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6-1. MULTIPLE QUANTIFICATION AND HARDER PROBLEMS 

In chapter 5 I wanted you to focus on understanding the basic rules for 
quantifiers. So there I avoided the complications that arise when we have 
sentences, such as '(Vx)(Vy)(Px & Py)', which stack one quantifier on top 
of another. Such sentences involve no new principles. It's just a matter of 
keeping track of the main connective. For example, '(Vx)(Vy)(Px & Qy)' is 
a universally quantified sentence, with '(Vx)' as the main connective. You 
practiced forming substitution instances of such sentences in chapter 3. 
The substitution instance of '(Vx)(Vy)(Px & Qy)' formed with 'a' (a sen- 
tence you could write when applying VE) is '(Vy)(Pa & Qy)'. 

You will see how to deal with such sentences most quickly by just 
looking at a few examples. So let's write a derivation to establish the 
validity of 
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In line 2 I applied VE by forming tlie substitution instance of 1 using the 
name 'a'. Then in line 3 I formed a substitution instance of the universally 
quantified line 2. 

Let's look at an example of multiple existential quantification. The basic 
ideas are the same. But observe that in order to treat the second existen- 
tial quantifier, we must start a sub-sub-derivation: 

In line 2 I wrote down '(3y)(Pa & Qy)', a substitution instance of line 1, 
formed with 'a', substituted for 'x', which is the variable in the main con- 
nective, '(3x)', of line 1. Since I plan to appeal to 3 E  in application to line 
1, I make '(3y)(Pa & Qy)' the assumption of a subderivation with 'a' an 
isolated name. I then do  the same thing with '(3y)(Pa & Qy)', but because 
this is again an existentially quantified sentence to which I will want 
to apply 3E, I must make my new substitution instance, 'Pa & Qb', 
the assumption of a sub-sub-derivation, this time with 'b' the isolated 
name. 

In the previous example, I would have been allowed to use 'a' for the 
second as well as the first substitution instance, since I was applying VE. 
But, in the present example, when setting up to use two applications of 
3E, I must use a new name in each assumption. To see why, let's review 
what conditions must be satisfied to correctly apply 3E to get line 9. I 
must have an existentially quantified sentence (line 2) and a subderivation 
(sub-sub-derivation 3), the assumption of which is a substitution instance 
of the existentially quantified sentence. Furthermore, the name used in 
forming the substitution instance must be isolated to the subderivation. 
Thus, in forming line 3 as a substitution instance of line 2, I can't use 'a'. 
I use the name 'b' instead. The 'a' following 'P' in line 3 does not violate 
the requirement. 'a' got into the picture when we formed line 2, the sub- 
stitution instance of line 1, and you will note that 'a' is indeed isolated to 
subderivation 2, as required, since sub-sub-derivation 3 is part of subder- 
ivation 2. 

Here's another way to see the point. I write line 3 as a substitution 
instance of line 2. Since I will want to apply 3E, the name I use must be 
isolated to subderivation 3. If I tried to use 'a' in forming the substitution 
instance of line 2, I would have had to put an 'a' (the "isolation flag") to 
the left of scope line 3. I would then immediately see that I had made a 
mistake. 'a' as an isolation flag means that 'a' can occur only to the right. 
But 'a' already occurs to the left, in line 2. Since I use 'b' as my new name 
in subderivation 3, I use 'b' as the isolation flag there. Then the 'a' in line 
3 causes no problem: All occurrences of 'a' are to the right of scope line 
2, which is the line flagged by 'a'. 

All this is not really as hard to keep track of as it might seem. The scope 
lines with the names written at the top to the left (the isolation flags) do 
all the work for you. 'a' can only appear to the right of the scope line on 
which it occurs as an isolation flag. 'b' can only occur to the right of the 
scope line on which it occurs as an isolation flag. That's all you need to 
check. 

Make sure you clearly understand the last two examples before con- 
tinuing. They fully illustrate, in a simple setting, what you need to 
understand about applying the quantifier rules to multiply quantified sen- 
tences. 

. Once you have digested these examples, let's try a hard problem. The 
new example also differs from the last two in that it requires repeated 
use of a quantifier introduction rule instead of repeated use of a quanti- 
fier elimination rule. In reading over my derivation you might well be 
baffled as to how I figured out what to do at each step. Below the problem 
I explain the informal thinking I used in constructing this derivation, so 
that you will start to learn how to work such a problem for yourself. 
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My basic strategy is reductio, to assume the opposite of what I want to 
prove. From this I must get a contraction with the premise. The premise 
is a conditional, and a conditional is false only if its antecedent is true and 
its consequent is false. So I set out to contradict the original premise by 
deriving its antecedent and the negation of its consequent from my new 
assumption. 

