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CHAPTER

ONE
WHY ABSTRACT ALGEBRA?

Whhen we open a textbook of abstract algebra for the first time and peruse
the table of contents, we are struck by the unfamiliarity of almost every
topic we sce listed. Algebra is a subject we know well, but here it looks
surprisingly different. What are these differences, and how fundamental
are they?

First, there is a major difference in emphasis. In elementary algebra
we learned the basic symbolism and methodology of algebra; we came 1o
see how problems of the real world can be reduced to sets of equations
and how these equations can be solved to yield numerical answers. This
technique for translating complicated problems into symbols is the basis
for all further work in mathematics and the exact sciences, and is one of
the triumphs of the human mind. However, algebra is not oniy a
technique, it is also a branch of learning, a discipline, like calculus or
physics or chemistry. It is a coherent and unified body of knowledge
which may be studied systematically, starting from first principles and
building up. So the first difference between the elementary and the more
advanced course in algebra is that, whereas earlier we concentrated on
technique, we will now develop that branch of mathematics called algebra
in a systematic way. Ideas and general principles will take precedence
over problem solving. (By the way, this does not mean that modern
algebra has no applications—quite the opposite is true, as we will see
500I.)
. Algebra at the more advanced level is often described as modern or
abstrace algebra. In fact, both of these descriptions are partly misleading.
Some of the great discoveries in the upper reaches of present-day algebra
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1 CHAPTER QNE

{for example, tie so-called Galois theory} were known many years before

the American (Jivil War; and the broad aims of al

gebra today were clearly

stated by Leibniz in the seventcenth century. Thus, *“modern” alechra i
not so very modern, after alll To what extent is it ai:-fmfar:a‘E Wf:]is
abstraction is all relative: one person’s abstraction is ano;her ‘ersun’s,
bread and butter. The abstract te ndency in mathematics is a littleﬂike the

situation of cha

nging moral codes, or changing tastes in music: What

shocks one gengration becomes the norm in the next. This has been troe
throughout the fhistory of mathematics. '

For examplg, 1000 years ago negative numbers were considered 10 be’

an mliirageous iHea. After alf, it was said, numbers are for counting: we
:Ila}é AVE ONE Qrange, of tWo Oranges, or no oranges at all; but how can
€ have mimas an orange? The fogisticiens, or professional calculators, of

those davs used
considered thesd

negallve aumbers as an aid in their computations; they
numbers to be a usefyl fiction, for if you believe in them

then every lineqr equation ax + b = has & solution {namely x= - big

provided a # ().

Even the great Diophantus once described the solution

ofhflx t 6=12 as|an m?surd number. The idea of a system of numeration
which included pegative numbers was far too abstract for many of the

learned heads o

the tenth century!

—The history of the complex numbers {numbers which invoive W—1}is
very much the spme. For hundreds of years, mathematicians refused to

accept them becd
{They are now 4

use Fhey couldn't find concrete examples or applications
basic tool of physics.} S

Set theory whs considered to be highly abstract a few years ago, and

s0 were oiher

commonplaces of today. Many of the abstractions

demc-df:rn aEgeJrg are already being wsed by sCientists, engincers
and compriter specialists in their everyday work. They will soon be cam:

mon fare, respq
“abstractions."”

ctably “concrete,” and by then there will be new

Later i‘n this :ha_pter we will take a closer fook at the particular brand
of abstraction used in algebra. We will consider how it came about and

why it is useful.
Algebra has
years. Its growih

philosophical ide

help us understa
take a brief look

ORIGINS

evolved comsiderably, especially during the past 104
has been closely linked with the development of other

. branches of mathematics, and it has been deeply influenced by

on the nature of mathematics and the role of logic. To
d t_he nature and spirit of modern algebra, we should
at 1ts origins.

T:IIE ofder in which subjects follow each other in our mathematical
sducation tends t¢ repeat the historical stages in the evolution of mathe-
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matics. In this scheme, elementary algebra correspends 1o the great
classical age of algebra, which spans about 300 years from the sixteenth
through the eighteenth centuries. It was during these years that the art of
solving equations became highly developed and modern symbalism was
invented.

The word “algebra’—af febr in Arabic—was first used by Moham-
med of Kharizm, who taught mathematics in Baghdad during the ninth
century. The word may be roughly translated as “reunion,” and describes
his method for collecting the terms of an equation in order Lo solve 1. It
is an amusing fact that the word “algebra” was first used in Europe in
guite another context. In Spain barbers were called algebristas, or
bonesetters (they reunited broken bones), because medjeval barbers did
bonesetting and bloodletting as a sideline to their usual busimess.

