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THEOREM 6.8

Let t : Σ∗−→Σ∗ be a computable function. Then there is a Turing machine
F for which t

(
〈F 〉

)
describes a Turing machine equivalent to F . Here we’ll

assume that if a string isn’t a proper Turing machine encoding, it describes a
Turing machine that always rejects immediately.

In this theorem, t plays the role of the transformation, and F is the fixed point.

PROOF Let F be the following Turing machine.

F = “On input w:
1. Obtain, via the recursion theorem, own description 〈F 〉.
2. Compute t

(
〈F 〉

)
to obtain the description of a TM G.

3. Simulate G on w.”

Clearly, 〈F 〉 and t
(
〈F 〉

)
= 〈G〉 describe equivalent Turing machines because

F simulates G.

6.2
DECIDABILITY OF LOGICAL THEORIES

Mathematical logic is the branch of mathematics that investigates mathematics
itself. It addresses questions such as: What is a theorem? What is a proof? What
is truth? Can an algorithm decide which statements are true? Are all true state-
ments provable? We’ll touch on a few of these topics in our brief introduction
to this rich and fascinating subject.

We focus on the problem of determining whether mathematical statements
are true or false and investigate the decidability of this problem. The answer
depends on the domain of mathematics from which the statements are drawn.
We examine two domains: one for which we can give an algorithm to decide
truth, and another for which this problem is undecidable.

First, we need to set up a precise language to formulate these problems. Our
intention is to be able to consider mathematical statements such as

1. ∀q ∃p ∀x,y
[
p>q ∧ (x,y>1 → xy (=p)

]
,

2. ∀a,b,c,n
[
(a,b,c>0 ∧ n>2) → an+bn (=cn

]
, and

3. ∀q ∃p ∀x,y
[
p>q ∧ (x,y>1 → (xy (=p ∧ xy (=p+2))

]
.

Statement 1 says that infinitely many prime numbers exist, which has been
known to be true since the time of Euclid, about 2,300 years ago. Statement 2 is
Fermat’s last theorem, which has been known to be true only since Andrew Wiles
proved it in 1994. Finally, statement 3 says that infinitely many prime pairs1

exist. Known as the twin prime conjecture, it remains unsolved.

1Prime pairs are primes that differ by 2.
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6.2 DECIDABILITY OF LOGICAL THEORIES 253

To consider whether we could automate the process of determining which of
these statements are true, we treat such statements merely as strings and define a
language consisting of those statements that are true. Then we ask whether this
language is decidable.

To make this a bit more precise, let’s describe the form of the alphabet of this
language:

{∧,∨,¬, (, ), ∀, ∃, x, R1, . . . , Rk}.

The symbols ∧, ∨, and ¬ are called Boolean operations; “(” and “)” are the
parentheses; the symbols ∀ and ∃ are called quantifiers; the symbol x is used to
denote variables;2 and the symbols R1, . . . , Rk are called relations.

A formula is a well-formed string over this alphabet. For completeness, we’ll
sketch the technical but obvious definition of a well-formed formula here, but
feel free to skip this part and go on to the next paragraph. A string of the form
Ri(x1, . . . , xk) is an atomic formula. The value j is the arity of the relation
symbolRi. All appearances of the same relation symbol in a well-formed formula
must have the same arity. Subject to this requirement, a string φ is a formula if it

1. is an atomic formula,

2. has the form φ1 ∧ φ2 or φ1 ∨ φ2 or ¬φ1, where φ1 and φ2 are smaller
formulas, or

3. has the form ∃xi [φ1 ] or ∀xi [φ1 ], where φ1 is a smaller formula.

A quantifier may appear anywhere in a mathematical statement. Its scope is
the fragment of the statement appearing within the matched pair of parentheses
or brackets following the quantified variable. We assume that all formulas are in
prenex normal form, where all quantifiers appear in the front of the formula. A
variable that isn’t bound within the scope of a quantifier is called a free variable.
A formula with no free variables is called a sentence or statement.

EXAMPLE 6.9

Among the following examples of formulas, only the last one is a sentence.

