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A D V A N C E D T O P I C S I N

C O M P U T A B I L I T Y

T H E O R Y

In this chapter we delve into four deeper aspects of computability theory: (1) the
recursion theorem, (2) logical theories, (3) Turing reducibility, and (4) descrip-
tive complexity. The topic covered in each section is mainly independent of the
others, except for an application of the recursion theorem at the end of the sec-
tion on logical theories. Part Three of this book doesn’t depend on any material
from this chapter.

6.1
THE RECURSION THEOREM

The recursion theorem is a mathematical result that plays an important role in
advanced work in the theory of computability. It has connections to mathemati-
cal logic, the theory of self-reproducing systems, and even computer viruses.

To introduce the recursion theorem, we consider a paradox that arises in the
study of life. It concerns the possibility of making machines that can construct
replicas of themselves. The paradox can be summarized in the following manner.
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246 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

1. Living things are machines.

2. Living things can self-reproduce.

3. Machines cannot self-reproduce.

Statement 1 is a tenet of modern biology. We believe that organisms operate
in a mechanistic way. Statement 2 is obvious. The ability to self-reproduce
is an essential characteristic of every biological species. For statement 3, we
make the following argument that machines cannot self-reproduce. Consider
a machine that constructs other machines, such as an automated factory that
produces cars. Raw materials go in at one end, the manufacturing robots follow
a set of instructions, and then completed vehicles come out the other end.

We claim that the factory must be more complex than the cars produced, in
the sense that designing the factory would be more difficult than designing a car.
This claim must be true because the factory itself has the car’s design within it,
in addition to the design of all the manufacturing robots. The same reasoning
applies to any machine A that constructs a machine B: A must be more complex
than B. But a machine cannot be more complex than itself. Consequently, no
machine can construct itself, and thus self-reproduction is impossible.

How can we resolve this paradox? The answer is simple: Statement 3 is in-
correct. Making machines that reproduce themselves is possible. The recursion
theorem demonstrates how.

SELF-REFERENCE

Let’s begin by making a Turing machine that ignores its input and prints out
a copy of its own description. We call this machine SELF . To help describe
SELF , we need the following lemma.

LEMMA 6.1

There is a computable function q : Σ∗−→Σ∗, where if w is any string, q(w) is
the description of a Turing machine Pw that prints out w and then halts.

PROOF Once we understand the statement of this lemma, the proof is easy.
Obviously, we can take any string w and construct from it a Turing machine that
has w built into a table so that the machine can simply output w when started.
The following TM Q computes q(w).

Q = “On input string w:
1. Construct the following Turing machine Pw.

Pw = “On any input:
1. Erase input.
2. Write w on the tape.
3. Halt.”

2. Output 〈Pw〉.”
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6.1 THE RECURSION THEOREM 247

The Turing machine SELF is in two parts: A and B. We think of A and B
as being two separate procedures that go together to make up SELF . We want
SELF to print out 〈SELF 〉 = 〈AB〉.

Part A runs first and upon completion passes control to B. The job of A is
to print out a description of B, and conversely the job of B is to print out a
description of A. The result is the desired description of SELF . The jobs are
similar, but they are carried out differently. We show how to get part A first.

For A we use the machine P〈B〉, described by q
(
〈B〉

)
, which is the result of

applying the function q to 〈B〉. Thus, part A is a Turing machine that prints out
〈B〉. Our description of A depends on having a description of B. So we can’t
complete the description of A until we construct B.

Now for part B. We might be tempted to define B with q
(
〈A〉

)
, but that

doesn’t make sense! Doing so would define B in terms of A, which in turn is
defined in terms of B. That would be a circular definition of an object in terms
of itself, a logical transgression. Instead, we define B so that it prints A by using
a different strategy: B computes A from the output that A produces.

We defined 〈A〉 to be q
(
〈B〉

)
. Now comes the tricky part: If B can obtain

〈B〉, it can apply q to that and obtain 〈A〉. But how does B obtain 〈B〉? It was
left on the tape when A finished! So B only needs to look at the tape to obtain
〈B〉. Then after B computes q

(
〈B〉

)
= 〈A〉, it combines A and B into a single

machine and writes its description 〈AB〉 = 〈SELF 〉 on the tape. In summary,
we have:

A = P〈B〉, and

B = “On input 〈M〉, where M is a portion of a TM:
1. Compute q

(
〈M〉

)
.

2. Combine the result with 〈M〉 to make a complete TM.
3. Print the description of this TM and halt.”

This completes the construction of SELF , for which a schematic diagram is
presented in the following figure.

       

FIGURE 6.2

Schematic of SELF , a TM that prints its own description

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.



