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R E G U L A R L A N G U A G E S

The theory of computation begins with a question: What is a computer? It is
perhaps a silly question, as everyone knows that this thing I type on is a com-
puter. But these real computers are quite complicated—too much so to allow us
to set up a manageable mathematical theory of them directly. Instead, we use an
idealized computer called a computational model. As with any model in science,
a computational model may be accurate in some ways but perhaps not in others.
Thus we will use several different computational models, depending on the fea-
tures we want to focus on. We begin with the simplest model, called the finite
state machine or finite automaton.

1.1
FINITE AUTOMATA

Finite automata are good models for computers with an extremely limited
amount of memory. What can a computer do with such a small memory? Many
useful things! In fact, we interact with such computers all the time, as they lie at
the heart of various electromechanical devices.

The controller for an automatic door is one example of such a device. Often
found at supermarket entrances and exits, automatic doors swing open when the
controller senses that a person is approaching. An automatic door has a pad
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32 CHAPTER 1 / REGULAR LANGUAGES

in front to detect the presence of a person about to walk through the doorway.
Another pad is located to the rear of the doorway so that the controller can hold
the door open long enough for the person to pass all the way through and also
so that the door does not strike someone standing behind it as it opens. This
configuration is shown in the following figure.

FIGURE 1.1

Top view of an automatic door

The controller is in either of two states: “OPEN” or “CLOSED,” representing
the corresponding condition of the door. As shown in the following figures,
there are four possible input conditions: “FRONT” (meaning that a person is
standing on the pad in front of the doorway), “REAR” (meaning that a person is
standing on the pad to the rear of the doorway), “BOTH” (meaning that people
are standing on both pads), and “NEITHER” (meaning that no one is standing
on either pad).

FIGURE 1.2

State diagram for an automatic door controller
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1.1 FINITE AUTOMATA 33

input signal

NEITHER FRONT REAR BOTH

CLOSED CLOSED OPEN CLOSED CLOSED
state

OPEN CLOSED OPEN OPEN OPEN

FIGURE 1.3

State transition table for an automatic door controller

The controller moves from state to state, depending on the input it receives.
When in the CLOSED state and receiving input NEITHER or REAR, it remains
in the CLOSED state. In addition, if the input BOTH is received, it stays CLOSED

because opening the door risks knocking someone over on the rear pad. But if
the input FRONT arrives, it moves to the OPEN state. In the OPEN state, if input
FRONT, REAR, or BOTH is received, it remains in OPEN. If input NEITHER

arrives, it returns to CLOSED.
For example, a controller might start in state CLOSED and receive the series

of input signals FRONT, REAR, NEITHER, FRONT, BOTH, NEITHER, REAR,
and NEITHER. It then would go through the series of states CLOSED (starting),
OPEN, OPEN, CLOSED, OPEN, OPEN, CLOSED, CLOSED, and CLOSED.

Thinking of an automatic door controller as a finite automaton is useful be-
cause that suggests standard ways of representation as in Figures 1.2 and 1.3.
This controller is a computer that has just a single bit of memory, capable of
recording which of the two states the controller is in. Other common devices
have controllers with somewhat larger memories. In an elevator controller, a
state may represent the floor the elevator is on and the inputs might be the sig-
nals received from the buttons. This computer might need several bits to keep
track of this information. Controllers for various household appliances such as
dishwashers and electronic thermostats, as well as parts of digital watches and
calculators, are additional examples of computers with limited memories. The
design of such devices requires keeping the methodology and terminology of
finite automata in mind.

Finite automata and their probabilistic counterpart Markov chains are useful
tools when we are attempting to recognize patterns in data. These devices are
used in speech processing and in optical character recognition. Markov chains
have even been used to model and predict price changes in financial markets.

We will now take a closer look at finite automata from a mathematical per-
spective. We will develop a precise definition of a finite automaton, terminology
for describing and manipulating finite automata, and theoretical results that de-
scribe their power and limitations. Besides giving you a clearer understanding
of what finite automata are and what they can and cannot do, this theoreti-
cal development will allow you to practice and become more comfortable with
mathematical definitions, theorems, and proofs in a relatively simple setting.
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34 CHAPTER 1 / REGULAR LANGUAGES

In beginning to describe the mathematical theory of finite automata, we do
so in the abstract, without reference to any particular application. The following
figure depicts a finite automaton called M1.

FIGURE 1.4

A finite automaton called M1 that has three states

Figure 1.4 is called the state diagram of M1. It has three states, labeled q1, q2,
and q3. The start state, q1, is indicated by the arrow pointing at it from nowhere.
The accept state, q2, is the one with a double circle. The arrows going from one
state to another are called transitions.

When this automaton receives an input string such as 1101, it processes that
string and produces an output. The output is either accept or reject. We will
consider only this yes/no type of output for now to keep things simple. The
processing begins in M1’s start state. The automaton receives the symbols from
the input string one by one from left to right. After reading each symbol, M1

moves from one state to another along the transition that has that symbol as its
label. When it reads the last symbol, M1 produces its output. The output is
accept if M1 is now in an accept state and reject if it is not.

For example, when we feed the input string 1101 into the machine M1 in
Figure 1.4, the processing proceeds as follows:

1. Start in state q1.

2. Read 1, follow transition from q1 to q2.

3. Read 1, follow transition from q2 to q2.

4. Read 0, follow transition from q2 to q3.

5. Read 1, follow transition from q3 to q2.

6. Accept because M1 is in an accept state q2 at the end of the input.

Experimenting with this machine on a variety of input strings reveals that it
accepts the strings 1, 01, 11, and 0101010101. In fact, M1 accepts any string that
ends with a 1, as it goes to its accept state q2 whenever it reads the symbol 1. In
addition, it accepts strings 100, 0100, 110000, and 0101000000, and any string
that ends with an even number of 0s following the last 1. It rejects other strings,
such as 0, 10, 101000. Can you describe the language consisting of all strings
that M1 accepts? We will do so shortly.
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1.1 FINITE AUTOMATA 35

FORMAL DEFINITION OF A FINITE AUTOMATON

In the preceding section, we used state diagrams to introduce finite automata.
Now we define finite automata formally. Although state diagrams are easier to
grasp intuitively, we need the formal definition, too, for two specific reasons.

First, a formal definition is precise. It resolves any uncertainties about what
is allowed in a finite automaton. If you were uncertain about whether finite
automata were allowed to have 0 accept states or whether they must have ex-
actly one transition exiting every state for each possible input symbol, you could
consult the formal definition and verify that the answer is yes in both cases. Sec-
ond, a formal definition provides notation. Good notation helps you think and
express your thoughts clearly.

The language of a formal definition is somewhat arcane, having some simi-
larity to the language of a legal document. Both need to be precise, and every
detail must be spelled out.

A finite automaton has several parts. It has a set of states and rules for going
from one state to another, depending on the input symbol. It has an input al-
phabet that indicates the allowed input symbols. It has a start state and a set of
accept states. The formal definition says that a finite automaton is a list of those
five objects: set of states, input alphabet, rules for moving, start state, and accept
states. In mathematical language, a list of five elements is often called a 5-tuple.
Hence we define a finite automaton to be a 5-tuple consisting of these five parts.

We use something called a transition function, frequently denoted δ, to de-
fine the rules for moving. If the finite automaton has an arrow from a state x
to a state y labeled with the input symbol 1, that means that if the automaton is
in state x when it reads a 1, it then moves to state y. We can indicate the same
thing with the transition function by saying that δ(x, 1) = y. This notation is a
kind of mathematical shorthand. Putting it all together, we arrive at the formal
definition of finite automata.

DEFINITION 1.5

A finite automaton is a 5-tuple (Q,Σ, δ, q0, F ), where

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ : Q× Σ−→Q is the transition function,1

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.2

1Refer back to page 7 if you are uncertain about the meaning of δ : Q× Σ−→Q.
2Accept states sometimes are called final states.
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The formal definition precisely describes what we mean by a finite automa-
ton. For example, returning to the earlier question of whether 0 accept states is
allowable, you can see that setting F to be the empty set ∅ yields 0 accept states,
which is allowable. Furthermore, the transition function δ specifies exactly one
next state for each possible combination of a state and an input symbol. That an-
swers our other question affirmatively, showing that exactly one transition arrow
exits every state for each possible input symbol.

We can use the notation of the formal definition to describe individual finite
automata by specifying each of the five parts listed in Definition 1.5. For exam-
ple, let’s return to the finite automaton M1 we discussed earlier, redrawn here
for convenience.

FIGURE 1.6

The finite automaton M1

We can describe M1 formally by writing M1 = (Q,Σ, δ, q1, F ), where

1. Q = {q1, q2, q3},

2. Σ = {0,1},

3. δ is described as

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2,

4. q1 is the start state, and

5. F = {q2}.

If A is the set of all strings that machine M accepts, we say that A is the
language of machine M and write L(M) = A. We say that M recognizes A or
that M accepts A. Because the term accept has different meanings when we refer
to machines accepting strings and machines accepting languages, we prefer the
term recognize for languages in order to avoid confusion.

A machine may accept several strings, but it always recognizes only one lan-
guage. If the machine accepts no strings, it still recognizes one language—
namely, the empty language ∅.
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1.1 FINITE AUTOMATA 37

In our example, let

A = {w| w contains at least one 1 and

an even number of 0s follow the last 1}.

Then L(M1) = A, or equivalently, M1 recognizes A.

EXAMPLES OF FINITE AUTOMATA

EXAMPLE 1.7

Here is the state diagram of finite automaton M2.

FIGURE 1.8

State diagram of the two-state finite automaton M2

In the formal description, M2 is
(
{q1, q2}, {0,1}, δ, q1, {q2}

)
. The transition

function δ is

0 1

q1 q1 q2
q2 q1 q2.

Remember that the state diagram of M2 and the formal description of M2

contain the same information, only in different forms. You can always go from
one to the other if necessary.

A good way to begin understanding any machine is to try it on some sample
input strings. When you do these “experiments” to see how the machine is
working, its method of functioning often becomes apparent. On the sample
string 1101, the machine M2 starts in its start state q1 and proceeds first to state
q2 after reading the first 1, and then to states q2, q1, and q2 after reading 1, 0,
and 1. The string is accepted because q2 is an accept state. But string 110 leaves
M2 in state q1, so it is rejected. After trying a few more examples, you would see
that M2 accepts all strings that end in a 1. Thus L(M2) = {w| w ends in a 1}.
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EXAMPLE 1.9

Consider the finite automaton M3.

FIGURE 1.10

State diagram of the two-state finite automaton M3

Machine M3 is similar to M2 except for the location of the accept state. As
usual, the machine accepts all strings that leave it in an accept state when it has
finished reading. Note that because the start state is also an accept state, M3

accepts the empty string ε. As soon as a machine begins reading the empty
string, it is at the end; so if the start state is an accept state, ε is accepted. In
addition to the empty string, this machine accepts any string ending with a 0.
Here,

L(M3) = {w| w is the empty string ε or ends in a 0}.

EXAMPLE 1.11

The following figure shows a five-state machine M4.

FIGURE 1.12

Finite automaton M4
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1.1 FINITE AUTOMATA 39

Machine M4 has two accept states, q1 and r1, and operates over the alphabet
Σ = {a, b}. Some experimentation shows that it accepts strings a, b, aa, bb, and
bab, but not strings ab, ba, or bbba. This machine begins in state s, and after
it reads the first symbol in the input, it goes either left into the q states or right
into the r states. In both cases, it can never return to the start state (in contrast
to the previous examples), as it has no way to get from any other state back to s.
If the first symbol in the input string is a, then it goes left and accepts when the
string ends with an a. Similarly, if the first symbol is a b, the machine goes right
and accepts when the string ends in b. So M4 accepts all strings that start and
end with a or that start and end with b. In other words, M4 accepts strings that
start and end with the same symbol.

EXAMPLE 1.13

Figure 1.14 shows the three-state machine M5, which has a four-symbol input
alphabet, Σ = {〈RESET〉, 0, 1, 2}. We treat 〈RESET〉 as a single symbol.

FIGURE 1.14

Finite automaton M5

Machine M5 keeps a running count of the sum of the numerical input symbols
it reads, modulo 3. Every time it receives the 〈RESET〉 symbol, it resets the count
to 0. It accepts if the sum is 0 modulo 3, or in other words, if the sum is a multiple
of 3.

Describing a finite automaton by state diagram is not possible in some cases.
That may occur when the diagram would be too big to draw or if, as in the next
example, the description depends on some unspecified parameter. In these cases,
we resort to a formal description to specify the machine.
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EXAMPLE 1.15

Consider a generalization of Example 1.13, using the same four-symbol alpha-
bet Σ. For each i ≥ 1 let Ai be the language of all strings where the sum of the
numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol
〈RESET〉 appears. For each Ai we give a finite automaton Bi, recognizing Ai.
We describe the machine Bi formally as follows: Bi = (Qi,Σ, δi, q0, {q0}),
where Qi is the set of i states {q0, q1, q2, . . . , qi−1}, and we design the transi-
tion function δi so that for each j, if Bi is in qj , the running sum is j, modulo i.
For each qj let

δi(qj , 0) = qj ,

δi(qj , 1) = qk,where k = j + 1 modulo i,

δi(qj , 2) = qk,where k = j + 2 modulo i, and

δi(qj , 〈RESET〉) = q0.

FORMAL DEFINITION OF COMPUTATION

So far we have described finite automata informally, using state diagrams, and
with a formal definition, as a 5-tuple. The informal description is easier to grasp
at first, but the formal definition is useful for making the notion precise, resolv-
ing any ambiguities that may have occurred in the informal description. Next we
do the same for a finite automaton’s computation. We already have an informal
idea of the way it computes, and we now formalize it mathematically.

Let M = (Q,Σ, δ, q0, F ) be a finite automaton and let w = w1w2 · · · wn be
a string where each wi is a member of the alphabet Σ. Then M accepts w if a
sequence of states r0, r1, . . . , rn in Q exists with three conditions:

1. r0 = q0,

2. δ(ri, wi+1) = ri+1, for i = 0, . . . , n− 1, and

3. rn ∈ F .