1. R1(x1) ∧R2(x1, x2, x3)

2. ∀x1

[
R1(x1) ∧R2(x1, x2, x3)

]

3. ∀x1 ∃x2 ∃x3

[
R1(x1) ∧R2(x1, x2, x3)

]

Having established the syntax of formulas, let’s discuss their meanings. The
Boolean operations and the quantifiers have their usual meanings. But to deter-
mine the meaning of the variables and relation symbols, we need to specify two
items. One is the universe over which the variables may take values. The other

2If we need to write several variables in a formula, we use the symbols w, y, z, or x1, x2,
x3, and so on. We don’t list all the infinitely many possible variables in the alphabet to
keep the alphabet finite. Instead, we list only the variable symbol x, and use strings of x’s
to indicate other variables, as in xx for x2, xxx for x3, and so on.
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254 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

is an assignment of specific relations to the relation symbols. As we described in
Section 0.2 (page 9), a relation is a function from k-tuples over the universe to
{TRUE, FALSE}. The arity of a relation symbol must match that of its assigned
relation.

A universe together with an assignment of relations to relation symbols is
called a model.3 Formally, we say that a model M is a tuple (U, P1, . . . , Pk),
where U is the universe and P1 through Pk are the relations assigned to symbols
R1 through Rk. We sometimes refer to the language of a model to be the
collection of formulas that use only the relation symbols the model assigns, and
that use each relation symbol with the correct arity. If φ is a sentence in the
language of a model, φ is either true or false in that model. If φ is true in a
model M, we say that M is a model of φ.

If you feel overwhelmed by these definitions, concentrate on our objective in
stating them. We want to set up a precise language of mathematical statements
so that we can ask whether an algorithm can determine which are true and which
are false. The following two examples should be helpful.

EXAMPLE 6.10

Let φ be the sentence ∀x∀y
[
R1(x, y)∨R1(y, x)

]
. Let model M1 = (N ,≤) be

the model whose universe is the natural numbers and that assigns the “less than
or equal” relation to the symbol R1. Obviously, φ is true in model M1 because
either a ≤ b or b ≤ a for any two natural numbers a and b. However, if M1

assigned “less than” instead of “less than or equal” to R1, then φ would not be
true because it fails when x and y are equal.

If we know in advance which relation will be assigned to Ri, we may use the
customary symbol for that relation in place of Ri with infix notation rather than
prefix notation if customary for that symbol. Thus, with model M1 in mind, we
could write φ as ∀x∀y

[
x≤y ∨ y≤x

]
.

EXAMPLE 6.11

Now let M2 be the model whose universe is the real numbers R and that assigns
the relation PLUS to R1, where PLUS(a, b, c) = TRUE whenever a + b = c.
Then M2 is a model of ψ = ∀y ∃x

[
R1(x, x, y)

]
. However, if N were used for

the universe instead of R in M2, the sentence would be false.
As in Example 6.10, we may write ψ as ∀y ∃x

[
x + x = y

]
in place of

∀y ∃x
[
R1(x, x, y)

]
when we know in advance that we will be assigning the ad-

dition relation to R1.

As Example 6.11 illustrates, we can represent functions such as the addition
function by relations. Similarly, we can represent constants such as 0 and 1 by
relations.

3A model is also variously called an interpretation or a structure.
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6.2 DECIDABILITY OF LOGICAL THEORIES 255

Now we give one final definition in preparation for the next section. If M
is a model, we let the theory of M, written Th(M), be the collection of true
sentences in the language of that model.

A DECIDABLE THEORY

Number theory is one of the oldest branches of mathematics and also one of
its most difficult. Many innocent-looking statements about the natural num-
bers with the plus and times operations have confounded mathematicians for
centuries, such as the twin prime conjecture mentioned earlier.

In one of the celebrated developments in mathematical logic, Alonzo Church,
building on the work of Kurt Gödel, showed that no algorithm can decide in
general whether statements in number theory are true or false. Formally, we
write (N ,+,×) to be the model whose universe is the natural numbers4 with
the usual + and × relations. Church showed that Th(N ,+,×), the theory of
this model, is undecidable.

Before looking at this undecidable theory, let’s examine one that is decidable.
Let (N ,+) be the same model, without the × relation. Its theory is Th(N ,+).
For example, the formula ∀x∃y

[
x + x = y

]
is true and is therefore a member

of Th(N ,+), but the formula ∃y∀x
[
x + x = y

]
is false and is therefore not a

member.

THEOREM 6.12

Th(N ,+) is decidable.

PROOF IDEA This proof is an interesting and nontrivial application of the
theory of finite automata that we presented in Chapter 1. One fact about finite
automata that we use appears in Problem 1.32, (page 88) where you were asked
to show that they are capable of doing addition if the input is presented in a
special form. The input describes three numbers in parallel by representing one
bit of each number in a single symbol from an eight-symbol alphabet. Here we
use a generalization of this method to present i-tuples of numbers in parallel
using an alphabet with 2i symbols.