248 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

If we now run SELF , we observe the following behavior.

1. First A runs. It prints 〈B〉 on the tape.
2. B starts. It looks at the tape and finds its input, 〈B〉.
3. B calculates q

(
〈B〉

)
= 〈A〉 and combines that with 〈B〉 into a

TM description, 〈SELF 〉.
4. B prints this description and halts.

We can easily implement this construction in any programming language to
obtain a program that outputs a copy of itself. We can even do so in plain En-
glish. Suppose that we want to give an English sentence that commands the
reader to print a copy of the same sentence. One way to do so is to say:

Print out this sentence.

This sentence has the desired meaning because it directs the reader to print a
copy of the sentence itself. However, it doesn’t have an obvious translation into
a programming language because the self-referential word “this” in the sentence
usually has no counterpart. But no self-reference is needed to make such a sen-
tence. Consider the following alternative.

Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”

In this sentence, the self-reference is replaced with the same construction used
to make the TM SELF . Part B of the construction is the clause:

Print out two copies of the following, the second one in quotes:

Part A is the same, with quotes around it. A provides a copy of B to B so B can
process that copy as the TM does.

The recursion theorem provides the ability to implement the self-referential
this into any programming language. With it, any program has the ability to refer
to its own description, which has certain applications, as you will see. Before
getting to that, we state the recursion theorem itself. The recursion theorem
extends the technique we used in constructing SELF so that a program can
obtain its own description and then go on to compute with it, instead of merely
printing it out.

THEOREM 6.3

Recursion theorem Let T be a Turing machine that computes a function
t : Σ∗ × Σ∗−→Σ∗. There is a Turing machine R that computes a function
r : Σ∗−→Σ∗, where for every w,

r(w) = t
(
〈R〉, w

)
.

The statement of this theorem seems a bit technical, but it actually represents
something quite simple. To make a Turing machine that can obtain its own
description and then compute with it, we need only make a machine, called T
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in the statement, that receives the description of the machine as an extra input.
Then the recursion theorem produces a new machine R, which operates exactly
as T does but with R’s description filled in automatically.

PROOF The proof is similar to the construction of SELF . We construct a TM
R in three parts, A, B, and T , where T is given by the statement of the theorem;
a schematic diagram is presented in the following figure.

       

FIGURE 6.4

Schematic of R

Here, A is the Turing machine P〈BT 〉 described by q
(
〈BT 〉

)
. To preserve

the input w, we redesign q so that P〈BT 〉 writes its output following any string
preexisting on the tape. After A runs, the tape contains w〈BT 〉.

Again, B is a procedure that examines its tape and applies q to its contents.
The result is 〈A〉. Then B combines A, B, and T into a single machine and ob-
tains its description 〈ABT 〉 = 〈R〉. Finally, it encodes that description together
with w, places the resulting string 〈R,w〉 on the tape, and passes control to T .

TERMINOLOGY FOR THE RECURSION THEOREM

The recursion theorem states that Turing machines can obtain their own de-
scription and then go on to compute with it. At first glance, this capability may
seem to be useful only for frivolous tasks such as making a machine that prints a
copy of itself. But, as we demonstrate, the recursion theorem is a handy tool for
solving certain problems concerning the theory of algorithms.

You can use the recursion theorem in the following way when designing Tur-
ing machine algorithms. If you are designing a machine M , you can include the
phrase “obtain own description 〈M〉” in the informal description of M ’s algo-
rithm. Upon having obtained its own description, M can then go on to use it as
it would use any other computed value. For example, M might simply print out
〈M〉 as happens in the TM SELF , or it might count the number of states in 〈M〉,
or possibly even simulate 〈M〉. To illustrate this method, we use the recursion
theorem to describe the machine SELF .

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.



250 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

SELF = “On any input:
1. Obtain, via the recursion theorem, own description 〈SELF 〉.
2. Print 〈SELF 〉.”

The recursion theorem shows how to implement the “obtain own descrip-
tion” construct. To produce the machine SELF , we first write the following
machine T .

T = “On input 〈M,w〉:
1. Print 〈M〉 and halt.”

The TM T receives a description of a TM M and a string w as input, and it prints
the description of M . Then the recursion theorem shows how to obtain a TM R,
which on input w operates like T on input 〈R,w〉. Thus, R prints the description
of R—exactly what is required of the machine SELF .

APPLICATIONS

A computer virus is a computer program that is designed to spread itself among
computers. Aptly named, it has much in common with a biological virus. Com-
puter viruses are inactive when standing alone as a piece of code. But when
placed appropriately in a host computer, thereby “infecting” it, they can become
activated and transmit copies of themselves to other accessible machines. Vari-
ous media can transmit viruses, including the Internet and transferable disks. In
order to carry out its primary task of self-replication, a virus may contain the
construction described in the proof of the recursion theorem.

