
Mathematical 
Induction 

11-1. INFORMAL INTRODUCTION 

The point of metatheory is to establish facts about logic, as distinguished 
from using logic. Sentence and predicate logic themselves Become the ob- 
ject of investigation. Of course, in studying logic, we must use logic itself. 
We do this by expressing and using the needed logical principles in our 
metalangauge. It turns out, however, that to prove all the things we want 
to show about logic, we need more than just the principles of logic. At 
least we need more if by 'logic' we mean the principles of sentence and 
predicate logic which we have studied. We will need an additional princi- 
ple of reasoning in mathematics called MathemaEiGal Induction. 

You can get the basic idea of mathematical induction by an analogy. 
Suppose we have an infinite number of dominos, a first, a second, a third, 
and so on, all set up in a line. Furthermore, suppose that each domino 
has been set up close enough to the next so that if the prior domino falls 
over, it will knock over its successor. In other words, we know that, for all 
n, if the nth domino falls then the n + 1 domino will fall also. Now you 
know what will happen if you push over the first domino: They will all 
fall. 

To put the idea more generally, suppose that we have an unlimited or 
infinite number of cases, a first case, a second, a third, and so on. Suppose 
that we can show that the first case has a certain property. Furthermore, 
suppose that we can show, for all n, that if the nth case has the property, 
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then the n + 1 case has the property also. Mathematical induction then 
licenses us to conclude that all cases have the property. 

If you now have the intuitive idea of induction, you are well enough 
prepared to read the informal sections in chapters 12 and 13. But to mas- 
ter the details of the proofs in what follows you will need to understand 
induction in more detail. 

11-2. THE PRINCIPLE OF WEAK INDUCTION 

Let's look at a more specific example. You may have wondered how many 
lines there are in a truth table with n atomic sentence letters. The answer 
is 2". But how do we prove that this answer is correct, that for all n, an 
n-letter truth table has 2" lines? 

If n = 1, that is, if there is just one sentence letter in a truth table, then 
the number of lines is 2 = 2'. So the generalization holds for the first 
case. This is called the Basis Step of the induction. We then need to do 
what is called the Inductive Step. We assume that the generalization holds 
for n. This assumption is called the Inductive Hy$othesis. Then, using the 
inductive hypothesis, we show that the generalization holds for n + 1. 

So let's assume (inductive hypothesis) that in an n-letter truth table 
there are 2" lines. How many lines are there in a truth table obtained by 
adding one more letter? Suppose our new letter is 'A'. 'A' can be either 
true or false. The first two lines of the n + 1 letter truth table will be the 
first line of the n-letter table plus the specification that 'A' is true, followed 
by the first line of the n-letter table plus the specification that 'A' is false. 
The next two lines of the new table will be the second line of the old 
table, similarly extended with the two possible truth values of 'A'. In gen- 
eral, each line of the old table will give rise to two lines of the new table. 
So the new table has twice the lines of the old table, or 2" x 2 = 2"+ l .  

This is what we needed to show in the inductive step of the argument. 
We have shown that there are 2" lines of an n-letter truth table when 

n = 1 (basis step). We have shown that if an n-letter table has 2" lines, 
then an n + 1 letter table has 2"+' lines. Our generalization is true for 
n = 1, and if it is true for any arbitrarily chosen n, then it is true for 
n + 1. The princple of mathematical induction then tells us we may con- 
clude that it is true for all n. 

We will express this principle generally with the idea of an Inductive 
Property. An inductive property is, strictly speaking, a property of inte- 
gers. In  an inductive argument we show that the integer 1 has the induc- 
tive property, and that for each integer n, if n has the inductive property, 
then the integer n + 1 has the inductive property. Induction then licenses 
us to conclude that all integers, n, have the inductive property. In the last 

example, All n Ltter truth t u b b  have exact4 2" lines, a proposition about 
the integer n, was our inductive property. To speak generally, I will use 
'P(n)' to talk about whatever inductive property might be in question: 

Principle of Weak Induction 

a) Let P(n) be some property which can be claimed to hold for (is defined 
for) the integers, n = 1 ,  2, 3, . . . (the lnductive Property). 

b) Suppose we have proved P( l )  (Basis Step). 
C) Suppose we have proved, for any n, that if P(n), then P(n + 1) (IndzLc- 

hue S k p ,  with the assumption of P(n), the lnductive Hypothesis). 
d) Then you may conclude that P(n) holds for all n from 1 on. 
e) If in the basis step we have proved P(i), we may conclude that P(n) 

holds for n = i, i + 1 ,  i + 2,. . . . 

(e) simply says that our induction can really start from any integer, as long 
as the inductive property is defined from that integer onward. Often it is 
convenient to start from 0 instead of from 1, showing that P(n) holds for 
n = 0,1,2, .  . . . 