T o  derive (Vx)Px (line lo), the premise's antecedent, I need to derive 
PS. I do this by assuming -Pa from which I derive line 7, which contra- 
dicts line 2. To  derive -(3x)Qx (line la), the negation of the premise's 
consequent, I assume (3x)Qx (line 1 l), and derive a contradiction, so that 
I can use -I. This proceeds by using 3E, as you can see in lines 11 to 16. 

Now it's your turn to try your hand at the following exercises. The 
problems start out with ones much easier than the last example-and 
gradually get harder! 

I EXERCISES 

6-1. Provide derivations to establish the validity of the following 
argument: 

(Vx)Lxx 
Note that the argument, is invalid. Prove that this argu- 

~Vx)~Vy)Lyx'  
ment is invalid by giving a counterexample to it (that is, an inter- 
pretation in which the premise is true and the conclusion is false). 
Explain why you can't get from (Vx)Lxx to (Vx)(vy)Lxy by using 
VE and VI as you can get from (3x)Lxx to (3x)(3y)Lxy by using 3E 
and 31. 

Note that the argument, (3x)(3y)Lxy, is invalid. Prove that this ar- (3x)Lxx . . 

gument is invalid by giving a counterexample to it. Explain why you 
can't get from (3x)(3y)Lxy to (3x)Lxx by using 3E and 31 as you 
can get from (Vx)(Vy)Lxy to (Vx)Lxx by using VE and VI. 

(Vy)(3x)Lxy 

Note that the converse argument, (vy)(3x)Lxy is invalid. Prove this 
(3x)(Vy)Lxy' 

I by providing a counterexample. 
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6-2. S O M E  DERIVED RULES 

Problem 5-7(q) posed a special difficulty: 

We would like to apply -I to derive -(3x)Fx. To do this, we need to get 
a contradiction in subderivation 2. But we can use the assumption of sub- 
derivation 2 only by using 3E, which requires starting subderivation 3, 
which uses 'a' as an isolated name. We do get a sentence and its negation 
in subderivation 3, but these sentences use the isolated name 'a', so that 
we are not allowed to use 3E to bring them out into subderivation 2 
where we need the contradiction. What can we do? 

We break this impasse by using the fact_that from a contradiction you 
can prove anything. Be sure you understand this general fact before we 
apply it to resolving our special problem. Suppose that in a derivation you 
have already derived X and -X. Let Y be any sentence you like. You can 
then derive Y: 
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We can use this general fact to resolve our difficulty in the following 
way. Since anything follows from the contradiction of 'Pa' and '-Pa', we 
can use this contradiction to derive a new contradiction, 'A &-A', which 
does not use the name 'a'. 3E then licenses us to write 'A &-A' in deri- 
vation 2 where we need the contradiction. 

To streamline our work, we will introduce several new derived rules. 
The first is the one I have just proved, that any sentence, Y, follows from 
a contradiction: 

Contradiction 

In practice, I will always use a standard contradiction, 'A & -A', for Y. I 
will also use a trivial reformulation of the rules -I and Rd expressed in 
terms of a conjunction of a sentence and its negation where up to now 
these rules have, strictly speaking, been expressed only in terms of a sen- 
tence and the negation of the sentence on separate lines: 

Negation Introduction Reductio 
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These derived rules enable us to deal efficiently with problem 5-7(q) 
and ones like it: 

Let's turn now to four more derived rules, ones which express the rules 
of logical equivalence, -V and -3, which we discussed in chapter 3. 
There we proved that they are correct rules of logical equivalence. For- 
mulated as derived rules, you have really done the work of proving them 
in problems 5 4 q )  and (r) and 5-7(q) and (r). To prove these rules, all 
you need do is to copy the derivations you provided for those problems, 
using an arbitrary open sentence (. . . u . . .), with the free variable u, 
instead of the special case with the open sentence 'Px' or 'Fx' with the free 
variable 'x'. 

Negated Quantifier Rules 

work hard and are ingenious, you can produce more elegant derivations 
without using the quantifier negation rules. In the following exercises, use 
the rules so that you have some practice with them. But in later exercises, ' 
be on the lookout for clever ways to produce derivations without the 
quantifier negation rules. Instructors who are particularly keen on their 
students learning to do derivations ingeniously may require you to do 
later problems without the quantifier negation rules. (These comments do 
not apply to the derived contradiction rule and derived forms of -I and 
RD rules. These rules iust save work which is invariably boring, so you - 
should use them whenever they will shorten your derivations.) 

