
4

D E C I D A B I L I T Y

In Chapter 3 we introduced the Turing machine as a model of a general purpose
computer and defined the notion of algorithm in terms of Turing machines by
means of the Church–Turing thesis.

In this chapter we begin to investigate the power of algorithms to solve prob-
lems. We demonstrate certain problems that can be solved algorithmically and
others that cannot. Our objective is to explore the limits of algorithmic solv-
ability. You are probably familiar with solvability by algorithms because much of
computer science is devoted to solving problems. The unsolvability of certain
problems may come as a surprise.

Why should you study unsolvability? After all, showing that a problem is
unsolvable doesn’t appear to be of any use if you have to solve it. You need
to study this phenomenon for two reasons. First, knowing when a problem is
algorithmically unsolvable is useful because then you realize that the problem
must be simplified or altered before you can find an algorithmic solution. Like
any tool, computers have capabilities and limitations that must be appreciated if
they are to be used well. The second reason is cultural. Even if you deal with
problems that clearly are solvable, a glimpse of the unsolvable can stimulate your
imagination and help you gain an important perspective on computation.
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194 CHAPTER 4 / DECIDABILITY

4.1
DECIDABLE LANGUAGES

In this section we give some examples of languages that are decidable by al-
gorithms. We focus on languages concerning automata and grammars. For
example, we present an algorithm that tests whether a string is a member of a
context-free language (CFL). These languages are interesting for several reasons.
First, certain problems of this kind are related to applications. This problem of
testing whether a CFG generates a string is related to the problem of recogniz-
ing and compiling programs in a programming language. Second, certain other
problems concerning automata and grammars are not decidable by algorithms.
Starting with examples where decidability is possible helps you to appreciate the
undecidable examples.

DECIDABLE PROBLEMS CONCERNING

REGULAR LANGUAGES

We begin with certain computational problems concerning finite automata. We
give algorithms for testing whether a finite automaton accepts a string, whether
the language of a finite automaton is empty, and whether two finite automata are
equivalent.

Note that we chose to represent various computational problems by lan-
guages. Doing so is convenient because we have already set up terminology for
dealing with languages. For example, the acceptance problem for DFAs of testing
whether a particular deterministic finite automaton accepts a given string can be
expressed as a language, ADFA. This language contains the encodings of all DFAs
together with strings that the DFAs accept. Let

ADFA = {〈B,w〉| B is a DFA that accepts input string w}.

The problem of testing whether a DFA B accepts an input w is the same as the
problem of testing whether 〈B,w〉 is a member of the language ADFA. Similarly,
we can formulate other computational problems in terms of testing membership
in a language. Showing that the language is decidable is the same as showing
that the computational problem is decidable.

In the following theorem we show that ADFA is decidable. Hence this theorem
shows that the problem of testing whether a given finite automaton accepts a
given string is decidable.

THEOREM 4.1

ADFA is a decidable language.
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4.1 DECIDABLE LANGUAGES 195

PROOF IDEA We simply need to present a TM M that decides ADFA.

M = “On input 〈B,w〉, where B is a DFA and w is a string:
1. Simulate B on input w.
2. If the simulation ends in an accept state, accept . If it ends in a

nonaccepting state, reject .”

PROOF We mention just a few implementation details of this proof. For
those of you familiar with writing programs in any standard programming lan-
guage, imagine how you would write a program to carry out the simulation.

First, let’s examine the input 〈B,w〉. It is a representation of a DFA B together
with a string w. One reasonable representation of B is simply a list of its five
components: Q, Σ, δ, q0, and F . When M receives its input, M first determines
whether it properly represents a DFA B and a string w. If not, M rejects.

Then M carries out the simulation directly. It keeps track of B’s current
state and B’s current position in the input w by writing this information down
on its tape. Initially, B’s current state is q0 and B’s current input position is
the leftmost symbol of w. The states and position are updated according to the
specified transition function δ. When M finishes processing the last symbol of
w, M accepts the input if B is in an accepting state; M rejects the input if B is
in a nonaccepting state.

We can prove a similar theorem for nondeterministic finite automata. Let

ANFA = {〈B,w〉| B is an NFA that accepts input string w}.

THEOREM 4.2

ANFA is a decidable language.

PROOF We present a TM N that decides ANFA. We could design N to operate
like M , simulating an NFA instead of a DFA. Instead, we’ll do it differently to
illustrate a new idea: Have N use M as a subroutine. Because M is designed
to work with DFAs, N first converts the NFA it receives as input to a DFA before
passing it to M .

N = “On input 〈B,w〉, where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA C, using the procedure for

this conversion given in Theorem 1.39.
2. Run TM M from Theorem 4.1 on input 〈C,w〉.
3. If M accepts, accept ; otherwise, reject .”

Running TM M in stage 2 means incorporating M into the design of N as a
subprocedure.
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196 CHAPTER 4 / DECIDABILITY

Similarly, we can determine whether a regular expression generates a given
string. Let AREX = {〈R,w〉| R is a regular expression that generates string w}.

THEOREM 4.3

AREX is a decidable language.

PROOF The following TM P decides AREX.

