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4.3 Generalized Gödel Sentences . . . . . . . . . . . . . . . . . 83
4.4 Incompleteness and the TOE . . . . . . . . . . . . . . . . . 87
4.5 Theological Applications . . . . . . . . . . . . . . . . . . . . 90

5 Skepticism and Confidence 97
5.1 The Second Incompleteness Theorem . . . . . . . . . . . . . 97
5.2 Skepticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Consistency Proofs . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 Inexhaustibility . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Gödel, Minds, and Computers 115
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Preface

My excuse for presenting yet another book on Gödel’s incompleteness the-
orem written for a general audience is that no existing book both explains
the theorem from a mathematical point of view, including that of com-
putability theory, and comments on a fairly wide selection of the many
invocations of the incompleteness theorem outside mathematics.

To a considerable extent, the book reflects my experiences over the years
of reading and commenting on references to the incompleteness theorem on
the Internet. Quotations from named sources that as far as I know exist
only in electronic form are not accompanied by any URLs, since such often
become obsolete. However, using a search engine, the reader can easily
locate any quoted text that is still extant somewhere on the Internet.

In quite a few cases, comments that I have encountered on the Internet
in informal contexts are quoted (sometimes in slightly edited form) without
attribution. They are used to represent commonly occurring ideas and
arguments.

In thanking those who have helped me write this book, I must begin
with the many people discussing Gödel’s theorem on the Internet, whether
named in the book or not, without whose contributions it is unlikely that
the book would ever have appeared. I also thank Andrew Boucher, Damjan
Bojadziev, Alex Blum, Jeff Dalton, Solomon Feferman, John Harrison, Jef-
frey Ketland, Panu Raatikainen, and Charles Silver for helpful comments.
In writing the book, I have drawn on the resources of Lule̊a University of
Technology in several essential ways, for which I am grateful.

For any remaining instances of incompleteness or inconsistency in the
book, I consider myself entirely blameless, since after all, Gödel proved that
any book on the incompleteness theorem must be incomplete or inconsis-
tent. Well, maybe not. Although the book will perhaps in part be heavy
going for readers not used to mathematical proofs and definitions, I hope
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x Preface

it will give even casual readers a basis for judging for themselves the merits
of such nonmathematical appeals to the incompleteness theorem and an
appreciation of some of the philosophical and mathematical perspectives
opened up by the theorem.

Torkel Franzén
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1
Introduction

1.1 The Incompleteness Theorem

Few theorems of pure mathematics have attracted much attention out-
side the field of mathematics itself. In recent years, we have seen Fer-
mat’s Last Theorem attract the interest of the general public through its
much-publicized final proof by Andrew Wiles, and many nonmathemati-
cians could probably state and illustrate the theorem of Pythagoras, about
the square of the hypotenuse of a right triangle, which made it into a song
performed by Danny Kaye (with music by Saul Chaplin and lyrics by John
Mercer). But it is most likely safe to say that no mathematical theorem
has aroused as much interest among nonmathematicians as Gödel’s incom-
pleteness theorem, which appeared in 1931. The popular impact that this
theorem has had in the last few decades can be seen on the Internet, where
there are thousands of discussion groups dedicated to every topic under
the sun. In any such group, it seems, somebody will sooner or later invoke
Gödel’s incompleteness theorem. One finds such invocations not only in
discussion groups dedicated to logic, mathematics, computing, or philoso-
phy, where one might expect them, but also in groups devoted to politics,
religion, atheism, poetry, evolution, hip-hop, dating, and what have you.
Interest in the incompleteness theorem is not confined to the Internet. In
printed books and articles, we find the incompleteness theorem invoked
or discussed not only by philosophers, mathematicians, and logicians, but
by theologians, physicists, literary critics, photographers, architects, and
others, and it has also inspired poetry and music.

1
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2 1. Introduction

Many references to the incompleteness theorem outside the field of
formal logic are rather obviously nonsensical and appear to be based on
gross misunderstandings or some process of free association. (For exam-
ple, “Gödel’s incompleteness theorem shows that it is not possible to prove
that an objective reality exists,” or “By Gödel’s incompleteness theorem,
all information is innately incomplete and self-referential,” or again “By
equating existence and consciousness, we can apply Gödel’s incompleteness
theorem to evolution.”) Thus, Alan Sokal and Jean Bricmont, in their com-
mentary on postmodernism [Sokal and Bricmont 98], remark that “Gödel’s
theorem is an inexhaustible source of intellectual abuses” and give exam-
ples from the writings of Regis Debray, Michel Serres, and others. But
among the nonmathematical arguments, ideas, and reflections inspired by
Gödel’s theorem there are also many that by no means represent post-
modernist excesses, but rather occur naturally to many people with very
different backgrounds when they think about the theorem. Examples of
such reflections are “there are truths that logic and mathematics are pow-
erless to prove,” “nothing can be known for sure,” and “the human mind
can do things that computers can not.”

The aim of the present addition to the literature on Gödel’s theorem
is to set out the content, scope, and limits of the incompleteness theorem
in such a way as to allow a reader with no knowledge of formal logic to
form a sober and soundly based opinion of these various arguments and
reflections invoking the theorem. To this end, a number of such commonly
occurring arguments and reflections will be presented, in an attempt to
counteract common misconceptions and clarify the philosophical issues.
The formulations of these arguments and reflections, when not attributed
to any specific author, are adaptations of statements found on the Internet,
representative of many such reflections.

Gödel presented and proved his incompleteness theorem in an Austrian
scientific journal in 1931. The title of his paper (written in German) was,
translated, “On formally undecidable propositions of Principia Mathemat-
ica and related systems I.” (A part II was planned, but never written.)
Principia Mathematica (henceforth PM) was a monumental work in three
volumes by Bertrand Russell and Alfred North Whitehead, published 1910–
1913, putting forward a logical foundation for mathematics in the form of a
(far from transparent) system of axioms and rules of reasoning within which
all of the mathematics known at the time could be formulated and proved.
Gödel proved two theorems in his paper, known as the first incomplete-
ness theorem and the second incompleteness theorem. (The designation
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1.1. The Incompleteness Theorem 3

“Gödel’s incompleteness theorem” is used to refer to the conjunction of
these two theorems, or to either separately.) The first incompleteness the-
orem established that on the assumption that the system of PM satisfies a
property that Gödel named ω-consistency (“omega consistency”), it is in-
complete, meaning that there is a statement in the language of the system
that can be neither proved nor disproved in the system. Such a statement is
said to be undecidable in the system. The second incompleteness theorem
showed that if the system is consistent—meaning that there is no state-
ment in the language of the system that can be both proved and disproved
in the system—the consistency of the system cannot be established within
the system.

The property of ω-consistency, which Gödel assumed in his proof, is a
stronger property than consistency and has a technical flavor, unlike the
more readily understandable notion of consistency. However, the American
logician J. Barkley Rosser showed in 1936 that Gödel’s theorem could be
strengthened so that only the assumption of plain consistency was needed
to conclude that the system is incomplete.

In the technical details, Gödel did not in fact carry through his argu-
ment for the system of PM, but rather for a system that he called P, related
to that of PM. Nevertheless, it was clear that his result also applied to PM,
and indeed to a wide range of axiomatic systems for mathematics, or parts
of mathematics. Today the incompleteness theorem is often formulated
as a theorem about any formal system within which a certain amount of
elementary arithmetic can be expressed and some basic rules of arithmetic
can be proved. The theorem states that any such system, if consistent, is
incomplete, and the consistency of the system cannot be proved within the
system itself.

The kind of reasoning put forward in Gödel’s paper was at the time
unfamiliar to logicians and mathematicians, and even some accomplished
mathematicians (for example, the founder of axiomatic set theory, Ernst
Zermelo) had difficulty grasping the proof. Today, as in the case of other
intellectual advances, both the subject and our understanding of it have
developed to the point where the proof is not at all considered difficult.
The methods used have become commonplace, and proofs have become
streamlined and generalized. Still, of course, grasping the details requires
some familiarity with the methods and concepts of formal logic. In this
book, no knowledge of logic or mathematics (beyond an acquaintance with
basic school mathematics) will be assumed, on the basis of the view that
a sound informal understanding of the theorem is attainable without a
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4 1. Introduction

study of formal logic, and similarly for an understanding of the various
applications and misapplications of the theorem.

Of course, opinions about what constitutes a sound informal under-
standing of the incompleteness theorem will vary, as illustrated by state-
ments such as the following:

Gödel’s incompleteness theorem can be intuitively understood
without a mathematical approach and proof: the incomplete-
ness concept appears in clearly recognizable form in Zen Bud-
dhism.

The incompleteness theorem is a theorem about the consistency and
completeness of formal systems. “Consistent,” “inconsistent,” “complete,”
“incomplete,” and “system” are words used not only as technical terms in
logic, but in many different ways in ordinary language, so it is not surprising
that Gödel’s theorem has been associated with various ideas relating to
incompleteness, systems, and consistency in some informal sense. As will
be commented on at some length in Chapter 4, such associations usually
have little or nothing to do with the content of the incompleteness theorem,
and the kind of intuitive understanding of the theorem that one might
derive from a study of Zen Buddhism is not at all what this book is about.

1.2 Gödel’s Life and Work

Gödel has been variously described as German, Austrian, Czech, and Amer-
ican. All of these descriptions are correct in their own way. Gödel’s lan-
guage was German, as was his cultural background, but he was born into a
well-to-do family in 1906 in the Moravian city of Brünn (Czech name Brno)
in Central Europe, then a center for the textile industry. At the time of
Gödel’s birth, Moravia was part of the Austro-Hungarian empire. After
World War I the Austro-Hungarian empire was dismantled, and Gödel
grew up as a member of the sizeable German-speaking population of Brno
and a citizen of the newly created state of Czechoslovakia. In 1929, when
he was working on his doctoral dissertation at the University of Vienna, he
became an Austrian citizen. After Austria was annexed by Nazi Germany
in 1938, he was also, at least in the eyes of the authorities of that country,
a German national. Although not Jewish and apparently completely un-
concerned with politics, Gödel, as an academic and intellectual moving in
Jewish and liberal circles, was viewed with some suspicion. He encountered
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1.2. Gödel’s Life and Work 5

difficulties in seeking an appointment as a lecturer and was once attacked in
the street by a gang of Nazi youths (who were chased off by his wife). Such
things, and the risk of conscription into the German army, prompted Gödel
to seek to emigrate to the United States, which he managed to do after
various complications in 1940, when he joined the Institute for Advanced
Study (IAS) in Princeton. In 1948 he became an American citizen.

Although Gödel is famous mainly for his incompleteness theorem, he
proved several other fundamental results in logic, chiefly while in Vienna
between 1929 and 1940, during which time he also made visits to the IAS
and to the University of Notre Dame in the United States. He proved,
in his doctoral dissertation, the completeness theorem for first-order logic,
which will be explained in Chapter 7, and went on to prove the first, and
a little later the second, incompleteness theorem. He proved some highly
significant results in set theory which will not be considered in this book,
except for some incidental remarks. These were all seminal works which
led to a number of developments in mathematical logic and the founda-
tions of mathematics. He also proved other significant results during this
very productive period. In the 1940s, as a member of the IAS where he re-
mained until his retirement in 1976, he developed what is known as Gödel’s
Dialectica interpretation (after the journal in which this contribution first
appeared, as late as 1958), having to do with what is called constructive
mathematics. He also did original work in Einstein’s general theory of
relativity, demonstrating the existence of a solution of the equations of
the theory that describes a universe in which it is theoretically possible to
travel into one’s past. Otherwise, his energies were chiefly directed toward
philosophy. After 1940 he published little, but in the later years of his life
he received numerous academic honors. He died in 1978.

Readers interested in further details about Gödel’s life, such as his
recurring health problems, mental and physical, his marriage, his life as
an academic in Vienna, and his friendship with Einstein, should consult
[Dawson 97] and the other sources listed in the references.

Large claims are often made about the impact and importance of the
incompleteness theorem: for example, that it “brought a revolution to
mathematical thought,” that it “turned not only mathematics, but also
the whole world of science on its head,” and, in a crescendo of woolly
enthusiasm, that Gödel’s work “has revolutionized not only mathematics,
but philosophy, linguistics, computer science, and even cosmology.” Such
claims are wildly exaggerated. Even in mathematics, where one might ex-
pect the incompleteness theorem to have had its greatest impact, it brought
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6 1. Introduction

about no revolution whatsoever. The theorem is used all the time in math-
ematical logic, a comparatively small subfield of mathematics, but it plays
no role in the work of mathematicians in general. To be sure, mathemati-
cians are generally aware of the phenomenon of incompleteness and of the
possibility of a particular problem being unsolvable within the standard ax-
iomatic framework of mathematics, but a special case needs to be made in
each instance where there is reason to believe that incompleteness should
be a matter of mathematical concern. Gödel’s “rotating universes,” his
new solutions of the equations of general relativity, have had no great im-
pact on cosmology, and the subject of computer science could hardly have
been revolutionized by Gödel’s theorem since it didn’t exist at the time the
theorem was proved. The theoretical basis of computer science is associ-
ated rather with the work of the British mathematician and logician Alan
Turing, who introduced in 1936 an idealized theoretical model of a digital
computer and used it to prove the “unsolvability of the halting problem.”
This result is closely related to the first incompleteness theorem, and the
basic connections between the two will be set out in later chapters.

Like the special theory of relativity a quarter of a century earlier, the
theorems proved by Gödel in 1929 and 1930—the completeness theorem
for first-order logic and the incompleteness theorem—were in the air at the
time. Gödel himself felt that it would have been only a matter of months
before somebody else had stumbled on the theorems ([Kreisel 80]). In the
case of the completeness theorem, Gödel believed (rightly or wrongly) that
only philosophical prejudice against nonfinitary reasoning had prevented
the Norwegian logician Thoralf Skolem from arriving at the theorem. In
the case of the first incompleteness theorem, priority was in fact claimed by
the German mathematician Paul Finsler, but although his outlined argu-
ment can be made precise and correct using Gödel’s work, it did not in his
presentation amount to a proof of anything. The Polish-American logician
Emil Post, who did pioneering work in the theory of computability, came
much closer to Gödel’s insight, but without producing any conclusive for-
mal result. In particular, the mathematical precision and thoroughness of
Gödel’s proof of the first incompleteness theorem was probably necessary
for the second incompleteness theorem to emerge as a corollary.

Apart from its manifold applications in logic, the incompleteness theo-
rem does raise a number of philosophical questions concerning the nature
of logic and mathematics. These questions, and the implications of the
incompleteness theorem for our thinking about mathematics, are quite in-
teresting and significant enough without any exaggerated claims for the
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1.3. The Rest of the Book 7

revolutionary impact of the theorem. In particular, there are two philo-
sophically highly significant aspects of the incompleteness theorem that will
be touched on in this book. First, it shows that even very abstract math-
ematical principles, asserting the existence of various infinite sets, have
formal consequences in elementary number theory that cannot be proved
by elementary means. Secondly, when applied to formal systems whose
axioms we recognize as mathematically valid, the incompleteness theorem
shows that we cannot formally specify the sum total of our mathematical
knowledge.

1.3 The Rest of the Book

The exposition adheres to the traditional plan of presenting general expla-
nations before more specific discussions, and introducing and explaining
concepts before they are used, but the reader is encouraged to dip into the
book at any point of interest and to read other parts of the book or return
to parts already visited when this appears profitable as a result of further
reflection. The index will show where unfamiliar terms are first introduced
and explained.

The incompleteness theorem is a mathematical theorem about axiom-
atizations of (parts of) mathematics, and the overview of the theorem in
Chapter 2 accordingly begins with the subject of arithmetic. A reader who
is chiefly interested in the supposed applications of the incompleteness the-
orem outside mathematics and the philosophy of mathematics may prefer
to turn directly to Chapter 4 and later chapters, while a reader with an
interest in mathematics will find in Chapters 2 and 3 an introduction to
the mathematics of incompleteness, along with a discussion of some basic
philosophical issues. Invocations of the incompleteness theorem in theology
and in the philosophy of mind (“Lucas-Penrose arguments”) are covered
in Chapters 4, 5, and 6, and a discussion of the philosophical claims of
Gregory Chaitin is found in Chapter 8. An Appendix has been added for
the benefit of readers who are interested in a presentation of some of the
formal mathematical aspects of incompleteness.

In order to make the book a bit more browsable, there is a certain
amount of repetition of material from Chapter 2 in later parts of the book.
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2
The Incompleteness Theorem

An Overview

2.1 Arithmetic

The language of mathematics is full of terms and symbols that mean noth-
ing to nonmathematicians, and fairly often indeed mean very little to any-
one who is not an expert in a particular field of mathematics. But the part
of mathematical language known in logic as the language of elementary
arithmetic can be understood on the basis of ordinary school mathematics.
It deals with the natural numbers (nonnegative integers) 0, 1, 2,. . . and
the familiar operations of addition and multiplication, and it allows us to
formulate some of the most striking results in mathematics, and some of
the most difficult problems.

A prime, or prime number, is a natural number greater than 1 that is
evenly divisible only by 1 and itself. Thus, the first few primes are 2 (the
only even prime), 3, 5, 7, 11, 13, 17,. . . . One of the first substantial results
of pure mathematics in the Western world was the discovery that the primes
are inexhaustible, or infinite in number. In other words, for any given
prime, there is a larger one. This was proved by a simple and ingenious
argument in Euclid’s Elements (ca. 300 B.C.). Some 2,000 years later, it
was observed that if we look at the even numbers 0, 2, 4, 6, 8,..., it seems
that beginning with 4 they can all be written as the sum of two primes: 4 =
2+2, 6 = 3+3, 8 = 5+3, 10 = 5+5, 12 = 7+5,. . . . In this case, however, no
proof suggested itself, and the statement in elementary arithmetic known as

9
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10 2. The Incompleteness Theorem: An Overview

Goldbach’s conjecture, “Every even number greater than 2 is the sum of two
primes,” has not yet been either proved or disproved. Another conjecture
about primes that has not yet been settled is the twin prime conjecture,
according to which there are infinitely many primes p such that p + 2 is
also a prime.

Let us take a closer look at a particular class of arithmetical prob-
lems. These problems are most conveniently described in terms of the
integers, which besides the natural numbers also encompass the nega-
tive numbers −1, −2, −3,. . . . A Diophantine equation (named after the
third century Greek mathematician Diophantus) is an equation of the form
D(x1, . . ., xn) = 0, where D(x1, . . ., xn) is a polynomial with integer coef-
ficients. What this means is that D(x1, . . ., xn) is an expression built up
from the unknowns x1, . . ., xn using integers, multiplication, addition, and
subtraction. A solution of the equation is an assignment of integer val-
ues to x1, . . ., xn such that the expression has the value 0. Some examples
will make this clearer. The following (where we write x2 for x × x, y4 for
y × y × y × y, 5y for 5 × y, and so on) are Diophantine equations:

x + 8 = 5y

x2 = 2y2

x2 + y2 = z2

x4 + y4 = z4

y2 = 2x4 − 1

x18 − y13 = 1.

The right-hand side of these equations is not 0, but we can easily rewrite
the equations so as to get an equation in the form D(x1, . . ., xn) = 0. The
first equation becomes x + 8 − 5y = 0, the second equation x2 − 2y2 = 0,
and so on.

The study of Diophantine equations—finding and describing their solu-
tions, or determining that they have no solutions—has been a specialized
field of mathematics for centuries. Diophantine problems range from the
very simple to the apparently hopelessly difficult, and mathematicians have
displayed extraordinary ingenuity in studying various classes of Diophan-
tine equations.
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The first of the equations presented as examples clearly has infinitely
many solutions: for any integer n we get a solution with y = n by set-
ting x = 5n − 8. The second equation has no other solution than x = 0,
y = 0. This was also proved in the Elements, where it is shown by an
argument traditionally attributed to the school of Pythagoras that 2 has
no rational square root. By the theorem of Pythagoras about the square of
the hypotenuse, this is the same as saying that the diagonal of a square is
incommensurable with the side of the square. (In other words, there is no
unit of length such that the side is measured by n units and the diagonal
by m units for some natural numbers n and m.) The third equation has
infinitely many solutions, which are called Pythagorean triplets (because
of the connection with the theorem of Pythagoras). The particular solu-
tion x = 3, y = 4, z = 5 was used in antiquity as a means of obtaining
right angles in practical surveying. The fourth equation has no solution in
nonzero integers, although proving this is far from trivial. Fermat’s Last
Theorem (really Fermat’s claim or conjecture), which was finally proved
in 1994 through the combined efforts in advanced mathematics of several
mathematicians, states that no equation of the form xn + yn = zn with
n greater than 2 has any solution in positive integers. The fifth equation
has only two positive solutions: x = 1, y = 1, and x = 13, y = 239. This
was proved (using some very complicated mathematical reasoning) by the
Norwegian mathematician Wilhelm Ljunggren in 1942. The last equation
has no solution where x and y are both nonzero. This is a consequence of
Catalan’s conjecture (1844), which states that 8, 9 is the only pair of two
consecutive natural numbers where each is a perfect power, that is, equal
to nk for some n and k greater than 1. Catalan’s conjecture was finally
proved in 2002 by Preda Mihailescu.

Problems in arithmetic do not always involve primes or Diophantine
equations. The Collatz conjecture (also known by other names, for example
the 3n+1 conjecture and Ulam’s problem) states that if we start with any
positive natural number n and compute n/2 if n is even, or 3n + 1 if n

is odd, and continue applying the same rule to the new number, we will
eventually reach 1. For example, beginning with 7, we get

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

No proof of the Collatz conjecture has been found in spite of intense
efforts, and the problem is generally considered extremely difficult.
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A Logical Distinction

The subject of arithmetic plays a large role in a discussion of the incom-
pleteness theorem, but fortunately we don’t need to tackle any difficult
arithmetical problems. Instead, we will be concerned with some relatively
simple logical aspects of such problems.

Goldbach’s conjecture states that every even number greater than 2 is
the sum of two primes. In an equivalent formulation, Goldbach’s conjecture
states that every natural number has the property of being smaller than
3 or odd or the sum of two primes. The point of this reformulation is
that there is an algorithm for deciding whether or not a given number
has this property. An algorithm is a purely mechanical, computational
procedure, one that when applied to a given number or finite sequence of
numbers always terminates, yielding some information about the numbers.
For example, in school we learn algorithms that given two numbers n and
k yield as output their sum n + k and their product n × k. We also have
algorithms for comparing two given numbers, and for dividing a natural
number by a nonzero natural number, yielding a quotient and remainder.
Combining these algorithms, we get an algorithm for deciding whether a
given number has the property of being smaller than 3 or odd or the sum of
two primes. For if n is the sum of two primes, these must both be smaller
than n, so to check whether an even number n greater than 2 is the sum
of two primes, we go through the numbers smaller than n, looking for two
primes that add up to n. Whether a number n is a prime is again something
that can be decided by a computation—just divide n by the numbers 2,
3,. . . ,n − 1, and check whether the remainder is 0 in any division.

A property of numbers that can be checked by applying an algorithm
is called a computable property. (This notion will be explored further in
Chapter 3.) As we have seen, Goldbach’s conjecture can be formulated
as a statement of the form “Every natural number has the property P ,”
where P is a computable property. This is a logically very significant
feature of Goldbach’s conjecture, and in the following, any statement of
this form will be called a Goldbach-like statement. (In logic, these are
known by the more imposing designation “Π-0-1-statements.”) Actually,
this description glosses over an important point: the property P must
not only be computable, but must also have a sufficiently simple form so
that an algorithm for checking whether a number has the property P can
be “read off” from the definition of P . It will be clear in the case of
all examples of Goldbach-like statements considered in the book that this
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condition is satisfied. (A formal definition of the Goldbach-like statements
in the language of arithmetic is given in the Appendix.)

We extend the class of Goldbach-like statements to statements of the
form “Every finite sequence k1, . . . , kn of natural numbers has the property
P ,” where P again is a computable property, so that there is an algorithm
which given any sequence of numbers k1, . . . , kn decides whether or not it
has property P .

If P is a computable property, then so is the property not-P . So every
statement of the form “There is no natural number k with property P ,”
where P is a computable property, can be equivalently formulated as a
Goldbach-like statement: “Every natural number has the property not-P .”

A counterexample to the statement “Every natural number has property
P” is a natural number which does not have property P . A consequence
of a statement being Goldbach-like is that if it is false, it can be disproved
very simply. To disprove it, we need only carry out a computation show-
ing that some number n is in fact a counterexample and conclude that
the statement is false. Of course, if the shortest such computation is ex-
tremely lengthy, “can be disproved” here only means “can in principle be
disproved.” In other words, we need to disregard all limitations of time,
space, and energy. But at any rate, we can observe that if the statement
is false, it is a logical consequence of the basic rules of arithmetic that it is
false, in the sense that a lengthy computation using those rules, if possible
to carry out, would show it to be false. In other words, there exists, in the
mathematical sense, a formal proof that the statement is false, one that
uses only the basic rules of arithmetic. Here we are regarding computations
as a special kind of proof, in the sense of a mathematical argument showing
some statement to be true. In logic, we study formal systems, axiomatic
theories in which mathematical statements can be proved or disproved,
and the incompleteness theorem is a theorem about those formal systems
within which arithmetical computations can be carried out. More will be
said about formal systems, beginning in Section 2.2.

It was noted above that a statement of the form “Every natural number
has property P ,” where P is a computable property, can always in principle
be disproved if it is false by exhibiting a counterexample and carrying out a
computation. A further significant observation is that a counterexample, if
it exists, can always be found by just systematically checking 0, 1, 2, 3,. . .
until we get to the smallest number that does not have the property P .
Thus, there is also a systematic procedure that will (in principle) eventually
find a disproof of a Goldbach-like statement if it is false. This is a special
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case of the general fact that for any formal system S, if a statement A is
provable in S, a systematic search will eventually find such a proof of A in
S. If A is not provable in S, a systematic search will in general just go on
forever without yielding any result.

So for any formal system S that incorporates a bit of arithmetic—the
basic rules needed to carry out computations—a Goldbach-like statement
is disprovable in S if false. On the other hand, we cannot make any similar
observations about how a Goldbach-like statement can be proved if it is
true. For every n, a computation can indeed verify that every number
0, 1, . . ., n has the property P , but this is not a verification that every
number has property P , no matter how large n is chosen. If a Goldbach-
like statement is true, it may well be that it can be proved to be true,
but we cannot say at the outset what mathematical methods such a proof
might require.

Every statement of the form “The Diophantine equation D(x1, . . ., xn) =
0 has no solution in nonnegative integers” is a Goldbach-like statement.
Here the relevant property of a sequence of numbers k1, . . ., kn is that of
not being a solution of the equation D(x1, . . ., xn) = 0, and checking this
property only involves carrying out a series of multiplications, additions,
and subtractions, to see whether the result is 0.

In contrast, the twin prime conjecture is not a Goldbach-like statement.
It can be expressed as “Every natural number has the property P ,” where
a natural number n has the property P if there is a prime p larger than n

such that p+2 is also a prime. But in this case we cannot read off from the
definition of the property any algorithm for checking whether a number has
this property or not. The procedure of systematically looking for a pair
of primes p and p + 2 greater than n will never terminate if there is no
such prime, and so it can never give the answer that n does not have the
property. Of course, if the twin prime conjecture is true, the procedure is
in fact an algorithm, one that will always show n to have the property, but
as long as we don’t know whether the conjecture is true or not, we don’t
know whether the procedure is an algorithm. Similar remarks apply to the
Collatz conjecture. It states that a particular sequence of computations
will always (that is, for every starting number) lead to 1, but there is no
obvious algorithm for deciding whether a particular starting number does
lead to 1. In the case of these two conjectures, we therefore have no logical
grounds for claiming that they must be disprovable if false.

The property of an arithmetical statement of being Goldbach-like will
play a role at several points in the discussion of incompleteness.
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2.2 The First Incompleteness Theorem

As noted in Section 2.1, although the problems of elementary arithmetic
are often easily stated, there is no limit on the difficulty or complexity of the
mathematics needed to solve those problems. Thus, the 129-page proof by
Andrew Wiles of Fermat’s theorem was in fact a proof of what is known as
the Taniyama-Shimura conjecture for elliptic curves in the semi-stable case,
which had earlier been shown by K. A. Ribet to imply Fermat’s theorem.
We don’t need to know what any of this means in order to appreciate the
basic point that Fermat’s theorem, although easily stated in elementary
mathematical language, was proved using a detour into very complicated
and advanced mathematics.

Since Fermat claimed to have a proof of his conjecture, one which un-
fortunately didn’t fit into the margin of the work by Diophantus that he
was reading, many have sought (and sometimes mistakenly believed that
they have found) an elementary proof of the theorem, in the sense of a
proof that does not make use of any mathematics unknown to Fermat and
his contemporaries. However, there is little doubt that Fermat was himself
mistaken in thinking that he had a proof of the theorem. It is an open
question to what extent the existing proof of Fermat’s last theorem can be
simplified, and it remains to be seen if any essentially simpler proof can
be extracted from that proof. (There is some reason to believe, on gen-
eral grounds, that an elementary proof of the theorem exists in a purely
theoretical sense, a proof that would not only fail to fit into the margin of
Fermat’s book, but would if printed out require thousands of pages.)

In view of the 300 years of mathematical development needed for math-
ematicians to finally solve the problem posed by Fermat’s claim, and the
fact that Goldbach’s and other arithmetical conjectures have not yet been
settled, one may wonder whether there is any guarantee that all arithmeti-
cal problems posed by mathematicians can be solved, given sufficient time
and effort. A conviction that this is the case was expressed by the Ger-
man mathematician David Hilbert in a famous address at the international
congress of mathematicians in Paris in the year 1900, where he presented
23 major problems facing mathematicians in the new century:

Take any definite unsolved problem, such as the question as
to the irrationality of the Euler-Mascheroni constant C, or the
existence of an infinite number of prime numbers of the form
2n + 1. However unapproachable these problems may seem to
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us, and however helpless we stand before them, we have, nev-
ertheless, the firm conviction that their solution must follow by
a finite number of purely logical processes. ... This conviction
of the solvability of every mathematical problem is a powerful
incentive to the worker. We hear within us the perpetual call:
There is the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no ignorabimus.

This is one expression of Hilbert’s optimistic “non ignorabimus.” Hilbert
was alluding to an old saying, “ignoramus et ignorabimus” (we do not know
and we shall never know), which the physiologist Emil du Bois-Reymond
had affirmed in 1872, speaking of our knowledge of human consciousness
and the physical world.

Gödel’s first incompleteness theorem by no means refutes this optimistic
view of Hilbert’s. What it does is establish that Hilbert’s optimism cannot
be justified by exhibiting any single formal system within which all mathe-
matical problems are solvable, even if we restrict ourselves to arithmetical
problems:

First incompleteness theorem (Gödel-Rosser). Any consistent for-
mal system S within which a certain amount of elementary arithmetic can
be carried out is incomplete with regard to statements of elementary arith-
metic: there are such statements which can neither be proved, nor disproved
in S.

To understand what this means, we need to start by considering the
notion of a formal system. This will be followed by some comments on
the consistency requirement and then on the condition of encompassing “a
certain amount of arithmetic.”

Formal Systems

A formal system is a system of axioms (expressed in some formally defined
language) and rules of reasoning (also called inference rules), used to derive
the theorems of the system. A theorem is any statement in the language of
the system obtainable by a series of applications of the rules of reasoning,
starting from the axioms. A proof in the system is a finite sequence of such
applications, leading to a theorem as its conclusion.
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The idea of an axiomatic system of this kind is an old one in mathemat-
ics and has in the past been familiar to many through a study of Euclidean
geometry. Euclid, in the Elements, introduces a number of definitions,
such as Definition 1, “A point is that which has no part.” He further intro-
duces postulates, which are basic principles of geometry (the most famous
of these being the parallel postulate), and common notions, which have the
character of general rules of reasoning. An example of a common notion
is “Things which equal the same thing also equal one another.” Using the
definitions, postulates, and common notions, Euclid derives a large number
of theorems (propositions).

Euclid’s definitions, postulates, and common notions do not amount
to a formal system. The language of the system is not formally speci-
fied, his proofs use geometrical assumptions not expressed in the postu-
lates, and they use other logical principles than those expressed in the
common notions. (Formal axiomatizations of geometry were given only
in the twentieth century.) But Euclid’s geometry was the basic model for
the axiomatic method for millennia, and the idea of organizing knowledge
through axioms, definitions, and rules of reasoning leading to theorems has
been vastly influential in philosophy, science, and other fields of thought.
However, it is only in mathematics that the axiomatic method has been
strikingly successful in the organization and analysis of knowledge.

In modern logic, many specific formal axiomatic systems are studied,
often of a kind called first-order theories. Here the word “theory” is logical
jargon and does not have any of the connotations often associated with
the word in everyday or scientific contexts—a theory in the sense used
in logic is just an axiomatic formal system. In this book, “theory” will
often be used as a synonym of “formal system.” “First-order” refers to a
particular collection of rules of reasoning used in proving theorems, namely
the rules for which Gödel proved his (confusingly named) completeness
theorem, which will be commented on in Section 2.3.

Two first-order theories prominent in logic to which the incompleteness
theorem applies are Peano Arithmetic, or PA, which is a formal theory of
elementary arithmetic, and Zermelo-Fraenkel set theory with the axiom of
choice, ZFC. (The designation ZF is used for the same theory without the
axiom of choice.) In this book, we will not study these theories (although
the axioms of PA are described in Section 7.2), but some general obser-
vations about them will be relevant to the argument of the book. At this
point we need only observe that PA is a formal system within which all of
the arithmetical reasoning that is usually described as elementary can be
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carried out, while ZFC is an extremely powerful system that suffices for
formally proving most of the theorems of present day mathematics.

Negation

The incompleteness theorem applies to many other kinds of formal sys-
tems than first-order theories, but we will assume that the language of
a formal system at least includes a negation operator, so that every sen-
tence A in the language has a negation not-A. (A sentence is here a full
sentence, expressing a statement which it makes sense to speak of as proved
or disproved.) This allows us to define what it means for S to be consistent
(there is no A such that both A and not-A are theorems) and for a sentence
A to be undecidable in S (neither A nor not-A is a theorem of S). A system
is complete (sometimes called “negation complete”) if no sentence in the
language of S is undecidable in S, and otherwise incomplete.

We need to introduce a bit of notation: if A is a sentence in the language
of S, we denote by S +A the formal system obtained by adding A as a new
axiom to the axioms of S (but not changing the rules of inference). If A

is provable in S, S + A has the same theorems as S (with A unnecessarily
taken as an axiom), while if A is not provable in S, S + A is a stronger
theory, which in particular proves A.

Here, we encounter a point of usage where logical terminology is some-
what at odds with ordinary usage. It may seem odd to say that A, which
is an axiom of S + A, is provable in S + A. In ordinary informal contexts,
it is often taken for granted that axioms are not provable, but are basic
assumptions that cannot be proved. In logic, however, “provable” is rela-
tive to some theory, and every axiom of a theory S is also provable in S.
The proof of an axiom A is a trivial one-liner, in which it is pointed out
that A is an axiom. In mathematics, we do not usually say that axioms are
provable, but we do say that statements follow “immediately” or “trivially”
from the axioms. For example, from the axiom “for every n, n + 0 = n” it
follows immediately that 0 + 0 = 0. In logic we make no such fine distinc-
tion between axioms and immediate consequences of axioms—they are all
provable.

We can now state a couple of basic connections between negation, prov-
ability, consistency, and undecidability. The first connection consists in the
fact that an inconsistent theory has no undecidable statements. This is be-
cause in an inconsistent theory, every statement in the language of the
theory is provable, by a rule of reasoning known in logic by the traditional
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name of ex falso quodlibet, “anything follows from a falsehood.” (It should
really be “anything follows from a contradiction.”)

The second connection is expressed in the following observations:

A is provable in S if and only if S + not-A is inconsistent, and
A is undecidable in S if and only if both S + A and S + not-A
are consistent.

These observations will be used frequently in the following. They de-
pend on the rule that not-not-A is logically equivalent to A, although the
incompleteness theorem can also be adapted to systems in which this rule
does not hold. To verify the observations, we use the fact that a proof of a
statement B in the theory T + A can also be regarded as an argument in
T leading from the assumption A to the conclusion B, and thus as a proof
of “if A then B” in T . Conversely, if “if A then B” is a theorem of T , B

is a theorem in the theory obtained by adding A as an axiom. Specializing
this to a logical contradiction B (a statement of the form ”C and not-C”)
yields the stated observations.

Formal Systems and the Theory of Computability

The incompleteness theorem applies not only to systems like PA and ZF,
which formulate part of our mathematical knowledge, but also to a wide
class of formal systems, those in which a “certain amount of arithmetic”
can be carried out, whether or not their axioms express any part of our
mathematical knowledge and even if the axioms are false or not associated
with any interpretation at all.

In everyday usage it would perhaps be odd to speak of false axioms, or
axioms not associated with any interpretation. In logic, however, when we
speak of formal systems in general, the word “axiom” must not be assumed
to be reserved for statements that are in some sense basic and irreducible
to simpler principles, or statements that we believe to be true or that are
in some other sense acceptable. Instead, the general concept of an axiom in
logic is strictly relative to a formal system, and any sentence A in a formal
language can be chosen as an axiom in a formal system.

This very general notion of a formal system is closely associated with
the theory of computable properties. The reason for this is that when we
try to characterize the general concept of a system of axioms and rules of
reasoning, we need to impose some condition to the effect that recognizing
an axiom or applying a rule must be a mechanical matter—we shouldn’t
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have to solve further mathematical problems in order to be able to decide
whether an application of a rule is correct or not, or whether a particular
statement is in fact an axiom. Otherwise, we would need to introduce a
second system of axioms and rules of reasoning for proving that something
is in fact a proof in the first system. So it is required of a formal system
that in order to verify that something is an axiom or an application of a rule
of reasoning, we do not need to use any further mathematical reasoning,
but need only apply mechanical checking of a kind that can be carried out
by a computer.