Condition 1 says that the machine starts in the start state. Condition 2 says
that the machine goes from state to state according to the transition function.
Condition 3 says that the machine accepts its input if it ends up in an accept
state. We say that M recognizes language A if A = {w|M accepts w}.

DEFINITION 1.16

A language is called a regular language if some finite automaton
recognizes it.
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EXAMPLE 1.17

Take machine M5 from Example 1.13. Let w be the string

10〈RESET〉22〈RESET〉012.

Then M5 accepts w according to the formal definition of computation because
the sequence of states it enters when computing on w is

q0, q1, q1, q0, q2, q1, q0, q0, q1, q0,

which satisfies the three conditions. The language of M5 is

L(M5) = {w| the sum of the symbols in w is 0 modulo 3,

except that 〈RESET〉 resets the count to 0}.

As M5 recognizes this language, it is a regular language.

DESIGNING FINITE AUTOMATA

Whether it be of automaton or artwork, design is a creative process. As such,
it cannot be reduced to a simple recipe or formula. However, you might find
a particular approach helpful when designing various types of automata. That
is, put yourself in the place of the machine you are trying to design and then see
how you would go about performing the machine’s task. Pretending that you are
the machine is a psychological trick that helps engage your whole mind in the
design process.

Let’s design a finite automaton using the “reader as automaton” method just
described. Suppose that you are given some language and want to design a finite
automaton that recognizes it. Pretending to be the automaton, you receive an
input string and must determine whether it is a member of the language the
automaton is supposed to recognize. You get to see the symbols in the string
one by one. After each symbol, you must decide whether the string seen so far is
in the language. The reason is that you, like the machine, don’t know when the
end of the string is coming, so you must always be ready with the answer.

First, in order to make these decisions, you have to figure out what you need
to remember about the string as you are reading it. Why not simply remember
all you have seen? Bear in mind that you are pretending to be a finite automaton
and that this type of machine has only a finite number of states, which means
a finite memory. Imagine that the input is extremely long—say, from here to
the moon—so that you could not possibly remember the entire thing. You have
a finite memory—say, a single sheet of paper—which has a limited storage ca-
pacity. Fortunately, for many languages you don’t need to remember the entire
input. You need to remember only certain crucial information. Exactly which
information is crucial depends on the particular language considered.

For example, suppose that the alphabet is {0,1} and that the language consists
of all strings with an odd number of 1s. You want to construct a finite automaton
E1 to recognize this language. Pretending to be the automaton, you start getting
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an input string of 0s and 1s symbol by symbol. Do you need to remember the
entire string seen so far in order to determine whether the number of 1s is odd?
Of course not. Simply remember whether the number of 1s seen so far is even
or odd and keep track of this information as you read new symbols. If you read
a 1, flip the answer; but if you read a 0, leave the answer as is.

But how does this help you design E1? Once you have determined the neces-
sary information to remember about the string as it is being read, you represent
this information as a finite list of possibilities. In this instance, the possibilities
would be

1. even so far, and

2. odd so far.

Then you assign a state to each of the possibilities. These are the states of E1, as
shown here.

FIGURE 1.18

The two states qeven and qodd

Next, you assign the transitions by seeing how to go from one possibility to
another upon reading a symbol. So, if state qeven represents the even possibility
and state qodd represents the odd possibility, you would set the transitions to flip
state on a 1 and stay put on a 0, as shown here.

FIGURE 1.19

Transitions telling how the possibilities rearrange

Next, you set the start state to be the state corresponding to the possibility
associated with having seen 0 symbols so far (the empty string ε). In this case,
the start state corresponds to state qeven because 0 is an even number. Last, set
the accept states to be those corresponding to possibilities where you want to
accept the input string. Set qodd to be an accept state because you want to accept
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1.1 FINITE AUTOMATA 43

when you have seen an odd number of 1s. These additions are shown in the
following figure.

FIGURE 1.20

Adding the start and accept states

EXAMPLE 1.21

This example shows how to design a finite automaton E2 to recognize the regu-
lar language of all strings that contain the string 001 as a substring. For example,
0010, 1001, 001, and 11111110011111 are all in the language, but 11 and 0000
are not. How would you recognize this language if you were pretending to
be E2? As symbols come in, you would initially skip over all 1s. If you come
to a 0, then you note that you may have just seen the first of the three symbols
in the pattern 001 you are seeking. If at this point you see a 1, there were too
few 0s, so you go back to skipping over 1s. But if you see a 0 at that point, you
should remember that you have just seen two symbols of the pattern. Now you
simply need to continue scanning until you see a 1. If you find it, remember that
you succeeded in finding the pattern and continue reading the input string until
you get to the end.

So there are four possibilities: You

1. haven’t just seen any symbols of the pattern,

2. have just seen a 0,

3. have just seen 00, or

4. have seen the entire pattern 001.

Assign the states q, q0, q00, and q001 to these possibilities. You can assign the
transitions by observing that from q reading a 1 you stay in q, but reading a 0 you
move to q0. In q0 reading a 1 you return to q, but reading a 0 you move to q00.
In q00 reading a 1 you move to q001, but reading a 0 leaves you in q00. Finally, in
q001 reading a 0 or a 1 leaves you in q001. The start state is q, and the only accept
state is q001, as shown in Figure 1.22.
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FIGURE 1.22

Accepts strings containing 001

THE REGULAR OPERATIONS

In the preceding two sections, we introduced and defined finite automata and
regular languages. We now begin to investigate their properties. Doing so will
help develop a toolbox of techniques for designing automata to recognize partic-
ular languages. The toolbox also will include ways of proving that certain other
languages are nonregular (i.e., beyond the capability of finite automata).

In arithmetic, the basic objects are numbers and the tools are operations for
manipulating them, such as + and ×. In the theory of computation, the ob-
jects are languages and the tools include operations specifically designed for
manipulating them. We define three operations on languages, called the reg-
ular operations, and use them to study properties of the regular languages.

DEFINITION 1.23

Let A and B be languages. We define the regular operations union,
concatenation, and star as follows:

• Union: A ∪B = {x| x ∈ A or x ∈ B}.

• Concatenation: A ◦B = {xy| x ∈ A and y ∈ B}.

• Star: A∗ = {x1x2 . . . xk| k ≥ 0 and each xi ∈ A}.

You are already familiar with the union operation. It simply takes all the
strings in both A and B and lumps them together into one language.

The concatenation operation is a little trickier. It attaches a string from A
in front of a string from B in all possible ways to get the strings in the new
language.

The star operation is a bit different from the other two because it applies to
a single language rather than to two different languages. That is, the star oper-
ation is a unary operation instead of a binary operation. It works by attaching
any number of strings in A together to get a string in the new language. Because
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1.1 FINITE AUTOMATA 45

“any number” includes 0 as a possibility, the empty string ε is always a member
of A∗, no matter what A is.

EXAMPLE 1.24

Let the alphabet Σ be the standard 26 letters {a, b, . . . , z}. If A = {good, bad}
and B = {boy, girl}, then

A ∪B = {good, bad, boy, girl},

A ◦B = {goodboy, goodgirl, badboy, badgirl}, and

A∗ = {ε, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, . . . }.

Let N = {1, 2, 3, . . .} be the set of natural numbers. When we say that N
is closed under multiplication, we mean that for any x and y in N , the product
x × y also is in N . In contrast, N is not closed under division, as 1 and 2 are
in N but 1/2 is not. Generally speaking, a collection of objects is closed under
some operation if applying that operation to members of the collection returns
an object still in the collection. We show that the collection of regular languages
is closed under all three of the regular operations. In Section 1.3, we show that
these are useful tools for manipulating regular languages and understanding the
power of finite automata. We begin with the union operation.

THEOREM 1.25

The class of regular languages is closed under the union operation.

In other words, if A1 and A2 are regular languages, so is A1 ∪ A2.

PROOF IDEA We have regular languages A1 and A2 and want to show that
A1∪A2 also is regular. Because A1 and A2 are regular, we know that some finite
automaton M1 recognizes A1 and some finite automaton M2 recognizes A2. To
prove that A1 ∪A2 is regular, we demonstrate a finite automaton, call it M , that
recognizes A1 ∪ A2.

This is a proof by construction. We construct M from M1 and M2. Machine
M must accept its input exactly when either M1 or M2 would accept it in order
to recognize the union language. It works by simulating both M1 and M2 and
accepting if either of the simulations accept.

How can we make machine M simulate M1 and M2? Perhaps it first simulates
M1 on the input and then simulates M2 on the input. But we must be careful
here! Once the symbols of the input have been read and used to simulate M1,
we can’t “rewind the input tape” to try the simulation on M2. We need another
approach.
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Pretend that you are M . As the input symbols arrive one by one, you simulate
both M1 and M2 simultaneously. That way, only one pass through the input is
necessary. But can you keep track of both simulations with finite memory? All
you need to remember is the state that each machine would be in if it had read
up to this point in the input. Therefore, you need to remember a pair of states.
How many possible pairs are there? If M1 has k1 states and M2 has k2 states, the
number of pairs of states, one from M1 and the other from M2, is the product
k1 × k2. This product will be the number of states in M , one for each pair. The
transitions of M go from pair to pair, updating the current state for both M1 and
M2. The accept states of M are those pairs wherein either M1 or M2 is in an
accept state.

PROOF

Let M1 recognize A1, where M1 = (Q1,Σ, δ1, q1, F1), and
M2 recognize A2, where M2 = (Q2,Σ, δ2, q2, F2).

Construct M to recognize A1 ∪ A2, where M = (Q,Σ, δ, q0, F ).

1. Q = {(r1, r2)| r1 ∈ Q1 and r2 ∈ Q2}.
This set is the Cartesian product of sets Q1 and Q2 and is written Q1×Q2.
It is the set of all pairs of states, the first from Q1 and the second from Q2.

2. Σ, the alphabet, is the same as in M1 and M2. In this theorem and in all
subsequent similar theorems, we assume for simplicity that both M1 and
M2 have the same input alphabet Σ. The theorem remains true if they
have different alphabets, Σ1 and Σ2. We would then modify the proof to
let Σ = Σ1 ∪ Σ2.

3. δ, the transition function, is defined as follows. For each (r1, r2) ∈ Q and
each a ∈ Σ, let

δ
(
(r1, r2), a

)
=

(
δ1(r1, a), δ2(r2, a)

)
.

Hence δ gets a state of M (which actually is a pair of states from M1 and
M2), together with an input symbol, and returns M ’s next state.

4. q0 is the pair (q1, q2).

5. F is the set of pairs in which either member is an accept state of M1 or M2.
We can write it as

F = {(r1, r2)| r1 ∈ F1 or r2 ∈ F2}.

This expression is the same as F = (F1 ×Q2)∪ (Q1 ×F2). (Note that it is
not the same as F = F1 × F2. What would that give us instead?3)

3 This expression would define M ’s accept states to be those for which both members of
the pair are accept states. In this case, M would accept a string only if both M1 and M2

accept it, so the resulting language would be the intersection and not the union. In fact,
this result proves that the class of regular languages is closed under intersection.
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This concludes the construction of the finite automaton M that recognizes
the union of A1 and A2. This construction is fairly simple, and thus its correct-
ness is evident from the strategy described in the proof idea. More complicated
constructions require additional discussion to prove correctness. A formal cor-
rectness proof for a construction of this type usually proceeds by induction. For
an example of a construction proved correct, see the proof of Theorem 1.54.
Most of the constructions that you will encounter in this course are fairly simple
and so do not require a formal correctness proof.

We have just shown that the union of two regular languages is regular, thereby
proving that the class of regular languages is closed under the union operation.
We now turn to the concatenation operation and attempt to show that the class
of regular languages is closed under that operation, too.

THEOREM 1.26

The class of regular languages is closed under the concatenation operation.

In other words, if A1 and A2 are regular languages then so is A1 ◦A2.

To prove this theorem, let’s try something along the lines of the proof of the
union case. As before, we can start with finite automata M1 and M2 recognizing
the regular languages A1 and A2. But now, instead of constructing automaton
M to accept its input if either M1 or M2 accept, it must accept if its input can
be broken into two pieces, where M1 accepts the first piece and M2 accepts the
second piece. The problem is that M doesn’t know where to break its input
(i.e., where the first part ends and the second begins). To solve this problem, we
introduce a new technique called nondeterminism.

1.2
NONDETERMINISM

Nondeterminism is a useful concept that has had great impact on the theory of
computation. So far in our discussion, every step of a computation follows in a
unique way from the preceding step. When the machine is in a given state and
reads the next input symbol, we know what the next state will be—it is deter-
mined. We call this deterministic computation. In a nondeterministic machine,
several choices may exist for the next state at any point.

Nondeterminism is a generalization of determinism, so every deterministic
finite automaton is automatically a nondeterministic finite automaton. As Fig-
ure 1.27 shows, nondeterministic finite automata may have additional features.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.



48 CHAPTER 1 / REGULAR LANGUAGES

FIGURE 1.27

The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110
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On input 010110, start in the start state q1 and read the first symbol 0. From
q1 there is only one place to go on a 0—namely, back to q1—so remain there.
Next, read the second symbol 1. In q1 on a 1 there are two choices: either stay in
q1 or move to q2. Nondeterministically, the machine splits in two to follow each
choice. Keep track of the possibilities by placing a finger on each state where a
machine could be. So you now have fingers on states q1 and q2. An ε arrow exits
state q2 so the machine splits again; keep one finger on q2, and move the other
to q3. You now have fingers on q1, q2, and q3.

When the third symbol 0 is read, take each finger in turn. Keep the finger
on q1 in place, move the finger on q2 to q3, and remove the finger that has been
on q3. That last finger had no 0 arrow to follow and corresponds to a process
that simply “dies.” At this point, you have fingers on states q1 and q3.

When the fourth symbol 1 is read, split the finger on q1 into fingers on states
q1 and q2, then further split the finger on q2 to follow the ε arrow to q3, and
move the finger that was on q3 to q4. You now have a finger on each of the four
states.

When the fifth symbol 1 is read, the fingers on q1 and q3 result in fingers on
states q1, q2, q3, and q4, as you saw with the fourth symbol. The finger on state
q2 is removed. The finger that was on q4 stays on q4. Now you have two fingers
on q4, so remove one because you only need to remember that q4 is a possible
state at this point, not that it is possible for multiple reasons.

