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7-1. DERIVED RULES 

This section begins with a somewhat strange example. We will first follow 
our noses in putting together a derivation using the strategies I have rec- 
ommended. When we are done, we will notice that some of the steps, 
although perfectly c o r n ,  do no real work for us. We will then find in- 
teresting ways to avoid the superffuous steps and to formulate in a gen- 
eral way some methods for making derivations easier. 

Let's derive 'A>(B>C)' from '(A>B)>C'. Our derivation must begin 
like this: 

We will pursue the obvious strategy of getting the conclusion by con- 
structing a subderivation from the assumption of 'A' to 'B3C' as conclu- 
sion: 

We have reduced our task to that of deriving 'B3C' from 'A', w 
can use the outer derivation's premise. But how are we going to do that? 

The target conclusion we now need to derive, 'B>C', is itself a condi- 
tional. So let's try setting up a sub-subderivation with 'B' as assumption 
from which we are going to try to derive 'C'. We are shooting for a deri- 
vation which looks like this: 

How are we going to squeeze 'C' out of 'B'? We have not yet used our 
premise, and we notice that the consequence of the premise is just the 
needed sentence 'C'. If only we could also get the antecedent of the prem- 
ise, 'A>B', in the sub-sub-derivation, we could use that and the premise 
to get 'C' by 3E. 

It might look rough for getting 'A3B' into the sub-sub-derivation, but 
once you see how to do it, it's not hard. What we want is 'A>B', which, 
again, is a conditional. So we will have to start a sub-sub-sub-derivation 
with 'A' as assumption where we will try to get 'B' as a conclusion. But 



that's easy because this sub-sub-sub-derivation is a subderivation of the 
derivation with 'B' as its assumption. So all we have to do is reiterate 'B' 
in our sub-sub-sub-derivation. 

If this is a little confusing, follow it in the completed derivation below, 
rereading the text if necessary to see clearly the thought process which 
leads me along step by step: 

I've carefully gone through this example for you because I wanted to 
illustrate again our strategies for constructing derivations. In this case, 
though, we have produced a derivation which, while perfectly correct, has 
an odd feature. Notice that I got 'B' in step 6 by just reiterating it. I never 
used :he assumption, 'A'! In just the same way, I never used the assump- 
tion of 'A' on line 2 in deriving 'B>C' in line 9. The fact that 'A' was 
assumed (twice no less!), but never used, in no way shows anything tech- 
nically wrong with the derivation. Any derivation correctly formed, as this 
one is, following the rules, counts as correct even if it turns out that parts 
were not used. No one ever said that a line, either an assumption or a 
conclusion, has to be used. 

I should refine what I just said: The assumptions of 'A', both in line 2 
and in line 5, were not used in deriving the target conclusions of the 
subderivations in which 'A' was assumed. But we had to assume 'A' in 
both cases to permit us to apply 3 1  to introduce a conditional with 'A' as - the antecedent. However, if in subderivation 2 the assumption 'A' was 
never used in deriving 'B>C', you would suspect that we could derive not 
just 'A>(B>C)' but the stronger conclusion 'B>C' from the original 
premise. And, indeed, we can do just that: 

Now we notice that we could have worked the original problem in a 
different way. We could have first derived 'B>C', as I have just done. 
Then we could have modified this derivaton by inserting the subderiva- 
tion beginning with 'A', the subderivation 2 in the previous derivation, 
and then applying >I. In other words, if we can derive 'B>C', we can 
always derive 'A>(B>C)' by simply assuming 'A', deriving ' B X '  by what- 
ever means we used before, and then applying >I. In fact, we can orga- 
nize things most clearly by separating the two steps. First derive 'B>C1, 
then create a subderivation with assumption 'A' and conclusion ' B X '  ob- 
tained by reiterating 'B>C' from above. Then apply >I. The relevant 
parts of the total derivation, beginning with the previously derived con- 
clusion, 'B>C', will look like this: 

We have just discovered something extremely interesting: Nothing in 
the above line of thought turns on the two sentences involved being 'B>C' 
and 'A'. This procedure will work for any old sentences X and Y. For any 
sentences X and Y, if we can derive Y, we can always extend the deri- 
vation to a new derivation with conclusion X>Y. If 
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stands for the part of the derivation in which we derive Y, the new deri- 
vation will look like this: 

Because X and Y can be any sentences at all, we can express the fact 
we have just discovered as a "new" rule of inference: 

10 Weakening (W) 

In other words, if any sentence, Y, appears in a derivation, you are li- 
censed to write X>Y anywhere below, using any sentence you like for X. 
This rule of inference is not really new (that's why a moment ago I put 
quotes around the word "new"). If we want to, we can always dispense 
with the weakening rule and use our original rules instead. Wherever we 
have used the weakening rule, we can always fill in the steps as shown 
above by assuming X, reiterating Y, and applying >I. 