The origin of the word clearly refiects the actual context of algebra at
that time, for it was mainty concerned with ways of solving equations. In
fact, Omar Khayyam, who is best remembered for his brilliant verses on
wine, song, love, and friendship which are collected in the Rubaiyai—but
who was also a great mathematician—explicitly defined algebra as the
science of sofving equations.

Thus, as we enter upon the threshold of the classical age of algebra,
its centrat theme is clearly identified as that of solving equations. Methods
of solving the finear equation ax + & =0 and the quadratic ax® + bx +
¢ =10 were well known even before the Greeks. But nobody had yet
found a general! selution for cubic equations

O et rbr=c
or guartic {fourth-degree} equations
X ralt bt ox=d
This great accomplishment was the triumph of sixteenth century algebra.

The setting is Italy and the time is the Renaissance—an age of high
adventure and brilliant achievement, when the wide world was reawaken-
ing after the long austerity of the Middle Ages. America had just been
discovered, classical knowledge had been brought to light, and prosperity
had returned te the great cities of Europe. It was a heady age when
nothing seemed impossible and even the old barriers of birth and rank
could be overcome. Courageous individuals set out for great adventures
in the far comers of the earth, while others, now confident once again of
the power of the buman mind, were boldly exploring the limits of
knowledge in the seiences and the arts. The ideal was to be bold and
many-faceted, to “know something of everything, and everything of at
least one thing.”” The great traders were patrons of the arts, the finest
minds in science were adepts at political intrigue and high finance. The
stucty of algebra was reborn in this lively miliea.

Those men who brought algebra to a high level of perfection at the
beginning of its classical age—all typical pioducts of the Italian Renalss-
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4 CHAFTER ONME

ance—were ay colorful and extracrdinary a lot as have ever appeared in a
chapter of history. Arrogant and unscrupulous, brilliant, flamboyant,
swaggering, and remarkable, they lived their lives as they did their work:
with style angl panache, in brilliant dashes and inspired leaps of the
imagination.

The spirit|of scholarship was not exactly as it is today. These men,
instead of publlishing their discoveries, kept them as well-guarded secrets
to be used against each other in problem-solving competitions. Such
contests were |a popular attraction: heavy bets were made on the rival
partizs, and thieir reputations {as well as a substantial purse) depended on
the outcome.

One of the most remarkable of these men was Girolamo Cardan.
Cardan was barn in 1301 as the illegitimate son of a famous jurist of the
city of Pavia. #A man of passionate contrasts, he was destined to become
famous as a phiysician, astrologer, and mathematician—and notorious as a
compulsive gambler, scoundrel, and heretic. After he graduated in
medicine, his gfforts to build up a medical practice were so unsuccessful
that he and hif wife were forced o seek refuge in the poorhouse. Wit
the help of fripnds he became a lecturer in mathematics, and, after he
tured the child of a senator from Milan, his medical career also picked
up. He was fingily admitted to the college of physicians and soon became
its rector. A brifliant doctor, he gave the first clinical description of
typhus fever, apd as his fame spread he became the personal physician of
many of the hiEh and mighty of his day. -

Cardan’s early interest in mathematics was oot without a practicai
side. As an inveterate gambler he was fascinated by what he recognized
te be the laws pf chance. He wrote a gamblers’ manual entitied Book on
Crames of Chatice, which presents the first systematic computations of
probabilities. He also needed mathematics as a toel in casting horo-
scopes, for his fame as an astrologer was preat and his predictions were
highly regarded and sought after. His most important achievement was
the publication |of a book called Ars Magna {The Great Art), in which he
presented systematically ail the algebraic knowledge of his time. How-
ever, as already stated, much of this knowledge was the personal secret of
its practitionerd, and had to be wheedled out of them by cunning and

deceit. The m'j}st important accomplishment of the day, the general

solution of the |cubic equation which had been discovered by Tartaglia,
was obtained in that fashion.

Tartaglia’s life was as turbuient as any in those days. Born with the
name of Niccald Fontana about 1500, he was present at the occupation of
Brescia by the Freneh in 1512, Me and his Father fled with many others
into a cathedral for sanctuary, but in the heat of battle the soldiers
massacred the hapless citizens even in that holy place. The father was
killed, and the T:J_v, with a split skull and a deep saber cut across his jaws

|
|
i
|
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te, was left for dead. At night his mother stole into the cathedral
z::fl irjl'sala:ﬁlgmi to carry him off; miraculously ke survived. The hm:ror_ of
what he had wimessed caused him to stammer for the rf_:st of his life,
earning him the nickname Tartaglia, *'the stammerer,” which he eventu-
ally adopted, . . f