When the sixth and final symbol 0 is read, keep the finger on q1 in place,
move the one on q2 to q3, remove the one that was on q3, and leave the one on
q4 in place. You are now at the end of the string, and you accept if some finger is
on an accept state. You have fingers on states q1, q3, and q4; and as q4 is an accept
state, N1 accepts this string.

What does N1 do on input 010? Start with a finger on q1. After reading the
0, you still have a finger only on q1; but after the 1 there are fingers on q1, q2,
and q3 (don’t forget the ε arrow). After the third symbol 0, remove the finger
on q3, move the finger on q2 to q3, and leave the finger on q1 where it is. At this
point you are at the end of the input; and as no finger is on an accept state, N1

rejects this input.
By continuing to experiment in this way, you will see that N1 accepts all

strings that contain either 101 or 11 as a substring.
Nondeterministic finite automata are useful in several respects. As we will

show, every NFA can be converted into an equivalent DFA, and constructing
NFAs is sometimes easier than directly constructing DFAs. An NFA may be much
smaller than its deterministic counterpart, or its functioning may be easier to
understand. Nondeterminism in finite automata is also a good introduction
to nondeterminism in more powerful computational models because finite au-
tomata are especially easy to understand. Now we turn to several examples of
NFAs.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.



1.2 NONDETERMINISM 51

EXAMPLE 1.30

Let A be the language consisting of all strings over {0,1} containing a 1 in the
third position from the end (e.g., 000100 is in A but 0011 is not). The following
four-state NFA N2 recognizes A.

FIGURE 1.31

The NFA N2 recognizing A

One good way to view the computation of this NFA is to say that it stays in the
start state q1 until it “guesses” that it is three places from the end. At that point,
if the input symbol is a 1, it branches to state q2 and uses q3 and q4 to “check” on
whether its guess was correct.

As mentioned, every NFA can be converted into an equivalent DFA; but some-
times that DFA may have many more states. The smallest DFA for A contains
eight states. Furthermore, understanding the functioning of the NFA is much
easier, as you may see by examining the following figure for the DFA.

FIGURE 1.32

A DFA recognizing A

Suppose that we added ε to the labels on the arrows going from q2 to q3 and
from q3 to q4 in machine N2 in Figure 1.31. So both arrows would then have
the label 0, 1, ε instead of just 0, 1. What language would N2 recognize with this
modification? Try modifying the DFA in Figure 1.32 to recognize that language.
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EXAMPLE 1.33

The following NFA N3 has an input alphabet {0} consisting of a single symbol.
An alphabet containing only one symbol is called a unary alphabet.

FIGURE 1.34

The NFA N3

This machine demonstrates the convenience of having ε arrows. It accepts
all strings of the form 0k where k is a multiple of 2 or 3. (Remember that the
superscript denotes repetition, not numerical exponentiation.) For example, N3

accepts the strings ε, 00, 000, 0000, and 000000, but not 0 or 00000.
Think of the machine operating by initially guessing whether to test for a

multiple of 2 or a multiple of 3 by branching into either the top loop or the bot-
tom loop and then checking whether its guess was correct. Of course, we could
replace this machine by one that doesn’t have ε arrows or even any nondeter-
minism at all, but the machine shown is the easiest one to understand for this
language.

EXAMPLE 1.35

We give another example of an NFA in Figure 1.36. Practice with it to satisfy
yourself that it accepts the strings ε, a, baba, and baa, but that it doesn’t ac-
cept the strings b, bb, and babba. Later we use this machine to illustrate the
procedure for converting NFAs to DFAs.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.



1.2 NONDETERMINISM 53

FIGURE 1.36

The NFA N4

FORMAL DEFINITION OF A

NONDETERMINISTIC FINITE AUTOMATON

The formal definition of a nondeterministic finite automaton is similar to that of
a deterministic finite automaton. Both have states, an input alphabet, a transition
function, a start state, and a collection of accept states. However, they differ in
one essential way: in the type of transition function. In a DFA, the transition
function takes a state and an input symbol and produces the next state. In an
NFA, the transition function takes a state and an input symbol or the empty string
and produces the set of possible next states. In order to write the formal definition,
we need to set up some additional notation. For any set Q we write P(Q) to be
the collection of all subsets of Q. Here P(Q) is called the power set of Q. For any
alphabet Σ we write Σε to be Σ∪ {ε}. Now we can write the formal description
of the type of the transition function in an NFA as δ : Q× Σε−→P(Q).

DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F ),
where

1. Q is a finite set of states,

2. Σ is a finite alphabet,

3. δ : Q× Σε−→P(Q) is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.
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EXAMPLE 1.38

Recall the NFA N1:

The formal description of N1 is (Q,Σ, δ, q1, F ), where

1. Q = {q1, q2, q3, q4},

2. Σ = {0,1},

3. δ is given as
0 1 ε

q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q3}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅,

4. q1 is the start state, and

5. F = {q4}.

The formal definition of computation for an NFA is similar to that for a DFA.
Let N = (Q,Σ, δ, q0, F ) be an NFA and w a string over the alphabet Σ. Then
we say that N accepts w if we can write w as w = y1y2 · · · ym, where each yi
is a member of Σε and a sequence of states r0, r1, . . . , rm exists in Q with three
conditions:

1. r0 = q0,

2. ri+1 ∈ δ(ri, yi+1), for i = 0, . . . ,m− 1, and

3. rm ∈ F .

Condition 1 says that the machine starts out in the start state. Condition 2 says
that state ri+1 is one of the allowable next states when N is in state ri and reading
yi+1. Observe that δ(ri, yi+1) is the set of allowable next states and so we say that
ri+1 is a member of that set. Finally, condition 3 says that the machine accepts
its input if the last state is an accept state.

EQUIVALENCE OF NFAS AND DFAS

Deterministic and nondeterministic finite automata recognize the same class of
languages. Such equivalence is both surprising and useful. It is surprising be-
cause NFAs appear to have more power than DFAs, so we might expect that NFAs
recognize more languages. It is useful because describing an NFA for a given
language sometimes is much easier than describing a DFA for that language.

Say that two machines are equivalent if they recognize the same language.
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THEOREM 1.39

Every nondeterministic finite automaton has an equivalent deterministic finite
automaton.

PROOF IDEA If a language is recognized by an NFA, then we must show the
existence of a DFA that also recognizes it. The idea is to convert the NFA into an
equivalent DFA that simulates the NFA.

Recall the “reader as automaton” strategy for designing finite automata. How
would you simulate the NFA if you were pretending to be a DFA? What do you
need to keep track of as the input string is processed? In the examples of NFAs,
you kept track of the various branches of the computation by placing a finger
on each state that could be active at given points in the input. You updated the
simulation by moving, adding, and removing fingers according to the way the
NFA operates. All you needed to keep track of was the set of states having fingers
on them.

If k is the number of states of the NFA, it has 2k subsets of states. Each subset
corresponds to one of the possibilities that the DFA must remember, so the DFA
simulating the NFA will have 2k states. Now we need to figure out which will
be the start state and accept states of the DFA, and what will be its transition
function. We can discuss this more easily after setting up some formal notation.

PROOF Let N = (Q,Σ, δ, q0, F ) be the NFA recognizing some language A.
We construct a DFA M = (Q′,Σ, δ′, q0′, F ′) recognizing A. Before doing the full
construction, let’s first consider the easier case wherein N has no ε arrows. Later
we take the ε arrows into account.

1. Q′ = P(Q).
Every state of M is a set of states of N . Recall that P(Q) is the set of
subsets of Q.

2. For R ∈ Q′ and a ∈ Σ, let δ′(R, a) = {q ∈ Q| q ∈ δ(r, a) for some r ∈ R}.
If R is a state of M , it is also a set of states of N . When M reads a symbol
a in state R, it shows where a takes each state in R. Because each state may
go to a set of states, we take the union of all these sets. Another way to
write this expression is

δ′(R, a) =
⋃

r∈R

δ(r, a).4

3. q0′ = {q0}.
M starts in the state corresponding to the collection containing just the
start state of N .

4. F ′ = {R ∈ Q′| R contains an accept state of N}.
The machine M accepts if one of the possible states that N could be in at
this point is an accept state.

4The notation
⋃

r∈R

δ(r, a) means: the union of the sets δ(r, a) for each possible r in R.
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Now we need to consider the ε arrows. To do so, we set up an extra bit of
notation. For any state R of M , we define E(R) to be the collection of states
that can be reached from members of R by going only along ε arrows, including
the members of R themselves. Formally, for R ⊆ Q let

E(R) = {q| q can be reached from R by traveling along 0 or more ε arrows}.

Then we modify the transition function of M to place additional fingers on all
states that can be reached by going along ε arrows after every step. Replacing
δ(r, a) by E(δ(r, a)) achieves this effect. Thus

δ′(R, a) = {q ∈ Q| q ∈ E(δ(r, a)) for some r ∈ R}.

Additionally, we need to modify the start state of M to move the fingers ini-
tially to all possible states that can be reached from the start state of N along
the ε arrows. Changing q0′ to be E({q0}) achieves this effect. We have now
completed the construction of the DFA M that simulates the NFA N .

The construction of M obviously works correctly. At every step in the com-
putation of M on an input, it clearly enters a state that corresponds to the subset
of states that N could be in at that point. Thus our proof is complete.

Theorem 1.39 states that every NFA can be converted into an equivalent DFA.
Thus nondeterministic finite automata give an alternative way of characterizing
the regular languages. We state this fact as a corollary of Theorem 1.39.

COROLLARY 1.40

A language is regular if and only if some nondeterministic finite automaton rec-
ognizes it.

One direction of the “if and only if” condition states that a language is regular
if some NFA recognizes it. Theorem 1.39 shows that any NFA can be converted
into an equivalent DFA. Consequently, if an NFA recognizes some language, so
does some DFA, and hence the language is regular. The other direction of the
“if and only if” condition states that a language is regular only if some NFA rec-
ognizes it. That is, if a language is regular, some NFA must be recognizing it.
Obviously, this condition is true because a regular language has a DFA recogniz-
ing it and any DFA is also an NFA.

EXAMPLE 1.41

Let’s illustrate the procedure we gave in the proof of Theorem 1.39 for convert-
ing an NFA to a DFA by using the machine N4 that appears in Example 1.35. For
clarity, we have relabeled the states of N4 to be {1, 2, 3}. Thus in the formal
description of N4 = (Q, {a,b}, δ, 1, {1}), the set of states Q is {1, 2, 3} as shown
in Figure 1.42.
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To construct a DFA D that is equivalent to N4, we first determine D’s states.
N4 has three states, {1, 2, 3}, so we construct D with eight states, one for each
subset of N4’s states. We label each of D’s states with the corresponding subset.
Thus D’s state set is

{
∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}

}
.

FIGURE 1.42

The NFA N4

Next, we determine the start and accept states of D. The start state is E({1}),
the set of states that are reachable from 1 by traveling along ε arrows, plus 1
itself. An ε arrow goes from 1 to 3, so E({1}) = {1, 3}. The new accept states
are those containing N4’s accept state; thus

{
{1}, {1,2}, {1,3}, {1,2,3}

}
.

Finally, we determine D’s transition function. Each of D’s states goes to one
place on input a and one place on input b. We illustrate the process of deter-
mining the placement of D’s transition arrows with a few examples.

In D, state {2} goes to {2,3} on input a because in N4, state 2 goes to both 2
and 3 on input a and we can’t go farther from 2 or 3 along ε arrows. State {2}
goes to state {3} on input b because in N4, state 2 goes only to state 3 on input
b and we can’t go farther from 3 along ε arrows.

State {1} goes to ∅ on a because no a arrows exit it. It goes to {2} on b.
Note that the procedure in Theorem 1.39 specifies that we follow the ε arrows
after each input symbol is read. An alternative procedure based on following the
ε arrows before reading each input symbol works equally well, but that method
is not illustrated in this example.

State {3} goes to {1,3} on a because in N4, state 3 goes to 1 on a and 1 in
turn goes to 3 with an ε arrow. State {3} on b goes to ∅.

State {1,2} on a goes to {2,3} because 1 points at no states with a arrows,
2 points at both 2 and 3 with a arrows, and neither points anywhere with ε ar-
rows. State {1,2} on b goes to {2,3}. Continuing in this way, we obtain the
diagram for D in Figure 1.43.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.



58 CHAPTER 1 / REGULAR LANGUAGES

FIGURE 1.43

A DFA D that is equivalent to the NFA N4

We may simplify this machine by observing that no arrows point at states {1}
and {1, 2}, so they may be removed without affecting the performance of the
machine. Doing so yields the following figure.

FIGURE 1.44

DFA D after removing unnecessary states

CLOSURE UNDER THE REGULAR OPERATIONS

Now we return to the closure of the class of regular languages under the regular
operations that we began in Section 1.1. Our aim is to prove that the union,
concatenation, and star of regular languages are still regular. We abandoned the
original attempt to do so when dealing with the concatenation operation was too
complicated. The use of nondeterminism makes the proofs much easier.

First, let’s consider again closure under union. Earlier we proved closure
under union by simulating deterministically both machines simultaneously via
a Cartesian product construction. We now give a new proof to illustrate the
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technique of nondeterminism. Reviewing the first proof, appearing on page 45,
may be worthwhile to see how much easier and more intuitive the new proof is.

THEOREM 1.45

The class of regular languages is closed under the union operation.

PROOF IDEA We have regular languages A1 and A2 and want to prove that
A1 ∪A2 is regular. The idea is to take two NFAs, N1 and N2 for A1 and A2, and
combine them into one new NFA, N .

Machine N must accept its input if either N1 or N2 accepts this input. The
new machine has a new start state that branches to the start states of the old ma-
chines with ε arrows. In this way, the new machine nondeterministically guesses
which of the two machines accepts the input. If one of them accepts the input,
N will accept it, too.

We represent this construction in the following figure. On the left, we in-
dicate the start and accept states of machines N1 and N2 with large circles and
some additional states with small circles. On the right, we show how to combine
N1 and N2 into N by adding additional transition arrows.

FIGURE 1.46

Construction of an NFA N to recognize A1 ∪ A2
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PROOF

Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1, and
N2 = (Q2,Σ, δ2, q2, F2) recognize A2.

