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Compactness, 
and Generalization 
to Infinite Sets 
of Premises 

14-1. KOENIG'S LEMMA 

My proofs of completeness, both for trees and for derivations, assumed 
finiteness of the set Z in the statement ~k-X. Eliminating this restriction 
involves something called 'compactness', which in turn is a special case of 
a general mathematical fact known as 'Koenig's lemma'. Since we will 
need Koenig's lemma again in the next chapter, we will state and prove it 
in a form general enough for our purposes. 

Suppose we have a branching system of points, or Nodes, such as the 
following: 

The  nodes are connected by branching lines running downward; these 
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are called Paths, or Branches. I have numbered the horizontal lines to help 
in referring to parts of the tree. We will consider only tree structures 
which have Finite Branching-that is, from any one node, only finitely 
many branches can emerge. T o  keep things simple, I will always illustrate 
with double branching, that is, with at most two branches emerging from 
a node. The  restriction to two branches won't make an important differ- 
ence. 

Truth trees are one example of such a tree structure. Semantic tableau 
derivations are another, with each branch representing the formation of 
a new subderivation and each node representing all the tableaux on a 
subderivation before starting new subderivations. Some of the paths end 
with a ' x  ', as when we close a path in a truth tree or close a tableau in a 
tableau derivation. We say that such a path is Closed. A tree might have 
only finitely many horizontal lines, That is, there might be a line number, 
n, by which all paths have ended, or  closed. Or  such a tree might have 
infinitely many lines. What we want to prove is that if such a tree is infi- 
nite (has infinitely many horizontal lines with at least one open path ex- 
tending to each line), then there is an infinite path through the tree. 

Perhaps this claim will seem obvious to you (and perhaps when all is 
said and done it is obvious). But you should appreciate that the claim is 
not just a trivial logical truth, so it really does call for demonstration. The 
claim is a conditional: If for every line there is an open path extending to 
that line, t h  there is an open path which extends to every line. The 
antecedent of the conditional is a doubly quantified sentence of the form 
(Vu)(3v)R(u,v). The consequent is the same, except that the order of the 
quantifiers has been reversed: (3v)(Vu)R(u,v). Conditionals of this form 
are not always true. From the assumption that everyone is loved by some- 
one, it does not follow that there is someone who loves everyone. The 
correctness of such conditionals or their corresponding arguments re- 
quires special facts about the relation R. 

The tree structure provides the special facts we need in this case. Let's 
assume that we have an infinite tree, that is, a tree with infinitely many 
horizontal lines and at least one open path extending to each line. The 
key is to look at infinite subtrees. For example, look at line 3. The first, 
third, and fourth nodes can each be viewed as the first node in its own 
subtree, that is, the system of paths which starts with the node in question. 
The  first node of line 3 heads a subtree which does not end, at least not 
as far as we can tell by as much of the tree as I have drawn. The  same is 
true for the third node of line 3. But the fourth node heads a subtree 
that we can see is finite: All paths starting from that node close. 

Now consider all of the nodes of line 3 again. Suppose that all of the 
subtrees headed by these nodes are finite. Then the whole tree would be 
finite. Line 3 has only four nodes, and if each has below it only finitely 
many nodes, then there are only finitely many nodes in the whole tree. 
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In such cases there are no more than four times the maximum number 
of nodes in the subtrees headed by line 3 nodes, plus the three nodes in 
lines 1 and 2. Conversely, if the whole tree is infinite, at least one node of 
line 3 must head an infinite subtree. 

We can use induction to prove that the same will be true of any line of 
an infinite tree: 

L22: In any infinite tree, every line has at least one node which heads an 
infinite subtree. 

Suppose we have an infinite tree. Our inductive property will be: The 
nth line has at least one node which heads an infinite tree. Line 1 has this 
property, by assumption of the argument. This gives the basis step of the 
induction. For the inductive step, assume the inductive hypothesis that 
line n has the inductive property. That is, line n has at least one node 
which heads an infinite tree. Let N be the leftmost such node. Consider 
the nodes on line n + 1 below node N. If both of these nodes were to 
head only finite subtrees, then N would also head only a finite subtree, 
contrary to the inductive hypothesis. So at least one of these nodes of line 
n + 1 must also head an infinite subtree. In sum, if line n has the induc- 
tive property, so does line n + 1, completing the inductive proof of L22. 

It is now easy to establish 

L23 (Koenig's lemma): In any infinite tree there is an infinite path. 

