L. T. FE. Gamut

LoGic, LANGUAGE, AND MEANING

VOLUME I
Introduction to Logic

The University of Chicago Press
Chicage and Loadon

FZ:Z2T £I02-8T-ddS

T00°d

The Ugiversity of Chicaga Press, Chicago #4637
The Upiversity of Chicogo Press, Lid., Lendon
© 1991 by The University of Chicago

All rigms reserved, Published 199

Printed in the United States of America

1w 987

First ppblished as Logicn, Taal en Betekeniz, (2 vols.) by Uitgewerj Her
Spectram, De Meern, The Melherlands. Vol. |- Fuleiding in de legica,
vol. 2:(fmensionele logica en logische grammaiica, both © {982 by Het
8 m B. ¥,

Library of Congress Cataloging in Publication Data

Gamurl L. T. B

[Uegica, 1zal en betekenis. English]

Lagic, langeage, and meaning f L. T. . Gamut.

P CIn.

Transtation of: Logica, taal en berekenis.

Intludes bibliographical references.

Contenis: v. 1. inttoduction o logic — v. 2. lniensional logic and logi-
<ol grammar,

ISEN [-225-28084-5 {v. 1). — ISBN (-226-28085-3 {v. [, pbk). —
ISBY 0-226-28086-1 {v. 2} — I1SBN (-226-2B0E8-8 (v. 2, phk.)

-|Logie. 2. Semantics {Philosophy) 3. Languages—Fhilosophy.
1. Tiple.

BC71.G33513 i991

160--dc20 S0-10912
CIiP

& The gaper used in this publication meets the minimum requirements of the
American MNational Standard For Infarmation Sciences—Permanence of
Paper far Printed Library Materials, ANSIZ39.48-1992,

Lo T ¥ Gaaut s o collective psendanym Tor L F. AL K. van

Benthem, I AL G. Groenendijk, 13 H.). de Jongh. ML LB,

Stokchol, all scvzor stall members in e [nstilute B Logic, Lan-
cuaze & Computanon al the Universiy of Amsterdan, and H. J.
Yerkus, emeritus prodissor at the Unisersity of Utrecht,

The University of Chicago Press

Wy schicupoedu

£102-81-d4S

FZ:ZT

oo d

7 Formal Syntax

In this beok the emphasis has been on the logical study of semantic questim:ls.
Newvertheless, the pure syntax of natural and formal lanpuages a!sn has an in-
teresting structure which is accessible to treatment by mamemucﬂ methodls.
In this chiapter we shall attempt to sketch some central notions and themr_:s n
this area,| pointing out some cornections with the rest of our text. There_ls no
pretense pt compieteness here: for a more thorough study, the reader is re-
ferred to] e.g., Hoperoft and Ullman 1975,

7.1 The Hierarchy of Rewrite Rules

We shall |be considering a finite alphabet A of symbols ay, . . . , a,. Corre-
sponding|to this is the set A* of all finite sequences of symbols taken from A
(including the ‘empty sequence’ {)). A language L can now he-secr{ asa SEIi'J-
set of A*|(the *grammatical expressions of L'). If this abstract idea is applied
to natural language, then, for example, words, or even whole parsed expres-
sions, wduld correspond to symbols in alphabet A.

Description of a language L now amounts to finding a grammar G for L.
Gramemais are usually thought of as sets of rewrite rufes of the form:

XAE {Rewrite symbel X as expression E.)
Exampfle: Let G consist of the following two rules (in the alphabet {a, b}):

520
3 =»|aSh

The symbol § is called the ‘start symbol’ {which often re_fcrs to the category
“sentence]’). The class of expressions gencrated by G consists of all sequences
of the forqm:

a‘bt {i letters a, followed by the same number of letters b)

The sequence azbb, for example, may be obtained by means of the following
TewTile stfeps:

5. aSb, aaShb, aa{}bb{=aabb)

Formal Syntax 221 %

Thus, more generally, besides the terminal symbols
involve auxitiary symbols which can be rewritten as e
terminal and auxiliary symbols. We say that
guage L{G) of all strings E composed from
derivable from G, that is, such that there is

starting with § and ending with E, in which every expression can be obtained

from its predecessor by rewriting a single auxiliary symbol with the id of one
of the ruies in G. Here is another iltustration.

the grammar G generates the lan-
terminal symbols only which are
a finite sequence of eX{ressions

El.'xam_alﬂe: The following grammar describes the formulas of propositional
logic, with the alphabet { Py Ay, (O (where propositional letters are of
the form p, p’, p", . . 1:

ADp
AAT
S=>4
85 =8
S 28 A8

Here the auxiliary symbol A stands for
mulas’. In fact, auxiliary symbels often ¢
which are also useful by themselves.