P = “On input 〈R,w〉, where R is a regular expression and w is a string:
1. Convert regular expression R to an equivalent NFA A by using

the procedure for this conversion given in Theorem 1.54.
2. Run TM N on input 〈A,w〉.
3. If N accepts, accept ; if N rejects, reject .”

Theorems 4.1, 4.2, and 4.3 illustrate that, for decidability purposes, it is
equivalent to present the Turing machine with a DFA, an NFA, or a regular ex-
pression because the machine can convert one form of encoding to another.

Now we turn to a different kind of problem concerning finite automata:
emptiness testing for the language of a finite automaton. In the preceding three
theorems we had to determine whether a finite automaton accepts a particular
string. In the next proof we must determine whether or not a finite automaton
accepts any strings at all. Let

EDFA = {〈A〉| A is a DFA and L(A) = ∅}.

THEOREM 4.4

EDFA is a decidable language.

PROOF A DFA accepts some string iff reaching an accept state from the start
state by traveling along the arrows of the DFA is possible. To test this condition,
we can design a TM T that uses a marking algorithm similar to that used in
Example 3.23.

T = “On input 〈A〉, where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any

state that is already marked.
4. If no accept state is marked, accept ; otherwise, reject .”
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4.1 DECIDABLE LANGUAGES 197

The next theorem states that determining whether two DFAs recognize the
same language is decidable. Let

EQDFA = {〈A,B〉| A and B are DFAs and L(A) = L(B)}.

THEOREM 4.5

EQDFA is a decidable language.

PROOF To prove this theorem, we use Theorem 4.4. We construct a new
DFA C from A and B, where C accepts only those strings that are accepted by
either A or B but not by both. Thus, if A and B recognize the same language,
C will accept nothing. The language of C is

L(C) =
(
L(A) ∩ L(B)

)
∪
(
L(A) ∩ L(B)

)
.

This expression is sometimes called the symmetric difference of L(A) and L(B)
and is illustrated in the following figure. Here, L(A) is the complement of L(A).
The symmetric difference is useful here because L(C) = ∅ iff L(A) = L(B).
We can construct C from A and B with the constructions for proving the class
of regular languages closed under complementation, union, and intersection.
These constructions are algorithms that can be carried out by Turing machines.
Once we have constructed C, we can use Theorem 4.4 to test whether L(C) is
empty. If it is empty, L(A) and L(B) must be equal.

F = “On input 〈A,B〉, where A and B are DFAs:
1. Construct DFA C as described.
2. Run TM T from Theorem 4.4 on input 〈C〉.
3. If T accepts, accept . If T rejects, reject .”

FIGURE 4.6

The symmetric difference of L(A) and L(B)
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198 CHAPTER 4 / DECIDABILITY

DECIDABLE PROBLEMS CONCERNING

CONTEXT-FREE LANGUAGES

Here, we describe algorithms to determine whether a CFG generates a particular
string and to determine whether the language of a CFG is empty. Let

ACFG = {〈G,w〉| G is a CFG that generates string w}.

THEOREM 4.7

ACFG is a decidable language.

PROOF IDEA For CFG G and string w, we want to determine whether G
generates w. One idea is to use G to go through all derivations to determine
whether any is a derivation of w. This idea doesn’t work, as infinitely many
derivations may have to be tried. If G does not generate w, this algorithm would
never halt. This idea gives a Turing machine that is a recognizer, but not a
decider, for ACFG.

To make this Turing machine into a decider, we need to ensure that the al-
gorithm tries only finitely many derivations. In Problem 2.26 (page 157) we
showed that if G were in Chomsky normal form, any derivation of w has 2n− 1
steps, where n is the length of w. In that case, checking only derivations with
2n − 1 steps to determine whether G generates w would be sufficient. Only
finitely many such derivations exist. We can convert G to Chomsky normal
form by using the procedure given in Section 2.1.

PROOF The TM S for ACFG follows.

S = “On input 〈G,w〉, where G is a CFG and w is a string:
1. Convert G to an equivalent grammar in Chomsky normal form.
2. List all derivations with 2n−1 steps, where n is the length of w;

except if n = 0, then instead list all derivations with one step.
3. If any of these derivations generate w, accept ; if not, reject .”

The problem of determining whether a CFG generates a particular string is
related to the problem of compiling programming languages. The algorithm in
TM S is very inefficient and would never be used in practice, but it is easy to de-
scribe and we aren’t concerned with efficiency here. In Part Three of this book,
we address issues concerning the running time and memory use of algorithms.
In the proof of Theorem 7.16, we describe a more efficient algorithm for rec-
ognizing general context-free languages. Even greater efficiency is possible for
recognizing deterministic context-free languages.
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4.1 DECIDABLE LANGUAGES 199

Recall that we have given procedures for converting back and forth between
CFGs and PDAs in Theorem 2.20. Hence everything we say about the decidability
of problems concerning CFGs applies equally well to PDAs.

Let’s turn now to the emptiness testing problem for the language of a CFG.
As we did for DFAs, we can show that the problem of determining whether a CFG
generates any strings at all is decidable. Let

ECFG = {〈G〉| G is a CFG and L(G) = ∅}.

THEOREM 4.8

ECFG is a decidable language.