Proof: Given an infinite tree, start with the top node and extend a path 
from each line to the next by choosing the leftmost node in the next line 
which heads an infinite tree. L22 guarantees that there will always be such 
a node. Since at each stage we again pick a node which heads an infinite 
tree, the process can never end. (See Exercise 14-1.) 

14-2. C O M P A C T N E S S  A N D  INFINITE SETS O F  PREMISES 

In my proofs of completeness, the statement that if ZkX, then ZtX, I 
assumed that Z is finite. But in my original definition of z ~ X  and ZtX, I 
allowed Z to be infinite. Can we lift the restriction to finite Z in the proofs 
of completeness? 

There is no problem with t .  By ZtX, for infinite Z, we just mean that 
there is a proof which uses some finite subset of Z as premises. Counting 
Z as a subset of itself, this means that (whether Z is finite or infinite) X 
can be derived from Z iff X can be derived from some finite subset of Z. 
That is (using 'Z'CZ' to mean that Z' is a subset of Z) 

(1) ZkX iff (3Z1)(Z'CZ and Z' is finite and Z'kX). 

EXERCISE 

14-1. Consider a tree that looks like this: 

This tree differs from the ones we have been considering because it 
allows Infinite Branching-that is, from one node (here, the first 
node) infinitely many new branches emerge. These branches also 
extend farther and farther down as you move from left to right, so 
that the tree extends infinitely downward as well as to the right. For 
each integer, n, there is an open path that extends to the nth line. 
But there is no infinite path through the tree! 

This example helps to show that Koenig's lemma is not just a triv- 
ial truth. Thinking about this example will also help to make sure 
you understand the proof of Koenig's lemma. 

Explain why the proof of Koenig's lemma breaks down for trees 
with infinite branching. My proof actually assumed at most double 
branching. Rewrite the proof to show that Koenig's lemma works 
when the tree structure allows any amount of finite branching. 



216 Koenig's h n w ,  Compactness, and Ceneralktion to Infinite Sets ofPremires 

What we need is a similar statement for 1: 

(2) Z ~ X  iff (3Z1)(Z'C Z and Z' is finite and ~ ' k x ) .  

(1) and (2) will enable us quickly to connect completeness for finite Z' with 
completeness for infinite Z. 

Using L1 we see that (2) is equivalent to 

(3) ZU{-X) is inconsistent iff (3Zr)(Z'CZ and Z' is finite and Z'U{-X) is 
inconsistent). 

Compactness is just (3), but stated slightly more generally, without the 
supposition that the inconsistent set has to include the negation of some 
sentence: 

T8 (Compactness): Z is inconsistent iff Z has an inconsistent finite subset. 
Equivalently, Z is consistent iff all its finite subsets are consistent. 

Compactness with the help of L1 will immediately give us 

T9 (Completeness): If Z ~ X ,  then ZtX, where Z now may be infinite. 

t may be derivability by trees or derivations (or, indeed many other sys- 
tems of proof). All that we require here is (l),  compactness, and complete- 
ness for finite sets Z in the system of proof at hand. 

1 EXERCISES 

14-2. Prove the equivalence of the two statements of compactness 
in T8. 
14-3. Prove completeness for arbitrary sets of sentences. That is, 
prove that if Z ~ X ,  then ZtX, where Z may be infinite. Do this by 
using compactness and L1 to prove (2). Then use (2) and (I), to- 
gether with the restricted form of completeness we have already 
proved (with Z restricted to being a finite set) to lift the restriction 
to finite Z. 

The key here is compactness, and the key to compactness is Koenig's 
lemma. In outline, we will create a tree the paths of which will represent 
lines of a truth table. Finite subsets of an infinite set of sentences, Z, will 
be made true by paths (truth table lines) reaching down some finite num- 
ber of lines in our tree. Koenig's lemma will then tell us that there is an 
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infinite path, which will provide the interpretation making everything in 
Z true, showing Z to be consistent. 

Here goes. Since our language has infinitely many sentence letters, let's 
call the sentence letters 'A,', 'A2', . . . , 'A,'. . . . Consider the tree which 
starts like this: 

Each branch through the third line represents one of the eight possible 
truth value assignments to 'A,', 'A2', and 'As'. Branch (1) represents 'A,', 
'A;, and 'A3' all true. Branch (2) represents 'A,' and 'A2' true and 'A3' 
false. Branch (3) represents 'Al' true, 'A2' false, and 'A3' true. And so on. 
Line 4 will extend all branches with the two possible truth value assign- 
ments to 'A;, with 'A; true on one extension and 'A; false on the other. 
Continuing in this way, each initial segment of a branch reaching to line 
n represents one of the truth value assignments to 'A,' through 'A,', and 
every possible truth value assignment is represented by one of the 
branches. 

