
APPENDIX B
Relations and Orderings

We begin this appendix with a very brief review of relations in gen-
eral. The concept of the ordered pair (x, y) of any two objects x and
y may be left as an undefined concept, or it may be defined rigorously,
as in Section 2.3. Once we have ordered pairs at our disposal, we can
iterate the process to define ordered triples, and ordered n-tuples in gen-
eral. Specifically, (x, y, z) is usually defined to be ((x, y), z), although
(x, (y, z)) would work just as well.

We can then define the Cartesian product of two sets A and B
by A × B = {(x, y) | x ∈ A and y ∈ B}. We also have extended
Cartesian products; for example, A × B × C means (A × B) × C or,
equivalently, {(x, y, z) | x ∈ A and y ∈ B and z ∈ C}. One writes
A2 for A × A, A3 for A × A × A, etc. This notation is technically
ambiguous, since An also means the set of all functions from n to A.
But in many situations, the difference between the two possible sets
denoted An is not significant.

An n-ary relation is simply a set of ordered n-tuples. The words
“unary,” “binary,” and “ternary” mean 1-ary, 2-ary, and 3-ary, respec-
tively. Note that a unary relation is just a set. Without any adjective, the
word “relation” usually means a binary relation. An n-ary relation on a
set A is defined to be any subset of An .

It is common in mathematics to use the word “relation” for a state-
ment with free variables that is used to define a set of ordered n-tuples.
For instance, we might say “Consider the relation x < y on the set of
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real numbers,” or simply “Consider the less-than relation on R.” Tech-
nically this refers to the relation {(x, y) | x, y ∈ R and x < y}. It
is more precise to call x < y a binary predicate that we are using
to define a relation, but it is often not important to worry about this
distinction.

Orderings
For the rest of this appendix, we assume that R is a binary relation. We
write x Ry as an abbreviation for (x, y) ∈ R. As usual, the domain
of R is Dom(R) = {x | ∃y(x Ry)} and the range of R is Rng(R) =
{y | ∃x(x Ry)}.
Definitions. We say that R is:

reflexive (on A) if x Rx , for all x ∈ A;
antisymmetric if, whenever x Ry and y Rx , then x = y;
transitive if, whenever x Ry and y Rz, then x Rz;
a preordering (on A) if it is reflexive and transitive;
a partial ordering (on A) if it is an antisymmetric preordering;
a total ordering or a linear ordering or a chain (on A) if it is a partial

ordering and also satisfies trichotomy: for any x, y ∈ A, either
x Ry, y Rx , or x = y. This last condition may also be described by
saying that any two elements of A are comparable under R.

The words “on A” are in parentheses in several of these definitions
because they are often omitted in practice. When that occurs, the usual
implication is that the unmentioned A is Dom(R) ∪ Rng(R).

If R is a partial ordering, it is common to write x ≤ y for x Ry.
We can then write x ≥ y for y ≤ x , x < y for x ≤ y ∧ x (= y, and
x > y for y < x . The relation ≥ defines a new partial ordering on A;
it is simply R−1. (Of course, it’s permissible to reverse all of this by
writing x ≥ y for x Ry and x ≤ y for the inverse relation.)

On the other hand, the relations defined by < and > are not partial
orderings as defined above. Rather, they are irreflexive partial order-
ings, meaning that they are transitive and irreflexive: x < x is always
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false. From this follows strong antisymmetry: whenever x < y holds,
then y (< x . Conversely, if S is an irreflexive partial ordering on A,
then the relation on A defined by (x Sy or x = y) is a (reflexive) partial
ordering on A. Furthermore, a reflexive partial ordering is total if and
only if the associated irreflexive ordering is total. In other words, it is
easy to go “back and forth” between reflexive and irreflexive orderings,
and we will freely do so.

Definitions. Let R be a partial ordering and x ∈ B ⊆ Dom(R). Then
x is called:

a minimal element of B if ∼ ∃y ∈ B(y < x);

a maximal element of B if ∼ ∃y ∈ B(y > x);

the least element of B if x ≤ y, for all y ∈ B;

the greatest element of B if x ≥ y, for all y ∈ B.

The following facts are elementary: if a subset of the domain of
a partially ordered set has a least element or a greatest element, then
that element is unique. A least element must be a minimal element, and
a greatest element must be a maximal element; in a total ordering, the
converses also hold.

Definitions. A partial ordering is called well-founded if every non-
empty subset of its domain has a minimal element. (This definition can
actually be made for binary relations in general.) A well-founded total
ordering is called a well-ordering.

So a well-ordering is a total ordering in which every nonempty
subset of the domain has a least element.

Definitions. If A is a partially ordered set, B ⊆ A, and x ∈ A, we say
that x is an upper bound of B if y ≤ x for every y ∈ B. If B has a
least upper bound, then it is of course unique and is denoted LUB(B)

or Sup(B) (the supremum of B). In a totally ordered set, a subset with
no upper bound is said to be unbounded above or cofinal.

