
Identity, Functions, 
and Definite 
Descriptions 

9-1. IDENTITY 

Clark Kent and Superman would seem to be entirely different people. 
Yet it turns out they are one and the same. We say that they are Identical. 
Since identity plays a special role in logic, we give it a permanent relation 
symbol. We express 'a is identical to b' with 'a= b', and the negation with 
either '-(a = b)' or 'a # b'. 

'=' is not a connective, which forms longer sentences from shorter sen- 
tences. '= ' is a new logical symbol which we use to form atomic sentences 
out of names and variables. But as we did with the connectives, we can 
explain exactly how to understand '=' by giving truth conditions for 
closed sentences in interpretations. Just follow the intuitive meaning of 
identity: To say that s= t is to say that the thing named by s is identical 
to the thing named by t; that is, that the names s and t refer to the same 
object. (Logicians say that s and t have the same referent, or that they are 
Co-Referential.) To summarize 

'=' flanked by a name or a variable on either side is an atomic sentence. If 
s and t are names, t= s is true in an interpretation if s and t name the same 
thing. s = t  is false if s and t name different things. The negation of an 
identity sentence can be written either as -(s=t) or as s f  t. 

Identity is easy to understand, and it is extraordinarily useful in ex- 
pressing things we could not say before. For example, '(3x)' means that 

there is one or more x such that. . . . Let's try to say that there is exactly 
one x such that . . . , for which we will introduce the traditional expres- . 
sion '(3x!)' (read "E shriek"). We could, of course, introduce '(3x!)' as a 
new connective, saying, for example, that '(3x!)Bx1 is true in an interpre- 
tation just in case exactly one thing in the interpretation is B. But, with 
the help of identity, we can get the same effect with the tools at hand, 
giving a rewriting rule for '(gx!)' much as we did for subscripted quanti- 
fiers in chapter 4. 

To say that there is exactly one person (or thing) who is blond is to say, 
first of all, that someone is blond. But it is further to say that nothing else 
is blond, which w'e can reexpress by saying that if anything is blond, it 
must be (that is, be identical to) that first blond thing. In symbols, this is 
'(3x)[Bx & (Vy)(By 3 y = x)r. 

Before giving a general statement, I want to introduce a small, new 
expository device. Previously I have used the expression '(. . . u . . .)' to 
stand for an arbitrary sentence with u the only free variable. From now 
on I am going to use expressions such as P(u) and Q(u) for the same 
thing: 

Boldface capital letters followed by a variable in parentheses, such as P(u) 
and Q(u), stand for arbitrary sentences in which u, and only u, may be 
free. Similarly, R(u,v) stands for an arbitrary sentence in which at most u 
and v are free. 

In practice P(u), Q(u), and R(u,v) stand for open sentences with the 
indicated variable or variables the only free variable. However, for work 
in Part I1 of this Volume, I have written the definition to accommodate 
degenerate cases in which u, or u and v, don't actually occur or don't 
occur free. If you are not a stickler for detail, don't worry about this 
complication: Just think of P(u), Q(u), and R(u,v) as arbitrary open sen- 
tences. But if you want to know why I need, to be strictly correct, to cover 
degenerate cases, you can get an idea from exercise 13-3. 

With this notation we can give the E! rewrite rule: 

Rub for reuniting 31: For any open formula P(u) with u a free variable, 
(3u!)P(u) is shorthand for (3u)[P(u) & (v)(P(v) 3 v=u)], where v is free for 
u in P(u), that is, where v is free at all the places where u is free in P(u). 

Once you understand how we have used '=' to express the idea that 
exactly one of something exists, you will be able to see how to use '=' to 
express many related ideas. Think through the following exemplars until 
you see why the predicate logic sentences expresses what the English ex- 
presses: 

There are at least two x such that Fx: 
(3x)(3y)[x f y & Fx & Fy]. 
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There are exactly two x such that Fx: 
(3x)(3y){xf y & Fx & Fy & (Vz)[Fz 3 (z = x  v z=y)]). 

There are at most two x such that Fx: 
(Vx)(Vy)(Vz)[(Fx & Fy & Fz) 3 (x= y v x =  z v y = z)]. 

