
CHAPTER 2
Axiomatic Set Theory

2.1 Introduction

Why should students of mathematics want to know something about
axiomatic set theory? Here is one answer: set theory provides a nat-
ural and efficient framework in which all of contemporary mathemat-
ics can be unified. We live in a time when the specialization within
mathematics (and many other disciplines, of course) is mind-boggling,
and even though that specialization is a tribute to the great success of
mathematics and mathematicians, it can be alienating. Not too many
centuries ago, the few professional mathematicians generally under-
stood just about all of the mathematics of their day, and many of them
also did important work in one or more branches of science and engi-
neering. Now it is almost impossible to be this “broad.” Mathematics
has major branches such as real analysis, algebraic geometry, number
theory, and topology, but it is quite difficult to master even one of these
branches. Most mathematicians work in much more narrowly defined
areas and, if they are motivated, may be able to understand most of the
research in one of these major branches. Again, this observation is not
intended as any sort of criticism! I believe the current situation is the
almost inevitable consequence of the enormous progress that has been
made in almost all areas of mathematics in the last hundred years or so.
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Personally, I find it somewhat comforting to know that, formally
at least, all the different branches and fragments of mathematics can
be nicely packaged together. It may also be valuable to explain this to
nonmathematicians who see our discipline as a complex hodgepodge
of barely related subjects. Of course, one must not overstate this posi-
tion. It would be absurd to claim that all of mathematics is set theory.
The objects of study and the creative activity of most mathematicians
are not about sets. Indeed, the great variety of concepts and methods
in mathematics makes it all the more remarkable that they can all be
embedded in a single, apparently simple theory.

We briefly discussed the elegant simplicity of ZFC set theory in
Chapter 1, but the point bears repeating. In the intended interpreta-
tion of this first-order theory, the only objects are sets—the same ba-
sic “clumps” of things that one learns about in middle school or even
elementary school. The only atomic formulas allowed, besides equa-
tions, are statements saying that one set is an element of another. With
a couple of exceptions, the axioms of ZFC make completely plausible
assertions about sets and are not difficult to understand. It seems almost
magical that the deepest results of modern mathematics, in all of these
varied branches of the subject, can be formally stated and proved in this
“sparse” theory.

It is also possible to develop axiomatic set theory with additional
variables for objects that are not sets. Such objects are called urele-
ments, individuals, or atoms. For example, we might want variables
for natural numbers and perhaps even for real numbers, with appro-
priate axioms, included as a basic part of our set theory. The obvious
way to do this is with a many-sorted first-order theory. There is no
harm in this approach, but it doesn’t really gain anything either (once
the strangeness of developing number systems within pure set theory
wears off), so we will not discuss it further in our development of set
theory.

Another reason for mathematicians to know something about set
theory is that it induces us to think about the meaning of what we
do. Specialists in most branches of mathematics do not need to think
very often about foundational questions. Number theorists, analysts,
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and even algebraists have little incentive to spend much time wonder-
ing whether the objects they study are “real,” or what their theorems
“really mean.” But when one starts thinking about set theory, and espe-
cially the independence results that tell us, for example, how unlikely it
is that we will ever know whether the continuum hypothesis is “true,” it
becomes natural to ask such questions about the more abstract objects
of mathematics. And mental exercises of this sort, while they may be
unsettling, are also a valuable philosophical endeavor.

A third reason to be familiar with set theory is that its history
is so interesting and so intertwined with developments in other parts
of mathematics. In order to highlight this, much of this chapter and
Chapter 6 are arranged historically, outlining three major phases in the
development of the subject while also presenting the main concepts and
results of set theory.

For a more thorough introduction to set theory at an elementary
level, see [Gol], [Vau], [Roi], or [Sup]. A more advanced treatment can
be found in [Jech78], [JW], or [TZ].

2.2 “Naive” set theory

The first phase in the development of set theory, which extended from
the 1870s until about 1900, was marked by the attempts of Dedekind,
Georg Cantor, and others to gain acceptance of the use of infinite sets in
mathematics. Through his early work on trigonometric series, Cantor
came to realize that the efforts of the time to establish a rigorous the-
ory of the real numbers, primarily by Dedekind and Weierstrass, were
essentially based on infinite sets. From today’s perspective, it seems
surprising just how much resistance this new subject sparked. But Carl
Friedrich Gauss, certainly the most influential mathematician of the
first half of the nineteenth century, shared the ancient Greek “horror of
the infinite.” Thus he believed that infinite collections should be con-
sidered only as incomplete, potential objects, never as completed ones
that can be “grasped as a whole.” Many mathematicians of the latter
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Georg Ferdinand Cantor (1845–1918)
is generally considered to be the main
founder of set theory. Cantor’s father
wanted him to study engineering, but
Georg was more interested in philoso-
phy, theology and mathematics. Eventu-
ally, Cantor concentrated on mathemat-
ics and received his doctorate from the
University of Berlin in 1867. In 1874,

Cantor published one of the first papers that seriously consid-
ered infinite sets as actual objects, and he devoted the rest of his
career to this subject.

Cantor’s work encountered a degree of resistance that, in
retrospect, seems quite unfair and regrettable. Kronecker in
particular was often vicious in his criticisms of other mathemati-
cians. His attacks on the free use of the infinite angered Weier-
strass and Dedekind, but had a more profound effect on Cantor.
Kronecker used his influence to block Cantor’s applications for
positions at Germany’s most prestigious universities; thus Cantor
spent his entire 44-year career at the relatively minor Halle Uni-
versity. Cantor became exhausted and discouraged by the resis-
tance to his work, and began having bouts of severe depression
and mental illness in 1884. Cantor did very little new research
during the last thirty years of his life, and even though his work
finally received proper recognition after the turn of the century,
he died in a mental institution in Halle.

part of the century, notably Leopold Kronecker, shared Gauss’s finitist
philosophy and refused to accept Cantor’s radical ideas.

Set theory during this period was based on two very simple ax-
ioms. One, called the comprehension axiom, says that any collection
of objects that can be clearly specified can be considered to be a set.
The other axiom, extensionality, asserts that two sets are equal if and
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only if they have the same elements. This theory was meant to be com-
bined with the rest of mathematics, not to replace it.

Cantor not only viewed infinite sets as actual objects; he defined
operations on them and developed an elaborate theory of their sizes,
called cardinal arithmetic. This program was especially offensive to
Kronecker and to many mathematicians of the next generation such
as Henri Poincaré. When Russell’s amazingly short “paradox” (1902)
showed that set theory based on the full comprehension axiom is in-
consistent, Poincaré was particularly pleased, stating, “Later mathe-
maticians will regard set theory as a disease from which we have re-
covered.” Hilbert, who supported the new subject, countered by saying
that “no one will evict us from the paradise that Cantor has built for us.”

Russell’s paradox, which Ernst Zermelo actually discovered inde-
pendently a bit before Russell, begins by letting A be the set of all sets
that are not members of themselves. In symbols, A = {B | B /∈ B}.
By definition of this set, A ∈ A if and only if A /∈ A, and so we have
a contradiction. (The word paradox, which usually means an apparent
contradiction, understates the situation here.) While the Burali–Forti
paradox (described in the next section) was discovered about five years
earlier, it was based on more sophisticated concepts and was not viewed
as a major threat to the subject. But Russell’s paradox is so simple that
it put an end to set theory as it was practiced at the time, which is now
called naive set theory. Cantor had an inkling of this development, but
Frege, who was also a pioneer of the subject, was crushed by Russell’s
discovery and did no serious mathematics thereafter. (To be fair, there
were other important factors in Frege’s depression and retirement, such
as the death of his wife.)

Russell’s paradox was later popularized as the barber paradox:
in a certain town the barber, who is a man, shaves exactly those men
who don’t shave themselves. Who shaves the barber? This question has
no consistent answer.

Two of the most important problems in modern set theory arose
from Cantor’s study of cardinality, so we will devote the rest of this
section to this topic. Here are the fundamental definitions, which are
among Cantor’s major contributions. While parts of naive set theory



64 Axiomatic Set Theory

had to be discarded, the definitions and theorems in the rest of this
section are for the most part not in this category and are an essential part
of contemporary set theory. More of the basics of cardinal arithmetic
are outlined in Appendix C.

Definitions. For any sets A and B:

(a) A ! B means there is a one-to-one function from A to B.

(b) A ∼ B means there is a bijection or one-to-one correspondence
between A and B, that is, a one-to-one function from A onto B.

(c) A ≺ B means A ! B but not A ∼ B.