Tartaglia received no formal schooling, for that was a privilege o
rank and wealth. However, he taught himself mathematics and became
one of the most gifted mathematicians of his day._ He translatefi Euclid
and Archimedes and may be said to have originated _the science of
ballistics, for he wrote a treatise on gunnery which was a pioneering effort
on the laws of falling bodies. _ )

In 1535 Tartaglia found a way of selving any cubic equation of th_a
form x* + ax® = b (that is, without an x term). When be announced his
accomplishment {without giving any details, -:‘)f cc-urse},_ he was challenged
to an algebra contest by a certain Antomo Fl(]l’,. a pupil of the celebrated
professor of mathematics Scipio del Ferro. Scipio ha’jd already found‘a
method for solving any cubic equation of the form x +ax = b {that is,
without an x* term), and had confided his secret to his pupil Fior. Tt was
agreed that each contestant was to draw up 30 problems and hand the list
to his opponent. Whoever solved the greater number of problems would
receive a sum of money deposited with a lawyer. A few days before the
contest, Tartaglia found 2 way of extending his methqd £0 38 o sr;-lvf: Ty
cubic equation. In less than 2 hours he solved all his opponent’s prob-
lems, while his opponent failed to solve even one of theose proposed by
Tartaglia. . ) .

For some time Tartaglia kept his method for solving -:ui:.uc equations
to himself, but in the end he succumbed to Cardan's acmmphs_hed POWETS
of persuasion. Influenced by Cardan’s promise 1o help h1m_ bacom.e
artilery adviser to the Spanish army, he revealed the details of his
method to Cardan under the promise of strict secrecy. A few years later,
to Tartaglia’s unbelieving amazement and indigration, Cardan published
Tartaglia®s method in his book Ars Magna. Even though he gave Tartag-
lia full credit as the originator ef the method, there can be no doubt that
he broke his solemn promise. A bitter dispute arose between ‘the
mathematicians, from which Tartaglia was perhaps tucky to escape alnrc?.
He lost his position as public lecturer at Brescia, and lived out his

ining years in obscurity.
rcma‘;'lrl:::nie};ﬂ great step in }trhe progress of algebra was madle by anoiher
member of the same circle. It was Ludovico Ferrari who discovered the
peneral methed for solving guartic equations—equations of the form

el +hitex=d

Fertari was Cardan’s personal servant. As a boy in Cardan’s service he
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f CHAPTER OME

learned Latin] Greek, and mathematics. He won fame after defeating
Tartagha in a fpontest in 1548, and received an IPPUINIMERT a5 SUPETVISOT
of tax assessipents in Mantua. This position brought him wealth and
influence, but| he was not able to dominate his own violent disposition.
He quarreiegvith the regent of Mantua, lost his position, and died at the

age of 43. Tradition has it that he was poisoned by his sister.

As for Cprdan, after a long career of brilliant and unscrzpelons
achievement, his luck finally abandoned him. Cardan's son poisoned his
urdfaithful wite and was execoted in 1360, Ten years later, Cardan was
arrested for hEresy because he published a horoscope of Christ's life. He
spent several nonths in jail and was released after renouncing his heresy
privately, but|lost his university position and the right to publish books.
He was left with a smail pension which had been granted to him, for some
unaccountab]el reason, by the Pope.

As this chlorful time draws to a close, algebra emerges as a major
branch of mdthematics. It became clear that methods can be found to
solve many different types of equations. In particular, formulas had been
discovered which vielded the roots of all cubic and quartic equations.
Mow the challenge was clearly out to take the next step, namely, to find a
formula for the roots of equations of degree 5 or higher (in other words,
equations with an «° term, or an x" term, or higher). During the next 200
years, there was hardly a mathematician of distinction who did not try (o
solve this problem, but none sacceeded. Progress was made in new parts
of algebra, dnd algebra was linked to peometry with the invention of
analytic geometry. But the problem of solving equations of degree higher
than 4 remained unsettled. [t was, in the expression of Lagrange, "a
chaltenge to fhe human mind.”™

Tt was therefore a preat surprise to all mathematicians when in 1524
the work of 4 young Norwegian prodigy named Miels Abel came to Tight.
In his work, | Abel showed that there does not exist any formula {in the
conventional| sense we have in mind) for the roots of an algebraic
equation whose degree is 5 or greater. This sensational discovery brings
10 a close what is called the classical age of algebra. Throughout this age
algebra was fonceived essentially as the science of solving equations, and
now the outkr limits of this guest had apparently been reached. In the
years ahead,| algebra was to stike out in new directions.