We can also use '=' to say some things more accurately which previ- 
ously we could not say quite correctly in predicate logic. For example, 
when we say that everyone loves Adam, we usually intend to say that 
everyone other than Adam loves Adam, leaving it open whether Adam 
loves himself. But '(Vx)' means absolutely everyone (and thing), and thus 
won't exempt Adam. Now we can use '=' explicitly to exempt Adam: 

Everyone loves Adam (meaning, everyone except possibly Adam himself): 
(Vx)(x f a 3 Lxa). 

In a similar way we can solve a problem with transcribing 'Adam is the 
tallest one in the class'. The problem is that no one is taller than themself, 
so we can't just use '(Vx)', which means absolutely everyone. We have to 
say explicitly that Adam is taller than all class members except Adam. 

Adam is the tallest one in the class: 
(Vx)[(Cx & x f  a) 3 Tax]. 

To become familiar with what work '=' can do for us in transcribing, 
make sure you understand the following further examples: 

Everyone except Adam loves Eve: 
(Vx)(xf a 3 Lxe) & - b e .  

Only Adam loves Eve: 
(Vx)(Lxe = x = a), or  Lae & (Vx)(Lxe 3 x = a). 

Cid is Eve's only son: 
(Vx)(Sxe = x=c), or  Sce & (Vx)(Sxe 3 x=c). 

EXERCISES 

9 - 1 .  Using Cx: x is a clown, transcribe the following: 

a) There is at least one clown. 
b) There is no more than one clown. 
c) There are at least three clowns. 
d) There are exactly three clowns. 
e) There are at most three clowns. 

9-2. Use the following transcription guide: 

a: Adam Sxy: x is smarter than y 
e: Eve Qxy: x is a parent of y 

Px: x is a person Oxy: x owns y 
Rx: x is in the classroom Mxy: x is a mother of y 
Cx: x is a Cat 
Fx: x is furry 

Transcribe the following: 

Three people love Adam. (Three or more) 
Three people love Adam. (Exactly three) 
Eve is the only person in the classroom. 
Everyone except Adam is in the classroom. 
Only Eve is smarter than Adam. 
Anyone in the classroom is smarter than Adam. 
Eve is the smartest person in the classroom. 
Everyone except Adam is smarter than Eve. 
Adam's only cat is furry. 
Everyone has exactly one maternal grandparent. 
No one has more than two parents. 

9-2. INFERENCE RULES FOR IDENTITY 

You now know what '=' means, and you have practiced using '=' to say 
various things. You still need to learn how to use '=' in proofs. In this 
section I will give the rules for '=' both for derivations and for trees. If 
you have studied only one of these methods of proof, just ignore the rules 
for the one you didn't study. 

As always, we must guide ourselves with the requirement that our rules 
be truth preserving, that is, that when applied to sentences true in an 
interpretation they should take us to new sentences also true in that inter- 
pretation. And the rules need to be strong enough to cover all valid ar- 
guments. 

To understand the rules for both derivations and trees, you need to 
appreciate two general facts about identity. The first is that everything is 
self-identical. In any interpretation which uses the name 'a', 'a=al will be 
true. Thus we can freely use statements of self-identity. In particular, self- 
identity should always come out as a logical truth. 

The second fact about identity which our rules need to reflect is 
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just this: If a=b,  then anything true about a is true about b, and con- 
versely. 

I'm going to digress to discuss a worry about how general this second 
fact really is. For example, if Adam believes that Clark Kent is a weakling 
and if in addition Clark Kent is Superman, does it follow that Adam be- 
lieves that Superman is a weakling? In at least one way of understanding 
these sentences the answer must be "no," since Adam may well be labor- 
ing under the false belief that Clark Kent and Superman are different 
people. 

Adam's believing that Clark Kent is a weakling constitutes an attitude 
on Adam's part, not just toward a person however named, but toward a 
person known under a name (and possibly under a further description as 
well). At least this is so on one way of understanding the word 'believe'. 
On this way of understanding 'believe', Adam's attitude is an attitude not 
just about Clark Kent but about Clark Kent under the name 'Clark Kent'. 
Change the name and we may change what this attitude is about. What is 
believed about something under the name 'a' may be different from what 
is believed about that thing under the name 'b', whether or not in fact 
a=b.  

This problem, known as the problem of substitutivity into belief, and 
other so-called "opaque" or "intensional" contexts, provides a major re- 
search topic in the philosophy of language. I mention it here only to make 
clear that predicate logic puts it aside. An identity statement, 'a= b', is true 
in an interpretation just in case 'a' and 'b' are names of the same thing in 
the interpretation. Other truths in an interpretation are specified by say- 
ing which objects have which properties, which objects stand in which 
relations to each other, and so on, irrespective of how the objects are 
named. I n  predicate logic all such facts must respect identity. 