Dispensable, shortcut rules like weakening will prove to be extraordi- 
narily useful. We call them Derived R u b .  

A Derived Rule is a rule of inference which can always be replaced by some 
combination of applications of the original rules of inference. The original 
rules are called the Primitive Rules of inference. 

A proof of a derived rule is a demonstration which shows how the derived 
rule may be systematically replaced by application of the primitive rules of 
inference. 

The weakening rule is proved in the schematic derivation which you saw 
1 immediately above. 

By using the derived weakening rule, we can immensely simplify the 
derivation we have been studying in this section. For we can use weaken- - ing instead of both of the subderivations which start from 'A' as an as- 

I sumption. In addition to the use of weakening which we have already 

i seen, we can use it in the subderivation which begins by assuming 'B'. 
Given 'B' as an assumption, weakening immediately licenses us to write 

1 'A>B', which we need for applying >E. 

Isn't that easy! 

7-2. ARGUMENT BY CASES 

Once we see how much work derived rules can save us, we will want oth- 
ers. Indeed, many derivations which are prohibitively complicated if we 
use only primitive rules become quite manageable when we can use de- 
rived rules also. Here is another example of a derived rule: 

Argument by Cases 

Here is a proof of this derived rule: 

1 XVY (Input for the derived rule) 
2 I E3Z (Input for the derived rule) 

(lnput for the derived rule) 
-Z A 

3 
-X 5-8, -1 
XvY 1, R 
Y 9, 10, vE 
Y>Z 3, R 
Z 11, 12, >E 



Again, the point of this proof is this: Suppose you have just used the 
derived rule Argument by Cases. Then, if you really want to, you can go 
back and rewrite your derivation using only the primitive rules. This 
proof shows you how to do it. Whatever sentence you have used for X 
and whatever sentence you have used for Y, just substitute the above in 
your derivation, after having written in your sentences for X and Y. Of 
course, you will have to redo the line numberings to fit with those in your 
full derivation. 1 have put in line numbers above to help in talking about 
the proof. 

(A small point to notice in this example: In line 14 I have appealed to 
subderivation 2, lines 4-13, to use negation introduction. But where in 
the subderivation did I conclude both a sentence and its negation? The 
point is that the assumption can count as one of these sentences. Why? 
Because any sentence can be derived from itself, by reiteration. Thus, in 
derivation 2, I can fairly enough count both -Z and Z as following from 
-Z.) 

Here is another derived rule, which we will also call Argument by Cases 
because it differs only superficially from the last: 

Argument by Cases (second form) 

In words, if in a derivation you already have a sentence of the form XVY, 
a subderivation from X as assumption to Z as conclusion, and a second sub- 
derivation from Y as assumption to Z as conclusion, you are licensed to write 
Z as a conclusion anywhere below. 

This second form of argument by cases is actually the form you will use 
most often. 

The proof of the second form of argument by cases goes like this: 

(Input for the derived rule) 1 

A 

(Input for the derived rule) 

XvY 

1 
A 

(Input for the derived rule) 

3 I 
From lines 1, 2, 3 and the first form of 
Argument by Cases 

Note that in this proof I have used a previously proved derived rule 
(the first form of argument by cases) in proving a new derived rule (the 
second form of argument by cases). Why should I be allowed to do that, 
given that a proof of a derived rule must show that one can dispense with 
the derived rule and use primitive rules instead? Can you see the answer 
to this question? 

Suppose we want to rewrite a derivation which uses a new derived rule 
so that, after rewriting, no derived rules are used. First rewrite the deri- 
vation dispensing with the new derived rule, following the proof of the 
new derived rule. The resulting derivation may use previously proved 
derived rules. But now we can rewrite some more, using the proofs of the 
previously proved derived rules to get rid of them. We continue in this 
way until we arrive at a (probably horrendously long) derivation which 
uses only primitive rules. 