Construct N = (Q,Σ, δ, q0, F ) to recognize A1 ∪ A2.

1. Q = {q0} ∪Q1 ∪Q2.
The states of N are all the states of N1 and N2, with the addition of a new
start state q0.

2. The state q0 is the start state of N .

3. The set of accept states F = F1 ∪ F2.
The accept states of N are all the accept states of N1 and N2. That way, N
accepts if either N1 accepts or N2 accepts.

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =






δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0 and a = ε

∅ q = q0 and a ,= ε.

Now we can prove closure under concatenation. Recall that earlier, without
nondeterminism, completing the proof would have been difficult.

THEOREM 1.47

The class of regular languages is closed under the concatenation operation.

PROOF IDEA We have regular languages A1 and A2 and want to prove that
A1 ◦ A2 is regular. The idea is to take two NFAs, N1 and N2 for A1 and A2, and
combine them into a new NFA N as we did for the case of union, but this time
in a different way, as shown in Figure 1.48.

Assign N ’s start state to be the start state of N1. The accept states of N1 have
additional ε arrows that nondeterministically allow branching to N2 whenever
N1 is in an accept state, signifying that it has found an initial piece of the input
that constitutes a string in A1. The accept states of N are the accept states of N2

only. Therefore, it accepts when the input can be split into two parts, the first
accepted by N1 and the second by N2. We can think of N as nondeterministically
guessing where to make the split.
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FIGURE 1.48

Construction of N to recognize A1 ◦A2

PROOF

Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1, and
N2 = (Q2,Σ, δ2, q2, F2) recognize A2.

Construct N = (Q,Σ, δ, q1, F2) to recognize A1 ◦A2.

1. Q = Q1 ∪Q2.
The states of N are all the states of N1 and N2.

2. The state q1 is the same as the start state of N1.

3. The accept states F2 are the same as the accept states of N2.

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =






δ1(q, a) q ∈ Q1 and q ,∈ F1

δ1(q, a) q ∈ F1 and a ,= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2.
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THEOREM 1.49

The class of regular languages is closed under the star operation.

PROOF IDEA We have a regular language A1 and want to prove that A∗
1 also

is regular. We take an NFA N1 for A1 and modify it to recognize A∗
1, as shown in

the following figure. The resulting NFA N will accept its input whenever it can
be broken into several pieces and N1 accepts each piece.

We can construct N like N1 with additional ε arrows returning to the start
state from the accept states. This way, when processing gets to the end of a piece
that N1 accepts, the machine N has the option of jumping back to the start state
to try to read another piece that N1 accepts. In addition, we must modify N
so that it accepts ε, which always is a member of A∗

1. One (slightly bad) idea is
simply to add the start state to the set of accept states. This approach certainly
adds ε to the recognized language, but it may also add other, undesired strings.
Exercise 1.15 asks for an example of the failure of this idea. The way to fix it is
to add a new start state, which also is an accept state, and which has an ε arrow
to the old start state. This solution has the desired effect of adding ε to the
language without adding anything else.

FIGURE 1.50

Construction of N to recognize A∗

PROOF Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1.
Construct N = (Q,Σ, δ, q0, F ) to recognize A∗

1.

1. Q = {q0} ∪Q1.
The states of N are the states of N1 plus a new start state.

2. The state q0 is the new start state.

3. F = {q0} ∪ F1.
The accept states are the old accept states plus the new start state.
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4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =






δ1(q, a) q ∈ Q1 and q ,∈ F1

δ1(q, a) q ∈ F1 and a ,= ε

δ1(q, a) ∪ {q1} q ∈ F1 and a = ε

{q1} q = q0 and a = ε

∅ q = q0 and a ,= ε.

1.3
REGULAR EXPRESSIONS

In arithmetic, we can use the operations + and × to build up expressions such as

(5 + 3)× 4 .

Similarly, we can use the regular operations to build up expressions describing
languages, which are called regular expressions. An example is:

(0 ∪ 1)0∗.

The value of the arithmetic expression is the number 32. The value of a regular
expression is a language. In this case, the value is the language consisting of all
strings starting with a 0 or a 1 followed by any number of 0s. We get this result by
dissecting the expression into its parts. First, the symbols 0 and 1 are shorthand
for the sets {0} and {1}. So (0 ∪ 1) means ({0} ∪ {1}). The value of this part
is the language {0,1}. The part 0∗ means {0}∗, and its value is the language
consisting of all strings containing any number of 0s. Second, like the × symbol
in algebra, the concatenation symbol ◦ often is implicit in regular expressions.
Thus (0∪1)0∗ actually is shorthand for (0∪1)◦0∗. The concatenation attaches
the strings from the two parts to obtain the value of the entire expression.

Regular expressions have an important role in computer science applications.
In applications involving text, users may want to search for strings that satisfy
certain patterns. Regular expressions provide a powerful method for describing
such patterns. Utilities such as awk and grep in UNIX, modern programming
languages such as Perl, and text editors all provide mechanisms for the descrip-
tion of patterns by using regular expressions.
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EXAMPLE 1.51

Another example of a regular expression is

(0 ∪ 1)∗.

It starts with the language (0 ∪ 1) and applies the ∗ operation. The value of
this expression is the language consisting of all possible strings of 0s and 1s. If
Σ = {0,1}, we can write Σ as shorthand for the regular expression (0∪1). More
generally, if Σ is any alphabet, the regular expression Σ describes the language
consisting of all strings of length 1 over this alphabet, and Σ∗ describes the lan-
guage consisting of all strings over that alphabet. Similarly, Σ∗1 is the language
that contains all strings that end in a 1. The language (0Σ∗) ∪ (Σ∗1) consists of
all strings that start with a 0 or end with a 1.

In arithmetic, we say that × has precedence over + to mean that when there
is a choice, we do the × operation first. Thus in 2+3×4, the 3×4 is done before
the addition. To have the addition done first, we must add parentheses to obtain
(2 + 3) × 4. In regular expressions, the star operation is done first, followed by
concatenation, and finally union, unless parentheses change the usual order.

FORMAL DEFINITION OF A REGULAR EXPRESSION

DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet Σ,

2. ε,

3. ∅,

4. (R1 ∪R2), where R1 and R2 are regular expressions,

5. (R1 ◦R2), where R1 and R2 are regular expressions, or

6. (R∗
1), where R1 is a regular expression.

In items 1 and 2, the regular expressions a and ε represent the
languages {a} and {ε}, respectively. In item 3, the regular expres-
sion ∅ represents the empty language. In items 4, 5, and 6, the
expressions represent the languages obtained by taking the union
or concatenation of the languages R1 and R2, or the star of the
language R1, respectively.

Don’t confuse the regular expressions ε and ∅. The expression ε represents
the language containing a single string—namely, the empty string—whereas ∅
represents the language that doesn’t contain any strings.
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Seemingly, we are in danger of defining the notion of a regular expression
in terms of itself. If true, we would have a circular definition, which would be
invalid. However, R1 and R2 always are smaller than R. Thus we actually are
defining regular expressions in terms of smaller regular expressions and thereby
avoiding circularity. A definition of this type is called an inductive definition.

Parentheses in an expression may be omitted. If they are, evaluation is done
in the precedence order: star, then concatenation, then union.

For convenience, we let R+ be shorthand for RR∗. In other words, whereas
R∗ has all strings that are 0 or more concatenations of strings from R, the lan-
guage R+ has all strings that are 1 or more concatenations of strings from R. So
R+ ∪ ε = R∗. In addition, we let Rk be shorthand for the concatenation of k R’s
with each other.

When we want to distinguish between a regular expression R and the lan-
guage that it describes, we write L(R) to be the language of R.

EXAMPLE 1.53

In the following instances, we assume that the alphabet Σ is {0,1}.

1. 0∗10∗ = {w| w contains a single 1}.

2. Σ∗1Σ∗ = {w| w has at least one 1}.

3. Σ∗001Σ∗ = {w| w contains the string 001 as a substring}.

4. 1∗(01+)∗ = {w| every 0 in w is followed by at least one 1}.

5. (ΣΣ)∗ = {w| w is a string of even length}.5

6. (ΣΣΣ)∗ = {w| the length of w is a multiple of 3}.

7. 01 ∪ 10 = {01, 10}.

8. 0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 = {w| w starts and ends with the same symbol}.

9. (0 ∪ ε)1∗ = 01∗ ∪ 1∗.
The expression 0 ∪ ε describes the language {0, ε}, so the concatenation
operation adds either 0 or ε before every string in 1∗.

10. (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}.

11. 1∗∅ = ∅.
Concatenating the empty set to any set yields the empty set.

12. ∅∗ = {ε}.
The star operation puts together any number of strings from the language
to get a string in the result. If the language is empty, the star operation can
put together 0 strings, giving only the empty string.

5The length of a string is the number of symbols that it contains.
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If we let R be any regular expression, we have the following identities. They
are good tests of whether you understand the definition.

R ∪ ∅ = R.
Adding the empty language to any other language will not change it.

R ◦ ε = R.
Joining the empty string to any string will not change it.

However, exchanging ∅ and ε in the preceding identities may cause the equalities
to fail.

R ∪ ε may not equal R.
For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}.

R ◦ ∅ may not equal R.
For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅.

Regular expressions are useful tools in the design of compilers for program-
ming languages. Elemental objects in a programming language, called tokens,
such as the variable names and constants, may be described with regular ex-
pressions. For example, a numerical constant that may include a fractional part
and/or a sign may be described as a member of the language

(
+ ∪ - ∪ ε

) (
D+ ∪D+.D∗ ∪D∗.D+

)

where D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is the alphabet of decimal digits. Examples
of generated strings are: 72, 3.14159, +7., and -.01.

Once the syntax of a programming language has been described with a regular
expression in terms of its tokens, automatic systems can generate the lexical
analyzer, the part of a compiler that initially processes the input program.

EQUIVALENCE WITH FINITE AUTOMATA

Regular expressions and finite automata are equivalent in their descriptive
power. This fact is surprising because finite automata and regular expressions
superficially appear to be rather different. However, any regular expression can
be converted into a finite automaton that recognizes the language it describes,
and vice versa. Recall that a regular language is one that is recognized by some
finite automaton.

THEOREM 1.54

A language is regular if and only if some regular expression describes it.

This theorem has two directions. We state and prove each direction as a separate
lemma.
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LEMMA 1.55

If a language is described by a regular expression, then it is regular.

PROOF IDEA Say that we have a regular expression R describing some lan-
guage A. We show how to convert R into an NFA recognizing A. By Corol-
lary 1.40, if an NFA recognizes A then A is regular.

PROOF Let’s convert R into an NFA N . We consider the six cases in the
formal definition of regular expressions.

1. R = a for some a ∈ Σ. Then L(R) = {a}, and the following NFA recog-
nizes L(R).

Note that this machine fits the definition of an NFA but not that of
a DFA because it has some states with no exiting arrow for each possible
input symbol. Of course, we could have presented an equivalent DFA here;
but an NFA is all we need for now, and it is easier to describe.

Formally, N =
(
{q1, q2}, Σ, δ, q1, {q2}

)
, where we describe δ by saying

that δ(q1, a) = {q2} and that δ(r, b) = ∅ for r ,= q1 or b ,= a.

2. R = ε. Then L(R) = {ε}, and the following NFA recognizes L(R).

Formally, N =
(
{q1},Σ, δ, q1, {q1}

)
, where δ(r, b) = ∅ for any r and b.

3. R = ∅. Then L(R) = ∅, and the following NFA recognizes L(R).

Formally, N =
(
{q},Σ, δ, q, ∅

)
, where δ(r, b) = ∅ for any r and b.

4. R = R1 ∪R2.

5. R = R1 ◦R2.

6. R = R∗
1.

For the last three cases, we use the constructions given in the proofs that the
class of regular languages is closed under the regular operations. In other words,
we construct the NFA for R from the NFAs for R1 and R2 (or just R1 in case 6)
and the appropriate closure construction.
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That ends the first part of the proof of Theorem 1.54, giving the easier di-
rection of the if and only if condition. Before going on to the other direction,
let’s consider some examples whereby we use this procedure to convert a regular
expression to an NFA.

EXAMPLE 1.56

We convert the regular expression (ab ∪ a)∗ to an NFA in a sequence of stages.
We build up from the smallest subexpressions to larger subexpressions until we
have an NFA for the original expression, as shown in the following diagram.
Note that this procedure generally doesn’t give the NFA with the fewest states.
In this example, the procedure gives an NFA with eight states, but the smallest
equivalent NFA has only two states. Can you find it?

FIGURE 1.57

Building an NFA from the regular expression (ab ∪ a)∗
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EXAMPLE 1.58

In Figure 1.59, we convert the regular expression (a ∪ b)∗aba to an NFA. A few
of the minor steps are not shown.

FIGURE 1.59

Building an NFA from the regular expression (a ∪ b)∗aba

Now let’s turn to the other direction of the proof of Theorem 1.54.

LEMMA 1.60

If a language is regular, then it is described by a regular expression.

PROOF IDEA We need to show that if a language A is regular, a regular
expression describes it. Because A is regular, it is accepted by a DFA. We describe
a procedure for converting DFAs into equivalent regular expressions.
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We break this procedure into two parts, using a new type of finite automaton
called a generalized nondeterministic finite automaton, GNFA. First we show
how to convert DFAs into GNFAs, and then GNFAs into regular expressions.

Generalized nondeterministic finite automata are simply nondeterministic fi-
nite automata wherein the transition arrows may have any regular expressions as
labels, instead of only members of the alphabet or ε. The GNFA reads blocks of
symbols from the input, not necessarily just one symbol at a time as in an ordi-
nary NFA. The GNFA moves along a transition arrow connecting two states by
reading a block of symbols from the input, which themselves constitute a string
described by the regular expression on that arrow. A GNFA is nondeterministic
and so may have several different ways to process the same input string. It ac-
cepts its input if its processing can cause the GNFA to be in an accept state at the
end of the input. The following figure presents an example of a GNFA.

FIGURE 1.61

A generalized nondeterministic finite automaton

For convenience, we require that GNFAs always have a special form that meets
the following conditions.

• The start state has transition arrows going to every other state but no arrows
coming in from any other state.