Thus, in  giving an interpretation of a sentence which uses the predicate 
'B', one must specify the things in the interpretation, the names of these 
things, and then the things of which 'B' is true and the things of which 
'B' is false. It is most important that this last step is independent of which 
names apply to which objects. Given an object in the interpretation's do- 
main, we say whether or  not 'B' is true of that object, however that thing 
happens to  be named. Of course, we may use a name in saying whether 
or  not 'B' is true of an object-indeed, this is the way I have been writing 
down interpretations. But since interpretations are really characterized by 
saying which predicates apply to which objects, if we use names in listing 
such facts, we must treat names which refer to the same thing, so-called 
Co-Referential Names, in the same way. If 'a' and 'b' are names of the same 
thing and  if we say that 'B' is true of this thing by saying that 'Ba' is true, 
then we must also make 'Bb' true in the interpretation. 

In short, given the way we have defined truth in an interpretation, if 

'a= b' is true in an interpretation, and if something is true of 'a' in the 
interpretation, then the same thing is true of 'b' in the interpretation. - 
Logicians say that interpretations provide an Extensional Semantics for 
predicate logic. "Semantics" refers to facts concerning what is true, and 
facts concerning meaning, insofar as rules of meaning have to do with 
what comes out true in one or another circumstance. "Extensional" means 
that the Extension of a predicate-the collection of things of which the 
predicate is true-is independent of what those things are called. Parts of 
English (e.g., 'Adam believes Clark Kent is a weakling') are not exten- 
sional. Predicate logic deals with the special case of extensional sentences. 
Because predicate logic deals with the restricted and special case of exten- 
sional sentences, in predicate logic we can freely substitute one name for 
another when the names name the same thing. 

Now let's apply these two facts to write down introduction and elimi- 
nation rules for identity in derivations. Since, for any name, s, s = s  is 
always true in an interpretation, at any place in a derivation which we can 
simply introduce the identity statement s = s: 

I Where r is any name. 

If s does not occur in any governing premises or assumptions, it occurs 
arbitrarily and gets a hat. To  illustrate, let's demonstrate that '(Vx)(x= x)' 
is a logical truth: 

The second fact, that co-referential names can be substituted for each 
other, results in the following two rules: 

The indicated substitutions may be for any number of occurrences of the 
name substituted for. 

T o  illustrate, let's show that '(Vx)(Vy)[x = y 3 (Fx 3 Fy)]' is a logical 
truth: 
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Now we'll do the rules for trees. We could pmceed much as we did with 
derivations and require that we write identities such as 'a=a' wherever 
this will make a branch close. An equivalent but slightly simpler rule in- 
structs us to close any branch on which there appears a negated self-iden- 
tity, such as 'afa'. This rule makes sense because a negated self-identity 
is a contradiction, and if a contradiction appears on a branch, the branch 
cannot represent an interpretation in which all its sentences are true. In 
an exercise you will show that this rule has the same effect as writing self- 
identities, such as 'a=a', wherever this will make a branch close. 

Rule f : For any name, s, if s f  s appears on a branch, close the branch. 

Let's illustrate by proving '(Vx)(x =x)' to be a logical truth: 

J1 -(Vx)(x=x) -S 
J 2  (3x)(xf X) 1, -V 

3  a f a  2 ,  3 
X 

The second rule for trees looks just like the corresponding rules for 
derivations. Substitute co-referential names: 

Rule =: For any names, s and t,  if s = t  appears on a branch, substitute 
s  for t and t for s in any expression on the branch, and write the result at 
the bottom of the branch if that sentence does not already appear on the 
branch. Cite the line numbers of the equality and the sentence into which 
you have substituted. But d o  not check either sentence. Application of this 
rule to a branch is not completed until either the branch closes or until all 
such substitutions have been made. 

Let's illustrate, again by showing '(Vx)(Vy)[x= y 3 (Fx 3 Fy)]' to be a 
logical truth: 

J1 -(Vx)(Vy)lx=y 3 (Fx 3 Fy)l 
J 2  (3x)(3y)-Ix=y 3 (Fx 3 Fy)l 
J 3  -[a=b > (Fa 3 Fb)] 

4 a = b  
4 5  -(Fa 3 Fb) 

6 Fa 
7 -Fb 
8 -Fa 

X 

Before closing this discussion of identity, I should mention that identity 
provides an extreme example of what is called an Equivalence Relation. 
Saying that identity is an equivalence relation is to attribute to it the fol- 
lowing three characteristics: 

Identity is Reflexive. Everything is identical with' itself: (Vx)(x=x). In general, 
to say that relation R is reflexive is to say that (Vx)R(x,x). 

