THE CHURCH-TURING
THESIS

So far in our development of the theory of computation, we have presented sev-
eral models of computing devices. Finite automata are good models for devices
that have a small amount of memory. Pushdown automata are good models for
devices that have an unlimited memory that is usable only in the last in, first out
manner of a stack. We have shown that some very simple tasks are beyond the
capabilities of these models. Hence they are too restricted to serve as models of
general purpose computers.

3.1

TURING MACHINES

We turn now to a much more powerful model, first proposed by Alan Turing
in 1936, called the Turing machine. Similar to a finite automaton but with an
unlimited and unrestricted memory, a Turing machine is a much more accurate
model of a general purpose computer. A Turing machine can do everything
that a real computer can do. Nonetheless, even a Turing machine cannot solve
certain problems. In a very real sense, these problems are beyond the theoretical
limits of computation.

The Turing machine model uses an infinite tape as its unlimited memory. It
has a tape head that can read and write symbols and move around on the tape.

165

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

166 CHAPTER 3/ THE CHURCH—TURING THESIS

Initially the tape contains only the input string and is blank everywhere else. If
the machine needs to store information, it may write this information on the
tape. To read the information that it has written, the machine can move its
head back over it. The machine continues computing until it decides to produce
an output. The outputs accept and reject are obtained by entering designated
accepting and rejecting states. If it doesn’t enter an accepting or a rejecting state,
it will go on forever, never halting.

control

|a|b|a|b|u|u|u|é...

FIGURE 3.1
Schematic of a Turing machine

The following list summarizes the differences between finite automata and
Turing machines.

1. A Turing machine can both write on the tape and read from it.
2. The read—write head can move both to the left and to the right.
3. The tape is infinite.

4. The special states for rejecting and accepting take effect immediately.

Let’s introduce a Turing machine M; for testing membership in the language
B = {w#w| w € {0,1}*}. We want M; to accept if its input is a member of B
and to reject otherwise. To understand M; better, put yourself in its place by
imagining that you are standing on a mile-long input consisting of millions of
characters. Your goal is to determine whether the input is a member of B—that
is, whether the input comprises two identical strings separated by a # symbol.
The input is too long for you to remember it all, but you are allowed to move
back and forth over the input and make marks on it. The obvious strategy is
to zig-zag to the corresponding places on the two sides of the # and determine
whether they match. Place marks on the tape to keep track of which places
correspond.

We design M; to work in that way. It makes multiple passes over the input
string with the read—write head. On each pass it matches one of the characters
on each side of the # symbol. To keep track of which symbols have been checked
already, M; crosses off each symbol as it is examined. If it crosses off all the
symbols, that means that everything matched successfully, and M; goes into an
accept state. If it discovers a mismatch, it enters a reject state. In summary, M;’s
algorithm is as follows.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.1 TURING MACHINES 167

M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

The following figure contains several nonconsecutive snapshots of M;’s tape
after it is started on input 011000#011000.

X X XXXX#EXXXXXXU
accept

FIGURE 3.2
Snapshots of Turing machine M; computing on input 011000#011000

This description of Turing machine M; sketches the way it functions but does
not give all its details. We can describe Turing machines in complete detail by
giving formal descriptions analogous to those introduced for finite and push-
down automata. The formal descriptions specify each of the parts of the formal
definition of the Turing machine model to be presented shortly. In actuality, we
almost never give formal descriptions of Turing machines because they tend to

be very big.

FORMAL DEFINITION OF A TURING MACHINE

The heart of the definition of a Turing machine is the transition function ¢ be-
cause it tells us how the machine gets from one step to the next. For a Turing
machine, § takes the form: Q@ xI' — @Q xI"x {L, R}. That is, when the machine

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

168 CHAPTER 3/ THE CHURCH-TURING THESIS

is in a certain state ¢ and the head is over a tape square containing a symbol a,
and if §(¢,a) = (r,b,L), the machine writes the symbol b replacing the a, and
goes to state r. The third component is either L or R and indicates whether the
head moves to the left or right after writing. In this case, the L indicates a move
to the left.

DEFINITION 3.3

A Turing machine is a 7-tuple, (Q,%,T",0, o, Gaccept> Greject), Where
Q, 3, I are all finite sets and

1. Q is the set of states,

2. ¥ is the input alphabet not containing the blank symbol .,

3. T is the tape alphabet, where u € T'and ¥ C T,

4.6: Q xT'—@Q x I x {L, R} is the transition function,

5. qo € Q is the start state,

6. Gaccepr € @ is the accept state, and

7. Grejecr € Q is the reject state, where greject 7 Gaccept-

A Turing machine M = (Q, %, T, 9, qo, Gaccept, Greject) cOmputes as follows. Ini-
tially, M receives its input w = wyws ...w, € X* on the leftmost n squares of
the tape, and the rest of the tape is blank (i.e., filled with blank symbols). The
head starts on the leftmost square of the tape. Note that ¥ does not contain the
blank symbol, so the first blank appearing on the tape marks the end of the input.
Once M has started, the computation proceeds according to the rules described
by the transition function. If M ever tries to move its head to the left off the
left-hand end of the tape, the head stays in the same place for that move, even
though the transition function indicates L. The computation continues until it
enters either the accept or reject states, at which point it halts. If neither occurs,
M goes on forever.

As a Turing machine computes, changes occur in the current state, the cur-
rent tape contents, and the current head location. A setting of these three items
is called a configuration of the Turing machine. Configurations often are rep-
resented in a special way. For a state ¢ and two strings u and v over the tape
alphabet I', we write u g v for the configuration where the current state is g, the
current tape contents is uv, and the current head location is the first symbol
of v. The tape contains only blanks following the last symbol of v. For example,
1011¢701111 represents the configuration when the tape is 101101111, the cur-
rent state is g7, and the head is currently on the second 0. Figure 3.4 depicts a
Turing machine with that configuration.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.1 TURING MACHINES 169

ar

[tjofaftfolafafafa]ula]uf.-.

FIGURE 3.4
A 'Turing machine with configuration 1011¢701111

Here we formalize our intuitive understanding of the way that a Turing ma-
chine computes. Say that configuration C, yields configuration C5 if the Turing
machine can legally go from C; to Cs in a single step. We define this notion
formally as follows.