PROOF IDEA To find an algorithm for this problem, we might attempt to
use TM S from Theorem 4.7. It states that we can test whether a CFG generates
some particular string w. To determine whether L(G) = ∅, the algorithm might
try going through all possible w’s, one by one. But there are infinitely many w’s
to try, so this method could end up running forever. We need to take a different
approach.

In order to determine whether the language of a grammar is empty, we need
to test whether the start variable can generate a string of terminals. The algo-
rithm does so by solving a more general problem. It determines for each variable
whether that variable is capable of generating a string of terminals. When the
algorithm has determined that a variable can generate some string of terminals,
the algorithm keeps track of this information by placing a mark on that variable.

First, the algorithm marks all the terminal symbols in the grammar. Then, it
scans all the rules of the grammar. If it ever finds a rule that permits some vari-
able to be replaced by some string of symbols, all of which are already marked,
the algorithm knows that this variable can be marked, too. The algorithm con-
tinues in this way until it cannot mark any additional variables. The TM R
implements this algorithm.

PROOF

R = “On input 〈G〉, where G is a CFG:
1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
3. Mark any variable A where G has a rule A → U1U2 · · ·Uk and

each symbol U1, . . . , Uk has already been marked.
4. If the start variable is not marked, accept ; otherwise, reject .”
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200 CHAPTER 4 / DECIDABILITY

Next, we consider the problem of determining whether two context-free
grammars generate the same language. Let

EQCFG = {〈G,H〉| G and H are CFGs and L(G) = L(H)}.

Theorem 4.5 gave an algorithm that decides the analogous language EQDFA for
finite automata. We used the decision procedure for EDFA to prove that EQDFA

is decidable. Because ECFG also is decidable, you might think that we can use
a similar strategy to prove that EQCFG is decidable. But something is wrong
with this idea! The class of context-free languages is not closed under comple-
mentation or intersection, as you proved in Exercise 2.2. In fact, EQCFG is not
decidable. The technique for proving so is presented in Chapter 5.

Now we show that context-free languages are decidable by Turing machines.

THEOREM 4.9

Every context-free language is decidable.

PROOF IDEA Let A be a CFL. Our objective is to show that A is decidable.
One (bad) idea is to convert a PDA for A directly into a TM. That isn’t hard to
do because simulating a stack with the TM’s more versatile tape is easy. The PDA
for A may be nondeterministic, but that seems okay because we can convert it
into a nondeterministic TM and we know that any nondeterministic TM can be
converted into an equivalent deterministic TM. Yet, there is a difficulty. Some
branches of the PDA’s computation may go on forever, reading and writing the
stack without ever halting. The simulating TM then would also have some non-
halting branches in its computation, and so the TM would not be a decider. A
different idea is necessary. Instead, we prove this theorem with the TM S that we
designed in Theorem 4.7 to decide ACFG.

PROOF Let G be a CFG for A and design a TM MG that decides A. We build
a copy of G into MG. It works as follows.

MG = “On input w:
1. Run TM S on input 〈G,w〉.
2. If this machine accepts, accept ; if it rejects, reject .”

Theorem 4.9 provides the final link in the relationship among the four main
classes of languages that we have described so far: regular, context-free, decid-
able, and Turing-recognizable. Figure 4.10 depicts this relationship.
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FIGURE 4.10

The relationship among classes of languages

4.2
UNDECIDABILITY

In this section, we prove one of the most philosophically important theorems of
the theory of computation: There is a specific problem that is algorithmically
unsolvable. Computers appear to be so powerful that you may believe that all
problems will eventually yield to them. The theorem presented here demon-
strates that computers are limited in a fundamental way.

What sorts of problems are unsolvable by computer? Are they esoteric,
dwelling only in the minds of theoreticians? No! Even some ordinary prob-
lems that people want to solve turn out to be computationally unsolvable.

In one type of unsolvable problem, you are given a computer program and
a precise specification of what that program is supposed to do (e.g., sort a list
of numbers). You need to verify that the program performs as specified (i.e.,
that it is correct). Because both the program and the specification are mathe-
matically precise objects, you hope to automate the process of verification by
feeding these objects into a suitably programmed computer. However, you will
be disappointed. The general problem of software verification is not solvable by
computer.

In this section and in Chapter 5, you will encounter several computationally
unsolvable problems. We aim to help you develop a feeling for the types of
problems that are unsolvable and to learn techniques for proving unsolvability.

Now we turn to our first theorem that establishes the undecidability of a spe-
cific language: the problem of determining whether a Turing machine accepts a
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202 CHAPTER 4 / DECIDABILITY

given input string. We call it ATM by analogy with ADFA and ACFG. But, whereas
ADFA and ACFG were decidable, ATM is not. Let

ATM = {〈M,w〉| M is a TM and M accepts w}.

THEOREM 4.11

ATM is undecidable.

Before we get to the proof, let’s first observe that ATM is Turing-recognizable.
Thus, this theorem shows that recognizers are more powerful than deciders.
Requiring a TM to halt on all inputs restricts the kinds of languages that it can
recognize. The following Turing machine U recognizes ATM.

