8.4 Peano’s axioms and proof by induction

Peano’s axioms for the natural numbers, actually due to Dedekind, are not
only one of most well-known axiomatic systems in the history of mathemat-
ics, but they give rise to the Principle of Mathematical Induction and the
technique of proof by induction or inductive proof, a conceptually impor-
tant tool which further helps to highlight the close affinity between recursive
definitions and axiomatic systems.

In this section we introduce Peano’s axioms and the method of proof
by induction; we will come back to Peano’s axioms from a model-theoretic
perspective in 8.5.7.

In Part A, Appendix A, we saw a constructive approach to the natural
numbers, with set theory assumed as a basis. We review that construction
here, putting it in the form of a recursive definition of NN

(8-25) 1.0€ NN
2 Forall X,if X € NN,then X U{X} € NN
3. Nothing else is in NN

The set NN defined in this way has many useful properties which make
it a reasonable, if artificial, set-theoretic reconstruction of the natural num-
bers. Zero is identified with @, 1 with {0}, 2 with {0,{0}}, and so on, each
natural number n being identified with the unique member of NN having
n members. The definition endows the natural numbers with appropriate
structure and can be used as the basis for defining further arithmetical re-
lations and operations and extending the number system as discussed in
Appendix A,

In the axiomatic approach to natural numbers, the aim was rather to set
forth some essential properties of the natural numbers from which all their
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other properties should be derivable as theorems, just as in the Euclidean
axiomatization of plane geometry. In stating the basic axioms, only logical
concepts (including, in this case, equality) are assumed, and a set of axioms
involving two primitive predicates and one primitive constant is given. The
primitives are (1) the one-place predicate ‘is a natural number’ and the
two-place predicate ‘is the successor of’ and (2) the constant 0. It is to
be emphasized that these are primitives; the only meaning they have is
given to them in the axiomatization The concept of a natural number is,
therefore, implicitly defined by the axioms: they are those things of which,
in some model of the system, the interpretation of the predicate ‘is a natural
number’ is true. Let us write Nz for ‘z is a natural number’ and Szy for ‘z
is a successor of y’. The axioms are:

P1) NO (zero is a natural number)

P2) (Ve)(Ne — (Jy)(Ny& Syz& (Vz)(Sze — z = y))) (every natural

number has a unique successor)
P3) ~ (32)(Nz & S0z) (0 is not the successor of any number)

P4) (Ve)(Vy)(Vz)(Vu)((Ne& Ny & Szz & Swy& z = w) — z = y) (no two
distinct natural numbers have the same successor

P5) If @ is a property such that

(i) QO (zero has @), and

(if) (Ve)(Vy)((Ne& Qz& Ny & Syz) — Qy), (if a natural number
has @ then its successor has @, ie. @ is a ‘hereditary’ property)

then (Vz)(Nz — Qz) (every natural number has Q)

These axioms together characterize the set of all natural numbers in
certain important respects in which they differ from other infinite sets. Al-
though we will not go into the proof here, it can be shown that this axioma-
tization of the natural numbers is also sufficient for proving the equivalence
of the notions ordinary infinite and Dedekind infinite, which used only the
notion of one-to-one correspondence, defined in Section 4 2.

The fifth Peano postulate is very important. It introduces the notion
of mathematical induction. Intuitively, this axiom says that the natural
numbers are subject to the ‘domino-effect’: whenever you find a property
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that knocks down zero, and makes each number knock down its successor,
you can conclude that all numbers are knocked down. There are no natural
numbers outside this single infinite chain The first four axioms guarantee
the existence of an infinite chain of successors starting at zero, but do not
preclude the existence of additional natural numbers, eg a second infinite
chain unconnected to the first. The fifth axiom precludes the existence of
any more numbers than are required by the first four axioms

Now let us look more closely at the Principle of Mathematical Induction
and its application Let us first restate the principle, i.e. Peano’s fifth axiom,
in a slightly simpler form by (i) suppressing the predicate N and assuming
that our domain of quantification is restricted to just the natural numbers,
and (ii) using the notation S(z) to denote the successor of z, something we
can legitimately do since the first four axioms guarantee that the successor-of
relation is a function.

For any predicate @, if the following statements are both true of Q:

(8-26) 1 Q0
2. (Vz)(Qz — Q(S(z)))

then the following statement is also true of @:
3 (Vz)Qz

The similarity between (8-26) 1 and 2 and the base and recursion step,
respectively, of a recursive definition is readily apparent. The Principle of
Mathematical Induction is not a definition, however, but a rule of inference
to be applied to statements about the integers. A proof that employs this
rule of inference is known as a proof by induction or an inductive proof.

Let us examine the structure of such a proof in more detail. Suppose we
have been given a predicate P(z) such that (827) 1 and 2 hold. These form
the premises of the argument.