Similarly, we define what is meant by a lower bound of B. If B
has a greatest lower bound, then it is unique and is denoted GLB(B) or
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Inf (B) (the infimum of B). In a totally ordered set, a subset with no
lower bound is said to be unbounded below or coinitial.

Notation. In any total ordering, we can define the usual types of
bounded intervals (a, b), [a, b], [a, b), and (a, b]. We can also define
rays: the type of sets that, in R, would be denoted (−∞, b), [a,∞),
etc.

We will use the term interval to mean either a bounded interval
or a ray. Also, the initial segment defined by an element a means the
ray {x | x < a}. This term is usually applied only to well-orderings.

Definitions. Let a be an element of a totally ordered set. The imme-
diate successor of a is the least element that is greater than a. The
immediate predecessor of a is defined similarly.

The immediate successor and predecessor of an element are obvi-
ously unique, if they exist. Also, b is the immediate successor of a if
and only if a is the immediate predecessor of b.

Definition. A total ordering is called discrete if every element that
is not the greatest (respectively, least) element in the ordering has an
immediate successor (respectively, predecessor).

Definition. Suppose that A is a totally ordered set and B ⊆ A. We say
that B is a dense subset of A if, whenever x, y ∈ A and x < y, there
exists z ∈ B such that x < z < y.

A total ordering is called dense if its domain has at least two mem-
bers and is a dense subset of itself. The second conjunct simply means
that no element has an immediate successor or an immediate predeces-
sor.

Every subset of the domain of a discrete ordering is again discrete
under the restriction of the original ordering. Every interval with more
than one element (but not every subset) in a dense ordering is again
dense under the restriction of the original ordering.

Discrete orderings and dense orderings may be thought of as op-
posite ends of a spectrum. No ordering is both discrete and dense.
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Example 1. Every total ordering on a finite set is discrete. The usual
ordering on Z is discrete; therefore, by the previous remark, so is the
usual ordering on N.

Q is a dense subset of R. It follows that the usual orderings on R
and Q are dense. Therefore, so are the orderings on all intervals in R
and Q (except for intervals that are empty or include only one point).

There are several useful statements involving orderings that are
equivalent (in ZF) to the axiom of choice. Here are the definitions of
two of the most important ones:

Definition. Zorn’s lemma states that a partial ordering in which every
chain (totally ordered subset) has an upper bound must have a maximal
element.

The second proof of Theorem 2.20 given in Section 2.5 illustrates
the typical use of Zorn’s lemma.

Definition. The Hausdorff maximal principle states that every chain
in a partial ordering must be contained in some maximal chain.

Functions and equivalence relations
Orderings are one of the three most important types of binary relation
used in mathematics. For the sake of completeness, here are the defini-
tions of the other two.

Functions are also a type of relation. Specifically, as a set of or-
dered pairs, a function from A to B is simply a subset of A × B in
which each element of A occurs in exactly one of the ordered pairs.
This is the standard set-theoretic definition of a function. However, as
noted at the beginning of Section 3.2, there are situations in which this
definition is not quite satisfactory.

If f is a function, f (x) = y is the usual way of writing (x, y)∈ f .
This is very handy because it makes it possible to write f (x) as a
term, and to substitute other terms for the variable x . Also, the notation
f : A → B means that f is a function from A to B. Note that this
implies that A is precisely the domain of f , but B can be any set
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that contains the range of f . Part of the reason for this convention is
convenience. For instance, if f is the real-valued function defined by
f (x) = x2 + sin(x), we can write f : R → R without needing to take
the trouble to determine the exact range of f .

The other very basic type of relation is equivalence relations. A
binary relation R is said to be symmetric if x Ry ↔ y Rx holds for
all x and y. An equivalence relation on A is a relation with domain
A that is reflexive, symmetric, and transitive. An equivalence relation
normally expresses some way in which two objects are similar or alike.
For example, the predicate “x and y were born in the same year” defines
an equivalence relation on any set of people. Congruence and similarity
define equivalence relations on any set of triangles or any other set of
geometric shapes. The property of having the same integer part or the
same decimal part defines an equivalence relation on R+.

If R is an equivalence relation on A and x ∈ A, the equivalence
class of x , denoted [x]R or simply [x] when there is no possibility of
confusion, is the set {y | x Ry}. Intuitively, [x]R is the set or “club” of
objects that are similar to x , under R. For example, if R is the equiva-
lence relation on people based on year of birth and Lucian was born
in 1988, then [Lucian]R is the set of all people born in 1988. The
most important mathematical fact about equivalence relations is that
the equivalence classes must partition the domain. That is, the union
of all the equivalence classes is the whole domain, and any two equiv-
alence classes are either identical or disjoint. There can be no “par-
tial overlap.” Furthermore, this situation actually provides a one-to-one
correspondence between the collection of all equivalence relations on
any given set and the collection of partitions on that set.