In popular formulations of Gödel’s theorem, a condition of this kind (as
far as the axioms are concerned) is sometimes included in the form of a
stipulation that the axioms of a formal system are finite in number. This
implies that an axiom can (“in principle”) be recognized as such by looking
through a finite table. But this condition is not in fact satisfied by many
of the formal systems studied in logic, such as PA and ZF. These systems
have an infinite number of axioms, but it is still a mechanical matter to
check whether or not a particular sentence is an axiom. For example,
PA incorporates the rule of reasoning known as “proof by mathematical
induction” by having an infinite number of axioms of the form “if 0 has
property P , and n + 1 has property P whenever n has property P , then
every number has property P .” We can recognize every instance of this
principle by a simple inspection, even though there are infinitely many
possible choices of P . Another example of a theory with infinitely many
axioms, where the axioms are not just instances of a general schema as in
PA, will be given in Section 5.4.

Thus, in a general characterization of formal systems, we need to make
use of the general notion of a mechanically computable property, for which
a theoretical foundation was given by the work of Turing and others in
the 1930s. The notion of a computable property was introduced earlier
in connection with Goldbach-like statements when applied to properties
of numbers, but it applies equally to properties of sentences and finite se-
quences of sentences in a formal language. The concept of computability,
and its connection with formal systems and with the incompleteness theo-
rem, will be treated in a more systematic fashion in Chapter 3.

Consistency

The first incompleteness theorem, in the form given (which incorporates
Rosser’s strengthening of Gödel’s result), only assumes that the system
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S, apart from incorporating a certain amount of arithmetic, is consistent.
This is a strong result because consistency is not a very strong condition to
impose on a theory. Consistent theories of arithmetic, like consistent liars,
can spin a partly false and completely misleading (mathematical) yarn.

Suppose we know that ZFC proves an arithmetical statement A. Can
we conclude that the problem of the truth or falsity of A is thereby solved?
If we have inspected the proof, we will regard the problem as solved if
we find this particular proof convincing, even if we have doubts about the
axioms of ZFC in general. If all we know is that a proof in ZFC exists, we
will accept the problem as solved if we have confidence in the theory as a
whole. But mere belief in the consistency of ZFC is in general insufficient to
justify accepting A as true on the basis of the knowledge that it is provable
in ZFC.

There is a class of statements that are guaranteed to be true if provable
in a consistent system S incorporating some basic arithmetic. Suppose A

is a Goldbach-like statement. We can then observe that if A is provable
in such a system S, it is in fact true. For if A is false, it is provable in
S that A is false, since this can be shown by a computation applied to a
counterexample, and so if S is consistent, it cannot also be provable in S

that A is true. Thus, for example, it is sufficient to know that Fermat’s
theorem is provable in ZFC and that ZFC is consistent to conclude that
the theorem is true. But in the case of a statement that is not Goldbach-
like, for example the twin prime conjecture, we cannot in general conclude
anything about the truth or falsity of the conjecture if all we know is that
it is provable, or disprovable, in some consistent theory incorporating basic
arithmetic.

The incompleteness theorem gives us concrete examples of consistent
theories that prove false theorems. This is most easily illustrated using
the second incompleteness theorem. Given that ZFC is consistent, ZFC
+ ”ZFC is inconsistent” is also consistent, since the consistency of ZFC is
not provable in ZFC itself, but this theory disproves the true Goldbach-like
statement “ZFC is consistent.” (That this statement is in fact Goldbach-
like will be seen in Section 2.6.)

In logic, one speaks of soundness properties of theories. When we are
talking about arithmetic, consistency is a minimal soundness property,
while the strongest soundness property of a theory is that every arith-
metical theorem of the theory is in fact true. Among the intermediate
soundness properties, a particularly prominent one is that of not disprov-
ing any true Goldbach-like statement. In the logical literature, this prop-
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erty is sometimes called “1-consistency,” sometimes “Σ-soundness” (Sigma
soundness), and in this book the latter term will sometimes be used. (The
reason for this terminology will emerge in the Appendix.) The property of
ω-consistency, which Gödel used in the formulation of his theorem, implies
Σ-soundness, but is a stronger property.

Note that since a false Goldbach-like statement is disprovable in any
theory encompassing basic arithmetic, if a Goldbach-like statement is un-
decidable in such a theory (which must be consistent, since it has unde-
cidable statements) it is also true. Thus, a proof of the undecidability of
Goldbach’s conjecture in PA would at the same time be a proof of the con-
jecture. There is nothing impossible about such a situation, since the proof
of undecidability could be carried out in a stronger theory such as ZFC.
But it is also conceivable that we could prove a hypothetical statement such
as “If Goldbach’s conjecture is true, then it is unprovable in ZFC” with-
out ever deciding Goldbach’s conjecture itself. There are Goldbach-like
statements A for which we can indeed prove such hypothetical statements
without being able to prove or disprove A. This also follows from the sec-
ond incompleteness theorem: even if we have no idea whether or not S is
consistent, we can prove the hypothetical statement “if S is consistent, the
consistency of S is unprovable in S.”

The “Certain Amount of Arithmetic”

The first incompleteness theorem applies to formal systems within which
a certain amount of elementary arithmetic can be carried out. We need to
be a bit more explicit about what this means.

Any system whose language includes the language of elementary arith-
metic, and whose theorems include some basic facts about the natural
numbers, is certainly one that satisfies the condition. (A sufficient set of
“basic facts” of arithmetic is specified in the Appendix.) But the incom-
pleteness theorem also applies to systems that do not make any explicit
statements about natural numbers, but instead refer to mathematical ob-
jects that can be used to represent the natural numbers. For example,
strings of symbols or certain finite sets can be used in such a representa-
tion. This notion of one kind of mathematical objects representing another
kind will be further commented on in connection with the second incom-
pleteness theorem. Here we need only note that nothing essential will be
lost if we think of the formal systems to which the first incompleteness
theorem applies as those systems that have an arithmetical component, in
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which we can use the language of arithmetic and establish some basic facts
about addition and multiplication of natural numbers. Depending on the
system, there may be some translation involved in using the language of
arithmetic within the system, but essentially we can think of the language
of the system as including the language of elementary arithmetic.

The essential point of the requirement of encompassing a “certain amount
of arithmetic” can be explained without formally specifying the requisite
amount. In the discussion of Goldbach-like statements, it was claimed that
if a property of natural numbers, such as being the sum of two primes,
can be checked by a mechanical computation, then if a number n has that
property, there is an elementary mathematical proof that n has the prop-
erty. The “certain amount of arithmetic” that a formal system S needs
to encompass for the proof of the first incompleteness theorem to apply to
S is precisely the arithmetic needed to substantiate this claim. In other
words, if the “certain amount of arithmetic” can be carried out within S,
S can prove all arithmetical statements that can established by means of
a more or less lengthy mechanical computation.

The incompleteness theorem is often misstated as applying to systems
that are “sufficiently complex.” This is incorrect because the condition
of encompassing a certain amount of elementary arithmetic does not turn
on complexity in either a formal or informal sense, but on what can be
expressed and what can be proved in a system. There are very simple
systems to which the incompleteness theorem applies, and very complex
ones to which it does not apply. The relation between complexity and
incompleteness will be considered further in Chapter 8.

The idea of complexity also appears in supposed applications of the
incompleteness theorem outside mathematics. The following is a quota-
tion from “Postmodernism and the future of traditional photography” by
Richard Garrod:

Early in the 20th century, the mathematician Gödel established
that in a system of sufficient complexity (and that level is
reached in the syntax of any toddler) a complete description
of that system is not possible. The complexity of the simplest
photograph—any photograph—is incalculable, and the creative
possibilities of the simplest photograph are in fact infinite—and
always will be.

These comments are typical of many references to Gödel’s theorem that
loosely associate it with incompleteness or complexity in some sense or
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other. It may well be that the complexity of the simplest photograph is
incalculable, but Gödel did not in fact establish that a “complete descrip-
tion of a system” is impossible if the system is “sufficiently complex.” In
the quotation, a photograph is apparently regarded as a “system,” and
whatever is intended by this, it seems clear that the author is not actually
suggesting that a photograph proves any arithmetical statements. Thus,
this is one of many references to Gödel’s theorem that do not make contact
with the actual content of the theorem, but rather invoke it as an analogy
or metaphor, or as a general source of inspiration.

2.3 Some Limitations of the First Incompleteness Theorem

“Unprovable Truths”

It is often said that Gödel demonstrated that there are truths that can-
not be proved. This is incorrect, for there is nothing in the incompleteness
theorem that tells us what might be meant by “cannot be proved” in an ab-
solute sense. “Unprovable,” in the context of the incompleteness theorem,
means unprovable in some particular formal system. For any statement
A unprovable in a particular formal system S, there are, trivially, other
formal systems in which A is provable. In particular, A is provable in the
theory S + A in which it is taken as an axiom.

Of course the trivial observation that A is provable in S + A is of no
interest if we’re wondering whether A can be proved in the sense of be-
ing shown to be true. The idea of Gödel’s theorem showing the existence
of “unprovable truths” derives whatever support it has from the fact that
there are formal systems in which we have included axioms and rules of
reasoning that are correct from a mathematical point of view, and further-
more suffice for the derivation of all of our ordinary arithmetical theorems.
In particular, ZFC is a very strong theory within which all of the arith-
metical theorems of present-day mathematics are thought to be provable.
So, since ZFC is incomplete with respect to arithmetical statements (given
that the theory is consistent), can we conclude that there are arithmeti-
cal truths that are unprovable in the sense that there is no way for us,
as human mathematicians, to mathematically establish the truth of the
statement?

This conclusion would perhaps follow if we didn’t know of any way of
extending the axioms of ZFC to a stronger set of axioms which can still,
with the same justification as the axioms of ZFC, be held to express valid
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principles of mathematical reasoning. But in fact there are such ways of
extending ZFC (see Sections 5.4 and 8.3).

There is therefore nothing in the incompleteness theorem to show that
there are true arithmetical statements that are unprovable in any abso-
lute sense. Still, if an arithmetical sentence is unprovable in ZFC, there are
good grounds for thinking that it cannot be proved using today’s “ordinary”
mathematical methods and axioms, such as one finds in mathematical text-
books, and also that it cannot be proved in a way that a large majority of
mathematicians would today regard as unproblematic and conclusive.

Complete Formal Systems

The incompleteness theorem does not imply that every consistent formal
system is incomplete. On the contrary, there are many complete and consis-
tent formal systems. A particularly interesting example from a mathemat-
ical point of view is the elementary theory of the real numbers. (Another
example, a theory known as Presburger arithmetic, is given in Chapter 7.)
The language of this theory, like the language of arithmetic, allows us to
speak about addition and multiplication of numbers, but now with ref-
erence to the real numbers rather than the natural numbers. The real
numbers encompass the integers, but also all rational numbers m/n where
m and n are integers, along with irrational numbers like the square root of
2 and the number π.

An example of a statement in this language is the following, taken from
the Canadian mathematical olympiad of 1984:

For any seven different real numbers, there are among them two
numbers x and y such that x − y divided by 1 + xy is greater
than 0 and smaller than the square root of three.

Another such statement is

An equation x3+bx2+cx+d = 0 has two different real solutions
if and only if 3c− b2 is smaller than 0 and 4c3 − b2c2 − 18bcd−
4b3d + 27d2 is smaller than or equal to 0.

The complete theory of the real numbers proves these and similar state-
ments. As should be clear from these examples, the theory is far from
trivial, and it has numerous applications in electrical engineering, compu-
tational geometry, optimization, and other fields.
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Since the natural numbers form a subset of the real numbers, it may
seem odd that the theory of the real numbers can be complete when the
theory of the natural numbers is incomplete. The incompleteness of the
theory of the natural numbers does not carry over to the theory of the real
numbers because even though every natural number is also a real number,
we cannot define the natural numbers as a subset of the real numbers
using only the language of the theory of the real numbers, and therefore
we cannot express arithmetical statements in the language of the theory.
Thus, we cannot, for example, in the theory of the real numbers express
the statement “There are natural numbers m, n, k greater than 0 such that
m3 + n3 = k3.” We can express the statement “There are real numbers
r, s, t greater than 0 such that r3 + s3 = t3” and also easily prove this
statement.

How would we ordinarily define the natural numbers as a subset of
the real numbers? The real numbers 0 and 1 can be identified with the
corresponding natural numbers, and using addition of real numbers we get
the natural numbers as the subset of the real numbers containing 0, 1, 1+1,
1+1+1, and so on. However, this “and so on” cannot be expressed in the
language of the theory of real numbers. Another way of formulating this
definition of the natural numbers is to say that the natural numbers are
the real numbers that belong to every set A of real numbers that contains
0 and is closed under the operation of adding 1; that is, for which x + 1 is
in A whenever x is in A. This definition uses a second-order language, in
which one can refer to sets of real numbers. The language of the elementary
theory of the real numbers, like the language of elementary arithmetic, only
allows us to refer to numbers, not to sets of numbers.

The Completeness Theorem

Gödel’s first major work in logic was his proof that first-order predicate
logic is complete. The statement of this theorem carries the unfortunate
suggestion that predicate logic is a complete formal system in the sense of
the incompleteness theorem, and comments such as the following are often
encountered:

First-order predicate logic is still not powerful enough to suc-
cumb to Gödel’s incompleteness theorems. In fact Gödel himself
proved it consistent and complete.
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Gödel is also responsible for proving (1930) that first-order
predicate logic is complete. The incompleteness proofs apply
only to formal systems strong enough to represent the truths of
arithmetic.

Such comments are based on a natural and widespread misunderstand-
ing caused by the fact that “complete” is used in logic in two different
senses. That predicate logic is complete does not mean that some formal
system is complete in the sense of Gödel’s incompleteness theorem, or in
other words, negation complete. Completeness in the context of the com-
pleteness theorem has a different meaning—that predicate logic is complete
means that the rules of reasoning used in predicate logic are sufficient to
derive every logical consequence of a set of axioms in a first-order lan-
guage. Thus, a less misleading description of Gödel’s early work would be
to say that he proved that many formal systems are negation incomplete
and also proved the adequacy for logical deduction of the inference rules of
first-order logic.

The completeness theorem, and its consequences for incompleteness in
the sense of Gödel’s incompleteness theorem, will be commented on further
in Chapter 7.

Undecidable Nonarithmetical Statements

A formal system S that contains other kinds of statements than arith-
metical statements can of course have many undecidable nonarithmetical
statements. What the incompleteness theorem shows is that S will be
incomplete in its arithmetical component. In other words, there is a state-
ment of arithmetic that cannot be decided in S. Furthermore, by putting
enough work into the proof of the incompleteness theorem we can explicitly
construct, given a specification of S, a particular Goldbach-like arithmeti-
cal statement that is undecidable in S.

Thus, the incompleteness theorem pinpoints a specific incompleteness
in any formal system that encompasses some basic arithmetic: it does not
decide every arithmetical statement. Unfortunately for the applicability
of the incompleteness theorem outside mathematics, this also means that
we learn nothing from the incompleteness theorem about the complete-
ness or incompleteness of formal systems with regard to nonarithmetical or
nonmathematical statements.

A weaker formulation of the first incompleteness theorem than that
given states only that for any formal system that encompasses a certain
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amount of arithmetic, there is a statement in the language of the system
which is undecidable in the system. This weaker formulation in a way
sounds more interesting than the stronger one, since it suggests that a
theory of astrophysics or ghosts that includes a bit of arithmetic cannot
tell the whole story about astrophysics or ghosts. But this suggestion is
unjustified. A consistent formal system may, for all we learn from Gödel’s
incompleteness theorem, be complete as regards statements about astro-
physics, about ghosts or angels, about the human soul, about the physical
universe, or about the course of the past or the future. The incompleteness
theorem only tells us that the system cannot be complete in its arithmetical
part.

Interesting-sounding, supposed applications of the incompleteness the-
orem outside mathematics, therefore, often ignore the essential condition
of encompassing some basic arithmetic, and formulate the theorem incor-
rectly as a theorem about formal systems in general. When they do take
this condition into account, authors may resort to such formulations as
“Our hypothesis is that the universe is at least as big as arithmetic, so that
it is affected by incompleteness” or “The philosophy should incorporate
arithmetic, or else it is already limited.” The first of these makes no ap-
parent sense, while the second amounts to the feeble criticism of a system
of philosophy that it cannot be a complete guide to life or the universe
since it fails to decide every arithmetical statement. Such invocations of
the incompleteness theorem will be further commented on in Chapter 4.

2.4 The First Incompleteness Theorem and Mathematical Truth

Truth and Undecidability

The words “sentence” and “statement” are used interchangeably in this
book, although “sentence” is sometimes used specifically to emphasize the
purely syntactic character of some of the concepts introduced. A purely
syntactic concept is one that makes no reference to the meaning or interpre-
tation of a language, or the truth or falsity of statements in the language,
but only refers to formal rules for constructing sentences or proofs. For
example, that a system S is incomplete means that there is some sentence
A in the language of S such that neither A nor not-A is provable in S.
This notion of incompleteness does not presuppose any notion of truth for
the sentences in the language of S, but only refers to sequences of symbols
formed according to certain rules (the sentences of the system) and se-
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quences of sentences connected by applications of certain formal rules (the
proofs in the system). Incompleteness is thus a purely syntactic concept.

The incompleteness theorem is often popularly formulated as saying
that for systems S to which the theorem applies, there is some true state-
ment in the language of S that is undecidable in S. If we do interpret the
sentences in the language of S as expressing true or false statements, this is
indeed a consequence of the incompleteness theorem, for if A is undecidable
in S, then so is not-A, and one of A and not-A is true. But the incomplete-
ness theorem applies even if we regard the sentences of S as mere sequences
of symbols, not as expressing statements for which it makes sense to ask if
they are true or not. For example, there are those who for philosophical
reasons would hold that sentences in the language of ZFC do not in general
express any true or false statements, but this does not prevent them from
recognizing that the incompleteness theorem applies to ZFC.

This said, it also needs to be emphasized that since the condition for
the incompleteness theorem to apply to a formal system is that it encom-
passes “a certain amount of arithmetic,” we can always, when applying the
incompleteness theorem to a system S, specify at least a subset of the sen-
tences of S that we can interpret as expressing statements of arithmetic,
and therefore as being true or false. (Although very different interpre-
tations of these sentences may well be intended by the proposers of the
system, as will be explained in the Appendix.) These are the sentences
in the arithmetical component of S. In particular, we can talk about the
truth or falsity of statements in the arithmetical component of the system
without presupposing that such talk extends to arbitrary sentences in the
language of the system. Thus, given that we can speak of the truth or
falsity of statements in the arithmetical component of any formal system
to which the incompleteness theorem applies, it follows, as noted, that the
incompleteness theorem does indeed establish that there is, for these sys-
tems, a true arithmetical statement in the language of the system that is
not provable in the system. Whether we can tell, for some particular unde-
cidable statement A, which of A and not-A is true is another matter, and
one that will be considered in Section 2.7 in connection with the discussion
of Gödel’s proof of the first incompleteness theorem.

Philosophical Misgivings about “True”

Of course such reflections on the truth or falsity of statements undecidable
in a formal system S presuppose that we can in fact sensibly talk about
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arithmetical statements as being true or false. Very often in discussions of
the incompleteness theorem it is regarded as unclear what might be meant
by saying that an arithmetical statement which is undecidable, say in PA,
is true. What, for example, are we to make of the reflection that the twin
prime conjecture may be true, but undecidable in PA? In saying that the
twin prime conjecture may be true, do we mean that it may be provable in
some other theory, and if so which one? Do we mean that we may be able
to somehow “perceive” the truth of the twin prime conjecture, without a
formal proof? Or are we invoking some metaphysical concept of truth, say
truth in the sense of correspondence with a mathematical reality?

The question is a natural one, since so many philosophical conundrums
are traditionally formulated in terms of truth, and a question such as “What
does it mean for an arithmetical statement to be true?” is almost auto-
matically regarded as taking us into the realm of philosophical argument
and speculation. Hence mathematicians, who usually avoid such argument
and speculation like the plague, tend to put scare quotes around “true”
or avoid the word altogether when discussing mathematics in a nonmath-
ematical context.

In a mathematical context, on the other hand, mathematicians easily
speak of truth: “If the generalized Riemann hypothesis is true...,” “There
are strong grounds for believing that Goldbach’s conjecture is true...,” “If
the twin prime conjecture is true, there are infinitely many counterexam-
ples. . . .” In such contexts, the assumption that an arithmetical statement
is true is not an assumption about what can be proved in any formal sys-
tem, or about what can be “seen to be true,” and nor is it an assumption
presupposing any dubious metaphysics. Rather, the assumption that Gold-
bach’s conjecture is true is exactly equivalent to the assumption that every
even number greater than 2 is the sum of two primes. Similarly, the as-
sumption that the twin prime conjecture is true means no more and no
less than the assumption that there are infinitely many primes p such that
p+2 is also a prime, and so on. In other words “the twin prime conjecture
is true” is simply another way of saying exactly what the twin prime con-
jecture says. It is a mathematical statement, not a statement about what
can be known or proved, or about any relation between language and a
mathematical reality.

Similarly, when we talk about arithmetical statements being true but
undecidable in PA, there is no need to assume that we are introducing any
problematic philosophical notions. That the twin prime conjecture may be
true although undecidable in PA simply means that it may be the case that



�

�

�

�

�

�

�

�

2.4. The First Incompleteness Theorem and Mathematical Truth 31

there are infinitely many primes p such that p + 2 is also a prime, even
though this is undecidable in PA. To say that there are true statements
of the form “the Diophantine equation D(x1, . . ., xn) = 0 has no solution”
that are undecidable in PA is to make a purely mathematical statement,
not to introduce any philosophically problematic ideas about mathematical
truth. (This particular purely mathematical statement is also a mathe-
matical theorem, as will be explained in Chapter 3 in connection with the
Matiyasevich-Robinson-Davis-Putnam theorem.)

Similar remarks apply to the observations made earlier regarding con-
sistent systems and their solutions of problems. It was emphasized that
the mere fact of a consistent system S proving, for example, that there
are infinitely many twin primes by no means implies that the twin prime
hypothesis is true. Here again it is often thought that such an observation
involves dubious metaphysical ideas. But no metaphysics is involved, only
ordinary mathematics. We know that there are consistent theories extend-
ing PA that prove false mathematical statements—we know this because
this fact is itself a mathematical theorem—and so we have no mathematical
basis for concluding that the twin prime conjecture is true, which is to say,
that there are infinitely many twin primes, from the two premises “PA is
consistent” and “PA proves the twin prime hypothesis.”

Note that this use of “true” extends to the axioms of a theory. It is
sometimes thought, when “true” is used in some philosophical sense, that
the axioms of a theory cannot be described as true, since they constitute the
starting point that determines what is meant by “true” in later discourse.
All such philosophical ideas are irrelevant to the mathematical use of the
word “true” explained above, which will be adhered to throughout the book
when speaking of mathematical statements as true or false. For example,
that the axiom “for every n, n + 0 = n” in PA is true means only that for
every natural number n, n + 0 = n. In this case, indeed, we know that
the axiom is true. Why and how we know this—whether by stipulation, by
inspection, by intuition—is irrelevant to the meaning of the word “true” in
this usage.

In the preceding comments, it has been emphasized that, for example,
to say that Goldbach’s conjecture is true is the same as saying that every
even number greater than 2 is the sum of two primes, as “true” is used
in this book. Thus, the use of “true” is in such cases just a convenience,
freeing us from the need to repeat the formulation of the conjecture. But
“true” is also used in the discussion in other ways, as when it is said that
every theorem of PA is true. Here, we cannot eliminate the word “true”
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and replace the statement “Every theorem of PA is true” with a statement
listing all of the infinitely many theorems of PA. It is still the case, however,
that “Every theorem of PA is true” is a mathematical statement, not a
statement about what can be proved or seen to be true, or a philosophical
statement about mathematical reality. Alfred Tarski showed in the 1930s
how to give a mathematical definition of truth on which a statement “A
is true,” for any given A, is mathematically equivalent to A itself. The
formal details will not be presented in this book, but the discussion will
rely on the possibility of giving such a mathematical definition of “true” in
the case of arithmetic.

“True in S”

A fairly common use of “true” in popular formulations of the incomplete-
ness theorem is illustrated by the following:

Gödel proved that any set of axioms at least as rich as the
axioms of arithmetic has statements which are true in that set
of axioms, but cannot be proved by using that set of axioms.

Again, the Columbia Encyclopedia states that

Kurt Gödel, in the 1930s, brought forth his incompleteness the-
orem, which demonstrates that an infinitude of propositions
that are underivable from the axioms of a system nevertheless
have the value of true within the system.

Clearly, “true in that set of axioms” or “true within the system” does
not mean “provable from that set of axioms” or “provable in the system”
here, but since there is no notion of “true in a set of axioms” in logic, the
question arises what it does mean. One possible interpretation, on which
the above formulations become intelligible but incorrect, will be considered
in Chapter 7, in connection with the completeness theorem for first-order
logic. However, it also appears that in many cases when such phrases as
“true in the system” and “true within the set of axioms” are used, what
the author means by this is that users of the system are somehow able
to convince themselves of the truth of the statement, even though it is
not formally derivable. In such a case it is a relevant observation that
it may or may not be the case, depending on the system, that we know
of any particular statement that it is true but unprovable in the system.
In particular, we may or may not have any idea whether the undecidable
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sentence exhibited in Gödel’s proof is true, as will be further commented
on in Section 2.7.

A possibly related misunderstanding of the incompleteness theorem is
found in formulations that speak of theorems as undecidable, as in “If the
system is consistent, then there is a true but unprovable theorem in it.”
Every theorem of a system S is provable in S, since this is what “theorem
of S” means. A similar odd usage is found in the claim that

Gödel’s incompleteness theorem states that in every mathemat-
ical system, there exists one axiom which can neither be proved
nor disproved.

As has already been emphasized, every axiom of a system is trivially
also provable in the system.

We should note that an unfortunate peripheral use of the phrase “un-
provable theorems” exists in logic. The American logician (and professor
of music) Harvey Friedman explains that

An unprovable theorem is a mathematical result that can not be
proved using the commonly accepted axioms for mathematics
(Zermelo-Fraenkel plus the axiom of choice), but can be proved
by using the higher infinities known as large cardinals. Large
cardinal axioms have been the main proposal for new axioms
originating with Gödel.

This unfortunate terminology does not of course imply that there are
theorems of S that are unprovable in S, for any system S. Large cardinal
axioms will be commented on in Chapter 8, which also gives a brief ex-
planation of the direction of Friedman’s work on the use of large cardinal
axioms.

2.5 The First Incompleteness Theorem and Hilbert’s
Non Ignorabimus

We know from the incompleteness theorem that (assuming consistency)
not even ZFC decides every arithmetical statement. Is it possible that, for
example, the twin prime conjecture is in fact undecidable in ZFC? It’s a
logical possibility, but there is nothing to support it. No arithmetical con-
jecture or problem that has occurred to mathematicians in a mathematical
context, that is, outside the special field of logic and the foundations or phi-
losophy of mathematics, has ever been proved to be undecidable in ZFC.
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So a mathematician who attacks a natural mathematical problem in the
optimistic spirit of Hilbert’s “non ignorabimus” is not obliged to feel at all
worried by the possibility of the problem being unsolvable within ZFC.

Note the formulation “no arithmetical conjecture or problem.” If we
consider problems in set theory rather than arithmetic, the very first prob-
lem on Hilbert’s list of 23 open mathematical problems, that of proving or
disproving a set-theoretical conjecture known as Cantor’s continuum hy-
pothesis, is known to be unsolvable in ZFC (given that ZFC is consistent).
That this problem is unsolvable in ZFC was proved using set-theoretical
methods introduced by Gödel in 1938 and Paul Cohen in 1963, not with
the help of the incompleteness theorem. Since ZFC is known to encompass
all of the methods of “ordinary” mathematics, what this means is that in
order to prove or disprove the continuum hypothesis, new mathematical
axioms or principles of reasoning must be introduced. Since it is not part
of ordinary mathematical activity to find and propose such axioms or prin-
ciples, it is understandable that mathematicians in general tend to regard
a problem that is known to be unsolvable in ZFC as no longer posing a
mathematical problem. Similarly, if the twin prime hypothesis were to be
proved to be undecidable in ZFC (which would be sensational in the ex-
treme), the problem of its truth or falsity would thereby take on a different
mathematical dimension.

Nevertheless, extensions of the axioms and rules of reasoning accepted
in mathematics have occurred and are continually being explored, even if
not as part of ordinary mathematical activity. So a Hilbert-style optimist
may well take the view that the impossibility of formulating any one for-
mal system within which every arithmetical problem is solvable does not
exclude the possibility of every arithmetical problem being solvable in one
or another of an indefinite series of further extensions of mathematics by
new axioms or rules of reasoning. This indeed was the view of Gödel,
who, as previously noted, proposed “large cardinal axioms” as a means of
extending present-day mathematics.

2.6 The Second Incompleteness Theorem

We begin with an informal statement of the theorem:

Second incompleteness theorem (Gödel). For any consistent formal
system S within which a certain amount of elementary arithmetic can be
carried out, the consistency of S cannot be proved in S itself.
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Let it first be noted that the “certain amount of arithmetic” is in this
case not the same “certain amount” as in the first incompleteness theorem.
This point will be commented on further in connection with the proof of
the second incompleteness theorem.

The formulation of the second incompleteness theorem presupposes that
the statement “S is consistent” can at least be expressed in the language
of S, since otherwise the observation that the consistency of S cannot be
proved in S would have no interesting content. (It is not an observation
of any interest that a theory of arithmetic cannot prove that horses are
four-legged.) It is perfectly possible to produce formal systems S whose
language refers directly to sentences and proofs in formally defined lan-
guages, including the language of S. The second incompleteness theorem,
however, only requires S to have an arithmetical component, as in the case
of the first completeness theorem, and therefore presupposes some way of
representing sentences and proofs as numbers and expressing statements
about sentences and proofs as arithmetical statements about the corre-
sponding numbers. This is known as the arithmetization of syntax and
was first carried out by Gödel in his proof of the incompleteness theorem.
A method of representing syntactical objects (such as sentences and proofs)
as numbers is called a Gödel numbering. The most tedious part of a formal
treatment of the incompleteness theorem consists in defining a Gödel num-
bering and in showing that “n is the Gödel number of a proof in S of the
sentence with Gödel number m” can be defined in the language of arith-
metic. It is required that the Gödel number of any sentence or sequence of
sentences can be mechanically computed, and that computable properties
of syntactic objects correspond to computable properties of Gödel numbers.

Details regarding Gödel numberings are just the kind of technicality
that will be avoided in this book, although an example of a Gödel number-
ing will be given in Chapter 3. Mostly we will merely take for granted that
a Gödel numbering can be introduced, so that the arithmetical component
of a system S contains statements that we can interpret as being about
sentences and proofs in formal systems, including the system S itself.

This notion of “can interpret” merits some further comments. Take
as an example ConS , a translation into the language of arithmetic of “S
is consistent.” That is, ConS is an arithmetical statement obtained by
introducing a Gödel numbering for the language of S, and expressing in
the language of arithmetic “it is not the case that for some sentence A in
the language of S, there is a proof in S both of A and of not-A.” ConS if
written out as a sentence in the language of elementary arithmetic would
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be enormous, and we wouldn’t be able to make sense of it if presented with
it. The arithmetical sentence ConS is not of any interest from an ordinary
arithmetical point of view, but only in virtue of a conventional association
between numbers and syntactic objects (such as sentences and sequences
of sentences) whereby we know it to be true as an arithmetical sentence if
and only if S is consistent. We refer to this sentence in reasoning that uses
ordinary mathematical language; we do not use the sentence in formulating
our reasoning. The same is true of other translations of statements about
formal systems into the language of arithmetic using a Gödel numbering.

A similar situation is found, for example, in the use of binary data to
represent sounds and pictures, say in computer games. Events in the game
take place as a result of mathematical transformations of an enormous col-
lection of bits (0 and 1) representing a certain situation in the game. These
transformations, although describable in purely mathematical terms, make
sense to us and are of interest only in virtue of a conventional association
between bit patterns and certain sounds and images, and it is only in terms
of sounds and images that we discuss these collections of bits.

An everyday example of an association between numbers and sequences
of symbols is that used in basic arithmetic. We use sequences of digits such
as “365” to denote numbers. The association between the sequence of digits
“365” and the number 365 is a conventional one, resulting from a certain
way of systematically interpreting sequences of symbols as numbers. We
carry out various operations on these sequences of symbols which are de-
scribable in purely syntactic terms. For example, we use the operation of
putting another “0” at the end of a string of digits. Although describ-
able purely in terms of symbol manipulation, the interest of this operation
lies in the fact that in virtue of our association of sequences of symbols
with numbers, it corresponds to multiplication of a number by 10. Thus,
we have in this case a “Gödel numbering in reverse,” where statements
about and operations on numbers can be expressed as statements about
and operations on sequences of symbols.

The idea of statements about some kind of formally definable object—
numbers, sets, sequences of symbols, bit patterns—being interpretable as
statements about another kind of object is thus one that had been around
for a long time before Gödel, and it is an idea used in many contexts
other than formal logic. But Gödel put this idea to good use in the arith-
metization of syntax, opening up a new approach in the study of formal
systems.
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Proving ConS

That a formal system S is inconsistent means that there are two proofs in
the system such that one proves A and the other proves not-A, for some
sentence A. Since the property of being the Gödel number of a proof in S

is required to be a computable one, it follows that “S is consistent” can be
formulated as a Goldbach-like statement: it is not the case that there are
numbers n and m such that n is the Gödel number of a proof in S of A and
m is the Gödel number of a proof in S of not-A, for the same statement
A. From this it follows that ConS , if false, can be shown to be false by a
computation, but if it is true it may or may not be provable using a given
set of mathematical methods and principles. The second incompleteness
theorem tells us that in fact ConS , if true, cannot be shown to be true
using only the methods and principles contained in the system S. But of
course ConS is provable in other formal systems, and it may or may not
be provable in a system that we find mathematically justifiable.

There is a common misconception concerning the second incompleteness
theorem, expressed for example in [Kadvany 89, p. 165], in the author’s
comments on supposed postmodernist implications of the incompleteness
theorem:

Gödel’s Second Theorem implies that the consistency of Prin-
cipia can be mathematically proven only by conjecturally as-
suming the consistency of Principia outright (which is what
mathematicians implicitly do in practice), or by reducing the
consistency of Principia to that of a stronger system, thereby
beginning an infinite regress.

The second incompleteness theorem does not imply that the consistency
of a system S can only be proved in a stronger system than S, if by a
stronger system we mean a system that proves everything S proves and
more besides. It only implies that the consistency of S cannot be proved
in S itself. It would be strange indeed if the consistency of S could only
be proved in a stronger system, since to say that S is consistent is only
to say that S does not prove any contradiction—it may prove lots of false
statements and yet be consistent. So a proof that S is consistent is not
a proof that S is generally reliable as a source of arithmetical theorems,
and there is no reason why a consistency proof for S has to presuppose the
methods of reasoning of S itself. Thus, for example, the consistency of PA
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was proved by Gerhard Gentzen (1936) in a theory that extends PA in one
respect and severely restricts it in other respects.

What is true is that a consistency proof for a consistent theory S can
only be given in a theory S′ which extends S with respect to the Goldbach-
like statements provable in S. If S′ proves the consistency of S, ConS

is a Goldbach-like theorem of S′ that is not provable in S, while every
Goldbach-like theorem of S is also provable in S′. (This is so because it is
provable in S′ that every Goldbach-like theorem of a consistent theory is
true.)

The idea that the second incompleteness theorem leads to an infinite
regress if we seek to prove the consistency of theories is often expressed.
What is odd about this idea is that it has been well understood since
antiquity that we cannot keep justifying our axioms and principles on the
basis of other axioms and principles, on pain of infinite regress. Say we
carry out a consistency proof for PA in a theory S. Why do we accept this
proof? If we say that we need a consistency proof for S in order to accept
the proof in S of the consistency of PA, then indeed we are on the way
to an infinite regress. But we don’t need Gödel to tell us that we cannot
accept a proof in one formal system only on the basis of a proof in another
formal system. At some point, we can only justify our axioms, and thereby
our proofs, by informal means, whatever these may be—appeals to their
intuitively clear and convincing character, to their usefulness or success in
practice, to tradition, or to whatever else we may come up with in the way
of justification.

Suppose the consistency of PA were in fact provable in PA itself. Would
such a proof have any value as a proof that PA is in fact consistent? Not
necessarily, for why should we accept this particular proof in PA? After
all, if the consistency of PA is in doubt, the validity of a consistency proof
given in PA is equally in doubt—at least as long as we haven’t seen the
proof. For there is a loophole: we might consider a consistency proof for PA
carried out in PA to be conclusive because it only uses a small part of PA,
one that we have no doubt is consistent even if we can muster doubts about
the consistency of PA as a whole. This indeed was the general approach of
David Hilbert.

The Second Incompleteness Theorem and Hilbert’s Program

The second incompleteness theorem had profound consequences for the
ideas concerning the foundations of mathematics put forward by David
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Hilbert, who had the goal of proving the consistency of mathematics by
finitistic reasoning. What he wanted to do was to formulate formal systems
within which all of ordinary mathematics could be carried out, including
the mathematics of infinite sets, and to prove the consistency of these
systems using only the most basic and concrete mathematical reasoning.
In this sense, Hilbert intended his consistency proof to be conclusive: the
consistency of, say, ZFC is proved using only reasoning of a kind that we
cannot do without in science or mathematics.

Although Hilbert did not formally specify what methods were allowed
in finitistic reasoning, it seems clear that the methods Hilbert had in mind
can be formalized in systems of arithmetic such as PA. And if PA cannot
prove its own consistency, it follows that not even the consistency of elemen-
tary arithmetic can be proved using finitistic reasoning, so that Hilbert’s
program cannot be carried out (and that the finitistic consistency proof
for arithmetic that Hilbert thought at the time had already been achieved,
by his student and collaborator Wilhelm Ackermann, must be incorrect, as
indeed it turned out to be).

It is often said that the incompleteness theorem demolished Hilbert’s
program, but this was not the view of Gödel himself. Rather, it showed
that the means by which acceptable consistency proofs could be carried
out had to be extended. Gödel’s own “Dialectica interpretation,” which
he developed in the early 1940s and which was published in the jour-
nal Dialectica in 1958, gave one way of extending the notion of finististic
proof.