U = “On input 〈M,w〉, where M is a TM and w is a string:
1. Simulate M on input w.
2. If M ever enters its accept state, accept ; if M ever enters its

reject state, reject .”

Note that this machine loops on input 〈M,w〉 if M loops on w, which is why
this machine does not decide ATM. If the algorithm had some way to determine
that M was not halting on w, it could reject in this case. However, an algorithm
has no way to make this determination, as we shall see.

The Turing machine U is interesting in its own right. It is an example of the
universal Turing machine first proposed by Alan Turing in 1936. This machine
is called universal because it is capable of simulating any other Turing machine
from the description of that machine. The universal Turing machine played an
important early role in the development of stored-program computers.

THE DIAGONALIZATION METHOD

The proof of the undecidability of ATM uses a technique called diagonalization,
discovered by mathematician Georg Cantor in 1873. Cantor was concerned
with the problem of measuring the sizes of infinite sets. If we have two infinite
sets, how can we tell whether one is larger than the other or whether they are of
the same size? For finite sets, of course, answering these questions is easy. We
simply count the elements in a finite set, and the resulting number is its size. But
if we try to count the elements of an infinite set, we will never finish! So we can’t
use the counting method to determine the relative sizes of infinite sets.

For example, take the set of even integers and the set of all strings over {0,1}.
Both sets are infinite and thus larger than any finite set, but is one of the two
larger than the other? How can we compare their relative size?

Cantor proposed a rather nice solution to this problem. He observed that two
finite sets have the same size if the elements of one set can be paired with the
elements of the other set. This method compares the sizes without resorting to
counting. We can extend this idea to infinite sets. Here it is more precisely.
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DEFINITION 4.12

Assume that we have sets A and B and a function f from A to B.
Say that f is one-to-one if it never maps two different elements to
the same place—that is, if f(a) (= f(b) whenever a (= b. Say that
f is onto if it hits every element of B—that is, if for every b ∈ B
there is an a ∈ A such that f(a) = b. Say that A and B are the same
size if there is a one-to-one, onto function f : A−→B. A function
that is both one-to-one and onto is called a correspondence. In a
correspondence, every element of A maps to a unique element of
B and each element of B has a unique element of A mapping to it.
A correspondence is simply a way of pairing the elements of A with
the elements of B.

Alternative common terminology for these types of functions is injective for
one-to-one, surjective for onto, and bijective for one-to-one and onto.

EXAMPLE 4.13

Let N be the set of natural numbers {1, 2, 3, . . .} and let E be the set of even
natural numbers {2, 4, 6, . . .}. Using Cantor’s definition of size, we can see that
N and E have the same size. The correspondence f mapping N to E is simply
f(n) = 2n. We can visualize f more easily with the help of a table.

n f(n)
1 2
2 4
3 6
...

...

Of course, this example seems bizarre. Intuitively, E seems smaller than N be-
cause E is a proper subset of N . But pairing each member of N with its own
member of E is possible, so we declare these two sets to be the same size.

DEFINITION 4.14

A set A is countable if either it is finite or it has the same size as N .

EXAMPLE 4.15

Now we turn to an even stranger example. If we let Q = {m
n |m,n ∈ N} be the

set of positive rational numbers, Q seems to be much larger than N . Yet these
two sets are the same size according to our definition. We give a correspondence
with N to show that Q is countable. One easy way to do so is to list all the
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elements of Q. Then we pair the first element on the list with the number 1
from N , the second element on the list with the number 2 from N , and so on.
We must ensure that every member of Q appears only once on the list.

To get this list, we make an infinite matrix containing all the positive ratio-
nal numbers, as shown in Figure 4.16. The ith row contains all numbers with
numerator i and the jth column has all numbers with denominator j. So the
number i

j occurs in the ith row and jth column.
Now we turn this matrix into a list. One (bad) way to attempt it would be to

begin the list with all the elements in the first row. That isn’t a good approach
because the first row is infinite, so the list would never get to the second row.
Instead we list the elements on the diagonals, which are superimposed on the
diagram, starting from the corner. The first diagonal contains the single element
1
1 , and the second diagonal contains the two elements 2

1 and 1
2 . So the first

three elements on the list are 1
1 , 2

1 , and 1
2 . In the third diagonal, a complication

arises. It contains 3
1 , 2

2 , and 1
3 . If we simply added these to the list, we would

repeat 1
1 = 2

2 . We avoid doing so by skipping an element when it would cause
a repetition. So we add only the two new elements 3

1 and 1
3 . Continuing in this

way, we obtain a list of all the elements of Q.

FIGURE 4.16

A correspondence of N and Q

After seeing the correspondence of N and Q, you might think that any two
infinite sets can be shown to have the same size. After all, you need only demon-
strate a correspondence, and this example shows that surprising correspondences
do exist. However, for some infinite sets, no correspondence with N exists.
These sets are simply too big. Such sets are called uncountable.

The set of real numbers is an example of an uncountable set. A real number
is one that has a decimal representation. The numbers π = 3.1415926 . . . and
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√
2 = 1.4142135 . . . are examples of real numbers. Let R be the set of real

numbers. Cantor proved that R is uncountable. In doing so, he introduced the
diagonalization method.