There are many ways of reading A ∼ B: A and B are equi-
numerous, or equipollent, or A and B have the same cardinality, or
the same size. It is clear that this defines an equivalence relation on all
sets. Frege defined a cardinal as an equivalence class of ∼. For ex-
ample, the cardinal 3 would be the class of all sets with three members.
This definition is intuitively appealing, but it is not permissible in ZFC.
(We’ll say more about this in the next section.) Two other definitions
of this term that are permissible in ZFC are given later in this chapter,
and in Appendix C.

Cantor was very interested in the ordering on sets based on cardi-
nality. The relation ! is a preordering on sets, but it is more natural to
think of ! and ≺ as orderings on cardinals. One of the first nontrivial
accomplishments of set theory was to show that this makes sense:

Theorem 2.1 (Cantor–Schröder–Bernstein (CSB) Theorem). If
A ! B and B ! A, then A ∼ B.

Proof. Assume that A ! B and B ! A. So there are one-to-one func-
tions f : A → B and g : B → A. Let C = Rng( f ) and D = Rng(g).
So g−1 : D → B is a bijection. We will define a bijection h : A → B
such that, for every x in A, h(x) is either f (x) or g−1(x). We always
let h(x) = f (x) unless “forced” to do otherwise.

Suppose y is any element of B − C , and let x1 = g(y). If we
let h(x1) = f (x1), then y will not be in the range of h, because y
is not in the range of f , and x1 is the only element of A such that
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g−1(x1) = y. Therefore, we must let h(x1) = g−1(x1). But then, by the
same reasoning, h must be defined to be g−1 on the following elements
of A: x2 = g( f (x1)), x3 = g( f (x2)), x4 = g( f (x3)), etc. So, for each
element of B − C , we get an entire infinite sequence of elements of A
on which h must be defined to be g−1. (See Figure 2.1.) On all other
elements of A, we let h be f . It is routine to show that this h is indeed
a bijection between A and B.
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Figure 2.1. Construction of the sequence (xn) in the proof of the CSB theorem

Example 1. Let’s use the proof of the CSB theorem to define a bijec-
tion between the intervals (−1, 1) and [−1, 1]. We have simple one-
to-one functions f : (−1, 1) → [−1, 1] and g : [−1, 1] → (−1, 1)

defined by f (x) = x and g(x) = x/2. In the notation of the above
proof, we have B − C = {−1, 1}. So we must set h(1/2) = 1,
h(1/4) = 1/2, h(1/8) = 1/4, etc. Similarly, h(−1/2) = −1,
h(−1/4) = −1/2, h(−1/8) = −1/4, etc. For all other elements of
(−1, 1), we let h(x) = x . It follows that (−1, 1) ∼ [−1, 1].
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Note that this function h is not continuous. It is not hard to show
that there cannot be a continuous bijection between an open interval
and a closed interval.

Exercise 1. Complete the details of the proof of the CSB theorem.

The bulk of the proof of the CSB theorem was provided by Can-
tor’s student Felix Bernstein at the age of nineteen. Without this theo-
rem, there would be another natural equivalence relation based on size
of a set, defined by (A ! B and B ! A). That the two equivalence
relations actually coincide is much more appealing. Another way of
stating the CSB theorem is that the relation ≺ is strongly antisymmet-
ric: A ≺ B and B ≺ A cannot hold simultaneously.

Other questions regarding cardinality were more elusive. Can-
tor naturally hoped to prove that the ordering on sets is total: ∀A,
B(A ! B∨B ! A) or, equivalently, ∀A, B(A ≺ B∨B ≺ A∨A ∼ B).
He was able to do this, but only by assuming the well-ordering prin-
ciple, that every set can be well ordered. For some time Cantor claimed
to have proved this principle from more elementary assumptions, but
later he realized that he could not do so.

Here is another important achievement of Cantor’s study of cardi-
nality:

Definition. For any set A, its power set, denoted P(A), is the set of
all subsets of A.

Theorem 2.2 (Cantor’s Theorem). For any set A, A ≺ P(A).

Proof. The function f : A → P(A) defined by f (u) = {u} is clearly
one-to-one, so A ! P(A). Now we must show that A '∼ P(A).
Assume that g is any one-to-one function from A to P(A). Now let
B = {u ∈ A | u /∈ g(u)}. The set B is in P(A) but cannot be in the
range of g, because if we assume that g(u) = B, we find that u ∈ B
if and only if u /∈ B, a contradiction. Thus g is not a bijection, so we
conclude that A '∼ P(A).

This proof was the first example of a diagonalization argument,
which has since become a powerful tool. Note the similarity to Rus-
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sell’s paradox, except that here we don’t reach a contradiction. We just
show that a certain function can’t exist. We will encounter several more
diagonalization arguments in this book, mostly in Chapters 3 and 4.

Cantor’s theorem implies that there is no largest cardinal, and
more specifically that there are uncountable sets, sets greater in size
than N. Cantor also proved that R ∼ P(N), so in particular the reals are
uncountable. Now, if A is a finite set, say with n elements, then P(A)

has 2n elements. Unless n = 0 or 1, this means that there are sets that
are strictly between A and P(A) in cardinality. But if A is infinite, no
such “intermediate” sets present themselves. Cantor conjectured, but
could not prove, that there are no sets that are between N and P(N) in
cardinality. This conjecture is called the continuum hypothesis (CH).
The more general conjecture obtained by replacing N with an arbitrary
infinite set is called the generalized continuum hypothesis (GCH).

Cantor’s theorem also provides an alternative proof of the incon-
sistency of naive set theory, almost as short as Russell’s paradox: in
naive set theory, we can define the set of all sets A. But then P(A)

must be larger than A in size, which is absurd because P(A) is clearly
a set of sets, and is therefore a subset of A.

Here is a direct proof of the uncountability of R, by a modifica-
tion of the proof of Cantor’s theorem that makes it more clear where the
term “diagonalization argument” comes from. In the following proof,
we assume for notational simplicity that 0 /∈ N. Only a slight modifi-
cation is required if 0∈N.

Proposition 2.3. N ≺ R.

Proof. First of all, N $ R because N ⊆ R. To complete the proof, we
must show that there is no bijection between N and R. We will prove a
bit more, namely that if f : N → R, then the range of f cannot contain
the entire interval [0, 1].

So let f : N → R. We will construct a real number c between 0
and 1 that is not in the range of f . For each n ∈ N, let the digit in the
nth decimal place of c be obtained by increasing or decreasing the digit
in the nth decimal place of f (n) by 5. (This is one of many satisfactory
procedures for constructing c.) For instance, if f (1) = 17.374 . . . and
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Figure 2.2. Diagonalization argument used to define the number c

f (2) = −5.397 . . . , then c begins 0.84 . . . . (See Figure 2.2.) Since c
differs in at least one decimal place from each f (n), c is not in the
range of f .

This proof assumes the ability to represent real numbers as deci-
mals and glosses over the fact that some reals have two different dec-
imal forms. For instance, 0.999 . . . = 1 and 7.47999 . . . = 7.48. This
is the only type of ambiguity in decimal representation: real numbers
with terminating decimal expansions are the only ones with more than
one decimal form.

Exercise 2. Show that the interval [0, 1] is uncountable.

Further discussion of cardinality will be given in Sections 2.5 and
3.2, as well as Appendix C. In Chapter 6 we will return to the two
conjectures that eluded Cantor, the well-ordering principle and the con-
tinuum hypothesis, and see the prominent role they played in the devel-
opment of set theory.

2.3 Zermelo–Fraenkel set theory

The second phase in the history of set theory began with efforts to free
set theory, and hopefully all of mathematics, from contradictions such
as Russell’s paradox. Obviously, the thought that a branch of mathe-
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matics, especially such a simple-looking one, could turn out to be in-
consistent was quite disturbing.

In the early years of the twentieth century, three movements
emerged whose goals included ridding mathematics of contradictions:
logicism, formalism, and intuitionism. We briefly mentioned logicism
and formalism in Chapter 1. Intuitionism, founded by Brouwer, con-
tinued and expanded the tradition of Gauss and Kronecker by insisting
that mathematical activity should be confined to “constructive” oper-
ations. We will discuss intuitionism further in Chapter 8. While all of
these movements made important contributions to mathematics, none
of them accomplished the main goal.