We give an algorithm that can determine whether its input, a sentence φ in
the language of (N ,+), is true in that model. Let

φ = Q1x1 Q2x2 · · · Qlxl

[
ψ
]
,

where Q1, . . . ,Ql each represents either ∃ or ∀ and ψ is a formula without quan-
tifiers that has variables x1, . . . , xl. For each i from 0 to l, define formula φi as

φi = Qi+1xi+1 Qi+2xi+2 · · · Qlxl

[
ψ
]
.

Thus φ0 = φ and φl = ψ.

4For convenience in this chapter, we change our usual definition of N to be {0, 1, 2, . . .}.
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256 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

Formula φi has i free variables. For a1, . . . , ai ∈ N , write φi(a1, . . . , ai) to be
the sentence obtained by substituting the constants a1, . . . , ai for the variables
x1, . . . , xi in φi.

For each i from 0 to l, the algorithm constructs a finite automaton Ai that
recognizes the collection of strings representing i-tuples of numbers that make
φi true. The algorithm begins by constructing Al directly, using a generalization
of the method in the solution to Problem 1.32. Then, for each i from l down
to 1, it uses Ai to construct Ai−1. Finally, once the algorithm has A0, it tests
whether A0 accepts the empty string. If it does, φ is true and the algorithm
accepts.

PROOF For i > 0, define the alphabet

Σi =

{[
0...
0
0

]

,

[
0...
0
1

]

,

[
0...
1
0

]

,

[
0...
1
1

]

, . . . ,

[
1...
1
1

]}

.

Hence Σi contains all size i columns of 0s and 1s. A string over Σi represents i
binary integers (reading across the rows). We also define Σ0 = {[ ]}, where [ ] is
a symbol.

We now present an algorithm that decides Th(N ,+). On input φ, where
φ is a sentence, the algorithm operates as follows. Write φ and define φi for
each i from 0 to l, as in the proof idea. For each such i, construct a finite
automaton Ai from φi that accepts strings over Σi corresponding to i-tuples
a1, . . . , ai whenever φi(a1, . . . , ai) is true, as follows.

To construct the first machine Al, observe that φl = ψ is a Boolean combi-
nation of atomic formulas. An atomic formula in the language of Th(N ,+) is a
single addition. Finite automata can be constructed to compute any of these in-
dividual relations corresponding to a single addition and then combined to give
the automaton Al. Doing so involves the use of the regular language closure
constructions for union, intersection, and complementation to compute Boolean
combinations of the atomic formulas.

Next, we show how to construct Ai from Ai+1. If φi = ∃xi+1 φi+1, we con-
struct Ai to operate as Ai+1 operates, except that it nondeterministically guesses
the value of ai+1 instead of receiving it as part of the input.

More precisely, Ai contains a state for each Ai+1 state and a new start state.
Every time Ai reads a symbol




b1
...

bi−1

bi





,

where every bj ∈ {0,1} is a bit of the number aj , it nondeterministically guesses
z ∈ {0,1} and simulates Ai+1 on the input symbol





b1
...

bi−1

bi
z




.
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6.2 DECIDABILITY OF LOGICAL THEORIES 257

Initially, Ai nondeterministically guesses the leading bits of ai+1 corresponding
to suppressed leading 0s in a1 through ai by nondeterministically branching
using ε-transitions from its new start state to all states that Ai+1 could reach
from its start state with input strings of the symbols

{[
0
...
0
0

]

,

[
0
...
0
1

]}

in Σi+1. Clearly, Ai accepts its input (a1, . . . , ai) if some ai+1 exists where Ai+1

accepts (a1, . . . , ai+1).
If φi = ∀xi+1 φi+1, it is equivalent to ¬∃xi+1¬ φi+1. Thus, we can construct

the finite automaton that recognizes the complement of the language of Ai+1,
then apply the preceding construction for the ∃ quantifier, and finally apply com-
plementation once again to obtain Ai.

Finite automaton A0 accepts any input iff φ0 is true. So the final step of the
algorithm tests whether A0 accepts ε. If it does, φ is true and the algorithm
accepts; otherwise, it rejects.

AN UNDECIDABLE THEORY

As we mentioned earlier, Th(N ,+,×) is an undecidable theory. No algorithm
exists for deciding the truth or falsity of mathematical statements, even when re-
stricted to the language of (N ,+,×). This theorem has great importance philo-
sophically because it demonstrates that mathematics cannot be mechanized. We
state this theorem, but give only a brief sketch of its proof.

THEOREM 6.13

Th(N ,+,×) is undecidable.