Argument by cases is an especially important derived rule, so much so 
that in a moment I'm going to give you a batch of exercises designed 
exclusively to develop your skill in applying it. Its importance stems not 
only from the fact that it can greatly shorten your work. It also represents 
a common and important form of reasoning which gets used both in 
everyday life and in mathematics. In fact, many texts use argument by 
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cases as a primitive rule, where I use what I have called disjunction elim- 
ination. In fact, given the other rules, what I have called argument by 
cases and disjunction elimination are equivalent. I prefer to start with my 
form of disjunction elimination because I think that students learn it 
more easily than argument by cases. But now that your skills have devel- 
oped, you should learn to use both rules effectively. 

EXERCISES 

7-1. Use argument by cases as well as any of the primitive rules to 
construct derivations to establish the validity of the following argu- 
ments: 

a) AvB b) Av(BvC) c) (AvB)&(B>C) d) (A&B)v(A&C) - 
BvA (AvBIvC AvC A&(BvC) 

I) (S&J)v(-S&-J) rn) K>(FvC) 
J X v D )  

S-J - C  

-(FvD)>-(KvJ) 

7-2. Show that in the presence of the other primitive rules, VE is 
equivalent to AC. (Half of this problem is already done in the text. 
Figure out which half and then do the other half I )  , 

Biconditional Introduction Biconditional Elimination 

and 

Disjunction Elimination 

Denying the Consequent Reductio Ad Absurdum 
Vraditionally called "Modus Tolens") 

7-3. FURTHER DERWED RULES - 
Here are some further derived rules. In naming these rules I have used 
the same name for similar or closely connected primitive rules. 

The reductio ad absurdum rule looks like a negation elimination rule. 
Actually, as you will see when you do the exercises, it uses both -I 
and -E. 

We can get further derived rules from the laws of logical equivalence 
(chapters 3 and 4). For example, any sentence of the form -(XvY) is 
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logically equivalent to -X&-Y. Because two logically equivalent sentences 
have the same truth value in any assignment of truth values to sentence 
letters, if one of these sentences validly follows from some premises and 
assumptions, so does the other. We can use these facts to augment our 
stock of derived rules: 

Similarly, one can use other logical equivalences to provide derived 
rules. Here is a list of such rules you may use, given in a shortened nota- 
tion. You should understand the first line as the pair of derived de Mor- 
gan rules immediately above. Understand the following lines similarly. 

DE MORGAN'S RULES 

-(XvY) and -X&-Y are mutually derivable (DM). 
-(X&Y) and -XV-Y are mutually derivable (DM). 

X>Y and -Y>-X are mutually derivable (CP). 
-X>Y and -Y>X are mutually derivable (CP). 
X>-Y and Y>-X are mutually derivable (CP). 

CONDITIONAL RULES 

X>Y and -XVY are mutually derivable (C). 
-(X>Y) and X&-Y are mutually derivable (C). 

The letters in parentheses are the abbreviations you use to annotate your 
use of these rules. 

We could add further rules of mutual derivability based on the distrib- 
utive, associative, commutative, and other laws of logical equivalence. But 
in practice the above rules are the ones which prove most useful. 

It is not hard to prove that these rules of mutual derivability follow 
from the primitive rules-in fact, you will give these proofs in the exer- 
cises. 

Many texts use rules of logical equivalence to augment the rules for 
derivations in a much more radical way. These strong rules of replace- 
ment, as they are called, allow you to substitute one logical equivalent for 
a subsentence inside a larger sentence. Thus, if you have derived 
'(AvB)>C', these strong rules allow you to write down as a further conclu- 
sion '(Av--B)>C', where you have substituted '--B' for the logically 
equivalent 'B'. 

By the law of substitution of logical equivalents, we know that such 
rules of replacement must be correct, in the sense that they will always 
take us from true premises to true conclusions. But it is not so easy to 
prove these replacement rules as derived rules. That is, it is hard to prove 
that one can always systematically rewrite a derivation using one of these 
replacement rules as a longer derivation which uses only primitive rules. 
For this reason I won't be using these replacement rules. Your instructor 
may, however, explain the replacement rules in greater detail and allow 
you to use them in your derivations. Your instructor may also choose to 
augment the list of logical equivalents you may use in forming such rules. 