Identity is Symmetric. If a first thing is identical with a second, the second is 
identical with the first: (Vx)(Vy)(x= y 3 y = x). In general, to say that relation 
R is symmetric is to say that (Vx)(Vy)(R(x,y) 3 R(y,x)). 

Identity is Transitive. If a first thing is identical with a second, and the sec- 
ond is identical with a third, then the first is identical with the third: 
(Vx)(Vy)(Vz)[(x = y & y = z) 3 x = z]. In general, to say that relation R is tran- 
sitive is to say that (Vx)(Vy)(Vz)[(R(x,y) & R(y,z)) 3 R(x,z)]. 

You can prove that identity is an equivalence relation using either deri- 
vations or trees. 

Here are some other examples of equivalence relations: being a member 
of the same family, having (exactly) the same eye color, being teammates 
on a soccer team. Items which are related by an equivalence relation 
can be treated as the same for certain purposes, depending on the rela- 
tion. For example, when it comes to color coordination, two items with 
exactly the same color can be treated interchangeably. Identity is the ex- 
treme case of an equivalence relation because "two" things related by 
identity can be treated as the same for all purposes. 

Equivalence relations are extremely important in mathematics. For ex- 
ample two numbers are said to be Equul Modulo 9 if they differ by an 
exact multiple of 9. Equality modulo 9 is an equivalence relation which is 
useful in checking your arithmetic (as you know if you have heard of the 
"rule of casting out 9s"). 

9-3. Show that each of the two = E  rules can be obtained from the 
other, with the help of the = I  rule. 
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9-4. Show that the rule f is equivalent to requiring one to write, on 
each branch, self-identities for each name that occurs on the branch. 
Do the following three exercises using derivations, trees, or both: 
9-5. Show that the following are logical truths: 

9-6. Show that (3x)(Vy)(Fy = y = x) and (3x!)Fx are logically equiv- 
alent. 
9-7. Prove that = is an equivalence relation. 
9-8. Show the validity of the following arguments: 

a) (Vx)(x= a 3 Fx) b) Fa C) (3x)(Fx & x = a )  

Fa (Vx)(x = a 3 Fx) Fa 

d) (Vx)(x= a 3 Fx) e) Pa f l  a = b  
(VX)(FX 3 ~ b )  ( 3 y ) ( y = a & y = b )  

9-9. 1 stated that being teammates on a soccer team is an equiva- 
lence relation. This is right, on the assumption that no one belongs 
to more than one soccer team. Why can the relation, being teammata 

9-3. FUNCTIONS 

on a soccer team, fail to be an equivalence relation if someone belongs 
to two teams? Are there any circumstances under which being team- 
mates on a soccer team is an equivalence relation even though one 
or more people belong to more than one team? 

Often formal presentations of functions leave students bewildered. But if 
you have done any high school algebra you have an intuitive idea of a 
function. So let's start with some simple examples from algebra. 

For our algebraic examples, the letters 'x', 'y', and 'z' represent variables 
for numbers. Consider the expression 'y = 2x + 7'. This means that if 
you put in the value 3 for x you get the value 2 x 3 + 7 = 13 for y. If 
you put in the value 5 for x, you get the value 2 x 5 + 7 = 17 for y. Thus 
the expression 'y = 2x + 7' describes a rule or formula for calculating a 
value for y if you give it a value for x. The formula always gives you a 
definite answer. Given some definite value for x, there is exactly one value 
for y which the formula tells you how to calculate. 

Mathematicians often use expressions like 'f(x)' for functions. Thus, in- 
stead of using the variable y in the last example, I could have written 'f(x) 
= 2x + 7' This means exactly what 'y = 2x + 7' means. When you put 
in a specific number for x, 'f(x)' serves as a name for the value y, so that 
we have y = flx). In particular, 'f(3) is a name for the number which 
results by putting in the value 3 for x in 2x + 7. That is, 'f(3)' is a name 
for the number 13, the number which results by putting in the value 3 
for x in f(x) = 2x + 7. 