THEOREM 4.17

R is uncountable.

PROOF In order to show that R is uncountable, we show that no correspon-
dence exists between N and R. The proof is by contradiction. Suppose that a
correspondence f existed between N and R. Our job is to show that f fails to
work as it should. For it to be a correspondence, f must pair all the members of
N with all the members of R. But we will find an x in R that is not paired with
anything in N , which will be our contradiction.

The way we find this x is by actually constructing it. We choose each digit
of x to make x different from one of the real numbers that is paired with an
element of N . In the end, we are sure that x is different from any real number
that is paired.

We can illustrate this idea by giving an example. Suppose that the correspon-
dence f exists. Let f(1) = 3.14159 . . . , f(2) = 55.55555 . . . , f(3) = . . . ,
and so on, just to make up some values for f . Then f pairs the number 1 with
3.14159 . . . , the number 2 with 55.55555 . . . , and so on. The following table
shows a few values of a hypothetical correspondence f between N and R.

n f(n)
1 3.14159 . . .
2 55.55555 . . .
3 0.12345 . . .
4 0.50000 . . .

...
...

We construct the desired x by giving its decimal representation. It is a num-
ber between 0 and 1, so all its significant digits are fractional digits following the
decimal point. Our objective is to ensure that x (= f(n) for any n. To ensure
that x (= f(1), we let the first digit of x be anything different from the first
fractional digit 1 of f(1) = 3.14159 . . . . Arbitrarily, we let it be 4. To ensure
that x (= f(2), we let the second digit of x be anything different from the second
fractional digit 5 of f(2) = 55.555555 . . . . Arbitrarily, we let it be 6. The third
fractional digit of f(3) = 0.12345 . . . is 3, so we let x be anything different—
say, 4. Continuing in this way down the diagonal of the table for f , we obtain
all the digits of x, as shown in the following table. We know that x is not f(n)
for any n because it differs from f(n) in the nth fractional digit. (A slight prob-
lem arises because certain numbers, such as 0.1999 . . . and 0.2000 . . . , are equal
even though their decimal representations are different. We avoid this problem
by never selecting the digits 0 or 9 when we construct x.)
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n f(n)
1 3.14159 . . .
2 55.55555 . . .
3 0.12345 . . .
4 0.50000 . . .

...
...

x = 0.4641 . . .

The preceding theorem has an important application to the theory of com-
putation. It shows that some languages are not decidable or even Turing-
recognizable, for the reason that there are uncountably many languages yet only
countably many Turing machines. Because each Turing machine can recognize
a single language and there are more languages than Turing machines, some
languages are not recognized by any Turing machine. Such languages are not
Turing-recognizable, as we state in the following corollary.

COROLLARY 4.18

Some languages are not Turing-recognizable.

PROOF To show that the set of all Turing machines is countable, we first
observe that the set of all strings Σ∗ is countable for any alphabet Σ. With only
finitely many strings of each length, we may form a list of Σ∗ by writing down
all strings of length 0, length 1, length 2, and so on.

The set of all Turing machines is countable because each Turing machine M
has an encoding into a string 〈M〉. If we simply omit those strings that are not
legal encodings of Turing machines, we can obtain a list of all Turing machines.

To show that the set of all languages is uncountable, we first observe that the
set of all infinite binary sequences is uncountable. An infinite binary sequence is an
unending sequence of 0s and 1s. Let B be the set of all infinite binary sequences.
We can show that B is uncountable by using a proof by diagonalization similar
to the one we used in Theorem 4.17 to show that R is uncountable.

Let L be the set of all languages over alphabet Σ. We show that L is un-
countable by giving a correspondence with B, thus showing that the two sets are
the same size. Let Σ∗ = {s1, s2, s3, . . .}. Each language A ∈ L has a unique
sequence in B. The ith bit of that sequence is a 1 if si ∈ A and is a 0 if si (∈ A,
which is called the characteristic sequence of A. For example, if A were the lan-
guage of all strings starting with a 0 over the alphabet {0,1}, its characteristic
sequence χA would be

Σ∗ = { ε, 0, 1, 00, 01, 10, 11, 000, 001, · · · } ;
A = { 0, 00, 01, 000, 001, · · · } ;

χA = 0 1 0 1 1 0 0 1 1 · · · .

The function f : L−→B, where f(A) equals the characteristic sequence of
A, is one-to-one and onto, and hence is a correspondence. Therefore, as B is
uncountable, L is uncountable as well.
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Thus we have shown that the set of all languages cannot be put into a corre-
spondence with the set of all Turing machines. We conclude that some languages
are not recognized by any Turing machine.

AN UNDECIDABLE LANGUAGE

Now we are ready to prove Theorem 4.11, the undecidability of the language

ATM = {〈M,w〉| M is a TM and M accepts w}.

PROOF We assume that ATM is decidable and obtain a contradiction. Sup-
pose that H is a decider for ATM. On input 〈M,w〉, where M is a TM and w is a
string, H halts and accepts if M accepts w. Furthermore, H halts and rejects if
M fails to accept w. In other words, we assume that H is a TM, where

H
(
〈M,w〉

)
=

{
accept if M accepts w

reject if M does not accept w.