• There is only a single accept state, and it has arrows coming in from every
other state but no arrows going to any other state. Furthermore, the accept
state is not the same as the start state.

• Except for the start and accept states, one arrow goes from every state to
every other state and also from each state to itself.
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We can easily convert a DFA into a GNFA in the special form. We simply add a
new start state with an ε arrow to the old start state and a new accept state with ε
arrows from the old accept states. If any arrows have multiple labels (or if there
are multiple arrows going between the same two states in the same direction), we
replace each with a single arrow whose label is the union of the previous labels.
Finally, we add arrows labeled ∅ between states that had no arrows. This last
step won’t change the language recognized because a transition labeled with ∅
can never be used. From here on we assume that all GNFAs are in the special
form.

Now we show how to convert a GNFA into a regular expression. Say that the
GNFA has k states. Then, because a GNFA must have a start and an accept state
and they must be different from each other, we know that k ≥ 2. If k > 2, we
construct an equivalent GNFA with k − 1 states. This step can be repeated on
the new GNFA until it is reduced to two states. If k = 2, the GNFA has a single
arrow that goes from the start state to the accept state. The label of this arrow
is the equivalent regular expression. For example, the stages in converting a DFA
with three states to an equivalent regular expression are shown in the following
figure.

FIGURE 1.62

Typical stages in converting a DFA to a regular expression

The crucial step is constructing an equivalent GNFA with one fewer state
when k > 2. We do so by selecting a state, ripping it out of the machine, and
repairing the remainder so that the same language is still recognized. Any state
will do, provided that it is not the start or accept state. We are guaranteed that
such a state will exist because k > 2. Let’s call the removed state qrip.

After removing qrip we repair the machine by altering the regular expressions
that label each of the remaining arrows. The new labels compensate for the
absence of qrip by adding back the lost computations. The new label going from
a state qi to a state qj is a regular expression that describes all strings that would
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take the machine from qi to qj either directly or via qrip. We illustrate this
approach in Figure 1.63.

FIGURE 1.63

Constructing an equivalent GNFA with one fewer state

In the old machine, if

1. qi goes to qrip with an arrow labeled R1,

2. qrip goes to itself with an arrow labeled R2,

3. qrip goes to qj with an arrow labeled R3, and

4. qi goes to qj with an arrow labeled R4,

then in the new machine, the arrow from qi to qj gets the label

(R1)(R2)
∗(R3) ∪ (R4).

We make this change for each arrow going from any state qi to any state qj ,
including the case where qi = qj . The new machine recognizes the original
language.

PROOF Let’s now carry out this idea formally. First, to facilitate the proof,
we formally define the new type of automaton introduced. A GNFA is similar
to a nondeterministic finite automaton except for the transition function, which
has the form

δ :
(
Q− {qaccept}

)
×
(
Q− {qstart}

)
−→R.

The symbol R is the collection of all regular expressions over the alphabet Σ,
and qstart and qaccept are the start and accept states. If δ(qi, qj) = R, the arrow
from state qi to state qj has the regular expression R as its label. The domain
of the transition function is

(
Q − {qaccept}

)
×

(
Q − {qstart}

)
because an arrow

connects every state to every other state, except that no arrows are coming from
qaccept or going to qstart.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.



1.3 REGULAR EXPRESSIONS 73

DEFINITION 1.64

A generalized nondeterministic finite automaton is a 5-tuple,
(Q,Σ, δ, qstart, qaccept), where

1. Q is the finite set of states,

2. Σ is the input alphabet,

3. δ :
(
Q− {qaccept}

)
×
(
Q− {qstart}

)
−→R is the transition

function,

4. qstart is the start state, and

5. qaccept is the accept state.

A GNFA accepts a string w in Σ∗ if w = w1w2 · · ·wk , where each wi is in Σ∗

and a sequence of states q0, q1, . . . , qk exists such that

1. q0 = qstart is the start state,

2. qk = qaccept is the accept state, and

3. for each i, we have wi ∈ L(Ri), where Ri = δ(qi−1, qi); in other words, Ri

is the expression on the arrow from qi−1 to qi.

Returning to the proof of Lemma 1.60, we let M be the DFA for language
A. Then we convert M to a GNFA G by adding a new start state and a new
accept state and additional transition arrows as necessary. We use the procedure
CONVERT(G), which takes a GNFA and returns an equivalent regular expression.
This procedure uses recursion, which means that it calls itself. An infinite loop
is avoided because the procedure calls itself only to process a GNFA that has
one fewer state. The case where the GNFA has two states is handled without
recursion.

CONVERT(G):

1. Let k be the number of states of G.

2. If k = 2, then G must consist of a start state, an accept state, and a single
arrow connecting them and labeled with a regular expression R.
Return the expression R.

3. If k > 2, we select any state qrip ∈ Q different from qstart and qaccept and let
G′ be the GNFA (Q′,Σ, δ′, qstart, qaccept), where

Q′ = Q− {qrip},

and for any qi ∈ Q′ − {qaccept} and any qj ∈ Q′ − {qstart}, let

δ′(qi, qj) = (R1)(R2)
∗(R3) ∪ (R4),

for R1 = δ(qi, qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi, qj).

4. Compute CONVERT(G′) and return this value.
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Next we prove that CONVERT returns a correct value.

CLAIM 1.65

For any GNFA G, CONVERT(G) is equivalent to G.

We prove this claim by induction on k, the number of states of the GNFA.

Basis: Prove the claim true for k = 2 states. If G has only two states, it can
have only a single arrow, which goes from the start state to the accept state. The
regular expression label on this arrow describes all the strings that allow G to get
to the accept state. Hence this expression is equivalent to G.

Induction step: Assume that the claim is true for k − 1 states and use this as-
sumption to prove that the claim is true for k states. First we show that G and
G′ recognize the same language. Suppose that G accepts an input w. Then in an
accepting branch of the computation, G enters a sequence of states:

qstart, q1, q2, q3, . . . , qaccept.

If none of them is the removed state qrip, clearly G′ also acceptsw. The reason
is that each of the new regular expressions labeling the arrows of G′ contains the
old regular expression as part of a union.

If qrip does appear, removing each run of consecutive qrip states forms an
accepting computation for G′. The states qi and qj bracketing a run have a new
regular expression on the arrow between them that describes all strings taking qi
to qj via qrip on G. So G′ accepts w.

Conversely, suppose that G′ accepts an input w. As each arrow between any
two states qi and qj in G′ describes the collection of strings taking qi to qj in G,
either directly or via qrip, G must also accept w. Thus G and G′ are equivalent.

The induction hypothesis states that when the algorithm calls itself recur-
sively on input G′, the result is a regular expression that is equivalent to G′

because G′ has k − 1 states. Hence this regular expression also is equivalent to
G, and the algorithm is proved correct.

This concludes the proof of Claim 1.65, Lemma 1.60, and Theorem 1.54.

EXAMPLE 1.66

In this example, we use the preceding algorithm to convert a DFA into a regular
expression. We begin with the two-state DFA in Figure 1.67(a).

In Figure 1.67(b), we make a four-state GNFA by adding a new start state and
a new accept state, called s and a instead of qstart and qaccept so that we can draw
them conveniently. To avoid cluttering up the figure, we do not draw the arrows
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labeled ∅, even though they are present. Note that we replace the label a, b on
the self-loop at state 2 on the DFA with the label a∪b at the corresponding point
on the GNFA. We do so because the DFA’s label represents two transitions, one
for a and the other for b, whereas the GNFA may have only a single transition
going from 2 to itself.

In Figure 1.67(c), we remove state 2 and update the remaining arrow labels.
In this case, the only label that changes is the one from 1 to a. In part (b) it was
∅, but in part (c) it is b(a ∪ b)∗. We obtain this result by following step 3 of the
CONVERT procedure. State qi is state 1, state qj is a, and qrip is 2, so R1 = b,
R2 = a ∪ b, R3 = ε, and R4 = ∅. Therefore, the new label on the arrow from 1
to a is (b)(a ∪ b)∗(ε) ∪ ∅. We simplify this regular expression to b(a ∪ b)∗.

In Figure 1.67(d), we remove state 1 from part (c) and follow the same pro-
cedure. Because only the start and accept states remain, the label on the arrow
joining them is the regular expression that is equivalent to the original DFA.

FIGURE 1.67

Converting a two-state DFA to an equivalent regular expression
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EXAMPLE 1.68

In this example, we begin with a three-state DFA. The steps in the conversion are
shown in the following figure.

  

    

    

  

 

  

FIGURE 1.69

Converting a three-state DFA to an equivalent regular expression
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1.4
NONREGULAR LANGUAGES

To understand the power of finite automata, you must also understand their
limitations. In this section, we show how to prove that certain languages cannot
be recognized by any finite automaton.

Let’s take the language B = {0n1n| n ≥ 0}. If we attempt to find a DFA
that recognizes B, we discover that the machine seems to need to remember
how many 0s have been seen so far as it reads the input. Because the number of
0s isn’t limited, the machine will have to keep track of an unlimited number of
possibilities. But it cannot do so with any finite number of states.

Next, we present a method for proving that languages such as B are not regu-
lar. Doesn’t the argument already given prove nonregularity because the number
of 0s is unlimited? It does not. Just because the language appears to require un-
bounded memory doesn’t mean that it is necessarily so. It does happen to be true
for the language B; but other languages seem to require an unlimited number of
possibilities, yet actually they are regular. For example, consider two languages
over the alphabet Σ = {0,1}:

C = {w| w has an equal number of 0s and 1s}, and

D = {w| w has an equal number of occurrences of 01 and 10 as substrings}.

At first glance, a recognizing machine appears to need to count in each case,
and therefore neither language appears to be regular. As expected, C is not
regular, but surprisingly D is regular!6 Thus our intuition can sometimes lead
us astray, which is why we need mathematical proofs for certainty. In this section,
we show how to prove that certain languages are not regular.

THE PUMPING LEMMA FOR REGULAR LANGUAGES

Our technique for proving nonregularity stems from a theorem about regular
languages, traditionally called the pumping lemma. This theorem states that all
regular languages have a special property. If we can show that a language does
not have this property, we are guaranteed that it is not regular. The property
states that all strings in the language can be “pumped” if they are at least as
long as a certain special value, called the pumping length. That means each
such string contains a section that can be repeated any number of times with the
resulting string remaining in the language.

6See Problem 1.48.
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THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i ≥ 0, xyiz ∈ A,

2. |y| > 0, and

3. |xy| ≤ p.

Recall the notation where |s| represents the length of string s, yi means that i
copies of y are concatenated together, and y0 equals ε.

When s is divided into xyz, either x or z may be ε, but condition 2 says that
y ,= ε. Observe that without condition 2 the theorem would be trivially true.
Condition 3 states that the pieces x and y together have length at most p. It is an
extra technical condition that we occasionally find useful when proving certain
languages to be nonregular. See Example 1.74 for an application of condition 3.

PROOF IDEA Let M = (Q,Σ, δ, q1, F ) be a DFA that recognizes A. We assign
the pumping length p to be the number of states of M . We show that any string
s in A of length at least p may be broken into the three pieces xyz, satisfying our
three conditions. What if no strings in A are of length at least p? Then our task
is even easier because the theorem becomes vacuously true: Obviously the three
conditions hold for all strings of length at least p if there aren’t any such strings.

If s in A has length at least p, consider the sequence of states that M goes
through when computing with input s. It starts with q1 the start state, then goes
to, say, q3, then, say, q20, then q9, and so on, until it reaches the end of s in state
q13. With s in A, we know that M accepts s, so q13 is an accept state.

If we let n be the length of s, the sequence of states q1, q3, q20, q9, . . . , q13 has
length n + 1. Because n is at least p, we know that n + 1 is greater than p, the
number of states of M . Therefore, the sequence must contain a repeated state.
This result is an example of the pigeonhole principle, a fancy name for the rather
obvious fact that if p pigeons are placed into fewer than p holes, some hole has
to have more than one pigeon in it.

The following figure shows the string s and the sequence of states that M
goes through when processing s. State q9 is the one that repeats.

             

FIGURE 1.71

Example showing state q9 repeating when M reads s

We now divide s into the three pieces x, y, and z. Piece x is the part of s
appearing before q9, piece y is the part between the two appearances of q9, and
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1.4 NONREGULAR LANGUAGES 79

piece z is the remaining part of s, coming after the second occurrence of q9. So
x takes M from the state q1 to q9, y takes M from q9 back to q9, and z takes M
from q9 to the accept state q13, as shown in the following figure.

FIGURE 1.72

Example showing how the strings x, y, and z affect M

Let’s see why this division of s satisfies the three conditions. Suppose that we
run M on input xyyz. We know that x takes M from q1 to q9, and then the first
y takes it from q9 back to q9, as does the second y, and then z takes it to q13.
With q13 being an accept state, M accepts input xyyz. Similarly, it will accept
xyiz for any i > 0. For the case i = 0, xyiz = xz, which is accepted for similar
reasons. That establishes condition 1.

Checking condition 2, we see that |y| > 0, as it was the part of s that occurred
between two different occurrences of state q9.

In order to get condition 3, we make sure that q9 is the first repetition in the
sequence. By the pigeonhole principle, the first p+1 states in the sequence must
contain a repetition. Therefore, |xy| ≤ p.

PROOF Let M = (Q,Σ, δ, q1, F ) be a DFA recognizing A and p be the number
of states of M .

Let s = s1s2 · · · sn be a string in A of length n, where n ≥ p. Let r1, . . . , rn+1

be the sequence of states that M enters while processing s, so ri+1 = δ(ri, si)
for 1 ≤ i ≤ n. This sequence has length n + 1, which is at least p + 1. Among
the first p + 1 elements in the sequence, two must be the same state, by the
pigeonhole principle. We call the first of these rj and the second rl. Because rl
occurs among the first p+1 places in a sequence starting at r1, we have l ≤ p+1.
Now let x = s1 · · · sj−1, y = sj · · · sl−1, and z = sl · · · sn.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes M from rj
to rn+1, which is an accept state, M must accept xyiz for i ≥ 0. We know that
j ,= l, so |y| > 0; and l ≤ p+1, so |xy| ≤ p. Thus we have satisfied all conditions
of the pumping lemma.
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To use the pumping lemma to prove that a language B is not regular, first as-
sume that B is regular in order to obtain a contradiction. Then use the pumping
lemma to guarantee the existence of a pumping length p such that all strings of
length p or greater in B can be pumped. Next, find a string s in B that has length
p or greater but that cannot be pumped. Finally, demonstrate that s cannot be
pumped by considering all ways of dividing s into x, y, and z (taking condition 3
of the pumping lemma into account if convenient) and, for each such division,
finding a value i where xyiz ,∈ B. This final step often involves grouping the
various ways of dividing s into several cases and analyzing them individually.
The existence of s contradicts the pumping lemma if B were regular. Hence B
cannot be regular.