THE MODERN AGE

About the fime Niels Abel made his remarkablé discovery, several
mathematicins, working independently in different parts of Europe,
began raising questions about algebra which had never been considered
before. Thelr researches in different branches of mathematics had led
them to imvpstigale “algebras™ of a very unconventional kind—and in

WHY ABSTRACT ALGEBRA? 7

connection with these algebras they had to find answers to questions
which had nothing to do with solving equations. Their work had im-
portant applicaticns, and was soen to compel mathematicians ko greatly
enlarge their conception of what algebra is about.

The new varieties of algebra arose as a perfectly natural development
in connection with the application of mathematics to practical problems.
This is certainly true for the example we are aboul Lo look at first.

The Algebra of Maitrices
A matrix is a rectangular array of numbers such as
(2 1 —3)
& {5 4
Such arrays come up naturally in many sitnatiens, for example, in the

solution of simultaneous linezar eguations. The above matrix, for instance,
is the reairix of coefficients of the pair of equations

Zx + 11y - 3z=10
Gx + 05y +4z =10

Since the solution of this pair of equations depends only on the coeffici-
ents, we may salve it by working on the matrix of coefficients alone and
ignoring everything clse.

We may consider the entries of a matrix to be arranged in rows and
columing; the above matrix has two rows which are

2 11 -3 and (9 05 &

and three columns which are
3) (os) s (75)
(9 s/ 91
It is a2 2 % 3 matnix.

To simplify our discussion, we will consider only 2 X 2 matrices in the
tfemainder of this section.
Matrices are added by adding correspending entries:

(2 o+ @)-(30 23d)

0-(2 3

is called the zero matrix and behaves, under addition, like the number

The matrix

The multiplication of matrices is a little move difficult. First, let s
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8§ CHAPTER OME

recall that the|dot product of two vectors (a, &) and (@', b') is

gop (a, )-(a’, 6"} = aw’ + Bb’

that is, we muyltiply corresponding components and add. Now, suppose
we want o m+1tip1y two matrices A and B; we obtrin the product AB as

follows: | o _
The entry| in the first row and first column of AB, that is, in s

position (_ X _é____)

is equal to the dot product of the first row of A by the first column of B
The entry in the first row and second column of AB, in other words, this
position .

-+

is equal to the dot product of the first row of A by the secomnd column of
B. And so onl. For example,

So finally,
(1 2)(1 1) _ (S 1

3 g/h2 05 A3 3
The rules of algebra for matrices are very different from the males of

“conventional” algebra. For instance, the commutative law of multplica-
tion, AB = BA, is not true. Here is a simple example:

GIG -G =G D-G )G )

e r—— — At T——t

A B AB BA B A

If A is a|real number and A? =0, then necessarily A =0, but this is
not true of njatrices. For example,

(0 D

A A
that is, A" = {t although A #0.

- and so on.

WHY ABSTRACT ALGEBRRA? @

In the algebra of mumbers, if AR = AC where 4 #0, we may cance!
A and conclude that B = C. In matrix algebra we cannot. For example,
G 2G 1)=GD-G D6 )
0 1/\1 1 1 1/l 174t
| p— LT L st
A B A C

that is, AB=AC, A#0, yet B#C.
‘The iderifty matrix
_ (1 i])
=01

correspontds in matrix multiplication to the number 1; for we have
Al=TA = A for every 2 x 2 matrix A. If A is a number and 4% =1, we
conclude that A = 1. Mattices do not obey this rule. Fer example,

(G909

A A 1

that is, A" =1, and yet A js neither I nor —1.
No more will be said about the algebra of matrices at this point,
except that we must be aware, once again, that it is a new game whose

- rules are guite different from those we apply in conventional algebra.

Boolean Algebra

An even more bizarre kind of algebra was developed in the mid-
mincteenth century by an Englishman named George Boole. This
algebra—subsequently named bociean algebra after its inventor—has a

: myriad of applications today. It is formally the same as the algebra of

sets.

I 5 is a set, we may consider union and imtersection to be operations
on the subsets of 5. Let us agree provisionaily to write

A+ B for AUR

" and

A B for AnNg\

{This convention is not unusual.) Then,

A+B=B+A A-B=B -4
A(B+Cy=A-B+ A-C
At+td=A A=

£107-81-d4g
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1} CHAPTER OME

These idendities are analogous 10 the ones we use in elementary
algebra. But the following identities are also true, and they have no
counterpart in donventional algebra:

A+{(B Cy={A+B)-{A+C)
A+ A=A A-A=A
{A+B) A=A (A-BI+ A=A

and so on.

This unusudl algebra has become a familiar too! for people who ?urk
with electrical hetworks, computer systems, codes, and so on. It 15 as
different from |the algebra of numbers as it is from the algebra of
malrices. i . - .

