Appendix A

Set-Theoretic
Reconstruction
of Number Systems

In this appendix we represent the structures of the natural numbers, the
integers, and the rationals in pure set-theoretic terms. This set-theoretic
representation of numbers gives us first of all a good impression of the power
of set theory in representing other structures or mathematical systems. To
represent a number structure in pure set-theoretic terms means to define its
primitives, operations and 1elations in set-theoretic terms only. To define the
notion number in terms of sets may seem strange at first, since we are so much
more familiar with numbers than with sets. The set-theoretic representation
of numbers is in fact quite artificial and and the one given here is also not
the only conceivable one. It is sufficiently cumbersome that it is never used
in practice for ordinary manipulation of numbers. So its function is purely
theoretical: it is a necessary step in establishing the interesting claim that
set theory is the universal foundation of all of mathematics.

A.1 The natural numbers
First we define 0 as the empty set:
0 :defw

Then for the number 1 let us find a set with exactly one member which is
built from sets already constructed, ie. built from §. Such a set is {§}. So
we define

1= gef {0)
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As a result of these two definitions we see that
1={0}
We continue in the same way
2= 4 {0, 10}) = {0,1)
3= e {0, {03, {0.{0}}} = {0, 1,2}

We can proceed indefinitely in this way, defining each successive number
as the set of all its predecessors. This can be expressed formally in either of
two ways:

for all n (i) n+1={0,1,2,...,n}
or (i) n+1=nU{n}

Given any set of finite elements of any sort, the way to tell how many
elements it has is to compare it with each of these ‘number’ sets in turn until
one is found whose members can be put in a one-to-one correspondence with
the members of the set in question. An analogy can be drawn to the method
of telling that something is a meter long by comparing it to the standard
meter, a physical object preserved in Paris.

Each natural number has a unique representation in our scheme, but it
remains to be shown that the numbers, as reconstructed, have the properties
that we expect them to have. In particular, our reconstruction should exhibit
the required behavior in relations such as equality and greater-than, and
under operations such as addition and multiplication.

The notion of a successor of a natural number is defined as:
successor of =defe U {=}.

We indicate the successor of z by s(z).

Equality between natural numbers is defined as set equality, i.e., having
identical membership. Thus, 5 and s(4) are the same number, each being
{0,1,2,3,4}.

The linear order ‘less than’ is defined by set inclusion: ¢z < y iff ¢ C ¥;
also, z < y, ‘less than or equal to,” iff # C y, and similarly for z > y and
z>y
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Addition can be defined by a pair of rules using the notion of successor:

forallz (i) z+0==
(i) =+ s(n)=s(z+n)

For example, to add two numbers, the second part of the definition is
repeated until the first part becomes applicable The steps for 4 + 3 are:

4+3 = 4+5(2) def. successor
= s(4+2) def. addition

= s(4+s(1)) def. successor

= s(s(4+1)) def. addition

= s(s(4+ 5(0))) def successor

= s(s(s(4+0))) def addition

= s(s(s(4)) def. addition

= s(s(8)) def. successor

= 3(6) def. successor

7 def. successor

Subtraction can also be defined by a pair of rules, but it is only defined
when a set is being subtracted from one which contains it:

foralz (1) z-z=0
(i) s(z)-n=s(z—n)

For example,

4-2 = s(3)-2 def. of successor
= s(3-2) def. of subtraction
= 5(s(2) —2) def. of successor
= 5(s(2-2)) def of subtraction
= s(s(0)) def. of subtraction
= (1) def. of successor
= 2 def. of successor

Multiplication can be defined by a pair of rules involving addition, which
has been already defined:
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foralz (i) z 1l==2
() z s(n)=(z n)+e

For example,

2.3 = 2 5(2) def. of successor
= 2.24+2 def. of multiplication
= 2-8(1)+2 def. of successor
= (2:1+2)+2 def. of multiplication
= (2+2)+2 def. of multiplication
6
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by addition, as
previously defined

A.2 Extension to the set of all integers

Mathematicians (and scientists in general) strive to develop concepts with
as wide a range of application as possible. Looking at the system above,
one detects a gap: the concepts of equality, addition and multiplication
are defined for any two natural numbers, but subtraction is not. It would
desirable to extend the number system so as to have subtraction defined
everywhere,

What does it mean to ‘extend’ a system? It means to create a new system
with additional elements and possibly additional operations or relations in
such a way that the new system contains a subsystem which is isomorphic
to the old system. In other words, there is some subset of the elements,
operations and relations of the new system which can be put in one-to-one
correspondence with the elements, operations and relations of the old sys-
tem, so that the corresponding operations on corresponding elements yield
corresponding elements, and the corresponding relations contain correspond-
ing ordered pairs of elements. This guarantees in effect that nothing of the
old system has been lost in constructing the new one.

