
APPENDIX D
Groups, Rings, and Fields

At various points in this book, examples and results are given that per-
tain to the most important types of algebraic structures: groups, rings,
and fields, as well as more specialized structures such as integral do-
mains, ordered fields, etc. This appendix provides the definitions of
some of the most important algebraic structures, plus a few examples
and basic facts (related to topics discussed in the text, for the most part).
It is intended as a reference for readers who are a bit rusty on these
concepts. However, if you have never studied these structures (usually
covered in courses called “abstract algebra” or “modern algebra”), you
will probably need more than this appendix in order to understand the
parts of the book that discuss them.

The one type of algebraic structure that is discussed in the text but
not defined in this appendix is vector spaces. This decision has been
made with the hope that most readers will have encountered vector
spaces in relatively low-level courses in subjects such as matrix algebra
or even calculus, if not in a linear algebra course.

Throughout this appendix, the symbols ∗, · and + denote binary
operations on a set A, functions from A× A to A. With these symbols,
we always use “infix” notation rather than the usual function notation.
That is, the result of applying the operation ∗ to the ordered pair (x, y)

is written x∗y, rather than the strange-looking ∗(x, y). (The same thing
is done with ordering relations—see Appendix B.) We may also abbre-
viate x ∗ y or x · y further to xy, as we do with ordinary multiplication.
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Groups
Definition. A group is a set A together with a binary operation ∗ on
A satisfying these conditions:

1. The associative law holds: (x ∗ y) ∗ z = x ∗ (y ∗ z), for every x , y,
and z in A.

2. There is a (two-sided) identity element, that is, an element e in A
such that x ∗ e = e ∗ x = x , for every x in A.

3. Each element of the group has a (two-sided) inverse: for every x in
A, there is a y in A such that x ∗ y = y ∗ x = e, where e is some
identity element.

The words “together with” in this definition are a typical bit of
jargon. Technically, a group is an ordered pair (A, ∗) such that ∗ is a
binary operation on A and the three listed conditions hold. So a group is
a type of first-order structure in the sense of Chapter 5. More precisely,
a group is a model of the theory consisting of conditions (1), (2), and
(3), in the first-order language with a single binary function symbol.

Note that the set A is not a group by itself. In practice, mathe-
maticians are often sloppy about this usage. For example, a reference
to “the group of integers” would be understood to be about the group
(Z,+), since (Z, ·) is not a group. Also, when we refer to an element
of a group G, where G = (A, ∗), we really mean an element of A.

Proposition D.1. In any group, the identity element is unique, and the
inverse of each element is unique.

In most abstract algebra texts, this proposition is the first thing
proved about groups. Because we have uniqueness, we can refer to the
identity, and the inverse of any element, in a given group. Uniqueness
also justifies the use of special symbols for the identity and inverses.
There are two common conventions for this. In multiplicative notation
for a group, the binary operation is written as x · y or simply xy, the
identity is denoted 1, and the inverse of an element x is denoted x−1. In
additive notation for a group, the binary operation is written as x + y,
the identity is denoted 0, and the inverse of x is denoted −x .
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Furthermore, when multiplicative notation (or even the symbol ∗)
is used for a group, it is common to use exponents: x2 for x · x , x3 for
x ·x ·x , and also x−2 for x−1 ·x−1, etc. On the other hand, when additive
notation is used, one writes 2x for x + x , 3x for x + x + x , −2x for
(−x)+ (−x), etc. Note that these integer exponents and coefficients do
not denote elements of the group!

Example 1. The sets R, Q, and Z, with ordinary addition as the binary
operation, are all groups. So are the sets R − {0}, Q − {0}, R+ (the
positive reals) and Q+ under multiplication. We have to exclude 0 in
these last four groups since 0 has no multiplicative inverse.

There is a great variety of groups and special types of groups. Here
is the most important category of them:

Definition. A group is called abelian if it satisfies the commutative
law: x ∗ y = y ∗ x , for all elements x and y.

It would seem logical to refer to such groups as commutative
groups, and this usage, although uncommon, would generally be under-
stood. The term “abelian” honors the Norwegian mathematician Niels
Abel, one of the pioneers of group theory. By the way, it’s customary
to use additive notation for a group only when the group is known to
be abelian.