Attempts to fix set theory were much more successful. Zermelo
was the first (in 1908) to create a set of axioms for set theory that re-
placed the unrestricted comprehension axiom with a more cautious list
of principles for the existence of sets. His ideas were refined by Abra-
ham Fraenkel, Thoralf Skolem, John von Neumann, and others in the
1920s, creating the theory ZF that has withstood eighty years of ex-
tensive use and scrutiny. Even though Gödel’s incompleteness theorem
creates a substantial obstacle to proving that ZF is consistent, almost
all mathematicians are confident that it is.

We now list the axioms of ZF set theory. For the most part, the ax-
ioms are written completely formally, except that we use the standard
abbreviation x ⊆ y for ∀u(u ∈ x → u ∈ y), as well as the restricted
quantifier notation introduced in Section 1.3. Also, starting with ax-
iom 5, we will use “terms” to shorten the axioms.

Proper axioms of ZF set theory
1. Extensionality: ∀x, y[x = y ↔ ∀u(u ∈ x ↔ u ∈ y)]. (Two sets

are equal if and only if they have the same elements.)

2. Pairing: ∀x, y ∃z ∀u(u ∈ z ↔ u = x ∨ u = y). (For any x and y,
the set {x, y} exists.)

3. Union: ∀x ∃y ∀u(u ∈ y ↔ ∃w ∈ x(u ∈ w)). (For any x , the union
of all the sets in x exists. This union is denoted

⋃
x .)
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4. Empty Set: ∃x ∀y ∼ (y ∈ x). (The empty set ∅ exists.)

5. Infinity: ∃x[∅∈ x ∧ ∀y ∈ x((y ∪ {y})∈ x)]. (There exists an infinite
set.) We will explain this axiom more fully in the next section. Note
that the way we have written this axiom is not within the first-order
language of set theory because it includes terms (in the sense of
Section 1.4) like ∅ and y ∪ {y}. This situation is discussed in the two
examples following this list of axioms.

6. Power Set: ∀x ∃y ∀u(u ∈ y ↔ u ⊆ x). (For any set x , its power set
P(x) exists.)

7. Replacement:

[ ∀x ∈a ∃!yP(x, y)] → [ ∃b ∀y(y ∈b ↔ ∃x ∈aP(x, y))].

(If the formula P(x, y), which cannot contain b as a free variable,
defines a function on the domain a, then there is a set b that is the
range of this function.) Replacement is an axiom schema since there
are infinitely many choices for the formula P.

8. Regularity or Foundation: ∀x[x += ∅ → ∃y ∈ x(x ∩ y = ∅)]. (A
nonempty set must contain an element that is disjoint from it.) We
will thoroughly discuss the significance of this axiom at the end of
this section.

ZFC set theory is obtained from ZF by adding one more axiom:

9. Axiom of Choice (AC):

[ ∀u ∈ x(u += ∅) ∧ ∀u, v∈ x(u += v → u ∩ v = ∅)]
→ ∃y ∀u ∈ x ∃!w∈u(w∈ y).

(If x is a set of nonempty, pairwise disjoint sets, then there is a set
y that consists of exactly one member of every set in x . Such a y is
called a choice set for x .)

Example 2. The empty set axiom asserts the existence of a set with no
members. By extensionality, this set is unique. Therefore, it is permis-
sible and reasonable to introduce the term ∅ to denote this set. So the
first-order Skolem form of the empty set axiom would be ∀y(y /∈ ∅).
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When we write something like ∅∈ x , as in the axiom of infinity, this is
an abbreviation for what would be a much longer formula in the sparse
language of ZF, namely: ∃z[z ∈ x ∧ ∀y(y /∈ z)]. It would be extremely
cumbersome to carry out the development of set theory without intro-
ducing terms for sets. The next example will continue the discussion of
terms.

There are many other natural statements that are equivalent (in ZF)
to the axiom of choice, such as the well-ordering principle and the to-
tality of the ordering on cardinals, mentioned in the previous section.
Another concise version of AC is that the Cartesian product of any
family of nonempty sets is nonempty. The axiom of choice will be dis-
cussed further in Chapter 6.

We will not give a systematic development of basic set theory
from the axioms of ZF or ZFC. To see how this is done in detail, refer
to [Sup] or [Jech78]. We will just mention a few of the most useful
basic results and then move on to more specific topics.

Set-builder notation {x | P(x)} (read “the set of all x such that
P(x)”) is very convenient and commonly used throughout mathematics.
Of course, the intended meaning is that if y = {x | P(x)}, then, for
every x , x ∈ y if and only if P(x). Russell’s paradox makes it clear that
we cannot expect this notation to define a set in all cases. The more
cautious viewpoint of modern set theory is that we should at least be
able to assert the existence of any set of the form {x ∈ a | P(x)}, “the
set of all x in a, such that P(x).” The idea is that since what we are
asserting to exist in this way is a subset of some set a that already
exists, we can’t end up with a set that is “too big,” such as the set of
all sets. The principle that such subsets always exist is called the axiom
(schema) of separation.

So, in ZF or ZFC, one cannot define the set of all sets, the set of
all rings, etc. Informally, it’s convenient and harmless to refer to such
collections as classes. If a class is known to be too large to be a set,
as these are, then it is called a proper class. Specifically, we can talk
about the class of all sets x such that P(x), for any formula P(x). But
there are no variables for such classes, and a proper class can never be
a member of a set.
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John von Neumann (1903–1957) was
born to a well-to-do and intellectual fam-
ily in Budapest. He was a true child
prodigy who could divide eight-digit
numbers in his head at age six, and he
learned calculus at age eight. He would
also show off his photographic memory
by reading a page of a telephone book

and then repeating all the names, addresses and phone numbers
by heart. Von Neumann obtained a university degree in chemical
engineering in 1925, and then got his PhD in mathematics just
one year later. Like Albert Einstein and Gödel, he left Europe
in the 1930s to become a permanent member of the Institute for
Advanced Study in Princeton.

Von Neumann made important contributions to many fields
within mathematics and science, from the very abstract to the
very practical. In the 1920s, he worked with Hilbert and Paul
Bernays on the formalist program and the foundations of set the-
ory. When Gödel publicly announced his incompleteness the-
orem, von Neumann was the first member of the audience to
grasp the significance of Gödel’s accomplishment. During this
period, von Neumann also studied the mathematical foundations
of quantum mechanics, and in 1932 published a very successful
textbook in that field. His next major achievement was in game
theory; he collaborated with the economist Oskar Morgenstern to
publish, in 1944, The Theory of Games and Economic Behavior,
which is the primary reference for modern game theory. During
World War II he made substantial contributions to the American
atom bomb project, and much of his work in the forties and fifties
was on military projects.

From a practical standpoint, von Neumann’s most important
achievement was his pioneering work on the development of the

(continued)
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John von Neumann continued

computer. Toward the end of World War II, the army built a ma-
chine called ENIAC, considered to be the first digital computer.
Not only was it huge—over 100 feet long—but it was also ex-
tremely awkward and complicated to instruct it what to do. Von
Neumann realized that it would be more efficient to give the com-
puter instructions using a “stored program” that one could create
outside the computer and then insert into the machine. In other
words, he essentially invented the notion of a computer program.
Von Neumann built a computer at the Institute (a project that was
very controversial at one of the world’s “purest” ivory towers),
and his work helped IBM develop the machines that launched
the computer age. He also pioneered related fields such as cellu-
lar automata theory and the theory of self-reproducing machines.

Given his huge output of important work, von Neumann
spent a surprising amount of time having fun. His personal-
ity was outgoing and friendly, and he loved money, fine wine,
women, noise, dirty limericks, and fast cars—several of which
he wrecked. He gave large parties, often more than one per week,
which were legendary in the Princeton area. In short, von Neu-
mann was a rare combination of genius and “party animal.”

In another important version of axiomatic set theory, created by
von Neumann, Bernays, and Gödel and therefore called VBG, the vari-
ables represent classes, which may be sets or proper classes. But only
a set can be a member of a class. So, for instance, Frege’s definition
of a cardinal becomes acceptable in VBG: the cardinal of any set x is
a legitimate object. Unless x is empty, it’s a proper class. VBG proves
exactly the same theorems about sets as ZFC does and, unlike ZF and
ZFC, it is finitely axiomatizable. In spite of these desirable features of
VBG, most contemporary treatments of set theory use ZFC exclusively,
and we will also.
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Proposition 2.4. The full separation schema is derivable in ZF set
theory. In other words, for any formula Q(x) in which b is not a free
variable, the following formula is provable in ZF:

∀a ∃b ∀x[x ∈b ↔ (x ∈a ∧ Q(x))].

Proof. We give a rather informal proof that can easily be formalized in
ZF; technically, the formal proof consists of an infinite set of proofs,
one for each Q.