Suppose that we have a, b, and c in T, as well as v and v in I'* and states ¢;
and ¢;. In that case, ua ¢; bv and u ¢; acv are two configurations. Say that

uagq;bv yields wgj;acv

if in the transition function §(g¢;, b) = (g;, ¢, L). That handles the case where the
Turing machine moves leftward. For a rightward move, say that

uagq;bv yields wacgqjv

if 6(qi,b) = (g, ¢, R).

Special cases occur when the head is at one of the ends of the configuration.
For the left-hand end, the configuration g¢; bv yields g; cv if the transition is left-
moving (because we prevent the machine from going off the left-hand end of the
tape), and it yields ¢ ¢;v for the right-moving transition. For the right-hand end,
the configuration ua ¢; is equivalent to ua ¢; u because we assume that blanks
follow the part of the tape represented in the configuration. Thus we can handle
this case as before, with the head no longer at the right-hand end.

The start configuration of M on input w is the configuration ¢o w, which
indicates that the machine is in the start state gy with its head at the leftmost
position on the tape. In an accepting configuration, the state of the configuration
1S Qaccepr- 1N a rejecting configuration, the state of the configuration is greject-
Accepting and rejecting configurations are balting configurations and do not
yield further configurations. Because the machine is defined to halt when in the
States Gaccept AN Greject, We equivalently could have defined the transition function
to have the more complicated form §: Q' x '— @ x " x {L, R}, where Q' is Q
without gaccept and greject- A Turing machine M accepts input w if a sequence of
configurations C, Cy, ..., C}, exists, where

1. C} is the start configuration of M on input w,
2. each C; yields Cj41, and
3. Cy is an accepting configuration.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

170 CHAPTER 3/ THE CHURCH-TURING THESIS

The collection of strings that M accepts is the language of M, or the lan-
guage recognized by M, denoted L(M).

DEFINITION 3.5

Call a language Turing-recognizable if some "Turing machine
recognizes it.

When we start a Turing machine on an input, three outcomes are possible.
The machine may accept, reject, or loop. By loop we mean that the machine simply
does not halt. Looping may entail any simple or complex behavior that never
leads to a halting state.

A 'Turing machine M can fail to accept an input by entering the grejec state
and rejecting, or by looping. Sometimes distinguishing a machine that is looping
from one that is merely taking a long time is difficult. For this reason, we prefer
Turing machines that halt on all inputs; such machines never loop. These ma-
chines are called deciders because they always make a decision to accept or reject.
A decider that recognizes some language also is said to decide that language.

DEFINITION 3.6

Call a language Turing-decidable or simply decidable if some

Turing machine decides it.2

Next, we give examples of decidable languages. Every decidable language
is Turing-recognizable. We present examples of languages that are Turing-
recognizable but not decidable after we develop a technique for proving un-

decidability in Chapter 4.

EXAMPLES OF TURING MACHINES

As we did for finite and pushdown automata, we can formally describe a partic-
ular Turing machine by specifying each of its seven parts. However, going to
that level of detail can be cumbersome for all but the tiniest Turing machines.
Accordingly, we won’t spend much time giving such descriptions. Mostly we

Tt is called a recursively enumerable language in some other textbooks.
Mt is called a recursive language in some other textbooks.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.1 TURING MACHINES 171

will give only higher level descriptions because they are precise enough for our
purposes and are much easier to understand. Nevertheless, it is important to
remember that every higher level description is actually just shorthand for its
formal counterpart. With patience and care we could describe any of the Turing
machines in this book in complete formal detail.

To help you make the connection between the formal descriptions and the
higher level descriptions, we give state diagrams in the next two examples. You
may skip over them if you already feel comfortable with this connection.

EXAMPLE 3.7 ..

Here we describe a Turing machine (TM) M that decides A = {02"|n > 0}, the
language consisting of all strings of 0s whose length is a power of 2.

M; = “On input string w:
1. Sweep left to right across the tape, crossing off every other 0.
2. Ifin stage 1 the tape contained a single 0, accept.
3. If in stage 1 the tape contained more than a single 0 and the
number of 0s was odd, reject.
4. Return the head to the left-hand end of the tape.
5. Go to stage 1.”

Each iteration of stage 1 cuts the number of 0s in half. As the machine sweeps
across the tape in stage 1, it keeps track of whether the number of Os seen is even
or odd. If that number is odd and greater than 1, the original number of 0s in
the input could not have been a power of 2. Therefore, the machine rejects in
this instance. However, if the number of 0s seen is 1, the original number must
have been a power of 2. So in this case, the machine accepts.

Now we give the formal description of My = (Q, X, T, 6, q1, Gaccepts Greject):

* Q= {q1,92, 43, 44, G5, Gaccept> Greject)} »

* ¥ = {0}, and

e I' = {0,x,u}.

* We describe ¢ with a state diagram (see Figure 3.8).

* The start, accept, and reject states are q1, Gaccept, A0d Greject, respectively.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

172 CHAPTER 3/ THE CHURCH-TURING THESIS

u—R

FIGURE 3.8
State diagram for Turing machine Ms

In this state diagram, the label 0—wu,R appears on the transition from ¢; to go.
This label signifies that when in state ¢; with the head reading 0, the machine
goes to state g2, writes u, and moves the head to the right. In other words,
9(q1,0) = (g2,u,R). For clarity we use the shorthand 0—R in the transition from
g3 to ¢4, to mean that the machine moves to the right when reading 0 in state g3
but doesn’t alter the tape, so d(¢3,0) = (¢4,0,R).

This machine begins by writing a blank symbol over the leftmost 0 on the
tape so that it can find the left-hand end of the tape in stage 4. Whereas we
would normally use a more suggestive symbol such as # for the left-hand end
delimiter, we use a blank here to keep the tape alphabet, and hence the state
diagram, small. Example 3.11 gives another method of finding the left-hand end
of the tape.