Example 2. The five groups mentioned in the previous example are all
abelian. To come up with non-abelian groups, it’s necessary to get away
from familiar number systems. For example, let S be any set. Then
the set of all bijections on S (one to one functions from S onto S),
also known as permutations on S, forms a group with composition
as the group operation. (Associativity of composition is very easy to
show, and the usual identity function and inverse functions serve as
the identity and inverses in this group.) This group is nonabelian as
long as S has at least three members. For instance, suppose S = R,
f (x) = x + 1 and g(x) = 2x . Then f and g are permutations on S,
but f ◦ g %= g ◦ f . Thus the group of permutations on R is not abelian.
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Example 3. Along with permutation groups, the simplest nonabelian
groups are groups of matrices. Let n be any positive integer. Then any
two n × n matrices (with real coefficients, say) can be multiplied, and
this operation is known to be associative. Furthermore, there is an n×n
identity matrix, with 1’s down the main diagonal (top left to bottom
right) and 0’s everywhere else. Not every n × n matrix has an inverse,
but the set of invertible n × n matrices forms a group under multipli-
cation. If n > 1, this group is not abelian. To test this, choose two
2 × 2 matrices A and B at random. In all likelihood, you will find that
AB %= BA.

Abelian groups are much more well-behaved and easy to under-
stand than nonabelian groups. Another important distinction among
groups is the distinction between finite and infinite groups. All of
the groups mentioned so far in this appendix are infinite, except for
the group of permutations on a finite set S. Finite groups are not neces-
sarily easier to work with than infinite groups; in fact, the classification
of finite nonabelian groups has been one of the thorniest problems of
modern algebra. However, finite abelian groups are rather simple, as
we will see shortly. The number of elements in a finite group is called
its order.

Example 4. The most straightforward way to construct finite abelian
groups is by using “clock arithmetic,” or modular arithmetic as it is
more precisely called. Imagine an ordinary dial clock, except that 0
rather than 12 appears at the top. (Logically, it makes at least as much
sense to say the day begins at zero o’clock as twelve o’clock.) If the
time now is nine, we know that the time five hours from now will be
two o’clock, not fourteen o’clock. In other words, in clock addition we
add numbers in the usual way, but then we subtract twelve if necessary
to make sure the answer we get is a number that appears on the clock.

A standard clock has twelve numbers, but this idea can be gener-
alized to clocks with any number of numbers. So, for each natural num-
ber n, let An = {0, 1, . . . , n − 1}. The group of integers modulo n,
denoted Zn , is the set An together with the operation of “clock addi-
tion” described above. For instance, in Z7, 2 + 2 = 4, 4 + 3 = 0, and
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6 + 4 = 3. It is not hard to show that Zn is an abelian group of order n.
The identity of Zn is 0. The inverse of 0 is 0, while the inverse of any
other element x is n − x .

To state the main classification theorem for finite abelian groups,
we need to define several important notions that are also discussed in
Chapter 5, in the context of general algebraic structures:

Definitions. Let Gi = (Ai , ∗i ) be a group, for i = 1, 2. A homo-
morphism from G1 to G2 is a function φ from A1 to A2 such that
φ(x ∗1 y) = φ(x)∗2 φ(y), for all x and y in A1. A one-to-one onto ho-
momorphism is called an isomorphism. Finally, two groups are called
isomorphic if there is an isomorphism from one of them to the other.

A homomorphism is a “structure-preserving” function between
groups or other algebraic structures. So an isomorphism is a one-to-
one correspondence between two groups (more precisely, between their
universes) that is structure-preserving. If two groups are isomorphic,
they may be viewed as being “the same group, except possibly for how
their elements are named.” Isomorphic groups have exactly the same
mathematical properties.

Definition. Let G = (A, ∗) be a group and B ⊆ A. We say that B
defines a subgroup of G if B contains e and is closed under ∗ and the
inverse operation. Again, the subgroup isn’t technically B but rather
B together with the restriction of ∗ to B × B, but it’s common to be
imprecise about this.

Example 5. For each fixed integer n, let nZ = {kn | k ∈ Z} (not to be
confused with Zn). Then it is easy to show that nZ defines a subgroup
of (Z,+). In fact, these are the only subgroups of (Z,+). In contrast,
it is not easy to describe all the subgroups of (R,+).

Exercise 1. Prove that all groups of the form nZ, with n %= 0, are
isomorphic to each other.

Definition. Let G = (A, ∗) be a group and S ⊆ A. Then there are
three ways of defining what is meant by the subgroup of G generated
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by S. It’s the intersection of all subgroups of G that contain S, and also
the smallest subgroup of G that contains S. More concretely, it’s also
the set of all elements of A that can be the interpretation of some term
of the language of group theory (with symbols for ∗, the identity, and
the inverse operation), with free variables assigned to elements of S.
The equivalence of these definitions is implied by Corollaries 5.16 and
5.17 in Section 5.4.

Definitions. A group is said to be finitely generated (respectively,
cyclic) if it is generated by some finite (respectively, one-element) set
of its elements. The same terminology is applied to subgroups.

