8.5.5 Axioms for ordering relations

Various kinds of orderings were defined in Chapter 3 in terms of such prop-
erties of relations as transitivity, antisymmetry, etc. These definitions can
be very easily formalized as axiomatic systems, with each relevant property
specified by an axiom. What we gave as “examples” of the different kinds of
orderings in 3.5 we can now redescribe as models of the corresponding axiom
systems.
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Any ordering relation is a binary relation R on a set . We assume as part
of the “background theory” ordinary set theory, including the representation
of binary relations on S as sets of ordered pairs of members of S, and we
specify the particular axioms that must be satisfied by particular kinds of
orderings.

DEFINITION 8 10 R is a weak partial order on S iff:

1. Transitivity: VeVyvz((z € S&y € S&z € S) —» ((Rey& Ryz) —
Rzz))

2. Reflexivity: Ve(z € S — Rra)
3. Antisymmetry: VzVy((z € S&y € S) - ((Rey & Ryz) — z = y))

Alternatively, we need not explicitly assume set theory or use the lan-
guage of set membership, but can simply take the domain S as the universe
over which the quantified variables in the axioms range. In that case, the
previous definition would be recast as follows:

DeriniTiON 8.11 R is a weak partial order on S iff:
1. Transitivity: VeVyVz((Rzy & Ryz) — Rez)
2. Reflexivity: Ve(Rex)
3. Antisymmetry: VeVy((Rzy & Ryz) — ¢z =y)

One will also encounter axiomatizations in which the wide-scope universal
quantifiers are omitted and open formulas are understood as universally
quantified. We will not take that further step here; but it is worth noting that
the prevalence of “pure universal” axioms like those above is not simply an
accident. The study of model theory has shown that pure universal theories,
all of whose axioms are pure universal ones like those above, have a number
of nice relations to their models.

In Chapter 3 it was noted that generally each weak ordering, obeying the
axioms of reflexivity and antisymmetry, could be paired with a corresponding
strong ordering, with those axioms replaced by irreflexivity and asymmetry.
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DEFINITION 8.12 R is a strict partial order on § iff:

1. Transitivity: VeVyVz((Rzy & Ryz) — Rzz)
2. Irreflexivity: Ve(~ Rar)
3 Asymmetry: VzVy(Rzy —~ Ryz)

The relations Ry, Ry, and Rz diagrammed in Section 3.5 are all models of
the axioms for weak partial orders, and Sy, S,, and S3 are models of the
axioms for strict partial orders. Another model of weak partial orders is the
subset relation on any collection of sets; the ‘proper subset’ relation provides
the corresponding strict order.

What about the relations ‘is at least as old as’ and ‘is older than’ on
H, the set of humans, assuming there do exist various pairs of people who
are the same age? Intuitively, one might suppose that ‘is at least as old as’
would be a weak partial order on humans, much as ‘is a subset of” provides
a weak partial order on a set of sets. But while ‘is at least as old as’ on the
set of humans does satisfy the axioms of transitivity and reflexivity, it fails
antisymmetry. For let a and b be two individuals of the same age: then Rab
and Rba, but a # b.

Note carefully the role of identity here: a # b because @ and b are two dis-
tinct members of the set H; being the same age makes them equivalent with
respect to the relation R (and ‘is the same age as’ is an equivalence relation),
but it doesn’t make them equal in the sense required by the antisymmetry
condition

A relation like ‘is at least as old as’ which satisfles transitivity and re-
flexivity but possibly fails antisymmetry is called a preorder or sometimes a
quasi-order; we could axiomatize it by writing down just the first two of the
three axioms for a weak partial order. Where there’s a preorder on S there is
always the possibility of defining an order on a suitable partitioning of S In
this example, for instance, intuitively we want to count people of the same
age as identical or indistinguishable; the formal technique for achieving that
is to define the ordering not directly on the set of all people but on the set
of equivalence clases formed under the relation ‘is the same age as’, in which
all the people of a given age will be grouped together in a single equivalence
class. In fact, when we step back and look at these equivalence classes, we
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can see that one might even consider analyzing our talk of ordering people
by their ages in terms of ordering people’s ages.

What about ‘is older than’? Does that similarly fail to be a strict partial
order on the given set of humans? Actually, no; it does satisfy all three
axioms of Transitivity, Irreflexivity, and Asymmetry But unlike the corre-
sponding order on ages, or the apparently similar relation ‘is greater than’
on the numbers, it is not a linear order, since it is not connected;? see the
following definitions,

Note: in examples such as those we have just been discussing, it is not
so important to try to learn to remember the names and definitions of par-
ticular kinds of orderings or which examples satisfy which axioms; you can
always look up the technical details in this or other books when you need
them, and details of terminology are not all uniform among different research
communities anyway The important thing to focus on in this chapter are the
illustrations of how changes in the axioms relate to changes in the models,
and how the interesting properties of a formal system can be explored from
both syntactic and semantic perspectives, often most fruitfully by looking
at both together,

Linear orderings, both weak and strict, were defined and illustrated in
Section 3.5. If we recast them axiomatically, they come out as follows.