(8-27) 1. P(0)
2 (Vz)(P(2) — P(z +1))

From P(0) and a substitution instance of line 2

3. P(0) = P(1) 2, UL
we can derive
4 P(1) 1,3,MP

and from this and another substitution instance of line 2
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5. P(1) — P(2) 2, UL
we can derive

6 P(2) 4,5, M.P
and so on

To prove the statement (Vz)P(z) would require an infinite number of
steps, and we would ordinarily not want to consider an infinitely long se-
quence of lines a proof, if for no other reason than that it would be impossi-
ble to examine it in order to verify its correctness. Thus, there is no proof of
(vz)P(z) that can be constructed by using only the rules of inference we have
considered up to now. Nevertheless, (8-26) 3 is intuitively a valid conclusion
to draw from the premises (8-26) 1 and 2, and the Principle of Mathematical
Induction is a formal assertion that this inference is legitimate. It should be
noted that the Principle of Mathematical Induction itself is not susceptible
of proof but only acceptance or rejection on the grounds of its effectiveness
in separating intuitively valid from intuitively invalid arguments. With this
additional rule of inference, the proof of (Vz)P(z) is simply as follows:

(8-28) 1. P(0)
2. (Vz)(P(z) - P(z + 1))
(Vz)(P(z)) 1, 2, Math. Ind.

As an example we prove by induction that for every integer n the sum
of the series 0 + 14+ 2+ .. +(n—1) + n equals [n(n + 1)]/2.

The premises of the argument are the propositions stating all the usual
arithmetic properties of the integers (the commutativity of addition, etc ),
which can be deduced as theorems from Peano’s Axioms. As is usual in
inductive proofs almost all the work comes in establishing the truth of the
statements corresponding to (8-28) 1 and 2, known as the base and the
snduction step, respectively. Once these have been derived, the remainder
of the proof consists of just one inferential step justified by the Principle of
Mathematical Induction. We begin by demonstrating the truth of the base,
ie,that 04+ 14+ ...+ n = [n(n+ 1)]/2 is true for n = 0. In this case the
sequence to the left of the equals sign consists of just 0, and the expression
to the right becomes [0(0 + 1)]/2, which is equal to 0.

The induction step to be established is

n(n + 1)

(8-29)  (vn) <0+1+.,‘.+n=——§-——-__>

0+1+. . +n+(n+1)=

(n+1)(n+1+1))
2
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that is, if the equation is true for any integer n, it is also true for n + 1,
the successor of n. To prove (8-29) we use a conditional proof in which we
assume the antecedent of the conditional in (8-28) for an arbitrary integer
k.

k+1
(8-30) 1 0+1+‘,.+k:k—(-2l—) CP.
2. 0+1+ . +k+(k+1)= —(——2———) +(k+1)
1, adding (k + 1) to both sides

k(E+1 2k +1
5 041+ . tk+(ki1)=PEE );“ (k+1)

2, converting right side to common denominator

4. 0+14+. . . +k+(k+1)=
3, factoring (k + 1) in numerator

(E+ 1)(k +2)
2

(k+1)((E+1)+1)

5. 0+1+4.. +k+(k+1)= 5
4, expressing k+ 2 as (k+1)+1

kE(k+1) .

2
E+1)(k+1)+1
0+1+‘.‘+k+(k+1):( * )(2+ )+

6. 0+1+4+. +k=

Since k was chosen arbitrarily, line 6 can be universally generalized to
(8-29). Having now established the truth of the base and the induction step,
the Principle of Mathematical Induction allows us to conclude:

(8-31) (vVn) (0 +1+.. +n= __*"("2+ 1))

Proof by induction can be applied not only to theorems about the set
of integers but to theorems about any set that can be put into one-to-one
correspondence with the integers, i.e., the denumerably infinite sets. As an
example of this sort we prove a generalized form of the Distributive Law for
union and intersection of sets,

(8-32) AU(By;NB2N.. NBr)=(AUB;)N(AUB2)N. N(ANB,)
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The form in which the Distributive Law was given in Chapter 2 is a
special case of (8-32) in which n = 2; that is

(8—33) AU (Bl n Bz) = (AU Bl) n (A U Bz)

Equation (8-32) is meaningless for n = 0 and trivial for n = 1 We take as
the base of the inductive proof that (8-32) holds for n = 2, ie., that (8-33) is
true. This is easily shown by expressing the sets in terms of predicates and
applying the Distributive Law of disjunction over conjunction in statement

logic.
To prove the induction step we assume that (8-32) holds for an arbitrarily
chosen integer k:

(8-34) AU(BiNBaN.. NBr)=(AUB;)N(AUB2)N ..N(AU By)
We wish to show that (8 34) implies (8-35).

(8-35) AU(B1NByN. NBrt1) =(AUB)N(AUBy)N.. N(AUBL)N
(AU Bit1)

The left side of (8-35) can be rewritten by the Associative Law as
(8-36) AU((BinNByn...NBy)N Biy1)
which is equal to
(8-37) (AU(B1NBaN.. . NB))N(AU Bgys)

by an application of the Distributive Law for the case n = 2, which has
already been proved By the induction hypothesis (8-34), expression (8-37)
is equal to

(8-38) ((AUBI)N(AUBy)N .. N(AUBNN (AU Bryy)

By the Associative Law we can omit one set of parentheses to obtain the
right side of (8-35). This shows that (8-35) holds if (8-34) does. From this
and the base by the Principle of Mathematical Induction the generalized
form of the Distributive Law is shown to be true for all n equal to or greater
than 2 (or greater than 1 if we include this trivial case).
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In this last example induction is used to prove a theorem about a class
of equations of the form given in (8-32), which can be put into one-to-one
correspondence with the integers. The mapping is between an equation and
an integer n representing its length—specifically, the number of terms in the
expression B; N By N .. N B,,. Proof by induction on the length of a string
is the commonest use of this method of proof in mathematical linguistics

Problem: Prove by induction the following generalized form of one of
DeMorgan’s Laws:

(A;nAn.. . NnA4) =41U. UA,