In this case, where we are concerned with an operation, subtraction,
which is not defined on certain elements, we would much prefer, for purposes
of conceptual economy, that the operation in the new system be given a single
definition on all the elements. We will construct a new number system
in which subtraction has a uniform definition on all elements, and which
contains a subsystem which is isomorphic to the original system. The new
number structure is called the integers. Remember that the set-theoretic
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representation of number structures is not in any sense a definition of what
the numbers are in absolute terms, but rather of how they can be represented
by set-theoretic constructions or re-constructions.

The representation of the integers does not bear any resemblance to the
ordinary integers ...~ 2,-1,0,1,2, ... They are here defined in a special
way so that the operations and relations on them can be defined in terms of
the operations and relations already defined for the natural numbers.

DEFINITION A 1 An integer is an ordered pair {a,b) of natural numbers. B

(Intuitively, the ordered pair (e, b) will correspond to the integer which
is the difference a — b; i.e, (5,3) represents 2; (2,4) represents —2. Thus,
many oredered pairs represent the same integer.)

Equality: (a,b) = {c,d) if and only if a - d = ¢ 4 b, using the definition of
+ for the natural numbers. Note first that equality is an equivalence relation
in the new system. Note also that under this definition (a,b) = {(a + k,b+ k)
for any k. Hence,

{7, 3 = (6,2) = (5,1) (4, 0)
(3,7) = (2,6) = (1,5) = (0,4)
1,1)

(3,3) = (2,2) = ( = (0,0)
Every integer is therefore equal to some integer of one of these three forms:
1. {a—b,0)
2, (0,a—-b)
3 (0,0)
where ¢ and b are natural numbers and ‘-’ is as defined for the natural

numbers. By convention, all integers equal to some integer of the first type
will be called positive integers, the second type negative integers and the
third type zero.

Ordering ‘greater than’: (a,b) > (¢, d) if and only if @ +-d > ¢ + b where
> on the right is the relation ‘greater than’ defined on the natural numbers.
For example, (6,3) > (2,1) (i.e, 3 > 1) because (6 + 1) > (2 + 3); similarly,
(4,4) > (2,5) (i.e, 0> —3) since (4+ 5) > (2 + 4).

Addition: (a,b) + (¢,d) = (a + ¢,b + d) where addition on the right is
addition as already defined on natural numbers. For example, (6,3)+(4,2) =
(10,5) (ie, 3+ 2 =5); also, (2,5) + (2,1) = (4,6) (ie., =34+ 1= -2).
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Subtraction: {a,b) — (c,d) = (a,b) + (d,¢) = (¢ + d,b + ¢). For example,
(4,2) —(6,3) = (4,2) + (3,6) = (4 +3,2+6) = (7,8) (ie.,2-3=~1). (To
subtract, one adds the ‘negative’ of the subtrahend, ie, 2~3=2+(-3))
Note further that (a,b) = {(a,0) — (b,0). Since we call numbers of the form
{a,0), (b,0) positive, we may now interpret this result as showing that any
integer (a,b) can be represented as the difference of two positive integers
{(a,0) — (b,0).

Multiplication: (a,b)  {c,d) = {(¢-¢)+ (b d),(¢ d)+ (b ¢)), where
multiplication on the right side is multiplication as already defined on natural
numbers. For example, (6,3) (4,2) = ((6 4) + (3 2),(6 2)+ (3 4)) =
(244 6,12+ 12) = (30,24) (ie, 3 2 = 6); similarly, (2,5)-(1,2) = ((2. 1) +
(5 2),(2-2)+(5 1)) =(2+ 10 44+ 5) = (12,9) (i.e, (—3) (-~1)=3) This
definition has the desired result for positive integers: (a,0) {c,0) = {(a ¢,0);
and for negative integers: (0,b) (0, d) = (bd,0); {(2,0) (0,d) = (0, ad).