Hilbert’s program was based on a particular set of ideas about the mean-
ing and contents of mathematics and what is meant by a justification of
mathematics. If we do not share Hilbert’s general ideas, a consistency proof
is by itself quite insufficient to justify a mathematical theory, since, for ex-
ample, provability in a consistent theory of the twin prime conjecture is no
guarantee that there are infinitely many twin primes. The nonmathemat-
ical conclusions drawn from the second incompleteness theorems in recent
decades are rarely explicitly based on Hilbert’s views, but the skepticism
they tend to express is clearly influenced by similar ideas. Such conclusions
will be commented on at some length in Chapter 5.

2.7 Proving the Incompleteness Theorem

It is sometimes thought that the first incompleteness theorem is not a
mathematical theorem in the ordinary sense. For example:
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The theorem is written in a formal mathematical system, but
can only be proved using nonformal mathematical reasoning.
There is no way to formalize the proof; it can only be stated in
a natural language like English.

Another difficulty is whether Gödel’s proof is actually a proof.
To prove incompleteness, we have to interpret the formula and
have to understand that what it says is true. That is, the
result is not achieved by formal reasoning, but by some meta-
reasoning done from outside the system. Hence it is not a “for-
mal” proof. It takes insight to see the truth of the formula.

This idea that Gödel’s theorem does not have an ordinary mathematical
proof seems to be based on a specific misunderstanding of Gödel’s original
proof of the first incompleteness theorem: the mistaken belief that Gödel’s
proof, which shows a certain arithmetical statement G depending on S to
be unprovable in S if S is consistent, also shows G to be true. This would
indeed make Gödel’s proof a remarkable one, but in fact the proof does not
show anything of the kind. All that Gödel’s proof shows is the implication
“if S is consistent, G is true.” If we can prove that S is consistent, which
we can sometimes do, we can also prove that G is true. If we have no idea
whether or not S is consistent, Gödel’s proof still goes through, but we
have no idea whether or not G is true. In either case, the question of the
truth or falsity of G cannot be decided on the basis only of Gödel’s proof.

In fact there is nothing any more informal or intuitive about the proof
of Gödel’s theorem than there is about mathematical proofs in general.
The incompleteness theorem has formal proofs in fairly weak mathematical
theories—PA is more than sufficient. Thus, applied to PA and stronger
theories, Gödel’s proof does not establish the truth of any mathematical
statement which is not provable in the theory itself.

Gödel’s Proof

Gödel’s original proof of the incompleteness theorem was not formulated
as a theorem about formal systems in general, for the reason that the
general theory of computability, and therewith the general concept of a
formal system, had yet to be formulated in 1930. Instead, Gödel proved
the theorem for a particular formal system which he called P. He listed
the properties of P used in the proof, and noted that these properties were
shared by a wide class of formal systems. In Part II of the paper, which
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never appeared, he intended to formulate a general version of the theorem.
During the 1930s it became clear, with the introduction of the general
concept of computability, that essentially the same proof did indeed apply
to all formal systems satifying the conditions listed by Gödel, and also that
those conditions were satisfied by all formal systems in which a certain
modest amount of arithmetic can be carried out.

Gödel’s proof of the incompleteness theorem introduced a technique
that has since been used extensively in logic, that of defining provable
fixpoints for various properties of arithmetical sentences. This technique
presupposes the arithmetization of syntax. Suppose we have defined in
arithmetic some property P of the Gödel numbers of sentences in the lan-
guage of the system S. For example, P could be the property of being
the Gödel number of a Goldbach-like sentence in the language of S, or the
property of being the Gödel number of an axiom of S, or the property of
being the Gödel number of a theorem of S. We need to assume that the
property P is itself definable in the language of arithmetic, as is the case
with the properties mentioned. By a provable fixpoint for the property P

is meant an arithmetical sentence A such that S, or a weaker system than
S, proves

A if and only if m has the property P

for a particular number m, and this number m is in fact the Gödel number
of A itself. Thus, it is provable in S that A holds if and only if its Gödel
number has the property P .

That there is a provable fixpoint for every property P definable in the
language of arithmetic is far from obvious. Gödel established the existence
of such fixpoints by translating a statement that “says of itself that it has
property P” into arithmetic. For this, he used a construction which in
ordinary (or not so ordinary) language can be formulated as

The result of substituting the quotation of “The result of sub-
stituting the quotation of x for ‘x’ in x has property P .” for
‘x’ in “The result of substituting the quotation of x for ‘x’ in x

has property P .” has property P .

This oddly worded sentence says that the result of carrying out a certain
specific substitution operation has property P . If we carry out the opera-
tion specified, we find that it results in precisely the sentence itself. The
sentence therefore “says of itself that it has property P ,” in the sense that
it says that a sentence satisfying a certain description has property P , and
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the sentence itself is the one and only sentence satisfying that description.
By showing that the substitution operation can be defined in arithmetical
terms as an operation on Gödel numbers, Gödel obtained a version A in
the language of arithmetic of the statement above, provably equivalent in
PA to “m has property P ,” where m is the Gödel number of A.

Other ways of formulating self-referential sentences using syntactic op-
erations have also been formulated later. For example, the American logi-
cian and philosopher W. V. O. Quine came up with a method known as
“quining”:

“yields a sentence with property P when appended to its own
quotation.” yields a sentence with property P when appended
to its own quotation.

The general fixpoint construction is widely used in logic to prove various
results. Gödel used it to prove his first incompleteness theorem, by applying
it to the property of not being a theorem of S. By a Gödel sentence for S

is meant a sentence G obtained through the general fixpoint construction,
such that S proves

G if and only if n is not the Gödel number of a theorem of S,

where n is the Gödel number of G itself.
Let us first observe that G can be formulated as a Goldbach-like state-

ment. It is equivalent to the statement that no number p is the Gödel
number of a proof of G in S, and the property of being such a number p is
a computable one, given the general requirements on formal systems and
Gödel numberings.

The reasoning in Gödel’s proof is now as follows. First, if G is in fact a
theorem of S, then it is provable in S that G is a theorem of S (that is, that
n is the Gödel number of a theorem of S). The reason for this is that being
a theorem of S is a property that can be verified by exhibiting a proof in
S, and since being a proof in S is required to be a computable property of
sequences of sentences, the verification can be carried out within S. So if
G is a theorem of S, this is provable in S, but since G is a provable fixpoint
of the property of not being a theorem of S, the negation of G is then also
provable in S, so S is inconsistent.

Thus, if S is consistent, G is not provable in S. Can we also conclude
that G is not disprovable in S, on the assumption that S is consistent? No,
for by the second incompleteness theorem, a consistent theory S may prove
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its own inconsistency, and thereby prove that every statement is provable
in S (and in particular, prove G false, since G is equivalent to the statement
that G is not provable in S). But we can observe that if S is consistent,
G is true (because not provable in S), and since G is also a Goldbach-like
sentence, it follows that not-G is not provable in S provided we assume that
S is Σ-sound, that is, does not disprove any true Goldbach-like sentences.
This yields a result that is a bit stronger than Gödel’s original version of
the first incompleteness theorem, since Gödel’s original assumption that S

is ω-consistent implies, but is stronger than, the assumption that S does
not disprove any true Goldbach-like sentences.

Rosser Sentences

Rosser, in order to strengthen the formulation of the incompleteness theo-
rem, introduced a Rosser sentence R, which is constructed as a fixpoint of
a more complicated property than that of not being provable in S. Specif-
ically, PA proves

R if and only if for every n, if n is the Gödel number of a proof
of R, then there is an m < n such that m is the Gödel number
of a proof of not-R.

It is left to the interested reader to verify that R is also a Goldbach-like
statement, and furthermore is undecidable in S if S is consistent. Nothing
essential will be lost by just taking this fact on faith in the following.

Tarski’s Theorem

The fixpoint construction can be used to show that there is no way of defin-
ing in the language of arithmetic the property of being the Gödel number
of a true arithmetical sentence. For if this property could be defined in
arithmetic, a fixpoint A for the property of not being the Gödel number
of a true arithmetical sentence would have the property that A is a true
arithmetical sentence if and only if its Gödel number is not the Gödel num-
ber of a true arithmetical sentence. In other words, a form of the ancient
paradox of the Liar would be a consequence: we would have constructed
an arithmetical statement A that is true if and only if it is not true. The
result that the property of being a true arithmetical sentence cannot be de-
fined in the language of arithmetic is usually called Tarski’s theorem, but
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in fact Gödel obtained this result as a step along the way in discovering
the incompleteness theorem.

Although the property of being a true arithmetical sentence thus can-
not be defined in arithmetic, the property of being a true Goldbach-like
sentence can be so defined, and similarly for other restricted categories
of arithmetical sentence. Thus, for example, we can define an arithmetical
sentence A that is true if and only if it is not a true Goldbach-like sentence.
This does not result in any paradox, since A is in fact not a Goldbach-like
sentence at all, and is therefore true.

Gödel himself observed that his proof of the incompleteness theorem is
related to the paradox of the Liar in the following sense. The Liar sentence
is a sentence L that “says of itself that it is not true.” Thus, given our
ordinary use of “true” it seems to follow that L is true if and only if it is
not true, a logical contradiction. Gödel’s proof uses a corresponding arith-
metical sentence in which “true” is replaced by “provable in S.” Whereas
the paradox of the Liar has given rise to endless debates over the meaning
of “true” and the question what is required for a sentence to express a
meaningful assertion, the Gödel sentence is an arithmetical sentence, one
that is as unproblematically meaningful as other arithmetical sentences of
a similar logical form (Goldbach-like statements).

Gödel’s original proof is by no means the only proof of the first incom-
pleteness theorem, and some other proofs will be briefly commented on at
a later point. But first some remarks about self-reference, which the reader
may well prefer to skip.

Self-Reference

Gödel’s proof of the first incompleteness theorem, and Rosser’s strength-
ened version, both make essential use of the fixpoint construction. It is
sometimes claimed that it is misleading to say that sentences obtained
through the fixpoint construction are “self-referential,” since (it is held) all
that can be said is that the equivalences

A if and only if m has the property P

are provable for these sentences A, where m is the Gödel number of A

itself. In other words, sentences like G and R are just fixpoints for certain
properties, they are not “self-referential.”

This is not correct, however. Gödel’s proof does indeed only use the
fact that the Gödel sentence G is a fixpoint for the property of not being
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provable in S. But the sentences constructed in the proof that every arith-
metical property P has a provable fixpoint are self-referential in a stronger
sense: they are sentences A of the form

There is an m such that m has property P and property Q

where it is provable in PA that the only number that has property P is the
Gödel number of the sentence A itself. It is in this sense that the sentence
A “says of itself that it has property Q.” There are provable fixpoints
other than Gödel sentences for the property of not being provable in S,
for example (by the second incompleteness theorem) the sentence ConS

formalizing “S is consistent.” Since it is provable in S that ConS is true
if and only if it is not provable in S, ConS is in fact a fixpoint for the
property of not being provable in S. But ConS is not in any apparent
sense self-referential, and nobody would want to say that ConS “says of
itself that it not provable in S.”

This characterization of self-referential arithmetical statements doesn’t
tell the whole story. Let us consider a couple of varieties of ordinary self-
reference, in the sense of speakers referring to themselves, rather than sen-
tences referring to themselves. Suppose John says “John loves you.” This
may or may not be a case of self-reference, depending on the speaker’s in-
tention. He may be referring to himself in the third person the way George
Costanza does in Seinfeld, when observing that “George is getting angry,”
or he may be referring to another person named John. On the other hand,
if John says “Your husband loves you,” and is addressing his wife, his state-
ment is self-referential in a sense that is independent of his intentions. Even
if he is an amnesiac and makes the statement on the basis of what he has
learned about his wife’s husband, it is still self-referential in the sense that
John is the one and only husband of the person addressed, and therefore
the statement is true if and only if John loves his wife.

In the case of self-referential statements in the language of arithmetic,
there is of course no question of the sentence itself intending anything, but
we can locate two similar aspects of self-reference. The use of substitution
operations or something similar corresponds to the second example of self-
reference above, while the first example corresponds to the conventional
choice of Gödel numbering. Suppose we formulate a statement A

0 has property Q

and then introduce a Gödel numbering in which the Gödel number of A

is 0. There is no problem about introducing such a Gödel numbering, since
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a Gödel numbering is purely a matter of convention, as long as computable
syntactic properties correspond to computable properties of Gödel num-
bers. The statement A is then, given this Gödel numbering, trivially a
provable fixpoint for the property Q. Indeed, in the sense explained, A

does “say of itself that it has the property Q.” It has the form “there is
an m such that m has property P and property Q,” where the Gödel num-
ber of A itself is the only number with property P (namely that of being
identical with 0).

Something seems to be missing in this example of self-reference. Why
does this approach not yield a painless version of Gödel’s proof? The rea-
son is that we first choose the property Q and then the Gödel numbering,
depending on Q. We can’t apply this construction to obtain a provable
fixpoint for the property of not being a theorem of A, since the latter prop-
erty itself depends on a choice of Gödel numbering. The trivial construction
does yield a statement which “says of itself that it has the property Q,” but
the property Q is in this case just a random and pointless property of the
Gödel number of the sentence. A statement that is self-referential in the
sense that G and R are self-referential not only has the form “There is an
m such that m has property P and property Q,” where the Gödel number
of the statement itself is the only number with property P . In addition, P

and Q are translations into arithmetic, using the same Gödel numbering,
of syntactical properties of statements.

Proofs of the First Incompleteness Theorem Using the
Theory of Computability

Gödel’s proof of the first incompleteness theorem and Rosser’s strength-
ened version have given many the impression that the theorem can only
be proved by constructing self-referential statements in the language of
S, or even that only strange self-referential statements are known to be
undecidable in elementary arithmetic.

To counteract such impressions, we need only introduce a different kind
of proof of the first incompleteness theorem. One argument is as follows.
By the Matiyasevich-Robinson-Davis-Putnam theorem, which has been re-
ferred to a couple of times already, there is no algorithm that given any Dio-
phantine equation D(x1, . . . , xn) = 0 will decide whether or not the equa-
tion has a solution. But then there can be no theory that correctly decides
every statement of the form “the Diophantine equation D(x1, . . . , xn) = 0
has at least one solution.” For given such a theory S, we could decide



�

�

�

�

�

�

�

�

2.7. Proving the Incompleteness Theorem 47

whether or not a given equation D(x1, . . . , xn) = 0 has a solution by sys-
tematically searching for a proof in S of either the statement “the equation
D(x1, . . . , xn) = 0 has at least one solution” or its negation. Thus, unless
S proves some false sentence of the form “the equation D(x1, . . . , xn) = 0
has at least one solution,” there must be sentences of this form that are
undecidable in S.

Note two features of this argument. First, like Gödel’s original proof,
it only shows incompleteness on the assumption that S does not incor-
rectly disprove any true Goldbach-like statements. But second, it does
not, as it stands, exhibit any particular statement undecidable in S, unlike
Gödel’s proof. On the other hand, we don’t even need to introduce any
arithmetization of syntax in order to conclude the incompleteness of S by
this argument, since the arithmetical incompleteness of S is located among
ordinary arithmetical statements about Diophantine equations. By intro-
ducing arithmetization, the argument can be refined to exhibit a particular
undecidable sentence, as in Gödel’s original proof.

This proof of the first incompleteness theorem, along with the
Matiyasevich-Robinson-Davis-Putnam theorem, will be explained in greater
detail in Chapter 3, which is devoted to the theory of computability and
its connections with the incompleteness theorem. A third approach to
proving the first incompleteness theorem, using the concept of Kolmogorov
complexity, will be presented in Chapter 8.

A reader who is disinclined to digest the reasoning in these other proofs
of the first incompleteness theorem should just keep in mind the essential
point that incompleteness is not restricted to arithmetical translations of
strange self-referential statements. Instead, we know that systems S to
which Gödel’s theorem applies have undecidable statements of the form
“the Diophantine equation D(x1, . . . , xn) = 0 has no solution.” What we
do not know is whether any statements of this form of interest to mathe-
maticians are undecidable in PA or ZFC.

Weaker Variants of the First Incompleteness Theorem

There are still other proofs of the incompleteness of PA and of the arith-
metical component of other theories. Thus, [Putnam 00] presents one such
proof, due to Saul Kripke. Unlike the proofs already described, this proof
of Kripke’s neither makes use of self-referential statements nor draws on
the theory of computability. (Instead it makes use of the existence of non-
standard models of PA, explained in Section 7.3.) However, the conclusion
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proved is weaker than that in Gödel’s theorem with regard to the logical
complexity of the statement shown to be undecidable. It is not a Goldbach-
like statement, and in particular the argument does not establish the truth
of the second incompleteness theorem.

Proving the Second Incompleteness Theorem

Gödel’s proof of the second incompleteness theorem in his 1931 paper con-
sisted mostly of handwaving—in other words, sketching an argument with-
out carrying it out in detail. The argument was simple: the proof of the
first incompleteness theorem established that if the system P is consistent,
G is not provable in P, and therefore true. If we examine this argument, we
see that it only uses mathematical reasoning of a kind that can be carried
out within P, and therefore it follows that the implication “if P is consistent
then G” is provable in P. But then, if P is consistent, it follows that “P is
consistent” is not provable in P, since G is not provable in P.

We can strengthen this conclusion: not only “if P is consistent then G”
is provable in P, but also “if G then P is consistent.” For G is equivalent in
P to “G is not a theorem of P,” and every theory in which some statement
is not provable is consistent, a fact which is also provable in P. Thus, G

and “P is consistent” are in fact equivalent in P.
As in the case of the first incompleteness theorem, it was clear from

Gödel’s presentation that the argument extended to a wide class of for-
mal systems incorporating “a certain amount of arithmetic,” although the
“certain amount” is not the same “certain amount” as in the first incom-
pleteness theorem. Gödel’s proof of the second incompleteness theorem
for a formal system S depends on the proof of “if S is consistent, G is
unprovable in S” being formalizable in S itself. A formal system needs to
incorporate a larger amount of arithmetic in order for the proof of the first
incompleteness theorem to be formalizable in the system than it needs for
the proof of the first incompleteness theorem to apply to the system. Thus,
we can specify formal systems such as Robinson Arithmetic, presented in
the Appendix, to which the first incompleteness theorem applies, but not
the second. Note that this does not mean that Robinson arithmetic proves
its own consistency, but only that we cannot use the second incomplete-
ness theorem, as formulated here, to show that it does not prove its own
consistency. (Formulations of arithmetical theories that do prove their own
consistency exist in the logical literature—these theories are in one way or
another very weak, for example, in not assuming that every natural number
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has a successor, but can nevertheless incorporate a great deal of nontrivial
arithmetical reasoning.)

Gödel’s argument was in fact quite convincing to his readers, and he
never got around to presenting his proof of the second incompleteness the-
orem in full formal detail. This was instead done in the 1939 two-volume
work Grundlagen der Mathematik (Foundations of mathematics) by David
Hilbert and Paul Bernays. Gödel’s original proof remains the most com-
mon and the most accessible proof of the second incompleteness theorem,
although other proofs exist for particular theories.

As in the case of the first incompleteness theorem, it is sometimes
thought that the proof of the second incompleteness theorem is not an ordi-
nary mathematical proof. Thus, Kadvany comments [Kadvany 89, p. 178]
that “The historical process shows that the Second Theorem is not a the-
orem in the ordinary sense.” This is not an idea based on a simple mis-
understanding of the theorem, as in the case of similar comments about
the first incompleteness theorem. Instead, what Kadvany has in mind is
the fact that the second incompleteness theorem requires us to decide on
a formalization of “S is consistent” in the language of arithmetic. When
we consider arbitrary formal systems this becomes a somewhat delicate
matter, and it only became clear around 1960, through the work of the
American philosopher and logician Solomon Feferman, how to formulate
the second incompleteness theorem in the most general case. However,
these subtleties do not affect the formulation of the theorem applied to PA
or ZFC or any other theory that we actually study in logic. In these cases,
there is essentially only one way of expressing “S is consistent” as an arith-
metical statement, namely the obvious and natural way. Kadvany remarks
in this context that “What is natural is a matter of historical choice made
against a background of mathematical tradition adapting to a radical new
set of ideas,” (p. 176) which is misleading. In the general case (arbitrary
theories S) there simply is no natural choice, and no historical choice has
been made. In the case of theories like PA or ZFC, the choice of arithmeti-
cal formulation of “S is consistent” is natural, given a particular choice of
Gödel numbering, in the same sense as the choice of an arithmetical for-
mulation of, for example, the fundamental theorem of arithmetic (“every
natural number has a unique decomposition as a product of primes”) is
natural, given a representation of finite sequences of numbers as numbers.
No difficult or arbitrary choices are involved, beyond the choice of a Gödel
numbering. Furthermore, although the choice of a Gödel numbering has
its arbitrary aspects, we can easily isolate the standard Gödel numberings,
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which yield equivalent Gödel sentences and equivalent formalizations of
“S is consistent” for these theories.

As these comments probably suggest to the reader, this particular issue
raised by Kadvany is somewhat technical, both logically and philosophi-
cally, and it will not be pursued in the remainder of this book. A reader
interested in the subject will find an extended treatment in [Franzén 04].

2.8 A “Postmodern Condition”?

Provability or decidability, in the context of the incompleteness theorem,
means provability or decidability in some formal system or another. There
is no concept in logic of a statement A being provable or disprovable or
undecidable in any absolute sense, but only of A being provable or disprov-
able or undecidable in a formal system S. Any statement A undecidable in
S will be decidable in other systems. In particular, if A is undecidable in a
consistent system S, A is provable in the consistent system S +A obtained
by adding A as a new axiom to S, and disprovable in the consistent system
S+ not-A obtained by adding the negation of A as an axiom. Of course
this does not tell us whether A is decidable in the more interesting sense
of being provable or disprovable by reasoning that mathematicians would
consider conclusive, or whether A is decidable in some particular theory of
interest such as PA or ZFC.

It is sometimes thought that the fact of some particular statement be-
ing undecidable in some particular formal system implies that mathematics
“branches off” into a version in which the statement is provable and one in
which it is disprovable. An analogy is often suggested with the logical inde-
pendence of the parallel postulate from the other axioms of Euclidean ge-
ometry, which led to axiomatizations of non-Euclidean geometries in which
the parallel axiom does not hold. This idea is taken up in combination
with a general view of Gödel’s theorem as congenial to postmodernism in
[Kadvany 89, p. 162]:

The simplest observation of how Gödel’s Theorems create a
postmodern condition begins with the First Incompleteness The-
orem. This theorem says, in effect, that a consistent axiomatic
system strong enough to prove some weak theorems from ele-
mentary number theory, requiring only the operations of addi-
tion and multiplication, but not either operation separately,
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will be incomplete: there will always be mathematical sen-
tences formulated in the syntax of the system under consid-
eration that are neither provable nor refutable in the system,
and these sentences are said to be undecidable with respect to
the system. Since an undecidable proposition and its nega-
tion are each separately consistent with the base system, one
can extend the old system to two mutually incompatible new
ones by adding on the undecidable sentence or its negation as
a new axiom. The classical example of this procedure is the
generation of non-Euclidean geometries by adding the negation
of the parallel postulate to the axioms of elementary geom-
etry without the parallel postulate. The new systems so con-
structed also have new undecidable sentences, different from the
originals, and the process of constructing new undecidable sen-
tences and then new systems incorporating them or their nega-
tions goes on ad infinitum, like a branching tree which never
ends.

Let us take a closer look at the suggested analogy. Axiomatic theories of
geometry obtained by replacing the parallel postulate of Euclidean geom-
etry with an incompatible axiom are, like Euclidean geometry itself, both
mathematically interesting and useful in applications. In particular, Eu-
clidean plane geometry is applicable to smaller parts of the Earth’s surface,
while the geometry of the Earth’s surface in the large is non-Euclidean. It
should be noted that a useful alternative to Euclidean geometry is not ob-
tained simply by replacing the parallel postulate with its negation, but by
introducing a more specific axiom incompatible with the parallel postulate.
In the case of elliptic geometry, the geometry of the surface of a sphere (and
thus approximately the geometry of the surface of the Earth), the parallel
postulate is replaced by the axiom that there is no line parallel to a given
line containing a point outside that line.

We can easily convince ourselves that the analogy with the parallel
postulate does not apply in every case of undecidability. For example, PA
has an axiom stating that for every n, n + 0 = n. This axiom is not provable
from the remaining axioms of PA, so we get a consistent theory by changing
the axiom to “it is not the case that for every n, n + 0 = n.” By Gödel’s
completeness theorem for first-order logic (explained in Chapter 7), the
resulting theory has a model, that is, it is possible to specify a mathematical
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structure in which there are e such that e + 0 is not equal to e, but
which otherwise satisfies the axioms of PA. Unlike the case of non-Euclidean
geometry, such a mathematical structure is not of any particular interest,
either mathematically or from the point of view of applications. And of
course the existence of such structures—there are very many of them—in
no way affects the observation that n + 0 is equal to n for every natural
number n.

We can also create an infinite tree of consistent variants of PA by omit-
ting the axiom that n + 0 = n and adding 0 + 0 = 0 or its negation to
PA, then to each of the two resulting theories add either 1 + 0 = 1 or
its negation, and so on. Thus we have one theory postulating that 0 + 0
equals 0 and 1 + 0 does not equal 1, one theory postulating that 0 + 0 does
not equal 0 but 1 + 0 equals 1, and so on. No “postmodern condition”
is created by this, but only an infinite tree of very uninteresting theories.
(In Chapter 7 it is explained how we know that every theory in the tree is
consistent.)

Thus, if we think that the incompleteness theorem opens up a spectrum
of possible varieties of arithmetic, perhaps in the spirit of postmodernism,
this must be because of some decisive difference between the trivial exam-
ples given and the incompleteness exhibited by Gödel’s theorem. What
decisive difference might this be?

The infinite tree of theories described is uninteresting in part because
all statements n + 0 = n are true of the natural numbers, and there is
no apparent point in introducing theories that deny some or all of these
statements. The resulting theories have no interesting application and are
mathematically useless. Now consider the “branching” or “bifurcation”
of PA based on Gödel’s proof of the first incompleteness theorem. The
undecidable statement G produced in Gödel’s proof is equivalent in PA to
“PA is consistent,” and we do indeed get two consistent extensions of PA
by adding either “PA is consistent” or “PA is not consistent” as a new
axiom to PA. Similarly, for the resulting theory T , we get two consistent
extensions by adding either “T is consistent” or “T is inconsistent” as a new
axiom, and so on. But as in the trivial example, since all of the statements
“PA is consistent,” “T is consistent,” and so on are known to be true,
there is no obvious reason why we should take any interest in theories
obtained by adding “PA is inconsistent” or “T is inconsistent.” There is
only one branch in this infinite tree that is of any immediately apparent
interest, the sequence of theories PA, PA1, PA2,... obtained by adding
axioms “PA is consistent” to get PA1, “PA1 is consistent” to get PA2, and
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so on. The interest of this branch of the tree lies in the fact that it yields
an extension of PA by an infinite number of true statements not provable
in PA.

A comment is in order regarding a somewhat technical topic that will
be considered further in Chapter 7. A mathematical structure in which the
axioms of PA + not-“PA is consistent” are true is of a kind known as a
nonstandard model of arithmetic: it contains, in addition to the “standard”
natural number 0, 1, 2,... also “infinite elements,” which are not natural
numbers. Such structures do have mathematical interest, but this does not
imply that we need to introduce theories with false arithmetical axioms in
order to obtain such structures.

How do we know that all of the consistency statements generated in
the way described are true? It is sometimes thought that we must here
invoke some form of intuitive insight of a dubious nature and claim that
we can “see” that the theories are consistent. In fact, it is provable in
perfectly ordinary mathematics that these consistency statements are true,
as a consequence of PA being a sound theory, or in other words, a theory
all of whose axioms are true. Thus, there is no special “seeing” involved,
other than the kind of “seeing” the truth of arithmetical statements that
is involved in mathematical proofs of arithmetical statements in general.
Now, it is of course open to anybody to put this proof into question, and
take a skeptical view of the theorem that PA, PA1, and the other theories
are consistent. In this, the theorem is no different from other mathematical
theorems of a comparable degree of abstraction. For example, we might
take a skeptical view of Wiles’ proof of Fermat’s last theorem, and argue
that we don’t really know that the theorem is true on the basis of that
proof. But such skepticism, whether or not it has anything to recommend
it, is no more a matter of concern in connection with consistency proofs
than it is in other mathematical contexts.

Suppose we replace PA in the construction described with ZFC. It is
then no longer the case that the consistency of all the theories in the tree is
provable in perfectly ordinary mathematics. (The only known proofs of the
consistency of ZFC use set-theoretical axioms that are not part of ordinary
mathematics.) But we still don’t get any “branching” of arithmetic into
different directions. The theory obtained by adding “ZFC is inconsistent”
to ZFC is indeed consistent, given that ZFC is consistent, but it is of no
apparent mathematical interest and has no application.

We can look for other examples, where we simply don’t know whether
the undecidable statements that are introduced are true or not. Using the
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Matiyasevich-Robinson-Davis-Putnam theorem (explained in Chapter 3)
and results in set theory, we can in fact produce a set of statements of
the form “the Diophantine equation D(x1, . . . , xn) = 0 has no solution”
such that an infinite tree of the kind described can be constructed, starting
from PA, for which we just don’t know, for any of the statements involved,
whether it is true or not. Again, this does not produce any “postmodern
condition” in mathematics, since the theories obtained have no theoretical
interest and no application. We just have a bunch of statements of the form
indicated that we know to be unprovable in current mathematics, some of
which may possibly turn out to be of some interest, and may or may not
eventually be proved true or false.

In brief, the point argued is that the incompleteness theorem has not
led to any situation in which mathematics (and specifically arithmetic)
branches off into an infinity of incompatible directions, and there is no rea-
son why it should. It is not commonly thought that our thinking about
the place of humanity in the universe branches off into two different direc-
tions, one in which it is postulated that there is extra-terrestrial life within
a thousand light years of our planet and one that postulates that there is
not, and that these branches are further subdivided according to further
postulates (consistent with our current knowledge) that might be made.
The mere fact of incompleteness does not bring about any “branching off”
in mathematics either.

Kadvany, in the article quoted, comments not only on undecidable state-
ments resulting from the proof of the incompleteness theorem, but on state-
ments known to be undecidable in set theory on the basis of the work by
Gödel and Cohen and others. The continuum hypothesis has been men-
tioned earlier as a prime example of a statement that is not only known
to be undecidable in ZFC, but which is not decided by any set-theoretic
principle that any significant number of mathematicians regard as evident.
Although this has not led to any branching off of set theory in different
directions, comparable to the development of non-Euclidean geometries,
there is greater scope than in the case of arithmetic for an argument that
such a branching might take place in the future. However, this incom-
pleteness of set theory does not arise from the incompleteness phenomenon
revealed by Gödel’s theorem and will not be considered further in this book,
except for some incidental remarks in Chapter 8.

The ideas touched on here will be discussed further in Chapter 5, in
connection with the skeptical views often associated with the second in-
completeness theorem.
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2.9 Mind vs. Computer

An argument usually associated with the British philosopher J. R. Lucas
fastens onto the fact that we know that the Gödel sentence of (for example)
PA is true, since we know that the theory is consistent, and concludes that
the human mind surpasses any machine ([Lucas 61]):

However complicated a machine we construct, it will, if it is a
machine, correspond to a formal system, which in turn will be
liable to the Gödel procedure for finding a formula unprovable
in that system. This formula the machine will be unable to
produce as true, although a mind can see that it is true.

This argument is invalid because based on the mistaken idea that “Gödel’s
theorem states that in any consistent system which is strong enough to pro-
duce simple arithmetic there are formulas which cannot be proved in the
system, but which we can see to be true.” The theorem states no such
thing. As has been emphasized, in general we simply have no idea whether
or not the Gödel sentence of a system is true, even in those cases when it
is in fact true. What we know is that the Gödel sentence is true if and
only if the system is consistent, and this much is provable in the system
itself. When we know that the system is consistent, we also know that
its Gödel sentence is true, but in general we don’t know whether or not
a formal system is consistent. If the human mind did have the ability to
determine the consistency of any consistent formal system, this would cer-
tainly mean that the human mind surpasses any computer, but there is no
reason whatever to believe this to be the case.

Given that we cannot conclude from the incompleteness theorem that
the human mind surpasses any computer (or equivalently, any formal sys-
tem) as far as arithmetic is concerned, we might attempt to draw the weaker
conclusion that “no machine will be an adequate model of the mind” in
the sense that no machine, although it may perhaps surpass the human
mind in arithmetic, can ever be exactly equivalent to the human mind as
far as arithmetical ability is concerned. But this too fails to follow from the
incompleteness theorem. Let us assume (a large assumption) that there is
such a thing as “human arithmetical ability,” and go on to suppose that a
particular formal system S exactly embodies that ability. If we know S to
be consistent, we will indeed have a conflict with the incompleteness theo-
rem. But again what is missing is an argument for why we should know S

to be consistent. Lucas [Lucas 61] here introduces the irrelevant reflection:
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“The best we can say is that S is consistent if we are.” This is irrelevant
because even if we know ourselves to be consistent, there is no reason why
we should conclude from this that S is consistent, unless we already know
that S codifies human arithmetical ability—and why should we know this?
Thus, Gödel himself commented that nothing rules out the existence of a
formal system S that exactly codifies human arithmetical ability, although
we could not recognize the axioms of S as evidently true.

So let us weaken the conclusion further. What does follow from the in-
completeness theorem is that we cannot actually specify any formal system
S such that we know that S embodies those and only those arithmetical
truths that we can convince ourselves are true. For given any system S for
which we know that all its arithmetical theorems are true, we can produce
an arithmetical statement—an arithmetization of “S is consistent”—which
we also know to be true and which is not a theorem of S. Thus, we can-
not specify any one formal system which exhausts all of our arithmetical
knowledge.

This last argument, which was put forward by Gödel himself, seems
to point to the inexhaustibility of our mathematical knowledge, which is
one of the most striking consequences of the incompleteness theorem. It
may be held that this in itself is an indication that human mathematical
knowledge cannot be described in terms of mechanisms and computations.
This argument will be considered in Chapter 6.

2.10 Some Later Developments

As noted earlier, nothing in the proof of the incompleteness theorem tells
us whether the statements undecidable in PA or ZFC include such natural
mathematical statements as Goldbach’s conjecture. It would be of very
great interest if any of the classical problems of number theory could be
shown to be unsolvable in PA, but the methods and results described in
this chapter give no clue as to whether this is the case.

In recent decades, there has been considerable work seeking to establish,
as a consequence of the incompleteness theorem, the undecidability in PA or
in other theories of arithmetical statements which, although not expressing
conjectures that have occurred to mathematicians in nonlogical contexts,
are still closer to “ordinary mathematics” than Gödel statements and con-
sistency statements. The first result of this kind was the Paris-Harrington
theorem (1976), establishing the unprovability in PA of the arithmetization
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of a certain combinatorial principle. This principle, although unprovable in
PA, is in fact equivalent in PA to the statement that PA disproves no false
Goldbach-like statement, and so is provable using ordinary mathematical
reasoning. But we know that ZFC is also incomplete in its arithmetical
component. A way of extending the arithmetical component of ZFC was
suggested by Gödel in the 1940s and has been extensively studied since.
This approach consists in extending ZFC with axioms of infinity, strong
set-theoretical principles that imply arithmetical statements not provable
in ZFC.

Another line of development, dating from the 1960s, relates incom-
pleteness to the theory of what is known as Kolmogorov complexity. This
development is associated in particular with the work of the American
mathematician Gregory Chaitin and has been presented by him in a large
number of popular books and articles.

Chapter 8 contains a discussion of complexity and its relevance to the
incompleteness phenomenon in general, together with a presentation of the
Paris-Harrington theorem and some comments about the use of axioms of
infinity to prove arithmetical statements otherwise unprovable in ZFC.
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Computability, Formal Systems,

and Incompleteness

3.1 Strings of Symbols

The axioms, theorems, and other sentences of a formal system, and also
the proofs in the system, can all be taken to be strings of symbols. In
mathematics and symbolic logic, various special mathematical symbols are
used, but this is just a matter of convenience. Here, we may assume that
the symbols we are concerned with are those that we find on a standard
keyboard and use in ordinary English text—lower and upper case letters,
digits, parentheses, and so on—keeping in mind that an empty space, which
on a standard keyboard is generated by pressing the space bar, is also a
symbol. The definitions and arguments given in the following apply to any
starting set of symbols, as long as there are only finitely many symbols in
the set.

By a string is meant any finite sequence of symbols. For example, the
following are strings:

Let me not to the marriage of true minds admit impediments.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

=)=)::))

in the nick of time

watashi wa neko da yo

59
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9)#lklK0+==FDBk2++?%

∼(Ex)(y)(yEx iff ∼yEy)

9023949999393020011109

As these examples illustrate, strings may or may not be meaningful
words, sentences, or other kinds of expressions in some language or other.
There is an ambiguity in speaking of “symbols” in connection with strings—
should we say that the string “aaaa” contains one symbol (the letter a) or
four symbols? We resolve the ambiguity by saying that “aaaa” contains
four occurrences of a single symbol. The length of a string is the number
of occurrences of symbols in the string. The examples given are all short
strings, but in logic and mathematics we impose no limit on the length of
strings, and reason freely about strings that contain more occurrences of
symbols than there are grains of sand in the river Ganges. Thus, strings,
in this connection, are mathematical objects, just like numbers, and need
not have any actual physical representation. Indeed, from a mathematical
point of view, strings and natural numbers are interchangeable, in the sense
that we can let strings represent numbers or numbers represent strings. A
representation of arbitrary strings using numbers, such as will be described
in the next section, is what is usually called a Gödel numbering. But first
let us take a closer look at the more familiar direction, the representation
of natural numbers using certain strings.

The strings of digits used in mathematics as well as in ordinary English
and many other languages to denote natural numbers (nonnegative inte-
gers) will be called numerical strings. Thus, the string “165” denotes the
number one hundred and sixty-five, and “0” denotes the number zero. If
we disallow initial zeros in strings containing more than one digit, every
natural number is denoted by a unique corresponding numerical string. In
everyday language, we are so used to this way of representing numbers (the
decimal positional notation) that it may take an effort to distinguish be-
tween the number 165 and the string “165.” But even if we consider only
the symbols used in English (and not, say, Chinese numerals) there are
other common ways of representing the natural numbers as strings. One of
them is through the use of counting words, as in “one hundred and sixty-
five.” In order to extend this notation to cover all of the natural numbers,
some new words are needed, and various systems exist. In the system of
Landon Curt Noll, the number 3, 141, 592, 653, 589, 793, 238, 462, 643, 383 is
named
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three octillion, one hundred forty one septillion, five hundred
ninety two sextillion, six hundred fifty three quintillion, five
hundred eighty nine quadrillion, seven hundred ninety three
trillion, two hundred thirty eight billion, four hundred sixty
two million, six hundred forty three thousand, three hundred
eighty three.