Rewrite grammars can be classified according to the kinds of rules used in
them. Notably, the grammars which we have introduced so far are said to be
context-free, which means that their rules aflow the rewriting of single auxili-
ary symbols independently of the context in which they occur. Context-
grammars are very commen and are very important.

A simpler, but still useful subspecies of this class is formed by the regular
grammars, in which an additional requirement is placed on the expression E i
the right of the arrow: it must consist of either (i) a single terminal symbol {or
the empty sequence {}) or (i} a single terminal symbol and a single auxiliary
symbol. In rhe latter case, all of the rules in G must have the same order: the

terminal symbol noust be in front (the grammar is ‘left-regular’) or at the end
{ ‘right-regular™).

propositional letters or ‘atomic for-
orrespond ko grammatical categories

{ree

Example: Consider the alphabet {a, b} and the grammar G with the rules:
5 S aX

A=b
X=bs

L{{3) consists of ali sequences of the form ab . . . ab.

A more realistic example of a ‘language’ with a regular description would
be the decimal notation of nwmerals, fike 123,654,

Cn the other hand there are also more complex kinds of grammars, with
‘conditional’ rewrite rules of the form:

~
In A, rewrite rules aiso w
xpressions formed out of &

o
fard
)

FZ:ZT

£00°d

212 Chapter Seven

{EX(E;) > E
One well-known example of such a context-sensitive prammar is the following:

S = [aSBC
8 S b

(CB(=>D
CiDy=B
(B)D|=> C
fb}B = b

C =

The language L(G) produced by this grammar consists of all sequences of ter-
minal symbals with equal numbers of a’s, b's and ¢'s (in that order). A deriva-
tion of aabbce, for example, goes like this:

8, aSBC, aabCBC, 2abCDC, aabBDC, 2abBCC, aabbCC, aabbeC,

(Rewrite X as E if it appears in the context E, XE,.)

aamf.
Finally, the most complex variety, fype-* grammars, admits rules in w?aich
any exprepsion formed out of auxiliary and terminal symbaols may be rewritten
as any other:

E, = E,
A gradient of grammar models results for linguistic description:
regu]llr, contexl-free, context-sensitive, type-0.

This is offen called the Chomsky hierarcfiy after the originator of this funda-
mental calegorization.

7.2 Grammars and Automata

Intuitively, a grammar is a systemn of riles by means of which a language cail
be produced. But besides the “generative’ aspect of language, there is also II:Ee
guestion of recognition: i.e., deciding whether a given sequence c-lf s.}rnl1bnis is
an expression in the language in question or not, The latter function is often
given a mathematical description in terms of machine models. Para;lell o the
above hierarchy of prammars, then, we have a hierarchy of recognizing ma-
chines ordered according to their ‘engine power’.

The sinplest recognizing machines are the finfre state quromata. Thess can
ions, symbol by symbol (say, encoded on a linear tape), :WhllE
always bejng in one of a finite number of ioternal states. So the behavior of
such a machine is whoelly determined by the following featres:

(i) its “dnitial state’ . _
i) its “tramsition function’, which says which state the machine will go
into; given any present state and the symbol last read

Formal Syntax 223

(it} a classification of all

: the states as ‘recogoizing” or ‘rejecting” (for the
string read so far)

Exa::.rrpfe: The regular language consisting of all sequences of pairs ab is
recognized by the following finite-state auvtormaton;

i-ﬂ.ELiaj Slale o ——a__’
b

b /
G

h a
* recogniticn

© refection
Here exactly those strings count as *
machine to an accepting state.