Now we construct a new Turing machine D with H as a subroutine. This
new TM calls H to determine what M does when the input to M is its own
description 〈M〉. Once D has determined this information, it does the opposite.
That is, it rejects if M accepts and accepts if M does not accept. The following
is a description of D.

D = “On input 〈M〉, where M is a TM:
1. Run H on input 〈M, 〈M〉〉.
2. Output the opposite of what H outputs. That is, if H accepts,

reject ; and if H rejects, accept .”

Don’t be confused by the notion of running a machine on its own description!
That is similar to running a program with itself as input, something that does
occasionally occur in practice. For example, a compiler is a program that trans-
lates other programs. A compiler for the language Python may itself be written
in Python, so running that program on itself would make sense. In summary,

D
(
〈M〉

)
=

{
accept if M does not accept 〈M〉
reject if M accepts 〈M〉.

What happens when we run D with its own description 〈D〉 as input? In that
case, we get

D
(
〈D〉

)
=

{
accept if D does not accept 〈D〉
reject if D accepts 〈D〉.

No matter what D does, it is forced to do the opposite, which is obviously a
contradiction. Thus, neither TM D nor TM H can exist.
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Let’s review the steps of this proof. Assume that a TM H decides ATM. Use H
to build a TM D that takes an input 〈M〉, where D accepts its input 〈M〉 exactly
when M does not accept its input 〈M〉. Finally, run D on itself. Thus, the
machines take the following actions, with the last line being the contradiction.

• H accepts 〈M,w〉 exactly when M accepts w.

• D rejects 〈M〉 exactly when M accepts 〈M〉.

• D rejects 〈D〉 exactly when D accepts 〈D〉.

Where is the diagonalization in the proof of Theorem 4.11? It becomes ap-
parent when you examine tables of behavior for TMs H and D. In these tables
we list all TMs down the rows, M1, M2, . . . , and all their descriptions across the
columns, 〈M1〉, 〈M2〉, . . . . The entries tell whether the machine in a given row
accepts the input in a given column. The entry is accept if the machine accepts
the input but is blank if it rejects or loops on that input. We made up the entries
in the following figure to illustrate the idea.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept accept
M2 accept accept accept accept
M3

M4 accept accept
· · ·

...
...

FIGURE 4.19

Entry i, j is accept if Mi accepts 〈Mj〉

In the following figure, the entries are the results of running H on inputs
corresponding to Figure 4.19. So if M3 does not accept input 〈M2〉, the entry
for row M3 and column 〈M2〉 is reject because H rejects input 〈M3, 〈M2〉〉.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject accept reject
M2 accept accept accept accept
M3 reject reject reject reject

· · ·

M4 accept accept reject reject
...

...

FIGURE 4.20

Entry i, j is the value of H on input 〈Mi, 〈Mj〉〉
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In the following figure, we added D to Figure 4.20. By our assumption, H is
a TM and so is D. Therefore, it must occur on the list M1, M2, . . . of all TMs.
Note that D computes the opposite of the diagonal entries. The contradiction
occurs at the point of the question mark where the entry must be the opposite
of itself.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈D〉 · · ·
M1 accept reject accept reject accept

M2 accept accept accept accept accept
M3 reject reject reject reject

· · ·
reject

· · ·

M4 accept accept reject reject accept

...
...

. . .

D reject reject accept accept ?

...
...

. . .

FIGURE 4.21

If D is in the figure, a contradiction occurs at “?”

A TURING-UNRECOGNIZABLE LANGUAGE

In the preceding section, we exhibited a language—namely, ATM—that is un-
decidable. Now we exhibit a language that isn’t even Turing-recognizable.
Note that ATM will not suffice for this purpose because we showed that ATM

is Turing-recognizable (page 202). The following theorem shows that if both
a language and its complement are Turing-recognizable, the language is decid-
able. Hence for any undecidable language, either it or its complement is not
Turing-recognizable. Recall that the complement of a language is the language
consisting of all strings that are not in the language. We say that a language is co-
Turing-recognizable if it is the complement of a Turing-recognizable language.

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement
are Turing-recognizable.

PROOF We have two directions to prove. First, if A is decidable, we can easily
see that both A and its complement A are Turing-recognizable. Any decidable
language is Turing-recognizable, and the complement of a decidable language
also is decidable.
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For the other direction, if both A and A are Turing-recognizable, we let M1

be the recognizer for A and M2 be the recognizer for A. The following Turing
machine M is a decider for A.

M = “On input w:
1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept ; if M2 accepts, reject .”

Running the two machines in parallel means that M has two tapes, one for simu-
lating M1 and the other for simulating M2. In this case, M takes turns simulating
one step of each machine, which continues until one of them accepts.

Now we show that M decides A. Every string w is either in A or A. There-
fore, either M1 or M2 must accept w. Because M halts whenever M1 or M2

accepts, M always halts and so it is a decider. Furthermore, it accepts all strings
in A and rejects all strings not in A. So M is a decider for A, and thus A is
decidable.

COROLLARY 4.23

ATM is not Turing-recognizable.