Proposition D.2. Every cyclic group is isomorphic to the group of in-
tegers or to one of the groups Zn.

Thus, cyclic groups are rather simple. In particular, Z is the unique
infinite cyclic group, “up to isomorphism.” Furthermore, we will soon
see that cyclic groups are the main “building blocks” for a rather large
category of groups.

Definition. Let Gi = (Ai , ∗i ) be a group, for i = 1, 2. Their direct
product G1 × G2 is the group (A1 × A2, ∗), where (u, v) ∗ (x, y) is
defined to be (u∗1 x, v∗2 y). Similarly, we can define the direct product
of three or more groups, or even an infinite collection of groups.

For example, if G1 = (Z,+) and G2 = (R − {0}, ·), then in
G1 × G2 we would have (−4, 0.3) ∗ (7,−5) = (3,−1.5).

Theorem D.3 (Classification of finitely generated abelian
groups). Every finitely generated abelian group is isomorphic to
a direct product of a finite number of cyclic groups, with n being
a power of a prime in each finite factor Zn. This representation is
unique, except for the order of the factor groups.

As a special case, every finite abelian group is isomorphic to a
direct product of finite cyclic groups, with the same restriction on n
and the same uniqueness condition as in the theorem.
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Example 6. Suppose G is an abelian group of order 6. Then, since
2 × 3 is the only factorization of 6 into powers of primes, G must be
isomorphic to Z2 ×Z3. The groups Z3 ×Z2 and Z6 are also isomorphic
to G. By the way, the group of permutations on a set of three elements is
a nonabelian group of order 6, and it is structurally the only nonabelian
group of order 6. So there are exactly two groups of order 6, up to
isomorphism.

Now suppose G is an abelian group of order 4. Then, according
to the classification theorem, G could be isomorphic to Z2 × Z2 or Z4.
These two groups are not isomorphic, since u + u is the identity for
every u in Z2 × Z2, but in Z4 we have 1 + 1 = 2 %= 0. (This is the
typical sort of reasoning that shows groups are not isomorphic.) Thus,
structurally, there are exactly two abelian groups of order 4. It is also
simple to show that there are no nonabelian groups of this order.

Similarly, an abelian group of order 60 must be isomorphic to ex-
actly one of Z3 ×Z5 ×Z4 or Z3 ×Z5 ×Z2 ×Z2. For instance, Z60 looks
like the former of these, while Z30 × Z2 is isomorphic to the latter.

The classification theorem for finitely generated abelian groups
provides a very precise, clear way of describing these groups. When
applied to finite abelian groups, it is very reminiscent of the fundamen-
tal theorem of arithmetic, except that here the “factoring” is based on
powers of primes, not simply on primes.

Here are a few other concepts of group theory that are mentioned
in the text: Let G = (A, ·) be a group and x ∈ A. If there is a posi-
tive integer n such that xn = 1, then the smallest such n is called the
order of x . In this case, the cyclic subgroup of G generated by x con-
sists of {1, x, x2, . . . , xn−1} and is isomorphic to Zn , so the order of
x equals the order of the subgroup it generates. If there is no such n,
x is said to have infinite order (and x generates a subgroup isomorphic
to Z).

A group in which every element has finite order is called a torsion
group. Every finite group is torsion, as is every finite direct product of
torsion groups. A group in which every element except the identity
has infinite order is said to be torsion-free. The groups Z, Q, and R
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under addition are torsion-free, as is every direct product of torsion-
free groups.

Finally, a group G is called divisible if “every element has an nth
root, for every positive integer n.” Symbolically, this can be written

∀n ∈ Z+∀x ∈ G∃y ∈ G(yn = x).

But it’s important to realize that this symbolic statement is not within
the first-order language of a group, because n is not a variable for a
group element, and group theory does not have exponential terms yn .
So an infinite axiom schema is required to express divisibility. A simi-
lar situation holds for the obvious attempts to axiomatize torsion groups
and torsion-free groups. These limitations are discussed further in Sec-
tion 5.7.

The term “divisible group” is more apt when the group operation
is written additively, for then yn becomes ny, and “has an nth root”
becomes “is divisible by n.” The additive groups Q and R are divis-
ible, as is the multiplicative group R+. The additive group Z and the
multiplicative group Q+ are not.

Rings and fields
Groups are the most important type of algebraic structure with a single
binary operation. For the remainder of this appendix, we consider al-
gebraic structures with two binary operations:

Definition. A ring is a set together with two binary operations on it
(more formally, an ordered triple (A,+, ·)) satisfying these conditions:

1. The structure (A,+) is an abelian group.

2. The operation · is associative.

3. The distributive laws hold: x · (y + z) = (x · y) + (x · z) and
(y + z) · x = (y · x) + (z · x), for all x , y, and z in A.