This is all there is to functions in logic. Consider the name 'a'. Then 
'f(a)' acts like another name. To what does 'f(a)' refer? That depends, of 
course, on what function f( ) is, which depends on how 'f( )' is inter- 
preted. In specifying an interpretation for a sentence in which the func- 
tion symbol 'f( )' occurs, we must give the rule which tells us, for any 
name s, what object f(s) refers to. When we deal with interpretations in 
which there are objects with no names, this must be put a little more 
abstractly: We must say, for each object (called the Argument of the func- 
tion), what new object (called the Value of the function) is picked out by 
the function f( ) when f( ) is applied to the first object. The function 
must be well defined, which means that for each object to which it might 
be applied, we must specify exactly one object which the function picks 
out. For each argument there must be a unique value. 

So far I have talked only about one place functions. Consider the ex- 
ample of the mathematical formula 'z = 3x + 5y - 8'. which we can also 
write as 'z = g(x,y)' or as 'g(x,y) = 3x + 5y - 8'. Here g( , ) has two 

' 
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arguments. You give the function two input numbers, for example, x = 
2 and y = 4, and the function gives you a single, unique output-in this 
case, the number 3 x 2 + 5 x 4 - 8 = 18. Again, the idea carries over to 
logic. If 'g( , )' is a two place function symbol occurring in a sentence, 
in giving an interpretation for the sentence we must specify the unique 
object the function will pick out when you give it a pair of objects. If our 
interpretation has a name for each object the same requirement can be 
expressed in this way: For any two names, s and t, 'g(s,t)' refers to a 
unique object, the one picked out by the function g( , ) when g( , ) 
is applied to the arguments s and t. We can characterize functions with 
three, four, or any number of argument places in the same kind of way. 

To  summarize 

The interpretation of a one place function specifies, for each object in the 
interpretation's domain, what object the function picks out as its value when 
the function is applied to the first object as its argument. The interpretation 
of a two place function similarly specifies a value for each pair of arguments. 
Three and more place functions are interpreted similarly. 

Incidentally, the value of a function does not have to differ from the 
argument. Depending on the function, these may be the same or they 
may be different. In particular, the trivial identity function defined by 
(Vx)(f(x) = X) is a perfectly well-defined function. 

In the last sentence I applied a function symbol to a variable instead of 
a name. How should you understand such an application? In an interpre- 
tation, a name such as 'a' refers to some definite object. A variable symbol 
such as 'x' does not. Similarly, 'f(a)' refers to some definite object, but Xx)' 
does not. Nonetheless, expressions such as 'f(x)' can be very useful. The 
closed sentence '(Vx)Bf(x)' should be understood as saying that every 
value of 'f(x)' has the property named by 'B'. For example, let us under- 
stand 'Bx' as 'x is blond' and 'f(x)' as referring to the father of x. That is, 
for each person, x, f(x) is the father of x, so that Xa)' refers to Adam's 
father, Xe)' refers to Eve's father, and so on. Then '(Vx)Bf(x)' says that 
everyone's father is blond. 

In sum, function symbols extend the kind of sentences we can write. 
Previously we had names, variables, predicate symbols, and connectives. 
Now we introduce function symbols as an extension of the category of 
names and variables. This involves the new category called Tern: 

We extend the vocabulary of predicate logic to include Function Symboh, 
written with lowercase italicized letters followed by parentheses with places 
for writing in one, two, or more arguments. 

All names and variables are T e r n .  A function symbol applied to any term 
or terms (a one place function symbol applied to one term, a two place 
function symbol applied to two terms, etc.) is again a term. Only such 
expressions are terms. 

In forming sentences, terms function exactly as do names and variables. 
One may be written after a one place predicate, two after a two place pred- 
icate, and so on. 

Do not confuse function symbols (lowercase italicized letters followed 
by parentheses with room for writing in arguments) with such expressions 
as P(u) and R(u,v). These latter expressions are really not part of predi- 
cate logic at all. They are part of English which I use to talk about arbi- 
trary open predicate logic sentences. 