PROOF We know that ATM is Turing-recognizable. If ATM also were Turing-
recognizable, ATM would be decidable. Theorem 4.11 tells us that ATM is not
decidable, so ATM must not be Turing-recognizable.

EXERCISES

A4.1 Answer all parts for the following DFA M and give reasons for your answers.

a. Is 〈M, 0100〉 ∈ ADFA?

b. Is 〈M, 011〉 ∈ ADFA?

c. Is 〈M〉 ∈ ADFA?

d. Is 〈M, 0100〉 ∈ AREX?

e. Is 〈M〉 ∈ EDFA?

f. Is 〈M,M〉 ∈ EQDFA?
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4.2 Consider the problem of determining whether a DFA and a regular expression are
equivalent. Express this problem as a language and show that it is decidable.

4.3 Let ALLDFA = {〈A〉|A is a DFA and L(A) = Σ∗}. Show that ALLDFA is decidable.

4.4 Let AεCFG = {〈G〉| G is a CFG that generates ε}. Show that AεCFG is decidable.
A4.5 Let ETM = {〈M〉| M is a TM and L(M) = ∅}. Show that ETM, the complement of

ETM, is Turing-recognizable.

4.6 Let X be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10}. We describe the
functions f : X−→Y and g : X−→Y in the following tables. Answer each part
and give a reason for each negative answer.

n f(n)
1 6
2 7
3 6
4 7
5 6

n g(n)
1 10
2 9
3 8
4 7
5 6

Aa. Is f one-to-one?

b. Is f onto?

c. Is f a correspondence?

Ad. Is g one-to-one?

e. Is g onto?

f. Is g a correspondence?

4.7 Let B be the set of all infinite sequences over {0,1}. Show that B is uncountable
using a proof by diagonalization.

4.8 Let T = {(i, j, k)| i, j, k ∈ N}. Show that T is countable.

4.9 Review the way that we define sets to be the same size in Definition 4.12 (page 203).
Show that “is the same size” is an equivalence relation.

PROBLEMS

A4.10 Let INFINITEDFA = {〈A〉| A is a DFA and L(A) is an infinite language}. Show
that INFINITEDFA is decidable.

4.11 Let INFINITEPDA = {〈M〉| M is a PDA and L(M) is an infinite language}. Show
that INFINITEPDA is decidable.

A4.12 Let A = {〈M〉| M is a DFA that doesn’t accept any string containing an odd num-
ber of 1s}. Show that A is decidable.

4.13 Let A = {〈R,S〉| R and S are regular expressions and L(R) ⊆ L(S)}. Show that
A is decidable.

A4.14 Let Σ = {0,1}. Show that the problem of determining whether a CFG generates
some string in 1∗ is decidable. In other words, show that

{〈G〉| G is a CFG over {0,1} and 1∗ ∩ L(G) )= ∅}

is a decidable language.
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!4.15 Show that the problem of determining whether a CFG generates all strings in 1∗ is
decidable. In other words, show that {〈G〉|G is a CFG over {0,1} and 1∗ ⊆ L(G)}
is a decidable language.

4.16 Let A = {〈R〉| R is a regular expression describing a language containing at least
one string w that has 111 as a substring (i.e., w = x111y for some x and y)}. Show
that A is decidable.

4.17 Prove that EQDFA is decidable by testing the two DFAs on all strings up to a certain
size. Calculate a size that works.

!4.18 Let C be a language. Prove that C is Turing-recognizable iff a decidable language
D exists such that C = {x| ∃y (〈x, y〉 ∈ D)}.

!4.19 Prove that the class of decidable languages is not closed under homomorphism.

4.20 Let A and B be two disjoint languages. Say that language C separates A and B if
A ⊆ C and B ⊆ C. Show that any two disjoint co-Turing-recognizable languages
are separable by some decidable language.

4.21 Let S = {〈M〉| M is a DFA that accepts wR whenever it accepts w}. Show that S
is decidable.

4.22 Let PREFIX-FREEREX = {〈R〉| R is a regular expression and L(R) is prefix-free}.
Show that PREFIX-FREEREX is decidable. Why does a similar approach fail to
show that PREFIX-FREECFG is decidable?

A!4.23 Say that an NFA is ambiguous if it accepts some string along two different com-
putation branches. Let AMBIGNFA = {〈N〉| N is an ambiguous NFA}. Show that
AMBIGNFA is decidable. (Suggestion: One elegant way to solve this problem is to
construct a suitable DFA and then run EDFA on it.)

4.24 A useless state in a pushdown automaton is never entered on any input string. Con-
sider the problem of determining whether a pushdown automaton has any useless
states. Formulate this problem as a language and show that it is decidable.

A!4.25 Let BALDFA = {〈M〉| M is a DFA that accepts some string containing an equal
number of 0s and 1s}. Show that BALDFA is decidable. (Hint: Theorems about
CFLs are helpful here.)

!4.26 Let PALDFA = {〈M〉| M is a DFA that accepts some palindrome}. Show that
PALDFA is decidable. (Hint: Theorems about CFLs are helpful here.)

!4.27 Let E = {〈M〉| M is a DFA that accepts some string with more 1s than 0s}. Show
that E is decidable. (Hint: Theorems about CFLs are helpful here.)