Next we give a sample run of this machine on input 0000. The starting con-
figuration is g1 0000. The sequence of configurations the machine enters appears
as follows; read down the columns and left to right.

q10000 ugsx0xu LUX(q5XXU
ugo000 qsux0xu LG5 XX XU
uxq300 ugex0xu @5UXXXU
ux0qs0 uxg20xu LIga XX XU
ux0xqsu UXX(g3XU UX(@oXXU
ux0gsxu UXXX(Q3U LXX (o XU
uxqs0xu LXX(g5 XU LXXX(qoU
'—'XXX'—'qaccept

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.1 TURING MACHINES 173

EXAMPLE 3.9 ..

The following is a formal description of M; = (Q,%,I',0, g1, Gaccept> Greject), the
Turing machine that we informally described (page 167) for deciding the lan-
guage B = {w#w| w € {0,1}*}.

* Q = {(hv -+ + 5 48, Qaccept Qreject},
« ¥ ={0,1,#},and T = {0,1,#,x,u}.
* We describe d with a state diagram (see the following figure).

* The start, accept, and reject states are qi, Gaccept, And Greject, respectively.

o

FIGURE 3.10
State diagram for Turing machine M

In Figure 3.10, which depicts the state diagram of TM M, you will find the
label 0,1—R on the transition going from g3 to itself. That label means that the
machine stays in ¢3 and moves to the right when it reads a 0 or a 1 in state ¢3. It
doesn’t change the symbol on the tape.

Stage 1 is implemented by states ¢; through g7, and stage 2 by the remaining
states. To simplify the figure, we don’t show the reject state or the transitions
going to the reject state. Those transitions occur implicitly whenever a state
lacks an outgoing transition for a particular symbol. Thus because in state g
no outgoing arrow with a # is present, if a # occurs under the head when the
machine is in state gs, it goes to state Grejeee. For completeness, we say that the
head moves right in each of these transitions to the reject state.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

174 CHAPTER 3/ THE CHURCH—TURING THESIS

EXAMPLE 3.1 'I ..

Here, a TM M3 is doing some elementary arithmetic. It decides the language
C ={a'bick|ixj=kandi,jk>1}.

M3 = “On input string w:

1. Scan the input from left to right to determine whether it is a
member of a*b*c* and reject if it isn’t.

2. Return the head to the left-hand end of the tape.

3. Cross off an a and scan to the right until a b occurs. Shuttle
between the b’s and the c’s, crossing off one of each until all b’s
are gone. If all ¢’s have been crossed off and some b’s remain,
reject.

4. Restore the crossed off b’ and repeat stage 3 if there is another
a to cross off. If all a’s have been crossed off, determine whether
all ¢’s also have been crossed off. If yes, accept; otherwise,
reject.”

Let’s examine the four stages of M3 more closely. In stage 1, the machine
operates like a finite automaton. No writing is necessary as the head moves from
left to right, keeping track by using its states to determine whether the input is
in the proper form.

Stage 2 looks equally simple but contains a subtlety. How can the TM find
the left-hand end of the input tape? Finding the right-hand end of the input
is easy because it is terminated with a blank symbol. But the left-hand end has
no terminator initially. One technique that allows the machine to find the left-
hand end of the tape is for it to mark the leftmost symbol in some way when
the machine starts with its head on that symbol. Then the machine may scan
left until it finds the mark when it wants to reset its head to the left-hand end.
Example 3.7 illustrated this technique; a blank symbol marks the left-hand end.

A trickier method of finding the left-hand end of the tape takes advantage of
the way that we defined the Turing machine model. Recall that if the machine
tries to move its head beyond the left-hand end of the tape, it stays in the same
place. We can use this feature to make a left-hand end detector. To detect
whether the head is sitting on the left-hand end, the machine can write a special
symbol over the current position while recording the symbol that it replaced in
the control. Then it can attempt to move the head to the left. If it is still over
the special symbol, the leftward move didn’t succeed, and thus the head must
have been at the left-hand end. If instead it is over a different symbol, some
symbols remained to the left of that position on the tape. Before going farther,
the machine must be sure to restore the changed symbol to the original.

Stages 3 and 4 have straightforward implementations and use several states
each.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.1 TURING MACHINES 175

EXAMPLE 3.12 ..

Here, a TM My is solving what is called the element distinctness problem. It is given
a list of strings over {0,1} separated by #s and its job is to accept if all the strings
are different. The language is

E = {#x 1#xo#t- - - #x;| each z; € {0,1}" and x; # x; for each i # j}.

Machine M, works by comparing x; with x5 through z;, then by comparing x
with x3 through z;, and so on. An informal description of the TM M, deciding
this language follows.

M4 = “On input w:

1. Place a mark on top of the leftmost tape symbol. If that symbol
was a blank, accept. If that symbol was a #, continue with the
next stage. Otherwise, reject.

2. Scan right to the next # and place a second mark on top of it. If
no # is encountered before a blank symbol, only x; was present,
SO accept.

3. By zig-zagging, compare the two strings to the right of the
marked #s. If they are equal, reject.

4. Move the rightmost of the two marks to the next # symbol to
the right. If no # symbol is encountered before a blank sym-
bol, move the leftmost mark to the next # to its right and the
rightmost mark to the # after that. This time, if no # is available
for the rightmost mark, all the strings have been compared, so
accept.

5. Go to stage 3.”

"This machine illustrates the technique of marking tape symbols. In stage 2,
the machine places a mark above a symbol, # in this case. In the actual imple-
mentation, the machine has two different symbols, # and #, in its tape alphabet.
Saying that the machine places a mark above a # means that the machine writes
the symbol # at that location. Removing the mark means that the machine writes
the symbol without the dot. In general, we may want to place marks over vari-
ous symbols on the tape. To do so, we merely include versions of all these tape

symbols with dots in the tape alphabet.

We conclude from the preceding examples that the described languages A,
B, C, and E are decidable. All decidable languages are Turing-recognizable, so
these languages are also Turing-recognizable. Demonstrating a language that is
Turing-recognizable but undecidable is more difficult. We do so in Chapter 4.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

176 CHAPTER 3/ THE CHURCH—TURING THESIS

3.2

VARIANTS OF TURING MACHINES

Alternative definitions of Turing machines abound, including versions with mul-
tiple tapes or with nondeterminism. They are called variants of the Turing
machine model. The original model and its reasonable variants all have the
same power—they recognize the same class of languages. In this section, we de-
scribe some of these variants and the proofs of equivalence in power. We call this
invariance to certain changes in the definition robustness. Both finite automata
and pushdown automata are somewhat robust models, but Turing machines have
an astonishing degree of robustness.

