
28 Predicate Logic

assume that all universal closures or even all generalizations of this
formula are axioms.

The formalist program goes beyond the classical axiomatic ap-
proach by explicitly defining not just the language and axioms to be
used, but also the rules of inference. A rule of inference is a pre-
cise rule that states how one or more steps in a proof may be used
or combined to create a new step that can be asserted. Modus po-
nens and most of the other “proof methods” listed in the two previ-
ous sections are rules of inference. In the usual approach to first-order
logic, two features of rules of inference are worth noting: first, they are
based entirely on logic, and second, they are the only way of gener-
ating new steps (i.e., theorems) from the axioms. If one accepts this
approach, then it follows that logic is the only formal mechanism by
which theorems are proved in mathematics. However, it is important
not to overstate this point of view. All mathematicians, including lo-
gicians, know that the creative process of mathematics is based on far
more than logic. Nor is it essential that all rules of inference be based
on logic. For example, mathematical induction is an extremely impor-
tant proof method; shouldn’t it be considered a rule of inference? It
certainly could be, but since it states a property of a particular struc-
ture, N, it is more common to view it as a proper axiom, stated as an
implication.

One standard list of logical axioms and rules of inference for first-
order logic is provided in Appendix A. One appealing feature of this
version is that there is only one rule of inference, modus ponens.

Definition. Let T be a set of first-order formulas. A proof from (proper
axioms) T is a finite sequence of formulas (“steps”) such that every step
is either a logical axiom, a member of T , or the result of applying a rule
of inference to previous steps in the proof. A proof of a formula P from
T is a proof from T whose last step is P.

More precisely, this is the definition of a formal proof. Of course,
mathematicians never actually write formal proofs; their proofs are in-
formal in many ways. For one thing, proofs normally are written at least
partly in a natural language such as English, rather than a first-order

First-order languages and theories 29

language. Furthermore, they include all sorts of shortcuts, such as def-
initions, and citing previously proved statements rather than reproving
them. Still, most logicians (though perhaps not most mathematicians)
are convinced that all correct proofs in mathematics could, with enough
effort, be translated into formal proofs of first-order logic.

A first-order theory technically consists of two parts: a first-order
language, and a set of formulas (usually, sentences) of that language to
be used as proper axioms. There is no need to specify the logical ax-
ioms or the rules of inference since they are standard, except for incon-
sequential variations. For the most part, we will use the word theory
a bit more loosely to mean any set of formulas T in a first-order lan-
guage.

Notation. We write T ! P (“T proves P”) to mean that there is a
proof of P from T . There are several other ways to read this notation: P
is provable from (or in) T , P is deducible from T , P is derivable from
T , P is a theorem of T , or P is a logical consequence of T .

There are also numerous variants of this notation:

T1 ! T2 means that T1 ! P for every P∈T2.

Q ! P means {Q} ! P.

! P means ∅ ! P, that is, P is derivable from logical axioms and rules
of inference alone. A formula with this property is called a law of
logic.

Finally, P and Q are called logically equivalent if ! (P ↔ Q).

Notation. The set of theorems of T will be denoted Thm(T).

Definition. If Thm(T1) ⊆ Thm(T2) (which is the same as saying
T2 ! T1), we say that T1 is a subtheory of T2, and T2 is an extension
of T1. If Thm(T1) = Thm(T2), we say that T1 and T2 are equivalent
theories.

The notions of “logical consequence,” “law of logic,” and “logical
equivalence” are analogous to the corresponding propositional notions
defined in Section 1.2. The important qualitative difference is that the

30 Predicate Logic

propositional versions are all based on truth tables and therefore are
computable or decidable—a finite amount of straightforward compu-
tation always suffices to determine whether or not they hold, provided
that the sets of formulas involved are finite. This is not the case for the
concepts that we just defined. There is no “effective procedure” (es-
sentially, a computer program) that can even determine whether or not
any given first-order sentence is a law of logic. We should perhaps be
thankful for this, since if there were such a computer program, humans
would hardly ever (if ever) be needed for proving theorems! (Com-
putability and decidability will be thoroughly discussed in Chapter 3.)