Let a be given. We consider two cases. If there are no members of
a for which Q(x) holds, then let b = ∅, and we are done.

If there are members of a for which Q(x) holds, let c be one of
these. Now define the formula P(x, y) to be

(Q(x) ∧ y = x) ∨ (∼ Q(x) ∧ y = c).

Then apply the replacement axiom to this P and a. The set b that must
exist by replacement is easily shown to be {x ∈a | Q(x)}.

Zermelo’s original version of set theory did not include the regu-
larity axiom and had separation instead of replacement. By the previ-
ous proposition, Zermelo’s theory is a subtheory of ZF, and it turns out
to be a proper subtheory, but it is powerful enough to prove the great
majority of important mathematical results outside of foundations.

With the exception of extensionality, all of the axioms of ZFC
assert the existence of sets with certain properties. The existence of
other familiar sets can easily be derived in ZF.

Example 3. The set that is asserted to exist by the pairing axiom is
denoted {x, y}. From this, we can write {x} for {x, x}. The ordinary
union of two sets x and y, denoted x ∪ y, is

⋃
({x, y}), whose exis-

tence follows from pairing and union. Then {x, y, z} = {x, y} ∪ {z},
and from this we can define x ∪ y ∪ z, etc. No special axiom is
needed for intersections, since their existence follows from separa-
tion: x ∩ y = {z ∈ x | z ∈ y}. Similarly, the set x − y, defined as
{z ∈ x | z /∈ y}, exists by separation. By the extensionality axiom, all
of these terms denote sets that are unique, for any given values of the
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variables appearing in them. Therefore, it is natural to think of these
terms as defining Skolem functions.

The notation x − y may be read “x minus y,” but this set is more
correctly called the relative complement of y in x . There is also the
related concept of the symmetric difference of any two sets x and
y, denoted x!y, and defined to be (x ∪ y) − (x ∩ y) (or, equivalently,
(x − y)∪(y −x). It is worth noting that, in ZF or ZFC, all complements
are relative. That is, if x is a set, then {z : z /∈ x} cannot be a set; it is
always a proper class.

Occasionally, one must resort to an artificial definition in order
to “embed” some mathematical notion smoothly into ZFC. One such
definition is Kazimierz Kuratowski’s definition of the ordered pair of
any two objects: (x, y) = {{x}, {x, y}}. The set on the right side of this
equation has no conceptual connection with ordered pairs. It is used
simply because it allows us to prove, in ZF, the two essential properties
of ordered pairs: that the ordered pair of any two sets exists, and that
(x, y) = (u, v) if and only if x = u and y = v.

Exercise 3. Prove these two properties of ordered pairs, in ZF. Don’t
try to make your proof too formal, but make sure your steps follow
from the axioms of ZF.

Once ordered pairs are available, one can prove (in ZF) the ex-
istence of various other important sets, such as the Cartesian product
A × B and the set B A of all functions from A to B, for any sets A
and B.

Exercise 4. Outline a proof (in ZF) that the Cartesian product of any
two sets exists. You will need to use the replacement axiom twice and
the union axiom once.

The regularity axiom
To conclude this section, we will examine the regularity axiom in some
detail. What does it say? What is it about? Superficially, it asserts the
existence of a certain type of set, just as all the other axioms of ZFC
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except extensionality do. But it really has a different flavor from the
other axioms, in that the set asserted to exist is an element of a given
set x . So, in an important sense, it doesn’t assert the existence of any
new sets.

The regularity axiom may be viewed as the result of the following
line of thinking: naive set theory suffered from paradoxes, and para-
doxes in logic and mathematics are almost always traceable to some
sort of circular reasoning or definition. In set theory, one is constantly
defining sets by specifying their members, and a prudent rule of thumb
to avoid circular definitions is to require that all the members of a set
must already be defined or “constructed” before we can define that set.
This would imply, among other things, that a set cannot be a member
of itself. For instance, note that the set of all sets, which we have shown
cannot exist because it leads to paradoxes, would violate this principle.

With this in mind, let’s consider what regularity says and some of
its consequences. One immediate consequence is that no set is a mem-
ber of itself. For if y ∈ y, then letting x = {y} violates this axiom.
Another consequence is that we cannot have y ∈ z and z ∈ y simultane-
ously, for then x = {y, z} would violate regularity. Generalizing this,
the regularity axiom guarantees that there cannot be any finite cycles in
the relation ∈, and this is clearly one desirable result if we are trying to
eliminate circularity in the construction of sets.

Here is an even more significant consequence of regularity: imag-
ine an infinite sequence of sets x0, x1, x2, . . . such that xn+1 ∈ xn

for every n. Then the set {x0, x1, x2, . . . .} violates regularity. In other
words, no such sequence can exist; we say that regularity prevents in-
finite descending sequences under ∈. So if we start with any set x0

and try to generate such a sequence, we inevitably find that xn = ∅
for some n. (Remember, every object is a set.) This result corresponds
to the notion that if sets may not be defined in a circular way, then
they must be defined “from scratch,” in “stages.” “From scratch” can
only mean from the empty set. And, in order for the idea of stages to
make sense, it should not be possible to have an infinite sequence of
earlier and earlier stages. More mathematically, what regularity says
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is precisely that ∈ is a well-founded relation—hence the alternative
name foundation. (It is important not to overstate this message. We are
not saying that every set must be definable from ∅ in a finite number of
stages. As we will see, there can be infinite increasing sequences of sets
under ∈.)

The well-foundedness of ∈ has important ramifications in set the-
ory. The fact that there are no infinite descending sequences in N is es-
sentially equivalent to the principle of mathematical induction. In fact,
Fermat’s method of infinite descent, considered the first clear state-
ment of induction, was based on the postulate that every decreasing
sequence of natural numbers must terminate. We will soon see that the
well-foundedness of ∈ is useful for the development of the theory of
ordinals as well as for embedding the theory of N in set theory.

2.4 Ordinals

In this section we outline an essential and fascinating part of set theory
that is not well known to most mathematicians outside of foundations.
In less theoretical treatments, an ordinal is usually defined to be an
equivalence class of well-orderings. Here is the more rigorous defini-
tion that can be formalized in ZF:

Definitions. A set is transitive if every member of it is a subset of it
(that is, every member of a member of it is a member of it). An ordinal
is a transitive set, all of whose members are also transitive.

Example 4. The sets ∅, {∅}, and {∅, {∅}} are ordinals. But the set {{∅}}
is not even transitive, because its only member is not a subset. Why
such strange examples? Remember that in pure set theory, all sets must
be built up from ∅.

We now present some basic facts about transitive sets and ordinals.
We will usually omit the words “The following is provable in ZF” from
the beginning of such results.
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Proposition 2.5.

(a) The power set of a transitive set is transitive.

(b) The union and intersection of a collection of transitive sets are
transitive.

Proof.

(a) Assume y is transitive. To show that P(y) is also transitive, con-
sider x ∈P(y). That means x ⊆ y. So if u ∈ x , then u ∈ y. Since y is
transitive, this implies u ⊆ y, so u ∈P(y). So we have x ⊆ P(y),
as desired.

Exercise 5. Prove part (b) of this proposition.

Notation. Lower case Greek letters are used to denote ordinals. So a
statement of the form ∀αP(α) means that P holds for all ordinals.

Proposition 2.6.

(a) Every member of an ordinal is an ordinal.

(b) ∅ is an ordinal.

(c) For any ordinal α, α ∪ {α} is also an ordinal.

Proof.

(a) Assume α is an ordinal, and x ∈α. Then x is transitive by definition
of ordinals. To show x is an ordinal, we must also show that every
member of x is transitive. But if u ∈ x , then u is a member of a
member of α, and thus a member of α since α is transitive. So u
must be transitive because α is an ordinal.

Exercise 6. Prove parts (b) and (c) of this proposition.

The ordinal α ∪ {α} referred to in (c) of this proposition is called
the successor of α, denoted S(α). If β is of the form S(α), then we say
β is a successor ordinal, written Suc(β). If λ is neither empty nor a
successor, then we say λ is a limit ordinal, written Lim(λ). We also
write 0 for the ordinal ∅.
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Exercise 7. Prove that the successor operation is one-to-one, not just
on ordinals but on arbitrary sets, that is: S(x) = S(y) → x = y.

Lemma 2.7 (Trichotomy). Any two ordinals are comparable under
∈, that is,

∀α,β(α∈β ∨ α = β ∨ β ∈α).