To illustrate the robustness of the Turing machine model, let’s vary the type
of transition function permitted. In our definition, the transition function forces
the head to move to the left or right after each step; the head may not simply
stay put. Suppose that we had allowed the Turing machine the ability to stay put.
The transition function would then have the form 0: @ xI'—Q xT'x {L, R, S}.
Might this feature allow Turing machines to recognize additional languages, thus
adding to the power of the model? Of course not, because we can convert any
TM with the “stay put” feature to one that does not have it. We do so by replacing
each stay put transition with two transitions: one that moves to the right and the
second back to the left.

This small example contains the key to showing the equivalence of TM vari-
ants. 'To show that two models are equivalent, we simply need to show that one
can simulate the other.

MULTITAPE TURING MACHINES

A multitape Turing machine is like an ordinary Turing machine with several
tapes. Each tape has its own head for reading and writing. Initially the input
appears on tape 1, and the others start out blank. The transition function is
changed to allow for reading, writing, and moving the heads on some or all of
the tapes simultaneously. Formally, it is

§: QxT*—Q xTI'* x {L,R,S}¥,
where £ is the number of tapes. The expression
5(qi,a1,...,ak) == (Qj,bl,...,bk,L,R,...,L)

means that if the machine is in state ¢; and heads 1 through & are reading symbols
a; through ay, the machine goes to state g;, writes symbols b; through by, and
directs each head to move left or right, or to stay put, as specified.

Multitape Turing machines appear to be more powerful than ordinary Turing
machines, but we can show that they are equivalent in power. Recall that two
machines are equivalent if they recognize the same language.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.2 VARIANTS OF TURING MACHINES 177

THEOREM 3.13 ...

Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF We show how to convert a multitape TM M to an equivalent single-
tape TM S. The key idea is to show how to simulate M with S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing
their information on its single tape. It uses the new symbol # as a delimiter to
separate the contents of the different tapes. In addition to the contents of these
tapes, S must keep track of the locations of the heads. It does so by writing a tape
symbol with a dot above it to mark the place where the head on that tape would
be. Think of these as “virtual” tapes and heads. As before, the “dotted” tape
symbols are simply new symbols that have been added to the tape alphabet. The
following figure illustrates how one tape can be used to represent three tapes.

lof1|of1]o]u]...

S

°
a

[#]ol1]of1]o#|alalaf#][blal#|u]...

FIGURE 3.14
Representing three tapes with one

S =%“Oninputw = wy -+ Wy:
1. First S puts its tape into the format that represents all k£ tapes
of M. The formatted tape contains

[]]]
#wiwy - w, BuHLH - #

2. To simulate a single move, S scans its tape from the first #,
which marks the left-hand end, to the (k + 1)st #, which marks
the right-hand end, in order to determine the symbols under
the virtual heads. Then S makes a second pass to update the
tapes according to the way that M’s transition function dictates.

3. Ifatany point S moves one of the virtual heads to the right onto
a #, this action signifies that M has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right. Then it continues the simulation as before.”

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

178 CHAPTER 3/ THE CHURCH-TURING THESIS

COROLLARY 3.15 ...

A language is Turing-recognizable if and only if some multitape Turing machine
recognizes it.

PROOF A Turing-recognizable language is recognized by an ordinary (single-
tape) Turing machine, which is a special case of a multitape Turing machine.
That proves one direction of this corollary. The other direction follows from
Theorem 3.13.

NONDETERMINISTIC TURING MACHINES

A nondeterministic Turing machine is defined in the expected way. At any point
in a computation, the machine may proceed according to several possibilities.
The transition function for a nondeterministic Turing machine has the form

0: Q xI'—P(Q xI' x {L,R}).

The computation of a nondeterministic Turing machine is a tree whose branches
correspond to different possibilities for the machine. If some branch of the com-
putation leads to the accept state, the machine accepts its input. If you feel the
need to review nondeterminism, turn to Section 1.2 (page 47). Now we show
that nondeterminism does not affect the power of the Turing machine model.

THEOREM 3.16 ...

Every nondeterministic Turing machine has an equivalent deterministic Turing
machine.

PROOF IDEA We can simulate any nondeterministic TM N with a determin-
istic TM D. The idea behind the simulation is to have D try all possible branches
of N’s nondeterministic computation. If D ever finds the accept state on one of
these branches, D accepts. Otherwise, D’s simulation will not terminate.

We view N’s computation on an input w as a tree. Each branch of the tree
represents one of the branches of the nondeterminism. Each node of the tree
is a configuration of N. The root of the tree is the start configuration. The
TM D searches this tree for an accepting configuration. Conducting this search
carefully is crucial lest D fail to visit the entire tree. A tempting, though bad,
idea is to have D explore the tree by using depth-first search. The depth-first
search strategy goes all the way down one branch before backing up to explore
other branches. If D were to explore the tree in this manner, D could go forever
down one infinite branch and miss an accepting configuration on some other
branch. Hence we design D to explore the tree by using breadth-first search
instead. This strategy explores all branches to the same depth before going on
to explore any branch to the next depth. This method guarantees that D will
visit every node in the tree until it encounters an accepting configuration.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N’s nondeterministic computation tree.

|O|O|1|O|u|... input tape

D=
|X|X|#|O|1|X|u|... simulation tape
l1]2[3]3]2]3]|1]2][1]1]3]u]... addresstape

FIGURE 3.17
Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N’s transition function. To every node in the tree we assign
an address that is a string over the alphabet I', = {1,2,...,b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over I',. It represents the branch of N’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be €.

3. Use tape 2 to simulate NV with input w on one branch of its nondeterminis-
tic computation. Before each step of N, consult the next symbol on tape 3
to determine which choice to make among those allowed by N’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

180 CHAPTER 3/ THE CHURCH-TURING THESIS

COROLLARY 3.18 ...