Even though the notions of “logical consequence,” “law of logic,”
and “logical equivalence” are analogous to notions defined in Sec-
tion 1.2, the definitions themselves are not analogous. The definitions
in Section 1.2 are semantic, meaning that they are based on some con-
cept of truth—in this case, truth tables. A law of propositional logic
is a statement that is true under all possible interpretations of certain
substatements. It is very natural to use semantic definitions for propo-
sitional logic because truth tables are so simple to understand and use.

By contrast, the definitions we have just given for first-order logic
are syntactic—they are based on provability in some formal system.
We can obtain syntactic definitions of the corresponding propositional
notions simply by removing those parts of Appendix A that mention
quantifiers. It is also fruitful to give semantic definitions of these no-
tions for first-order logic; again, these are based on the idea that a law
of logic is a statement that is true under all possible interpretations.
However, it requires some “machinery” to make this precise so we will
defer these definitions until Chapter 5.

Are the semantic and syntactic definitions equivalent? Yes they
are, which is reassuring. This tells us that a formula P is provable from
a theory T if and only if P must be true whenever all the statements
in T are true. A detailed discussion of this equivalence in the case
of first-order logic will also be given in Chapter 5. This equivalence
provides a compelling argument that the formalists succeeded in cod-
ifying, precisely and compactly, the 2300-year-old notion of a correct
mathematical deduction.

First-order languages and theories 31

We will occasionally refer to reasoning “informally.” Usually, this
will mean using the fact that provability corresponds to truth, in order
to avoid a tedious formal proof. For instance, it can certainly be proved
formally that ∀x ∀yP(x, y) is logically equivalent to ∀y ∀xP(x, y). But
the obvious truth of this equivalence may be considered a nonrigorous
proof, acceptable in most circumstances.

Definitions. A theory T is called consistent if no contradiction can be
derived from it. A formula P is said to be independent of T if neither P
nor ∼ P can be proved from T . T is called complete if it is consistent
and no sentence of its language is independent of it. In other words,
T is complete if T ! P or T !∼ P, but not both, for every sentence
P of the language of T . (The language of T is the smallest first-order
language that contains T .)

The subject that deals with first-order languages and theories is
called first-order predicate logic, or simply first-order logic. We
conclude this section by stating two of the most important metatheo-
rems of first-order logic, that is, theorems about first-order logic. Their
proofs can be found in most logic texts such as [End] and [Sho]:

Theorem 1.3 (Deduction Theorem).

If T ∪ {P} ! Q, then T ! (P → Q).

The converse of this theorem also holds; essentially, it is the rule of
inference modus ponens. The deduction theorem is the formal justifica-
tion of the method of conditional proof (direct proof of implications).
Similarly, the next result is the formal justification of the method of
universal generalization:

Theorem 1.4 (Generalization Theorem). If T ! P(x) and the vari-
able x does not occur free in any formula in T , then T ! ∀xP(x).

Exercise 7. Let T be a theory and P a sentence. Prove:

(a) If T is inconsistent, then every formula is derivable from T .

(b) T ! P if and only if T ∪ {∼ P} is inconsistent.

32 Predicate Logic

(c) P is independent of T if and only if T ∪ {P} and T ∪ {∼ P} are both
consistent.

1.5 Examples of first-order theories

In the previous section it was claimed that first-order languages form
an adequate framework for the translation of mathematical statements
into a purely symbolic form. We will now illustrate, by means of several
examples, precisely what we mean by this claim. As we will see, the
claim is not completely unproblematic.