Now let us suppose that the set, Z, is composed of the sentence logic 
sentences X1, Xp, . . . , X, . . . , all written with the sentence letters 'A,', 
'A,', . . . , 'A,'. . . . Let Z, = {XI, X p ,  . . . X J .  That is, for each n, Z, is 
the finite set composed of the first n sentences in the list XI, XI. . . . 
Finally, let us suppose that each Z, is consistent, that is, that Z, has a 
model, an interpretation, I, which assigns truth values to all sentence let- 
ters appearing in the sentences in Z, and which makes all the sentences in 
Z, true. 

Our tree of truth value assignments will have initial path segments 
which represent the models which make the 2,'s consistent. Koenig's 
lemma will then tell us that there will be an infinite path which makes all 
the XI, Xp, . . . . true. To show this carefully, let us prune the truth value 
tree. For each Z,, starting with ZI, let in be the first integer such that all 
the sentence letters in the sentence in Z, occur in the list 'A,', 'A2', . . . , 
'Ai,'. Then the initial paths through line in will give all the possible inter- 
pretations to the sentences in 2,. Mark as closed any path which does not 
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represent a model of Z,, that is, which makes any sentence in Z, false. 
Since each Z, is consistent, there will be at least one open path reaching 
to line in. 

I have provided an outline of a proof of lemma 24: 

L24: Let XI, X, . . . 2C,, be an infinite sequence of sentences, each initial 
subsequence of which is consistent. Let T be a tree the paths which repre- 
sent all the truth value assignments to the sentence letters occurring in XI, 
X,. . . . Let each path be closed at line in if the path's initial segment to line 
in makes any sentence XI through X. false, where line in is the first line 
paths to which assign truth values to all sentence letters in XI through %. 
Then, for every line in T, there is an open path that reaches to that line. 

EXERCISE 

14-4. Prove lemma L24. Wait a minute! What remains to be done 
to prove L24? That depends on how thorough you want to be. 
There are details I didn't discuss. What if the vocabulary used is 
finite? What if the vocabulary of some Z, already includes the vocab- 
ulary of Z,+,? More interestingly, perhaps you can find a simpler 
proof of L24 than the one I suggested. Or better still, you may be 
able to reformulate L24 so that your L24 is less complicated to prove 
but still functions to make the proof of compactness easy, in some- 
thing like the way I will describe in the following paragraphs. 

Proving compactness is now easy. Suppose that all of 2's finite subsets 
are consistent. If Z itself is finite, then, because any set counts as one of 
its own subsets, Z is consistent. If Z is infinite, we can order its sentences 
in some definite order. For example, write out each connective and par- 
enthesis with its English name ('disjunction', 'negation', 'right parenthesis', 
etc.) and think of each sentence logic sentence thus written out as a very 
long word. Then order the sentences (as words) as one does in a dictio- 
nary. (This is called a Lexicographical Ordering.) Since all finite subsets of Z 
are consistent, each initial segment of the ordered list of sentences is a 
consistent set. L24 applies to tell us that there is a tree, the initial finite 
open paths of which represent models of the initial segments of the list of 
sentences. L24 further tells us that for each line of the tree, there will be 
at least one open path that reaches that line. Koenig's lemma then tells us 
that there will be at least one path through the whole tree (an infinite 
path if the tree is infinite). This path will represent a model for all the 
sentences in the set, establishing the consistency of Z. 

EXERCISES 

14-5. Complete the proof of compactness by showing that if Z is 
consistent, then so are all of its finite subsets. 
14-6. In my proof of soundness for trees I also limited Z in the 
statement ZkX to be a finite set. There was no reason for doing so 
other than the fact that for trees it was convenient to treat soundness 
and completeness together, and I needed the restriction to finite Z 
in the proof of completeness. 

Assume soundness for finite Z, that is, assume that for all finite Z, 
if ZkX, then ZkX. Prove the same statement for infinite Z. Your 
proof will be perfectly general; it will not depend on which system 
of proof is in question. You will not need to use compactness, but 
you will need to use the result of exercise 10-9. 

I CHAPTER CONCEPTS 

Here are this chapter's principal concepts. In reviewing the chapter, 
be sure you understand them. 

Tree Structure 
Node of a Tree 
Path (or Branch) in a Tree 
Koenig's Lemma 
Compactness 
Finite Branching 
Infinite Branching 
Tree of Truth Value Assignments 
Lexicographical Ordering 