Another way of representing natural numbers as strings that is com-
monly used in the theory and practice of computing is binary notation
(base two positional notation). In binary notation, the above number be-
comes

1010001001101010101000011111000000010001101110
0111110100000010000110100100100011110010110111.

Using strings to denote natural numbers is familiar to us because we
have to use strings to denote numbers in order to write down numerical
information and when adding and multiplying numbers on paper. The idea
of giving arbitrary strings “names” that are natural numbers is less familiar
from everyday contexts, but arises naturally in the context of logic and the
theory of computability.

It was claimed that not only the theorems and other sentences of a
formal language, but also the proofs in a formal system can be taken to
be strings of symbols. Since proofs are sequences of sentences, this means
that we need to be able to represent such sequences too as strings. The
easy way of doing this is to choose a symbol that does not occur in any
sentence of the language, say £, and use it in strings to separate sentences.
Thus for example, the sequence consisting of the sentences “aishiteru no,”
“suki da yo,” “baka da yo” will be represented as the string

aishiteru no£suki da yo£baka da yo.

But what if any symbol can occur in a sentence? It is still possible to
represent any sequence of strings as a string, but it is only in Chapter 8
that we will need to consider how to do this.

3.2 Computable Enumerability and Decidability

Computably Enumerable Sets

The set of numerical strings has two properties that are of particular in-
terest in connection with the incompleteness theorem. The first of these
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properties is that there is a mechanical procedure for generating the numer-
ical strings, or in other words, for producing and writing them down one
after another. We simply first write down the single-digit strings, then sys-
tematically write down all two-digit strings (except that we don’t include
strings beginning with 0), and so on. To fully specify the procedure we
need to decide on the order in which strings of the same length are written
down, and a natural choice, given our conventional alphabetical ordering
of the symbols, is to generate strings of the same length in alphabetical
order (in mathematics usually called lexicographic order). In this way we
obtain

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, . . .

As it happens, this particular ordering of the numerical strings is very
familiar to us, since it corresponds to the mathematical ordering of the
numbers denoted by the strings. The reason for this is twofold. The al-
phabetical ordering of the digits coincides with the mathematical ordering
of the numbers they denote, and we use a positional system in denoting
numbers by numerical strings. If we generate the usual names of num-
bers in words using the same principle of “shorter before longer” combined
with lexicographic ordering of strings of the same length, the listing will
begin

one, six, ten, two, five, four, nine, zero, eight, fifty, forty, seven,
sixty, three, eighty, eleven, ninety, thirty, twelve, twenty, fifteen,
seventy, sixteen, eighteen, fourteen, nineteen, thirteen, fifty-
one, fifty-six, fifty-two, forty-one,. . .

We have described a mechanical procedure for generating numerical
strings, such that every numerical string will, if the procedure is continued
indefinitely, eventually appear in the list of strings generated. The proce-
dure is mechanical in the sense that it calls for no judgment, choice, or
problem-solving, but only for the application of a set of explicit rules. To
put it differently, it is a simple matter to program a computer to generate
numerical strings according to these rules and print them out one after the
other. We say that a set E of strings is computably enumerable if it is pos-
sible to program a computer to compute and print out the members of E,
as long as we disregard all limitations of time, energy, and memory. Thus,
in this terminology, the set of numerical strings is computably enumerable.

For future arguments, we need to be a bit more specific. When we speak
of “programming a computer to compute and print out the members of
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E,” do we allow repetitions in the output of the program, so that the same
member of E may be printed more than once? In fact every infinite set that
can be computably enumerated with repetitions can also be computably
enumerated without repetitions, and we therefore allow repetitions in the
output of the computer, as long as every member of E eventually appears
among the strings generated. A more subtle question is what happens
if E is finite—does the computer halt when all members of E have been
generated, or does the computation continue ad infinitum, even though no
new strings will appear in the output? For reasons that are not immediately
apparent, in speaking of a computable enumeration of a finite set E, we
will in fact allow that a computer programmed to compute and print out
the members of E continues this activity forever, and thus either prints out
at least one string infinitely many times, or else just whirs silently away
doing nothing after producing all of the strings in the set.

The definition of “computably enumerable set” was formulated in terms
of sets of strings, but we can also apply it to sets of natural numbers. A
set of natural numbers is computably enumerable if and only if the set
of corresponding numerical strings is computably enumerable. Similarly,
the definition carries over to sets of any mathematical objects that can
be represented by strings. For example, every positive rational number
has a unique representation as a string m/n where m and n are numerical
strings such that the corresponding natural numbers have no common di-
visor greater than 1, which allows us to speak of computably enumerable
sets of positive rational numbers.

It was Alan Turing who, in 1936, introduced a theoretical model of
a general-purpose digital computer with unlimited working memory (the
universal Turing machine) and made it plausible that everything that can
be mechanically computed can be computed by such a machine. Today,
Turing computability is one of several equivalent definitions of computabil-
ity used in logic and mathematics, and we are used to thinking of ordinary
computers as physical realizations of the universal Turing machine, except
that actual computers have limited memory. In a mathematical treatment
of the theory of computability, the Turing machine or some other model
of computation is used to give formal definitions of the basic concepts of
the theory. In this book we will make do with informal definitions of these
basic concepts, which still allow us to understand and appreciate several
important results of the theory. All we need to know about the workings
of a computer is that executing a program can be described as consisting
in a series of steps, so that it is possible to carry out a certain number of
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steps in a computation, do something else for a while, and then return to
carry out the next step in the computation.

As an example of the kind of informal reasoning that we can carry out
on the basis of these definitions, we see that if A and B are two computably
enumerable sets, then their union C, containing the strings belonging to A

or B or both, is also computably enumerable. For in order to enumerate C

we need only alternately carry out steps in enumerations of A and B, and
deliver a member of A or B as output whenever it is generated.

Computably Decidable Sets

A second property of the set of numerical strings is that there is an algo-
rithm that allows us to decide, given any string of symbols, whether or not
it will ever appear in a computable enumeration of the set. An algorithm
is a mechanical procedure, such as can be carried out by a computer, which
always terminates, generally yielding some string as output. (An alterna-
tive terminology is also used in the literature, in which an algorithm is a
mechanical procedure that does not necessarily terminate.) The algorithm
is simple in this case: we need only check that every symbol in the string
is a digit, and that the string does not begin with a zero, unless it has
length 1. We say that a set E of strings is computable or computably de-
cidable, or just decidable for short, if it is possible to program a computer
to decide, given any string s of symbols, whether or not s is in E. In other
words, given s as input, the computer carries out some computation, and
then outputs “yes” if s is in E, and “no” if s is not in E. (As in the case
of computable enumerability, we can also apply this definition to sets of
natural numbers.) A set that is not decidable is said to be (computably)
undecidable.

Here again, we need to take note of the fact that we are talking about
what is mathematically possible, not about what is in any sense feasible.
In particular, every finite set E of strings is decidable, since an algorithm
for deciding whether a string s is in E can consist of simply going through
a list of all strings in E, looking for s. A computer can be programmed
to carry out this algorithm by including in the program a listing of all the
strings in E. Of course if E contains, say, a quadrillion strings, this has
nothing to do with what can in fact be done, and it may or may not be
possible to actually program (in a different way) a physical computer to
decide whether a given string is in E. Statements in the following about
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what we “can compute” or “can decide” must be understood to carry a
similar qualification.

Like the words “complete” and “incomplete,” the words “decidable”
and “undecidable” are used in logic in two different senses. A sentence A

is said to be decidable in a formal system S if either A or its negation is
provable in S. Decidability in this sense is a property of sentences and is
relative to some formal system. Decidability in the sense introduced here
is not a property of sentences, but of sets—sets of strings, of numbers, or of
other objects that can be represented as strings or numbers—and it is not
relative to any formal system. There is nevertheless a connection between
these two senses of “decidable,” in that we can use the fact that certain sets
are not decidable to prove that certain formal theories have undecidable
sentences. To present this result is the main point of this chapter.

Mathematically Definable Sets

To ask whether a set of strings is computably enumerable, or computably
decidable, makes sense only if the set can be given a formal (mathematical)
definition. For example, is the set of sentences in English decidable? Here,
we need to specify just what is meant by a sentence in English. If we restrict
ourselves to sentences that have been spoken or written, or will be spoken
or written in the future, it is clear that there is a limit on their length,
since it will never happen that a sentence containing billions of symbols is
spoken or written. So, since every finite set of strings is decidable, does it
follow that the set of English sentences of length smaller than a billion is
decidable? No, for it is simply not determinate which strings belong to this
supposed set, which means that no set has yet been specified. A natural
language like English, as opposed to the formal languages studied in logic,
is not defined through mathematical rules, but through actual usage, and as
soon as we consider what users of English accept as an English sentence, we
find variations of time and place, variations among different speakers, cases
of people changing their mind, and cases where nobody can tell whether a
string is a sentence or not.

This does not mean that the question whether the set of sentences in
English is decidable is meaningless. But to make sense of it, we need to
introduce a theoretical model of the English language in the form of a
formal grammar that can reasonably be held to make explicit rules for
constructing English sentences that agree with how the language is in fact
used. This formal grammar will allow an infinite number of strings as
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English sentences, and it becomes a nontrivial question whether the set of
sentences is decidable.

In logic and mathematics, the sets of strings that we investigate are
defined at the outset in mathematical terms, for example, as the set of sen-
tences derivable from certain axioms using certain formal rules of inference.
The question whether the set is computably enumerable or decidable thus
always makes good sense.

A Gödel Numbering

Let us first observe that the procedure described for generating the numer-
ical strings can be modified so as to generate all strings. We first generate
the strings consisting of only one symbol (there are only finitely many of
these), and then systematically generate, in lexicographic order, the strings
consisting of two symbols (again, there are only finitely many), and so on.

Thus suppose our symbols are the symbols in positions 32–126 in the
ASCII table. These symbols, in alphabetical order, are space, !, “, #, $, %,
&, ‘, (, ), *, +, comma, -, period, /, the digits 0–9, :, ;, <, =, >, ?, @, the
letters A–Z, [, \, ], ˆ, , ‘, the letters a–z, |, }, ∼. In generating all strings we
start by generating the 95 one-symbol strings, then the 95×95 = 9025 two-
symbol strings in lexicographic order (the first being the string consisting
of two occurrences of space), and so on.

This also gives us an example of a Gödel numbering, a way of repre-
senting arbitrary strings, not just numerical ones, by numbers. We simply
associate every string with its position in the enumeration of all strings.
Thus the 95 one-symbol strings are given Gödel numbers 1–95, and the
following 9025 two-symbol strings will have Gödel numbers 96–9120. The
number 0 is assigned to the empty string, like the empty set a convenient
mathematical construct, which contains no symbols at all.

This Gödel numbering is only one of infinitely many ways of representing
arbitrary strings by numbers. It satisfies two essential conditions. First,
given a string we can mechanically compute its Gödel number, by simply
generating strings and counting them until we come to the string whose
Gödel number we seek. Second, given a number, we can decide by a similar
computation whether it is the Gödel number of a string—which in this
particular numbering is true of every number—and if so which one. As
a consequence, a set of strings is computably enumerable or decidable if
and only if the set of Gödel numbers of strings in the set is computably
enumerable or decidable.
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3.3 Undecidable Sets

Two Basic Connections

There are two basic relations between computable enumerability and com-
putable decidability that are the key to many observations involving these
concepts. The first basic connection is the following:

Every computably decidable set is computably enumerable.

This is because we can always (in theory) program a computer to gen-
erate the strings in a decidable set E by generating every string internally,
but retaining and printing out a string only if a computation shows it to
be in E, and discarding it if it is not in E.

In practice, if a set is decidable, there are usually more simple and direct
ways of generating its members. For example, to generate the numerical
strings, we don’t systematically generate all strings and sift out those that
are numerical, but instead systematically generate all strings from the re-
stricted alphabet containing only the symbols 0–9, skipping strings with
initial zeros, except for the one-symbol string consisting only of 0. But the
general procedure described is always available, and it shows that every
decidable set can be computably enumerated.

The complement of a set E of strings is the set of all strings that are
not in E. The second basic observation is that

A set E is computably decidable if and only if both E and its
complement are computably enumerable.

To see this we first note that if E is computably decidable, so is the
complement of E, so it follows from the first basic fact that both E and its
complement are computably enumerable. If E and its complement are both
computably enumerable, a computer can decide whether a given string is
in E as follows. First carry out one step in a computable enumeration of
E and one step in a computable enumeration of the complement of E. If
the string has not yet appeared in either set, carry out another step in
both computations. Eventually the string will appear in either E or the
complement of E, and the computer outputs “yes” or “no” accordingly.

The Undecidability Theorem

We can now state the starting point of the theory of computably enumer-
able sets:
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Undecidability theorem (Turing, Church). There are computably
enumerable sets which are not computably decidable.

Before considering proofs that such sets exist and examples of such
sets, it is worthwhile to ponder their general characteristics. Suppose E

is a computably enumerable set that is not decidable. There is then an
algorithm for systematically generating all of the strings in the set. Thus
if s is a member of E, it is possible, in theory at least, to show that s is a
member of E, by generating members of E until s appears. (Computably
enumerable sets have sometimes been called semi-decidable.) However,
there is no mechanical procedure which, applied to an arbitrary string s,
will always give information about whether or not s is in E. Thus, if s is not
a member of E, this can only be shown, if at all, by special reasoning. In
proving the first incompleteness theorem using an undecidable computably
enumerable set E, we will see that unless a formal system S incorrectly
decides some statements of the form “k is in E,” there will be statements
of the form “k is in E” that are undecidable in S.

Turing’s Proof of the Undecidability Theorem

Turing proved the undecidability theorem by proving the “recursive un-
solvability of the halting problem.” Here we need to take note of some
traditional terminology often used in the literature. “Recursively enumer-
able” or “effectively enumerable” are both synonyms for “computably enu-
merable.” The term “recursively unsolvable problem” does not refer to a
problem in the sense of an open question, but to a set of problems. A
recursively unsolvable problem is given by a set E (of natural numbers,
of strings, or of some other kind of mathematical objects representable as
numbers or strings) that is not decidable. The set of problems of the form
“is a in E?” is computably unsolvable in the sense that there is no me-
chanical procedure that applied to any problem of this form will yield a
correct answer (yes or no).

To understand the connection between the undecidability theorem and
the first incompleteness theorem, it is not necessary to study any proof of
the undecidability theorem, but a presentation of Turing’s proof will be
given here for the interested reader.

Let us fix a programming language—Basic, C, Java, or any other stan-
dard language, since they are all equivalent from the point of view of com-
putability theory. A reader who is not familiar with any programming
language need only think of it as a language for expressing instructions on
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how to proceed in a mechanical step-by-step computation. The computa-
tion may require some initial input strings to work with, and it may or may
not eventually terminate, returning some output string. A program in the
language is itself a string of symbols. The rules for writings programs are
such that the set of programs is decidable, and so is the set of programs
that expect one string as input, and when executed either deliver a string
as output or else never terminate. Thus, there is a computable enumeration
of these (infinitely many) programs:

P0, P1, P2, . . .

We say that the number i is the index of the program Pi.
Now let K be the set of i such that Pi terminates and outputs a value

when given the (numerical string denoting the) index i of the program
itself as input. This somewhat oddly defined set K is in fact computably
enumerable. For the verification of this, all we need to know about the
programs Pi is that their computations proceed in a step-by-step fashion
so that the set of true statements of the form

The computation carried out by Pi with input k terminates
after at most n steps,

where k and n are numerical strings, is decidable. This is so because given
i, k, and n, we can first generate the program Pi in the enumeration of
programs, and then start Pi on its computation with input k, but allow it
to proceed for at most n steps. Now to computably enumerate the elements
of K, we just go through all strings of the indicated form, and whenever
we encounter a true such statement with k = i, we add i to the listing of
the elements of K.

So K is computably enumerable, but it is not decidable. For suppose K

is decidable. We can then define a procedure which given any input i first
checks whether i is in K. If not, we give 0 as output. If i is in K, so that
Pi does terminate with i as input, we let Pi compute its result and then
give as output that result with a further symbol added at the end. Since
this defines a program P that given any string computes another string as
output, P must be identical with Pm for some m. But P and Pm do not
agree on m, so they are not identical. Hence, K is not decidable.

Turing’s argument is what is known in logic as a diagonalization argu-
ment. In its most basic form, the diagonalization argument goes as follows.
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Given a relation R(a, b) between elements a and b in some set A, if we
define the property P of elements in A to hold if and only if R(a, a) does
not hold, this property P is not identical with the property Ra for any a,
where Ra(b) is defined to hold if and only if R(a, b) holds. Variations of this
very simple argument have been used in set theory and logic since it was
first introduced in the late nineteenth century by the German mathemati-
cian Georg Cantor, the creator of set theory. Some form of diagonalization
argument lies at the basis of most proofs, or perhaps of every proof, of
the undecidability theorem and of the first incompleteness theorem, when
the incompleteness theorem is given a proof that implies the existence of
undecidable Goldbach-like statements. (See Section 2.1 for a definition of
the Goldbach-like statements.)

Two further examples of effectively enumerable but undecidable sets
will be introduced, simple sets as defined by Post and the set of solvable
Diophantine equations.

Post’s Simple Sets

Emil Post, who did pioneering work in the theory of computably enumer-
able sets, came up with a category of computably enumerable sets which are
in a sense extremely undecidable. A simple set is a computably enumerable
set A of natural numbers such that the complement of A, although infinite,
has no infinite computably enumerable subset. Thus, although there are
infinitely many numbers not in A, it is not possible for any mechanical
procedure to generate more than finitely many of them. The set K defined
in Turing’s proof is not simple, for we can easily construct infinitely many
programs that do not terminate for any input.

That there are simple sets is not obvious. Post showed how to define
a simple set using an enumeration of the computably enumerable sets. In
Chapter 8, a specific example of a simple set, which was found some 20
years later, will be defined, the set of compressible strings.

Hilbert’s Tenth Problem and the MRDP Theorem

Number ten on the list of 23 problems put forward by David Hilbert in the
year 1900 was the problem of finding an algorithm for deciding whether or
not a Diophantine equation (see Section 2.1) has any solution. In 1970 it
was established, as a consequence of what is known as the Matiyasevich-
Robinson-Davis-Putnam (MRDP) theorem, that there is no such algorithm.
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To simplify matters, we will restrict the solutions of Diophantine equa-
tions to nonnegative integers. (It can be shown that the question whether
a Diophantine equation has any solution in integers can always be reduced
to the question whether another Diophantine equation has a solution in
nonnegative integers.) Thus, a Diophantine equation D(x1, . . ., xn) = 0 is
said to be solvable if it has a solution k1, . . ., kn in natural numbers.

We first note that the set of solvable Diophantine equations is com-
putably enumerable. To see this, note that the set of all statements (true
or false) of the form

D(x1, . . ., xn) = 0 has the solution x1 = k1, . . ., xn = kn

where k1, . . ., kn are numerical strings is decidable, and hence computably
enumerable. So, in order to generate all solvable Diophantine equations, we
need only generate all strings of this form, and for each string check whether
D(x1, . . ., xn) does in fact evaluate to 0 when x1 = k1, . . ., xn = kn. If this
is the case, we list D(x1, . . ., xn) = 0 as a solvable Diophantine equation.

Similarly, for any given Diophantine equation D(x1, . . ., xn,y) = 0, the
set ED of k for which there exists a solution of the equation with y = k

is computably enumerable. This is so since we can generate the set of
solvable equations of the form D(x1, . . ., xn,k) = 0, obtained by replacing
the unknown y with the number k, and list k as a member of ED for every
such equation found. A computably enumerable set that is equal to ED

for some D is said to be Diophantine.
The MRDP theorem states that every computably enumerable set of

natural numbers is Diophantine. One consequence is that since there are
computably enumerable sets that are not decidable, there cannot be any
algorithm for deciding whether or not a given Diophantine equation has any
solution. Thus, the set of solvable Diophantine equations is an example of
a computably enumerable but not decidable set, and the set of unsolvable
Diophantine equations is not computably enumerable.

The MRDP theorem has another consequence, which depends on the
fact that the theorem can be proved in elementary arithmetic, by a proof
formalizable in PA. Given any Goldbach-like statement A, as informally
defined in Section 2.1 (and formally in the Appendix), we can construct
a corresponding Diophantine equation D(x1, . . ., xn) = 0 such that it is
provable in PA that A is true if and only if the equation has no solution.
In particular, such an equation can be found for the statement “PA is
consistent.”
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3.4 Computability and the First Incompleteness Theorem

Formal Systems

A formal system is determined by a formal language, a set of inference
rules, and a set of axioms. The set of sentences of the language is assumed
to be a decidable set of strings. The axioms (which are certain sentences
in the language of the system) and the inference rules need to be defined
in such a way that the system satisfies the following:

Basic property of formal systems. The set of theorems of a formal
system is computably enumerable.

For example, in the case of a first-order theory, it is possible to choose
the set of axioms (including “purely logical” axioms, which are axioms in
every first-order theory) to be decidable, and to have only one rule of in-
ference, whereby B follows from A together with “if A then B.” A proof
in such a system is a finite sequence of sentences A1, . . ., An where for each
i, either Ai is an axiom or there are earlier sentences Aj and “if Aj then
Ai” in the sequence. Thus, the set of proofs is also decidable, and as a
consequence the basic property holds, since to computably enumerate the
theorems of the system we need only go through all strings to check if
they are proofs and for each string that is a proof output the last sen-
tence in the sequence. In general, it is sufficient that the set of proofs is
computably enumerable for the basic property to hold, since we need only
systematically generate proofs and pick out their conclusions in order to
generate the theorems. Conversely, if the basic property holds, we can al-
ways define proofs in the system so as to make the set of proofs computably
enumerable.

The basic property implies that it is always possible to search for a proof
of a given sentence A in a mechanical way, and if there is any such proof, it
will eventually be found. If A is not a theorem of the system, the search will
just go on forever. In practice, when proving theorems, we do not usually
search mechanically, but are guided by more or less clear ideas about how
to prove the theorem. In the field of automatic theorem proving, one tries
to program computers to search for proofs “intelligently,” rather than just
by systematic brute force, although such automated “intelligent” searching
for proofs is still mechanical in the sense that it follows a specifiable set of
rules. When we look for proofs informally, we may or may not be following
rules that computers can be programmed to follow, but we are not usually
able to specify any such rules.
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A formal system is decidable if the set of theorems of the system is not
only computably enumerable, but also decidable. A complete formal system
is always decidable. For either it is inconsistent, in which case the set of
theorems is identical with the set of sentences, or else we can decide whether
a sentence A is a theorem by enumerating the theorems of the system
until we come upon either A or not-A. Thus, for example, the elementary
theory of the real numbers (see Section 2.3), which is complete, is also
decidable. (This is not to say that there is any algorithm which can be
used in practice to decide whether an arbitrary sentence in the language of
the theory is provable.) There are also theories that are decidable without
being complete.

The First Incompleteness Theorem

Suppose S is a formal system that contains enough arithmetic to be able
to prove all true statements of the form

D(x1, . . ., xn) = 0 has the solution x1 = k1, . . ., xn = kn.

Not a great deal of arithmetic is needed to prove every true statement
of this form—we only need to be able to carry out multiplication, addition,
and subtraction of integers, and to handle the logic of =.

Now consider the theorems of S of the form

D(x1, . . ., xn) = 0 has no solution.

If S is consistent, every such theorem of S is true. For if the equation
does have a solution, this is provable in S, by the assumption on S, so it
cannot also be provable in S that the equation has no solution. So the set
of all equations for which it is provable in S that they have no solution
is a computably enumerable subset of the set of equations that do not
have a solution. But since the latter set is not computably enumerable,
it follows that there are infinitely many equations D(x1, . . ., xn) = 0 that
have no solution, but for which this fact is not provable in S. And if
we further assume that S is Σ-sound, and thus does not prove any false
statements of the form “The Diophantine equation D(x1, . . ., xn) = 0 has
at least one solution,” it follows that there are infinitely many equations
D(x1, . . ., xn) = 0 for which it is undecidable in S whether or not they have
any solution.

We can make a stronger statement. The set A of all equations for
which it is provable in S that they have no solution is a computably enu-
merable subset of the set B of equations that do not have a solution. If
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the set B\A of elements in B that do not belong to A were computably
enumerable, B would be the union of two computably enumerable sets and
therefore itself computably enumerable. Thus, the set of true statements
of the form “The Diophantine equation D(x1, . . ., xn) = 0 has no solu-
tion” that are not provable in S is not only infinite, but is not computably
enumerable.

This version of the first incompleteness theorem based on computability
theory shows that the use of (arithmetical formalizations of) self-referential
sentences is not essential when proving incompleteness. Indeed, there is no
assumption in the proof that S is capable of formalizing self-reference.
It also shows that the content and structure of S, beyond encompassing
some elementary arithmetic, is not relevant if we only want to establish
incompleteness. In particular, whether S is a first-order theory or uses
what is called second-order logic makes no difference, as long as S satisfies
the basic property of formal systems.

The same argument can be carried through using any computably enu-
merable but undecidable set E instead of the set of solvable Diophantine
equations. What is not obvious is that all statements of the form “k is in
E” can be formulated in the language of arithmetic for any computably
enumerable E, and all true statements of this form can be proved on the
basis of some basic principles of arithmetic. To make it clear that this is
in fact the case, we need a formal specification of some model of computa-
tion (such as Turing machines), and we also need to use an arithmetization
of the language of computation, similar to the arithmetization of syntax
used in Gödel’s proof of the first incompleteness theorem. Using the set of
solvable Diophantine equations as E has the advantage that no arithme-
tization of syntax is needed, and only simple arithmetical statements are
involved.

The version of the first incompleteness theorem obtained through this
argument has the same strength as Gödel’s original version: we need to
assume that S is Σ-sound (does not prove any false Goldbach-like state-
ment), which is equivalent to assuming that S does not prove any false
statement of the form “The Diophantine equation D(x1, . . ., xn) = 0 has at
least one solution.” For some computably enumerable but undecidable sets
E, it is perfectly possible for a consistent system to decide all statements of
the form “n is in E,” although infinitely many statements will be decided
incorrectly. In the special case of the set of unsolvable Diophantine equa-
tions, however, no consistent system (incorporating a certain amount of
arithmetic) settles every statement of the form “The Diophantine equation
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D(x1, . . ., xn) = 0 has at least one solution,” since the undecidable Rosser
sentence (see Section 2.7) is equivalent to such a statement.

Suppose we choose E as a simple set in Post’s sense. Then S can prove
only finitely many statements of the form “k is not in E,” although there
are infinitely many true such statements. We will consider this further in
connection with Chaitin’s incompleteness theorem in Chapter 8.

For a final illustration of the power of the basic ideas of the theory of
computability, we turn to another topic first commented on by Gödel.

Essential Undecidability and Speeding Up Proofs

Let us look at the above argument from a different point of view. Given
that S is Σ-sound, it follows that a Diophantine equation D(x1, . . ., xn) =
0 has at least one solution if and only if S proves the statement “The
Diophantine equation D(x1, . . ., xn) = 0 has at least one solution.” The
set of theorems of S therefore cannot be decidable, since otherwise there
would be an algorithm for deciding whether or not a Diophantine equation
has a solution—just check whether the corresponding statement is provable
in S.

It follows in particular that PA, and every Σ-sound theory that contains
PA as a part, which we call an extension of PA, is undecidable. By a variant
of this argument, it can be shown that in fact every consistent extension
of PA is undecidable. We say that PA is essentially undecidable.

To prove a theory T undecidable is another way of proving that it is
incomplete, since, as has been noted, a complete formal system is decidable.
Suppose T is essentially undecidable, and let A be a sentence undecidable
in T . We can now observe (assuming T to incorporate the logic of “not”
and “or”) that the set M of theorems of T ′ = T +A that are not theorems
of T is not computably enumerable. For given any sentence B, the sentence
“A or B” (which is a theorem of T ′) is a member of M if and only if “A or
B” is not a theorem of T , which is to say if and only if B is not a theorem
of T + not-A. So if M is effectively enumerable, the set of non-theorems of
T + not-A is effectively enumerable, implying that T + not-A is decidable,
which is inconsistent with our two assumptions that A is undecidable in T

and that every consistent extension of T is undecidable.
The argument in the preceding paragraph concerned the richness of the

set of new theorems provable in T +A but not in T . Essential undecidability
has a further consequence, concerning theorems of T + A that are also
theorems of T , which although easily established is by no means obvious.
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Suppose we extend PA by a statement A undecidable in PA to the theory
PA′. If we consider theorems of PA and how they can be proved in PA′,
is it necessarily the case that there is some theorem of PA which can be
proved more efficiently in PA′, in the sense that it has a shorter proof in
PA′ than any proof that can be found in PA? Here, by a shorter proof we
mean one with a smaller Gödel number. The answer is yes, and in fact
there must be theorems of PA that have “much” shorter proofs in PA′. For
example, there is a theorem A of PA for which 101000 × p′ < p, a theorem
A for which 2p′

< p, and so on, where p′ is the length of the shortest proof
of A in PA′ and p is the length of the shortest proof of A in PA. In fact, for
any computable function f that takes natural numbers to natural numbers,
there is a sentence A for which f(p′) < p. (Gödel was the first to state a
result of this kind, in 1936.)

To see this, suppose that on the contrary there is a computable f such
that there is no theorem A of PA for which f(p′) < p. Then for every A,
if A is a theorem of PA′ with a proof of length n, A is a theorem of PA if
and only if A has a proof in PA of length smaller than f(n). This means
that we have a procedure for effectively enumerating those theorems of PA′

that are not theorems of PA, which contradicts the essential undecidability
of PA.
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Incompleteness Everywhere

4.1 The Incompleteness Theorem Outside Mathematics

The incompleteness theorem is a theorem about the consistency and com-
pleteness of formal systems. As noted in the introductory chapter, “consis-
tent,” “inconsistent,” “complete,” “incomplete,” and “system” are words
used not only in a technical sense in logic, but in various senses in ordinary
language, and so it is not surprising that the incompleteness theorem has
been thought to have a great many applications outside mathematics.

A few examples:

• Religious people claim that all answers are found in the Bible or in
whatever text they use. That means the Bible is a complete system,
so Gödel seems to indicate it cannot be true. And the same may be
said of any religion which claims, as they all do, a final set of answers.

• As Gödel demonstrated, all consistent formal systems are incomplete,
and all complete formal systems are inconsistent. The U.S. Consti-
tution is a formal system, after a fashion. The Founders made the
choice of incompleteness over inconsistency, and the Judicial Branch
exists to close that gap of incompleteness.

• Gödel demonstrated that any axiomatic system must be either in-
complete or inconsistent, and inasmuch as Ayn Rand’s philosophy of
Objectivism claims to be a system of axioms and propositions, one
of those two conditions must apply.

77
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It will be noted that all of these misstate the incompleteness theorem
by leaving out the essential condition that the system must be capable of
formalizing a certain amount of arithmetic. There are many complete and
consistent formal systems that do not satisfy this condition. If we remem-
ber to include the condition, supposed applications of the incompleteness
theorem such as those illustrated will less readily suggest themselves, since
neither the Bible, nor the constitution of the United States, nor again the
philosophy of Ayn Rand is naturally thought of as a source of arithmetical
theorems.

The incompleteness theorem is a mathematical theorem, dealing with
formal systems such as the axiomatic theory PA of arithmetic and ax-
iomatic set theory ZFC. Formal systems are characterized by a formal
language, a set of axioms in that language, and a set of formal inference
rules which together with the axioms determine the set of theorems of the
system. The Bible is not a formal system. To spell this out: it has no
formal language, but is a collection of texts in ordinary language, whether
Latin, English, Japanese, Swahili, Greek, or some other language. It has
no axioms, no rules of inference, and no theorems. Whether something
follows from what is said in the Bible is not a mathematical question, but
a question of judgment, interpretation, belief, opinion. Similarly for the
Constitution and the philosophy of Ayn Rand. Deciding what does or does
not follow from these texts is not a task for mathematicians or computers,
but for theologians, believers, the Supreme Court, and just plain readers,
who must often decide for themselves how to interpret the text and have
no formal rules of inference to fall back on.

Thus, we need only ask the question “is the Bible (the Constitution,
etc.) a formal system?” for the answer to be obvious. Of course it’s not a
formal system. It’s nothing like a formal system. To be sure, if we set aside
the mathematical notion of a formal system and use the words “formal”
and “system” in an everyday sense, it can be said that the Constitution is
a formal system “after a fashion.” That is to say, from the point of view of
ordinary language, the Constitution contains lots of formal language, and
it looks rather systematic. But nobody would seriously claim that there
is any such thing as the formally defined language, the axioms, and the
rules of inference of the Constitution. So the incompleteness theorem does
not apply to the Constitution, the Bible, the philosophy of Ayn Rand, and
so on.

Without pretending that these various systems of thought, legislation,
philosophy, and so on constitute formal systems, we could apply to them
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analogues of the formal notions of consistency and completeness. For the
Bible to be complete in such a sense, analogous to that used in logic, would
mean that every statement that makes sense in the context of Bible reading
could be reasonably held to be decided by the Bible, in the sense that either
that statement or its negation can be held to be explicitly or implicitly
asserted in the Bible. If we raise the question whether the Bible is complete
in this sense, the answer is again pretty obvious: it is not. For example,
it makes good sense in the context of Bible reading to ask whether Moses
sneezed on his fifth birthday. No information on this point can be found
in the Bible. Hence, the Bible is incomplete. Similarly, the Constitution
is incomplete, since it does not tell us whether or not wearing a polka-
dot suit is allowed in Congress. Ayn Rand’s philosophy of Objectivism
is incomplete, since we cannot derive from it whether or not there is life
on Mars, even though it makes sense in the context of Objectivism to ask
whether there is life on Mars. We don’t need Gödel to tell us that these
“systems” are in this sense incomplete. Trivially, any doctrine, theory, or
canon is incomplete in this analogical sense. Such trivial observations are
presumably not at issue in the comments quoted. But there is no more
substantial or interesting use to be made of the incompleteness theorem in
discussing the Bible, the Constitution, Objectivism, etc.

Similar remarks apply to the following reflections by John Edwards in
the electronic magazine Ceteris Paribus:

We can view rules for living, whether they are cultural mores
of the sort encoded in maxims, or laws, principles, and policies
meant to dictate acceptable actions and procedures, as axioms
in a logical system. Candidate actions can be thought of as
propositions. A proposition is proved if the action it corre-
sponds to can be shown to be allowed or legal or admissible
within the system of rules; it is disproved if it can be shown
to be forbidden, illegal, or inadmissible. In the light of Gödel’s
theorem, does it not seem likely that any system of laws must
be either inconsistent or incomplete?

To say that we “can view” rules for living and so on as axioms in a logical
system is unexceptionable since anything, broadly speaking, can be viewed
as anything else. Furthermore, in the case of viewing a lot of things as
“systems” with “axioms” and “theorems,” it is demonstrably the case that
many people find it natural and satisfying to view things this way. It is a
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different question whether any conclusions can be drawn, or any substantial
claims supported, on the basis of such analogies and metaphors. In the
quoted passage, the suggested conclusion is that a system of laws must
be “inconsistent or incomplete.” Given the accompanying explanation of
what “inconsistent” and “incomplete” mean here, it is an easy observation
that all systems of laws, rules of living, and so on, are both inconsistent
and incomplete and will remain so. In other words, in the case of legal
systems, there will always be actions and procedures about which the law
has nothing to say, and there will always be actions and procedures on
which conflicting legal viewpoints can be brought to bear. Hence the need
for courts and legal decisions. References to Gödel’s theorem can only add
a rhetorical flourish to this simple observation.

4.2 “Human Thought” and the Incompleteness Theorem

A prominent example of a “system” to which the incompleteness theorem is
sometimes thought to be applicable is “human thought,” also known as “the
human mind,” “the human brain,” or “the human intellect.” Here the term
“human thought” will be used. The same general comments apply as in the
case of supposed applications of the theorem to the Bible, the Constitution,
the philosophy of Ayn Rand—there is no such thing as the formally defined
language, the axioms, and the rules of inference of “human thought,” and
so it makes no sense to speak of applying the incompleteness theorem to
“human thought.” There are however special factors that influence this
particular invocation of the incompleteness theorem and may seem to lend
the view that the incompleteness theorem applies to “human thought” a
certain appeal. One formulation of such a view is the following:

Insofar as humans attempt to be logical, their thoughts form a
formal system and are necessarily bound by Gödel’s theorem.

Here by “attempt to be logical” one could perhaps mean “try to argue
in such a way that all conclusions reached are formal logical consequences
of a specified set of basic assumptions stated in a formal language.” Within
certain narrowly delimited areas of thought, this description is indeed appli-
cable. For example, in attempting to factor large numbers, the conclusions
reached, of the form “the natural number n has the factor m,” are intended
to be logical consequences of some basic arithmetical principles. This does
not mean, however, that one is restricted to applying logical rules starting
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from those basic principles in arriving at the conclusion. On the contrary,
any mathematical methods may be used, and in the case of factorization,
there would be nothing wrong with using divination in tea leaves if this
turned out to be useful, since it can be checked whether a claim of the
form “the natural number n has the factor m” is true or not (and thus
whether it is a logical consequence of basic principles). On a stricter inter-
pretation, “attempting to be logical” might consist in the actual application
by hand of certain specific formal rules of reasoning, as when we carry out
long division on paper, and then indeed it may be reasonable to say that
our thinking is closely associated with a formal system. But these are not
typical intellectual activities. If by “attempting to be logical” one means
only, as in the everyday meaning of “logical,” attempting to make sense,
to be consistent, not jump to conclusions, and so on, we can’t point to any
formal systems that have any particular relevance to our thinking. Formal
systems are studied and applied in mathematical contexts and in program-
ming computers, not in political debates, in legal arguments, in formal
or informal discussions about sports, science, the news, or the weather,
in problem solving in everyday life, or in the laboratory. And even when
we strive to be as mindlessly computational as we can, to say that “our
thoughts form a formal system” is metaphorical at best.