Finding s sometimes takes a bit of creative thinking. You may need to hunt
through several candidates for s before you discover one that works. Try mem-
bers of B that seem to exhibit the “essence” of B’s nonregularity. We further
discuss the task of finding s in some of the following examples.

EXAMPLE 1.73

Let B be the language {0n1n|n ≥ 0}. We use the pumping lemma to prove that
B is not regular. The proof is by contradiction.

Assume to the contrary that B is regular. Let p be the pumping length given
by the pumping lemma. Choose s to be the string 0p1p. Because s is a member
of B and s has length more than p, the pumping lemma guarantees that s can be
split into three pieces, s = xyz, where for any i ≥ 0 the string xyiz is in B. We
consider three cases to show that this result is impossible.

1. The string y consists only of 0s. In this case, the string xyyz has more 0s
than 1s and so is not a member of B, violating condition 1 of the pumping
lemma. This case is a contradiction.

2. The string y consists only of 1s. This case also gives a contradiction.

3. The string y consists of both 0s and 1s. In this case, the string xyyz may
have the same number of 0s and 1s, but they will be out of order with some
1s before 0s. Hence it is not a member of B, which is a contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is reg-
ular, so B is not regular. Note that we can simplify this argument by applying
condition 3 of the pumping lemma to eliminate cases 2 and 3.

In this example, finding the string s was easy because any string in B of
length p or more would work. In the next two examples, some choices for s
do not work so additional care is required.

EXAMPLE 1.74

Let C = {w| w has an equal number of 0s and 1s}. We use the pumping lemma
to prove that C is not regular. The proof is by contradiction.
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Assume to the contrary that C is regular. Let p be the pumping length given
by the pumping lemma. As in Example 1.73, let s be the string 0p1p. With
s being a member of C and having length more than p, the pumping lemma
guarantees that s can be split into three pieces, s = xyz, where for any i ≥ 0 the
string xyiz is in C. We would like to show that this outcome is impossible. But
wait, it is possible! If we let x and z be the empty string and y be the string 0p1p,
then xyiz always has an equal number of 0s and 1s and hence is in C. So it seems
that s can be pumped.

Here condition 3 in the pumping lemma is useful. It stipulates that when
pumping s, it must be divided so that |xy| ≤ p. That restriction on the way that
s may be divided makes it easier to show that the string s = 0p1p we selected
cannot be pumped. If |xy| ≤ p, then y must consist only of 0s, so xyyz ,∈ C.
Therefore, s cannot be pumped. That gives us the desired contradiction.

Selecting the string s in this example required more care than in Exam-
ple 1.73. If we had chosen s = (01)p instead, we would have run into trouble
because we need a string that cannot be pumped and that string can be pumped,
even taking condition 3 into account. Can you see how to pump it? One way to
do so sets x = ε, y = 01, and z = (01)p−1. Then xyiz ∈ C for every value of
i. If you fail on your first attempt to find a string that cannot be pumped, don’t
despair. Try another one!

An alternative method of proving that C is nonregular follows from our
knowledge that B is nonregular. If C were regular, C ∩ 0∗1∗ also would be
regular. The reasons are that the language 0∗1∗ is regular and that the class of
regular languages is closed under intersection, which we proved in footnote 3
(page 46). But C ∩ 0∗1∗ equals B, and we know that B is nonregular from
Example 1.73.

EXAMPLE 1.75

Let F = {ww| w ∈ {0,1}∗}. We show that F is nonregular, using the pumping
lemma.

Assume to the contrary that F is regular. Let p be the pumping length given
by the pumping lemma. Let s be the string 0p10p1. Because s is a member of
F and s has length more than p, the pumping lemma guarantees that s can be
split into three pieces, s = xyz, satisfying the three conditions of the lemma.
We show that this outcome is impossible.

Condition 3 is once again crucial because without it we could pump s if we
let x and z be the empty string. With condition 3 the proof follows because y
must consist only of 0s, so xyyz ,∈ F .

Observe that we chose s = 0p10p1 to be a string that exhibits the “essence” of
the nonregularity of F , as opposed to, say, the string 0p0p. Even though 0p0p is
a member of F , it fails to demonstrate a contradiction because it can be pumped.
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EXAMPLE 1.76

Here we demonstrate a nonregular unary language. Let D = {1n2 | n ≥ 0}.
In other words, D contains all strings of 1s whose length is a perfect square.
We use the pumping lemma to prove that D is not regular. The proof is by
contradiction.

Assume to the contrary that D is regular. Let p be the pumping length given
by the pumping lemma. Let s be the string 1p

2

. Because s is a member of D and
s has length at least p, the pumping lemma guarantees that s can be split into
three pieces, s = xyz, where for any i ≥ 0 the string xyiz is in D. As in the
preceding examples, we show that this outcome is impossible. Doing so in this
case requires a little thought about the sequence of perfect squares:

0, 1, 4, 9, 16, 25, 36, 49, . . .

Note the growing gap between successive members of this sequence. Large
members of this sequence cannot be near each other.

Now consider the two strings xyz and xy2z. These strings differ from each
other by a single repetition of y, and consequently their lengths differ by the
length of y. By condition 3 of the pumping lemma, |xy| ≤ p and thus |y| ≤ p.
We have |xyz| = p2 and so |xy2z| ≤ p2+p. But p2+p < p2+2p+1 = (p+1)2.
Moreover, condition 2 implies that y is not the empty string and so |xy2z| >
p2. Therefore, the length of xy2z lies strictly between the consecutive perfect
squares p2 and (p + 1)2. Hence this length cannot be a perfect square itself. So
we arrive at the contradiction xy2z ,∈ D and conclude that D is not regular.

EXAMPLE 1.77

Sometimes “pumping down” is useful when we apply the pumping lemma. We
use the pumping lemma to show that E = {0i1j | i > j} is not regular. The
proof is by contradiction.

Assume that E is regular. Let p be the pumping length for E given by the
pumping lemma. Let s = 0p+11p. Then s can be split into xyz, satisfying the
conditions of the pumping lemma. By condition 3, y consists only of 0s. Let’s
examine the string xyyz to see whether it can be in E. Adding an extra copy
of y increases the number of 0s. But, E contains all strings in 0∗1∗ that have
more 0s than 1s, so increasing the number of 0s will still give a string in E. No
contradiction occurs. We need to try something else.

The pumping lemma states that xyiz ∈ E even when i = 0, so let’s consider
the string xy0z = xz. Removing string y decreases the number of 0s in s. Recall
that s has just one more 0 than 1. Therefore, xz cannot have more 0s than 1s,
so it cannot be a member of E. Thus we obtain a contradiction.
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EXERCISES

A1.1 The following are the state diagrams of two DFAs, M1 and M2. Answer the follow-
ing questions about each of these machines.

a. What is the start state?

b. What is the set of accept states?

c. What sequence of states does the machine go through on input aabb?

d. Does the machine accept the string aabb?

e. Does the machine accept the string ε?

A1.2 Give the formal description of the machines M1 and M2 pictured in Exercise 1.1.

1.3 The formal description of a DFA M is
(

{q1, q2, q3, q4, q5}, {u, d}, δ, q3, {q3}
)

,
where δ is given by the following table. Give the state diagram of this machine.

u d

q1 q1 q2
q2 q1 q3
q3 q2 q4
q4 q3 q5
q5 q4 q5

1.4 Each of the following languages is the intersection of two simpler languages. In
each part, construct DFAs for the simpler languages, then combine them using the
construction discussed in footnote 3 (page 46) to give the state diagram of a DFA
for the language given. In all parts, Σ = {a, b}.

a. {w| w has at least three a’s and at least two b’s}
Ab. {w| w has exactly two a’s and at least two b’s}

c. {w| w has an even number of a’s and one or two b’s}
Ad. {w| w has an even number of a’s and each a is followed by at least one b}

e. {w| w starts with an a and has at most one b}

f. {w| w has an odd number of a’s and ends with a b}

g. {w| w has even length and an odd number of a’s}
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1.5 Each of the following languages is the complement of a simpler language. In each
part, construct a DFA for the simpler language, then use it to give the state diagram
of a DFA for the language given. In all parts, Σ = {a, b}.
Aa. {w| w does not contain the substring ab}
Ab. {w| w does not contain the substring baba}

c. {w| w contains neither the substrings ab nor ba}

d. {w| w is any string not in a∗b∗}

e. {w| w is any string not in (ab+)∗}

f. {w| w is any string not in a∗ ∪ b∗}

g. {w| w is any string that doesn’t contain exactly two a’s}

h. {w| w is any string except a and b}

1.6 Give state diagrams of DFAs recognizing the following languages. In all parts, the
alphabet is {0,1}.

a. {w| w begins with a 1 and ends with a 0}

b. {w| w contains at least three 1s}

c. {w| w contains the substring 0101 (i.e., w = x0101y for some x and y)}

d. {w| w has length at least 3 and its third symbol is a 0}

e. {w|w starts with 0 and has odd length, or starts with 1 and has even length}

f. {w| w doesn’t contain the substring 110}

g. {w| the length of w is at most 5}

h. {w| w is any string except 11 and 111}

i. {w| every odd position of w is a 1}

j. {w| w contains at least two 0s and at most one 1}

k. {ε, 0}

l. {w| w contains an even number of 0s, or contains exactly two 1s}

m. The empty set

n. All strings except the empty string

1.7 Give state diagrams of NFAs with the specified number of states recognizing each
of the following languages. In all parts, the alphabet is {0,1}.
Aa. The language {w| w ends with 00} with three states

b. The language of Exercise 1.6c with five states

c. The language of Exercise 1.6l with six states

d. The language {0} with two states

e. The language 0∗1∗0+ with three states
Af. The language 1∗(001+)∗ with three states

g. The language {ε} with one state

h. The language 0∗ with one state

1.8 Use the construction in the proof of Theorem 1.45 to give the state diagrams of
NFAs recognizing the union of the languages described in

a. Exercises 1.6a and 1.6b.

b. Exercises 1.6c and 1.6f.
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1.9 Use the construction in the proof of Theorem 1.47 to give the state diagrams of
NFAs recognizing the concatenation of the languages described in

a. Exercises 1.6g and 1.6i.

b. Exercises 1.6b and 1.6m.

1.10 Use the construction in the proof of Theorem 1.49 to give the state diagrams of
NFAs recognizing the star of the languages described in

a. Exercise 1.6b.

b. Exercise 1.6j.

c. Exercise 1.6m.

A1.11 Prove that every NFA can be converted to an equivalent one that has a single accept
state.

1.12 Let D = {w| w contains an even number of a’s and an odd number of b’s and does
not contain the substring ab}. Give a DFA with five states that recognizes D and a
regular expression that generates D. (Suggestion: Describe D more simply.)

1.13 Let F be the language of all strings over {0,1} that do not contain a pair of 1s that
are separated by an odd number of symbols. Give the state diagram of a DFA with
five states that recognizes F . (You may find it helpful first to find a 4-state NFA for
the complement of F .)

1.14 a. Show that if M is a DFA that recognizes language B, swapping the accept
and nonaccept states in M yields a new DFA recognizing the complement of
B. Conclude that the class of regular languages is closed under complement.

b. Show by giving an example that if M is an NFA that recognizes language
C, swapping the accept and nonaccept states in M doesn’t necessarily yield
a new NFA that recognizes the complement of C. Is the class of languages
recognized by NFAs closed under complement? Explain your answer.

1.15 Give a counterexample to show that the following construction fails to prove The-
orem 1.49, the closure of the class of regular languages under the star operation.7

Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1. Construct N = (Q1,Σ, δ, q1, F ) as
follows. N is supposed to recognize A∗

1.

a. The states of N are the states of N1.

b. The start state of N is the same as the start state of N1.

c. F = {q1} ∪ F1.
The accept states F are the old accept states plus its start state.

d. Define δ so that for any q ∈ Q1 and any a ∈ Σε,

δ(q, a) =

{

δ1(q, a) q &∈ F1 or a &= ε

δ1(q, a) ∪ {q1} q ∈ F1 and a = ε.

(Suggestion: Show this construction graphically, as in Figure 1.50.)

7In other words, you must present a finite automaton, N1, for which the constructed
automaton N does not recognize the star of N1’s language.
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1.16 Use the construction given in Theorem 1.39 to convert the following two nonde-
terministic finite automata to equivalent deterministic finite automata.

1.17 a. Give an NFA recognizing the language (01 ∪ 001 ∪ 010)∗.

b. Convert this NFA to an equivalent DFA. Give only the portion of the DFA
that is reachable from the start state.

1.18 Give regular expressions generating the languages of Exercise 1.6.

1.19 Use the procedure described in Lemma 1.55 to convert the following regular ex-
pressions to nondeterministic finite automata.

a. (0 ∪ 1)∗000(0 ∪ 1)∗

b. (((00)∗(11)) ∪ 01)∗

c. ∅∗

1.20 For each of the following languages, give two strings that are members and two
strings that are not members—a total of four strings for each part. Assume the
alphabet Σ = {a,b} in all parts.

a. a∗b∗

b. a(ba)∗b

c. a∗ ∪ b∗

d. (aaa)∗

e. Σ∗aΣ∗bΣ∗aΣ∗

f. aba ∪ bab

g. (ε ∪ a)b

h. (a ∪ ba ∪ bb)Σ∗

1.21 Use the procedure described in Lemma 1.60 to convert the following finite au-
tomata to regular expressions.
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1.22 In certain programming languages, comments appear between delimiters such as
/# and #/. Let C be the language of all valid delimited comment strings. A mem-
ber of C must begin with /# and end with #/ but have no intervening #/. For
simplicity, assume that the alphabet for C is Σ = {a, b, /, #}.

a. Give a DFA that recognizes C.

b. Give a regular expression that generates C.
A1.23 Let B be any language over the alphabet Σ. Prove that B = B+ iff BB ⊆ B.