Proof. Let’s abbreviate what we want to prove as ∀α,β C(α,β). As-
suming it’s false, choose α0 such that ∃β ∼ C(α0,β). Then let
A = {α ∈ S(α0) | ∃β ∼ C(α,β)}. A is a set by separation, and A '= 0
because α0 ∈ A. So by regularity, there is an α1 that is an ∈-minimal
member of A. So every member of α1 is comparable with every ordinal.

Since α1 is incomparable to some β, we can choose β0 that is
incomparable to α1. Just as in the previous paragraph, we can then get
an ∈-minimal β1 such that ∼ C(α1,β1). So every member of β1 is
comparable with α1.

We claim that β1 ⊂ α1. Assume γ ∈ β1. Then γ is an ordinal by
Proposition 2.6(a). By definition of β1, C(γ ,α1). But either γ = α1 or
α1 ∈ γ contradicts the fact that ∼ C(β1,α1). Thus γ ∈ α1. So we have
shown that β1 ⊆ α1. Since ∼ C(α1,β1), we know that β1 '= α1, so
β1 ⊂ α1.

Now let γ ∈ (α1 − β1). By definition of α1, every member of it
is comparable to everything. In particular, C(γ ,β1). Since γ /∈ β1, we
must have γ = β1 or β1 ∈γ . But each of these possibilities contradicts
∼ C(α1,β1), so our original assumption must be false.

We have included this rather technical proof because it illustrates
the power of regularity in a very typical way. Note that regularity is
used twice: to define α1, and then to define β1 from α1.

Notation. When α and β are ordinals, we write α < β to mean α∈β.

Exercise 8. Prove:

(a) α < β ↔ α ⊂ β.

(b) α ≤ β ↔ α ⊆ β.
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(c) S(α) really is the successor of α. That is, α < S(α), but
∼ ∃β(α < β < S(α)).

Theorem 2.8.

(a) The class of all ordinals is well ordered by <.

(b) If ∃αP(α), then there is a least α such that P(α).

Proof.

(a) What we mean by this rather informal statement is that the defin-
ing properties of an (irreflexive) well-ordering, with the variables
ranging over ordinals, can be proved about <, in ZF. So we need to
show that < is a partial ordering (irreflexive and transitive), well-
founded (every nonempty set of ordinals has a minimal element
under <), and total for ordinals.

By regularity, we know that α < α is always false, so < is ir-
reflexive. The well-foundedness of < on ordinals also follows im-
mediately from the regularity axiom. If α < β and β < γ , then
α < γ because γ is a transitive set. This shows < is transitive on
ordinals. Finally, to establish that < is a total ordering on ordinals
rather than just a partial ordering, we need trichotomy, which was
proved in Lemma 2.7.

(b) Assume ∃αP(α). We can’t form the set {α | P(α)}, but we can
proceed as in the proof of Lemma 2.7: choose a particular β0 such
that P(β0), and form the set {α ≤ β0 | P(α)}. This set has a least
element, by (a).

Corollary 2.9. Each ordinal is well ordered by <.

Proof. Every initial segment of a well-ordering is a well-ordering.

Exercise 9. Prove the following near-converse of this corollary: if x is
transitive and is totally ordered by ∈, then x is an ordinal.

Proposition 2.10. If x is any set of ordinals, then
⋃

x is an ordinal,
which is also the least upper bound of x.

Exercise 10. Prove this proposition.
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This proposition is quite useful. It tells us that every set of ordinals
is bounded above in the class of all ordinals, and in fact has a least upper
bound, which is simply its own union.

Corollary 2.11. There is no set that contains all ordinals.

Proof. Given any set x , let y be the set of all ordinals in x . Then let
α = S(

⋃
y). By the previous proposition, α is an ordinal that contains

every ordinal in x . Since α /∈ α by regularity, we have α /∈ x . So x does
not contain all ordinals.

The paradox that results from assuming the existence of the set
of all ordinals and then arguing as above is called the Burali–Forti
Paradox. Note that this corollary provides yet another proof, the third
we have seen, that there is no set of all sets.

So the ordinals form a very large collection, a proper class (de-
noted Ord), but they are naturally well ordered by the simplest possible
binary relation, ∈. We will see that the ordinals are perfectly suited
to represent the “stages” in the construction of sets mentioned earlier.
Also, it is not hard to show that every well-ordering of a set is isomor-
phic to a unique ordinal. So there is a natural bijection between ordinals
and equivalence classes of well-orderings (which are the ordinals in the
intuitive sense).

We have not shown that there are any limit ordinals; it’s time to
fix that.

Theorem 2.12. There exists a limit ordinal.

Proof. Let x be a set satisfying the axiom of infinity, and define y to be
the set of all ordinals in x . We have 0 ∈ y and ∀α(α ∈ y → S(α)∈ y).
Now let β = ⋃

y = LUB (y), as in Proposition 2.10. Since 0 ∈ β,
we know that β $= 0. And whenever α < β, we also have S(α) < β.
Therefore, β $= S(α). In other words, β cannot be a successor. Thus β

is a limit ordinal.

It follows from this result that there is a least limit ordinal, which
is called ω (“omega”). The members of ω are called finite ordinals or
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natural numbers. In other words, to a set theorist, ω = N. Of course,
ω and all larger ordinals are called infinite ordinals.

We are already writing 0 to mean ∅. Similarly, 1 means S(0) or
{0}, 2 means S(1) or {0, 1}, etc. (So the three ordinals mentioned in
Example 4 are in fact 0, 1, and 2.) Since each ordinal is the set of all
smaller ordinals, each natural number is the set of all smaller natural
numbers.

Since the ordinals are well ordered, a principle of proof by induc-
tion should hold for them. Here are the two main versions of it:

Theorem 2.13 (Transfinite Induction). For any formula P(α):

(a) ∀α[( ∀β < α)P(β) → P(α)] → ∀αP(α).

(b) [P(0) ∧ ∀α(P(α) → P(S(α)) ∧ ∀λ((Lim(λ) ∧ ( ∀α < λ)P(α)) →
P(λ))] → ∀αP(α).

Proof. (a) is just the contrapositive of Theorem 2.8, and is the same
principle that we often use for N: if there’s no least counterexample to
a certain statement, then there’s no counterexample at all. Part (b) just
takes (a) and breaks it down according to the three types of ordinals
(0, successors, and limits).

Just as with N, a principle of proof by induction always gives rise
to a procedure for defining functions by induction. With ordinals, we
may use Theorem 2.13(a) and give a single condition defining f (α)

in terms of f ’s values on the entire domain α. Or we may use Theo-
rem 2.13(b) and give a three-part definition. We may inductively define
a function whose domain is some ordinal, or we may (informally, or in
VBG) define a proper class function whose domain is all ordinals.

Here are two important binary operations defined on all ordered
pairs of ordinals, with a three-part inductive definition on the second
variable:

Definition. Ordinal addition is defined by induction as follows:

(a) α + 0 = α.

(b) α + S(β) = S(α + β).

(c) For Lim(λ), α + λ = ⋃
β<λ(α + β).
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Setting β = 0 in clause (b) implies that α + 1 = S(α) for every α,
so we will no longer use the special notation S(α).

Definition. Ordinal multiplication is defined by induction as follows:

(a) α · 0 = 0.

(b) α · (β + 1) = (α · β) + α.

(c) For Lim(λ), α · λ = ⋃
β<λ(α · β).

It is natural to think of α as fixed in these definitions. Parts (a) and
(b) of both definitions are the standard inductive definitions for + and ·
on N, starting from the successor operation. Part (c) just extends this by
taking the least upper bound of all previous values when a limit ordinal
is reached.

The existence of a set like
⋃

β<λ(α+β) follows from the replace-
ment and union axioms.

What does it mean to define, in ZF, functions like these whose
domain is the proper class of all ordinals? Certainly, the function
we define is not a set. Technically, when we write such a definition,
we are asserting (in ZF) that for any ordinals α and γ , there is a unique
function with domain γ that satisfies all the clauses of the definition,
for all β in γ (and that one fixed α).

Ordinal arithmetic is an interesting topic in its own right; for one
thing, neither + nor · is commutative. We will not go into it further,
except to mention that α + β is the ordinal whose order type looks like
“a copy of α followed by a copy of β,” and α · β is the ordinal whose
order type looks like “β copies of α.”

Exercise 11.

(a) Prove that 1 + ω = ω, while ω + 1 > ω. Thus ordinal addition is
not commutative.

(b) Prove that 2 · ω = ω, while ω · 2 = ω + ω > ω. Thus ordinal
multiplication is not commutative.