The correlation exhibited in
that, given any language with

recognized” whose processing brings the

this example is not a fluke. It can be proved

) ! 2 regular grammar, there is some finite-state
automaton which preciseiy recognizes that language. And the converse also

hc-ld_s: for any such machine a regular grammar can be constructed generating
precisely the language consisting of the expressions recognized by that ma-
chine. {For detailed definitions and argumnents, the reader is referred to the
literature. }

Now it could be argued that any physically realizable machine must be a
{Perhaps rather large) finite-siate automaten. But there are other natural no-
tmns. 01_’ computation teo. In particular, if we are Prepared to idealize away all
restrictions of memory or computational cost, considering only what a human
of mechanical computer could do in prineiple, then we arrive at the notion of
a Turing machine, which realizes the most general idea of an effective proce-
dure, or algorithm. Compared to a finite-state machine, a Turing machine has
two extra capacities: it has a memory which is in principle uniimited, and i
can apply transformations to the memory. A more concrete description is the
following. The machine works on an infinitely long tape with symbuols on it
(initially just the string which is to be investigated). It scans this tape with its

read/ write head, and tdepending on its internal state and the symbol it has just
read, it may:

(1) replace that symbol with another
(ii} shift its read/write head one position to the left or to the right
(i) assume a different state.

Turing machines provide a very powerful and elegant analysis of effective
computability in the foundations of mathesnatics and computer science. Even
s0, it is generally assumed that they are too powerful for the description of
natural languages. This is connected with the following fact: the languages

recognized by Turing machines are precisely those for which a type-0 gram-
mar can be written,

£102-81-d4S

FZ:ZT

Footd

224 Chizpter Seven
There is piso an intermediate kind of machine which corresponds to the
above-mentioned context-free grammars between thes_e two fl:xm:amcs, namely,
the push-dopn aufomaton. This is a finite-state Imashme. which is also capabie
of maintaining and using a “stack’ containing information ::Lbaut s:!rmbols ak-
ready read I, While it is reading in symbeis, and depending on its present
state and whatever symbol has just been read in, a pu§h-dc-wn automaton has
the following options: it can remove the top symbol in its memory sta1ck,k1t can
leave this symbel untouched, or it can replace it with a new combination f’f
e result is that lingoisticalty relevant information can be smre_d in
and later retrieved. The following may serve a5 an illustration.
The language a'b' of strings of symbois a followed by an equal nu_mber c!f
symbols b was generated earlier on by a-::ontext—frt_:e grammar. And in fact ir
cannot be recognized by a finite-state automaton, since any such machine has
only a finitg number of states in which it can encode the symbel pa-ua.?r‘ns
encounlered so far. Consequently, there are always sequences whc?se initial
segment al gets too long to remember, as a result of which ne sufficient com-
parison can e made with the aumber of b's which are to come. A pushdc{wp
automaten, however, solves the problem by storing in IISI stack al-l of the a’s it
reads in and) then simply checking these off with the b’s it reads in. -
Again, a blring counts as recognized by some push-dcwq automaton if its
processing drives the machine into an accepting state. There is a Slbelefy her;,
however. In|general, context-free langwages may need mndefermm:mc push-
down antomata for their recognition, which have several options for PﬂSS]bl:ﬂ
mowves at eagh stage. In e latter case, a string counts as being recognizable if
there exisis bt least one successful sequence of choices on the part of the ma-
chine leading to an accepting state after its perusal. . ‘ ,
In more linguistic terms, a push-down automaton can deal with one “coordi-
nation’ at a|distance. More than one coordination, however, cannot be per-
formed: the garlierexample of aibic' cannot be given aoontexlt-free description.
It must be described by context-sensitive means.-’]."he question pf whether th_e
syntax of natural language really has such r_nu].np]e coordination patterns is
still a matier of continuing debate in linguistics.

7.3 The Theory of Formal Languages

The concepls discussed above have given rise to a rich general theory 0; ;;n-
guages. Onee again, the reader is referred to Hoperoft and [}llm?n (1 ;i,
which also gontains exact formmlations and proofs of the_resu]tls dls_cussen? in
this chapter| An interesting up-to-date survey of current discussions is Savitch
“ gxl'.;: ll?nﬂ'f ;tant question is how specific natural Ianguagil:s {I:-ut- also, e.g.,
programming languages) should be fitted into Fhe _ab:?ve hJ::rar_chms. An {:1;
plicit generating grammar or recognizing machine mdu_:ates a highest leﬁ_.re 0

complexity 3t which the language must be placed, but in order to show that it

[

Formai Syntax 225

regular !Ianguages as recognized by finite-state miachines. The restrictic;n ,!o a
fixed finite number of stales gives rise to a result which js cailed the ‘Pumping
Lemma’:

