an−1) and m ≤ n, then tr(s, m) codes the truncated sequence (a0,
a1, . . . , am−1).

7.22 Example (Substitution). There is a primitive recursive function sub such that if
s codes a sequence (a1, . . . , ak), and c and d are any natural numbers, then sub(s, c, d)
codes the sequence that results upon taking s and substituting for any entry that is equal to
c the number d instead.

We now turn to examples, promised in the preceding chapter, of recursive total
functions that are not primitive recursive.

7.23 Example (The Ackermann function). Let .0/ be the operation of addition, .1/
the operation of multiplication, .2/ the operation of exponentiation, .3/ the operation
of super-exponentiation, and so on, and let α(x , y, z) = x . y / z and γ (x) = α(x, x, x).
Thus

γ (0) = 0 + 0 = 0
γ (1) = 1 · 1 = 1
γ (2) = 22 = 4
γ (3) = 333 = 7 625 597 484 987

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.3. FURTHER EXAMPLES 85

after which the values of γ (x) begin to grow very rapidly. A related function δ is determined
as follows:

β0(0) = 2 β0(y′) = (β0(y))′

βx ′ (0) = 2 βx ′ (y′) = βx (βx ′ (y))
β(x, y) = βx (y)

δ(x) = β(x, x).

Clearly each of β0, β1, β2, . . . is recursive. The proof that β and hence δ are also recursive
is outlined in a problem at the end of the chapter. (The proof for α and γ would be similar.)
The proof that γ and hence α is not primitive recursive in effect proceeds by showing that
one needs to apply recursion at least once to get a function that grows as fast as the addition
function, at least twice to get one that grows as fast as the multiplication function, and so
on; so that no finite number of applications of recursion (and composition, starting with the
zero, successor, and identity functions) can give a function that grows as fast as γ . (The
proof for β and δ would be similar.) While it would take us too far afield to give the whole
proof here, working through the first couple of cases can give insight into the nature of
recursion. We present the first case next and outline the second in the problems at the end
of the chapter.

7.24 Proposition. It is impossible to obtain the sum or addition function from the basic
functions (zero, successor, and identity) by composition, without using recursion.

Proof: To prove this negative result we claim something positive, that if f belongs
to the class of functions that can be obtained from the basic functions using only
composition, then there is a positive integer a such that for all x1, . . . , xn we have
f (x1, . . . , xn) < x + a, where x is the largest of x1, . . . , xn . No such a can exist for
the addition function, since (a + 1) + (a + 1) > (a + 1) + a, so it will follow that
the addition function is not in the class in question—provided we can prove our claim.
The claim is certainly true for the zero function (with a = 1), and for the successor
function (with a = 2), and for each identity function (with a = 1 again). Since every
function in the class we are interested in is built up step by step from these functions
using composition, it will be enough to show if the claim holds for given functions,
it holds for the function obtained from them by composition.

So consider a composition

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

Suppose we know

gi (x1, . . . , xn) < x + a j where x is the largest of the x j

and suppose we know

f (y1, . . . , ym) < y + b where y is the largest of the yi .

We want to show there is a c such that

h(x1, . . . , xn) < x + c where x is the largest of the x j .

Let a be the largest of a1, . . . , am . Then where x is the largest of the x j , we have

gi (x1, . . . , xn) < x + a

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

86 RECURSIVE SETS AND RELATIONS

so if yi = gi (x1, . . . , xn), then where y is the largest of the yi , we have y < x + a.
And so

h(x1, . . . , xn) = f (y1, . . . , ym) < (x + a) + b = x + (a + b)

and we may take c = a + b.

Problems

7.1 Let R be a two-place primitive recursive, recursive, or semirecursive relation.
Show that the following relations are also primitive recursive, recursive, or
semirecursive, accordingly:
(a) the converse of R, given by S(x, y) ↔ R(y, x)
(b) the diagonal of R, given by D(x) ↔ R(x, x)
(c) for any natural number m, the vertical and horizontal sections of R at m,

given by

Rm(y) ↔ R(m, y) and Rm(x) ↔ R(x, m).