Notice that these definitions allow us to apply functions to functions: If 
'f( )' is a one place function symbol, 'f(f(a))' is a well-defined term. In 
practice, we leave out all but the innermost parentheses, writing 'f(f(a))' as 
tff(a)' What does such multiple application of a function symbol mean? 
Well, if f(x) = x2, then ff(x) is the square of the square of x. If x = 3, 
thenff(3) = (3')' = 9* = 81. In general, you determine the referent of- 
that is, the object referred to by -ma)' as follows: Look up the referent 
of 'a'. Apply the function f to that object to get the referent of 'f(a)'. Now 
apply f a second time to this new object. The object you get after the 
second application off is the referent of tff(a)'. 

Function symbols can be combined to form new terms in all kinds of 
ways. If 'f( )' is a one place function symbol and 'g( , )' is a two place 
function symbol, the following are all terms: 'f(a)', Xy)', 'g(a,x)', 'fg(a,x)'- 
that is, flg(aA1. 'g[f(a), f(b)l', and gf.f(x), g(a,b)l'. 

We need one more definition: 

A term in which no variables occur is called a Consant or a Constant Term. 

Only constant terms actually refer to some specific object in an interpre- 
tation. But closed sentences which use nonconstant terms still have truth 
values. In applying the truth definitions for quantifiers, we form substi- 
tution instances, substituting names for variables within function symbols 
as well as elsewhere. Thus, in applying the definition for the truth of a 
universally quantified sentence in an interpretation to '(Vx)Laf(x)', we 
look at the substitution instances ' 4 ( a ) ' ,  'Laf(b)', 'Laf(c)', and so on. We 
then look to see if the relation L holds between a and the object f(a), 
between a and the object f(b), and so on. Only if all these instances hold 
is '(Vx)Laf(x)' true in the interpretation. 

The rules for functions simply reflect the fact that constant terms 
formed by applying function symbols to other constant terms have defi- 
nite referents, just as names do. However, the generality of these new 
referring terms may be restricted. For example, the constant function f 
defined by (Vx)(f(x) = a) can only refer to one thing, namely, a. Thus, 
when it is important that nothing be assumed about a constant term we 
must use a name and not a function symbol applied to another constant 
term. 
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For derivations this means that we should treat constant terms all alike 
in applying the rules VE and 31. In applying 3E, our isolated name must 
still be a name completely isolated to the subderivation to which the 3E 
rule applies. (Strictly speaking, if you used an isolated function symbol 
applied to an isolated name, no difficulty would arise. But it's simpler just 
to let the isolated name requirement stand as a requirement to use an 
isolated name.) 

In applying VI only names can occur arbitrarily. For example, we must 
never put a hat on a term such as 'f(a)'. The hat means that the term 
could refer to absolutely anything, but often the value of a function is 
restricted to only part of an interpretation's domain. So we can't apply VI 
to a function symbol. However, if a name appears in no governing prem- 
ise or assumption and occurs as the argument of a function symbol, we 
can apply VI to the name. For example, if 'a' appears in no governing 
premise or assumption, we could have 'Bf(2)' as a line on a derivation, to 
which we could apply VI to get '(x)Bf(x)'. To summarize 

In derivations, treat all constant terms alike in applying VE and 31. Apply 
VI and 3E only to names. 

Let's try this out by showing that '(Vx)(3y)(f(x) = y)' is a logical truth. 
This sentence says that for each argument a function has a value. The 
way we treat functions in giving interpretations guarantees that this state- 
ment is true in all interpretations. If our rules are adequate, this fact 
should be certified by the rules: 

Note that this derivation works without any premise or assumption. = I  
allows us to introduce the identity of line 1. Since 'a' does not occur in 
any governing premise or assumption, it occurs arbitrarily, although the 
larger term 'f(a)' does not occur arbitrarily. 'a' could refer to absolutely 
anything-that is, the argument to which the function is applied could be 
any object at all. However, the result of applying the function f to this 
arbitrary object might not be just anything. In line 2 we apply 31 to the 
whole term 'f(a)', not just to the argument 'a'. This is all right because we 
are existentially, not universally, generalizing. If f(5) =f(l), then f(2) is 
identical with something. Finally, in line 3, we universally generalize on 
the remaining arbitrarily occurring instance of 'a'. 