EXERCISES 

-, . - .  
Wx)-Qx Wx)(Gx 3 Hx) 

-(3x)Hx ( ~ x ) ( ~ Y ) - L x Y  
-(3x)(Px = Qx)  

A word of caution in using these negated quantifier rules: Students 
often rush to apply them whenever they see the opportunity. In many 
cases you may more easily see how to get a correct derivation by using 
these rules than if you try to make do without the rules. But often, if you 

6-3. LOGICAL TRUTH, CONTRADICTIONS, INCONSISTENCY, 
AND LOGICAL EQUIVALENCE 

This section straightforwardly applies concepts you have already learned 
for sentence logic. We said that a sentence of sentence logic is a logical 
truth if and only if it is true in all cases, that is, if and only if it comes out 
true for all assignments of truth values to sentence letters. The concept 
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of logical truth is the same in predicate logic if we take our cases to be 
interpretations of a sentence: 

A closed predicate logic sentence is a Logical Truth if and only if it is true in 
all its interpretations. 

Proof of logical truth also works just as it did for sentence logic, as we 
discussed in section 7-3 of Volume I. A derivation with no premises 
shows all its conclusions to be true in all cases (all assignments of truth 
values to sentence letters in sentence logic, all interpretations in predicate 
logic). A brief reminder of the reason: If we have a derivation with no 
premises we can always tack on unused premises at the beginning of the 
derivation. But any case which makes the premises of a derivation true 
makes all the derivation's conclusions true. For any case you like, tack on 
a premise in which that case is true. Then the derivation's conclusions will 
be true in that case also: 

A derivation with no premises shows all its conclusions to be logical truths. 

Contradictions in predicate logic also follow the same story as in sen- 
tence logic. The whole discussion is the same as for logical truth, except 
that we replace "true" with "false": 

A closed predicate logic sentence is a Contradiction if and only if it is false in 
all its interpretations. 

To  demonstrate a sentence, X, to be a contradiction, demonstrate its nega- 
tion, -X, to be a logical truth. That is, construct a derivation with no prem- 
ises, with -X as the final conclusion. 

If you did exercise 7-5 (in volume I), you learned an alternative test 
for contradictions, which also works in exactly the same way in predicate 
logic: 

A derivation with a sentence, X, as its only premise and two sentences, Y 
and -Y, as conclusions shows X to be a contradiction. 

Exercise 7-8 (volume I) dealt with the concept of inconsistency. Once 
more, the idea carries directly over to predicate logic. I state it here, to- 
gether with several related ideas which are important in more advanced 
work in logic: 

A colle&on of closed predicate logic sentences is Consistent if there is at least 
one interpretation which makes all of them true. Such an interpretation is 
called a Model for the consistent collection of sentences. If there is no inter- 

pretation which makes all of the sentences in the collection true (if there is 
no model), the collection is Inconsistent. 

A finite collection of sentences is inconsistent if and only if their conjunction' 
is a contradiction. 

To demonstrate that a finite collection of sentences is inconsistent, demon- 
strate their conjunction to be a contradiction. Equivalently, provide a deri- 
vation with all of the sentences in the collection as premises and a contradic- 
tion as the final conclusion. 

Finally, in predicate logic, the idea of logical equivalence of closed sen- 
tences works just as it did in sentence logic. We have already discussed 
this in section 3 4 :  

Two closed predicate logic sentences are Logicoly E p i v a l a t  if and only if in 
each of their interpretations the two sentences are either both true or both 
false. 

Exercise 4-3 (volume I) provides the key to showing logical equiva- 
lence, as you already saw if you did exercise 7-9 (volume I). Two sen- 
tences are logically equivalent if in any interpretation in which the first is 
true the second is true, and in any interpretation in which the second is 
true the first is true. (Be sure you understand why this characterization 
comes to the same thing as the definition of logical equivalence I just 
gave.) Consequently 

To  demonstrate that two sentences, X and Y, are logically equivalent, show 
that the two arguments, "X. Therefore Y." and "Y. Therefore X." are both 
valid. That is, provide two derivations, one with X as premise and Y as final 
conclusion and one with Y as premise and X as final conclusion. 

6-3. Provide derivations which show that the following sentences are 
logical truths: 
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6-4. Provide derivations which show that the following sentences are 
contradictions: 

6-5. Provide derivations which show that the following collections of 
sentences are inconsistent: 

6-6. a) List the pairs of sentences which are shown to be logically 
equivalent by the examples in this chapter and any of the derivations 
in exercises 6-1 and 6-8. 
b) Write derivations which show the following three arguments to 
be valid. (You will see in the next part of this exercise that there is a 
point to your doing these trivial derivations.) 