Since a group has only one operation, the question of whether to
use multiplicative or additive notation for a group is often a matter of
taste. But a ring has two operations, and so it is almost universal to call
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them addition and multiplication, as in this definition. Note that the dis-
tributive laws are the only properties that connect the two operations.
Also, note that the definition of a ring requires much more of addition
(all four conditions needed to be an abelian group) than it does of mul-
tiplication. For this reason, most of the particular types of rings that
are considered are based on putting more conditions on multiplication.
Here are the definitions of some of these types of rings:

Definitions. A commutative ring is a ring in which multiplication is
commutative: xy = yx for all x and y in A.

A ring with unity is a ring with a nonzero multiplicative identity:
an element 1 such that 1 %= 0 and x · 1 = 1 · x = x , for all x in A. As
with groups, this identity element is easily shown to be unique.

A division ring is a ring with unity in which every nonzero el-
ement has a multiplicative inverse or reciprocal: in symbols, ∀x %=
0 ∃y(xy = yx = 1). Whenever an element x in a ring with unity has a
reciprocal, that reciprocal is unique and we denote it x−1.

A field is a commutative division ring.

Definitions. If x and y are nonzero elements of a ring such that
xy = 0, then x and y are (each) called zero-divisors. An integral
domain is a commutative ring with unity, with no zero-divisors.

Example 7. Most familiar number systems which have addition and
multiplication operations are rings. Examples include R, Q, C, and Z.
The first three of these are fields, which also implies that they are inte-
gral domains. On the other hand, Z is an integral domain but not a field.
In fact, 1 and −1 are the only elements of Z that have reciprocals.

The number system N has addition and multiplication, but it is
not a ring because some (in fact, almost all) elements in it don’t have
additive inverses.

We have called addition and multiplication the two main opera-
tions in a ring. But in grade school, we learn that there are four basic
operations of arithmetic: addition, subtraction, multiplication, and di-
vision. In higher mathematics, subtraction and division are viewed as
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offshoots of the two basic operations and the inverse properties that re-
late to them. In other words, in any ring, x − y means x + (−y), and in
a commutative ring with unity, x/y means x · y−1, provided that y−1

exists.

Example 8. The simplest examples of noncommutative rings are prob-
ably rings of matrices. Let R be a ring with unity. For each natural
number n, the set of n × n matrices whose coefficients are in R, with
the usual operations of matrix addition and multiplication, is also a ring
with unity. (See the related discussion in Example 3.) But this ring is
not commutative if n > 1. These noncommutative rings are also not
division rings, since there are many nonzero square matrices that are
not invertible.

Example 9. The simplest example of a ring without unity is the ring
of even integers, with the usual operations. More generally, for each
integer n > 1 the ring nZ, whose elements are all multiples of n, is a
commutative ring without unity. These rings also have no zero-divisors,
so they are “almost” integral domains.

Exercise 2. Prove that the rings mZ and nZ are isomorphic if and
only if m = ±n. (Compare this exercise to the similar one about the
groups nZ.)

Exercise 3. Find a noncommutative ring without unity.

Example 10. The groups Zn were defined in Example 4. These num-
ber systems become rings if we include the operation of multiplication
modulo n that is analogous to addition modulo n. For instance, if we
start at midnight and go five ten-hour periods into the future, the time
will not be fifty o’clock. It will be two o’clock. We can determine this
by first computing that 5×10 = 50, and then computing the remainder
when 50 is divided by 12. So, in Z12, 5 · 10 = 2 (while 5 + 10 = 3).
Similarly, in Z8, 3 · 7 = 5. Arithmetic modulo n may also be viewed as
“units place” arithmetic in base n.

It is easy to show that Zn is a commutative ring with unity for
n > 1. Beyond that, two different cases arise. If n is composite, Zn
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cannot be an integral domain. For example, 2·2 = 0 in Z4, and 2·3 = 0
in Z6.

On the other hand, Zp must be an integral domain if p is prime.
For instance, zero-divisors in Z7 would be a pair of positive integers
less than 7 whose product is a multiple of 7. This would clearly con-
tradict the primality of 7. Furthermore, one of the important basic the-
orems of number theory says, in essence, that every nonzero element
of Zp (when p is prime) has a reciprocal. For instance, in Z7 we have
1−1 = 1, 2−1 = 4, 3−1 = 5, and 6−1 = 6. In other words, these
rings Zp are actually fields, and they are the simplest examples of fi-
nite fields.