Example 16 (Peano Arithmetic). One of the first successful formal-
izations of a part of mathematics was the axiomatization of arithmetic,
first carried out by Richard Dedekind and then refined by Peano in the
1890s. The intended domain of this theory is the set N, but one can use
the theory to define and study Z and Q (the set of rational numbers)
as well. The most common first-order language L used for this theory
has two binary function symbols, + and ·, a unary function symbol S
(“successor”), and a constant symbol 0. (We write 0 rather than 0 to
emphasize that this is a formal symbol, not the number 0. However,
most logic books—including this one—are not consistently careful to
make this type of distinction.) As usual, the operators + and · are writ-
ten between their arguments. The proper axioms of Peano arithmetic,
PA for short, include the following straightforward ones:

1. S(x) *= 0. (0 is not any number’s successor.)

2. S(x) = S(y) → x = y. (S is one-to-one.)

3. x + 0 = x .
4. x + S(y) = S(x + y).

5. x · 0 = 0.
6. x · S(y) = (x · y) + x .

In addition to the above, PA also needs some sort of principle of
mathematical induction. The most straightforward statement of induc-
tion is

Examples of first-order theories 33

7. [0∈ A ∧ ∀n(n ∈ A → S(n)∈ A)] → ∀n(n ∈ A).

The intention here is that the variable n ranges over natural numbers,
while the variable A ranges over sets of natural numbers. But L does
not have variables for sets. One obvious solution to this difficulty is to
expand L to a two-sorted language with natural number variables and
set variables, and add the binary relation symbol ∈ to L.

But this type of two-sorted first-order language, with variables for
elements and for subsets of an intended domain, does not provide the
intended meaning unless the domain of the set variables consists of
all subsets of the domain of the element variables. As we will see in
Chapter 5, the rules for interpreting first-order theories do not require
this. If we want this version of induction to mean what it ought to mean,
we need to go beyond first-order logic and instead use a second-order
version of formal arithmetic. Second-order logic, and the reasons for
using it in this type of situation, will be discussed in the next section.

In order to complete the axiomatization of first-order PA, we must
replace the concise form of induction given above with the so-called
predicate form: for each L-formula P(n) with the free variable n (and
possibly other free variables), we include the axiom

7′. [P(0) ∧ ∀n(P(n) → P(S(n)))] → ∀nP(n).

This works well for many purposes, but it does have two drawbacks.
One is that the single induction axiom has been replaced by an infinite
list of axioms (a so-called axiom schema), a situation that cannot be
avoided if we stay in the language L. That is, there is no finite set of
axioms that is equivalent (in terms of the theorems obtained) to axioms
(1) through (6) above plus the schema (7′). We express this limitation
by saying that first-order PA is not finitely axiomatizable. (Because P
is a propositional variable, rather than a mathematical variable within
L, it cannot be quantified in first-order PA.)

The second, more serious, drawback is that this axiom schema
might have less “power” than the version involving sets. To see this,
note that our axiom schema of induction may be viewed as the set ver-
sion restricted to sets that are definable by a formula of L, that is, sets
of the form {n : P(n)}. The set of formulas of L is countable, by Propo-

34 Predicate Logic

sition 1(e) of Appendix C. Therefore, since there are uncountably many
subsets of N, it is quite plausible that the predicate form of induction
could be inadequate for proving some important theorems.

In summary, we have the following situation, which turns out to
be quite common: there is a sensible first-order theory that seems to
provide a correct formalization of arithmetic. However, this first-order
theory does not have as much theorem-proving power as one would
like, especially for more advanced purposes, and this limitation cannot
be remedied in the original first-order language. At the same time, those
who want to maintain that all of mathematics can be carried out within
first-order logic need not admit defeat: they can specify ZFC set theory
(see Example 18 below) as the first-order theory to be used for all of
mathematics.

From now on, unless stated otherwise, the terms “Peano arith-
metic” and “PA” refer to first-order Peano arithmetic. The discussion
above emphasizes the limitations of PA, but in fact a surprising amount
of mathematics can be carried out in subtheories of PA in which the in-
duction axiom schema is severely restricted, instead of being allowed
for all L-formulas P(n). The investigation of these “weak” subsystems
of PA has proven to be a very fruitful area of research. Section 4.4 will
provide a more detailed treatment of what can and cannot be proved
in PA.