A line of thought that is often put forward in this connection is the fol-
lowing. Let us accept that the incompleteness theorem can only be sensibly
applied when we are talking about proving mathematical statements, and
not in the context of Bible reading, philosophical or political discussion,
and so on. But human beings do prove mathematical, and in particular
arithmetical, statements. If we say that “human thought,” when it comes
to proving arithmetical statements, is not bound by the incompleteness
theorem, are we then not obliged to hold that there is something essen-
tially noncomputable about human mathematical thinking which allows it
to transcend the limitations of computers and formal systems, and per-
haps even some irreducibly spiritual, nonmaterial component of the human
mind? Such a conclusion is as welcome to many as it is unwelcome to
others, and this tends to influence how people view attempts to apply the
incompleteness theorem to human thought.

The view here to be argued is the following. It doesn’t matter, when
we talk about the incompleteness theorem and its applicability to human
thought, whether people are similar to Lieutenant Commander Data of
Star Trek fame, with “positronic brains” whirring away in their heads, in-
fluenced from time to time by their “emotion chips,” or are on the contrary
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irreducibly spiritual creatures transcending all mechanisms.
The basic assumption made in disputes over whether or not human

thought is constrained by the incompleteness theorem is that we can sensi-
bly speak about “what the human mind can prove” in arithmetic. Assum-
ing this, we may ask whether the set M of all “humanly provable” arith-
metical sentences is computably enumerable. If it is, “the human mind”
is subject to Gödel’s incompleteness theorem, and there are arithmetical
statements that are not “humanly decidable” (given that “human thought”
is consistent). If M is not computably enumerable, human thought sur-
passes the powers of any formal system and is in this sense not constrained
by the incompleteness theorem. To ask whether or not M is computably
enumerable is, given this assumption, to pose a challenging and highly sig-
nificant problem, a solution to which would be bound to be enormously
interesting and illuminating.

But is there such a set M of the “humanly provable” arithmetical state-
ments? This assumption is implausible on the face of it and has very little
to support it. Actual human minds are of course constrained by many
factors, such as the limited amount of time and energy at their disposal, so
in considering what is “theoretically possible” or “possible in principle” for
“the human mind” to prove, some theory or principle of the workings of
“the human mind” is presupposed, one that allows us to speak in a theoret-
ical way of the “humanly provable” arithmetical statements. What theory
or set of principles this might be is unclear, and the fact of the variability
and malleability of “the human mind” makes it highly unlikely that any
such theory is to be had.

Let us consider the question what “the human mind” has proved. Some
human minds reject infinitistic set theory as meaningless, whereas others
find it highly convincing and intuitive, with a corresponding sharp disagree-
ment over whether or not certain consistency statements have been proved
or made plausible. The question what “the human mind can prove” pre-
supposes an agreement on what is or is not a proof. Lacking any theoretical
characterization of all possible proofs, and even any general agreement on
what existing arguments are proofs, we can only ask what “the human
mind can prove” using certain formally specified methods of reasoning, in
which case the human mind becomes irrelevant, and the question is one
about what is provable in certain formal systems.

As for malleability, Errett Bishop, who supported and worked in what
is known as constructive mathematics, spoke of “the inevitable day when
constructive mathematics will be the accepted norm.” From what we know
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about the human mind, it is perfectly conceivable that such an event could
take place. Indeed, we know nothing to rule out the possibility that the
accepted mathematical norm will in the future be such that even Bishop’s
constructive mathematics is regarded as partly unjustifiable. It is equally
conceivable that people can convince themselves, in one way or another, of
the acceptability of extremely nonconstructive principles that are today not
considered evident by anybody. In this sense, then, there may be no limit
at all on the “capacity of the human mind” for proving theorems, but of
course there is nothing to exclude the possibility that false statements will
be regarded as proved because principles that are not in fact arithmetically
sound will come to be regarded as evident.

The question of the actual or potential reach of the human mind when
it comes to proving theorems in arithmetic is not like the question how
high it is possible for humans to jump, or how many hot dogs a human can
eat in five minutes, or how many decimals of π it is possible for a human
to memorize, or how far into space humanity can travel. It is more like
the question how many hot dogs a human can eat in five minutes without
making a totally disgusting spectacle of himself, a question that will be
answered differently at different times, in different societies, by different
people. We simply don’t have the necessary tools to be able to sensibly
pose large theoretical questions about what can be proved by “the human
mind.” This point will be considered again in Chapter 6, in connection
with Gödelian arguments in the philosophy of mind.

There is yet another approach to the application of the incomplete-
ness theorem to human thought, which does not seek undecidable state-
ments either in ordinary informal reasoning or in mathematics, but sug-
gests that Gödel’s proof of the first incompleteness theorem can be carried
through in nonmathematical contexts. This suggestion will be considered
next.

4.3 Generalized Gödel Sentences

Mathematical

As mentioned in Chapter 2, the technique of introducing provable fixpoints
that Gödel invented has been used since in very many arguments in logic,
not just in the proof of the first incompleteness theorem. An example
follows.

The basic property of a formal system, as emphasized in Section 3.4, is
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that its set of theorems is computably enumerable. If we no longer require
this property, but retain the formal language, the set of axioms, and the
rules of inference, we get the concept of a formal theory in a wider sense,
also studied in logic. A theory in this generalized sense need not be relevant
to mathematical knowledge, since we may not have any method for deciding
whether something is a proof in the theory or not, but the concept is very
useful in logical studies.

Using this more liberal notion of “theory,” we can define T as the theory
obtained by adding every true statement of the form “the Diophantine
equation D(x1, . . ., xn) = 0 has no solution” to PA as an axiom. The set
of Gödel numbers of true statements of this form can be defined in the
language of arithmetic, so using the fixpoint construction we can formulate
an arithmetical statement A for which it is provable in PA that A is true
if and only if it is not provable in T . (This A will not be a Goldbach-like
statement.) If A is false, then it is provable in T , which is impossible since
all axioms of T are true. So A is in fact true but unprovable in T .

In this way, the fixpoint construction used in Gödel’s proof can be
extended to show that many theories that do not constitute formal systems
are still incomplete. But suppose we add every true arithmetical sentence
as an axiom to PA. The resulting theory T (known as “true arithmetic”) is
obviously complete, so where does the argument break down in this case? It
breaks down because we can no longer form a “Gödel sentence” for T , since
(as this very argument shows) the property of being the Gödel number of a
true arithmetical sentence cannot be defined in the language of arithmetic.

Nonmathematical

So why not, instead of seeking to apply the incompleteness theorem to
nonmathematical systems, just mimic Gödel’s proof of the theorem by for-
mulating a “Gödel sentence” for such systems? Thus, we might come up
with the following:

• The truth of this sentence cannot be established on the basis of the
Bible.

• The truth of this sentence cannot be inferred from anything in the
Constitution.

• This sentence cannot be shown to be true on the basis of Ayn Rand’s
philosophy.
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Before considering these dubious statements, we need to dispose of a
particular objection that is often raised against them, regarding the use of
the phrase “this sentence” to denote a sentence in which the phrase occurs.
Such self-reference has been thought to be suspect for various reasons. In
particular, the charge of leading to an infinite regress when one attempts
to understand the statement has been leveled against it. Such a charge
makes good sense if one takes “this” to refer to what is traditionally called
a “proposition” in philosophy, the content of a meaningful sentence. But in
the above statements, as in the corresponding construction in the original
Gödel sentence, “this sentence” refers to a syntactic object, a sequence
of symbols, and there is no infinite regress involved in establishing the
reference of the phrase. As in the case of the Gödel sentence, we can make
this fact apparent by eliminating the phrase “this sentence” in favor of
the use of syntactical operations, such as substitution or “quining” (see
Section 2.7), but we can also simply replace the first sentence with

The truth of the sentence P cannot be established on the basis
of the Bible

together with the explicit definition

P = “The truth of the sentence P cannot be established on the
basis of the Bible.”

This explicit definition is as unproblematic as any in logic or mathe-
matics, since we are simply introducing a symbol to denote a particular
string of symbols. (In particular, the definition of P does not presuppose
that the string of symbols on the right means anything.) In the following,
the shorter version of self-referential sentences, containing “this sentence,”
will be used.

Now, in considering the three proposed “Gödel sentences,” one’s first
impulse may be to regard them as unproblematically true, but not as pre-
senting any inadequacy of either the Bible, the Constitution, or Ayn Rand’s
philosophy. After all, it is by no means obvious that the statements even
make sense in the context of Bible studies, etc. The Gödel sentence for PA
is in a different case, since that sentence is itself an arithmetical sentence,
and the inability of PA to settle it indicates a gap in the mathematical
power of PA. That the Constitution (let us suppose) does not suffice to
establish the truth of “The truth of this sentence cannot be inferred from
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anything in the Constitution” indicates no gap whatsoever in the Consti-
tution, which after all was not designed as an instrument for the discussion
of logical puzzles.

However, the three statements are not as unproblematic as they may
seem, since we might as well go on to formulate a more far-reaching “Gödel
sentence” of this kind:

This sentence cannot be shown to be true using any kind of
sound reasoning.

If this sentence is false, it can be shown to be true using sound reasoning,
but sound reasoning cannot establish the truth of a false sentence. So sound
reasoning leads to the conclusion that the sentence is true—but then it is
false. Perhaps we should describe it, rather, as meaningless? But then,
surely, it cannot be shown to be true using any kind of sound reasoning,
so. . . .

A popular variant of this argument seeks to establish the existence of a
“Gödel sentence” for any particular person, one that can unproblematically
be held to be true by everybody except that person: for example,

John will never be able to convince himself of the truth of this
sentence.

And of course, in the version using “cannot be shown to be true,” we are
approaching the classical paradox of the Liar, which leads to the conclusion
that the Liar sentence

This sentence is false

is true if and only if it is false.
The many arguments and ideas surrounding the Liar sentence and the

various “Gödel sentences” formulated above will not be discussed in this
book. The following observations are however relevant. The incomplete-
ness theorem is a mathematical theorem precisely because the relevant
notions of truth and provability are mathematically definable. Nonmath-
ematical “Gödel sentences” and Liar sentences give rise to prolonged (or
endless) discussions of just what is meant by a proof, by a true statement,
by sound reasoning, by showing something to be true, by convincing oneself
of something, by believing something, by a meaningful statement, and so
on. In spite of the similarities in form between these other sentences and
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the fixpoints of arithmetically (or more generally, mathematically) defin-
able properties of sentences in a formal language, we are again not dealing
with any application of the incompleteness theorem or its proof, but with
considerations or conundrums inspired by the incompleteness theorem. It
is an open question whether the pleasant confusion that statements like
“John will never accept this statement as true” tend to create in people’s
minds has any theoretical or philosophical significance.

4.4 Incompleteness and the TOE

The TOE is the hypothetical Theory of Everything, which is sometimes
thought to be an ideal or Holy Grail of theoretical physics. The incom-
pleteness theorem has been invoked in support of the view that there is
no such theory of everything to be had, for example, by eminent physicists
Freeman Dyson and Stephen Hawking.

In a book review in the New York Review of Books, Dyson writes:

Another reason why I believe science to be inexhaustible is
Gödel’s theorem. The mathematician Kurt Gödel discovered
and proved the theorem in 1931. The theorem says that given
any finite set of rules for doing mathematics, there are undecid-
able statements, mathematical statements that cannot either be
proved or disproved by using these rules. Gödel gave examples
of undecidable statements that cannot be proved true or false
using the normal rules of logic and arithmetic. His theorem im-
plies that pure mathematics is inexhaustible. No matter how
many problems we solve, there will always be other problems
that cannot be solved within the existing rules. Now I claim
that because of Gödel’s theorem, physics is inexhaustible too.
The laws of physics are a finite set of rules, and include the
rules for doing mathematics, so that Gödel’s theorem applies
to them. The theorem implies that even within the domain of
the basic equations of physics, our knowledge will always be
incomplete.

It seems reasonable to assume that a formalization of theoretical physics,
if such a theory can be produced, would be subject to the incompleteness
theorem by incorporating an arithmetical component. However, as em-
phasized in Section 2.3, Gödel’s theorem only tells us that there is an
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incompleteness in the arithmetical component of the theory. The basic
equations of physics, whatever they may be, cannot indeed decide every
arithmetical statement, but whether or not they are complete considered
as a description of the physical world, and what completeness might mean
in such a case, is not something that the incompleteness theorem tells us
anything about.1

Another invocation of incompleteness goes further:

Not to mention there are an infinite number of other attributes
of the world which are simply not quantifiable or computable,
such as beauty and ugliness, happiness and misery, intuition
and inspiration, compassion and love etc. These are completely
outside the grasp of any mathematical Theory of Everything.
Since scientific theories are built upon mathematical systems,
incompleteness must be inherited in all our scientific knowledge
as well. The incompleteness theorem reveals that no matter
what progress is made in our science, science can never in prin-
ciple completely disclose Nature.

Here the connection with the actual content of the incompleteness the-
orem is tenuous in the extreme: “Since scientific theories are built upon
mathematical system, incompleteness must be inherited in all our scientific
knowledge as well.” This doesn’t follow, since nothing in the incomplete-
ness theorem excludes the possibility of our producing a complete theory
of stars, ghosts, and cats all rolled into one, as long as what we say about
stars, ghosts, and cats cannot be interpreted as statements about the natu-
ral numbers. That science cannot be expected to disclose to us everything
about beauty and ugliness, intuition and inspiration, and so on, is a rea-
sonable view which neither needs nor is supported by Gödel’s theorem.

Stephen Hawking, in a talk entitled “Gödel and the End of Physics,”
also mentions Gödel’s theorem:

What is the relation between Gödel’s theorem, and whether we
can formulate the theory of the universe, in terms of a finite
number of principles? One connection is obvious. According to
the positivist philosophy of science, a physical theory is a math-
ematical model. So if there are mathematical results that can-
not be proved, there are physical problems that cannot be pre-

1Dyson conceded this point in a gracious response to similar remarks made by
Solomon Feferman in a letter to the New York Review of Books (July 15, 2004).
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dicted. One example might be the Goldbach conjecture. Given
an even number of wood blocks, can you always divide them
into two piles, each of which cannot be arranged in a rectangle?
That is, it contains a prime number of blocks. Although this
is incompleteness of sorts, it is not the kind of unpredictability
I mean. Given a specific number of blocks, one can determine
with a finite number of trials, whether they can be divided into
two primes. But I think that quantum theory and gravity to-
gether introduce a new element into the discussion, one that
wasn’t present with classical Newtonian theory. In the stan-
dard positivist approach to the philosophy of science, physical
theories live rent-free in a Platonic heaven of ideal mathemat-
ical models. That is, a model can be arbitrarily detailed and
can contain an arbitrary amount of information, without af-
fecting the universes they describe. But we are not angels who
view the universe from the outside. Instead, we and our mod-
els are both part of the universe we are describing. Thus, a
physical theory is self-referencing, like in Gödel’s theorem. One
might therefore expect it to be either inconsistent, or incom-
plete. The theories we have so far, are both inconsistent, and
incomplete.

Here the upshot is that physical theory is “self-referencing,” apparently
in the sense that physical theories are “part of the universe” and that one
might therefore expect them to be inconsistent or incomplete, considering
that Gödel proved his first incompleteness theorem using a self-referential
statement. Again, the relevance of the incompleteness theorem is here
at most a matter of inspiration or metaphor. But Hawking also touches
on another subject, the relevance of arithmetic to predictions about the
outcome of physical experiments. Given 104, 729 wooden blocks, will we
succeed in an attempt to arrange them into a rectangle? A computation
shows 104, 729 to be a prime, so we conclude that no such attempt will
succeed. Or, to take a somewhat more realistic example, consider the 15-
puzzle, the still-popular sliding square puzzle that Sam Lloyd introduced
in 1873, which has long been a favorite among AI researchers when testing
heuristic search algorithms. Lloyd offered a $1,000 reward for the solution
of the “15-14 problem,” the problem of rearranging the squares so that only
the last two squares were out of place. He well knew that his money was
not at risk, since a combinatorial argument shows that the problem has no
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solution. Thus, he could set people to work on the problem and confidently
predict, on the basis of arithmetical reasoning, the eventual outcome (their
giving up).

Do such examples show that arithmetical incompleteness can entail an
incompleteness in our description of the physical world? Not really. Sup-
pose the Diophantine equation D(x1, . . ., xn) = 0 has no solution, but this
fact is not provable in our mathematics. We then have no basis for a predic-
tion of the outcome of any physical experiment describable as “searching
for a solution of the equation D(x1, . . ., xn) = 0.” (Such an experiment
might consist in people rearranging wooden blocks or doing pen-and-paper
calculations, or it might consist in having a computer execute a program.)
This does not, however, indicate any incompleteness in our description of
the physical systems involved. Our predictions of the outcome of physi-
cal experiments using arithmetic are based on the premise that arithmetic
provides a good model for the behavior of certain actual physical systems
with regard to certain observable properties (which in particular implies
that physical objects like blocks of wood have a certain stability over time,
that there are no macroscopic tunneling effects that render arithmetic in-
applicable, that eggs do not spontaneously come into existence in baskets,
and so on). The relevant description of the physical world amounts to
the assumption that this premise is correct. The role of the arithmetical
statement is as a premise in the application of this description to arrive at
conclusions about physical systems.

4.5 Theological Applications

Gödel sometimes described himself as a theist and believed in the possibility
of a “rational theology,” although he did not belong to any church. In
[Wang 87] he is quoted as remarking that “I believe that there is much
more reason in religion, though not in the churches, that one commonly
believes.” It should not be supposed that Gödel’s theism agreed with that
expressed in established theistic religions. Theistic religions usually involve
a God or several gods assumed to stand in a relationship to human beings
that makes it meaningful to pray to the God(s), to thank the God(s), to
obey the God(s), and more generally to communicate with the God(s).
Gödel’s “rational theology” was not concerned with such matters. Among
his unpublished papers was a version of St. Anselm’s ontological proof of
the existence of God. More precisely, the conclusion of the argument is that
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there is a God-like individual, where x is defined to be God-like if every
essential property of x is positive and x has every positive property as an
essential property. As this explanation of “God-like” should make clear,
Gödel’s idea of a rational theology was not of an evangelical character,
and Oskar Morgenstern relates ([Dawson 97, p. 237]) that he hesitated to
publish the proof “for fear that a belief in God might be ascribed to him,
whereas, he said, it was undertaken as a purely logical investigation, to
demonstrate that such a proof could be carried out on the basis of accepted
principles of formal logic.”

Although Gödel was thus not at all averse to theological reasoning, he
did not attempt to draw any theological conclusions from the incomplete-
ness theorem. However, others have invoked the incompleteness theorem in
theological discussions. Bibliography of Christianity and Mathematics, first
edition 1983, lists 13 theological articles invoking Gödel’s theorem. Here
are some quotations from the abstracts of these articles:

Nonstandard models and Gödel’s incompleteness theorem point
the way to God’s freedom to change both the structure of know-
ing and the objects known.

Uses Gödel’s theorem to indicate that physicists will never be
able to formulate a theory of physical reality that is final.

Stresses the importance of Gödel’s theorems of incompleteness
toward developing a proper perspective of the human mind as
more than just a logic machine.

...theologians can be comforted in their failure to systematize
revealed truth because mathematicians cannot grasp all math-
ematical truths in their systems, either.

If mathematics were an arbitrary creation of men’s minds, we
can still hold to eternal mathematical truth by appealing to
Gödel’s incompleteness result to guarantee truths that can be
discovered only by the use of reason and not by the mechanical
manipulation of fixed rules—truths which imply the existence
of God.

It is argued by analogy from Gödel’s theorem that the method-
ologies, tactics, and presuppositions of science cannot be based
entirely upon science; in order to decide on their validity, re-
sources from outside science must be used.
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As can be seen from these quotations, appeals to the incompleteness
theorem in theological contexts are sometimes invocations of Gödelian ar-
guments in the philosophy of mind, which will be considered in Chapter 6,
and sometimes follow the same line of thought as the arguments considered
in Section 4.4 in connection with “theories of everything.” But there are
also some more specifically theological appeals to the theorem. These are
sometimes baffling:

For thousands of years people equated consistency with deter-
minism, holding that a logically consistent sequence of proposi-
tions could have only one outcome. This feeling lies behind the
notion that God knows and controls everything. Kurt Gödel,
working on a question asked by David Hilbert, showed that
consistency does not always mean determinism.

It is difficult to know what to make of the idea that “a logically consis-
tent sequence of propositions can have only one outcome” or of its relation
to negation completeness.

Other theological invocations of Gödel are more easily made sense of.
The following reflections by Daniel Graves are taken from an essay on the
“Revolution against evolution” website:

Gödel showed that “it is impossible to establish the internal
logical consistency of a very large class of deductive systems—
elementary arithmetic, for example—unless one adopts princi-
ples of reasoning so complex that their internal consistency is
as open to doubt as that of the systems themselves.” (Here the
author is quoting [Nagel and Newman 59]). In short, we can
have no certitude that our most cherished systems of math are
free from internal contradiction.

Take note! He did not prove a contradictory statement, that
A = non-A, (the kind of thinking that occurs in many East-
ern religions). Instead, he showed that no system can decide
between a certain A and non-A, even where A is known to be
true. Any finite system with sufficient power to support a full
number theory cannot be self-contained.

Judeo-Christianity has long held that truth is above mere rea-
son. Spiritual truth, we are taught, can be apprehended only
by the spirit. This, too, is as it should be. The Gödelian pic-
ture fits what Christians believe about the universe. Had he
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been able to show that self-proof was possible, we would be
in deep trouble. As noted above, the universe could then be
self-explanatory.

As it stands, the very real infinities and paradoxes of nature
demand something higher, different in kind, more powerful, to
explain them just as every logic set needs a higher logic set to
prove and explain elements within it.

This lesson from Gödel’s proof is one reason I believe that no
finite system, even one as vast as the universe, can ultimately
satisfy the questions it raises.

A main component of these reflections is the observation that any con-
sistent system incorporating arithmetic cannot prove itself consistent and
cannot answer every question it raises, and is in these respects “not self-
contained.” It is only in a wider, stronger system that every question raised
by the first system can be answered and more besides, and the first sys-
tem can also be proved consistent. As a description of the incompleteness
theorem, this is unobjectionable, and in fact in his 1931 paper Gödel had
a footnote 48a that should be quite congenial to the author of passage
quoted:

As will be shown in Part II of this paper, the true reason for the
incompleteness inherent in all formal systems of mathematics
is that the formation of ever higher types can be continued into
the transfinite (see Hilbert 1926, page 184), while in any formal
system at most denumerably many of them are available. For
it can be shown that the undecidable propositions constructed
here become decidable whenever appropriate higher types are
added (for example, the type ω to the system P). An analogous
situation prevails for the axiom system of set theory.

While this part of Graves’ comments is thus unobjectionable, they are
highly dubious in other aspects. The idea that the consistency of arith-
metic is in doubt will be commented on in Chapter 6. It is not clear that
this idea is theologically relevant. The formulation “no system can decide
between a certain A and non-A” is incorrect, since there is no A such that
no system can decide between A and non-A, but rather for any given sys-
tem there is an A depending on the system such that the system cannot
decide between A and non-A. But the main thrust of the passage is (unsur-
prisingly) to point to the incompleteness theorem as providing an analogy
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to a Christian perception of the relation between the universe and God:
the universe needs something higher to explain it. Finding such analogies
is perfectly legitimate, but of course it is tendentious in the extreme to
speak of analogies as “lessons.” It is also obscure on what grounds the
author claims that “Had he been able to show that self-proof was possible,
we would be in deep trouble.” If “self-proof” means a consistency proof for
S carried out within S itself, it is difficult to believe that any theologian
would have concluded from a consistency proof for PA carried out within
PA that since arithmetic needs nothing higher than itself to support or
explain it, neither does the universe, and so God is unnecessary.

The author makes a further comment:

As a third implication of Gödel’s theorem, faith is shown to
be (ultimately) the only possible response to reality. Michael
Guillen has spelled out this implication: “the only possible way
of avowing an unprovable truth, mathematical or otherwise, is
to accept it as an article of faith.” In other words, scientists
are as subject to belief as non-scientists. [The reference is to
Bridges to Infinity, Los Angeles: Tarcher, 1983, p.117.]

Here, the reference to Gödel’s theorem is pointless. That science in-
volves faith is a standard argument in discussions of theology and religion,
but one to which Gödel’s theorem is irrelevant. As much or as little faith
is needed to accept the axioms of a theory whether or not that theory is
complete and the necessity of accepting some basic principles without proof
is not something that was revealed by Gödel’s theorem.

Another example of a theological invocation of Gödel’s theorem is given
by the following comments by Najamuddin Mohammed:

It is pointed out that, no matter how you describe the world
(with logical rules) there will always be “some things” that you
cannot determine as true or false. And whether you select the
answer to these “some things” as true or false doesn’t affect the
validity of your logical rules. Strange but true!

For example let’s say: you and I have agreed upon a set of
logical rules, then there will always be some thing, lets call it
A, that we cannot determine as true or false, using our logical
rules. You can take A to be true and I can take A to be false,
but in either case we are both logically consistent with our new
set of logical rules respectively.
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But now we have two sets of self-consistent rules and again
there will always be something called B that we cannot agree
upon....and so on. This is the basis of Gödel’s Incompleteness
Theorem.

If we rely on logic or reason alone we can end up in utter confu-
sion, with many contradictory but logically self-consistent sys-
tems of reasoning/logic. Which is correct? Does everything
depend on our current psychological disposition as to what is
right and wrong? Correctness has no meaning in these cases,
all this can lead to agnostic and atheistic stances.

There is a similarity between these reflections and the ideas about
a “postmodern condition” created by the incompleteness theorem com-
mented on in Section 2.8. Incompleteness, it is argued, leads to a profu-
sion of different consistent theories, and nobody knows where truth—or
“truth”—is to be had. Thus, reason alone cannot put us on the right path,
and religious faith is the way to go. Again, the weakness of this line of
thought is that there is not in fact any such branching off into various
directions in mathematical thinking, no floundering in a sea of undecid-
ability. The “utter confusion” in mathematical thinking is a theological
dream only.

What remains to be considered in connection with theological invoca-
tions of the incompleteness theorem are two lines of thought that are not
specifically theological but are often thought congenial from a theological
point of view: the skeptical conclusions thought to follow from the second
incompleteness theorem, and the conclusions about the nature of the hu-
man mind claimed to follow from the first incompleteness theorem. These
will be considered in later chapters.
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5
Skepticism and Confidence

5.1 The Second Incompleteness Theorem

The Discovery of the Theorem

Gödel first presented his incompleteness theorem at a conference on “Epis-
temology of the exact sciences” in 1930. Gödel was then not yet 25 years
old, so he is one of a considerable number of mathematicians and logicians
who have made major discoveries at an early age. Among those present
was the Hungarian mathematician John von Neumann, three years Gödel’s
senior, one of the great names of twentieth-century mathematics and the
subject of various anecdotes about his remarkable powers of quick appre-
hension. It appears that he was the one participant at the conference who
immediately understood Gödel’s proof. At this point Gödel had not yet
arrived at his second incompleteness theorem, and his proof of the first
incompleteness theorem was not applicable to PA, but only to somewhat
stronger theories. His proof did, however, establish that assuming a theory
S to which the proof applied to be consistent, it follows that the Gödel sen-
tence G for S is unprovable in S. Reflecting on this after the conference,
von Neumann realized that the argument establishing the implication “if
S is consistent, then G is not provable in S” can be carried out within S

itself. But then, since G is equivalent in S to “G is not provable in S,” it
follows that if S proves the statement ConS expressing “S is consistent”
in the language of S, S proves G, and hence is in fact inconsistent. Thus,
the second incompleteness theorem follows: if S is consistent, ConS is not
provable in S. By the time von Neumann had discovered this and written
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to Gödel about it, Gödel had himself already made the same discovery and
included it in his recently accepted 1931 paper.

Central to this proof of the second incompleteness theorem is the notion
of an ordinary mathematical proof being formalizable in a certain formal
system. This means that for every step in the proof there is a corresponding
series of applications of formal rules of inference in the system, so that the
conclusion of the proof, when expressed in the language of the system, is
also a theorem of the system. At the time of Gödel’s proof, this notion was
familiar to logicians and philosophers of mathematics through the work
of Gottlob Frege, Russell and Whitehead, Hilbert, and others, so Gödel
could take it for granted in arguing that the proof of the first half of the
incompleteness theorem for P—“if P is consistent then G is not provable
in P”—was formalizable in P itself.

In fact, Gödel only sketched the proof of the second incompleteness
theorem in his paper. To prove the second (as opposed to the first) incom-
pleteness theorem for a formal system S, we definitely need to arithmetize
the syntax of S, and reason about S in S itself, since this is required to
even express “S is consistent” in the language of S. This arithmetiza-
tion was carried out in detail in Gödel’s paper, but we then need to verify
that the proof of the implication “if S is consistent then G is unprovable
in S” is indeed formalizable in S. In his paper, Gödel only presented
this as a plausible claim, noting that the proof of the first incompleteness
theorem only used elementary arithmetical reasoning of a kind formaliz-
able in the system P for which he carried out his proof. In the planned
follow-up to his paper, he intended to give a full proof of the second in-
completeness theorem. Part II of the paper never appeared, for the in-
formal argument Gödel gave was in fact quite convincing to his readers,
and furthermore, in 1939, in the two-volume work Grundlagen der Mathe-
matik (Foundations of Mathematics) by Paul Bernays and David Hilbert,
a detailed proof was given. At that point, the general concept of a for-
mal system had been clarified through the work of Turing and Church,
yielding the general formulation of the incompleteness theorem that we
know today.

For the proof of the second incompleteness theorem, what was needed
was to show that the implication “if ConS then G” is provable in S. The
converse implication, “if G then ConS ,” is much more easily shown to be
provable in S. All that is needed is to formalize in S the argument that
G implies that G is not provable in S, and so it also implies that S is
consistent, since everything is provable in an inconsistent system. Thus, G
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and ConS are equivalent, and this equivalence is provable in S. It follows
that we know the Gödel sentence G for a formal system to be true if and
only if we know the system to be consistent.

That G and ConS are equivalent in S merits underlining, for two rea-
sons. First, it is often said that Gödel’s proof shows G to be true, or to
be “in some sense” true. But the proof does not show G to be true. What
we learn from the proof is that G is true if and only if S is consistent.
In this observation, there is no reason to use any such formulation as “in
some sense true”—if S is consistent, G is true in the ordinary mathematical
sense of “true,” as when we say that Goldbach’s conjecture is true if and
only if every even number greater than 2 is the sum of two primes. Second,
Gödel’s proof does not show that there is any arithmetical statement at
all that we know to be true but is not provable in S, since the statement
“ConS if and only if G” is provable in S itself, for the theories S here at
issue. For many theories S we do know that S is consistent, and hence
know G to be true, but there is nothing in Gödel’s proof that shows S to
be consistent.

Another aspect of the second incompleteness theorem that needs to be
emphasized is that it does not show that S can only be proved consistent
in a system that is stronger than S. To say that S is consistent is not
to endorse the axioms of S, and a proof that S is consistent need not use
the axioms of S itself. An example worth keeping in mind is that by the
second incompleteness theorem, PA + not-ConPA is consistent, given that
PA is. It would be unfortunate if we could only prove the consistency of
this theory in a stronger theory, one that in its arithmetical component
proves every theorem of PA + not-ConPA. Instead, we prove PA + not-
ConPA consistent by proving PA consistent, and thus prove the consistency
of this theory in an incompatible theory.

Here it should be noted that in logic, PA + ConS is sometimes said
to be stronger than S “in the sense of interpretability.” The completeness
theorem for first-order logic (see Chapter 7) implies that every consistent
first-order theory S has a model, a mathematical structure in which all
the axioms of S are true. A refinement of this theorem shows that such
a model can in fact be defined in PA and the axioms of S can be proved
to hold in PA + ConS when interpreted in terms of this model. Thus,
for example, we can define in PA a certain arithmetical relation such that
when we interpret the symbol for set membership in a sentence of ZFC as
referring to this relation, A′ is provable in PA + ConZFC for every theo-
rem A of ZFC, where A′ is the resulting arithmetical interpretation of A.
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This does not mean that every theorem in the arithmetical component of
ZFC is provable in PA + ConZFC. Suppose, for example, that the formal-
ization A in the language of ZFC of the twin prime conjecture (a certain
statement about finite sets, which we know to be true if and only if the
twin prime conjecture is true) is provable in ZFC. Its translation A′ is then
provable in PA + ConZFC. There is no guarantee, however, that A′ is
provably equivalent in PA to the twin prime conjecture itself. The transla-
tion A′ does not preserve the arithmetical meaning of A. Indeed, there are
statements A in the arithmetical component of ZFC such that A is true
but A′ false (such A are undecidable in ZFC). However, if A is a Goldbach-
like statement in the arithmetical component of ZFC, not only A′, but the
arithmetical statement whose meaning A captures, is provable in PA +
ConZFC.

The proof of the second incompleteness theorem in the Grundlagen did
not answer every question about how to formulate and prove the theorem in
complete generality, and it was only in 1960 that Solomon Feferman cleared
up the remaining areas of uncertainty (in his paper “Arithmetization of
Metamathematics in a General Setting”). However, in the case of the
theories actually used and studied in logic and mathematics, like PA or
ZFC, it has been clear since the 1930s how to formulate and prove the
second incompleteness theorem.

Gödel’s original proof of the second incompleteness theorem is still the
most important, in terms of the insight it gives into the theorem and its
range of application, but there are several other proofs of the theorem
for specific theories, again typically PA and ZFC, in the logical literature.
These other proofs, however, are highly technical.

Some Consequences

The consistency of any theory T is of course provable in other theories, in
the sense that these other theories have among their theorems the statement
“T is consistent” (which may or may not be true). For example, if we add
the axiom ConT to PA we get a theory in which the consistency of T is
provable. To reiterate, if T is consistent, PA + ConT is stronger than T in
one respect, since it proves an arithmetical theorem not provable in T , but
at the same time T may prove, even in its arithmetical component, any
number of (non-Goldbach-like) theorems not provable in PA.

The observation that the consistency of T is provable in PA + ConT is
not as pointless as it may seem, since it serves to underline an important
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distinction. The second incompleteness theorem is a theorem about formal
provability (which is always relative to some formal system), showing that
ConT is not (for the T at issue) provable in T itself. That is, it shows
that there is no formal derivation of ConT in the theory T . It does not
tell us whether “T is consistent” can be proved in the sense of being shown
to be true by a conclusive argument, or by an argument acceptable to
mathematicians. Neither the provability of ConT in PA + ConT nor the
unprovability of ConT in T itself has any immediate implications for the
question whether it is possible to demonstrate the truth of ConT to the
satisfaction of the mathematical community.

Another aspect of this distinction deserves a comment. Since it is very
easy to find a theory in which the consistency of T is formally provable, to
say that ConT cannot be formally proved in T itself is to make a stronger
statement than one might naturally suppose. It is not just a matter of T

lacking the means to analyze or justify itself, but one of T not being able
to consistently assert its own consistency. Using Gödel’s fixpoint construc-
tion described in Section 2.7, we can produce an arithmetical statement C

which formalizes “this sentence is consistent with the axioms of PA.” Thus,
the theory PA + C postulates its own consistency (without attempting any
analysis or justification), and so by the second incompleteness theorem, it
follows that PA + C is in fact inconsistent. The unprovability of consis-
tency might thus just as well be called the unassertibility of consistency.
A consistent theory T cannot postulate its own consistency, although the
consistency of T can be postulated in another consistent theory. (An exer-
cise for the reader: Is it possible to have a pair of consistent theories S and
T such that each postulates the consistency of the other? It follows from
what has been said above that the answer is no.)

Using the second incompleteness theorem to show that a theory is in-
consistent since it proves its own consistency is not uncommon in logic,
although the interest of such proofs usually lies in some positive aspect of
the argument. An illustration of this is given by Löb’s theorem. Suppose
we produce a provable fixpoint for the property of being a theorem of PA,
instead of (as in Gödel’s proof) the property of not being theorem of PA.
In other words, let H (for Leon Henkin, who first raised this question) be
an arithmetical statement formalizing “this statement is provable in PA.”
Is H provable in PA or not? Reflecting on the meaning of H only yields
that H is true if and only if it is provable in PA, which doesn’t get us
anywhere, and it may at first seem hopeless to decide whether this strange
self-referential sentence is provable in PA or not.
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Löb solved the question of the provability of H by showing that it holds
more generally that if PA proves “if PA proves A then A,” then PA proves
A (so that in particular the Henkin sentence is indeed provable in PA).
To see this, consider the theory PA + not-A. We are assuming that PA
proves “if PA proves A then A,” which implies “if not-A then PA does
not prove A.” But this in turn implies “if not-A then PA + not-A is
consistent,” so PA + not-A proves the consistency of PA + not-A, and
thus is in fact inconsistent, implying that PA proves A. The same argu-
ment applies to any theory T for which the second incompleteness theorem
holds.

The second incompleteness theorem is a special case of Löb’s theorem,
as we see by choosing A in the formulation of the theorem as a logical
contradiction “B and not-B.” For such an A, “PA proves A” is the same
as saying “PA is inconsistent,” and any hypothetical statement “if C then
A” is logically equivalent to not-C. Thus, Löb’s theorem tells us that if PA
proves “PA is not inconsistent” then PA is inconsistent, or in other words,
if PA is consistent then PA does not prove “PA is consistent.”

Löb’s theorem gives us a rather odd principle for proving theorems
about the natural numbers. In order to prove A, it is admissible to assume
as a premise that A is provable in PA, as long as the argument is one that
can be formalized in PA. For if there is a proof in PA of “if there is a proof
in PA of A then A,” then there is a proof in PA of A. A similar principle
holds, for example, for ZFC. This principle doesn’t have any known ap-
plication in proving any ordinary mathematical theorems about primes or
other matters of traditional mathematical interest, but it does have uses
in logic.