EXERCISES 

7-3. Prove all the derived rules given in the text but not proved 
there. In each of your proofs use only those derived rules already 
proved. 

7-4. Provide derivations which establish the validity of the following 
arguments. You may use any of the derived rules. In fact, many of 
the problems are prohibitively complex if you don't use derived 
rules! 

1) S=J rn) -C>[Fv-(DvN)] n) (GvA)>(H>B) 
(SM)v(-S&-J) -N>D [H>(H&B)]>K 

-F>C G>K 



106 Natural Deduction for Sentence Lo@ 7-4 .  Derivations without Premires 107 

7-4. DERIVATIONS WITHOUT PREMISES 

When we discovered the derived weakening rule, we stumbled across the 
fact that a derivation (or a subderivation) does not have to use all, or even 
any, of its premises or assumptions. This fact is about to become impor- 
tant in another way. To fix ideas, let me illustrate with the simplest pos- 
sible example: 

The premise, 'B', never got used in this derivation. But then, as I put it 
before, who ever said that all, or even any, premises have to be used? 

Once you see this last derivation, the following question might occur to 
you: If the premise, 'B', never gets used, do we have to have it? Could we 
just drop it and have a derivation with no premises? Indeed, who ever 
said that a derivation has to have any premises? 

A derivation with no premises, which satisfies all the other rules I have 
given for forming derivations, will count as a perfectly good derivation. 
Stripped of its unused premise, the last derivation becomes: 

(You might now wonder: Can subderivations have no assumptions? We 
could say yes, except that an assumptionless subderivation would never 
do any work, for a subderivation helps us only when its assumption gets 
discharged. So I will insist that a subderivation always have exactly one 
assumption.) 

All right-a derivation may have no premises. But what does a prem- 
iseless derivation mean? 

Remember that the significance of a derivation with one or more prem- 
ises lies in this: Any case, that is, any assignment of truth values to sen- 
tence letters, which makes all the premises true also makes all of the de- 
rivation's conclusions true. How can we construe this idea when there are 
no premises? 

To approach this question, go back to the first derivation in this section, 
the one beginning with the premise 'B'. Since the premise never got used, 
we could cross it out and replace it by any other sentence we wanted. Let 
us indicate this fact symbolically by writing X for the' premise, thereby 
indicating that we can write in any sentence we want where the 'X' occurs 

For example, for X we could put the logical truth, 'AV-A'. Because the 
result is a correct derivation, any assignment of truth values to sentence 
letters which makes the premise true must also make all conclusions true. 
But 'Av-A' is true for all cases. Thus the conclusion, 'AIA', must be true 
in all cases also. That is, 'A3A' is a logical truth. I can make the same 
point another way. I want to convince you that 'A3A' is true in all cases. 
So I'll let you pick any case you want. Given your case, I'll choose a sen- 
tence for X which is true in that case. Then the above derivation shows 
'A3A' to be true in that case also. 

Now, starting with any derivation with no premises, we can go through 
the same line of reasoning. Adding an arbitrary, unused premise shows 
us that such a derivation proves all its conclusions to be logical truths. 
Since we can always modify a premiseless derivation in this way, a prem- 
iseless derivation always proves its conclusions to be logical truths: 

A derivation with no premises shows all its conclusions to be logical truths. 
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Armed with this fact, we can now use derivations to demonstrate that a 
given sentence is a logical truth. For example, here is a derivation which 
shows 'Av-A' to be a logical truth: 

I devised this derivation by using the reductio strategy. I assumed the 
negation of what I wanted to prove. I then applied the derived De Mor- 
gan and reductio rules. Without these derived rules the derivation would 
have been a lot of work. 