The natural numbers are not themselves a subset of this set-theoretic
tepresentation of the integers. Rather, the set of all integers contains a
subset consisting of the positive integers and zero which is isomorphic to
the set of natural numbers Although in many applications the distinction
between natural numbers and non-negative integers is not important, the
concepts can be seen to differ by virtue of the total systems of which they
are part. For example, while the positive integer +5 can be subtracted
from the positive integer +3, the corresponding natural number 5 cannot be
subtracted from the natural number 3,

A.3 Extension to the set of all rational numbers

The operations of addition, subtraction and multiplication are now de-
fined on all the integers. We have not said anything yet about division.
The question “What number multiplied by = gives y?’ does not always have
an answer in the integers. The next extension of this system will be to a
number structure in which this question is always answered: the rationals.
There is one notable exception: division by 0 is always impossible, (It is
instructive to attempt to extend the system to one which includes division
by 0 and observe the difficulties one encounters.) The elements of the new
system will be defined in terms of integers, for convenience written as usual

—2,-1,0,1,2,... The operations and relations of the new system will
be defined in terms of the operations and relations on the integers. An iso-
morphism can then be shown between the integers and a subsystem of the
rationals.
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DEFINITION A2 A rational number is an ordered pair (a,b) of integers
where b # 0. |

The pair (e, b) may be interpreted in the language of ordinary arithmetic
as the fraction ¢. Note that since each integer is defined as a pair of natural
numbers a rational will be a pair of pairs of natural numbers.

Fquality: (a,b) = (¢,d) if and only ifa d=1c b

Ordering ‘greater than”: (a,b) > (¢,d) if and only ife d>c-b.

Addition: (a,b) + (c,d)=(a d+c bb d)

Subtraction: {(a,b) — (¢,d) ={(a d—c-b,b d)

Multiplication: {(a,b) (¢c,d) = {a-c,b d).

Division: {a,b):{c,d) = (a d,c b)

(All operations on the right sides are as defined for the integers.)

It will be noted that attempting to divide by 0 yields an ordered pair
whose second member is 0; by definition, such ordered pairs are not rational
numbers and hence division by 0 is impossible within the system.

To define the isomorphism between the integers and a substructure of
the rationals (except division), let the rational number (z,1) correspond
with the integer , and all the operations for the rationals (except division)
correspond to operations with the same name for the integers and similarly
for the ordering. It can be verified that this is an isomorphism.
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A.4 Extension to the set of all real numbers

This section does not actually come within the realm of discrete math-
ematics, which deals with set of cardinality no larger than Ry, The real
numbers, as we saw in Chapter 4, form a larger set, and its properties are
different in many ways. Most of the subject of calculus, for example, depends
on some of the essential properties of the real number system.

This extension of the number system in its set-theoretic representation
allows us to obtain a system in which we always have an answer to a question
like “Which number multiplied by itself gives 27, There are two fundamental
ways of constructing the real number system, one due to Cantor, the other

to Dedekind. We give here Cantor’s construction. Comnsider sequences

— 1 2 3 45 &6
A=3.55%86%

and
B—2345671

T 102:3:4:508

Both of these sequences converge to 1; i.e., the more a sequence is developed,
the closer one gets to 1, even though 1 is never actually reached. This is
expressed more precisely by saying that a sequence ag,a1,4a2,. .. converges
to ¢ if for any positive number ¢ (epsilon), no matter how small, we can
find an index N such that la, — 2| < e for all n > N. Some sequences of
rational numbers converge to a number which is itself not representable as a
rational number. The above definition cannot be used to test convergence in
such cases, since we have no means of expressing the point of convergence.
Another definition of convergence can be given which is equivalent to the
former but which does not depend on the nature of .

DEFINITION A3 A sequence ag, a1,4as,... converges if for any positive num-
ber € no matter how small we can find an index N such that |a, — a,,| < €
foralm > N andn > N. [

In other words, we are stating that the terms far out in the series must
get closer and closer to each other, which has the same effect as saying that
they must all get closer and closer to some particular point of convergence.
Cantor defined a real number as a convergent sequence of rational numbers.
The rational numbers themselves can be represented in this system as se-
quences of the form »,r,r,.. . where r is a rational number, since a sequence
all of whose members are identical cerainly satisfies the definition of conver-
gence. If one thinks of real numbers as infinite decimals, one way of repre-
senting real numbers would be as the limit of a sequence of finite decimals
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which are rational numbers) of the form z1., &;.29, 212223, 1. 222324, i€,
z ;fe mEaea, . Operations must all be defined anew for the real num-
bers, but this is quite simple. To give just one example, addition is defined

by: ao,a1,82, . +bo,b1,ba, . =ao+bo, a1 +b1,a2+ba, ..