Other exotic algebras arose in a variety of contexis, often in oonner,:
tion with scient’fﬁc problems. There were “complex™ and “hypetmmpl_ex‘
algebras, algebfas of vectors and tensors, and many others. Today it is
estimated that pver 200 different kinds of algebraic systems l'lla\r{? been
studied, each of which aross in connection with some application or

specific need.

Algebraic Strociures

As legions of new algebras began to oocupy the attention of Flath'emati—
cians, the awargness grew that algebra can no longer be conceived merely

as the sciepce

of solving equations. It had 1o be viewed much more

broadly as a bijanch of mathematics capable of revealing general princi-

ples which app
Whatis it t

v equally 10 af known and all possible ai'gebms,
hat alt algebras have in common? What trait do they share

which lets us fefer to all of them as “algebras”? In the most gel:!eral
sense, every algebra consists of a set (a set of nur!1bers, a set of maimices,
a set of switclling components, or any other kind of set) anFI certain
operations on that set. An operation is shn[_;ljr a way of combining any
two members of a set 1o produce a wnigue third membes of the same set.

Thos, we

bre led to the modern notion of algebraic structure. An

algebraic structpre is understood to be an arbitrary set, with one or more

operaticns defi

ned on it. And algebra, then, is defined to be the study of

algebraic strucires. ]
§ It is impo:hant that we be awakened to the full generality of the

notion of algebpraic structure. We must make an effort to discard all our

preconceived

tions of what an aigebra is, and look at this new notion of

algebraic struciure in its naked simplicity. Any set, with a rute {or rules)
for combining [its elements, is already an algebraic structure. There does

WHY ABSTRACT ALGEBRA? 11

rot need to be any connection with known mathematics. For cxample,
consider the set of all colors (pure colors as wel as color combinations),
and the operation of mixing any two colors to produce a new color. This
may be conceived as an algebraic structure. It abeys certain rules, such as
the commutative law {mixing red and blue is the same as mixing blue and
red). In a similar vein, consider the set of al! musical sounds with the
operation of combining any two sounds to produce a pew (harmonious or
disharmonious) combination.

As another example, imagine that the guests at a family rewnion have
made up a rule for picking the closest commion refative of any two persons
present at the reunion (and suppose that, for any two people at the
reunion, their closest common relative is also present at the reunion).
This too, is an algebraic structure: we have a set {namely the set of
persons at the reunion) and an operation on that set {fnamely the “closest
eommon relative™ operation).

As the general notion of algebraic struciure became more familiar [
was not fully accepted uaiil the carly part of the twemieth centutv), it
was bound to have a profound influence on what mathematicians per-
ceived algebra 10 e, In the end it became clear that the purpase of
algebra is to study algebraic structures, and nothing less than thar. ideaily
it should aim to be a peneral science of algebraic structures whose tesulis
should have applications to particular cases, thereby making contact with
the oider parts of algebra. Before we take a closer ook at this Prograim,
we must briefiy examine another aspect of modern mathematics, namely,
the increasing use of the axiomatic method.

AXHOMS

. The axiomatic method is beyond doubt the most remarkable invention of
. antiquity, and in a sense the most puzzling. It appeared suddenly in
QOreek geometry in a highly developed form—already sophisticated,
legant, and thoroughly modern in style. Mothing seems to have
foreshadowed it and it was unknown to ancient mathematicians before
the Greeks. It appears for the first time in the light of history in the great
fextbook of carly peometry, Euclid's Elemenis. Its origins—the first
dentative experiments in formal deductive reasoming which must have
Preceded it—remain steeped in mystery.

_ Euchd's Elemenss embodies the axiomatic method in its purest form.
b s amazing bock comtains 465 geometric propositions, some fairly
Aimple, some of astounding complexity. What is really remarkable,
though, is that the 465 propositions, forming the largest body of scientific
-vEHOWIedge in the ancient world, are derived logically from only 10
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32 CHAFTER OME

premises wh
Typical of th

ith would pass as trivial observations of common sense.
¢ premises are the following: '

Things equal to the same thing are equal to each other.
The whole is greater than the pert.

A siraight line can be drawn through any two poinis.
Afl right|angles are equal.

So great wa

4 the impression made by Euclid's Elements on following

generations that it became the model of correct mathematical form and
remains so tg this day,

It would
mathematics

he wrong to believe there was no aotion of demonstrative
before the time of Buclid. There is evidence that the earliest

geometers of the ancient Middle East nsed reasoning to discover geomet-
ric principles| They found proofs and must have hit upon many of the

same procds
Babylonian
auxifiary pro

we find in Euclid. The difference is that Egyptian and
athematicians considered logical demonstration to be an
ass, like the preliminary skeich made by artists—a private

mental process which guided them to a result but did not deserve o be
recorded. Sukh an attitude shows little understanding of the true nature

of geometry

and does not contain the seeds of the axiomatic method.