Lemlpa: For every reguiar language L. there is a constand M such thar if
E\E;E; is any expression in L in which the length of B, is farger than N, then
there are x, v, z such that E; is of the form Xyz, and every expression of the form
Exy4zE, is aiso an expression in L (for any number k of repetitions of ¥}

IEmTII;;;t Ellleuearlier le'm‘lgi_.:age a'bi is m_:u,t regu?ar is a direct couseqw.?nce of this
_ 1 {pump the initia! segment ai » for i > NJ. Subtler pumping resuls,
m¥olving more complex duplication patterns, hold for context-free and higher
languages.

A second important marter concerns the complexity of various languages.
Just as we can consider the effective decidability of the laws of reasoning valid
in Jogical systems (cf, chap. 4 above), we can also consider the decidability of
the grammatical forms of expression of a language, This question can be ap-
proached by associating algorithms with the system of rewrite tules; the al-
gorithm will check to see if any given string can be produced by means of
some combination of the rules. It turns out that the membership of L{G) is
decidable for grammars G up to and including context-sensitive BUEMmars.
But the languages produced by type-0 grammars are not necessarily decid-
able. They are in general only ‘effectively enumerable’: that is, we have an
effective procedure for successively generating all strings belonging to the
language, {Essentially one merely traces all possible derivations according to
some sensible schema.) Since this will generally be an infinite process, how-
ever, it does not allow us to reject any given expression at some finite stage of
the procedure:; its turn might come later. This situation js analogous (o one we
encountered before when discussing the complexity of the valid laws in predi-
cate logic (sce §4.2). The full class of decidable languages must lie some-
where between that described by context-sensitive grammars and the full
type-0 level in the Chomsky hierarchy.

This whele topic has direct practical ramifications in the parsing of lin-
guistic expressions, with an added concern as to the efficiency with which our
decision procedures can be implemented, For context-free languages, ai least,
parsing algorithms can be efficient: these languages can be parsed by means of
an algorithm which requires no more than & successive computational steps
10 parse an expression with k symbols, (In this connection, an independent,
more finely sinrctured hierarchy of languages ordered according to their pars-
ing complexity can be drawn up too. The theory of the latter hierarchy is as
yet fairly undeveloped.)

£102-81-d4S

FZ:ZT

S00°d

900°d TYLOL

126 Chapier Seven

A third and last matter concerns investigations into families of languages

where only closure under unions is guaranteed. One useful ‘mixed’
owever, is that the intersection of a conlext-free and a regular lan-
st always be a context-free language. We shall have an opportunity
it in §7.5.

flavor. For instance, given any two languages L, L,, one may form their
' consisiing of all sequences formed by concatenating a string from
L, and one from L,, in that crder. Both regular languages and context-{iee

languages are also closed under products of this kind.

7.4 Grammaiical Complexity of Natural Languages

One of |the most convincing aspects of Chomsky's classical work Svataciic
Structeres {1937) was its discussion of the complexity of natural languages.
Regular and context-free grammars were successively considered as grammati-
cal pa:jdigms and then rejected as such. The eventually resulting modeil of
linguistjc description was the well-known proposal to make use of a contexi-
free phfase structure component generating a relatively perspicucus linguistic
base, with another set of rules, fransformarions, which would operate on the
latter to get the details of syntax right. But around 1970, Peters and Ritchie
proved |hat the twe-stage approach has the same descriptive power as Lype-0
gramungrs, or Turing machines: something which was generally seen as com-
binatorial overkill. Even so, the prevalent linguistic opinion on the matter
remaingd that the complexity of natural languages is higher than that of context-
free languages.

The discussion has been revived in the last few years {for a survey, see
Gazdar |and Pullem 1987). [t wrns ouwt, for example, that various traditional
arguments for non—context freedom are formally incorrect. One favorite
mathematical fallacy is that if some sublanguage of the target language L is
not context-free, for example, because of the oceurrence of ternary or higher
patterng of coordination, then L. cannot be contexi-free either. Other at least
formally correct arguments tumed out to be debatable on empirical grounds.
At this momeni, only a few plausible candidates are kaown for natucal lan-
guages which are not context-free (among them Swiss German, Bambara, and
Dtchy.

n PTLL

£102-81-d4S

FZ:ZT

9004