A language is Turing-recognizable if and only if some nondeterministic Turing
machine recognizes it.

PROOF Any deterministic TM is automatically a nondeterministic TM, and so
one direction of this corollary follows immediately. The other direction follows
from Theorem 3.16.

We can modify the proof of Theorem 3.16 so that if N always halts on all
branches of its computation, D will always halt. We call a nondeterministic Tur-
ing machine a decider if all branches halt on all inputs. Exercise 3.3 asks you to
modify the proof in this way to obtain the following corollary to Theorem 3.16.

COROLLARY :3. 1 q; ...

A language is decidable if and only if some nondeterministic Turing machine
decides it.

ENUMERATORS

As we mentioned earlier, some people use the term recursively enumerable lan-
guage for Turing-recognizable language. That term originates from a type of
Turing machine variant called an enumerator. Loosely defined, an enumera-
tor is a Turing machine with an attached printer. The Turing machine can use
that printer as an output device to print strings. Every time the Turing machine
wants to add a string to the list, it sends the string to the printer. Exercise 3.4 asks
you to give a formal definition of an enumerator. The following figure depicts a
schematic of this model.

aa
baba
abba

control printer

A
|O|1|O|O|u|... work tape

FIGURE 3.20
Schematic of an enumerator

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.2 VARIANTS OF TURING MACHINES 181

An enumerator E starts with a blank input on its work tape. If the enumerator
doesn’t halt, it may print an infinite list of strings. The language enumerated by
E is the collection of all the strings that it eventually prints out. Moreover, E
may generate the strings of the language in any order, possibly with repetitions.
Now we are ready to develop the connection between enumerators and Turing-
recognizable languages.

THEOREM 3.21 ...

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF First we show that if we have an enumerator E that enumerates a
language A, a TM M recognizes A. The TM M works in the following way.

M = “On input w:
1. Run E. Every time that E outputs a string, compare it with w.
2. If w ever appears in the output of E, accept.”

Clearly, M accepts those strings that appear on E’s list.

Now we do the other direction. If TM M recognizes a language A, we can
construct the following enumerator E for A. Say that s1, s2, s3, ... isa list of all
possible strings in X*.

E = “Ignore the input.
1. Repeat the following fori =1,2,3,....
2. Run M for i steps on each input, s1, S, . .., S;.
3. Ifany computations accept, print out the corresponding s,.”

If M accepts a particular string s, eventually it will appear on the list generated
by E. In fact, it will appear on the list infinitely many times because M runs
from the beginning on each string for each repetition of step 1. This procedure
gives the effect of running M in parallel on all possible input strings.

EQUIVALENCE WITH OTHER MODELS

So far we have presented several variants of the Turing machine model and have
shown them to be equivalent in power. Many other models of general pur-
pose computation have been proposed. Some of these models are very much
like Turing machines, but others are quite different. All share the essential fea-
ture of Turing machines—namely, unrestricted access to unlimited memory—
distinguishing them from weaker models such as finite automata and pushdown
automata. Remarkably, 2// models with that feature turn out to be equivalent in
power, so long as they satisfy reasonable requirements.>

3For example, one requirement is the ability to perform only a finite amount of work in
a single step.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

182 CHAPTER 3/ THE CHURCH-TURING THESIS

To understand this phenomenon, consider the analogous situation for pro-
gramming languages. Many, such as Pascal and LISP, look quite different from
one another in style and structure. Can some algorithm be programmed in one
of them and not the others? Of course not—we can compile LISP into Pascal
and Pascal into LISP, which means that the two languages describe exactly the
same class of algorithms. So do all other reasonable programming languages.
The widespread equivalence of computational models holds for precisely the
same reason. Any two computational models that satisfy certain reasonable re-
quirements can simulate one another and hence are equivalent in power.

This equivalence phenomenon has an important philosophical corollary.
Even though we can imagine many different computational models, the class
of algorithms that they describe remains the same. Whereas each individual
computational model has a certain arbitrariness to its definition, the underlying
class of algorithms that it describes is natural because the other models arrive
at the same, unique class. This phenomenon has had profound implications for
mathematics, as we show in the next section.

3.3

THE DEFINITION OF ALGORITHM

Informally speaking, an algorithm is a collection of simple instructions for car-
rying out some task. Commonplace in everyday life, algorithms sometimes are
called procedures or recipes. Algorithms also play an important role in mathemat-
ics. Ancient mathematical literature contains descriptions of algorithms for a
variety of tasks, such as finding prime numbers and greatest common divisors.
In contemporary mathematics, algorithms abound.

Even though algorithms have had a long history in mathematics, the notion
of algorithm itself was not defined precisely until the twentieth century. Before
that, mathematicians had an intuitive notion of what algorithms were, and relied
upon that notion when using and describing them. But that intuitive notion was
insufficient for gaining a deeper understanding of algorithms. The following
story relates how the precise definition of algorithm was crucial to one important
mathematical problem.

HILBERT’S PROBLEMS

In 1900, mathematician David Hilbert delivered a now-famous address at the
International Congress of Mathematicians in Paris. In his lecture, he identified
23 mathematical problems and posed them as a challenge for the coming century.
The tenth problem on his list concerned algorithms.

Before describing that problem, let’s briefly discuss polynomials. A polyno-
mial is a sum of terms, where each term is a product of certain variables and a

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.3 THE DEFINITION OF ALGORITHM 183

constant, called a coefficient. For example,
6-x-x-x-y-z-2=06xyz’
is a term with coefficient 6, and
623y2% + 3xy? — 2> — 10

is a polynomial with four terms, over the variables z, y, and z. For this discus-
sion, we consider only coefficients that are integers. A 700t of a polynomial is an
assignment of values to its variables so that the value of the polynomial is 0. This
polynomial has a root at z = 5, y = 3, and z = 0. This root is an integral root
because all the variables are assigned integer values. Some polynomials have an
integral root and some do not.

Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term algorithm but rather “a
process according to which it can be determined by a finite number of oper-
ations.”* Interestingly, in the way he phrased this problem, Hilbert explicitly
asked that an algorithm be “devised.” Thus he apparently assumed that such an
algorithm must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible. The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but
it was useless for showing that no algorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the A-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church-Turing thesis.