Löb’s principle may seem baffling rather than just odd. How can it
be admissible, in proving A, to assume that A is provable in PA? After
all, whatever is provable in PA is true, so can’t we then conclude with-
out further ado that A is true, and so prove A without doing any rea-
soning at all? The essential point here is that it is admissible to assume
that A is provable in PA when proving A only if the reasoning leading
from the assumption that A is provable in PA to the conclusion A can
in fact be carried out within PA. That everything provable in PA is true
is not something that can be established within PA itself, as is shown
by the second incompleteness theorem. To say that, for example, 0 =
1 is true if provable in PA is (given that 0 is not equal to 1) the same
as saying that 0 = 1 is not provable in PA, or in other words that PA
is consistent.
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Theories That Almost Prove Their Own Consistency

Since PA is consistent, it does not prove its own consistency. But if we
choose any finite number of axioms of PA, the consistency of that finite
set of axioms is provable in PA. The same is true for ZFC: if we take any
finite set of axioms of ZFC, their consistency can be proved in ZFC.

If a theory is inconsistent, there is a proof of a logical contradiction
from the axioms of the theory. For theories such as PA and ZFC, which
formalize proofs that we actually carry out in mathematics, a proof is a
finite sequence and can use only finitely many axioms of the theory. So if
every finite subset of the axioms of the theory is consistent, then so is the
whole theory. This easy argument can be carried out within PA, so it is
provable in PA that if every finite subset of the axioms of PA is consistent,
then so is PA. So if PA proves every finite set of PA-axioms to be consistent,
then why does PA not prove itself consistent?

The answer lies in an ambiguity in the formulation “PA proves every
finite set of PA-axioms to be consistent.” What is true is that for any
finite set M of axioms of PA, PA proves “the theory with axioms M is
consistent.” It is not the case however that PA proves the statement “for
any finite set M of axioms of PA, the theory with axioms M is consistent.”
This distinction, which does not correspond to anything in ordinary infor-
mal talk about proofs and consistency, is a reminder that there are some
subtleties connected with Gödel’s theorem that may or may not be relevant
to the many philosophical or informal ideas associated with the theorem.
We will return to this point in Section 6.4, about “understanding one’s
own mind.”

5.2 Skepticism

The incompleteness theorem is often thought to support some form of skep-
ticism with regard to mathematics. It is argued either that we cannot,
strictly speaking, prove anything in mathematics or that the consistency
of theories like PA or ZF is shown to be doubtful by the theorem.

In many cases no explanation is given of how the skeptical conclusion is
supposed to follow. Thus, the Encyclopedia Britannica says mysteriously
of Gödel’s proof that it

...states that within any rigidly logical mathematical system
there are propositions (or questions) that cannot be proved or
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disproved on the basis of the axioms within that system and
that, therefore, it is uncertain that the basic axioms of arith-
metic will not give rise to contradictions.

Other peculiar aspects of this comment aside (it is actually borrowed
from Carl Boyer’s and Uta Merzbach’s History of Mathematics), the abrupt
conclusion from incompleteness to possible inconsistency has no immedi-
ately apparent rational basis, and none is suggested in the article. Similarly,
we find such comments as

By Gödel’s theorem, a system is either incomplete or inconsis-
tent. Thus, logically speaking, it is impossible for us to fully
“prove” any proposition.

The occurrence in such remarks of phrases like “logically speaking”
is a noteworthy feature of many startling non sequiturs inspired by the
incompleteness theorem.

When accompanied by an intelligible argument, skeptical conclusions
based on Gödel’s work usually specifically invoke the second incompleteness
theorem. Thus, Nagel and Newman [Nagel and Newman 59, p. 6] state
that Gödel proves

that it is impossible to establish the internal logical consistency
of a very large class of deductive systems—elementary arith-
metic, for example—unless one adopts principles of reasoning
so complex that their internal consistency is as open to doubt
as that of the systems themselves.

Other commentators go further. Morris Kline, in Mathematics: The
Loss of Certainty, states that “Gödel’s result on consistency says that we
cannot prove consistency in any approach to mathematics by safe logical
principles.”

There are two main ingredients in such reflections: the idea that the
consistency of some or all of the formal systems we use in mathematics
is doubtful, and the idea that the consistency of these systems cannot be
proved in the same sense as other mathematical statements can be proved.
For a perspective on these ideas, let us begin with the matter of doubt.
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The Irrelevance of Gödel’s Theorem to Doubts

Nothing in Gödel’s theorem in any way contradicts the view that there
is no doubt whatever about the consistency of any of the formal sys-
tems that we use in mathematics. Indeed, nothing in Gödel’s theorem
is in any way incompatible with the claim that we have absolutely certain
knowledge of the truth of the axioms of these systems, and therewith of
their consistency.

In considering this point, we need to distinguish between two things:
what degree of skepticism or confidence regarding mathematical axioms or
methods of reasoning is justifiable or reasonable, and what bearing Gödel’s
theorem has on the matter. Perhaps we take a dim view of the claim that
we know with absolute certainty the truth of, say, the axioms of ZFC, but
how can we use Gödel’s theorem to criticize this claim? Can we direct at
the claim the telling criticism that if we know with absolute certainty that
the axioms of ZFC are true, then the consistency of ZFC must be provable
in ZFC itself? No, because this is not a telling criticism at all. Why
should there be a proof of the consistency of ZFC in ZFC just because
we know with absolute certainty that the axioms of ZFC are true (and
hence consistent)? Obviously, we cannot prove everything in mathematics.
We don’t need Gödel’s theorem to tell us that we must adopt some basic
principles without proof. And given that the axioms of ZFC are so utterly
compelling, so obviously true in the world of sets, we can do no better than
adopt these axioms as our starting point. Since the axioms are true, they
are also consistent.

Again, the point at issue is not whether such a view of the axioms of ZFC
is justified, but whether it makes good sense to appeal to the incompleteness
theorem in criticism of it. If the axioms of ZFC are manifestly true, they
are obviously consistent, although there is no reason to expect a consistency
proof for ZFC in ZFC.

From the point of view of a skeptic about the consistency of ZFC, it
is on closer inspection also unclear what is supposed to be the relevance
of the second incompleteness theorem. What would be the interest of a
consistency proof for ZFC given in ZFC? Since the consistency of ZFC is
precisely what is in question, there is no reason to expect such a proof to
carry any weight.

So if we have no doubts about the consistency of ZFC, there is nothing
in the second incompleteness theorem to give rise to any such doubts. And
if we do have doubts about the consistency of ZFC, we have no reason
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to believe that a consistency proof for ZFC formalizable in ZFC would do
anything to remove those doubts.

The Tradition of Finitism

Hilbert had the idea of proving the consistency of strong theories like ZFC
on the basis of very weak mathematical assumptions and finitistic rea-
soning, without assuming the existence of infinite sets and making only
restricted use of logical principles. The second incompleteness theorem
does indeed establish that we cannot prove the consistency even of PA us-
ing only the kind of reasoning that Hilbert had in mind. So if we take
the view that only finitistic reasoning in Hilbert’s sense embodies “safe
logical principles” and is not open to doubt as regards its consistency, or
that only finitistic proofs are really proofs, we will indeed conclude that
the consistency of even elementary arithmetic cannot be proved by safe
logical principles, and so on. But such a view is in no way a conclu-
sion from Gödel’s theorem. It is a particular doctrine in the philosophy
of mathematics that one brings to Gödel’s theorem. Those who do not
believe that only finitistic reasoning is unproblematically correct or mean-
ingful can accept with equanimity that there is no finitistic consistency
proof for PA and observe that the consistency of PA is easily provable by
other means.

It should also be noted that from a less narrow viewpoint than that
of finitism, consistency is only a weak soundness condition. That S is
consistent does not, as we know from the second incompleteness theorem
itself, rule out that S proves false theorems. For example, PA + not-ConPA

is consistent but falsely proves the inconsistency of PA (and thus of itself).
If we wish to justify our theories, a mere consistency proof will not take
us far.

Not only philosophers, but also mathematicians, not infrequently seem
to get carried away by the philosophical legacy of Hilbert and the decades
of rhetoric surrounding the incompleteness theorem and, without explicitly
endorsing any finitistic doctrines, attach a large significance to the impos-
sibility of giving a finitistic consistency proof for PA. A consistency proof,
they say, can only be a relative consistency proof, showing, for example,
that if ZFC is consistent, then PA is consistent. We need next to take a
closer look at the idea that consistency proofs are somehow not just ordi-
nary mathematical proofs, or that consistency statements cannot be proved
in the sense that other mathematical statements can be proved.
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5.3 Consistency Proofs

There are many consistency proofs in the logical literature. Georg Kreisel
has made the point that these proofs often prove something a great deal
more interesting than mere consistency, but putting one’s finger on just
what that something is can be difficult. An example of this is the con-
sistency proof for PA that was given by Gerhard Gentzen in 1935. This
proof used an induction principle for an ordering relation much “longer”
than that of the natural number series, but applied that induction principle
only to a restricted class of properties. Thus, it extended PA in one di-
rection but restricted it in another. Gentzen’s proof, along with the whole
subject of “ordinal analysis” to which it gave rise, is very technical and
stands in no simple relation to any doubts that people may have about the
consistency of PA.

Another famous example is Gödel’s proof of the “relative consistency”
of the axiom of choice in set theory. This is not a consistency proof, but is
usually described as a proof of the implication “if ZF is consistent then ZFC
is consistent.” In this formulation, Gödel’s result conveys no information
of interest to anybody who regards ZFC as obviously consistent. But, in
fact, the proof establishes much more and shows, for example, that every
arithmetical theorem that can be proved using the axiom of choice can be
proved without using that axiom—a fact that is by no means obvious, even
given the consistency of ZFC.

These two famous results from logic have been mentioned here chiefly in
order to emphasize that the content and interest of “consistency proofs” or
“relative consistency proofs” in mathematical logic is often a technical and
difficult matter. The remaining comments will concern only consistency
proofs of a different kind. These proofs are mathematically essentially
trivial, and they prove much more than the consistency of a theory, namely
that all theorems of the theory are true.

Proving ZFC Consistent

In the case of ZFC, there is no technical consistency proof in logic corre-
sponding to Gentzen’s consistency proof for PA. The consistency of ZFC is,
however, an immediate consequence of various much stronger statements
than “ZFC is consistent” and follows in particular from set-theoretical prin-
ciples of a kind known as axioms of infinity (see Section 8.3). Because such
axioms (with the exception of the basic axiom of infinity which is part of
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ZFC) are not ordinarily used in mathematics to prove theorems, it is a per-
fectly reasonable observation that these consistency proofs for ZFC are not
ordinary mathematical proofs, and that such proofs do not establish that
the consistency of ZFC can be proved in the same sense as Fermat’s Last
Theorem has been proved. This is so whether or not we regard axioms of
infinity as mathematically justified. As long as mathematicians, with very
few exceptions, do not make use of axioms of infinity in proving theorems,
it makes sense to observe that there is no “ordinary mathematical proof”
of the consistency of ZFC.

Similar comments apply to what is known as proofs by reflection of the
consistency of ZFC. As has been noted, for every finite set M of axioms of
ZFC, it is provable in ZFC that M is consistent. So, it may seem, if we are
prepared in mathematics to accept every statement that we know to be a
theorem of ZFC as proved, we should accept it as proved that every finite
set of axioms of ZFC is consistent, and thereby that ZFC is consistent.
To examine this line of argument would be to open a philosophical can of
worms that had better be set aside in this context. So we will just note
again that whatever the merits of such a consistency proof by reflection, it
does not much resemble proofs in ordinary mathematics.

On the other hand, it is a simple matter to prove PA consistent using
only ordinary mathematics. So in order to take a closer look at the idea
that consistency proofs as such are necessarily more problematic, more
dubious, or less robust than other mathematical proofs, we turn to the
case of arithmetic.

Proving PA Sound

As an example of a trivial consistency proof that falls well within ordinary
mathematics, consider the question of how to prove the consistency of the
theories in the sequence

PA,PA1,PA2, . . .

where PA1 is obtained by adding the axiom “PA is consistent” to PA, PA2

adds the axiom “PA1 is consistent” to PA1, and so on.
We say that a theory T is arithmetically sound if every arithmetical

theorem of T is true. An arithmetically sound theory is consistent, since
an inconsistent theory proves the false arithmetical statement 0 = 1. Fur-
thermore, if T is arithmetically sound, the theory T+ “T is consistent” is
also arithmetically sound. Given that PA is arithmetically sound, we find
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that all of the theories in the above sequence are sound, and hence consis-
tent. And, in fact, very much longer sequences of theories can be shown to
be consistent by the same reasoning. (For some hints about what can be
meant by “longer sequences” here, see Section 5.4.)

Note that the knowledge that PA is consistent is not enough to justify
the consistency of the theories in the sequence after the first, since we know
from the incompleteness theorem that there are consistent theories that
prove their own inconsistency. Thus, for example, the theory T obtained
by adding to PA the axiom “PA is inconsistent” is consistent, but if we add
to T the axiom “T is consistent” we get an inconsistent theory.

So to prove the theories in the sequence to be consistent, it is enough
to prove that PA is arithmetically sound. What does this involve? Well,
we need to define “true arithmetical sentence,” then we need to show that
the axioms of PA are all true arithmetical sentences and that the rules of
reasoning of PA lead from true premises to true conclusions. Inevitably,
this involves some logical and mathematical formalities, and so falls outside
the treatment in this book. We will note the following aspects of the proof.

First, recall that the concept of “true arithmetical sentence” is not
defined relative to any formal system. Instead, as explained in Section 2.4,
what we get from a mathematical definition of the concept of truth for
arithmetical sentences is simply that Goldbach’s conjecture is true if and
only if every even number greater than 2 is the sum of two primes, and
similarly for other arithmetical sentences.

Second, the proof that the axioms of PA are true and the rules of
reasoning of PA lead from true statements to true statements uses just
the same axioms and rules of reasoning as those embodied in PA, plus
a little bit of set theory or some mathematics at a comparable degree of
abstraction. The proof is sometimes said to be carried out in ZFC, but
logically speaking this is enormous overkill. Only a very much weaker set
theory is needed to carry out the proof, specifically a fragment of ZFC
known as ACA. Although mathematicians in general have no reason to
be at all familiar with the formulation of ACA, the methods of reasoning
formalized in ACA are commonly used in mathematics.

So what we have here is a mathematical proof, formalizable in the weak
set theory ACA, that all the theories in the sequence PA, PA1,... are
consistent. In particular, we have a mathematical proof, using ordinary
mathematical principles, that PA is consistent.

A common objection to this description of what has been achieved is
that the proof is really no proof of consistency, for ACA is logically stronger
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than all of the theories in the sequence, and if we have doubts about the
consistency of PA or any of the other theories in the sequence, these doubts
will extend to the consistency of ACA. So all we can say that the proof
shows is the consistency of the theories in the sequence assuming the con-
sistency of ACA. In other words, the proof shows that if ACA is consistent,
then PA and the other theories in the sequence are consistent.

This whole line of thought is predicated on the assumption that we
have doubts about the consistency of PA and are trying to allay those
doubts by means of a consistency proof. But when we regard the axioms
and principles formalized in PA and ACA as straightforwardly part of our
mathematical knowledge, the soundness proof for PA (and the other theo-
ries in the sequence) is not intended to allay any doubts at all. It is quite
simply an essentially trivial proof of a basic result in logic.

There is, therefore, no basis in Gödel’s theorem for the idea that a con-
sistency proof—in this case for PA and the other theories in the sequence—
is not a proof in exactly the same sense as any other mathematical proof
is a proof. Every mathematical proof is based on certain basic axioms
and rules of reasoning. A consistency proof such as the one sketched by
no means yields a justification of the axioms and rules of reasoning for-
malized in PA. It is just a proof of an arithmetical statement, a proof
which establishes the statement as true in the same way and in the same
sense of “establish” as do other proofs of arithmetical statements using
those same axioms and rules of reasoning. In regarding the proof as es-
tablishing the consistency of PA, we are of course drawing on our con-
fidence in the mathematical axioms and rules of reasoning formalized in
ACA—not just confidence in their consistency, but in their mathemat-
ical correctness (which might mean, in this context, their arithmetical
soundness).

Those who do not regard PA and ACA as straightforwardly formalizing
a part of our mathematical knowledge may, of course, have every reason to
doubt any and all results proved in ACA, including the consistency proof
for PA. So let us take a closer look at this skeptical perspective.

The Skeptical Perspective

If we do have doubts about the consistency of a theory T and seek to allay
those doubts by means of a consistency proof for T in a theory S, then
indeed we need to have confidence in the reasoning used in that particular
proof in S. And if all we know is that there is some proof in S of the
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consistency of T , we need to have confidence in the consistency of S in
order to conclude that T is consistent.

Such a skeptical perspective is not peculiar to those who have or claim to
have doubts about the consistency of ACA or PA. Whatever our view of PA,
ACA, ZFC, and other theories, there will be cases where we by no means
regard the mathematical principles formalized in a theory T as evident or
acceptable and have doubts even about the consistency of T . For example,
the theory obtained by adding the axiom “PA is inconsistent” to PA has
a false axiom, and without knowledge of Gödel’s theorem it is natural to
have doubts about its consistency. But as we know, the consistency of this
theory can be proved, as a consequence of the consistency of PA.

What is striking about skepticism with regard to theories like PA and
ACA is that it is rarely observed in any ordinary mathematical contexts. In
particular, an insistence on a hypothetical interpretation of an arithmetical
theorem (as in the claim that the above consistency proof only shows “if
ACA is consistent then PA is consistent”) is rarely heard from mathemati-
cians or anybody else in connection with proofs of ordinary arithmetical
statements. For example, one never encounters as a response to the claim
“Andrew Wiles proved Fermat’s Last Theorem” the objection “No, no,
that’s not possible—all he proved was that if ZFC is consistent, then there
is no solution in positive integers to xn+yn = zn for n > 2.” The reason for
this difference is not that Wiles’ proof was so elementary that the doubts
affecting the consistency proof for PA do not arise. On the contrary, Wiles’
proof involves heavy mathematical machinery, and it is an open question
just what principles are needed to prove the theorem. But it is as true in
the case of Wiles’ proof as in the case of the consistency proof sketched here
that if you have doubts about the consistency of ZFC (assuming this to
be the setting for Wiles’ proof), there is no obvious reason why you should
accept a proof in ZFC of Fermat’s Last Theorem as showing that theorem
to be true.

It may be held that there is always an implicit “if ZFC is consistent”
affixed to an arithmetical theorem proved in ZFC, and similarly for other
theories. In the case of consistency theorems, it might be argued, we need
to make this explicit, so as not to give the misleading impression that we
have given an absolute consistency proof, allaying all doubts about the
consistency of for example PA.

One may wonder, in such a case, why it is not equally important to avoid
giving the misleading impression that Fermat’s Last Theorem has been
proved in any absolute sense. But there is the more substantial question of
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how to make sense of mathematics in general in such hypothetical terms.
Consider the classical result proved in 1837 by Dirichlet, that whenever
the positive integers n and k have no common divisor greater than 1, there
are infinitely many primes in the sequence n, n + k, n + 2k, n + 3k,. . . .
What can we conclude, assuming that we do not accept the mathematical
principles formalized in ACA as valid, from a proof in ACA of Dirichlet’s
theorem? In this case, because Dirichlet’s theorem is not a Goldbach-like
statement, we have no grounds for concluding “if ACA is consistent, there
are infinitely many primes in the sequence n, n + k, n + 2k, n + 3k,. . .
whenever n and k have no common divisor greater than 1.” So just what
does the proof of Dirichlet’s theorem prove?

A further consideration of these matters would take us too far into the
philosophy of mathematics. The basic points argued above can be summed
up as follows. It is indeed perfectly possible to have doubts about the
consistency of a theory T and to seek to eliminate those doubts through a
consistency proof. In such a case we need to carry out the proof in a theory
whose consistency is not equally open to doubt. However, a consistency
proof may just as well be a perfectly ordinary mathematical proof of a
certain fact about a formal system (or, in its arithmetized form, about the
natural numbers), not aiming at allaying doubts about the consistency of
mathematics, any more than proofs of arithmetical theorems in general
are aimed at allaying such doubts. Gödel’s theorem tells us nothing about
what is or is not doubtful in mathematics. To speak of the consistency of
arithmetic as something that cannot be proved makes sense only given a
skeptical attitude towards ordinary mathematics in general.

5.4 Inexhaustibility

Suppose we are not skeptically inclined, but rather accept some formal
system to which the incompleteness theorem applies, say PA or ZFC, as
unproblematically formalizing part of our mathematical knowledge. What
are then the consequences of the second incompleteness theorem?

On this, Gödel commented (Collected Works, vol. III, p. 309, italics in
the original):

It is this theorem [the second incompleteness theorem] which
makes the incompletability of mathematics particularly evident.
For, it makes it impossible that someone should set up a certain
well-defined system of axioms and rules and consistently make
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the following assertion about it: All of these axioms and rules I
perceive (with mathematical certitude) to be correct, and more-
over I believe that they contain all of mathematics. If somebody
makes such a statement he contradicts himself. For if he per-
ceives the axioms under consideration to be correct, he also
perceives (with the same certainty) that they are consistent.
Hence he has a mathematical insight not derivable from his
axioms.

Thus in this case the second incompleteness theorem has the positive
consequence that we can always extend any formal system that we recognize
as sound (in the sense that its axioms are all true statements) to a stronger
system that we also recognize as sound, by adding as a new axiom the
statement that the original system is consistent.

This means that we immediately come up with an infinity of extensions
of our starting theory T , as was illustrated previously for the case T = PA.
Each of the theories PAi in the sequence PA, PA1, PA2,... is obtained by
adding as a new axiom that the preceding theory is consistent. Given that
PA is sound, all of the theories in this sequence are also sound. But we
can say more, for if we form the theory PAω whose axioms are those of PA
together with all of the consistency statements obtained in this way, Pω is
also sound. And the procedure can be continued, for we can now extend
PAω, which is still subject to the incompleteness theorem, to a stronger
theory PAω+1 by adding “PAω is consistent” as a new axiom.

What happens when this process is continued? Whenever we manage
to define a theory like PAω, which is demonstrably sound, given that PA
is sound, we will also be able to extend it to a stronger theory that is
still sound. But then the question arises just when we can prove that a
particular theory obtained in this way is in fact sound. The subject quickly
becomes technical.

In the sequence of theories presented, each theory was obtained from
the preceding one by adding as an axiom that the preceding theory is con-
sistent. Gödel’s remarks apply equally to theories obtained by adding to
a theory T as a new axiom a stronger statement than “T is consistent,”
which still follows from the arithmetical soundness of T . For example, if
every arithmetical theorem of T is true, the same is true for the theory
obtained by adding to T the axiom “T is Σ-sound,” or in other words, “ev-
ery Goldbach-like statement disprovable in T is false.” As in the sequence
of extensions by consistency statements, we get a sequence of sound ex-
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tensions of PA using this way of extending a theory in the sequence. The
theories in this sequence will be logically stronger than the corresponding
theories in the sequence obtained by adding consistency statements. Sim-
ilar but stronger extension principles, known as reflection principles, can
also be formulated.

In this book, we will return to the subject of inexhaustibility in Sec-
tion 6.3, in connection with Gödelian arguments in the philosophy of mind.
The mathematics of repeatedly adding consistency statements is not then
at issue, but instead the argument that our inability to specify any formal
system that exhausts our mathematical knowledge indicates that there is
something essentially nonmechanical about our mathematical thinking.
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Gödel, Minds, and Computers

6.1 Gödel and the UTM

Discussions of appeals to the incompleteness theorem in the philosophy
of mind (“Gödelian arguments”) sometimes refer to machines (comput-
ers), sometimes to formal systems. The two notions are interchangeable in
these discussions, since for any formal system there is a way to program a
computer to systematically generate the theorems of the system, and con-
versely, for any way of programming a computer to generate sentences in
some formal language, there is a corresponding formal system which has
those sentences among its theorems.

One of the most widespread misconceptions about the first incomplete-
ness theorem is that Gödel’s proof of it, when applied to a consistent sys-
tem, shows the Gödel sentence of the system, unprovable in the system it-
self, to be true. Rudy Rucker, in Infinity and the Mind [Rucker 95, p.174],
tells the following misleading story:

The proof of Gödel’s Incompleteness Theorem is so simple, and
so sneaky, that it is almost embarrassing to relate. His basic
procedure is as follows:

1. Someone introduces Gödel to a UTM, a machine that is
supposed to be a Universal Truth Machine, capable of cor-
rectly answering any question at all.

115
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2. Gödel asks for the program and the circuit design of the
UTM. The program may be complicated, but it can only
be finitely long. Call the program P(UTM) for Program
of the Universal Truth Machine.

3. Smiling a little, Gödel writes out the following sentence:
“The machine constructed on the basis of the program
P(UTM) will never say that this sentence is true.” Call
this sentence G for Gödel. Note that G is equivalent to
“UTM will never say G is true.”

4. Now Gödel laughs his high laugh and asks UTM whether
G is true or not.

5. If UTM says G is true, then “UTM will never say G is
true” is false. If “UTM will never say G is true” is false,
then G is false (since G = “UTM will never say G is true”).
So if UTM says G is true, then G is in fact false, and UTM
has made a false statement. So UTM will never say that
G is true, since UTM makes only true statements.

6. We have established that UTM will never say G is true. So
“UTM will never say G is true” is in fact a true statement.
So G is true (since G = “UTM will never say G is true”).

7. “I know a truth that UTM can never utter,” Gödel says.
“I know that G is true. UTM is not truly universal.”

So far Rucker. We can invent a continuation of the story:

8. Gödel’s jaw drops as UTM gravely intones, “I hereby de-
clare that G is true.” “But,” Gödel manages to squawk,
“you’re supposed to always tell the truth.” “Well,” says
UTM, “it seems I don’t.”

Suppose UTM is in fact a machine that always tells the truth, so that
the final exchange can never take place. Gödel still hasn’t demonstrated
that he knows any truth that UTM can never utter. What he knows is only
the implication “if UTM always tells the truth, then G is true.” But this
implication can be uttered by UTM as well. It is only if Gödel has somehow
acquired the knowledge that UTM always tells the truth that he knows the
truth of G. Being told that UTM is “supposed to be” a universal truth
machine does not amount to knowing that UTM always tells the truth.
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The argument put forward in [Lucas 61] to show that for any consistent
formal system S, there is a true statement that we can prove but S can
not, is invalid for the same reason. Lucas wrongly claims that “Gödel’s
theorem states that in any consistent system which is strong enough to
produce simple arithmetic there are formulas which cannot be proved in
the system, but which we can see to be true.” As emphasized in earlier
chapters, the theorem neither states nor implies any such thing. What we
know on the basis of Gödel’s proof of the incompleteness theorem is not
that the Gödel sentence G for a theory S is true, but only the implication
“if S is consistent then G is true.” This implication is provable in S itself,
so there is nothing in Gödel’s proof to show that we know more than can
be proved in S, as far as arithmetic is concerned. (A persistent reader
of Rucker’s book will learn as much from “Excursion Two” at the end of
the book, which gives a presentation of the proof of the incompleteness
theorem.) We do of course know the Gödel sentence of, for example, PA to
be true, since we know PA to be consistent. Whenever we know a theory
S to be consistent, we also know the truth of a statement not provable in
S. But in those cases when we have no idea whether or not S is consistent,
we also have no idea whether or not a Gödel sentence G for S is true, and
if we merely believe or guess S to be consistent, we merely believe or guess
G to be true.

Given that we have no basis for claiming that we (“the human mind”)
can outprove any given consistent formal system, a weaker claim could be
made that there can be no formal system that exactly represents the human
mind as far as its ability to prove arithmetical theorems is concerned. To
test this claim, suppose we specify a theory T , say as ZFC with an added
axiom of infinity (as described in Section 8.3). Can we use Gödel’s theorem
to disprove the claim that the arithmetical theorems of T are precisely those
that the human mind is capable of proving? An attempt to do so fails for
the same reason that the original Lucas argument fails. First, nothing in
the incompleteness theorem rules out that every arithmetical statement
provable in T can also be proved by the human mind. We may not at
the moment know how to prove a given arithmetical theorem of T , but
we can’t use the incompleteness theorem to rule out the possibility that
a proof acceptable to the human mind exists. Second, the incompleteness
theorem does not rule out the possibility that every arithmetical statement
provable by the human mind is provable in T . If we make a suitable choice
of axiom of infinity, it will not be in any way evident to the human mind
that T is consistent, and nothing in Gödel’s theorem gives us any example
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of an arithmetical statement that we can prove or “see to be true” but
which is unprovable in T .

To this standard argument, Lucas responds ([Lucas 96, p. 117]):

The mind does not go round uttering theorems in the hope of
tripping up any machines that may be around. Rather, there
is a claim being seriously maintained by the mechanist that
the mind can be represented by some machine. Before wasting
time on the mechanist’s claim, it is reasonable to ask him some
questions about his machine to see whether his seriously main-
tained claim has serious backing. It is reasonable to ask him
not only what the specification of the machine is, but whether
it is consistent. Unless it is consistent, the claim will not get off
the ground. If it is warranted to be consistent, then that gives
the mind the premise it needs. The consistency of the machine
is established not by the mathematical ability of the mind but
on the word of the mechanist. The mechanist has claimed that
his machine is consistent. If so, it cannot prove its Gödelian
sentence, which the mind can none the less see to be true: if
not, it is out of court anyhow.

These comments are somewhat odd, since they seem to set aside the
question whether Gödel’s theorem can be used to disprove the statement
that T exactly represents human arithmetical ability, quite apart from
whether anybody claims this to be the case. But suppose we adopt the
attitude expressed by Lucas, that the point is what we can argue when
faced with a “seriously maintained claim” that T represents the human
mind. It is then noteworthy that Lucas only speaks of the machine being
“warranted to be consistent.” This is just like the “supposed to always tell
the truth” in the story of the UTM. An earnest claim by “the mechanist”
that the machine is consistent will not give Lucas any grounds for claiming
the Gödel sentence of the machine to be in any sense humanly provable.
Being assured that the machine is consistent gives no support to the claim
that “the mind can see” that it is consistent. We need to distinguish be-
tween “We know that if T is consistent then G is true,” which is true, and
“If T is consistent, then we know that G is true,” which we have no grounds
for claiming. Of course, if Lucas has great confidence in the constructor of
the machine, he will perhaps accept his claim and believe the machine to
be consistent, and so also believe the Gödel sentence of the machine to be
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true, but this in no way amounts to proving the Gödel sentence or “seeing”
it to be true.

6.2 Penrose’s “Second Argument”

Roger Penrose, in his two books The Emperor’s New Mind and Shadows
of the Mind, has argued at length that Gödel’s theorem has implications
for a “science of consciousness.” In Shadows, he presents a Gödelian argu-
ment (“Penrose’s new argument,” “Penrose’s second argument”) aiming to
establish what the Lucas argument does not, that no machine can exactly
represent the ability of the human mind to prove arithmetical theorems.
The presentation of this argument in Shadows is fairly long and involved,
but fortunately Penrose has set out the argument in its essentials in the
electronic journal Psyche ([Penrose 96]):

We try to suppose that the totality of methods of (unassailable)
mathematical reasoning that are in principle humanly accessible
can be encapsulated in some (not necessarily computational)
sound formal system F . A human mathematician, if presented
with F , could argue as follows (bearing in mind that the phrase
“I am F” is merely a shorthand for “F encapsulates all the
humanly accessible methods of mathematical proof”):

(A) “Though I don’t know that I necessarily am F , I conclude
that if I were, then the system F would have to be sound and,
more to the point, F ′ would have to be sound, where F ′ is F

supplemented by the further assertion “I am F .” I perceive
that it follows from the assumption that I am F that the Gödel
statement G(F ′) would have to be true and, furthermore, that
it would not be a consequence of F ′. But I have just perceived
that “if I happened to be F , then G(F ′) would have to be true,”
and perceptions of this nature would be precisely what F ′ is
supposed to achieve. Since I am therefore capable of perceiving
something beyond the powers of F ′, I deduce that, I cannot be
F after all. Moreover, this applies to any other (Gödelizable)
system, in place of F .”

Let us simplify further. Given a formal system F , Penrose invokes a
corresponding mathematical statement (or, with suitable adjustments in
the argument, a rule of inference) IAMF such that
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1. If IAMF then F + IAMF is consistent,

and furthermore,

2. I can prove (or “perceive”): if IAMF then F + IAMF is consistent.

In this formulation, the Gödel sentence for F + IAMF has been replaced
by the corresponding consistency statement, which is usually a good idea
in these arguments, since the Gödel sentence for a theory S is equivalent
in S to “S is consistent,” which is less likely to promote confusion than
the self-referential Gödel sentence. Penrose establishes (1) by way of the
soundness of F + IAMF, but it is only essential to the argument that we
can somehow prove (1). The next premise in the argument is

3. If IAMF then for every A, if I can prove (or “perceive”) A then F

proves A.

It follows from (2) and (3) that if IAMF then F proves “if IAMF then
F + IAMF is consistent.” But then F + IAMF proves that F + IAMF is
consistent, so F+ IAMF is inconsistent. This is incompatible with IAMF,
by (1). So if IAMF is true it is false, so IAMF is false.

The argument is correct in the sense that not-IAMF follows from (1)–
(3) for any F to which the incompleteness theorem applies. Furthermore,
it is easy to find mathematical statements IAMF for which (1)–(3) hold:
just take any statement that we can prove to be false. But of course the
argument is pointless unless we can find such an IAMF for which we have
grounds for claiming

4. If I am F , in the sense that F encapsulates all the humanly accessible
methods of mathematical proof, then IAMF.

Can an IAMF for which (1)–(4) hold be found? Penrose comments:

Of course, one might worry about how an assertion like “I am
F” might be made use of in a logical formal system. In effect,
this is discussed with some care in Shadows, Sections 3.16 and
3.24, in relation to the Sections leading up to 3.16, although
the mode of presentation there is somewhat different from that
given above, and less succinct.

This comment is wildly optimistic. It would lead too far to go into Pen-
rose’s presentation of the “second argument” in Shadows. Commentaries
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on Penrose’s second argument in the literature (such as the contributions
to the debate in Psyche, [Lindström 01], and [Shapiro 03]) differ consid-
erably both in their attempted reconstructions of the argument and in
their diagnoses of where the error lies. Any further contribution to these
commentaries that might be included in this book would essentially only
consist in a prolonged complaint, which few readers would be likely to find
illuminating, that Penrose fails to substantiate the idea that there is any
IAMF for which (1)–(4) hold.

Fortunately, there is little reason to enter into any sustained exam-
ination of Penrose’s arguments on this point, for he comments himself
([Penrose 96, Section 4.2]) that

...I do not regard [the “second argument”] as the ‘real’ Gödelian
reason for disbelieving that computationalism could ever pro-
vide an explanation for the mind—or even for the behavior of
a conscious brain.

Instead, the argument that Penrose considers most persuasive, and to
which he devotes Chapter 2 of Shadows, turns on our inability to fully
specify our arithmetical knowledge.

6.3 Inexhaustibility Revisited

As Gödel emphasized, if we accept a formal system S as a correct formal-
ization of part of our mathematical knowledge, we will also in the same
sense, and with the same justification, accept an extension of that system
obtained by adding as a new axiom “S is consistent.” Since the resulting
system is logically stronger than S, we conclude that we cannot specify any
formal system S that exhausts our mathematical knowledge.

Penrose formulates an equivalent observation in somewhat eccentric
terms as “Conclusion G” in [Penrose 94, p. 76]: “Human mathematicians
are not using a knowably sound algorithm in order to ascertain mathe-
matical truth.” Instead of invoking the second incompleteness theorem,
he applies Turing’s proof of the unsolvability of the halting problem (see
Section 3.3). Penrose’s argument, slightly modified, is the following. If we
know that every theorem of a formal system T of the form “Pi does not
terminate for input i” is true, we can specify a statement of this form which
we know to be true but is not a theorem of T . For we can find an e such
that Pe is a program that given n looks for a theorem in T of the form
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“Pn does not terminate for input n,” and for this e, we know the statement
“Pe does not terminate for input e” to be true but unprovable in T . In this
sense there is no “knowably sound” theory T that proves every “humanly
provable” statement of the form “Pn does not terminate for input n.”

Unlike the Lucas argument, the observation that no “knowably sound”
algorithm or theory exhausts our arithmetical knowledge is not based on
any misunderstanding of the incompleteness theorem or its proof, and un-
like Penrose’s “second argument,” it is not rendered opaque by various
obscurities and uncertainties. But does it tell us anything about the hu-
man mind?

Penrose grants that his Conclusion G is compatible with the assumption
that the human mind is in fact exactly equivalent to some formal system T

as far as its ability to prove arithmetical statements is concerned, although
we could in such a case not prove or perceive the consistency of T (and
perhaps not formulate the axioms of T ). He presents various arguments
against this idea, and indeed the assumption that there is such a T has
little to recommend it. To come to grips with the feeling that Conclusion
G shows that the human mind is in some sense nonalgorithmic, we need to
tackle head on the question whether it shows that it is in fact impossible
for us to program a computer with all of our ability to prove arithmetical
theorems.

It may seem that the answer is obvious, since what conclusion G states
is precisely that we cannot specify any formal system that exhausts our
mathematical knowledge. But there is no reason why programming a com-
puter with all of our ability to prove arithmetical theorems should consist
in specifying such a formal system. To emulate human mathematicians,
the computer also needs to be able to apply precisely the kind of reasoning
that leads us from accepting a formal system T as mathematically correct
to accepting a stronger system as in the same sense correct.

Penrose, in considering this possibility ([Penrose 94, p. 81]), argues that
whatever rules of reasoning of this kind with which we program the robot,
the totality of statements provable by the robot will still be theorems of a
formal system that we recognize as sound, and Conclusion G still applies:
the robot has not been programmed with the sum total of our arithmetical
knowledge and theorem-proving ability.