Let's try something harder. '(Vx)(3y)lf(x) = y & (Vz)(f(x) = z 3 z = y)]' 
says that for each argument the function f has a value and furthermore 
this value is unique. Again, the way we treat functions in giving interpre- 

tations guarantees that this statement is true in all interpretations. So our 
rules had better enable us to show that this sentence is a logical truth: 

One more example will illustrate 3E and VE as applied to terms using 
function symbols. Note carefully how in applying VE the constant term to 
use in this problem is not a name, but 'f(a)', a function symbol applied to 
a name: 

Similar thinking goes into the rules for trees. All constant terms act as 
names when it comes to the rule V. But for the rule 3 we want a name 
that could refer to anything in the interpretation-that was the reason for 
requiring that the name be new to the branch. So for 3 we need a new 
name, which must be a name, not a function symbol, applied to another 
constant term: 

In trees, instantiate all universally quantified sentences with all constant 
terms that occur along the branch, unless the branch closes. Instantiate each 
existentially quantified sentence with a new name. 

Let us illustrate the new rules with the same sentence as before, 
'(Vx)(3y)lf(x) = y & (Vz)(f(x) = z 3 z = y)]'. As I mentioned, this sentence 
says that f has a unique value for each argument. Since the way we treat 
functions in giving interpretations ensures that this sentence is true in all 
interpretations, our rules had better make this sentence come out to be a 
logical truth: 
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-(Vx)(3y){f(x) = y & (Vz)[f(x) = z 3 z = yl} 
(3x)(Vy)-{f(x) = y & (Vz)[f(x) = z 3 z = yl} 

Notice that to get everything to close I used the term 'f(a)' in substitut- 
ing into line 3. Also, note that the right branch does not close at line 9. 
Line 9 is not, strictly speaking, the negation of line 8 since, strictly speak- 
ing, 'f(a) = b' and 'b = f(a)' are different sentences. 

The occurrence of functions in trees has an unpleasant feature. Sup- 
pose that a universally quantified sentence such as '(Vx)Pf(x)' appears on 
a tree. This will be instantiated, at least once, say, with 'a', giving 'Pf(a)'. 
But now we have a new constant, 'f(a)', which we must put into '(Vx)Pf(x))' 
giving 'Pff(a)'. This in turn gives us a further constant, 'ff(a)'-and clearly 
we are off on an infinite chase. In general, open trees with function sym- 
bols are infinite when, as in '(Vx)Pf(x)', a function symbol occurs as a non- 
constant term inside the scope of a universal quantifier 

EXERCISES 

9-10. Provide derivations andor trees to establish that the following 
are logical truths: 

9-1 1. Provide derivations andor trees to establish the validity of the 
following arguments: 

9-4. DEFINITE DESCRIPTIONS 

Let's transcribe 

(1)  T h e  one who loves Eve is blond. 

We need a predicate logic sentence which is true when (1) is true and 
false when it is false. If there is exactly one person who loves Eve and this 
person is blond, (1) is true. If this person is not blond, (1) clearly is false. 
But what should we say about (1) if no one loves Eve, or more than one 
do? 

If no one, or more than one love Eve, we surely can't count (1) as true. 
If we insist that every sentence is true or false, and since (1) can't be true 
if none or more than one love Eve, we will have to count (1) as false under 
these conditions. Thinking about (1) in this way results in transcribing 
it as 

(la) (3x!)(Lxe & Bx). 

which is true if exactly one person loves Eve and is blond, and is false if 
such a person exists and is not blond or if there are none or more than 
one who love Eve. 

From a perspective wider than predicate logic with identity we do not 
have to take this stand. We could, instead, suggest that there being exactly 
one person who loves Eve provides a precondition for, or a Presupposition 
of, the claim that the one who loves Eve is blond. This means that the 
condition that there is exactly one person who loves Eve must hold for (1) 
to be either true or false. If the presupposition holds-if there is exactly 
one person who loves Eve-then (1) is true if this unique person is blond 
and false if he or she is not blond. If the presupposition fails-if there is 
none or more than one who love Eve-then we say that (1) is neither true 
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nor false. One can design more complex systems of logic in which to for- 
malize this idea, but predicate logic with identity does not have these re- 
sources. Hence, (la) is the best transcription we can provide. 

Grammatically, 'the one who loves Eve' functions as a term. It is sup- 
posed to refer to something, and we use the expression in a sentence by 
attributing some property or relation to the thing purportedly referred 
to. We can mirror this idea in predicate logic by introducing a new kind 
of expression, (The u)P(u), which, when there is a unique u which is P, 
refers to that object. We would then like to use (The u)P(u) like a name 
or other constant term in combination with predicates. Thus we would 
transcribe (1) as 

(lb) B(The x)Lxe. 