It is alsd known today that many—maybe mest—of the geometnic

theorems in
prabably bo

Euclid's Eferenis came from more ancient times, and were
lrowed by Euclid from Egyptian and Babylonian® sources.

However, this does not detract from the greatness of his work. Important
as are the cclm&nts of the Flemenis, what has proved far more important

for posterit
contents.

is the formal manner in which Euclid presented these
heart of the matter was the way he organized geometric

facts—arranged them into a logical sequence where each theorem builds

on precedin
theorems.

theorems ang then forms the logical basis for other

- {We muft carefully note that the axiomatic method is not a way of
discovering Eacts but of organizing them. New facls in mathematics are
found, as often as not, by inspired guesses or experienced intuition, To be
accepted, hgwever, they should be supported by proof in an axioratic

system. )
Euclid's
organized, r
cians and pif
perfection 3

Elements has stood throughout the ages as the model of
Ltional thought carried to its uitimate perfection. Mathemati-
ilosophers in every generation have tried to imitate its Jucid
nd flawless simplicity. Descartes and Leibniz dreamed of

organizing #ll human knowledge into an axiomatic system, and Spinoza

created a ds
While many

rductive system of ethics patterned after Euclid's geomelry.
of these dreams have proved to be impractical, the method

WHY ABSTRACT ALGEBRA? 13

popularized by Euclid has become the prototype of modem mathematical
form. Since the middle of the nineteenth century, the axiomatic method
has been accepted as the only comrect way of organizing mathematical
knowledge.

To perceive why the axiomatic method is truly central to mathe-
matics, we must keep one thing in mind: mathematics by its nature is
essentially absiract. For example, in geometry straight lines are not
stretched threads, but a concept obtained by disregarding all the prop-
erties of stretched threads except that of extending in one direction.
Similarly, the concept of a geomeiric figure is the result of idealizing from
all the properties of actual objects and retaining only their spatial
relationships. Now, since the objects of mathematics are ebstracifons, it
stands to reason that we must acquire knowledge about them by logic and
not by observation or experiment {for how can one experiment with an
abstract thought?).

This remark applies very aptly to modern aigebra. The notion of
algebraic structure is obtained by idealizing from all particular, concrete
systems of algebra. We choose to ignore the properties of the agtual
objects in a system of algebra (they may be numbers, or matrices, or
whatever—we disregard what they ere), and we turn gur attention simply
to the way they combine under the giver operations. In fact, just as we
disregard what the objects in a system are, we also disregard what the
operations do to them. We retain only the equations and inequalities
which hold in the system, for only these are relevant to algebra. Every-
thing else may be discarded. Finally, eguations and inequalities may be
deduced from one ancther logically, just as spatial relationships are
deduced from sach other in geometry.

THE AXTOMATICS OF ALGEBRA

Lot us remember that in the mid-nineteenth century, when eccentric new
dlgebras seemed to show up at every turn in mathematical research, it
Was finally understood that sacrosanct laws such as the identities ab = ba
-al_ld af be) = fab)e are not inviolable—for there are algebras in which they
45 not hold. By varying or deleting some of these identities, or by
-Teplacing them by new ones, an encrmous variety of new systems can be
“Rrgated,

~ Most importantly, mathematicians slowly discovered that all the
ﬁifgehraic laws which hold in any system can be derived from a few
.Sljtlp]e, basic ones. This is a genuinely remarkable fact, for it parallels the
"ﬂlscmfery made by Euclid that a few very simple geometric postulates are
sufficient to prove all the theorems of geometry. As it turns out, then, we
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have the same|
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be proved.
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today. We list

there is an op

If Equation (1
operation * is
axbh {or b=a

phenomenon in algebra: a few simple algebraic equations
es naiuraily as axioms, and from them all other facts may

¢ algebraic laws are familiar to0 most high school students
them hers for reference. We assume that A4 is any set and
bration on A which we designate with the symbol =+

ash=bxa (1)
I is true for any two clements a and & in A, we say that the

commmtagve. What it means, of course, is that the value of
is independent of the order in which ¢ and & are taken.

| a=s(bacy=(asb)*c (2)

If Equation {2'[] is true for any three elements a, £, and < in fll, we say the
operation * i asfociaive. Remember that an operation is a tule for
combining any fwo elements, so if we want to combine hree elements, we
can do so in different ways. If we want to combine a, &, and ¢ without
changing r.&e:'& order, we may either combine a with the result of
combining b apd ¢, which produces g #{b * ¢}; or we may first combine a
with &, and tren combine the result with ¢, producing (e * )+ c. The
associative taw asserts that these two possible ways of combining three

clements [witH
There exig

&

out changing their order) yield the same result.
15 an element ¢ in A such that
for every a in A (3}

n=n and aze=a

If such an elgment e exists in A, we call it an identity efement for the

operation *.
ment, for it m

A identity element s sometimes called a “neutral” ele-
ly be combined with any element & without altering . For

gxample, 0 ig an identity element for addition, and 1 is an identity
element for multiplication.