Exercise 12.

(a) Define ordinal exponentiation. The definition of αβ should be
by transfinite induction on β. The clauses for β = 0 and Suc(β)
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should be correct for natural numbers, and the clause for Lim(β)

should be the same as for addition and multiplication.

(b) Prove that αβ · αγ = αβ+γ . (Difficult!)

(c) Prove that (αβ)γ = αβ·γ . (Difficult!)

It can be shown in ZF that ω, together with the operations +, ·,
and S (restricted to ω, of course) and the ordinal 0, satisfies all the ax-
ioms of Peano arithmetic. In other words, all the usual mathematics of
N can be carried out in ZF. From there, we can give the usual construc-
tions of Z, Q, and R, and all the usual mathematics of these number
systems can also be carried out in ZF or ZFC. So the ability to carry
out all of standard mathematics within axiomatic set theory depends
crucially on the theory of ordinals.

2.5 Cardinals and the cumulative hierarchy

In axiomatic set theory, ordinals are also useful for defining some im-
portant notions relating to cardinality:

Definitions. A set x is called finite if x ≺ ω; denumerable if x ∼ ω;
countable if x # ω; infinite if ω # x ; and uncountable if ω ≺ x .

Note that we have not defined “infinite” and “uncountable” simply
as the negations of “finite” and “countable.” The next few results will
clarify these terms. We will indicate those results whose proofs require
the axiom of choice. Make sure not to confuse the relations < and ≤
between ordinals with the relations ≺ and # between arbitrary sets.

Lemma 2.14. For any n ∈ ω, n ≺ n + 1.

Proof. Since n ⊆ n + 1, we have n # n + 1. We also need n '∼ n + 1,
which we will prove by ordinary induction on n.

Since 0 = ∅ and 1 = {∅}, the only function from 0 to 1 is the
function ∅. This function is not onto 1, so 0 '∼ 1.

Now assume n '∼ n + 1. We want to show that n + 1 '∼ n + 2.
Assume on the contrary that f is a bijection between n + 1 and n + 2.
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If f (n) = n + 1, then f − {(n, n + 1)} is clearly a bijection between
n and n + 1, contradicting the induction hypothesis. If f (n) "= n + 1,
let k = f (n), and m = f −1(n + 1). Now define g to be the relation
[ f ∪{(m, k)}]−{(n, k), (m, n+1)}. It is easy to see that g is a bijection
between n and n + 1, again contradicting the induction hypothesis.

Corollary 2.15. If m < n < ω, then m ≺ n ≺ ω.

Lemma 2.16. Let x ⊆ ω. Then:

(a) x is finite if and only if it is bounded above.

(b) x is denumerable if and only if it is unbounded above.

Exercise 13. Prove the previous corollary and lemma.

Proposition 2.17. For any set x,

(a) x is finite if and only if x ∼ n for some n ∈ ω.

(b) x is infinite if and only if it has a proper subset of the same car-
dinality as x itself. (Dedekind used this as the definition of infinite
sets.)

(c) If x is infinite, then it is not finite.

(d) (AC) x is infinite if and only if it is not finite.

(e) If x is uncountable, then it is not countable.

(f) (AC) x is uncountable if and only if it is not countable.

Proof.

(a) This follows easily from the previous corollary and lemma, and is
left as an exercise (see below).

(b) Assume x is infinite. So there is a one-to-one function f from ω

to x . Clearly, ω itself is “Dedekind infinite.” For example, the func-
tion g(n) = 2n is a bijection between ω and the set of even num-
bers in ω. Now define h : x → x by

h(u) =
{

u, if u /∈ Rng( f ),
f (g( f −1(u))), otherwise.
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It is easy to show that h is a bijection between x and a proper subset
of x . (See the next exercise.)

For the converse, assume f : x → y, where f is one-to-one
and y ⊂ x . Let c be any element of x − y. Define g : ω → x
inductively by g(0) = c, and g(n + 1) = f (g(n)). It is easy to
show that g is one-to-one. Hence ω $ x , making x infinite. (See
the next exercise.)

Parts (c) and (e) are trivial. Parts (d) and (f) follow immediately,
assuming the fact (which we will not prove) that AC implies that all
sets are comparable by cardinality.

Exercise 14. Prove part (a) of this proposition, and complete the proof
of part (b).

The phenomenon described in part (b) of this proposition was first
described by Galileo in the early 1600s, and for over two centuries
thereafter it was viewed as paradoxical and an argument against the
use of infinite sets. Nowadays, this strange property is viewed as a fact
of mathematical life.

Example 5. Since N (that is, ω) is infinite, it must have proper subsets
of the same cardinality. In fact, Lemma 2.16(b) tells us that the set of
even natural numbers, the set of primes, the set of perfect squares, etc.,
are just as big as all of N.

Exercise 15. Appendix C shows that N × N ∼ N. (See the discussion
following Proposition C.1.) Use this fact and the CSB theorem to prove
that Q ∼ N. Many people find this especially surprising because, on a
number line, there are an infinite number of rationals between each pair
of whole numbers.

Exercise 16. This amusing scenario was concocted by Hilbert to illus-
trate the surprises that are inherent in the study of infinite sets. You are
the desk clerk at Hilbert Hotel, which has a denumerable number of
single rooms (numbered 1, 2, 3, etc.), and is currently full.



Cardinals and the cumulative hierarchy 87

(a) Suddenly a man comes in, desperately wanting a room. At first you
tell him that he can’t have one because the hotel is full, but then you
realize you can give him a room, provided that you are willing to
move people around (but not force people to share rooms). How do
you do that?

(b) Later, an even bigger problem occurs. There is another Hilbert Ho-
tel across the street, and it burns down. Suddenly a denumerable
set of customers arrives, all wanting rooms in your hotel. How can
that be done?

(c) Now comes the true disaster. Across town, there is an infinite se-
quence of Hilbert Hotels, all full, and they all burn down. All
the customers from all those hotels appear at your desk, wanting
rooms. How can you accommodate them?

Example 6. The function ex from R to R is one-to-one but not onto; it
is a bijection between R and its proper subset R+, and so R ∼ R+. The
function x3 − x from R to R is onto but not one-to-one. Such functions
cannot exist from a finite set to itself.

Exercise 17. Give examples (or prove the nonexistence) of functions
from N to N that are:

(a) one-to-one and onto (b) neither one-to-one nor onto
(c) one-to-one but not onto (d) onto but not one-to-one.

Exercise 18.

(a) Find a bijection between R and a bounded open interval. There is
at least one such function that you have been familiar with since
high school.

(b) Using part (a), the CSB theorem, and other familiar functions, show
that all intervals of the forms (a, b), [a, b], (a, b], [a, b), (a,∞),
[a,∞), (−∞, b), and (−∞, b] have the same cardinality as R,
provided that a < b.

Proposition C.1(c) of Appendix C also tells us that R × R ∼ R,
and therefore Rk ∼ R for every positive integer k. This special case
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does not require AC, and in fact the idea behind the required bijection
is straightforward: since a real number is basically a decimal, two reals
can be “coded” into one simply by alternating digits. That is, if we want
to define f : R × R → R, we might let f (2.5, 1/3) = 20.530303 . . . ,
since 2.5 = 2.5000 . . . and 1/3 = 0.3333 . . . . However, there are
some sticky points here, such as the treatment of negative numbers and
the ambiguity of decimal representation mentioned in Section 2.2. If
we allow ourselves to use the fact that R ∼ 2N, then these difficulties
disappear, since we can code two infinite sequences of bits into one
sequence in the same way.

If we combine the content of the previous paragraph and the previ-
ous exercise, we reach a conclusion that seems geometrically absurd: a
line segment one millimeter long has the same “number of points” (car-
dinality) as all of three-dimensional space. Results like this one and the
fact that Q ∼ N contributed to the resistance that Cantor faced in the
early years of set theory. Perhaps even more bizarre is the existence of
a space-filling curve, devised by Peano: a continuous function from
the unit interval [0, 1] onto the unit square [0, 1] × [0, 1]. Such a func-
tion cannot be one-to-one, but even so, most people find it difficult to
imagine how such a curve could exist.

Exercise 19. Prove that NN ∼ 2N, and therefore kN ∼ 2N for every
natural number k > 1. The main thing you need to show is how to
“code” an infinite sequence of natural numbers into an infinite sequence
of 0’s and 1’s.