The Church-Turing thesis provides the definition of algorithm necessary to
resolve Hilbert’s tenth problem. In 1970, Yuri Matijasevic¢, building on the work
of Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm
exists for testing whether a polynomial has integral roots. In Chapter 4 we de-
velop the techniques that form the basis for proving that this and other problems
are algorithmically unsolvable.

Intuitive notion

of algorithms

Turing machine

equals algorithms

FIGURE 3.22
The Church-Turing thesis

*Translated from the original German.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

184 CHAPTER 3/ THE CHURCH-TURING THESIS

Let’s phrase Hilbert’s tenth problem in our terminology. Doing so helps to
introduce some themes that we explore in Chapters 4 and 5. Let

D = {p| p is a polynomial with an integral root}.

Hilbert’s tenth problem asks in essence whether the set D is decidable. The
answer is negative. In contrast, we can show that D is Turing-recognizable.
Before doing so, let’s consider a simpler problem. It is an analog of Hilbert’s
tenth problem for polynomials that have only a single variable, such as 423 —
222 + 2 — 7. Let

D, = {p| pis a polynomial over = with an integral root}.
Here is a TM M; that recognizes D;:

M; = “On input (p): where p is a polynomial over the variable x.
1. Evaluate p with x set successively to the values 0, 1, —1, 2, —2, 3,
—3, If atany point the polynomial evaluates to 0, accept.”

If p has an integral root, M; eventually will find it and accept. If p does not have
an integral root, M; will run forever. For the multivariable case, we can present
a similar TM M that recognizes D. Here, M goes through all possible settings of
its variables to integral values.

Both M; and M are recognizers but not deciders. We can convert M; to be
a decider for Dy because we can calculate bounds within which the roots of a
single variable polynomial must lie and restrict the search to these bounds. In
Problem 3.21 you are asked to show that the roots of such a polynomial must lie
between the values

SR Ly
C1
where k is the number of terms in the polynomial, ¢pax is the coefficient with
the largest absolute value, and ¢; is the coefficient of the highest order term. If a
root is not found within these bounds, the machine rejects. Matijasevic’s theorem
shows that calculating such bounds for multivariable polynomials is impossible.

TERMINOLOGY FOR DESCRIBING TURING MACHINES

We have come to a turning point in the study of the theory of computation. We
continue to speak of Turing machines, but our real focus from now on is on al-
gorithms. That is, the Turing machine merely serves as a precise model for the
definition of algorithm. We skip over the extensive theory of Turing machines
themselves and do not spend much time on the low-level programming of Tur-
ing machines. We need only to be comfortable enough with Turing machines to
believe that they capture all algorithms.

With that in mind, let’s standardize the way we describe Turing machine algo-
rithms. Initially, we ask: What is the right level of detail to give when describing

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

3.3 THE DEFINITION OF ALGORITHM 185

such algorithms? Students commonly ask this question, especially when prepar-
ing solutions to exercises and problems. Let’s entertain three possibilities. The
first is the formal description that spells out in full the Turing machine’s states,
transition function, and so on. It is the lowest, most detailed level of description.
The second is a higher level of description, called the implementation descrip-
tion, in which we use English prose to describe the way that the Turing machine
moves its head and the way that it stores data on its tape. At this level we do not
give details of states or transition function. The third is the high-level description,
wherein we use English prose to describe an algorithm, ignoring the implemen-
tation details. At this level we do not need to mention how the machine manages
its tape or head.

In this chapter, we have given formal and implementation-level descriptions
of various examples of Turing machines. Practicing with lower level Turing ma-
chine descriptions helps you understand Turing machines and gain confidence
in using them. Once you feel confident, high-level descriptions are sufficient.

We now set up a format and notation for describing Turing machines. The in-
put to a Turing machine is always a string. If we want to provide an object other
than a string as input, we must first represent that object as a string. Strings
can easily represent polynomials, graphs, grammars, automata, and any combi-
nation of those objects. A "Turing machine may be programmed to decode the
representation so that it can be interpreted in the way we intend. Our nota-
tion for the encoding of an object O into its representation as a string is (O). If
we have several objects O1,Oa, ..., Oy, we denote their encoding into a single
string (O1,Oa,...,O). The encoding itself can be done in many reasonable
ways. It doesn’t matter which one we pick because a Turing machine can always
translate one such encoding into another.

In our format, we describe Turing machine algorithms with an indented seg-
ment of text within quotes. We break the algorithm into stages, each usually
involving many individual steps of the Turing machine’s computation. We indi-
cate the block structure of the algorithm with further indentation. The first line
of the algorithm describes the input to the machine. If the input description is
simply w, the input is taken to be a string. If the input description is the encod-
ing of an object as in (A), the Turing machine first implicitly tests whether the
input properly encodes an object of the desired form and rejects it if it doesn’t.

EXAMPLE 3.23 ..

Let A be the language consisting of all strings representing undirected graphs
that are connected. Recall that a graph is connected it every node can be reached
from every other node by traveling along the edges of the graph. We write

A = {{(G)] G is a connected undirected graph}.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

186 CHAPTER 3/ THE CHURCH-TURING THESIS

The following is a high-level description of a TM M that decides A.

M = “On input (G), the encoding of a graph G-
1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked:
3. For each node in G, mark it if it is attached by an edge to a
node that is already marked.
4. Scan all the nodes of G to determine whether they all are
marked. If they are, accept; otherwise, reject.”

For additional practice, let’s examine some implementation-level details of
Turing machine M. Usually we won'’t give this level of detail in the future and
you won’t need to either, unless specifically requested to do so in an exercise.
First, we must understand how (G) encodes the graph G as a string. Consider
an encoding that is a list of the nodes of G followed by a list of the edges of G.
Each node is a decimal number, and each edge is the pair of decimal numbers
that represent the nodes at the two endpoints of the edge. The following figure
depicts such a graph and its encoding.