Exercise 8. To get a feel for PA, you might want to prove a few ba-
sic arithmetical facts from its axioms (not too formally, or you’ll drive
yourself crazy!). Reasonable choices might be the commutative laws of
addition and multiplication and the distributive laws. Also, you might
want to show how to define the predicate m < n within PA, and then
prove irreflexivity, transitivity, etc. Almost all of these proofs require
induction (on just one variable, even if there is more than one variable
in the statement).

Example 17 (The First-Order Theory of Rings and Fields). Let L
be the first-order language of a ring, as described in Example 15. In
the context of ring theory, it is not necessary to have the symbols 0

Examples of first-order theories 35

and − in the language, because they are definable. However, for most
purposes it is more convenient to include these symbols in L.

In L, it is simple to write down the usual axioms of a ring, a com-
mutative ring, a ring with unity, a field, etc. (See Appendix D for ba-
sics.) In this context, the axioms are just the defining properties of these
algebraic structures, rather than basic, assumed truths. Many simple
theorems of ring and field theory can be stated in this language and
proved from the appropriate axioms: the uniqueness of identity ele-
ments and inverses, the fact that any number times 0 equals 0, the fact
that a field has no zero-divisors, etc. On the other hand, it is easy to see
that L is not adequate for a full treatment of rings and fields. Among
other things, it provides no way of discussing arbitrary subrings or sub-
sets of a ring, or mappings between rings.

Furthermore, the language L lacks the means to express some
rather basic facts about a single ring or field. For example, consider
the idea of characteristic of a field. If we want to state in L that the
characteristic of a field is 3, it is easy to do so: 1 + 1 + 1 = 0. (As
usual, the associative law enables us to omit parentheses on the left
side of this equation.)

Exercise 9. How would we state this property of a field in L if there
were no symbols for the identity elements?

But now suppose we want to axiomatize the theory of a field of
characteristic zero. If you look in a standard abstract algebra text, the
definition given for this is something like “There is no positive integer
n such that n · 1 = 0, where n · 1 is an abbreviation for 1 + 1 + · · · + 1
(n times).” It’s tempting to think that this can be formalized in L as
∀n > 0(n ·1 *= 0). But the problem is that the variable n in this formula
denotes a natural number, not a member of the field in question, so this
formula is not within the language L.

So how can we formalize, in L, that a field has characteristic zero?
The standard way is to use an axiom schema, as in Example 16: start
with the usual field axioms and add, for each n, the formula 1 + 1 +
· · · + 1 *= 0, where there are n 1’s on the left side of the equation. We
will prove in Chapter 5 that there is no finite set of axioms of L that is

36 Predicate Logic

equivalent to this infinite list of axioms. In other words, the first-order
theory of a field of characteristic zero, like first-order Peano arithmetic,
is not finitely axiomatizable. Furthermore, there is absolutely no way in
L, even using an infinite set of axioms, to express that a field has finite
(that is, nonzero) characteristic! We will also see that these limitations
are not just an esoteric curiosity; they lead to some questions that are
of genuine interest to algebraists.

If we want a theory in which we can work with concepts such
as finite characteristic, subrings, and homomorphisms, we need to go
beyond the first-order theory of rings and fields. As in Example 16, we
could use a second-order theory, or we could use the full power of set
theory.

Example 18 (Zermelo–Fraenkel Set Theory). One of the most im-
portant mathematical achievements of the early part of the twentieth
century was the development of versions of set theory that apparently
avoid the paradoxes of “naive” set theory (to be discussed in Chapter 2),
and yet do not significantly diminish the freedom to define abstract and
infinite sets, as envisioned by the founders of set theory. The most im-
portant of these theories is called Zermelo–Fraenkel (ZF) set theory;
with the addition of the axiom of choice, it is simply called ZFC set
theory.

ZFC is a remarkable first-order theory. All of the results of con-
temporary mathematics can be expressed and proved within ZFC, with
at most a handful of esoteric exceptions. Thus it provides the main sup-
port for the formalist position regarding the formalizability of math-
ematics. In fact, logicians tend to think of ZFC and mathematics as
practically synonymous.