Although it contains many details, the proof of this theorem is not difficult
conceptually. It follows the pattern of the other proofs of undecidability pre-
sented in Chapter 4. We show that Th(N ,+,×) is undecidable by reducing ATM

to it, using the computation history method as previously described (page 220).
The existence of the reduction depends on the following lemma.

LEMMA 6.14

Let M be a Turing machine and w a string. We can construct from M and w a
formula φM,w in the language of (N ,+,×) that contains a single free variable x,
whereby the sentence ∃x φM,w is true iff M accepts w.

PROOF IDEA Formula φM,w “says” that x is a (suitably encoded) accepting
computation history of M on w. Of course, x actually is just a rather large
integer, but it represents a computation history in a form that can be checked by
using the + and × operations.
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258 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

The actual construction of φM,w is too complicated to present here. It ex-
tracts individual symbols in the computation history with the + and × operations
to check that the start configuration for M on w is correct, that each configura-
tion legally follows from the one preceding it, and that the last configuration is
accepting.

PROOF OF THEOREM 6.13 We give a mapping reduction from ATM to
Th(N ,+,×). The reduction constructs the formula φM,w from the input
〈M,w〉 by using Lemma 6.14. Then it outputs the sentence ∃x φM,w.

Next, we sketch the proof of Kurt Gödel’s celebrated incompleteness theorem.
Informally, this theorem says that in any reasonable system of formalizing the
notion of provability in number theory, some true statements are unprovable.

Loosely speaking, the formal proof π of a statement φ is a sequence of state-
ments, S1, S2, . . . , Sl, where Sl = φ. Each Si follows from the preceding state-
ments and certain basic axioms about numbers, using simple and precise rules
of implication. We don’t have space to define the concept of proof; but for our
purposes, assuming the following two reasonable properties of proofs will be
enough.

1. The correctness of a proof of a statement can be checked by machine.
Formally, {〈φ,π〉| π is a proof of φ} is decidable.

2. The system of proofs is sound. That is, if a statement is provable (i.e., has a
proof), it is true.

If a system of provability satisfies these two conditions, the following three the-
orems hold.

THEOREM 6.15

The collection of provable statements in Th(N ,+,×) is Turing-recognizable.

PROOF The following algorithm P accepts its input φ if φ is provable. Al-
gorithm P tests each string as a candidate for a proof π of φ, using the proof
checker assumed in provability property 1. If it finds that any of these candi-
dates is a proof, it accepts.

Now we can use the preceding theorem to prove our version of the incom-
pleteness theorem.
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6.2 DECIDABILITY OF LOGICAL THEORIES 259

THEOREM 6.16

Some true statement in Th(N ,+,×) is not provable.

PROOF We give a proof by contradiction. We assume to the contrary that all
true statements are provable. Using this assumption, we describe an algorithm
D that decides whether statements are true, contradicting Theorem 6.13.

On input φ, algorithm D operates by running algorithm P given in the proof
of Theorem 6.15 in parallel on inputs φ and ¬φ. One of these two statements
is true and thus by our assumption is provable. Therefore, P must halt on one
of the two inputs. By provability property 2, if φ is provable, then φ is true; and
if ¬φ is provable, then φ is false. So algorithm D can decide the truth or falsity
of φ.

In the final theorem of this section, we use the recursion theorem to give
an explicit sentence in the language of (N ,+,×) that is true but not provable.
In Theorem 6.16 we demonstrated the existence of such a sentence but didn’t
actually describe one, as we do now.

THEOREM 6.17

The sentence ψunprovable, as described in the proof, is unprovable.

PROOF IDEA Construct a sentence that says “This sentence is not provable,”
using the recursion theorem to obtain the self-reference.

PROOF Let S be a TM that operates as follows.

S = “On any input:
1. Obtain own description 〈S〉 via the recursion theorem.
2. Construct the sentence ψ = ¬∃c

[
φS,0

]
, using Lemma 6.14.

3. Run algorithm P from the proof of Theorem 6.15 on input ψ.
4. If stage 3 accepts, accept .”

Let ψunprovable be the sentence ψ described in stage 2 of algorithm S. That
sentence is true iff S doesn’t accept 0 (the string 0 was selected arbitrarily).

If S finds a proof of ψunprovable, S accepts 0, and the sentence would thus be
false. A false sentence cannot be provable, so this situation cannot occur. The
only remaining possibility is that S fails to find a proof of ψunprovable and so S
doesn’t accept 0. But then ψunprovable is true, as we claimed.
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