Here are a few other basic facts involving cardinality, which are
restated as parts (f), (h), (i) and (j) of Proposition C.1 in Appendix C.
These facts are somewhat abstract in that they deal with functions on
functions, but otherwise they are straightforward.

Proposition 2.18.

(a) For any set A, P(A) ∼ 2A. Here, 2A has its literal meaning: the
set of all functions from A to the ordinal {0, 1}.

(b) If B and C are disjoint, then AB × AC ∼ AB∪C .
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(c) For any sets A, B, and C, (AB)
C ∼ AB×C .

(d) For any sets A, B, and C, AC × BC ∼ (A × B)C .

Proof.

(a) To define a bijection F from P(A) to 2A, let F(B) be the charac-
teristic function of B (with domain A). It is then routine to show
that F is one-to-one and onto 2A. (See the exercise below).

(b) Here, we need to define a mapping F that takes as input an ordered
pair (g, h), where g ∈ AB and h ∈ AC , and outputs a function from
B ∪ C to A. What is the obvious way to do that if B and C are
disjoint?

(c) This is the most notationally confusing part of this proposition. We
want to define a bijection F between these sets. Now, an element
of (AB)

C is by definition a function g such that, for any y ∈ C ,
g(y) is a function from B to A. So let F(g) be the function with
domain B ×C such that [F(g)](x, y) = [g(y)](x), for every x ∈C
and y ∈C . Again, it is routine to show that F produces the required
bijection.

(d) See the exercise.

Exercise 20. Complete the proof of this proposition. For parts (b) and
(d), this requires defining the appropriate mapping. For all four parts,
show that the mapping that’s been defined really does yield the desired
bijection.

Von Neumann cardinals
Here is another use of ordinals. Recall that Frege’s definition of a car-
dinal as an equivalence class of sets under ∼ is unsatisfactory in ZFC.
Von Neumann gave this more rigorous definition:

Definition. An ordinal α is called a cardinal if, for every β < α, we
have β ≺ α. Such an ordinal is also called an initial ordinal.
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Under this definition, every finite ordinal is also a cardinal, and
ω is the first infinite cardinal. Obviously, there are no other countable
cardinals. In ZFC, we can show that every set “has” a unique von Neu-
mann cardinal(ity):

Theorem 2.19 (AC). For every set x there’s a unique von Neumann
cardinal α such that x ∼ α.

Proof. Let x be given. By AC, x can be well ordered. But then, given
a well-ordering on x , there’s a unique ordinal β such that this well-
ordering is isomorphic to the ordering of β under ∈. (This fact was
mentioned without proof in the previous section.) It follows that x ∼ β.
Therefore, by Theorem 2.8(b) there’s a smallest ordinal α such that
x ∼ α. So this α is the unique initial ordinal of the same size as x .

This theorem, in combination with transfinite induction, is a pow-
erful tool for proving things in “ordinary mathematics.” This method
can be used to prove many results that are usually proved by Zorn’s
lemma or the Hausdorff maximal principle (defined in Appendix B).
Here is a typical example, with two proofs; we will encounter more
examples in Sections 6.4 and 6.5.

Theorem 2.20 (AC). Every vector space has a basis.

Proof. (By transfinite induction) Given a vector space V over some
field, let α be the von Neumann cardinal of V , and then let f be a
bijection between α and V . By transfinite induction, we define a subset
B of V : for each β < α, include f (β) in B if and only if f (β) is not a
linear combination of the vectors that have already been included in B
for γ < β. It is very easy to show that B is a basis for V .

Proof. (By Zorn’s lemma) Given a vector space V over some field, let
A be the collection of all linearly independent subsets of V . Partially
order A by the subset relation, so S1 ≤ S2 means S1 ⊆ S2. Since
the union of any chain of linearly independent sets of vectors is still
linearly independent, that union is the least upper bound of the chain.
Therefore, every chain in this partial ordering has an upper bound. By
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Zorn’s lemma, there is a maximal element B, which is easily shown to
span V and so must be a basis.

Exercise 21. Complete both of these proofs by showing that B is a
basis for V : every vector in V is a linear combination of vectors in B,
and no nontrivial linear combination of vectors in B is the zero vector.

Is there a rigorous definition of cardinality for all sets that “works”
without the axiom of choice? Yes, there is, but we have to wait until the
end of the section to be able to present it.

You might wonder whether the existence of any uncountable ordi-
nals can be proved without AC, since there is no obvious way to define
a well-ordering on any familiar uncountable set such as R. But a nice
result (of ZF) known as Hartogs’s theorem states that ∀x ∃α(α #$ x).
This implies that for any ordinal there’s another one of larger cardinal-
ity. It follows (using replacement) that there’s a one-to-one correspon-
dence between the infinite von Neumann cardinals and all ordinals.
The first uncountable von Neumann cardinal is denoted ω1, the next
one is ω2, etc.; and if Lim(λ), ωλ is just

⋃
α<λ ωα . Under this defini-

tion, there’s an ωα for every α. (Technically, ω0 = ω, but this subscript
is usually dropped.)

Outside of foundations, Cantor’s notation ℵα is more common
than ωα . In ZFC, these notations may be used interchangeably. It’s of-
ten clearer to use alephs when doing cardinal arithmetic, since cardinal
arithmetic is different from ordinal arithmetic. For example, CH is usu-
ally written 2ℵ0 = ℵ1. It can’t be written 2ω = ω1, since 2ω = ω as
ordinals.

The cumulative hierarchy
Here is possibly the most important transfinite inductive definition in
axiomatic set theory:

Definition.

(a) V0 = ∅.
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(b) For every α, Vα+1 = P(Vα).

(c) If Lim(λ), then Vλ = ⋃
α<λ Vα .

Intuitively, we think of Vα as the set of all sets that are formed
before stage α.

Proposition 2.21.

(a) Vα is transitive, for every α.

(b) If α < β, then Vα ⊂ Vβ .

Proof.

(a) By transfinite induction: certainly, ∅ is transitive. If Vα is transitive,
then so is Vα+1, by Proposition 2.5(a). Finally, if Lim(λ) and Vα is
transitive for all α < λ, then V (λ) is a union of transitive sets,
which must be transitive by Proposition 2.5(b).

Exercise 22. Prove part (b) of this proposition.

Lemma 2.22. For any set, there is a transitive set that contains it (as
a subset).

Proof. Given x , let y0 = x and, inductively, yn+1 = yn ∪ (
⋃

yn), that
is, all the members of yn together with all of their members. Then let
z = ⋃

n<ω yn . Clearly, x ⊆ z, and it is easy to show that z is transitive.

Clearly, the set z defined in this proof is the smallest transitive
set containing x . This set is called the transitive closure of x , de-
noted TC(x). By the way, the word “contains” is often ambiguous in
set theory, as in the statement of this lemma. If we wanted the smallest
transitive set containing x as a member, we would simply use TC({x}).

Here is the most important property of the sets Vα :

Theorem 2.23. Every set is in some Vα .

Proof. Assuming that x is in no Vα, let y = TC({x}). Then {u ∈ y | u
is in no Vα} is nonempty, and we may choose an ∈-minimal element v
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of this set, by regularity. Since y is transitive, every element of v is in
some Vα . For w∈v, let g(w) be the least α such that w∈ Vα . Then we
can form {g(w) | w∈v} by replacement, and let β be the LUB (union)
of this set of ordinals. So v ⊆ Vβ . But then v∈Vβ+1, a contradiction.

Definition. For every x , the least α such that x ∈ Vα+1 is called the
rank of x .

This definition is set up so that the rank of any ordinal is itself.
Set theorists use a picture to describe the content of this theorem.

Think of the class of all ordinals Ord as a very long, vertical “spine”
starting with ∅ and proceeding upward. For each α, think of the collec-
tion of sets of rank α (that is, Vα+1 − Vα) as a horizontal layer at α.
Remember, α represents a level or stage of construction. Since the Vα’s
get bigger as α increases, the width increases as you go up. Thus the
entire picture looks like a letter V (see Figure 2.3), and the class of all
sets is denoted V . This categorization of sets is called the cumulative
hierarchy. As we will see in Chapter 6, several variations of this idea
have been extremely fruitful in modern set theory.

Ord

sets of
rank !

"

V!
Va+1















Figure 2.3. The cumulative hierarchy of sets
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A set is called hereditarily finite if its transitive closure is finite.
This means that the entire “membership tree” of the set is finite. For
example, {ω} is obviously finite but it is not hereditarily finite. The
following characterization of these sets is sometimes useful:

Proposition 2.24. The set of all hereditarily finite sets exists and is
precisely Vω.