Read this as the predicate 'B' applied to the "term" '(The x)Lxe'. 'The one 
who loves Eve' and '(The x)Lxe' are called Dejinite Descriptions, respec- 
tively in English and in logic. Traditionally, the definite description form- 

But what should we say in predicate logic about the transcription of 
(2)? We can see (2) as the negation of (1) in two very different ways. We 
can see (2) as the definite description '(The x)Lxe applied to the negated 
predicate '-B' in which case we have 

(2a) -B(The x)Lxe, rewritten as (3x!)(Lxe & -Bx). 

When we think of (1) and (2) this way, we say that the definite description 
has Primary Occurrence or Wide Scope. 

Or we can see (2) as the negation of the whole transcribed sentence: 

(2b) -[B(The x)Lxe], rewritten as -(3x!)(Lxe & Bx). 

Thinking of (1) and (2) in this second way, we say that the definite de- 
scription has Secondary Occurrence or Narrow Scope. When transcribing an 
English sentence with a definite description into logic, you will always 
have to make a choice between treating the definite description as having 

ing operator, (The u), is written with an.upside-down Greek letter iota, primary or secondary occurrence. 
 like this: (LU)P(U). 

Here are some examples of definite descriptions transcribed into pred- 
icate logic: 

a) The present king of France: (The x)Kx. 

b) The blond son of Eve: (The x)(Bx & Sxe). 
c) The one who loves all who love themselves: (The x)(Vy)(Lyy > Lxy). 

But we can't treat (The x)P(x) like an ordinary term, because sometimes 
such "terms" don't refer. Consequently, we need a rewriting rule, just as 
we did for subscripted predicates and '(gx!)', to show that expressions like 
(lb) should be rewritten as (la): 

Rule for rewriting Definite Descriptions Using '(The u)': Q[(The u)P(u)] is 
shorthand for (3u!)[P(u) & Q(u)], where P(u) and Q(u) are open formulas 
with u the only free variable. 

This treatment of definite descriptions works very smoothly, given the 
limitations of predicate logic. It does, however, introduce an oddity about 
the negations of sentences which use a definite description. How should 
we understand 

(2) The one who loves Eve is not blond. 

Anyone who holds a presupposition account will have no trouble with 
(2): They will say that if the presupposition holds, so that there is just one 
person who loves Eve, then (2) is true if the person is not blond and false 
if he o r  she is blond. If the presupposition fails, then (2), just as (I), is 
neither true nor false. 

EXERCISES 

Transcription Guide 

a: Adam Dx: x is dark-eyed 
e: Eve Fxy: x is a father of y 
c: Cain Sxy: x i s a s o n o f y  

Bx: x is blond Cxy: x is more clever than y 
Lxy: x loves y 

9-12. Transcribe the following. Expressions of the form (The u) and 
(gu!) should not appear in your final answers. 

The son of Eve is blond. 
The son of Eve is more clever than Adam. 
Adam is the father of Cain. 
Adam loves the son of Eve. 
Adam loves his son. 
Cain loves the blond. 
The paternal grandfather of Adam is dark-eyed. 
The son of Eve is the son of Adam. 
The blond is more clever than the dark-eyed one. 
The most clever son of Adam is the father of Eve. 
The son of the father of Eve is more clever than the father of the 
son of Adam. 



9-13. Transcribe the negations of the sentences of exercise 9-12,, 
once with the definite description having primary occurrence and 
once with secondary occurrence, indicating which transcription is 
which. Comment on how you think the notions of primary and sec- 
ondary occurrence should work when a sentence has two definite 
descriptions. 

CHAPTER SUMMARY EXERCISES 

This chapter has introduced the following terms and ideas. Sum- 
marize them briefly. 

Identity 
Referent 
Co-Referential 
@PI) 
Self-Identity 
Extensional 
Extensional Semantics 
Rule = I  for Derivations 
Rule = E for Derivations 
Rule = for Trees 
Rules # for Trees 
Reflexive Relation 
Symmetric Relation 
Transitive Relation 
Equivalence Relation 
Function 
One Place Function 
Two and Three Place Functions 
Arguments of a Function 
Function Symbols 
Term 
Constant, or Constant Term 
Rules for Function Symbols in Derivations 
Rules for Function Symbols in Trees 
Presupposition 
Definite Description 
Rewrite Rule for Definite Descriptions 
Primary Occurrence (Wide Scope) of a Definite Description 
Secondary Occurrence (Narrow Scope) of a Definite Description 