Most of the inductions we will do involve facts about sentences. To get 
you started, here is a simple example. The conclusion is so obvious that, 
ordinarily, we would not stop explicitly to prove it. But it provides a nice 
illustration and, incidentally, illustrates the fact that many of the general- 
izations which seem obvious to us really depend on mathematical induc- 
tion. 

Let's prove that if the only kind of connective which occurs in a sen- 
tence logic sentence is '-', then there is a truth value assignment under 
which the sentence is true and another in which it is false. (For short, we'll 
say that the sentence "can be either true or false.") Our inductive prop- 
erty will be: All sentences with n occurrences of '-' and no other connectives can 
be either true or false. A standard way of expressing an important element 
here is to say that we will be doing the induction on t h  number of connectives, 
a strategy for which you will have frequent use. 

We restrict attention to sentences, X, in which no connectives other 
than '-' occur. Suppose (basis case, with n = 0) that X has no occurrences 
of '-'. Then X is an atomic sentence letter which can be assigned either t 
or f. Suppose (inductive hypothesis for the inductive step) that all sen- 
tences with exactly n occurrences of '-' can be either true or false. Let Y 
be an arbitrary sentences with n + 1 occurrences of '-'. Then Y has the 
form -X, where X has exactly n occurrences of '-'. By the inductive 
hypothesis, X can be either true or false. In these two cases, -X, that is, 
Y, is, respectively, false and true. Since Y can be any sentence with 
n + 1 occurrences of '-', we have shown that the inductive property 
holds for n + 1, completing the inductive argument. 
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EXERCISES 

11-1. By a Restricted Conjunctive Sentence, I mean one which is either 
an atomic sentence or is a conjunction of an atomic sentence with 
another restricted conjunctive sentence. Thus the sentences 'A' 
and '[C&(A&B)]&D' are restricted conjunctive sentences. The 
sentence 'A &[(C&D)&(H&G)]' is not, because the component, 
'(C&D)&(H&G)', fails to be a conjunction one of the components of 
which is an atomic sentence letter. 

Here is a rigorous definition of this kind of sentence: 

a) Any atomic sentence letter is a restricted conjunctive sentence. 
b) Any atomic sentence letter conjoined with another restricted con- 

junctive sentence is again a restricted conjunctive sentence. 
c) Only such sentences are restricted conjunctive sentences. 

Such a definition is called an Inductive Definition. 
Use weak induction to prove that a restricted conjunctive sentence is 
true iff all the atomic sentence letters appearing in it are true. 
11-2. Prove that the formula 

is correct for all n. 

11-3. STRONG INDUCTION 

Let's drop the restriction in exercise 11-1 and try to use induction to 
show that any sentence in which '&' is the only connective is true iff all its 
atomic sentence letters are true. We restrict attention to any sentence logic 
sentence, X, in which '&' is the only connective, and we do an induction 
on the number, n, of occurrences of '&'. If n = 0, X is atomic, and is 
true iff all its atomic sentence letters (namely, itself) are true. Next, let's 
assume, as inductive hypothesis, that any sentence, X, in which there are 
exactly n occurrences of '&' is true iff all its atomic sentence letters are 
true. You should try to use the inductive hypothesis to prove that the 
same is true of an arbitrary sentence, Y, with n + 1 occurrences of '&'. 

If you think you succeeded, you must have made a mistake! There is a 
problem here. Consider, for example, the sentence '(A&B)&(C&D)'. It has 
three occurrences of '82. We would like to prove that it has the inductive 
property, relying on the inductive hypothesis that all sentences with two 

occurrences of '&' have the inductive property. But we can't do that by 
appealing to the fact that the components, '(A&B)' and '(C&D)', have the 
inductive property. The inductive hypothesis allows us to appeal only to 
components which have two occurrences of '&' in them, but the compo- 
nents '(A&B)' and '(C&D)' have only one occurrence of '&' in them. 

The problem is frustrating, because in doing an induction, by the time 
we get to case n, we have proved that the inductive property also holds 
for all previous cases. So we should be able to appeal to the fact that the 
inductive property holds, not just for n, but for all previous cases as well. 
In fact, with a little cleverness one can apply weak induction to get around 
this problem. But, more simply, we can appeal to another formulation of 
mathematical induction: 

W e d  Induction, Strong Formulation: Exactly like weak induction, except in 
the inductive step assume as inductive hypothesis that P(i) holds for all 
i 5 n, and prove that P(n + 1) .  

11-3. Using the strong formulation of weak induction, prove that 
any sentence logic sentence in which '&' is the only connective is true 
iff all its atomic sentence letters are true. 

You could have done the last problem with yet another form of induc- 
tion: 

Strong Inductiun: Suppose that an inductive property, P(n), is defined for 
n = 1, 2, 3, . . . . Suppose that for arbitrary n we use, as our inductive 
hypothesis, that P(n) holds for all i < n; and from that hypothesis we prove 
that P(n). Then we may conclude that P(n) holds for all n from n = 1 on. 

