8.6.4 About completeness proofs

This axiomatization of first-order predicate logic is complete, ie., all and
only valid formulas are provable. Although this claim itself has been proven
formally by Kurt Gddel and later also by Leon Henkin, these proofs are
quite technical and not directly useful for any linguistic purposes. But the
notion of completeness is an important meta-theoretical concept and to get
an impression of its value we discuss the main ideas of Henkin’s proof semi-
formally here.

The main stages of Henkin’s completeness proof are the following three
claims:

(1) if a formula ¢ is not provable in predicate logic, then the singleton set
{~ ¢} is consistent,

(2) every consistent set of statements M is contained in a maximally con-
sistent set M~

(3) every maximally consistent set M~ has an interpretation making ex-
actly all statements in M~ true.

We explain the three claims and the notions used in them non-technically:
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ad 1) Suppose that ¢ is not provable in predicate logic. We reason in a
reductio ad absurdum argument If {~ ¢} is inconsistent, then, according to
the definition of inconsistency, we can derive some formula v and its negation
hence also the contradiction (~ ¢ & %) from it. In that case one can show
that ~ ¢ — (~ 1 &) is provable, and that therefore ~ (~ ¥ & ) — ¢ is
provable. Since ~ (~ 1 & ) is provable as well, it follows by Modus Ponens
that ¢ is provable after all, which contradicts the initial assumption that ¢
is not provable in predicate logic So the additional assumption that ~ ¢ is
inconsistent cannot be right, so ~ ¢ is consistent.

ad 2) A set of formulas M~ is mazimally consistent if M~ is consistent
and for every arbitrary formula ¢ not in M*, M~ U {®} is inconsistent This
means that there is no formula which can be added to M™ while keeping it
consistent Any consistent set of formulas M can be extended to a maxi-
mally consistent set 1/ which contains all formulas of M. We enumerate the
formulas o1, @2, 3, . in M according to their length and by equal length al-
phabetically and enumerate also all the individual constants. Take Mo = M
and form M, for arbitrary n from the set M, by adding the formula
¥(a) — (Ve)ip(z) if @py1 is of the form (Va)y(z); where a is the first indi-
vidual constant in the enumeration which does not occur in ¢,+1 nor in any
of the formulas in M,,. If ¢,41 is not of the form (Vz)¢¥(z) then M, 11 = M,.
This procedure produces sequence of consistent sets My, M1, M,,.. Let M*
be the set consisting only of all elements of any M, Then M, is consistent,
since there is no finite subset which is inconsistent, M/~ is maximal since any
formula not in M™ is excluded because it would make it inconsistent by the
procedure.

ad 3) Every consistent set of formulas has a model in which all formulas
are true. We should describe this precisely for any form of formula, but the
details are not particularly illuminating In case the formula is universally
quantified, the procedure of constructing M™ guarantees that all assignments
to the quantified variable give formulas which are still in M~

Now if ©,.. ,n — 1 is valid in predicate logic, then the proof of ¢
from premises ¢;, . .,¢, must exist in our axiomatization of predicate logic,
For if ¢1,...,¢n — 9 is valid, then 1 — (2 — . (¢n — ¥)) . ) is true
and hence provable. With Modus Ponens applied n times we prove ¢ from
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This sketch of Henkin’s completeness proof may give you a taste of one
of the most important results in predicate logic. It shows that you may
safely switch back and forth between model-theoretic arguments and proofs,
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since they are simply semantic and syntactic counterparts Perhaps the most
important and startling “side effect” of the research on completeness was the
discovery of negative results showing the incompleteness of some systems