C) Note that the three derivations you provided in your answer to 
(b) are essentially the same. From the point of view of these deriva- 
tions, 'Rxa' and 'Rxx' are both open sentences which we could have 
just as well have written as P(u), an arbitrary (perhaps very complex) 
open sentence with u as its only free variable. In many of the prob- 
lems in 5-5 and 5-7, I threw in names and repeated variables which 
played no real role in the problem, just as in the first two derivations 
in (b) above. (I did so to keep you on your toes in applying the new 
rules.) Find the problems which, when recast in the manner illus- 
trated in (b) above, do the work of proving the following logical 
equivalences. Here, P(u) and Q(u) are arbitrary open sentences with 
u as their only free variable. A is an arbitrary closed sentence. 

(Vu)(P(u) & Q(u)) is logically equivalent to (Vu)P(u) & (Vu)Q(u) 
(3u)(P(u) v Q(u)) is logically equivalent to (3u)P(u) v (3u)Q(u) 

A > (Vu)P(u) is logically equivalent to (Vu)(A > P(u)) 
A 3 (3u)P(u) is logically equivalent to (3u)(A > P(u)) 
(Vu)P(u) 3 A is logically equivalent to (3u)(P(u) > A) 
(3u)P(u) 3 A is logically equivalent to (Vu)(P(u) > A) 

d) Prove, by providing a counterexample, that the following two 
pairs of sentences are not logically equivalent. (A counterexample is 
an interpretation in which one of the two sentences is true and the 
other is false.) 

(Vx)(Px v Qx) is not logically equivalent to (Vx)Px v (Vx)Qx 
(3x)(Px & Qx) is not logically equivalent to (3x)Px & (3x)Qx 

e) Complete the work done in 6-l(c) and (d) to show that the fol- 
lowing pairs of sentences are logically equivalent. (R is an arbitrary 
open sentence with u and v as its only two free variables.) 

(Vu)(Vv)R(u, v) is logically equivalent to (Vv)(Vu)R(u, v) 
(3u)(3v)R(u, v) is logically equivalent to (3v)(3u)R(u, v) 

6-7. Here are some harder arguments to prove valid by providing 
derivations. In some cases it is easier to find solutions by using the 
derived rules for negated quantifiers. But in every case you should 
look for elegant solutions which do not use these rules. 

(Vx)[(3y)(Lxy v Lyx) > Lxx] (Everyone who loves or is loved by 
(~X)@Y)LXY someone loves themself. Someone 

loves someone. Therefore, someone 
(3x)Lxx loves themself.) 

(Vx)(Vy)[(3z)Lyz 3 Lxy] (Everyone loves a lover. Someone loves 
( ~ x ) ( ~ Y ) L x Y  someone. Therefore, everyone loves 

everyone.) 
(Vx)(Vy)Lxy 
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(Everyone who loves 
someone loves someone who 
loves everyone. Someone 
loves someone. Therefore, 
someone loves everyone.) 

(Any elephant weighs more 
than a horse. Some horse 
weighs more than any 
donkey. If a first thing weighs 
more than a second, and the 
second weighs more than a 
third, the first weighs more 
than the third. Therefore, any 
elephant weighs more than 
any donkey.) 

Wx)(3y)(F'y 3 Qx) Note that in general a sentence of the form 
Wx)(3y)X does not imply a sentence of the 

(3y)Wx)(h' ' Qx) form (3y)(Vx)X (See problem 6 -l(e)). 
However, in this case, the special form of the 
conditional makes the argument valid. 

WxKBx 3 [(3y)Lxy 3 (3y)Lyxl) (All blond lovers are loved. All 
Wx)I(3y)Lyx 3 Lxxl those who are loved love 
-(3xlLxx themselves. No one loves . . 

themself. Therefore, all blonds 
WX)(BX 3 (Vy)-Lxy) love no one.) 
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(3x)(Gx & Cx) 

I CHAPTER REVIEW EXERCISES 

Write short explanations in your notebook for each of the following. 

a) Contradiction Rule 
b) Quantifier Negation Rules 

c) Logical Truth o f  Predicate Logic 

d) Test for a Logical Truth 
e) Contradiction o f  Predicate Logic 
f) Test for a Contradiction 
g) Consistent Set o f  Sentences 
h) Inconsistent Set o f  Sentences 
i) Test for a Finite Set o f  Inconsistent Sentences 
j) Logical Equivalence o f  Predicate Logic Sentences 
k) Test for Logical Equivalence 