Proof. We first show that every set in Vω is hereditarily finite. By
Proposition 2.21(a), each Vα is transitive. Also, it is well known (and
easy to prove) that the power set of a finite set is finite. Therefore, Vn

is finite for every n ∈ ω. If x ∈ Vω, then x ∈ Vn for some n ∈ ω, and
therefore TC(x) is a subset of the finite set Vn . Therefore, TC(x) is
finite.

For the other direction, assume that x is a hereditarily finite set
that is not in Vω. An argument similar to the proof of Theorem 2.23
leads to a contradiction—see the following exercise.

Exercise 23. Complete the second part of this proof. You may use the
fact that a finite set of finite ordinals has a finite supremum.

Here, as promised, is the standard way to define cardinality rigor-
ously in ZF. This clever adaptation of Frege’s definition is due to Dana
Scott:

Definition. The cardinal of any set x is the set of all sets of least rank
that are the same size as x .

In other words, given x , let α be the least ordinal such that
∃y ∈Vα+1(x ∼ y). Then the cardinal of x is {y ∈Vα+1 | x ∼ y}.

Under this definition, a set is usually not a member of its own
cardinal. But, trivially, x and y have the same cardinal(ity) under this
definition if and only if x ∼ y in the sense of Section 2.2.

We have not finished our study of set theory. Having covered the
basic concepts of the subject, we are almost ready to discuss the bril-
liant work of Gödel, Paul Cohen, and others that led to the enormous
advances in set theory in the second half of the twentieth century. We
will take up this discussion in Chapter 6, after we cover some more
prerequisite topics.



APPENDIX C
Cardinal Arithmetic

This appendix is related to material in at least three sections of the text:
2.2, 2.5, and 3.2. Chapter 2 explains that the word “cardinal” can be
defined in three different ways. Let’s review these meanings briefly.

Definition. For any set x , its cardinal or cardinality, denoted
Card(x), is either:

(a) the class of all sets y such that x ∼ y (Frege cardinals; not a rigor-
ous definition in ZF or ZFC),

(b) the set of all sets y of least rank such that x ∼ y (Scott’s adaptation
of Frege cardinals; rigorous in ZF or ZFC), or

(c) the least ordinal α such that x ∼ α (von Neumann cardinals; rigor-
ous in ZFC but not defined for all sets in ZF).

The material in this appendix is written in accordance with defi-
nitions (a) and (b), under which a cardinal is a collection of sets of the
same size. It is not hard to rewrite this material to fit definition (c).

The letters κ , µ, and ν, possibly with subscripts, will denote car-
dinals.

Section 2.2 gives the definitions of the basic relations x " y and
x ≺ y on sets. The relations κ ≤ µ and κ < µ on cardinals are defined
from these. For example, κ < µ means that x ≺ y, where x ∈ κ , y ∈ µ.
It is very easy to show that this definition is well defined, meaning that
it does not depend on the choice of x and y. All of our subsequent

355
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definitions involving cardinals are also well defined. Similarly, words
such as “finite” and “uncountable” can be applied to cardinals without
ambiguity.

Definitions (Cardinal Arithmetic). Let Card(Ai ) = κi (i = 1, 2).
Then:

(a) κ1 + κ2 = Card[(A1 × {1}) ∪ (A2 × {2})].
(b) κ1 · κ2 = Card(A1 × A2).

(c) κ
κ2
1 = Card(AA2

1 ).

The set on the right-hand side of part (a) above is called the formal
disjoint union of A1 and A2, denoted A1

∐
A2. Clearly, we can’t use

A1 ∪ A2 there, unless we already know that A1 and A2 are disjoint. The
set on the right-hand side of (c) is, as usual, the set of all functions from
A2 to A1.

We now list many of the basic properties of cardinal arithmetic,
noting which ones require AC:

Proposition C.1.

(a) Cardinal addition and multiplication are associative and commu-
tative, and satisfy the distributive law.

(b) On finite cardinals, these three operations coincide with the usual
operations of arithmetic (and therefore with ordinal arithmetic as
well).

(c) (AC) If κ or ν is infinite, then κ + ν = Max(κ, ν). If, in addition,
neither κ nor ν is zero, then κ · ν = Max(κ, ν). (“Max” stands for
“maximum.”)

(d) (AC) If κ is infinite, then the union of κ sets of cardinality κ has
cardinality κ .

(e) (AC) If A is infinite, then the set of all finite sequences of members
of A, denoted A<ω, has the same cardinality as A.

(f) For any set x, P(x) ∼ 2x . In other words, if Card(x) = κ , then
Card(P(x)) = 2κ . (Here, 2 is the ordinal {0, 1}.)
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(g) (Cantor’s Theorem, restated using (f)). For every κ , κ < 2κ .

(h) κµ · κν = κµ+ν .

(i) (κµ)ν = κµ·ν .

(j) (κ · µ)ν = κν · µν .

Rather than prove any parts of this proposition here, we just il-
lustrate a couple of useful special cases. Suppose we want to establish
part (c) for κ = ν = ℵ0, the cardinality of N. This amounts to show-
ing that N × {1, 2} ∼ N and N × N ∼ N. A simple bijection f from
N × {1, 2} to N is given by

f (n, 1) = 2n + 1, and f (n, 2) = 2n.

(Recall that we are assuming that 0 ∈ N.) A simple bijection B2 from
N×N to N is given by B2(m, n) = 2m(2n+1)−1. Note that the axiom
of choice is not needed to define these bijections.

By iterating the function B2, we can define a bijection Bk between
Nk and N for each positive integer k. Specifically, let

Bk(a1, a2, . . . , ak) = B2[a1, Bk−1(a2, a3, . . . , ak)],

for any k > 2. We also define B1 to be the identity on N.
Similarly, (assuming AC), it follows that µk = µ whenever µ is

infinite and k is a nonzero finite cardinal. By the way, for the purposes
of cardinal arithmetic, it doesn’t matter whether we define the set Ak

by iterating the operation × or as the set of all functions from k to A.
Part (e) of this proposition can also be proved without AC when

A = N. We can explicitly define a bijection B between N<ω and N by
letting B(∅) = 0, and

B(a1, a2, . . . , ak) = 2a1 · 3a2 · · · · · pk
ak+1 − 1,

where pk denotes the kth prime.
Note that parts (f), (h), (i) and (j) of Proposition C.1 are a direct

restatement of Proposition 2.18 in Section 2.5, stated in terms of car-
dinals rather than individual sets. It should also be clear that parts (h),
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(i), and (j) are completely analogous to the main laws of exponents in
elementary algebra.

Infinitary cardinal operations
It is also fruitful to define infinitary arithmetical operations on cardi-
nals. For the rest of this appendix, we always assume AC. Although
several of the definitions we will give have versions that make sense
without the axiom of choice, they become much more complex with-
out it.

Definition. Let {κi | i ∈ I } be an indexed family of cardinals. Choose
Ai ∈ κi for each i ∈ I . Then:

(a)
∑

i∈I κi = Card[⋃i∈I (Ai × {i})].
(a)

∏
i∈I κi = Card(

∏
i∈I Ai ).

The set on the right-hand side of (b) is the usual Cartesian prod-
uct of the indexed family {Ai | i ∈ I }, that is, the set of all functions f
with domain I such that f (i) ∈ Ai for every i .

Notation. The least cardinal that is greater than κ is denoted κ+.

In the presence of AC, the existence of κ+ follows directly from
Hartogs’s theorem. The following notation is defined in Section 2.5, in
a slightly different way:

Definition. The cardinal ℵα is defined by induction on α as follows:

ℵ0 = Card(N).

ℵα+1 = (ℵα)+.

For limit ordinals λ, ℵλ = ∑
α∈λ ℵα .

When the von Neumann definition of cardinals is being used, ℵα is
often written ωα . The following notation is less common in mainstream
mathematics but is often useful:

Definition. The cardinal !α is defined by induction on α as follows (!
is the Hebrew letter beth):
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!0 = Card(N).

!α+1 = 2!α .

For limit ordinals λ, !λ = ∑
α∈λ !α .

The notation !α creates a concise way of stating CH: !1 = ℵ1. In
ZFC (but not in ZF), GCH becomes ∀α(!α = ℵα). So this notation is
most useful when GCH is not being assumed. For example, it is clear
that Card(P(R)) is !2, but without GCH we cannot say where !2, or
even !1, fits in the hierarchy of ℵ’s. Cantor’s theorem implies trivially
that !α ≥ ℵα for every α, but not much else is obvious.