1.24 A finite state transducer (FST) is a type of deterministic finite automaton whose
output is a string and not just accept or reject . The following are state diagrams of
finite state transducers T1 and T2.

Each transition of an FST is labeled with two symbols, one designating the input
symbol for that transition and the other designating the output symbol. The two
symbols are written with a slash, /, separating them. In T1, the transition from
q1 to q2 has input symbol 2 and output symbol 1. Some transitions may have
multiple input–output pairs, such as the transition in T1 from q1 to itself. When
an FST computes on an input string w, it takes the input symbols w1 · · ·wn one by
one and, starting at the start state, follows the transitions by matching the input
labels with the sequence of symbols w1 · · ·wn = w. Every time it goes along a
transition, it outputs the corresponding output symbol. For example, on input
2212011, machine T1 enters the sequence of states q1, q2, q2, q2, q2, q1, q1, q1 and
produces output 1111000. On input abbb, T2 outputs 1011. Give the sequence of
states entered and the output produced in each of the following parts.

a. T1 on input 011

b. T1 on input 211

c. T1 on input 121

d. T1 on input 0202

e. T2 on input b

f. T2 on input bbab

g. T2 on input bbbbbb

h. T2 on input ε

1.25 Read the informal definition of the finite state transducer given in Exercise 1.24.
Give a formal definition of this model, following the pattern in Definition 1.5
(page 35). Assume that an FST has an input alphabet Σ and an output alphabet Γ but
not a set of accept states. Include a formal definition of the computation of an FST.
(Hint: An FST is a 5-tuple. Its transition function is of the form δ : Q×Σ−→Q×Γ.)

1.26 Using the solution you gave to Exercise 1.25, give a formal description of the ma-
chines T1 and T2 depicted in Exercise 1.24.
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1.27 Read the informal definition of the finite state transducer given in Exercise 1.24.
Give the state diagram of an FST with the following behavior. Its input and output
alphabets are {0,1}. Its output string is identical to the input string on the even
positions but inverted on the odd positions. For example, on input 0000111 it
should output 1010010.

1.28 Convert the following regular expressions to NFAs using the procedure given in
Theorem 1.54. In all parts, Σ = {a, b}.

a. a(abb)∗ ∪ b

b. a+ ∪ (ab)+

c. (a ∪ b+)a+b+

1.29 Use the pumping lemma to show that the following languages are not regular.

Aa. A1 = {0n1n2n| n ≥ 0}

b. A2 = {www| w ∈ {a, b}∗}
Ac. A3 = {a2

n

| n ≥ 0} (Here, a2
n

means a string of 2n a’s.)

1.30 Describe the error in the following “proof” that 0∗1∗ is not a regular language. (An
error must exist because 0∗1∗ is regular.) The proof is by contradiction. Assume
that 0∗1∗ is regular. Let p be the pumping length for 0∗1∗ given by the pumping
lemma. Choose s to be the string 0p1p. You know that s is a member of 0∗1∗, but
Example 1.73 shows that s cannot be pumped. Thus you have a contradiction. So
0∗1∗ is not regular.

PROBLEMS

1.31 For any string w = w1w2 · · ·wn, the reverse of w, written wR, is the string w in
reverse order, wn · · ·w2w1. For any language A, let AR = {wR| w ∈ A}.
Show that if A is regular, so is AR.

1.32 Let

Σ3 =
{[

0

0

0

]

,
[

0

0

1

]

,
[

0

1

0

]

, . . . ,
[

1

1

1

]}

.

Σ3 contains all size 3 columns of 0s and 1s. A string of symbols in Σ3 gives three
rows of 0s and 1s. Consider each row to be a binary number and let

B = {w ∈ Σ∗
3 | the bottom row of w is the sum of the top two rows}.

For example,
[

0

0

1

] [

1

0

0

] [

1

1

0

]

∈ B, but
[

0

0

1

] [

1

0

1

]

&∈ B.

Show that B is regular. (Hint: Working with BR is easier. You may assume the
result claimed in Problem 1.31.)
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1.33 Let
Σ2 =

{[

0

0

]

,
[

0

1

]

,
[

1

0

]

,
[

1

1

]}

.

Here, Σ2 contains all columns of 0s and 1s of height two. A string of symbols in
Σ2 gives two rows of 0s and 1s. Consider each row to be a binary number and let

C = {w ∈ Σ∗
2| the bottom row of w is three times the top row}.

For example,
[

0

0

][

0

1

][

1

1

][

0

0

]

∈ C, but
[

0

1

][

0

1

][

1

0

]

&∈ C. Show that C is regular.

(You may assume the result claimed in Problem 1.31.)

1.34 Let Σ2 be the same as in Problem 1.33. Consider each row to be a binary number
and let

D = {w ∈ Σ∗
2| the top row of w is a larger number than is the bottom row}.

For example,
[

0

0

][

1

0

][

1

1

][

0

0

]

∈ D, but
[

0

0

][

0

1

][

1

1

][

0

0

]

&∈ D. Show that D is regular.

1.35 Let Σ2 be the same as in Problem 1.33. Consider the top and bottom rows to be
strings of 0s and 1s, and let

E = {w ∈ Σ∗
2| the bottom row of w is the reverse of the top row of w}.

Show that E is not regular.

1.36 Let Bn = {ak| k is a multiple of n}. Show that for each n ≥ 1, the language Bn is
regular.

1.37 Let Cn = {x| x is a binary number that is a multiple of n}. Show that for each
n ≥ 1, the language Cn is regular.

1.38 An all-NFA M is a 5-tuple (Q,Σ, δ, q0, F ) that accepts x ∈ Σ∗ if every possible
state that M could be in after reading input x is a state from F . Note, in contrast,
that an ordinary NFA accepts a string if some state among these possible states is an
accept state. Prove that all-NFAs recognize the class of regular languages.

1.39 The construction in Theorem 1.54 shows that every GNFA is equivalent to a GNFA
with only two states. We can show that an opposite phenomenon occurs for DFAs.
Prove that for every k > 1, a language Ak ⊆ {0,1}∗ exists that is recognized by a
DFA with k states but not by one with only k − 1 states.

1.40 Recall that string x is a prefix of string y if a string z exists where xz = y, and that
x is a proper prefix of y if in addition x &= y. In each of the following parts, we
define an operation on a language A. Show that the class of regular languages is
closed under that operation.
Aa. NOPREFIX (A) = {w ∈ A| no proper prefix of w is a member of A}.

b. NOEXTEND(A) = {w ∈ A|w is not the proper prefix of any string in A}.

1.41 For languages A and B, let the perfect shuffle of A and B be the language

{w| w = a1b1 · · · akbk, where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ}.

Show that the class of regular languages is closed under perfect shuffle.

1.42 For languages A and B, let the shuffle of A and B be the language

{w| w = a1b1 · · · akbk, where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ∗}.

Show that the class of regular languages is closed under shuffle.
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1.43 Let A be any language. Define DROP-OUT(A) to be the language containing all
strings that can be obtained by removing one symbol from a string in A. Thus,
DROP-OUT(A) = {xz| xyz ∈ A where x, z ∈ Σ∗, y ∈ Σ}. Show that the class
of regular languages is closed under the DROP-OUT operation. Give both a proof
by picture and a more formal proof by construction as in Theorem 1.47.

A1.44 Let B and C be languages over Σ = {0, 1}. Define

B
1
← C = {w∈B| for some y∈C, strings w and y contain equal numbers of 1s}.

Show that the class of regular languages is closed under the
1
← operation.

"1.45 Let A/B = {w| wx ∈ A for some x ∈ B}. Show that if A is regular and B is any
language, then A/B is regular.

1.46 Prove that the following languages are not regular. You may use the pumping
lemma and the closure of the class of regular languages under union, intersection,
and complement.

a. {0n1m0n|m,n ≥ 0}
Ab. {0m1n|m &= n}

c. {w| w ∈ {0,1}∗ is not a palindrome}8

"d. {wtw| w, t ∈ {0,1}+}

1.47 Let Σ = {1, #} and let

Y = {w| w = x1#x2# · · · #xk for k ≥ 0, each xi ∈ 1∗, and xi &= xj for i &= j}.

Prove that Y is not regular.

1.48 Let Σ = {0,1} and let

D = {w|w contains an equal number of occurrences of the substrings 01 and 10}.

Thus 101 ∈ D because 101 contains a single 01 and a single 10, but 1010 &∈ D
because 1010 contains two 10s and one 01. Show that D is a regular language.

1.49 a. Let B = {1ky| y ∈ {0, 1}∗ and y contains at least k 1s, for k ≥ 1}.
Show that B is a regular language.

b. Let C = {1ky| y ∈ {0, 1}∗ and y contains at most k 1s, for k ≥ 1}.
Show that C isn’t a regular language.

A1.50 Read the informal definition of the finite state transducer given in Exercise 1.24.
Prove that no FST can output wR for every input w if the input and output alpha-
bets are {0,1}.

1.51 Let x and y be strings and let L be any language. We say that x and y are distin-
guishable by L if some string z exists whereby exactly one of the strings xz and yz
is a member of L; otherwise, for every string z, we have xz ∈ L whenever yz ∈ L
and we say that x and y are indistinguishable by L. If x and y are indistinguishable
by L, we write x ≡L y. Show that ≡L is an equivalence relation.

8A palindrome is a string that reads the same forward and backward.
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A"1.52 Myhill–Nerode theorem. Refer to Problem 1.51. Let L be a language and let X
be a set of strings. Say that X is pairwise distinguishable by L if every two distinct
strings in X are distinguishable by L. Define the index of L to be the maximum
number of elements in any set that is pairwise distinguishable by L. The index of
L may be finite or infinite.

a. Show that if L is recognized by a DFA with k states, L has index at most k.

b. Show that if the index of L is a finite number k, it is recognized by a DFA
with k states.

c. Conclude that L is regular iff it has finite index. Moreover, its index is the
size of the smallest DFA recognizing it.

1.53 Let Σ = {0, 1, +, =} and

ADD = {x=y+z| x, y, z are binary integers, and x is the sum of y and z}.

Show that ADD is not regular.

1.54 Consider the language F = {aibjck| i, j, k ≥ 0 and if i = 1 then j = k}.

a. Show that F is not regular.

b. Show that F acts like a regular language in the pumping lemma. In other
words, give a pumping length p and demonstrate that F satisfies the three
conditions of the pumping lemma for this value of p.

c. Explain why parts (a) and (b) do not contradict the pumping lemma.

1.55 The pumping lemma says that every regular language has a pumping length p, such
that every string in the language can be pumped if it has length p or more. If p is a
pumping length for language A, so is any length p′ ≥ p. The minimum pumping
length for A is the smallest p that is a pumping length for A. For example, if
A = 01∗, the minimum pumping length is 2. The reason is that the string s = 0 is
in A and has length 1 yet s cannot be pumped; but any string in A of length 2 or
more contains a 1 and hence can be pumped by dividing it so that x = 0, y = 1,
and z is the rest. For each of the following languages, give the minimum pumping
length and justify your answer.
Aa. 0001∗

Ab. 0∗1∗

c. 001 ∪ 0∗1∗

Ad. 0∗1+0+1∗ ∪ 10∗1

e. (01)∗

f. ε

g. 1∗01∗01∗

h. 10(11∗0)∗0

i. 1011

j. Σ∗

"1.56 If A is a set of natural numbers and k is a natural number greater than 1, let

Bk(A) = {w| w is the representation in base k of some number in A}.

Here, we do not allow leading 0s in the representation of a number. For example,
B2({3, 5}) = {11, 101} and B3({3, 5}) = {10, 12}. Give an example of a set A for
which B2(A) is regular but B3(A) is not regular. Prove that your example works.
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"1.57 If A is any language, let A 1
2− be the set of all first halves of strings in A so that

A 1
2− = {x| for some y, |x| = |y| and xy ∈ A}.

Show that if A is regular, then so is A 1
2−.

"1.58 If A is any language, let A 1
3− 1

3
be the set of all strings in A with their middle thirds

removed so that

A 1
3− 1

3
= {xz| for some y, |x| = |y| = |z| and xyz ∈ A}.

Show that if A is regular, then A 1
3− 1

3
is not necessarily regular.

"1.59 Let M = (Q,Σ, δ, q0, F ) be a DFA and let h be a state of M called its “home”.
A synchronizing sequence for M and h is a string s ∈ Σ∗ where δ(q, s) = h for
every q ∈ Q. (Here we have extended δ to strings, so that δ(q, s) equals the state
where M ends up when M starts at state q and reads input s.) Say that M is
synchronizable if it has a synchronizing sequence for some state h. Prove that if M
is a k-state synchronizable DFA, then it has a synchronizing sequence of length at
most k3. Can you improve upon this bound?

1.60 Let Σ = {a, b}. For each k ≥ 1, let Ck be the language consisting of all strings
that contain an a exactly k places from the right-hand end. Thus Ck = Σ∗aΣk−1.
Describe an NFA with k + 1 states that recognizes Ck in terms of both a state
diagram and a formal description.

1.61 Consider the languages Ck defined in Problem 1.60. Prove that for each k, no DFA
can recognize Ck with fewer than 2k states.

1.62 Let Σ = {a, b}. For each k ≥ 1, let Dk be the language consisting of all strings
that have at least one a among the last k symbols. Thus Dk = Σ∗a(Σ ∪ ε)k−1.
Describe a DFA with at most k+1 states that recognizes Dk in terms of both a state
diagram and a formal description.

"1.63 a. Let A be an infinite regular language. Prove that A can be split into two
infinite disjoint regular subsets.

b. Let B and D be two languages. Write B ! D if B ⊆ D and D contains
infinitely many strings that are not in B. Show that if B and D are two
regular languages where B ! D, then we can find a regular language C
where B ! C ! D.