This argument is inconclusive because in fact the kind of reasoning
that leads us from accepting a formal system T as mathematically correct
to accepting a stronger system as mathematically correct covers a wide
range of both formal and informal principles, some of which are evident



�

�

�

�

�

�

�

�

6.3. Inexhaustibility Revisited 123

and unproblematic, while others are less so. The case where we go from
a theory T that we unhesitatingly accept as correct to the extension T+
“T is consistent” is simple and unproblematic. How could we incorporate
this principle in trying to program a robot mathematician with all of our
arithmetical knowledge? We start by programming the robot with some
basic theory T of arithmetic. To include the extension principle, we might
give the robot a button to press: whenever the button is pressed, the
store of axioms available to the robot is extended by the statement that
its earlier store of axioms is consistent. In searching for a proof of an
arithmetical statement, the robot may press the button any number of
times. Does this make the robot our mathematical equal? No, for since
we recognize that all of the theories obtainable by repeatedly applying
the above principle starting with T are correct, we also recognize that the
union of these theories, which has all of the consistency statements obtained
in this way as axioms, is correct, so we get a new consistency statement
which can not be proved by the robot. But now we’re applying a different
principle: we go from a theory T that we unhesitatingly accept as correct
to an extension of T by infinitely many consistency statements, which we
also unhesitatingly accept as correct. We can program the robot to make
use of this principle as well. But now we find that the robot still does not
match our theorem-proving ability, for we can formulate stronger principles
of extension.

As we continue to formulate stronger and more involved principles for
extending a correct theory to a stronger theory that is still correct, we
are confronted with a number of questions about what is or is not evident
or mathematically acceptable, questions to which different mathematicians
and philosophers will give different answers, and where many would say that
there is no definite answer. To program a robot to perfectly emulate human
mathematicians, we would need to give it a similar range of responses to
these questions. If we manage to do this, the set of theorems provable by
the robot using any of the formally defined extension principles will still
indeed be computably enumerable, but we will have no grounds for the
claim that we as human mathematicians can prove anything not provable
by the robot. We will have succeeded in creating a robot that becomes
just as confused and uncertain as humans do when pondering ever more
complicated or far-reaching ways of extending a correct theory to a stronger
correct theory.

The above brief description of what happens when we start thinking
about various principles for extending a correct theory to a stronger cor-
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rect theory can only be substantiated by going into technicalities. The
interested reader can turn to [Franzén 04] for a sustained exposition.

6.4 Understanding One’s Own Mind

A fairly common invocation of Gödel’s theorem is illustrated by the follow-
ing remark:

According to Gödel’s incompleteness theorem, understanding
our own minds is impossible, yet we have persisted in seeking
this knowledge through the ages!

Like so many similar references to the incompleteness theorem outside
logic and mathematics, this comment, taken literally, is simply mistaken.
“According to” means “as stated or implied by,” and of course Gödel’s
incompleteness theorem neither states nor implies that understanding our
own minds is impossible. But as in the case of other such statements, we
need to understand the above reflection as inspired by the incomplete-
ness theorem rather than as drawing any conclusion from it. Douglas
Hofstadter’s formulation of a similar reflection, in Gödel, Escher, Bach
([Hofstadter 79, p. 697]), has the virtue of making it explicit that the
role of the incompleteness theorem is a matter of inspiration rather than
implication:

The other metaphorical analogue to Gödel’s Theorem which I
find provocative suggests that ultimately, we cannot understand
our own minds/brains .... Just as we cannot see our faces with
our own eyes, is it not inconceivable to expect that we cannot
mirror our complete mental structures in the symbols which
carry them out? All the limitative theorems of mathematics
and the theory of computation suggest that once the ability
to represent your own structure has reached a certain critical
point, that is the kiss of death: it guarantees that you can never
represent yourself totally.

Finding suggestions, metaphors, and analogies in other fields when
studying the human mind is of course perfectly legitimate and may be
quite useful. But it can only be a starting point, and actual theories and
studies of the human mind would be needed to give substance to reflections
like Hofstadter’s. Metaphorical invocations of Gödel’s theorem often suffer
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from the weakness of giving such satisfaction to the human mind that they
tend to be mistaken for incisive and illuminating observations.

The question how to substantiate reflections like Hofstadter’s, and
whether it can be done, will not be considered in this book. However,
this particular category of metaphorical applications of the incompleteness
theorem merits some further comments.

In reflections such as those quoted, it is commonly the second incom-
pleteness theorem that is explicitly or implicitly referred to. The inability
of a formal system S to prove its own consistency is interpreted as an in-
ability of S to sufficiently analyze and justify itself, or as a kind of blind
spot. The system doesn’t “understand itself.”

To this, it may be objected that the metaphor understates the difficulty
for a system to prove its own consistency. As commented on in Section 5.1,
the unprovability of consistency is really the unassertibility of consistency.
A system cannot truly postulate its own consistency, quite apart from ques-
tions of analysis and justification, although other systems can truly postu-
late the consistency of that system. An analogous difficulty for a human
is that he cannot truly state that he never talks about himself, although
other people can truly make this observation about him. The reason for
this is not that the human mind cannot sufficiently analyze or justify itself,
but that the very utterance of the statement “I never talk about myself”
falsifies it.

Of course this analogy is not likely to strike anybody as provocative or
suggestive, since it doesn’t even have the appearance of saying anything
about the human mind, but only makes a logical observation about the
incompatibility of the content of a particular kind of assertion with the
making of the assertion. So let us make an effort to draw a “conclusion”
about the human mind by way of a comparison with formal systems like PA
and ZFC. Instead of concluding that the human mind cannot understand
itself, we will conclude that the human mind, if it is at all like these formal
systems, is able to understand itself wonderfully.

For every finite subset of the axioms of PA, PA proves the consistency
of that subset, and does so by shrewdly analyzing the logic of such finite
parts of itself. Furthermore, PA proves

For every finite subset of my axioms, I can prove that subset
consistent

and also
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If every finite subset of my axioms is consistent, then I am
consistent.

However, in order to avoid tedious paradoxes, PA cannot assert “If I can
prove a finite subset of my axioms consistent, then that subset is consistent”
(since in such a case PA would prove its own consistency, and therewith
both the truth and the falsity of the Gödel sentence for PA). PA can of
course also prove this fact about its own inability to consistently affirm
such a principle. That is, PA proves

If I can prove “For every finite subset M of my axioms, if I can
prove M consistent then M is consistent” then I am inconsis-
tent.

Inspired by this impressive ability of PA to understand itself, we conclude,
in the spirit of metaphorical “applications” of the incompleteness theorem,
that if the human mind has anything like the powers of profound self-
analysis of PA or ZFC, we can expect to be able to understand ourselves
perfectly.

“Going Outside the System”

It is often said that it is only by “going outside the system” that one can
prove the Gödel sentence of a theory such as PA, an image that reinforces
the idea that “a system cannot understand itself fully.” This is correct in
the sense that one cannot prove, or even truly postulate, the Gödel sentence
of the system, or equivalently the consistency of the system, in the system,
that is, by a proof formalizable in the theory. But the image of “going
outside the system” is a bit too seductive, in that it suggests that there is
some generally applicable way of viewing a system “from outside” so as to
be able to prove things about it that are not provable in the system. We
don’t know of any such general method. Consider the theory T obtained by
adding Goldbach’s conjecture as a new axiom to PA. T is consistent if and
only if Goldbach’s conjecture is true, but we have no inkling of any method
of “going outside the system” by which T might be proved or “seen” to be
consistent.
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Gödel’s Completeness

Theorem

7.1 The Theorem

A common source of confusion in connection with Gödel’s incompleteness
theorem is the fact that Gödel also proved, in his doctoral dissertation, an
important result known as the

Completeness theorem for first-order logic (Gödel). First-order
logic (also known as predicate logic, first-order predicate logic, or first-order
predicate calculus) is complete.

As noted in Section 2.3, it is often said that predicate logic escapes the
conclusion of the incompleteness theorem because it does not incorporate
the “certain amount of arithmetic.” For example:

Gödel proposed that every formal system embodying a language
complex enough that elementary number theory can be repre-
sented in terms of it is either incomplete or inconsistent. Most
of the formal systems that we use in practice are both complete
and consistent: e.g., first-order predicate calculus, Euclidean ge-
ometry. They aren’t complex enough to qualify as “Gödelian.”

Such comments are based on a misunderstanding due to an unfortunate
overloading in logic of the term “complete.” Euclidean geometry (suitably
restricted and axiomatized) is indeed a complete theory in the sense of the
incompleteness theorem, that is, every statement in the language of the

127
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theory is either provable or disprovable in the theory. This result, like the
completeness of the elementary theory of the real numbers mentioned in
Section 2.3, to which it is closely related, was proved by Alfred Tarski in
the early 1930s. But first-order predicate calculus is not complete in this
sense.

So what does the completeness theorem mean? Here we need to recall
that a formal axiomatic system has a formal language, a set of axioms
formulated in that language, and a set of rules of reasoning for drawing
conclusions from those axioms. In the case of what is called a first-order
theory, the language of the system is of a kind known as a first-order pred-
icate language, and the rules of reasoning include (and often consist solely
of) some version of the rules of first-order predicate logic. That first-order
predicate logic is complete means that these rules suffice to derive from the
axioms every sentence that is a logical consequence of the axioms. Since,
conversely, every sentence derivable from a set of axioms using the rules
of reasoning is a logical consequence of those axioms, it follows that the
theorems of a first-order theory are precisely the sentences that are logical
consequences of the axioms of the theory.

The present chapter contains a fairly brief explanation of first-order
logic and a discussion of how the completeness theorem for predicate logic
relates to the incompleteness theorem. A reader who finds the topic unre-
warding need only retain from it that what is “complete,” in the sense of
the completeness theorem for predicate logic first proved by Gödel, is not
an axiomatic theory, but the logical apparatus common to PA and ZFC and
all formal systems known as first-order theories. That this logical appara-
tus is complete means that it suffices to deduce every logical consequence
of the axioms of any such formal system.

First-order predicate logic has been an important part of logic since it
was first formulated as a set of formal rules of inference in the latter part
of the nineteenth century, chiefly by the German mathematician, logician,
and philosopher Gottlob Frege. In Frege’s formulation, the rules of first-
order logic were not separated from the other parts of his logical system,
and it was only in the early decades of the twentieth century that the
distinctive character of first-order logic came to be understood. There are
different formulations of the logical apparatus of first-order logic. Some
versions include special logical axioms, so that one distinguishes between
the “logical” and the “non-logical” axioms of a theory, where the logical
axioms are common to all theories. Other versions have no logical axioms,
but only logical rules of reasoning. In this book, for clarity and consistency,
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the logical apparatus of a theory has been assumed to be formulated wholly
in terms of rules of reasoning.

First-Order Logical Consequence

To illustrate the notion of logical consequence, let us introduce a sim-
ple first-order predicate language. In such a language, we can formulate
statements about the individuals in some domain of individuals, using a
collection of predicates to express properties of and relations between in-
dividuals. In our example of a first-order language we can say that an
individual has the property of being a fnoffle, and that one individual glo-
rfs another. We say that “fnoffle” is a unary predicate and “glorfs” is a
binary predicate. To form complex sentences we have at hand the logical
constructions “if-then,” “not,” “or,” “and,” “if and only if,” and we also
use variables ranging over the domain of individuals to express statements
of the form “for every (individual) x it holds that. . . ” and “there is at least
one (individual) x such that. . . .”

Let us consider a few examples of sentence in this language, and how
they might be formulated in ordinary language.

• There is at least one fnoffle: there is an x such that x is a fnoffle.

• No fnoffle glorfs itself: for every x, if x is a fnoffle it is not the case
that x glorfs x.

• Every fnoffle is a fnoffle: for every x, if x is a fnoffle then x is a fnoffle.

• Every fnoffle is glorfed by at least one fnoffle: for every x, if x is a
fnoffle then there is a y such that y is a fnoffle and y glorfs x.

• There is a fnoffle which glorfs every fnoffle: there is an x such that x

is a fnoffle and for every y, if y is a fnoffle then x glorfs y.

In specifying the language, nothing is said about just what domain of
individuals we are talking about, or what “x is a fnoffle” or “x glorfs y”
is supposed to mean. The specification of the language is just a matter of
syntax, and does not involve any questions of meaning. (See Section 2.4.)
We can, however, make the following observation: no matter what domain
of individuals we are talking about, no matter what subset of that domain
is singled out by “is a fnoffle,” and no matter what relation between in-
dividuals is specified by “glorfs,” if the fifth sentence above is true, then
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the fourth sentence is also true. This is what is meant by saying that the
fourth sentence is a logical consequence (in first-order logic) of the fifth
sentence. We can also verify that the fifth sentence is not in this sense a
logical consequence of the fourth sentence. For suppose we take the do-
main of individuals to contain only 0 and 1, interpret “is a fnoffle” as “is a
member of the domain,” and interpret “x glorfs y” as “x is identical with
y.” Then the fourth sentence is true, but the fifth sentence is false.

The third sentence above is an example of a logically true statement:
it is true no matter what domain of individuals we choose, and no matter
what “is a fnoffle” is taken to mean in that domain. In a formulation of
predicate logic that includes logical axioms, those axioms are logically true
statements.

Thus, informally speaking, to say that a sentence A in a first-order
language is a logical consequence of a set M of sentences in that language
means that for any domain of individuals, and for any specification of what
the predicates used in the language mean when applied to individuals in
that domain, if every sentence in M is true (when understood in accordance
with this specification), then so is A. An interpretation of a first-order lan-
guage is a structure consisting of a domain of individuals together with
subsets of that domain and relations between elements in the domain cor-
responding to the predicates of the language. An interpretation is called a
model of a first-order theory T if all the axioms of T are true when read
using that interpretation. So another way of formulating the concept of
logical consequence is that A is a logical consequence of the axioms of T if
A is true in every model of T .

Soundness and Completeness of the Rules of Logic

The formal rules of logical reasoning used in a first-order theory have the
property of being sound with respect to the notion of logical consequence.
What this means is that anything that can be proved from a set of axioms
using these rules of reasoning is also a logical consequence of the axioms in
the sense defined. The soundness theorem for first-order logic establishes
that this is the case. What the completeness theorem shows is that the
converse holds: if A is in fact a logical consequence of a set of axioms, then
there is a proof of A using those axioms and the logical rules of reasoning.

Recalling that a model of a theory is an interpretation in which all
of the axioms of the theory are true, we can formulate the completeness
theorem combined with the soundness theorem as the statement that for a



�

�

�

�

�

�

�

�

7.2. PA as a First-Order Theory 131

first-order theory T ,

A sentence A is true in every model of T if and only if A is a
theorem of T ,

and also as the statement that for a first-order theory T ,

T has a model if and only if T is consistent.

No proof of the completeness theorem will be given in this book, but we
can see that each of these two formulations of the theorems follows from
the other. The second formulation follows from the first by taking A to be
a logical contradiction “B and not-B,” while the first formulation follows
if we apply the second formulation to the theory T+ not-A. (The com-
pleteness theorem in fact holds also for the more liberal notion of “theory”
explained in Section 4.3.)

We will take a closer look at these concepts in the particular case of PA.

7.2 PA as a First-Order Theory

The language of PA contains function symbols, which did not figure in the
“fnoffle” example. Function symbols denote operations on individuals in
the domain, and in the language of PA we have symbols + for addition
and × for multiplication. There is also a constant, the symbol 0 denoting
the number zero, and a special symbol s for the successor function, which
applied to a number n gives n+1. In the following we will use the notation
n, where n is any natural number, for the expression built up from 0 using
n occurrences of s, so that 0 is 0, 1 is s(0), 2 is s(s(0)), and so on. The
expressions n correspond to the numerals used in ordinary mathematical
language to denote natural numbers. There is only one predicate in the
language of PA, namely = denoting the equality relation. Those rules for
= that are not peculiar to arithmetic, for example the rule by which we
conclude that a = b if b = c and c = a, are sometimes, but not always,
regarded as part of the logical apparatus of the theory. Here we will follow
this approach (taking PA to be formalized in “predicate logic with equal-
ity”) and describe the specific content of PA in terms of its arithmetical
axioms.

In the above presentation, the language of PA was specified together
with the interpretation of the language that we normally use, known as “the
intended interpretation” or “the standard model.” But of course there are
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other interpretations of the language of PA, as will be commented on and
illustrated below.

The axioms of PA fall into four groups. First, we have the axioms
for the successor function, which state that 0 is not the successor of any
number, and different numbers have different successors. Formulated in
predicate logic, these are

For every x, it is not the case that s(x) = 0.

For every x, for every y, if s(x) = s(y) then x = y.

The second group of axioms give the basic properties of the addition
operation:

For every x, x + 0 = x.

For every x, for every y, x + s(y) = s(x + y).

The axioms in the third group do the same for multiplication:

For every x, x × 0 = 0.

For every x, for every y, x × s(y) = x × y + x.

The axioms for addition and multiplication are all we need to be able to
prove every true statement of the form n+m = k or n×m = k. Using the
axioms for the successor function we can also disprove every false statement
of this form.

The final group of axioms consists of the induction axioms. For every
property P of natural numbers expressible in the language of PA, there is
an axiom stating that if 0 has the property P and s(x) has the property
P whenever x has the property, then for every x, x has the property P .
Here, P may be defined using parameters, so that, for example, there is an
axiom stating

For every y, if 0 + y = y + 0 and it holds for every x that
if x + y = y + x then s(x) + y = y + s(x), then for every x,
x + y = y + x.

This particular induction axiom enters into the proof in PA that x+y =
y + x for every x and y.
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Presburger Arithmetic

If we drop the multiplication symbol from the language of PA and delete
the multiplication axioms, we get a theory known as Presburger arithmetic
(after the Polish mathematician who introduced this theory in 1929). Pres-
burger arithmetic is another example (in addition to the elementary theory
of the real numbers mentioned in Section 2.3) of a theory which is com-
plete without being at all trivial. Unlike PA, Presburger arithmetic can
be finitely axiomatized, that is, it is possible to replace the infinitely many
induction axioms with a finite number of other axioms and get a theory
with the same theorems.

A Consistency Proof

In Section 2.8, in an argument against the idea of the incompleteness theo-
rem leading to a “postmodern condition” in mathematics, it was observed
that we can create an infinite tree of consistent variants of PA by omitting
the axiom “for every x, x + 0 = x” and adding 0 + 0 = 0 or its negation
to PA, then to each of the two resulting theories add either 1 + 0 = 1 or
its negation, and so on.

Using the description given of PA and the soundness theorem for pred-
icate logic, we can verify that all of these theories are indeed consistent,
by showing that they all have models. In fact we can show that if we leave
out the axiom “for every x, x + 0 = x,” the result of an addition n + 0
can be anything. Suppose we replace the indicated axiom with an infinite
number of axioms:

0 + 0 = n0, 1 + 0 = n1, 2 + 0 = n2, . . .

where n0, n1, n2,. . . is any computably enumerable sequence of numbers.
We can define a model of the resulting theory as follows. The domain is
again the set of natural numbers, the constant 0 is interpreted as denoting
the number 0, and the successor operation has its ordinary interpretation.
Note that this is enough to ensure that the induction axioms will still hold,
whatever the interpretation of + and ×. We change the interpretation of
+ to denote the operation +′ defined by

k +′ m = nk + m.

It is still true that k+′s(m) = s(k+′m). To make the axioms for × true,
we now need to interpret k × m not as the ordinary product of k and m,
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but as k×′ m where we define the operation ×′ on natural numbers by the
equations

k ×′ 0 = 0,

k ×′ s(m) = k ×′ m +′ k.

Thus, all of the theories in the uninteresting infinite tree of theories de-
scribed in Section 2.8 are consistent.

“True in the Standard Model”

The idea is sometimes expressed that instead of speaking of arithmetical
statements as true or false, we should say that they are “true in the stan-
dard model” or “false in the standard model.” The following comment
illustrates:

This is the source of popular observations of the sort: if Gold-
bach’s conjecture is undecidable in PA, then it is true. This
is actually accurate, if we are careful to add “in the standard
model” at the end of the sentence.

The idea in such comments seems to be that if we say that an arithmeti-
cal statement A is “true” instead of carefully saying “true in the standard
model,” we are saying that A is true in every model of PA. This idea can
only arise as a result of an over-exposure to logic. In any ordinary math-
ematical context, to say that Goldbach’s conjecture is true is the same as
saying that every even number greater than 2 is the sum of two primes.
PA and models of PA are of concern only in very special contexts, and
most mathematicians have no need to know anything at all about these
things. It may of course have a point to say “true in the standard model”
for emphasis in contexts where one is in fact talking about different models
of PA.

7.3 Incompleteness and Nonstandard Models

An incorrect formulation of the first incompleteness theorem that is some-
times encountered is illustrated by the following:

In any consistent theory T of a certain degree of complexity
there will be a statement expressible in the language of T that
is true in all models of T and yet not provable in T .
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As we know from the completeness theorem, this statement is incorrect
when we are talking about first-order theories like PA and ZFC. If a sen-
tence A in the language of PA is true in every model of PA, it is provable
in PA.

By the incompleteness theorem, the completeness theorem for first-
order logic, and the consistency of PA, the theory obtained by adding to
PA an arithmetization A of “PA is inconsistent” as a new axiom has a
model. That is, there is a mathematical structure consisting of some set
N ′ together with operations s′, +′, and ×′ on the set N ′ such that all of
the axioms of PA are true if we take s, +, and × to denote those operations
on N ′, and furthermore A is also true. Since A is not true on its ordinary
interpretation, that is, with the quantifiers taken to range over the natural
numbers and + and × denoting ordinary addition and multiplication, it
follows that the model of PA given by N ′, s′, +′, and ×′ is essentially
different from the standard model.

We can in fact say a bit more. N ′ contains a part that is essentially
the same as the ordinary natural numbers, namely the individuals in N ′

denoted by the terms 0, s(0), s(s(0)),. . . , and for these individuals, + and
× have their usual meaning. But in addition, N ′ contains other members,
which are usually called infinite elements. The reason for this terminology
is that for any individual a in N ′ which is not the value of m for any
natural number m, n < a is true in N ′ for every n. (Here we define x < y

to mean that y = x + s(z) for some z.) This follows from the fact that it
is provable in PA that for every x and y, either x < y or y < x or x = y,
and that it is also provable, for every natural number n, that if x < n

then x = 0 or x = 1 or . . . or x = n − 1. So if a is not the value of
any m, we must have n < a. A model of PA containing infinite elements
is known as a nonstandard model. There are many different nonstandard
models of PA, but essentially only one standard model. Although we can
define the natural numbers in many different ways (for example, using set
theory), as long as every natural number is the value of n for some n, the
different models are isomorphic, meaning that they have exactly the same
mathematical structure.

In a model of PA + “PA is inconsistent” there is an element e satisfying
the condition expressed by the arithmetical formula that we introduce to
formalize “x is the Gödel number of a proof in PA of a contradiction.” Since
e is an infinite element, it is not in fact a Gödel number. The operations
+′ and ×′ in the nonstandard model are not multiplication and addition
when applied to infinite elements, and the arithmetical definition of “x is
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the Gödel number of a proof in PA,” when applied to an infinite element
e, does not express that e is the Gödel number of anything.

Nonstandard models of arithmetic are studied in logic, but they also
have a role to play in mathematics in general through the subject of non-
standard analysis. This is a subject created in the 1960s by the American
logician Abraham Robinson, who used predicate logic to introduce a theory
of the “infinitely small” within which the concepts and reasoning in calcu-
lus used by Newton and Leibniz, the creators of calculus, can be rigorously
represented. Nonstandard analysis is a lively subject and a prominent ex-
ample of how mathematical logic has been put to mathematical use. But
it should not be assumed that we need to add a false existential axiom to
PA in order to get a nonstandard model. On the contrary, the nonstandard
models of arithmetic used in nonstandard analysis have exactly the same
true arithmetical statements as the standard model. This can be achieved
because the existence of nonstandard models of PA is not tied to incom-
pleteness at all. Even true arithmetic (see Section 4.3) has nonstandard
models. This follows from the completeness theorem. True arithmetic T ,
which is a theory only in a generalized sense, has every true arithmetical
sentence as an axiom. Consider the theory obtained by adding to the ax-
ioms of T the new axioms c > 0, c > 1, c > 2,. . . , where c is a new constant
symbol. If this theory is inconsistent, T together with some finite number
of the new axioms is inconsistent, since only finitely many axioms of T can
be used in a proof. But T with any finite number of new axioms has a
model, obtained by interpreting c as denoting a sufficiently large natural
number, and hence is consistent. So T with all of the new axioms is also
consistent and has a model by the completeness theorem, a model which
contains an infinite element denoted by c. (In logic, this reasoning is known
as an application of the compactness theorem.)

Thus, the difference between standard and nonstandard models of PA
cannot be formulated in the language of elementary arithmetic. A non-
standard model may have exactly the same true sentences in the language
of elementary arithmetic as the standard model. This fact has prompted
many a commentator to agonize over how we distinguish between the stan-
dard and nonstandard models, but this is not a question directly connected
with the incompleteness theorem, as noted, and so will not be taken up in
this book.
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Incompleteness, Complexity,

and Infinity

8.1 Incompleteness and Complexity

In Section 2.2 it was commented that the common popular formulation of
the incompleteness theorem as applying to any formal system of “sufficient
complexity” is misleading at best, since there are very complex systems to
which the theorem does not apply and very simple ones to which it does
apply. Most often in such misleading formulations of the incompleteness
theorem, “complexity” is perhaps used in an informal sense. In such a case
it suffices to look at a system like Robinson arithmetic (defined in the Ap-
pendix) to see that very simple systems can encompass the “certain amount
of arithmetic” needed for the incompleteness theorem to apply. In the other
direction, it is a simple matter to formulate complete and consistent theo-
ries of impenetrable complexity. So if we use “complexity” in an informal
sense, there is no correlation between complexity and incompleteness.

There is also a technical sense of “complexity” in logic, variously known
as Kolmogorov complexity, Solomonoff complexity, Chaitin complexity (and
various combinations of these names), algorithmic complexity, information-
theoretic complexity, and program-size complexity. The most common des-
ignation is “Kolmogorov complexity”—as remarked in [Li and Vitanyi 97],
this is probably a manifestation of the principle of “Them that’s got shall
get,” since Kolmogorov is the most famous of these mathematicians. Again,
the applicability of the incompleteness theorem does not turn on the com-
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plexity of a system in this technical sense, but there are connections be-
tween incompleteness and Kolmogorov complexity. In particular, the appli-
cation of Kolmogorov complexity to prove the first incompleteness theorem
has been widely popularized by Gregory Chaitin, one of the people who
independently invented the concept.

Chaitin’s Incompleteness Theorem

The concept of Kolmogorov complexity can be varied in many ways without
affecting the aspects here to be considered. In extended theoretical treat-
ments, the various technical concepts of complexity are usually applied to
binary sequences, or bit strings, like 0110101010011, and the theory of Tur-
ing machines is used for technical definitions. Here, we will use instead the
theory of computable properties of strings of symbols informally introduced
in Chapter 3.

The basic idea is a simple one: we measure the complexity of a string
s by the length, not of s itself, but of the shortest string containing infor-
mation that enables us to compute the string s, in the form of a program
that when executed outputs s, together with any input required by the
program. For example, the complexity of the numerical string s consisting
of the first one billion decimals of π is very small compared to the length
of the string, since there are short programs for computing the decimals
of π, and to get a program for producing the string s we need only add
to such a program the instruction to stop after one billion decimals. We
say that this string is highly compressible: its Kolmogorov complexity is
small compared to its length. The opposite property is that of being highly
incompressible, when the complexity of a string is close to its length. For
any n greater than, say, 1000, the vast majority of strings of length n are
highly incompressible. In particular for every n there is at least one string
of length n which is maximally incompressible, having complexity n. (This
follows by a simple counting argument: the number of programs of length
smaller than n is at most 1 + 2 + 4 + . . . + 2n−1 = 2n − 1, while there are
2n strings of length n.) Incompressible strings are “typical,” or “random,”
containing no pattern that makes it possible to give an algorithm for pro-
ducing the string that is significantly shorter than the string itself. In the
case of a maximally incompressible string, an algorithm for producing the
string can do no better than explicitly listing the symbols in the string.

Thus, one would expect a genuinely random sequence of symbols (gen-
erated by observing physical processes like radioactive decay or the flow
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of lava lamps) to be incompressible. However, proving that a particular
sequence is incompressible is a different matter.

Suppose T is a consistent formal system incorporating the usual “cer-
tain amount of arithmetic.” Chaitin’s incompleteness theorem states that
there is then a number c depending on T such that T does not prove any
statement of the form “the complexity of the string s is greater than c.”
Since there are true such statements, it follows that unless T proves false
statements about complexity, there are statements of the form “the com-
plexity of the string s is greater than c” that are undecidable in T .

We can formulate the essence of the argument showing this in semi-
formal terms. Let K(s) denote the Kolmogorov complexity of a string s.
Suppose there are arbitrarily large n such that the consistent theory T

proves K(s) > n for some s, and that the string t gives sufficient infor-
mation to enable us to computably generate the theorems of T . Choose
n so that n minus the number of digits in a numerical string denoting n

is several times larger than the length of t. To produce a string of com-
plexity larger than n, we need only search through the theorems of T until
we find the first theorem of the form K(s) > n. But this means that we
can produce s using only the information t (giving T ) together with the
numerical string denoting n (to tell us what we are looking for), and the
complexity of this combined information is much smaller than n, which
yields a contradiction.

Before discussing this result further, a second and more formal proof
of the theorem follows for readers who wish to understand the result in its
technical aspects.

Recall from Section 3.3 the computable enumeration

P0, P1, P2, . . .

of the set of programs which expect one string as input, and when executed
either deliver a string as output or else never terminate. For any string s,
there are infinitely many i and w such that Pi with input w yields s as
output. For example, if Pi is a program that simply returns its input
as output, Pi with input s yields s as output. In defining Kolmogorov
complexity (in this particular formulation), we are looking for the shortest
way of specifying s by specifying a program and an input for that program
which yields s as output. Thus we define K(s) as the length of the shortest
pair (i, w) such that Pi with input w yields output s.

It will be noted that the Kolmogorov complexity of a string thus de-
fined depends on a particular choice of enumeration of programs. But it
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can be shown that for any two computable enumerations of programs that
might be used, the resulting complexity measures K1(s) and K2(s) are es-
sentially equivalent, in the sense that there is some constant c, depending
on K1 and K2 but independent of s, such that |K1(s)−K2(s)| < c for all s.
This implies that the various results of a qualitative nature that we arrive
at using the concept of Kolmogorov complexity, such as Chaitin’s incom-
pleteness theorem, are independent of exactly how we define complexity.
(This also extends to various other ways of defining the concept, which
in general yield measures of complexity that differ by a term logarithmic
in the length of s.) We cannot, however, attach any great significance to
quantitative results associated with a particular definition of K(s).

The reference above to “the length of the pair (i, w)” calls for some
words of explanation. Given any strings s and t, the pair (s, t) is defined
as another string, from which s and t can both be read off. Thus given a
pair, the two strings that compose the pair are uniquely determined. The
exact definition of (s, t) doesn’t matter here, but one way of defining the
pair (s, t) is the following. Suppose s has length n. Then (s, t) consists
of n occurrences of 1 followed by a 0, followed by s and then t. Thus, for
example, if s is “abcdef” and t is “ghijk,” (s, t) is the string

1111110abcdefghijk

The two strings in the pair (s, t) can be read off by first counting
the number of 1s before the first 0, and then picking out s as the string
consisting of the indicated number of symbols immediately following the
0, while t is the remainder of the string. This is called a self-delimiting
representation of the pair formed by s and t. Note that if s has length n

and t has length m, the length of (s, t) is 2n + m + 1.
An important feature of Kolmogorov complexity is that a statement of

the form K(s) > n can be assumed to be a Goldbach-like statement. This
is so because it can be formulated as the statement

For every m and for every pair (i, w) of length smaller than or
equal to n, it is not the case that m steps in the computation
of Pi with input w yields s as output.

As a consequence, if a consistent theory proves K(s) > n, s does indeed
have complexity greater than n.

To prove Chaitin’s incompleteness theorem we also need a computable
enumeration of the computably enumerable sets:

W0,W1,W2, . . ..
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We define the set Wi as the set of strings s for which Pi terminates with s

as input. Wi is computably enumerable, because the set of true statements
of the form

Pi terminates after n steps when given input s

is computably decidable, so by generating all true statements of this form
and delivering s as output for every true statement found, we get a com-
putable enumeration of Wi. Conversely, every computably enumerable set
E is identical with Wi for some (and in fact for infinitely many) i. This
is so because if E is computably enumerable, E is the set of strings s for
which the search for s in a computable enumeration of E terminates.

What if Wi is finite? The procedure described will in such a case not
halt after every member of Wi has been generated, but will instead con-
tinue forever even after every element of Wi has already been delivered.
This is in fact a necessary feature. There is no computable enumeration of
the computably enumerable sets that allows us to determine which com-
putably enumerable sets are finite, or only includes the infinite computably
enumerable sets. This is why, in the definition of computably enumerable
sets, we allow an enumeration of a finite set to continue forever.

For the proof of the theorem, we begin by defining a particular program
Pe, which when given as input any pair (p, k), where p and k are numerical
strings, starts looking for a sentence in Wp of the form “the complexity
of w is greater than the length of the pair (k, (p, k)).” If and when it
finds such a sentence in Wp, the string w is output as the result of the
computation.

Now, given a theory T , choose Wp as the set of theorems of T . Suppose
Pe terminates for input (p, e) with result w. By the definition of complexity,
the complexity of w is at most the length of (e, (p, e)). But if T is consistent,
the complexity of w is greater than the length of (e, (p, e)). Thus, assuming
T consistent, T does not prove any theorem of the form “the complexity
of w is greater than c,” where c is the length of the pair (e, (p, e)).

In the pair (e, (p, e)), e is independent of T , while p is an index for the
set of theorems of T—to specify the theorems of T it suffices to specify p.
It is reasonable to regard the minimal length of such a p as a measure of
the complexity K(T ) of the theory T , and indeed it gives essentially the
same measure of complexity as do other natural choices.

By suitably modifying and tweaking the definition of complexity, the
incompleteness theorem can in fact be formulated as stating that, for some
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constant c independent of T , T does not prove any statement of the form
K(s) > n for any n greater than K(T )+ c (see [Chaitin 92]). The neatness
of this formulation does not really add anything to the result, though, since
neither the constant c nor the complexity measure used has any special
significance. (See [van Lambalgen 89] and [Raatikainen 98].)

A consequence of Chaitin’s incompleteness theorem is that the com-
plement of the set of maximally incompressible strings, that is, the set of
strings s with complexity smaller than the length of s, is a simple set in
Post’s sense (see Section 3.3). For the strings s with K(s) smaller than the
length of s can be computably enumerated by sifting through the state-
ments of the form “m steps in the computation of Pi with input w yields
output s.” Furthermore, there cannot be any infinite computably enu-
merable set of maximally incompressible strings, since that would yield an
infinite set Wp of true statements of the form “the complexity of s is greater
than or equal to the length of s” and therewith a theory proving statements
of the form “the complexity of s is greater than n” for arbitrarily large n.
Thus, a consistent theory can prove only finitely many statements of the
form “s is a maximally incompressible string.”

When we inspect the proof that there are unprovable true statements
of the form “the string s is maximally incompressible” in any consistent
theory T , we see that the proof does not yield any explicit example of
such a statement. If we had a general mechanism for producing, given a
consistent theory, a true sentence of this form unprovable in the theory,
we would be able to computably generate an infinite number of true such
statements, which cannot be done. Thus, since “s is incompressible” is
a Goldbach-like statement, we also cannot produce any statement of this
form that we know to be undecidable in T . For any T , we can produce an
n such that “s is an incompressible string of length n” is not provable in
T for any s, but to know that a particular statement of this form is unde-
cidable in T , we need to know that s is in fact an incompressible string of
length n.

As noted by Chaitin (for example, in his paper “Gödel’s Theorem and
Information” [Chaitin 82]), the proof of his incompleteness theorem is re-
lated to what is known as Berry’s paradox, in the way that Gödel’s original
proof is related to the paradox of the Liar. Berry’s paradox (named after
G. G. Berry, librarian at the Bodleian Library in Oxford and immortalized
in a footnote in Principia Mathematica) consists in the observation that
the smallest number not definable using fewer than a hundred words has
just been defined using fewer than a hundred words. (Another proof of
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the incompleteness theorem exploiting Berry’s paradox has been given by
George Boolos [Boolos 89].)

Complexity as a Supposed Explanation of Incompleteness

Some of the comments that Chaitin has made about his incompleteness
theorem in various places have given many of his readers the impression
that the theorem sheds light on the grounds for incompleteness in general.
Thus, in the abstract of [Chaitin 82], Chaitin states that

Gödel’s theorem may be demonstrated using arguments having
an information-theoretic flavour. In such an approach it is pos-
sible to argue that if a theorem contains more information than
a given set of axioms then it is impossible for the theorem to be
derived from the axioms. In contrast with the traditional proof
based on the paradox of the liar, this new viewpoint suggests
that the incompleteness phenomenon discovered by Gödel is
natural and widespread rather than pathological and unusual.

It is unclear what Chaitin intends by “it is possible to argue. . . ,” or
in the body of the paper by the remark that “I would like to be able to
say that if one has ten pounds of axioms and a twenty-pound theorem,
then that theorem cannot be derived from those axioms.” By “contains
more information,” Chaitin means “has greater Kolmogorov complexity,”
and apparently what Chaitin has in mind in these comments is his incom-
pleteness theorem. This theorem, however, doesn’t say anything about the
complexity of the theorems of a theory, but instead deals with theorems
that are statements about complexity. It is indeed the case that a true state-
ment of the form “K(s) > n” must itself have complexity greater than n,
since the string s can be extracted from it. But this does not mean that it
is the complexity of the statement that accounts for its being unprovable in
the theory. It is by no means the case that a theorem cannot have greater
complexity than the axioms from which it is derived. For example, if we
have as our only axiom “for every string x, x = x,” this yields a theory
with very low complexity. Among the theorems of this theory, however, are
the statements of the form “s = s” for any specific string s, and thus the
Kolmogorov complexity of the theorems is unbounded. So while it may be
“possible to argue” that the theorems of a theory cannot be more complex
than its axioms, and while it may be that Chaitin “would like to be able
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to say” that a fat theorem cannot be derived from skinny axioms, such
statements have no apparent justification.

In fact Chaitin in [Chaitin 92] notes as much, and proposes an “im-
proved version” of the “heuristic principle” that the complexity of a theo-
rem cannot exceed that of the axioms:

One cannot prove a theorem from a set of axioms that is of
greater complexity than the axioms and know that one has done
this. I.e., one cannot realize that a theorem is of substantially
greater complexity than the axioms from which it has been
deduced, if this should happen to be the case.