(1,2,3,4)((1,2),(2,3),(3,1),(1,4))

FIGURE 3.24
A graph G and its encoding (G)

When M receives the input (G), it first checks to determine whether the
input is the proper encoding of some graph. To do so, M scans the tape to be
sure that there are two lists and that they are in the proper form. The first list
should be a list of distinct decimal numbers, and the second should be a list of
pairs of decimal numbers. Then M checks several things. First, the node list
should contain no repetitions; and second, every node appearing on the edge list
should also appear on the node list. For the first, we can use the procedure given
in Example 3.12 for TM M, that checks element distinctness. A similar method
works for the second check. If the input passes these checks, it is the encoding
of some graph G. This verification completes the input check, and M goes on
to stage 1.

For stage 1, M marks the first node with a dot on the leftmost digit.

For stage 2, M scans the list of nodes to find an undotted node n; and flags
it by marking it differently—say, by underlining the first symbol. Then M scans
the list again to find a dotted node ng and underlines it, too.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

EXERCISES 187

Now M scans the list of edges. For each edge, M tests whether the two
underlined nodes n; and ny are the ones appearing in that edge. If they are,
M dots nq, removes the underlines, and goes on from the beginning of stage 2.
If they aren’t, M checks the next edge on the list. If there are no more edges,
{n1,n2} is not an edge of G. Then M moves the underline on ns to the next
dotted node and now calls this node ns. It repeats the steps in this paragraph
to check, as before, whether the new pair {n,n2} is an edge. If there are no
more dotted nodes, n; is not attached to any dotted nodes. Then M sets the
underlines so that n; is the next undotted node and n, is the first dotted node
and repeats the steps in this paragraph. If there are no more undotted nodes, M
has not been able to find any new nodes to dot, so it moves on to stage 4.

For stage 4, M scans the list of nodes to determine whether all are dotted.
If they are, it enters the accept state; otherwise, it enters the reject state. This
completes the description of TM M.

EXERCISES

3.1 This exercise concerns TM My, whose description and state diagram appear in Ex-
ample 3.7. In each of the parts, give the sequence of configurations that M> enters
when started on the indicated input string.

a. 0.
Ab. 00.
c. 000.
d. 000000.

3.2 This exercise concerns TM M1, whose description and state diagram appear in Ex-
ample 3.9. In each of the parts, give the sequence of configurations that M enters
when started on the indicated input string.

fa. 11

1#1.

1##1.

10#11.

10#10.

o

o 0T

3.3 Modify the proof of Theorem 3.16 to obtain Corollary 3.19, showing that a lan-
guage is decidable iff some nondeterministic Turing machine decides it. (You may
assume the following theorem about trees. If every node in a tree has finitely many
children and every branch of the tree has finitely many nodes, the tree itself has
finitely many nodes.)

3.4 Give a formal definition of an enumerator. Consider it to be a type of two-tape
"Turing machine that uses its second tape as the printer. Include a definition of the
enumerated language.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

188 CHAPTER 3/ THE CHURCH-TURING THESIS

A3.5 Examine the formal definition of a Turing machine to answer the following ques-
tions, and explain your reasoning.

a. Can a Turing machine ever write the blank symbol u on its tape?

b. Can the tape alphabet I be the same as the input alphabet X?

c. Can a Turing machine’s head ever be in the same location in two successive
steps?

d. Can a Turing machine contain just a single state?

3.6 In Theorem 3.21, we showed that a language is Turing-recognizable iff some enu-
merator enumerates it. Why didn’t we use the following simpler algorithm for the
forward direction of the proof? As before, s1, s2, . .. is a list of all strings in X*.

E = “Ignore the input.
1. Repeat the following for i =1,2,3,....
2. Run M on s;.
3. Ifitaccepts, print out s;.”

3.7 Explain why the following is not a description of a legitimate Turing machine.

My,a = “On input (p), a polynomial over variables x1, . .., zx:
1. Try all possible settings of x1, . .., z) to integer values.
2. Evaluate p on all of these settings.
3. Ifany of these settings evaluates to 0, accept; otherwise, reject.”

3.8 Give implementation-level descriptions of Turing machines that decide the follow-
ing languages over the alphabet {0,1}.

Aa. {w| w contains an equal number of 0s and 1s}

b. {w|w contains twice as many Os as 1s}
c. {w| w does not contain twice as many Os as 1s}

PROBLEMS

3.9 Let a k-PDA be a pushdown automaton that has k stacks. Thus a 0-PDA is an
NFA and a 1-PDA is a conventional PDA. You already know that 1-PDAs are more
powerful (recognize a larger class of languages) than 0-PDAs.

a. Show that 2-PDAs are more powerful than 1-PDAs.

b. Show that 3-PDAs are not more powerful than 2-PDAs.
(Hint: Simulate a Turing machine tape with two stacks.)

A3.10 Say that a write-once Turing machine is a single-tape TM that can alter each tape
square at most once (including the input portion of the tape). Show that this variant
Turing machine model is equivalent to the ordinary Turing machine model. (Hint:
As a first step, consider the case whereby the Turing machine may alter each tape
square at most twice. Use lots of tape.)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

PROBLEMS 189

3.11 A Turing machine with doubly infinite tape is similar to an ordinary Turing ma-
chine, but its tape is infinite to the left as well as to the right. The tape is initially
filled with blanks except for the portion that contains the input. Computation is
defined as usual except that the head never encounters an end to the tape as it
moves leftward. Show that this type of Turing machine recognizes the class of
"Turing-recognizable languages.

3.12 A Turing machine with left veset is similar to an ordinary Turing machine, but the
transition function has the form

0: @ xI'—Q x T x {R,RESET}.

If 6(q,a) = (r,b, RESET), when the machine is in state ¢ reading an a, the ma-
chine’s head jumps to the left-hand end of the tape after it writes b on the tape and
enters state . Note that these machines do not have the usual ability to move the
head one symbol left. Show that Turing machines with left reset recognize the class
of Turing-recognizable languages.

3.13 A Turing machine with stay put instead of left is similar to an ordinary Turing
machine, but the transition function has the form

0: @ xI'—Q xT x{R,S}.

At each point, the machine can move its head right or let it stay in the same posi-
tion. Show that this Turing machine variant is nof equivalent to the usual version.
What class of languages do these machines recognize?