In particular, consider Z2. This structure has only two elements, 0
and 1, with completely standard addition and multiplication except that
1 + 1 = 0. Yet, somehow, this number system satisfies all the standard
properties of addition, subtraction, multiplication, and division.

The fields Zp have finite characteristic, meaning that some inte-
ger multiple of 1 (formally obtained by adding 1 to itself repeatedly)
equals 0. For instance, Z2 has characteristic 2, since 1+1 = 0 in it. Sim-
ilarly, Zp has characteristic p. It is easy to show that the characteristic
of such a field—the smallest integer multiple of 1 that equals 0—must
be prime. Trivially, every finite field has finite characteristic. But there
are also infinite fields of finite characteristic.

Fields that do not have finite characteristic are said, perhaps illog-
ically, to have characteristic zero. The familiar fields Q, R, and C are
of this type.

The notions of subrings and subfields are defined in the same
way as subgroups. These terms can be used in “hybrid” ways: one can
refer to a subring of a field, or a subfield of a ring, or even a subgroup
of the additive group of a ring, etc.

Every field K has a smallest subfield, called its prime field. It is,
as usual, the intersection of all subfields of K . If K has characteristic p
(respectively, 0), then its prime field is the unique subfield of K that is
isomorphic to Zp (respectively, Q).

Let F be a subfield of a field K . An element x of K is called
algebraic over F if it is a root (or “zero”) of some nonzero polynomial
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with coefficients in F . Otherwise, x is transcendental over F . If every
x in K is algebraic over F , then K is an algebraic extension of F .

When these terms are applied to complex (including real) num-
bers, the words “over Q” are generally understood. So all rational num-
bers are algebraic, but so are all numbers that can be written using
rational numbers and radicals. For instance,

√
5 is algebraic because it

is a root of x2 − 5. It’s less obvious that a number like
√

7 + 3√10 is al-
gebraic, but it is. Abel ushered in the modern age of algebra by proving
that the converse of this is false: not every algebraic number is express-
ible by radicals. As Chapter 8 mentions, it took well into the nineteenth
century to show that transcendental numbers exist. The most famous
ones are π and e.

A field K is said to be algebraically closed if every polynomial
with coefficients in K has a root in K . Finally, if K is algebraically
closed and it is an algebraic extension of some subfield F , then K is
called an algebraic closure of F . Here is one of the most important
results of field theory, whose proof requires the axiom of choice:

Theorem D.4. Every field F has an algebraic closure, which is unique
“up to isomorphism over F.” In other words, if K1 and K2 are both
algebraic closures of F, then there is an isomorphism between K1 and
K2 that is the identity on F.

Example 11. The fundamental theorem of algebra says precisely that
the field C is algebraically closed. Furthermore, it is easy to show that C
is an algebraic extension of R; in fact, every complex number is a root
of a polynomial, with real coefficients, of degree at most 2. Therefore,
C is the algebraic closure of R.

On the other hand, C is an not algebraic extension of Q, since C
includes transcendental numbers. The algebraic closure of Q is, almost
by definition, the field of complex algebraic numbers.

Ordered algebraic structures
In the basic algebra of the real numbers and other familiar number sys-
tems, one considers inequalities as well as equations. In other words,
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these algebraic structures have orderings defined on them. It is fruitful
to generalize this idea:

Definition. An ordered group is a triple (A,+,<) satisfying these
conditions:

1. (A,+) is an abelian group.

2. < is an (irreflexive) total ordering on A.

3. Whenever x , y, and z are in A and x < y, then x + z < y + z.

Note that condition (3) is familiar from high-school algebra: an
inequality is preserved if you add the same number to both sides of it.

Definition. An ordered ring is a 4-tuple (A,+, ·,<) satisfying these
conditions:

1. (A,+, ·) is a commutative ring.

2. (A,+,<) is an ordered group.

3. Whenever x , y, and z are in A, x < y, and z > 0, then xz < yz.

Here we see another elementary property: an inequality is pre-
served if you multiply both sides by the same positive number.

Example 12.

(a) Z, Q, and R are ordered rings, with the usual operations and order-
ing. The last two are also fields, so they are called ordered fields.

(b) It is easy to show that there is no ordering on a finite group or ring
that will turn it into an ordered group or ring. So, for example, the
groups Zn cannot be ordered.

(c) The field C also cannot be ordered: it is not hard to show that, in
any ordered field, x2 ≥ 0 for every x . Therefore 1 = 12 > 0, and
so −1 < 0. But in C, i2 = −1. (See the discussion of formally real
fields in Section 5.5.)