7.2 Prove that the function lg of Example 7.11 is, as there asserted, primitive
recursive.

7.3 For natural numbers, write u | v to mean that u divides v without remainder,
that is, there is a w such that u · w = v . [Thus u | 0 holds for all u, but 0 | v
holds only for v = 0.] We say z is the greatest common divisor of x and y, and
write z = gcd(x, y), if z | x and z | y and whenever w | x and w | y, then w ≤ z
[except that, by convention, we let gcd(0, 0) = 0]. We say z is the least common
multiple of x and y, and write z = lcm(x, y), if x | z and y | z and whenever
x |w and y |w , then z ≤ w . Show that the functions gcd and lcm are primitive
recursive.

7.4 For natural numbers, we say x and y are relatively prime if gcd(x, y) = 1, where
gcd is as in the preceding problem. The Euler φ-function φ(n) is defined as the
number of m < n such that gcd(m, n) = 1. Show that φ is primitive recursive.
More generally, let Rxy be a (primitive) recursive relation, and let r (x) = the
number of y < x such that Rxy. Show that r is (primitive) recursive.

7.5 Let A be an infinite recursive set, and for each n, let a(n) be the nth element
of A in increasing order (counting the least element as the 0th). Show that the
function a is recursive.

7.6 Let f be a (primitive) recursive total function, and let A be the set of all n such
that the value f (n) is ‘new’ in the sense of being different from f (m) for all
m < n. Show that A is (primitive) recursive.

7.7 Let f be a recursive total function whose range is infinite. Show that there is a
one-to-one recursive total function g whose range is the same as that of f .

7.8 Let us define a real number ξ to be primitive recursive if the function f (x) = the
digit in the (x + 1)st place in the decimal expansion of ξ is primitive recursive.
[Thus if ξ =

√
2 = 1.4142 . . . , then f (0) = 4, f (1) = 1, f (2) = 4, f (3) = 2,

and so on.] Show that
√

2 is a primitive recursive real number.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

PROBLEMS 87

7.9 Let f (n) be the nth entry in the infinite sequence 1, 1, 2, 3, 5, 8, 13, 21,
. . . of Fibonacci numbers. Then f is determined by the conditions f (0) = f (1)
= 1, and f (n+ 2) = f (n) + f (n + 1). Show that f is a primitive recursive
function.

7.10 Show that the truncation function of Example 7.21 is primitive recursive.
7.11 Show that the substitution function of Example 7.22 is primitive recursive.

The remaining problems pertain to Example 7.23 in the optional section 7.3. If
you are not at home with the method of proof by mathematical induction, you
should probably defer these problems until after that method has been discussed
in a later chapter.

7.12 If f and g are n- (and n + 2)-place primitive recursive functions obtainable
from the initial functions (zero, successor, identity) by composition, without
use of recursion, we have shown in Proposition 7.24 that there are numbers a
and b such that for all x1, . . . , xn , y, and z we have

f (x1, . . . , xn) < x + a, where x is the largest of x1, . . . , xn

g(x1, . . . , xn, y, z) < x + b, where x is the largest of x1, . . . , xn, y, and z.

Show now that if h = Pr[f , g], then there is a number c such that for all x1, . . . ,
xn and y we have

h(x1, . . . , xn, y) < cx + c, where x is the largest of x1, . . . , xn and y.

7.13 Show that if f and g1, . . . , gm are functions with the property ascribed to the
function h in the preceding problem, and if j = Cn[f , g1, . . . , gm], then j also
has that property.

7.14 Show that the multiplication or product function is not obtainable from the
initial functions by composition without using recursion at least twice.

7.15 Let β be the function considered in Example 7.23. Consider a natural number s
that codes a sequence (s0, . . . , sm) whose every entry si is itself a code for a
sequence (bi,0, . . . , bi,ni). Call such an s a β-code if the following conditions
are met:

if i < m, then bi,0 = 2
if j < n0, then b0, j+1 = b0, j
if i < m and j < ni+1, then c = bi+1, j ≤ ni and bi+1, j+1 = bi,c.

Call such an s a β-code covering (p, q) if p ≤ m and q ≤ n p.
(a) Show that if s is a β-code covering (p, q), then bp,q = β(p, q).
(b) Show that for every p it is the case that for every q there exists a β-code

covering (p, q).
7.16 Continuing the preceding problem, show that the relation Rspqx, which we

define to hold if and only if s is a β-code covering (p, q) and bp,q = x , is a
primitive recursive relation.

7.17 Continuing the preceding problem, show that β is a recursive (total) function.