If P(n) is defined from n = 0 on, or if we start from some other value of 
n, the conclusion holds for that value of n onward. 

Strong induction looks like the strong formulation of weak induction, 
except that we do the inductive step for all i < n instead of all i 5 n. You 
are probably surprised to see no explicit statement of a basis step in the 
statement of strong induction. This is because the basis step is actually 
covered by the inductive step. If we are doing the induction from n = 1 
onward, how do we establish P(i) for all i < l ?  There aren't any cases of 
i < l! When n = 1, the inductive hypothesis holds vacuously. In other 
words, when n = 1, the inductive hypothesis gives us no facts to which to 
appeal. So the only way in which to establish the inductive step when 
n = 1 is just to prove that P(1). Consequently, the inductive step really 
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covers the case of the basis step. Similar comments apply if we do the 
induction from n = 0 onward, or if we start from some other integer. 

You may be wondering about the connections among the three forms 
of induction. Weak induction and weak induction in its strong formula- 
tion are equivalent. The latter is simply much easier to use in problems 
such as the last one. Many textbooks use the name 'strong induction' for 
what I have called 'weak induction, strong formulation'. This is a mistake. 
Strong induction is the principle I have called by that name. It is truly a 
stronger principle than weak induction, though we will not use its greater 
strength in any of our work. As long as we restrict attention to induction 
on the finite integers, strong and weak induction are equivalent. Strong 
induction shows its greater strength only in applications to something 
called "transfinite set theory," which studies the properties of mathemati- 
cal objects which are (in some sense) greater than all the finite integers. 

Since, for our work, all three principles are equivalent, the only differ- 
ence comes in ease of use. For most applications, the second or third 
formulation will apply most easily, with no real difference between them. 
So I will refer to both of them, loosely, as "strong induction." You simply 
need to specify, when doing the inductive step, whether your inductive 
hypothesis assumes P(i) for all i < n, on the basis of which you prove 
P(n), or whether you assume P(i) for all i 5 n, on the basis of which you 
prove P(n + 1). In either case, you will, in practice, have to give a sepa- 
rate proof for the basis step. 

I should mention one more pattern of argument, one that is equivalent 
to strong induction: 

Lemt Number Principle: To prove that P(n), for all integers n, assume that 
there is some least value of n, say m, for which P(m) fails and derive a 
contradiction. 

The  least number principle applies the reductio argument strategy. We 
want to show that, for all n, P(n). Suppose that this is not so. Then there 
is some collection of values of n for which P(n) fails. Let m be the least 
such value. Then we know that for all i < m, P(i) holds. We then proceed 
to use this fact to show that, after all, P(m) must hold, providing the con- 
tradiction. You can see that this form of argument really does the same 
work as  strong induction: We produce a general argument, which works 
for any value of m, which shows that if for all i < m P(i) holds, then P(m) 
must hold also. 

You will notice in exercises 11-7 to 11-9 that you are proving things 
which in the beginning of Volume I we simply took for granted. Again, 
this illustrates how some things we take for granted really turn on math- 
ematical induction. 

EXERCISES 

1 1 4 .  Prove that any sentence logic sentence in which 'v' is the only 
connective is true iff at least one of its atomic sentence letters is true. 

11-5. Consider any sentence logic sentence, X, in which '&' and 'v' 
are the only connectives. Prove that for any such sentence, there is 
an interpretation which makes it true and an interpretation which 
makes it false. Explain how this shows that '&' and 'v', singly and 
together, are not expressively complete for truth functions, as this 
idea is explained in section 3 4 ,  (volume I). 

11-6. Consider any sentence logic sentence, X, in which '-' does not 
appear (so that '&', 'v', 'S, and '=' are the only connectives). Prove 
that for any such sentence there is an interpretation which makes X 
true. Explain how this shows that '&', 'v', 'S, and '=' are, singly and 
together, not expressively complete for truth functions. 

11-7. Prove for all sentence logic sentences, X, and all interpreta- 
tions, I ,  that either I  makes X true or I  makes X false, but not both. 

11-8. Prove for all sentence logic sentences, X, that if two truth 
value assignments, I  and I f ,  agree on all the atomic sentence letters 
in X, then I  and I' assign X the same truth value. 

11-9. Prove the law of substitution of logical equivalents for sen- 
tence logic. 

CHAPTER CONCEPTS 

In reviewing this chapter, be sure you understand clearly the follow- 
ing ideas: 

Weak Induction 
Inductive Property 
Basis Step 
Inductive Hypothesis 
Inductive Step 
Induction on the Number of Connectives 
Strong Formulation of Weak Induction 
Strong Induction 
Least Number Principle 