DEFINITION 813 R is a weak linear (or total) order on S iff:
1. Transitivity: VeVyVz((Rzy & Ryz) — Rzz)
2. Reflexivity: Va(Rzz)
3. Antisymmetry: VeVy((Rzy & Ryz) — 2 = y)
4. Connectedness: VzVy(z # y—(Rey V Ryz))

Given that the first three axioms above constitute the definition of a
weak partial order on S, we can abbreviate the definition above as follows.

2The relation “is at least as old as’ is connected, but neither asymmetric nor antisym:
metric. It is an example of what Suppes (1957) defines as a weak ordering, a relation
which is transitive, refiexive, and connected, i.e a connected preorder. This is not a kind
of ordering that is standardly singled out; but one is free to define and name whatever
kinds of formal systems one thinks will prove useful for one’s purposes.
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DEFINITION 8 14 R is a weak linear (or total) order on S iff:

1. R is a weak partial order on S

2. Connectedness: VeVy(z # y—(Rzy v Ryz))

]
We give the definition of strict linear order in analogous fashion.
DEFINITION 815 R is a strict linear (or total) order on S ifft
1. R is a strict partial order on §
2 Connectedness: VzVy(z # y—(Rzy V Ryz))
]

Among the models for these axioms systems, the relations Rz and S3
given in Section 3.5 are models of weak and strict linear orderings respec-
tively.

The reader may have noticed a certain degree of systematicity in the
relation between the names chosen for various kinds of ordering relations
and the selection of axioms used in their definitions. Such systematicity
is most prevalent (and most desirable) in contexts where the emphasis is
on contrasts among closely related axiomatic systems, as is the case here.
Shorter names are often used when differences among similar systems are not
at issue; so, for instance, an author may omit the adjectives weak and sirict
and talk simply of partial and total orderings if all her orderings are weak
or if all of them are strict; definitions usually accompany initial uses of such
terms when there could be any doubt. In the case of orderings, watch out
for the use of the adjective strong, which is used as an antonym sometimes
of weak and sometimes of partial The lack of perfect standardization in
nomenclature is a perfectly reasonable side effect of the useful versatility of
axiomatic definitions; be prepared when in doubt to check a given author’s
definitions.

The definition of well-ordering was also given in Section 3.5: a set S is
well-ordered by a relation R if R is a total order and, further, every subset
of § has a least element in the ordering relation. If we try to write down
this further condition as an additional axiom to add to the axioms for total
orderings, we come across an important difference between it and all the
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other axioms we have introduced in this section: it cannot be expressed in
first-order predicate logic

If we give ourselves the full expressive power of set theory, including the
possibility of quantifying over sets, we can write down the axioms for well-
ordering in the same form we used for the first version above of the definition
of weak partial orderings.

DEFINITION 8 16 A relation R is a well-ordering of a set S iff:

1. R is a total ordering on S.

2. Every subset of S has a least element with respect to the order R:
VS'I((S'CS) - Je(ze S'&Vy((y € S'& 2z # y) — Rey)))

But we cannot omit the set theory talk this time as we could before. We
can recast it so that we are quantifying over one-place predicates instead
of over sets, which we do in Section 86.7 where we discuss higher-order
logics. But what we cannot do is express the second axiom just with ordinary
individual variables ranging over the members of the domain §

The well-ordering axiom, axiom 2 above, turns out to be quite powerful
and subtle. Iflogicians could have found a way to replace it with a first-order
axiom having the same effect, they surely would have. What has been proved
is that the well-ordering axiom is equivalent to each of several other non-first-
order axioms, including Peano’s fifth axiom, the induction axiom, which has
already been introduced and to which we will return in Section 8 5.7. The
relations among these higher-order axioms are discussed in Section 8.6.7.
Properties which like transitivity and reflexivity can be expressed by first-
order axioms are called first-order properties, but the modifier is used only
when the contrast with higher-order properties is relevant

Ordering relations and their axiomatic characterizations provide a rich
round for exploring the syntactic and the semantic side of formal systems
and their interrelations. Once one sees that each property like reflexivity or
antisymmetry can be characterized by an axiom, the possible combinations
to be explored become endless. Can an ordering be both asymmetric and
antisymmetric? Does the answer to that question vary with the other axioms
in the given system? Are there axioms that will force the set ordered to be
infinite? To be finite? Are there informally describable kinds of orderings
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that cannot be characterized by a finite set of axioms? Is that last question
well-defined, and if it is not precise, can it still be fruitful?

The rich realm of axiomatizations of ordering relations also leads one to
wonder whether there is some single most general characterization of order-
ings such that all the well-known kinds of orderings are gotten by adding
various axioms to some common core of shared axioms. Different authors
have different degrees of tolerance on this question; the natural desire for a
most general notion of ordering is in conflict with the fact that the standard
kinds of ordering relations are required to be, besides transitive, either re-
flexive and antisymmetric or irreflexive and asymmetric and there seems to
be no non-ugly way to say just that. Suppes (1957), noting that transitivity
is the one property they all share, makes transitive relations the most general
case in a diagram displaying the inclusion relation among several different
kinds of ordering relations (an ordering of ordering relations.) Most authors
decline to attempt a single most general definition of ordering relations. A
wealth of syntactic and semantic arguments establishing various properties
of orderings can be found in Suppes (1960).