3.14 A queue automaton is like a push-down automaton except that the stack is replaced
by a queue. A gueune is a tape allowing symbols to be written only on the left-hand
end and read only at the right-hand end. Each write operation (we’ll call it a push)
adds a symbol to the left-hand end of the queue and each read operation (we’ll
call it a pull) reads and removes a symbol at the right-hand end. As with a PDA,
the input is placed on a separate read-only input tape, and the head on the input
tape can move only from left to right. The input tape contains a cell with a blank
symbol following the input, so that the end of the input can be detected. A queue
automaton accepts its input by entering a special accept state at any time. Show that
a language can be recognized by a deterministic queue automaton iff the language
is Turing-recognizable.

3.15 Show that the collection of decidable languages is closed under the operation of

Aa. union. d. complementation.
b. concatenation. e. intersection.
C. star.

3.16 Show that the collection of Turing-recognizable languages is closed under the op-

eration of

Aa. union. d. intersection.

b. concatenation. e. homomorphism.
c. star.

*3.17 Let B = {(M),(M>),...} be a Turing-recognizable language consisting of TM
descriptions. Show that there is a decidable language C' consisting of TM descrip-
tions such that every machine described in B has an equivalent machine in C' and
vice versa.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

190 CHAPTER 3/ THE CHURCH-TURING THESIS

*3.18 Show that a language is decidable iff some enumerator enumerates the language in
the standard string order.

*3.19 Show that every infinite Turing-recognizable language has an infinite decidable
subset.

*3.20 Show that single-tape TMs that cannot write on the portion of the tape containing
the input string recognize only regular languages.

3.21 Letciz™ +cox™ '+ -+ + o + g1 be a polynomial with a root at = = x¢. Let
Cmax De the largest absolute value of a ¢;. Show that

Cmax

|wo| < (n+1)

|c1]

A3.22 Let A be the language containing only the single string s, where

0 if life never will be found on Mars.

1 if life will be found on Mars someday.

Is A decidable? Why or why not? For the purposes of this problem, assume that
the question of whether life will be found on Mars has an unambiguous YES or NO
answer.

SELECTED SOLUTIONS

3.1 (b) ¢100,ug20, uxgsU, UgsXL, g5LUXU, UG XU, UXG2U, UXUGaceept -

3.2 (a) 111, xg31, x1g30, X1UGreject-

3.3 We prove both directions of the iff. First, if a language L is decidable, it can be
decided by a deterministic Turing machine, and that is automatically a nondeter-
ministic Turing machine.

Second, if a language L is decided by a nondeterministic TM N, we modify the
deterministic TM D that was given in the proof of Theorem 3.16 as follows.

Move stage 4 to be stage 5.

Add new stage 4: Reject if all branches of N’s nondeterminism have rejected.

We argue that this new TM D’ is a decider for L. If N accepts its input, D" will
eventually find an accepting branch and accept, too. If N rejects its input, all of
its branches halt and reject because it is a decider. Hence each of the branches has
finitely many nodes, where each node represents one step of N’s computation along
that branch. Therefore, N’s entire computation tree on this input is finite, by virtue
of the theorem about trees given in the statement of the exercise. Consequently,
D' will halt and reject when this entire tree has been explored.

3.5 (a) Yes. The tape alphabet I" contains u. A Turing machine can write any characters
in I on its tape.
(b) No. X never contains u, but I" always contains u. So they cannot be equal.
(c) Yes. If the Turing machine attempts to move its head off the left-hand end of
the tape, it remains on the same tape cell.
(d) No. Any Turing machine must contain two distinct states: gaccept and Grejece. S0,
a Turing machine contains at least two states.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

SELECTED SOLUTIONS 191

3.8 (a) “On input string w:

1. Scan the tape and mark the first O that has not been marked. If
no unmarked 0 is found, go to stage 4. Otherwise, move the
head back to the front of the tape.

2. Scan the tape and mark the first 1 that has not been marked. If
no unmarked 1 is found, reject.

3. Move the head back to the front of the tape and go to stage 1.

4. Move the head back to the front of the tape. Scan the tape to see
if any unmarked 1s remain. If none are found, accept; otherwise,
reject.”

3.10 We first simulate an ordinary Turing machine by a write-twice Turing machine.
The write-twice machine simulates a single step of the original machine by copying
the entire tape over to a fresh portion of the tape to the right-hand side of the
currently used portion. The copying procedure operates character by character,
marking a character as it is copied. This procedure alters each tape square twice:
once to write the character for the first time, and again to mark that it has been
copied. The position of the original Turing machine’s tape head is marked on
the tape. When copying the cells at or adjacent to the marked position, the tape
content is updated according to the rules of the original Turing machine.

To carry out the simulation with a write-once machine, operate as before, except
that each cell of the previous tape is now represented by two cells. The first of these
contains the original machine’s tape symbol and the second is for the mark used in
the copying procedure. The input is not presented to the machine in the format
with two cells per symbol, so the very first time the tape is copied, the copying
marks are put directly over the input symbols.

3.15 (a) For any two decidable languages L1 and Lo, let M1 and M> be the TMs that
decide them. We construct a TM M’ that decides the union of L, and Lo:

“On input w:
1. Run M; on w. If it accepts, accept.
2. Run M, on w. Ifit accepts, accept. Otherwise, reject.”

M" accepts w if either M7 or My accepts it. If both reject, M’ rejects.

3.16 (a) For any two Turing-recognizable languages L, and Lo, let My and M> be the
TM:s that recognize them. We construct a TM M’ that recognizes the union of L,
and Lo:

“On input w:
1. Run M; and M; alternately on w step by step. If either accepts,
accept. If both halt and reject, reject.”

If either M or My accepts w, M’ accepts w because the accepting TM arrives to its
accepting state after a finite number of steps. Note that if both M; and M- reject
and either of them does so by looping, then M’ will loop.

3.22 'Thelanguage A is one of the two languages {0} or {1}. In either case, the language
is finite and hence decidable. If you aren’t able to determine which of these two
languages is A, you won’t be able to describe the decider for A. However, you can
give two Turing machines, one of which is A’ decider.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional
content at any time if subsequent rights restrictions require it.