4.28 Let C = {〈G, x〉| G is a CFG x is a substring of some y ∈ L(G)}. Show that C is
decidable. (Hint: An elegant solution to this problem uses the decider for ECFG.)

4.29 Let CCFG = {〈G, k〉| G is a CFG and L(G) contains exactly k strings where k ≥ 0
or k = ∞}. Show that CCFG is decidable.

4.30 Let A be a Turing-recognizable language consisting of descriptions of Turing ma-
chines, {〈M1〉, 〈M2〉, . . .}, where every Mi is a decider. Prove that some decidable
language D is not decided by any decider Mi whose description appears in A.
(Hint: You may find it helpful to consider an enumerator for A.)

4.31 Say that a variable A in CFL G is usable if it appears in some derivation of some
string w ∈ G. Given a CFG G and a variable A, consider the problem of testing
whether A is usable. Formulate this problem as a language and show that it is
decidable.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.



SELECTED SOLUTIONS 213

4.32 The proof of Lemma 2.41 says that (q, x) is a looping situation for a DPDA P if
when P is started in state q with x ∈ Γ on the top of the stack, it never pops
anything below x and it never reads an input symbol. Show that F is decidable,
where F = {〈P, q, x〉| (q, x) is a looping situation for P}.

SELECTED SOLUTIONS

4.1 (a) Yes. The DFA M accepts 0100.

(b) No. M doesn’t accept 011.

(c) No. This input has only a single component and thus is not of the correct form.

(d) No. The first component is not a regular expression and so the input is not of
the correct form.

(e) No. M ’s language isn’t empty.

(f) Yes. M accepts the same language as itself.

4.5 Let s1, s2, . . . be a list of all strings in Σ∗. The following TM recognizes ETM.

“On input 〈M〉, where M is a TM:
1. Repeat the following for i = 1, 2, 3, . . . .
2. Run M for i steps on each input, s1, s2, . . . , si.
3. If M has accepted any of these, accept . Otherwise, continue.”

4.6 (a) No, f is not one-to-one because f(1) = f(3).

(d) Yes, g is one-to-one.

4.10 The following TM I decides INFINITE
DFA

.

I = “On input 〈A〉, where A is a DFA:
1. Let k be the number of states of A.
2. Construct a DFA D that accepts all strings of length k or more.
3. Construct a DFA M such that L(M) = L(A) ∩ L(D).
4. Test L(M) = ∅ using the EDFA decider T from Theorem 4.4.
5. If T accepts, reject ; if T rejects, accept .”

This algorithm works because a DFA that accepts infinitely many strings must ac-
cept arbitrarily long strings. Therefore, this algorithm accepts such DFAs. Con-
versely, if the algorithm accepts a DFA, the DFA accepts some string of length k or
more, where k is the number of states of the DFA. This string may be pumped in
the manner of the pumping lemma for regular languages to obtain infinitely many
accepted strings.
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4.12 The following TM decides A.

“On input 〈M〉:
1. Construct a DFA O that accepts every string containing an odd

number of 1s.
2. Construct a DFA B such that L(B) = L(M) ∩ L(O).
3. Test whether L(B) = ∅ using the EDFA decider T from Theo-

rem 4.4.
4. If T accepts, accept ; if T rejects, reject .”

4.14 You showed in Problem 2.18 that if C is a context-free language and R is a regular
language, then C ∩ R is context free. Therefore, 1∗ ∩ L(G) is context free. The
following TM decides the language of this problem.

“On input 〈G〉:
1. Construct CFG H such that L(H) = 1∗ ∩ L(G).
2. Test whether L(H) = ∅ using the ECFG decider R from Theo-

rem 4.8.
3. If R accepts, reject ; if R rejects, accept .”

4.23 The following procedure decides AMBIGNFA. Given an NFA N , we design a DFA
D that simulates N and accepts a string iff it is accepted by N along two different
computational branches. Then we use a decider for EDFA to determine whether D
accepts any strings.

Our strategy for constructing D is similar to the NFA-to-DFA conversion in the
proof of Theorem 1.39. We simulate N by keeping a pebble on each active state.
We begin by putting a red pebble on the start state and on each state reachable
from the start state along ε transitions. We move, add, and remove pebbles in
accordance with N ’s transitions, preserving the color of the pebbles. Whenever
two or more pebbles are moved to the same state, we replace its pebbles with a
blue pebble. After reading the input, we accept if a blue pebble is on an accept
state of N or if two different accept states of N have red pebbles on them.

The DFA D has a state corresponding to each possible position of pebbles. For
each state of N , three possibilities occur: It can contain a red pebble, a blue pebble,
or no pebble. Thus, if N has n states, D will have 3n states. Its start state, accept
states, and transition function are defined to carry out the simulation.

4.25 The language of all strings with an equal number of 0s and 1s is a context-free
language, generated by the grammar S → 1S0S | 0S1S | ε. Let P be the PDA that
recognizes this language. Build a TM M for BALDFA, which operates as follows.
On input 〈B〉, where B is a DFA, use B and P to construct a new PDA R that
recognizes the intersection of the languages of B and P . Then test whether R’s
language is empty. If its language is empty, reject ; otherwise, accept .
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