Let's try something a bit more challenging. Let's show that 

is a logical truth. This is not nearly as bad as it seems if you keep your 
wits about you and look for the main connective. What is the main con- 
nective? The second occurrence of '>', just after the ')'. Since we want to 
derive a conditional with '[A>(B&-C)]&(-BvD)' as antecedent and 
'A>D' as consequence, we want a subderivation with the first sentence as 
assumption and the second as final conclusion: 

What do we do next? Work in from both ends of the subderivation. 
The conclusion we want is the conditional with 'A' as antecedent. So prob- 
ably we will want to start a sub-sub-derivation with 'A' as assumption. At 
the top, our assumption has an '&' as its main connective. So &E will apply - to give us two simpler conjuncts which we may be able to use. The first 
of these conjuncts is a conditional with 'A' as antecedent. We are going to 
be assuming 'A' as a new assumption any way, so most likely we will be 
able to apply 3E. Let's write down what we have so far: 

To complete the derivation, we note that from lines 2 and 4 we can get 
the conjunction 'B&-C' by 3E. We can then extract 'B' from 'B&-C by 
&E and apply the derived form of VE to 'B' and '-BvD' to get 'D' as we 
needed: 

You might be entertained to know how I dreamed up this horrible- 
looking example. Note that if, in the last derivation, we eliminated line 10 
and the outermost scope line, line 1 would become the premise of a de- 
rivation with 'A>D' as its final conclusion. In other words, I would have 
a derivation that in outline looked like this: 

Y final conclusion I 
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But starting with such a derivation I can obviously do the reverse. I get 
back to the former derivation if I add back the extra outer scope line, call 
what was the premise the assumption of the subderivation, and add as a 
last step an application of >I. In outline, I have 

Looking at the last two schematic diagrams you can see that whenever 
you have a derivation in the form of one, you can easily rewrite it to make 
it look like the other. This corresponds to something logicians call the 
Deduction Theorem. 

Here is one last application. Recall from chapter 3 that a contradiction 
is a sentence which is false for every assignment of truth values to sen- 
tence letters. We can also use derivations to establish that a sentence is a 
contradiction. Before reading on, see if you can figure out how to do this. 

A sentence is a contradiction if and only if it is false in every case. But 
a sentence is false in every case if and only if its negation is true in every 
case. So all we have to do is to show the negation of our sentence to be a 
logical truth: 

To demonstrate a sentence, X, to be a contradiction, demonstrate its nega- 
tion, -X, to be a logical truth. That is, construct a derivation with no prem- 
ises, with -X as the final conclusion. 

EXERCISES 

7-5. Demonstrate the correctness of the following alternative test for 
contradictions: 

A derivation with a sentence, X as its only premise and two sentences, 
Y and -Y, as conclusions shows X to be a contradiction. 

7-6. Provide derivations which establish that the following sentences 
are logical truths. Use derived as well as primitive rules. 

[L2(M>N)]>[(L>M)>(L>N)] 
[(SvT) >F] >{[(FvG) 3 HI >(S> H)} 
(I&-J)v[U&K)v-(K&I)] 
{[C&(AvD)]v-(C&F))v-(A&-G) 

7-7. Provide derivations which establish that the following sentences 
are contradictions: 

(Exercise i is unreasonably long unless you use a derived rule for the 
distributive law. You have really done the work for proving this law 
in problem 7-ld. 

j) (A=B)=(-AzB) 

7-8. Consider the definition 

A set of sentence logic sentences is Incotuistent if and only if there is 
no assignment of truth values to sentence letters which makes all of 
the sentences in the set true. 

a) Explain the connection between inconsistency as just defined and 
what it is for a sentence to be a contradiction. 
b) Devise a way of using derivations to show that a set of sentences 
is inconsistent. 
c) Use your test to establish the inconsistency of the following sets of 
sentences: 

c l )  C=G, G=-C 
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c3) JvK, -Jv-K, J=K 

c4) (GvK)>A, (AvH)>G, G&-A 

c.5) D=(-P&-M), P=(I&-F), -Fv-D, D&J 

7-9. Devise a way of using derivations which will apply to two logi- 
cally equivalent sentences to show that they are logically equivalent. 
Explain why your method works. Try your method out on some 
logical equivalences taken from the text and problems of chapter 3. 

I CHAPTER SUMMARY EXERCISES 

Provide short explanations for each of the following. Check against 
the text to make sure your explanations are correct, and save your 
answers for reference and review. 

a) Main Connective 
b) Primitive Rule 
c) Derived Rule 
d) Weakening Rule 
e) Contraposition Rule 
f )  De Morgan's Rules 
g) Conditional Rules 
h) Reduaio Ad Absurdurn Rule 
i) Derivations without Premises 
j) Tests for Logical Truths and Contradiaions 