For every
such that

clement a in A, there is an element a~ ' (‘e inverse™) in A4

aza’'=e and a lza=e {4}

If statement (4) is true in a system of algebra, we say that every element

has an invers

> with respect to the operation *. The meaning of the

inverse should be clear: the combination of any element with its inverse
produces the peutral element (one might roughly say that the inverse of @

“neniralizes’

7). For example, if A is a set of oumbers and the operation

iz addition, then the inverse of any number 2 is {—a); if the operation is

multiptication
Let us as

the inverse of any a =0 is ifa.
tume now that the same set A has a second operation,
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symbelized by L, as well as the operation *:
a*{blc)=(a#b}L{arc) (3)

1f Equation {5) holds for any three elements a, b, and ¢ in A, we say that
* is disiributive over L. If there are two operations in a system, they must
interact in some way; otherwise there would be no need to consider them
together. The distibutive Jaw is the most comman way {but not the only
possible ene} for two operations to be related to one another.

There are other “basic™ laws besides the five we have just seen, but
these are the most common enes. The most important algebraic systems
have axioms chosen from among them. For example, when a mathemati-
cian nowadays speaks of a ring, the mathematician is referring to a set 4
with two operations, usually symbolized by + and -, having the following
Axioms:

Addition is commutative and associative, ¥ has ¢ neurral element

commonly symbolized by O, and every element a has an fmverse —a

with respect to addition. Multipfication is essociative, has a neutral
it see! > element 1, and is distributive over addition.

" Matrix algebra is a particular example of a ring, and all the laws of matrix
algebra may be proved from the preceding axioms. However, there are
many other examples of rings: rings of numbers, rings of functions, rings
of code “words,” rings of switching components, and a great many more.
Every algebraic iaw which can be proved in a ring (from the preceding
axioms) is troe in every example of a ring. In other words, instead of
proving the same formula repeatediy—once for numbers, once for mat-
rices, once for switching components, and so on—it is sufficient nowadays
to prove only that the formuta holds in rings, and then of necessity it will
be true in all the hundreds of different concrete examples of rings.

By varying the possible choices of axioms, we can keep creating new

“axiomatic systems of algebra endlessly. We may well ask: is it legitimate
_ to study any axiomatic system, with any choice of axioms, regardless of

-~ -usefuiness, relevance, or applicability? There are “radicals™ io mathe-
- matics who claim the freedom for mathematicians to study any system
: they wish, without the need to justify it. However, the practice in
establiched mathematics is more conservative: particular axiomatic sys-
- tems are investipated on account of their relevance to new and traditional
probiems and other parts of mathematics, or because they correspond to
particular applications.

In practice, how is a particular choice of algebraic axioms made? Very
simply: when mathematicians look at different parts of algebra and notice
- that a common pattern of proofs keeps recurring, and essentially the
same assumptions need to be made each time, they find it natural to
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i
single cut this choice of assumptions as the axioms for a new system. Alj
the importa@t new systems of algebra were created in this fashion.

!

ABSTRACTION REVISITED

Another important aspect of axiomatic mathematics is this; when we
capture mathematical facts in an axiomatic system, we never try to
reproduce the facts in full, but only that side of them which is important
or relevant lin a particular context. This process of sefecting what i
relevant and| disregarding everything else is the very essence of ab-
straction.

This kindl of abstraction is so natural to us as human beings that we
practice it Erlll the time without being aware of doing so. Like the
Bourgepis Gpntleman in Moliére's play who was amazed to learn that he
spoke in prose, some of us may be surprised to discover how much we
think in absjractions. Nature presents us with a myriad of interwoven
facts and ser:qlsations, and we are challenged at every instant o single out
those which jare immediately relevant and discard the rest. In order o
make our sirroundings comprehensible, we must continually pick out
certain data pnd separate them from everything else.

For natwral scientists, this process is the very core and essence of
what they dd. MNature is not made up of forces, velocities, and moments
of inertia. Nlamre is a whole—mnature simply 5! The physicist isolates
certain aspedis of natere from the rest and finds the laws which govern
these abstractions.