Let’s now consider three theorems whose proofs use the recursion theorem.
An additional application appears in the proof of Theorem 6.17 in Section 6.2.

First we return to the proof of the undecidability of ATM. Recall that we ear-
lier proved it in Theorem 4.11, using Cantor’s diagonal method. The recursion
theorem gives us a new and simpler proof.

THEOREM 6.5

ATM is undecidable.

PROOF We assume that Turing machine H decides ATM, for the purpose of
obtaining a contradiction. We construct the following machine B.

B = “On input w:
1. Obtain, via the recursion theorem, own description 〈B〉.
2. Run H on input 〈B,w〉.
3. Do the opposite of what H says. That is, accept if H rejects and

reject if H accepts.”

Running B on input w does the opposite of what H declares it does. Therefore,
H cannot be deciding ATM. Done!
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The following theorem concerning minimal Turing machines is another ap-
plication of the recursion theorem.

DEFINITION 6.6

If M is a Turing machine, then we say that the length of the descrip-
tion 〈M〉 of M is the number of symbols in the string describing M .
Say that M is minimal if there is no Turing machine equivalent to
M that has a shorter description. Let

MIN TM = {〈M〉| M is a minimal TM}.

THEOREM 6.7

MIN TM is not Turing-recognizable.

PROOF Assume that some TM E enumerates MIN TM and obtain a contradic-
tion. We construct the following TM C.

C = “On input w:
1. Obtain, via the recursion theorem, own description 〈C〉.
2. Run the enumerator E until a machine D appears with a longer

description than that of C.
3. Simulate D on input w.”

Because MIN TM is infinite, E’s list must contain a TM with a longer descrip-
tion than C’s description. Therefore, step 2 of C eventually terminates with
some TM D that is longer than C. Then C simulates D and so is equivalent to it.
Because C is shorter than D and is equivalent to it, D cannot be minimal. But
D appears on the list that E produces. Thus, we have a contradiction.

Our final application of the recursion theorem is a type of fixed-point theo-
rem. A fixed point of a function is a value that isn’t changed by application of
the function. In this case, we consider functions that are computable transforma-
tions of Turing machine descriptions. We show that for any such transformation,
some Turing machine exists whose behavior is unchanged by the transformation.
This theorem is called the fixed-point version of the recursion theorem.
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THEOREM 6.8

Let t : Σ∗−→Σ∗ be a computable function. Then there is a Turing machine
F for which t

(
〈F 〉

)
describes a Turing machine equivalent to F . Here we’ll

assume that if a string isn’t a proper Turing machine encoding, it describes a
Turing machine that always rejects immediately.

In this theorem, t plays the role of the transformation, and F is the fixed point.

PROOF Let F be the following Turing machine.

F = “On input w:
1. Obtain, via the recursion theorem, own description 〈F 〉.
2. Compute t

(
〈F 〉

)
to obtain the description of a TM G.

3. Simulate G on w.”

Clearly, 〈F 〉 and t
(
〈F 〉

)
= 〈G〉 describe equivalent Turing machines because

F simulates G.

6.2
DECIDABILITY OF LOGICAL THEORIES

Mathematical logic is the branch of mathematics that investigates mathematics
itself. It addresses questions such as: What is a theorem? What is a proof? What
is truth? Can an algorithm decide which statements are true? Are all true state-
ments provable? We’ll touch on a few of these topics in our brief introduction
to this rich and fascinating subject.

We focus on the problem of determining whether mathematical statements
are true or false and investigate the decidability of this problem. The answer
depends on the domain of mathematics from which the statements are drawn.
We examine two domains: one for which we can give an algorithm to decide
truth, and another for which this problem is undecidable.

First, we need to set up a precise language to formulate these problems. Our
intention is to be able to consider mathematical statements such as

1. ∀q ∃p ∀x,y
[
p>q ∧ (x,y>1 → xy )=p)

]
,

2. ∀a,b,c,n
[
(a,b,c>0 ∧ n>2) → an+bn )=cn

]
, and

3. ∀q ∃p ∀x,y
[
p>q ∧ (x,y>1 → (xy )=p ∧ xy )=p+2))

]
.

Statement 1 says that infinitely many prime numbers exist, which has been
known to be true since the time of Euclid, about 2,300 years ago. Statement 2 is
Fermat’s last theorem, which has been known to be true only since Andrew Wiles
proved it in 1994. Finally, statement 3 says that infinitely many prime pairs1

exist. Known as the twin prime conjecture, it remains unsolved.

1Prime pairs are primes that differ by 2.
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