1.64 Let N be an NFA with k states that recognizes some language A.

a. Show that if A is nonempty, A contains some string of length at most k.

b. Show, by giving an example, that part (a) is not necessarily true if you replace
both A’s by A.

c. Show that if A is nonempty, A contains some string of length at most 2k.

d. Show that the bound given in part (c) is nearly tight; that is, for each k,
demonstrate an NFA recognizing a language Ak where Ak is nonempty and
where Ak’s shortest member strings are of length exponential in k. Come as
close to the bound in (c) as you can.
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"1.65 Prove that for each n > 0, a language Bn exists where

a. Bn is recognizable by an NFA that has n states, and

b. if Bn = A1 ∪ · · · ∪Ak, for regular languages Ai, then at least one of the Ai

requires a DFA with exponentially many states.

1.66 A homomorphism is a function f : Σ−→Γ∗ from one alphabet to strings over
another alphabet. We can extend f to operate on strings by defining f(w) =
f(w1)f(w2) · · · f(wn), where w = w1w2 · · ·wn and each wi ∈ Σ. We further
extend f to operate on languages by defining f(A) = {f(w)| w ∈ A}, for any
language A.

a. Show, by giving a formal construction, that the class of regular languages
is closed under homomorphism. In other words, given a DFA M that rec-
ognizes B and a homomorphism f , construct a finite automaton M ′ that
recognizes f(B). Consider the machine M ′ that you constructed. Is it a
DFA in every case?

b. Show, by giving an example, that the class of non-regular languages is not
closed under homomorphism.

"1.67 Let the rotational closure of language A be RC(A) = {yx| xy ∈ A}.

a. Show that for any language A, we have RC(A) = RC(RC(A)).

b. Show that the class of regular languages is closed under rotational closure.

"1.68 In the traditional method for cutting a deck of playing cards, the deck is arbitrarily
split two parts, which are exchanged before reassembling the deck. In a more
complex cut, called Scarne’s cut, the deck is broken into three parts and the middle
part in placed first in the reassembly. We’ll take Scarne’s cut as the inspiration for
an operation on languages. For a language A, let CUT(A) = {yxz| xyz ∈ A}.

a. Exhibit a language B for which CUT(B) &= CUT(CUT(B)).

b. Show that the class of regular languages is closed under CUT .

1.69 Let Σ = {0,1}. Let WWk = {ww| w ∈ Σ∗ and w is of length k}.

a. Show that for each k, no DFA can recognize WWk with fewer than 2k states.

b. Describe a much smaller NFA for WWk, the complement of WWk.

1.70 We define the avoids operation for languages A and B to be

A avoids B = {w| w ∈ A and w doesn’t contain any string in B as a substring}.

Prove that the class of regular languages is closed under the avoids operation.

1.71 Let Σ = {0,1}.

a. Let A = {0ku0k| k ≥ 1 and u ∈ Σ∗}. Show that A is regular.

b. Let B = {0k1u0k| k ≥ 1 and u ∈ Σ∗}. Show that B is not regular.

1.72 Let M1 and M2 be DFAs that have k1 and k2 states, respectively, and then let
U = L(M1) ∪ L(M2).

a. Show that if U &= ∅, then U contains some string s, where |s| < max(k1, k2).

b. Show that if U &= Σ∗, then U excludes some string s, where |s| < k1k2.

1.73 Let Σ = {0,1, #}. Let C = {x#xR#x| x ∈ {0,1}∗}. Show that C is a CFL.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.



94 CHAPTER 1 / REGULAR LANGUAGES

SELECTED SOLUTIONS

1.1 For M1: (a) q1; (b) {q2}; (c) q1, q2, q3, q1, q1; (d) No; (e) No
For M2: (a) q1; (b) {q1, q4}; (c) q1, q1, q1, q2, q4; (d) Yes; (e) Yes

1.2 M1 = ({q1, q2, q3}, {a, b}, δ1, q1, {q2}).
M2 = ({q1, q2, q3, q4}, {a, b}, δ2, q1, {q1, q4}).
The transition functions are

δ1 a b

q1 q2 q1
q2 q3 q3
q3 q2 q1

δ2 a b

q1 q1 q2
q2 q3 q4
q3 q2 q1
q4 q3 q4.

1.4 (b) The following are DFAs for the two languages {w| w has exactly two a’s} and
{w| w has at least two b’s}.

a a a,b

bb

Combining them using the intersection construction gives the following DFA.

Though the problem doesn’t request you to simplify the DFA, certain states can be
combined to give the following DFA.
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(d) These are DFAs for the two languages {w| w has an even number of a’s} and
{w| each a in w is followed by at least one b}.

Combining them using the intersection construction gives the following DFA.

Though the problem doesn’t request you to simplify the DFA, certain states can be
combined to give the following DFA.
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1.5 (a) The left-hand DFA recognizes {w|w contains ab}. The right-hand DFA recog-
nizes its complement, {w| w doesn’t contain ab}.

(b) This DFA recognizes {w| w contains baba}.

This DFA recognizes {w| w does not contain baba}.

1.7 (a) (f)

1.11 Let N = (Q,Σ, δ, q0, F ) be any NFA. Construct an NFA N ′ with a single accept
state that recognizes the same language as N . Informally, N ′ is exactly like N
except it has ε-transitions from the states corresponding to the accept states of
N , to a new accept state, qaccept. State qaccept has no emerging transitions. More
formally, N ′ = (Q∪ {qaccept},Σ, δ′, q0, {qaccept}), where for each q ∈ Q and a ∈ Σε

δ′(q, a) =

{

δ(q, a) if a &= ε or q &∈ F

δ(q, a) ∪ {qaccept} if a = ε and q ∈ F

and δ′(qaccept, a) = ∅ for each a ∈ Σε.

1.23 We prove both directions of the “iff.”
(→) Assume that B = B+ and show that BB ⊆ B.
For every language BB ⊆ B+ holds, so if B = B+, then BB ⊆ B.
(←) Assume that BB ⊆ B and show that B = B+.
For every language B ⊆ B+, so we need to show only B+ ⊆ B. If w ∈ B+,
then w = x1x2 · · ·xk where each xi ∈ B and k ≥ 1. Because x1, x2 ∈ B and
BB ⊆ B, we have x1x2 ∈ B. Similarly, because x1x2 is in B and x3 is in B, we
have x1x2x3 ∈ B. Continuing in this way, x1 · · ·xk ∈ B. Hence w ∈ B, and so
we may conclude that B+ ⊆ B.
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The latter argument may be written formally as the following proof by induction.
Assume that BB ⊆ B.
Claim: For each k ≥ 1, if x1, . . . , xk ∈ B, then x1 · · ·xk ∈ B.
Basis: Prove for k = 1. This statement is obviously true.
Induction step: For each k ≥ 1, assume that the claim is true for k and prove it to be
true for k + 1.
If x1, . . . , xk, xk+1 ∈ B, then by the induction assumption, x1 · · ·xk ∈ B. There-
fore, x1 · · ·xkxk+1 ∈ BB, but BB ⊆ B, so x1 · · ·xk+1 ∈ B. That proves the
induction step and the claim. The claim implies that if BB ⊆ B, then B+ ⊆ B.

1.29 (a) Assume that A1 = {0n1n2n| n ≥ 0} is regular. Let p be the pumping length
given by the pumping lemma. Choose s to be the string 0p1p2p. Because s is a
member of A1 and s is longer than p, the pumping lemma guarantees that s can
be split into three pieces, s = xyz, where for any i ≥ 0 the string xyiz is in A1.
Consider two possibilities:

1. The string y consists only of 0s, only of 1s, or only of 2s. In these cases, the
string xyyz will not have equal numbers of 0s, 1s, and 2s. Hence xyyz is not
a member of A1, a contradiction.

2. The string y consists of more than one kind of symbol. In this case, xyyz
will have the 0s, 1s, or 2s out of order. Hence xyyz is not a member of A1,
a contradiction.

Either way we arrive at a contradiction. Therefore, A1 is not regular.

(c) Assume that A3 = {a2
n

| n ≥ 0} is regular. Let p be the pumping length given
by the pumping lemma. Choose s to be the string a2

p

. Because s is a member of
A3 and s is longer than p, the pumping lemma guarantees that s can be split into
three pieces, s = xyz, satisfying the three conditions of the pumping lemma.

The third condition tells us that |xy| ≤ p. Furthermore, p < 2p and so |y| < 2p.
Therefore, |xyyz| = |xyz|+ |y| < 2p+2p = 2p+1. The second condition requires
|y| > 0 so 2p < |xyyz| < 2p+1. The length of xyyz cannot be a power of 2. Hence
xyyz is not a member of A3, a contradiction. Therefore, A3 is not regular.

1.40 (a) Let M = (Q,Σ, δ, q0, F ) be a DFA recognizing A, where A is some regular
language. Construct M ′ = (Q′,Σ, δ′, q0

′, F ′) recognizing NOPREFIX (A) as
follows:

1. Q′ = Q.

2. For r ∈ Q′ and a ∈ Σ, define δ′(r, a) =

{

{δ(r, a)} if r /∈ F

∅ if r ∈ F.
3. q0

′ = q0.

4. F ′ = F .
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1.44 Let MB = (QB,Σ, δB, qB , FB) and MC = (QC ,Σ, δC , qC , FC) be DFAs recog-
nizing B and C, respectively. Construct NFA M = (Q,Σ, δ, q0, F ) that recognizes
B

1
← C as follows. To decide whether its input w is in B

1
← C, the machine

M checks that w ∈ B, and in parallel nondeterministically guesses a string y that
contains the same number of 1s as contained in w and checks that y ∈ C.

1. Q = QB ×QC .

2. For (q, r) ∈ Q and a ∈ Σε, define

δ((q, r), a) =











{(δB(q, 0), r)} if a = 0

{(δB(q, 1), δC(r, 1))} if a = 1

{(q, δC(r, 0))} if a = ε.

3. q0 = (qB , qC).

4. F = FB × FC .

1.46 (b) Let B = {0m1n|m &= n}. Observe that B ∩ 0∗1∗ = {0k1k| k ≥ 0}. If B were
regular, then B would be regular and so would B∩0∗1∗. But we already know that
{0k1k| k ≥ 0} isn’t regular, so B cannot be regular.

Alternatively, we can prove B to be nonregular by using the pumping lemma di-
rectly, though doing so is trickier. Assume that B = {0m1n| m &= n} is regular.
Let p be the pumping length given by the pumping lemma. Observe that p! is di-
visible by all integers from 1 to p, where p! = p(p − 1)(p − 2) · · · 1. The string
s = 0p1p+p! ∈ B, and |s| ≥ p. Thus the pumping lemma implies that s can be di-
vided as xyz with x = 0a, y = 0b, and z = 0c1p+p!, where b ≥ 1 and a+ b+ c = p.
Let s′ be the string xyi+1z, where i = p!/b. Then yi = 0p! so yi+1 = 0b+p!, and
so s′ = 0a+b+c+p!1p+p!. That gives s′ = 0p+p!1p+p! &∈ B, a contradiction.

1.50 Assume to the contrary that some FST T outputs wR on input w. Consider the
input strings 00 and 01. On input 00, T must output 00, and on input 01, T must
output 10. In both cases, the first input bit is a 0 but the first output bits differ.
Operating in this way is impossible for an FST because it produces its first output
bit before it reads its second input. Hence no such FST can exist.

1.52 (a) We prove this assertion by contradiction. Let M be a k-state DFA that recog-
nizes L. Suppose for a contradiction that L has index greater than k. That means
some set X with more than k elements is pairwise distinguishable by L. Because M
has k states, the pigeonhole principle implies that X contains two distinct strings x
and y, where δ(q0, x) = δ(q0, y). Here δ(q0, x) is the state that M is in after start-
ing in the start state q0 and reading input string x. Then, for any string z ∈ Σ∗,
δ(q0, xz) = δ(q0, yz). Therefore, either both xz and yz are in L or neither are
in L. But then x and y aren’t distinguishable by L, contradicting our assumption
that X is pairwise distinguishable by L.

(b) Let X = {s1, . . . , sk} be pairwise distinguishable by L. We construct DFA
M = (Q,Σ, δ, q0, F ) with k states recognizing L. Let Q = {q1, . . . , qk}, and
define δ(qi, a) to be qj , where sj ≡L sia (the relation ≡L is defined in Prob-
lem 1.51). Note that sj ≡L sia for some sj ∈ X ; otherwise, X ∪ sia would have
k + 1 elements and would be pairwise distinguishable by L, which would contra-
dict the assumption that L has index k. Let F = {qi| si ∈ L}. Let the start
state q0 be the qi such that si ≡L ε. M is constructed so that for any state qi,
{s| δ(q0, s) = qi} = {s| s ≡L si}. Hence M recognizes L.
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(c) Suppose that L is regular and let k be the number of states in a DFA recognizing
L. Then from part (a), L has index at most k. Conversely, if L has index k, then
by part (b) it is recognized by a DFA with k states and thus is regular. To show that
the index of L is the size of the smallest DFA accepting it, suppose that L’s index
is exactly k. Then, by part (b), there is a k-state DFA accepting L. That is the
smallest such DFA because if it were any smaller, then we could show by part (a)
that the index of L is less than k.

1.55 (a) The minimum pumping length is 4. The string 000 is in the language but
cannot be pumped, so 3 is not a pumping length for this language. If s has length
4 or more, it contains 1s. By dividing s into xyz, where x is 000 and y is the first 1
and z is everything afterward, we satisfy the pumping lemma’s three conditions.

(b) The minimum pumping length is 1. The pumping length cannot be 0 because
the string ε is in the language and it cannot be pumped. Every nonempty string in
the language can be divided into xyz, where x, y, and z are ε, the first character,
and the remainder, respectively. This division satisfies the three conditions.

(d) The minimum pumping length is 3. The pumping length cannot be 2 because
the string 11 is in the language and it cannot be pumped. Let s be a string in the
language of length at least 3. If s is generated by 0∗1+0+1∗ and s begins either 0
or 11, write s = xyz where x = ε, y is the first symbol, and z is the remainder of
s. If s is generated by 0∗1+0+1∗ and s begins 10, write s = xyz where x = 10, y is
the next symbol, and z is the remainder of s. Breaking s up in this way shows that
it can be pumped. If s is generated by 10∗1, we can write it as xyz where x = 1,
y = 0, and z is the remainder of s. This division gives a way to pump s.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.