Chaitin suggests no justification for this “improved version,” and it is
not obvious what such a justification might look like. For any string s,
we can prove s = s from the axiom “for every string x, x = x.” The
quoted principle implies that we can never know that any string s has
higher complexity than the string “for every string x, x = x,” a baseless
claim.

Chaitin concludes with the reflection that “Perhaps it is better to avoid
all these problems and discussions by rephrasing our fundamental principle
in the following totally unobjectionable form: a set of axioms of complexity
N cannot yield a theorem that asserts that a specific object is of complexity
substantially greater than N .” This is unobjectionable as a formulation of
his incompleteness theorem in the form “T does not prove K(s) > n for
any n greater than K(T ) + c,” if we keep in mind that it depends on
a particular choice of complexity measure and that the constant c may
be enormous, rendering the description “not substantially greater” moot.
This is a special case of the incompleteness phenomenon, one that we can
understand on the basis of informal arguments such as the one presented
earlier.

As for the contrasting of the “new viewpoint” with “the old proof based
on the paradox of the liar,” proofs of the first incompleteness theorem based
on computability theory have been around for a long time, as Chaitin him-
self notes. In particular, the MRDP theorem (see Section 3.3) shows that
every theory to which the incompleteness theorem applies leaves unde-
cided infinitely many statements of the form “the Diophantine equation
D(x1,. . . ,xn) = 0 has no solution.” It is indeed important to emphasize
that undecidable arithmetical sentences need not be formalizations of odd
self-referential statements, but this point is fully illustrated by the unde-
cidability of statements about Diophantine equations.
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8.2 Incompleteness and Randomness

Incompressible strings are also called (Kolmogorov) random strings. While
randomness in this sense is a matter of degree, there is also a notion of
random infinite sequences of symbols or numbers, on which a sequence is
random or not random, without gradation. The definition of this property
is rather more technical than the definition of the Kolmogorov complexity
of strings and will not be given here. There is a particular such random
infinite bit sequence (that is, a sequence of occurrences of 0 and 1) defined
and introduced by Chaitin, called “the halting probability” or Ω (Omega),
with several interesting properties. The sequence Ω is the limit of a certain
computable enumeration r1, r2, r3,. . . of finite strings of bits, in the sense
that the nth bit of Ω is i if and only if there is some k such that the nth
bit of rm is i for every m > k. Ω itself is not computable: there is no
effective enumeration of the bits of Ω. We can compute the strings r1, r2,
r3,. . . , and we know that for any bit position n in Ω, the strings r1, r2,
r3,. . . will eventually stabilize so that every later string rk has the same
nth bit, which is also the nth bit of Ω, but we cannot in general decide at
what point the nth bit has been arrived at.

Chaitin proves the stronger statement that only finitely many state-
ments of the form “the nth bit of Ω is i” can be correctly decided in any
one formal system, and he also proves, using a suitable definition of com-
plexity, that a formal system of complexity n can determine at most n + c

bits of Ω, for some constant c.
So what is the significance of Ω for incompleteness? Chaitin, in the

preface to his book The Unknowable, states

In a nutshell, Gödel discovered incompleteness, Turing discov-
ered uncomputability, and I discovered randomness—that’s the
amazing fact that some mathematical statements are true for
no reason, they’re true by accident.

The statements that Chaitin is referring to would appear to be the
true statements of the form “The nth bit of Ω is i.” “True for no rea-
son” suggests that these statements are in some absolute sense unprovable
by “reasoning,” and indeed Chaitin elsewhere (“Irreducible Complexity in
Pure Mathematics”) amplifies:

In essence, the only way to prove such mathematical facts is
to directly assume them as new mathematical axioms, without
using reasoning at all.
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We will take a closer look at this idea below, but first we need to take
notice of the fact that Chaitin also calls these statements “true by acci-
dent,” emphasizing the “randomness” of Ω. In his recent book MetaMath,
he comments

Now we’re really going to get irreducible mathematical facts,
mathematical facts that “are true for no reason,” and which
simulate in pure math, as much as is possible, independent
tosses of a fair coin: It’s the bits of the base-two expansion
of the halting probability Ω.

This suggests that statements of the form “The nth bit of Ω is i” are
“true for no reason” in a sense analogous to that in which it may be “true
for no reason” that, say, an atom decays at a particular time. When we
say that radioactive decay is “truly random,” we mean that there is no
mechanism that causes an atom to decay at a particular moment and that a
statistical description of radioactive decay tells us all there is to know about
it. But of course Ω is not defined in terms of any physical experiments,
and we have no conception of any “mathematical mechanism” or “laws of
mathematics” by which some mathematical statements are caused to be
true whereas others just happen to be true. If we are not talking about
proofs and reasoning, but about what makes a statement true, all we can
say is that Goldbach’s conjecture, if true, is true because every even number
greater than 2 is the sum of two primes, a statement “the nth bit of Ω is
i,” if true, is true because i is the limit of the nth bit of the mathematically
defined sequence r1, r2, r3,. . . of finite strings of bits, and so on. The mere
fact that Ω is called a “random sequence” does not confer any automatic
meaning on a claim that the bits of Ω are random in any sense analogous
to the randomness that may exist in nature.

Indeed, Chaitin himself goes on to emphasize that Ω is a mathematically
defined sequence, and that it may be preferable to use some other term than
“random” to describe it. He suggests “irreducible”:

In other words, the bits of Ω are logically irreducible, they can-
not be obtained from axioms simpler than they are. Finally!
We’ve found a way to simulate independent tosses of a fair coin,
we’ve found “atomic” mathematical facts, an infinite series of
math facts that have no connection with each other and that
are, so to speak, “true for no reason” (no reason simpler than
they are).
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This brings us back to the idea that these statements can only be postu-
lated, not proved in any more interesting sense, which in the above passage
seems to be based on their not being “obtainable from simpler axioms.”

Let’s take a closer look at this idea. Given any concept of “simpler,”
if the degree of simplicity of a string is given by a natural number, it is
trivially the case that there are true arithmetical statements that cannot be
logically derived from simpler true statements. For example, the simplest
statement among the true statements that logically imply “0 = 0” cannot
be logically derived from any simpler true statement. Indeed, on many
natural measures of simplicity, “0 = 0” itself will have this property. The
“amazing fact” Chaitin speaks of thus cannot be just the fact that there
exist true statements that cannot be deduced from simpler true statements.

There are of course significant differences between “0 = 0” and state-
ments of the form “The nth bit of Ω is i.” In particular, such statements
are not trivially or obviously true, but instead pose mathematical prob-
lems and call for a proof. But nor is there any apparent basis for claiming
that they “cannot be obtained from axioms simpler than they are.” The
result that a formal system of complexity n can determine at most n + c

bits of Ω doesn’t tell us that, for example, “The 1000th bit of Ω is 0,” if
true, can only be proved by assuming the statement as an axiom. Which
particular statements about the bits of Ω that can be proved in a given
system depends on the system and on the details in the definition of Ω. In
particular, for any n, the parameters in the definition of Ω can be chosen
so as to allow us to prove every true statement of the form “the kth bit of
Ω is i” for k < n. For a natural choice of those parameters, Calude et al.
[Calude et al. 01] computed the first 64 bits of Ω.

Let us consider instead statements of the form “the first n bits of Ω are
given by s,” where s is a bit string of length n. The randomness of Ω implies
that there is some constant c such that the complexity of the string Ω1:n

of the first n bits of Ω, using a suitable definition of complexity, is always
no smaller than n − c for some c independent of n. Thus for large enough
n, Ω1:n is incompressible (to any degree we care to specify), and a true
statement of the form “the first n bits of Ω are given by s” cannot be gen-
erated by an algorithm using as input a string (essentially) shorter than n.
But we know that statements of enormous complexity can, in general, be
proved from very simple axioms, even though there is no algorithm which
yields any of those statements given a simple input. A special argument
would be needed to show that sufficiently long statements of this partic-
ular form can only be proved using axioms of the same complexity, that
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is (since these statements are incompressible) of the same length. Even
if we could show this to be the case, there is no apparent basis for the
idea that if reasoning can establish the truth of a statement B using
axioms A, then the axioms A must be shorter than the statement B

(an idea that neatly complements Chaitin’s other, contrary, “heuristic
principle” that the complexity of a theorem cannot exceed that of the
axioms from which it is derived). Chaitin does not present any argument
for this idea, and it is not in agreement with our experience. Consider the
statement

There is a prime p such that 1000010000 < p < 2 × 1000010000.

Reason is by no means powerless to prove this statement—it follows
from Erdös’ nice elementary proof of Chebyshev’s theorem that there is
always a prime between n and 2n. But for the proof we need to use various
arithmetical axioms that have greater length and complexity, on any natu-
ral measure, than the theorem we wish to prove. A justification for the idea
that statements of the form “the first n bits of Ω are given by s” (for large
enough n) can only be proved by postulation, not by reasoning, must be
sought in some other aspect of these statements than the incompressibility
of Ω1:n.

Of course we know that reasoning formalizable in, for example, ZFC
cannot prove any statement of this form for large enough n. (In fact, as
Robert Solovay has shown, by suitably tweaking Chaitin’s definition of Ω,
“large enough n” can mean “any n > 0.”) But to conclude that “reasoning”
as such is powerless to establish these statements, we need some analysis or
theory of reasoning in general (involving statements of arbitrary length),
which is completely lacking in Chaitin’s writings.

This is not to say that we have any grounds for claiming that statements
about the bits of Ω, or statements of the form “K(s) > n,” are always “true
for a reason” in any theoretical sense. Again, we simply don’t have any
theoretical basis for reasoning about what can or cannot be proved or ex-
plained or given a reason in any absolute sense. Chaitin’s claim to have
discovered “the amazing fact that some mathematical statements are true
for no reason” has no apparent content, but seems rather to be based on
the general associations surrounding the word “random.” The instances
of arithmetical incompleteness found using the theory of Kolmogorov com-
plexity are still of considerable interest.
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8.3 Incompleteness and Infinity

Varieties of Incompleteness

Many incomplete formal systems are designed to be incomplete, since their
purpose is to specify certain features of a particular class of mathematical
structures, the properties of which otherwise vary. A typical example is the
elementary theory of groups, which defines what is meant by “a group”:
it is a mathematical structure in which the axioms of the theory are true.
The theory is incomplete, since, for example, some groups have a property
called commutativity while others do not, and not all groups have the
same number of members. Usually, theories introduced to characterize a
class of mathematical structures do not satisfy the conditions for Gödel’s
theorem to apply, and their incompleteness is fairly obvious from their
definition.

However, even if we restrict consideration to theories that are not used
to define a certain class of mathematical structures, but are formalizations
of parts of our mathematical knowledge, theories to which the incomplete-
ness theorem applies, there are significant differences between the various
incompleteness results proved in logic. Let us consider ZFC, Zermelo-
Fraenkel set theory with the axiom of choice, which is a theory within
which most of the mathematics done today is formalizable. ZFC is incom-
plete in several dimensions. (In the following comments, the arithmetical
soundness of ZFC, or in other words the truth of all arithmetical theorems
of ZFC, will be taken for granted.)

First, since the incompleteness theorem applies to ZFC, the arithmeti-
cal component of ZFC is incomplete. In particular, ZFC does not prove
its own consistency. From the MRDP theorem, we know that there are
undecidable statements in ZFC of the form “The Diophantine equation
D(x1,. . . ,xn) = 0 has no solution,” but the arithmetical statements known
to be undecidable in ZFC (given the arithmetical soundness of ZFC) do
not include any such problems that have been posed by mathematicians,
or any problems about primes or other such matters of general mathemat-
ical interest. Although it cannot be excluded on general logical grounds
that, for example, the twin prime conjecture is undecidable in ZFC, there is
no reason whatever to believe this to be the case, and a proof that the twin
prime conjecture is undecidable in ZFC would be a mathematical sensa-
tion comparable to the discovery of an advanced underground civilization
on the planet Mars.
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Second, the axioms of ZFC prove the existence of a profusion of infinite
sets, but leave many statements about these infinite sets undecided. Most
famous of these is Cantor’s continuum hypothesis (CH), which states that
every infinite subset of the set of real numbers either has the same cardi-
nality as the set of real numbers itself or is countably infinite. (We don’t
need to go into what this means.) The continuum hypothesis is known
to be undecidable in ZFC through work by Gödel and Paul Cohen. Co-
hen, building on Gödel’s work in set theory, introduced a method called
forcing, which has been extremely successful in proving statements about
infinite sets to be unprovable in ZFC. This method has nothing to do with
Gödel’s incompleteness theorem. CH is typical of statements shown to be
undecidable in ZFC using these methods, in that neither CH nor not-CH
implies any arithmetical statement that is not already provable in ZFC.
(Also, only the consistency of ZFC needs to be assumed in proving that
CH is undecidable in ZFC.)

In his fundamental set-theoretical work establishing, among other things,
the consistency of CH with the axioms of ZFC, Gödel introduced a set-
theoretical principle known as “the axiom of constructibility,” usually writ-
ten “V = L.” V = L settles all, or practically all, of the known undecidable
statements in the second category (although we also know that it has no
arithmetical consequences which are not already provable in ZFC). Fur-
thermore, Gödel proved that V = L is consistent with the axioms of ZFC.
(Thus, for undecidable statements in the second category, showing that
they cannot be disproved in ZFC is often done by showing that they follow
from V = L.) A reader who wishes to understand why V = L has neverthe-
less not been incorporated into the standard axioms of set theory can turn
to Shelah’s “Logical Dreams” [Shelah 03], which contains a more technical
and searching discussion of several issues touched on in this final part of
the book.

The third dimension of incompleteness of the axioms of ZFC is found
in the fact that they do not decide just how “large” infinities exist. There
is a family of statements known as “axioms of infinity” that have been
intensively studied in set theory since the 1960s. These statements assert
the existence of sets that, if they exist, must be “very large.” In the
case of axioms of infinity, the consistency of ZFC only implies that an
axiom of infinity A is not provable in ZFC, that is, that ZFC + not-A
is consistent. The consistency of the theory ZFC + A may be more or
less problematic, even given the truth of the axioms of ZFC. There is a
broad distinction between axioms of infinity that assert that the universe
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of sets has certain closure properties and therefore contains very large sets,
and axioms of infinity that isolate some property of the smallest infinite
set, the set of natural numbers, and simply state that there are larger
infinite sets with a corresponding property. While the former category of
axioms of infinity (“weak axioms of infinity”) seem convincing to many,
and justifiable on the basis of informal considerations, probably very few
people would claim that it is at all evident that axioms of infinity in the
second category (“strong axioms of infinity”) are even consistent with the
axioms of ZFC. Strong axioms of infinity are often inconsistent with V =
L and are logically stronger than the axioms in the first category, although
no axiom of infinity is known which settles the continuum hypothesis.

This third dimension of incompleteness of ZFC, and the study of ax-
ioms of infinity to which it has given rise, may seem a highly esoteric and
specialized aspect of mathematics, and so it is. But at the same time, it is
relevant to the mathematics of the natural numbers.

The Gödelian Connection

The reason for this is a remarkable connection between the incomplete-
ness of ZFC in regard to the existence of very large infinite sets and the
arithmetical incompleteness revealed by Gödel’s incompleteness theorem:
extensions by axioms of infinity always have arithmetical consequences not
provable in the theory they extend, and the stronger the axiom of infinity,
the more new arithmetical theorems it implies.

The connection can be understood on the basis of the incompleteness
theorem. The weakest axiom of infinity is actually part of ZFC: it states
that there exists an infinite set. Using this axiom, we can prove in ZFC the
existence of a model of the remaining axioms of ZFC, and therewith prove
the consistency of the theory ZFC−ω obtained by leaving out the axiom
of infinity from ZFC. ZFC−ω is subject to the incompleteness theorem
(and is equivalent, in its arithmetical part, to PA) and so does not prove
its own consistency. Thus, we see that introducing the axiom “there is an
infinite set” yields new arithmetical theorems, in particular the consistency
of ZFC−ω, and therewith of PA. (This basic example is in a way misleading,
since ZFC is in fact arithmetically very much stronger than ZFC−ω.)

Stronger axioms of infinity are not as easily formulated, but the ba-
sic connection between infinity and arithmetic follows the same Gödelian
principle. Thus, the next axiom of infinity, asserting the existence of what
is known as a strongly inaccessible cardinal, implies among other things
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that every arithmetical theorem of ZFC is true. An axiom that asserts the
existence of an inaccessible cardinal is a “weak” axiom of infinity in the
sense explained above. “Strong” axioms of infinity are far from transparent
as regards their consequences, but investigations have shown that exten-
sions of ZFC by the stronger axioms imply the arithmetical soundness of
extensions of ZFC by the weaker axioms.

From a philosophical point of view, it is highly significant that exten-
sions of set theory by axioms asserting the existence of very large infinite
sets have logical consequences in the realm of arithmetic that are not prov-
able in the theory that they extend. Again, however, no arithmetical prob-
lem of traditional mathematical interest is known to be among the new
arithmetical theorems of extensions of ZFC by axioms of infinity, and it
is highly desirable to find arithmetical statements of interest outside the
special field of logic which are not decidable in ZFC but can be proved
using axioms of infinity.

The Paris-Harrington Theorem

A first step in this direction was taken in 1977, when it was proved that a
certain combinatorial principle is undecidable in PA. The great interest of
this result lay in the fact that the combinatorial principle in question did not
refer to Gödel numbers or formal theories, but was a seemingly insignificant
strengthening of a well-known mathematical principle. It is worthwhile to
take a closer look at this result, to obtain a broad understanding of the
far-reaching extensions of this approach that will be described at the end
of this chapter.

Ramsey’s theorem is a fundamental result in finite mathematics, proved
by Frank Plumpton Ramsey in 1928. To formulate this theorem we need
some definitions. Suppose we have a finite set A of numbers (or indeed of
anything else). An n-element subset of A is a set B with n elements, all of
which are taken from A. An m-partition of the n-element subsets of A sorts
those subsets into m categories C1,. . . ,Cm so that each n-element subset
of A belongs to one and only one of these categories. Finally, a subset
H of A is homogeneous for the given partition if there is some particular
category Ci in the partition such that every n-element subset of A all of
whose elements are taken from H falls in the category Ci.

Here is a concrete example. If A is the population of a city, we can
partition the 5-people subsets of A into two categories: those groups of five
people who get on well together, and those who do not. A homogeneous
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subset is a set H of people such that either any five people taken from H

get on well together, or else any five people taken from H do not get on
well together.

Ramsey’s theorem is about the existence of homogeneous subsets. The
theorem (or more specifically “the finite Ramsey theorem”) states that for
any n, m, and k there is a number p such that if A contains at least p

elements, there is, for any m-partition of the n-element subsets of A, a
homogeneous subset of A containing at least k elements. In the example
(choosing k = 1000), if we specify a large enough population, we know
that for any population at least that size, there is a set of 1000 people in
the population such that either any five people from that subset get on
well together, or else any five people from that subset do not get on well
together.

The finite Ramsey theorem is a theorem about finite sets, but by rep-
resenting finite sets of numbers as numbers, it can be formulated as an
arithmetical statement. It is then provable in PA. The Paris-Harrington
theorem is about a slight modification of the conclusion of the finite Ramsey
theorem. We say that a set A of numbers is relatively large if the number
of elements in A is greater than the smallest number in A. It can be proved
that Ramsey’s theorem holds also if we require the homogeneous set H to
be relatively large. But, the Paris-Harrington theorem shows, this is not
provable in PA.

While the Paris-Harrington theorem can be proved using different meth-
ods, the incompleteness in PA that it reveals is an instance of Gödelian
incompleteness, in the sense that the strengthened Ramsey theorem is in
fact equivalent in PA to “PA is Σ-sound.” Thus, this is an instance of
incompleteness in PA that can be remedied by proving the soundness of
PA, and in particular can be proved on the basis of an axiom of infinity.

Later Developments

The Paris-Harrington theorem suggests that similar combinatorial princi-
ples in the mathematics of finite sets could be found which are unprovable
in ZFC but can be proved using axioms of infinity. Harvey Friedman has
produced a large body of work in this direction, showing various combina-
torial principles to be equivalent to the consistency or the Σ-soundness of
extensions of ZFC by various axioms of infinity. These results are similar
to the Paris-Harrington theorem in that seemingly minor modifications of
combinatorial principles provable in PA result in principles that imply the
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consistency of strong theories. The combinatorial principles formulated in
Friedman’s theorems are somewhat recondite, and it is an open question to
what extent they can be put to use in “ordinary mathematics.” Also, when
these principles imply the consistency of “strong” axioms of infinity, it is
not at all clear why the results should prompt us to accept the combinato-
rial principles. Gödel expressed the idea that the consequences of axioms of
infinity in the realm of finite mathematics may be so rich and illuminating
as to prompt us to accept axioms of infinity that are not evident considered
as assertions about the existence of infinite sets. Friedman’s work is clearly
relevant to this idea, and it remains to be seen what its eventual mathe-
matical outcome will be. An accessible discussion of issues connected with
new axioms in mathematics can be found in [Feferman et al. 00].
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Appendix

A.1 The Language of Elementary Arithmetic

The main purpose of this appendix is to give a formal definition of the
concept of a Goldbach-like arithmetical statement and to comment on the
significance of Rosser’s strengthening of Gödel’s original formulation of
the first incompleteness theorem. A reader who would like to see a full
proof of the incompleteness theorem can profitably turn to [Smullyan 92],
which contains a wealth of information and does not presuppose any prior
knowledge of logic.

The language of elementary arithmetic was defined in Section 7.2. To
recapitulate, with some additional terminology, we begin with the terms.
These are built up from variables x, y, z,. . . , the numeral 0, symbols ×
for multiplication and + for addition, and finally the symbol s, denoting
the successor function, which takes a number n to n + 1. Thus the natural
numbers 0, 1, 2, 3. . . are denoted in this language by the (formal) numerals
0, s(0), s((0)), s(s(s(0))),. . . . We write n for the numeral with value n.
The variables are used the way one does in mathematics, and in particular
to form terms like x + s(0), (x + y) × z, and so on, which have a natural
number as value once values have been assigned to the variables in the term.
For example, if x is assigned the value 8, y the value 0 and z the value 2,
(x + s(y)× z) has the value 18. Formulas are formed in the language from
equalities s = t, where s and t are terms, using logical operators (called
connectives) “not,” “or,” “if-then,” and “if and only if,” together with
the universal quantifier “for every natural number x” and the existential
quantifier “for at least one natural number x.”

155
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Thus we can say in this language such things as

For every natural number x, there is a natural number y such
that y = x + s(z) for some z, and y = s(s(w)) for some w, and
for all natural numbers u and v, if y = u× v then u = s(0) and
v = y or u = y and v = s(0),

which, as we shall see, is a way of expressing that there are infinitely
many primes. We are free to extend the language of elementary arithmetic
by introducing defined operations and relations, where the definitions are
given using language already introduced. Thus, writing x < y instead of
“y = x + s(z) for some z,” and “y is a prime” instead of “y = s(s(w)) for
some w, and for all natural numbers u and v, if y = u × v then u = s(0)
and v = y or u = y and v = s(0),” the above statement becomes the more
readily intelligible

For every natural number x, there is a natural number y such
that x < y and y is a prime.

In talking about formulas, a recurring distinction is that between free
and bound occurrences of variables. Bound occurrences of variables are
those that are governed by a quantifier. Thus, in “y = s(s(w)) for some w,
and for all natural numbers u and v, if y = u×v then u = s(0) and v = y or
u = y and v = s(0),” all occurrences of the variables w, u and v are bound.
These variables are only used in the formula as a means of expressing
the logical constructs “for every number” and “for some number.” The
occurrence of the variable y in the indicated formula is free, which means
that the formula as a whole expresses a condition on y, in this case that y

is a prime.
A formula A with one free variable x is often written A(x), and A(t)

then stands for the formula obtained by replacing x with t. A sentence
in the language is a formula containing no free variables. Thus a sentence
expresses a statement, which it makes sense to speak of as true or false,
while a formula with free variables x, y,. . . expresses a condition on x,
y,. . . , which some numbers may satisfy while others do not. If prime(y)
is the indicated formula expressing that y is a prime, prime(17) is a true
sentence expressing that 17 is a prime, and prime(15) is the false sentence
expressing that 15 is a prime.

It is a remarkable fact, discovered by Gödel, that using only addition
and multiplication, we can define exponentiation and all of the other usual
operations on numbers in this language. That exponentiation is definable
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means that there is a formula exp(x, y, z) such that for all natural numbers
m, n, k, the sentence exp(m,n, k) obtained by substituting the numerals
denoting these numbers for the variables x, y, z is true if and only if k = mn.
Furthermore, using this definition, PA proves the basic rules of exponenti-
ation, that is x0 = 1 and xy+1 = xy × x for all numbers x, y. (From this
together with the induction axioms other rules for exponentiation follow.)
Thus, in discussing the subject of elementary arithmetic in a philosophical
or logical context, we can restrict ourselves to addition and multiplication
and the axioms of PA.

A Bit of Symbolism

Introducing some standard logical symbolism, we write ∀x for “for every
x,” ∃x for “there is an x such that,” ¬A for “it is not the case that A,”
A ∨ B for “A or B,” A ∧ B for “A and B,” A ⊃ B for “if A then B,” and
A ≡ B for “A if and only if B.′′

Using these symbols, the formula defining “x < y” becomes ∃z(y =
x + s(z)), the definition given above of “y is a prime” becomes the more
perspicuous ∃w(y = s(s(w))) ∧ ∀u∀v(y = u × v ⊃ (u = 1 ∧ v = y) ∨ (u =
y ∧ v = 1)), and the formalization of “there are infinitely many primes”
becomes ∀x∃y(x < y ∧ y is a prime).

A.2 The First Incompleteness Theorem
We are now in a position to formally define a “certain amount of arithmetic”
sufficient for the first incompleteness theorem to apply to a formal system.
In the following, the rules of reasoning of the formal systems we deal with
will not be specified, but instead we will simply assume that any informal
logical reasoning involving the language of arithmetic that we use can also
be carried out within the system. This informal reasoning is in fact of a
kind that can be formalized using the rules of first-order logic, so by the
completeness theorem for first-order logic (see Chapter 7), we are justified
in this assumption as long as the system encompasses those rules. We will
also assume that the system satisfies the basic condition that its set of
theorems is computably enumerable. (See Section 3.4.)

Suppose the language of such a theory includes the language of elemen-
tary arithmetic and that the axioms include the first six axioms of PA:

1. ∀x¬s(x) = 0

2. ∀x∀y(s(x) = s(y) ⊃= y)

3. ∀x(x + 0 = x)
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4. ∀x∀y(x + s(y) = s(x + y))

5. ∀x(x × 0 = 0)

6. ∀x∀y(x × s(y) = x × y + x)

Consider a statement of the form “the Diophantine equation D(x1, . . .,

xn) = 0 has at least one solution (in natural numbers).” We assume this
statement expressed in the language of PA, so that for example the equation
“x×x−y×y = 1” is written “x×x = y×y+1.” Axioms (3), (4), (5), and
(6) are all that is needed to prove every true statement of this form, since if
an equation s(x1, . . ., xn) = t(x1, . . ., xn) has a solution k1, . . ., kn, axioms
(3)–(6) prove s(k1, . . ., kn) = m and t(k1, . . ., kn) = m for some m, where-
upon a simple logical inference leads to the conclusion that the equation
has a solution. If T is consistent, it follows from the MRDP theorem
that there are true statements of the form “the Diophantine equation
D(x1, . . ., xn) = 0 has no solution” that are not provable in T , as shown
in Section 3.4. If, furthermore, T does not prove any false statement of
the form “the Diophantine equation D(x1, . . ., xn) = 0 has a solution,” it
follows that there are such statements that are undecidable in T .

Before commenting further on this result, let us observe that it is not
really necessary for the language of T to include the language of arithmetic
and the axioms of T to include (1)–(6). It suffices that s, × and + can
be defined in the language, and (1)–(6) proved restricted to the objects
satisfying some formula N(x). For example, in set theory we can define
“x is a natural number” by a purely set-theoretical formula N(x), that is,
one that only uses the predicate “is a member of,” and we can similarly
define “the natural number x is the sum of the natural numbers y and
z,” “the natural number x is the successor of the natural number y,” and
“the natural number x is the product of the natural numbers y and z” and
prove (1)–(6) using these definitions (together with a definition of 0). The
reasoning by which incompleteness follows still goes through, with obvious
modifications.

We can note further that the axioms (1) and (2) were not used in the
argument. We need those axioms in order to arrive at Gödel’s formulation
of the incompleteness theorem. Axioms (1) and (2) suffice to disprove every
false statement of the form “m = n,” so together with (3)–(6) they disprove
every false statement of the form “D(k1, . . ., kn) = 0.” Thus, given these
axioms we can formulate the incompleteness theorem using Gödel’s concept
of ω-consistency: if it is not the case that there is an arithmetical formula
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A(x1, . . ., xn) such that T proves “for some x1, . . ., xn, A(x1, . . ., xn)” but
disproves every instance A(k1, . . ., kn), then T is incomplete. (Actually we
only need the weaker assumption of Σ-soundness, formally defined below,
since we only need to apply this condition in the special case of formulas
of the form D(x1, . . ., xn) = 0.)

Rosser’s strengthening of the incompleteness theorem states that any
consistent theory incorporating some basic arithmetic is incomplete. Re-
placing the assumption of ω-consistency or Σ-soundness by the assumption
of consistency may seem a very minor strengthening of the incompleteness
theorem. And indeed, if we consider those theories, like PA and ZFC, in
which we formalize part of our mathematical knowledge, Σ-soundness is no
more problematic than consistency, so the stronger form of the incomplete-
ness theorem doesn’t give us any new information about these theories.
In theory, a skeptic might doubt the Σ-soundness of theories like PA or
ZFC while being fairly convinced of their consistency, but in actuality such
skeptics appear to be unknown.

Rosser’s stronger version of the incompleteness theorem does, however,
have significant applications, and in particular it patches up a weakness in
the application of the theorem to theories in general, as presented in this
book. In applying the incompleteness theorem to a theory T we isolate an
“arithmetical component of T” within which we can define “x is a natural
number,” “x×y,” and so on, so as to be able to prove (1)–(6) in T restricted
to the natural numbers. But it may well be that what we choose to regard
as the arithmetical component of T is better interpreted in a different way,
and is so interpreted by somebody who asserts the axioms of T . For this
reason there need not be anything at all wrong with T even if it proves a
statement of the form “the Diophantine equation D(x1, . . ., xn) = 0 has a
solution” that is false considered as a statement about the natural numbers.
For example, suppose we have a theory T that proves not only (1)–(6), but
also

∃x(s(0) + x = x)

Regarded as an arithmetical statement, this sentence is trivially false: the
equation 1+x = x has no solution in natural numbers. But other interpre-
tations of what we have chosen to regard as the arithmetical component
of T may be perfectly reasonable. For example, a proponent of the theory
T may interpret the variables as ranging, not over the natural numbers,
but over the countable ordinals, which are a set-theoretical generalization
of the natural numbers. On this interpretation, (1)–(6) are still true, but
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the equation s(0) + x = x does have a solution, and in fact infinitely many
solutions, among the infinite ordinal numbers.

Thus, using Rosser’s strengthening of the incompleteness theorem in
applying the theorem to a theory T , we can observe that although it may
be more or less reasonable (depending on what else the theory proves) to
describe a part of T within which “a certain amount of arithmetic” can be
carried out as the “arithmetical component” of the theory, the theory will
be incomplete with regard to statements within this component, unless it
is inconsistent, which is a “bad” property however we interpret T .

Rosser’s proof using a Rosser sentence for a theory T was briefly com-
mented on in Section 2.7. There are several variants and generalizations
of this proof, but none that applies the MRDP theorem in the straightfor-
ward way that yields Gödel’s version of the incompleteness theorem. The
Gödel-Rosser theorem is usually proved for theories that incorporate (in
the sense indicated above) a slight strengthening of axioms (1)–(6), known
as Robinson arithmetic (named after R. M. Robinson). One version of
this theory uses an extension of the language of elementary arithmetic in
which we do not define <, but instead include this symbol in the language
from the outset, interpreting it as usual to denote the relation “is strictly
smaller than.” We extend axioms (1)–(6) with three axioms of which the
first two do the same for the relation < that axioms (1)–(6) do for addition,
multiplication, and the successor function:

7. ∀x¬x < 0

8. ∀x∀y(x < s(y) ≡ x < y ∨ x = y)

9. ∀x∀y(x < y ∨ y < x ∨ x = y)

The interested reader is referred to Smullyan’s book for a full and read-
able presentation of a proof, generalizing Rosser’s argument, that any con-
sistent theory incorporating axioms (1)–(9) is incomplete. Here we will
consider Robinson arithmetic from the point of view of computability the-
ory, in a formal definition of the concept of a Goldbach-like statement.

A.3 Goldbach-Like Statements, Σ-Formulas and
Computably Enumerable Relations

Using < we can define a special class of formulas containing only bounded
quantification, which we will call bounded formulas. In such a formula,
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every universal quantification has the form ∀x(x < t ⊃ A) and every exis-
tential quantification has the form ∃x(x < t∧A) (where in both cases t is a
term that does not contain x). We abbreviate these formulas as ∀x < tA(x)
and ∃x < tA(x).

The essential property of bounded formulas is that there is an algorithm
for deciding whether a sentence in which all quantifiers are bounded is true.
To check whether a sentence ∀x < tA(x) is true we compute the value n of
t, and check whether A(k) is true for every k smaller than n, and similarly
for ∃x < tA(x). Consider, for example, the sentence

∀x < 1000(2 < x ∧ ∃w < x(x = 2 × w) ⊃ ∃y < x∃z

< x(x = y + z ∧ y is a prime ∧ z is a prime)

where we now define “y is a prime” by a formula containing only bounded
quantifiers: 1 < y ∧ ∀u < y∀v < y¬u × v = y. By repeatedly applying
the above method, we reduce the question of the truth or falsity of this
sentence, which says that Goldbach’s conjecture holds for every number
smaller than 1000, to checking the truth or falsity of a finite number of
sentences of the form s = t or s < t. Similarly with any other sentence
containing only bounded quantifiers. In fact, the reasoning by which we
decide in this way on the truth or falsity of a bounded sentence can be
carried out wholly within Robinson arithmetic.

It follows that any set E of natural numbers that can be defined by a
bounded formula A(x) is a computable set. For to check whether a number
n is in E, we need only check whether the sentence A(n) is true. The
converse of this observation does not hold, that is, there are computable sets
that cannot be defined by any bounded formula. But we can nevertheless
formally characterize the computable sets using this concept, as will be
seen in the following.

Note that the negation of a bounded formula can be formulated as a
bounded formula, since ¬∀x < tA(x) is logically equivalent to ∃x < t¬A(x),
and ¬∃x < tA(x) is logically equivalent to ∀x < t¬A(x). By repeated
application of these rules, together with other logical equivalences such as
the equivalence of ¬(A ∨ B) and ¬A ∧ ¬B, the negation of a bounded
formula can be reduced to another bounded formula.

We can now give a formal definition of “Goldbach-like sentence” for the
language of arithmetic. Quoting from Section 2.1:

As we have seen, Goldbach’s conjecture can be formulated as a
statement of the form “Every natural number has the property
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P ,” where P is a computable property. This is a logically very
significant feature of Goldbach’s conjecture, and in the follow-
ing, any statement of this form will be called a Goldbach-like
statement. . . . Actually, this description glosses over an impor-
tant point: the property P must not only be computable, but
must have a sufficiently simple form so that an algorithm for
checking whether a number has the property P can be “read
off” from the formulation of P .

We can now define a Goldbach-like sentence as a sentence of the form
∀xA(x), where A(x) is a bounded formula. As was noted above, this defi-
nition satisfies the condition that an algorithm for checking whether A(n)
is true for a particular number n can be formulated on the basis of the
formulation of the condition A(x).

While it is easy to see that Goldbach’s conjecture itself can be formal-
ized as a Goldbach-like sentence in this sense (just remove the restriction
on ∀x in the formula given), it is by no means obvious that every statement
conforming to the informal definition of Goldbach-like given in Section 1.2
can be expressed as a Goldbach-like statement according to the given def-
inition.

To see why this is so, we first introduce some further terminology. A
formula of the form ∃xA(x) where A(x) contains only bounded quantifi-
cation is called a Σ-formula. (A theory is Σ-sound if every Σ-sentence
provable in the theory is true.) Suppose ∃xA(x) has one free variable y, so
that we write it ∃xA(x, y). The set of n such that ∃xA(x, n) is true is a
computably enumerable set, since it can be enumerated by going through
all sentences A(m,n), deciding their truth or falsity, and delivering n as
output whenever A(m,n) is true. The converse of this also holds: for every
computably enumerable set E there is a Σ-formula ∃xA(x, y) such that E

is the set of n for which ∃xA(x, n) is true. To prove this requires a for-
malization of the informal definition of computably enumerable sets given
in Chapter 3, for example in terms of Turing machines, together with an
arithmetization of the formal definition. (The proof thus involves a great
deal of detailed formal work, and so will not be attempted here.) In fact,
if we are given a set E through some definition by which we know E to be
computably enumerable (for example, “let E be the set of proofs in ZFC of
the conjunction of some formula with its negation”), we can construct such
a formula ∃xA(x, y) which defines E. The statement “for every n, n is not
in E” can then be formulated ∀y¬∃xA(x, y), which can be equivalently ex-
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pressed as ∀z∀y < z∀x < z¬A(x, y), and thus as a Goldbach-like statement
according to the formal definition. In particular, given a property P that
we know to be computably decidable, the statement “every natural number
has property P” can be formulated as ∀xA(x) for some bounded formula
A(x), since the complement of a decidable set is effectively computable,
and the statement is equivalent to “for every n, n is not in the complement
of the set of numbers having property P .”

By the same kind of reasoning, applying the basic observation that
a set E of numbers is computably decidable if and only if both E and
its complement are computably enumerable, we find that the computably
decidable sets are those which can be defined both by a Σ-formula ∃xA(x, y)
and by a Π-formula, a formula ∀xA(x, y) with A bounded.
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