It is the|same with mathematics. For examgple, the system of the
integers (whole numbers}, as known by our intuition, is a complex reality
with many fhccts. The mathematician separates these facets from one
another and Studies them individually. From one point of view the set of
the integers,i with addition and multiplicaticn, forms a ring (that is, it
satisfies the dxioms stated previously). From another point of view it is an
ordered set, hnd satisfies speciat axioms of ordering. On a difierent level,
the positive integers form the basis of “recursion theory,” which singles
out the partjcular way positive integers may be constructed, beginning
with 1 and afiding 1 each time.

It therefi}re happens that the traditional subdivision of mathematics
into subject matters has been radically altered. Mo longer are the integers
one subject,| complex numbers another, matrices another, and so on;
insteact, particolar aspects of these systems are isolated, put in axiomatic
form, and studied abstractly without reference to any specific objects.
The other sidle of the coin is that each aspect is shared by many of the
traditional systems: for example, alpebraically the integers form a ring,
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and so do the complex numbers, matrices, and many other kinds of
objects.

There is nothing intrinsically new about this process of divorcing
properties from the actual objects having the properties; as we have seen,
it is precisely what geometry has done for more than 2080 years.
Somehow, it took longer for this process to take hold in algebra.

The movement toward axiomatics and abstraction in modern algebra
began about the 1830s and was completed 100 years later. The movement
was tentative at first, not quite conscious of its aims, but it gained
momeniwn as it converged with similar trends in other parts of mathe-
matics. The thinking of many great mathematicians played a decisive
role, but nome left a deeper or longer lasting impression than a very
yourig Frenchman by the name of Evariste Galois.

The story of Evariste Galois is probably the most fantastic and tragic
in the history of mathematics. A sensitive and prodigiously gifted young
man, he was killed in & duel at the age of 20, ending a life which in its
brief span had offered him nothing but tragedy and frustration. When he
was only a youth his father commited suicide, and Galois was left to fend
for himself in the labyrinthine world of French university life and student
politics. He was twice refused admittance to the Ecole Polyiechnique, the
most prestigious scientific establishment of its day, probably because his
answers 10 the entrance examination were too original and unorthodox.
When he presented an early version of his important discoveries in
algebra to the great academician Cauchy, this gentleman did not read the
young student’s paper, but lost it. Later, Galois gave his results to
Fourier in the hope of winning the mathematics prize of the Academy of
Sciences. But Fourier died, and that paper, too, was lost. Another paper
submitted to Poisson was eventually returned because Poisson did not
have the interest to read it through.

Galois finally gained admittance to the Ecole Mormale, another focal
peint of research in mathematics, but he was soon expelled for writing an
essay which attacked the king. He was jailed twice for political agitation

- in the student world of Paris. In the midst of such a turbulent life, it is
.+ bard to believe that Galois found time to creaie his colossally original
- thecries on algebra,

What Galois did was to tie in the problem of finding the roots of
equations with new discoveries on groups of permutations. He explained
exactly which equattons of degree 5 or higher have solutions of the
traditional kind—and which others do not. Along the way, he introduced
some amazingly original and powerful concepts, which form the frame-
work of much algebraic thinking to this day. Although Galois did not
work explicitly in axiomatic algebra {which was unknown in his day), the
abstract notion of algebraic structure is clearly prefigured in his work.
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In IBB{E, when Galois was only 20 years old, he was challenged 10 a
duel. Whad argument led to the challenge is not clear: some say the issue
was politicl, while others maintain the duel was fought over a fickle
lady’s wawv¢ring love, The truth may never be known, but the turbulent,
brilliant, and idealistic Galois died of his wounds. Fortupately for mathe-
matics, thef night before the duel he wrote down his main mathematical
results and! entrusted them to a friend. This time, they weren't lost—but
they were lonly published 15 vears after his death. The mathematical
world was not ready for them before then!

Algebrh today is organized axiomatically, and as such it is abstract.

Mathematipians study algebraic structures from a general point of view,
compare different structures, and find relationships between them. This
abstraction; and generalization might appear to be hopelessly im-
practical—but it is not! The general approach in algebra has produced
powerful new methods for “algebraizing™ different parts of mathematics
and science, formulating problems which could never have been formu-
N lated beforg, and finding entirely new kinds of solutions.
o Such excursions into pure mathematical fancy have an odd way of
P running ahead of physical science, providing a theoretical framework to
s account for facts even before those facts are fully known. This pattern is
so charactefistic that many mathematicians see themselves as pioneers in
! a world of |pessibilities rather than facts. Mathematicians study structure
i independently of content, and their science is a voyage of exploration
: through altl the kinds of structure and order which the human mind is
capable of discerning.
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