On the other hand, ZFC is in many ways an extremely simple the-
ory. This is especially true of its language. The language of set theory
has just one binary relation symbol ∈. It is not even necessary to in-
clude the equality symbol, since equality of sets can be defined (two
sets being equal if and only if they have exactly the same elements). It
is worth noting that ZFC is a “pure” set theory: all the objects under
discussion are technically sets. There are not even variables or axioms

Examples of first-order theories 37

for the natural numbers; every mathematical object must be a set. We
will examine ZFC in much more detail in Chapters 2 and 6.

Example 19 (A First-Order Theory of Family Relationships). We
conclude this section with a nonmathematical example. But this ex-
ample provides a good setting to practice translating English statements
into a formal symbolic language, with careful use of quantifiers.

Let L be a first-order language with one unary relation symbol
W(x) and one binary relation symbol P(x, y), in addition to equality.
The intended interpretation is that the variables of L denote people (liv-
ing or dead), W(x) means “x is female,” and P(x, y) means “x is a par-
ent of y.” (There is no requirement to mention any interpretation when
defining a first-order language or theory, but doing so is often very
helpful to the reader.) All of the usual blood relationships for which we
have words can be expressed in this language. For example, the state-
ments that one person is another’s mother, grandparent, uncle, brother,
half-sibling, or first cousin can all be formalized in L.

On the other hand, not everything one might want to say about
family relationships can be expressed in L. If you give it some thought,
you should be able to convince yourself that there’s no way to express
“x is a descendant of y” or “x and y are blood relatives” in L. This
limitation is rather similar to the situation we discussed in first-order
field theory, where certain statements regarding the characteristic of a
field could not be formalized. As an exercise, see if you can expand L
in a way that makes it possible to say anything about blood relation-
ships that can be expressed in English. Would it suffice to add integer
variables to the language, and a relation symbol D(x, y, n) that means
“y is an nth level descendant of x”? (So D(x, y, 1) would mean y is
x’s child, etc.) Is it possible to express “x and y are blood relatives” in
this expanded language?

So we have a couple of possibilities for a first-order language for
the formalization of family relationships. What about axioms? In the
original language with only “people variables,” the most obvious ax-
ioms to include are that each person has a unique mother and father.
From this, we can prove many simple facts, for example, that each per-

38 Predicate Logic

son has exactly four grandparents (if there’s no incest!), and that sib-
linghood is an equivalence relation (if we agree that each person is his
or her own sibling).

But this simple axiomatization is inadequate if we want to prevent
circular relationships, such as someone being his or her own parent or
grandparent. What kind of axioms would prevent these? Surprisingly,
there is no finite set of axioms in L that will do so. If we go to an
expanded language as above, or a language in which we can refer to
a person’s time of birth, and assert (as an axiom) that every person is
born after his or her parents were, then we can guarantee noncircularity.
Essentially, it would be desirable to be able to express the “descendant”
(or “ancestor”) binary relation in whatever formal language we choose,
and then have axioms that state that these relations are partial orderings.
You might find it instructive to carry this out in some detail.

1.6 Normal forms and complexity

In this section we present two more metatheorems of logic that give
useful ways of rewriting arbitrary first-order formulas in simple, stan-
dard forms. Both of these are well known to logicians and understood
intuitively by all mathematicians. These normal forms will be useful at
various points in the following chapters.

Definition. A first-order formula is said to be in prenex normal form,
or simply in prenex form, if it consists of a string (possibly empty) of
quantifiers, followed by a quantifier-free subformula.

In a prenex formula, the entire quantifier-free subformula must be
the scope of the initial quantifiers. So if P and Q are quantifier-free,
then ∀x(P → Q) is prenex, but (∀xP) → Q is not, because P → Q is
not a subformula of the latter formula.

Example 20. The usual additive inverse axiom of ring theory,
∀x ∃y(x + y = 0) is in prenex form. But the multiplicative inverse

