WILFRID HODGES

ELEMENTARY PREDICATE LOGIC

INTRODUCTION

Elementary (first-order) predicate logic is a child of many parents. At least
three different groups of thinkers played their part in its conception, with
three quite distinct motives. Maybe the mixture gave it hybrid strength.
But whatever the reason, first-order logic is both the simplest, the most
powerful and the most applicable branch of modern logic.

The first group who can claim paternity are the Traditional Logicians. For
these scholars the central aim of logic was to schematise valid arguments.
For present purposes an argument consists of a string of sentences called
premises, followed by the word ‘ Therefore’, followed by a single sentence
called the conclusion. An argument is called valid when its premises entail
its conclusion, in other words, if the premises can’t be true without the
conclusion also being true.

A typical valid argument schema might be:

1. a is more X than b. b is more X than c.
Therefore a is more X than c.

This becomes a valid argument whenever we substitute names for a,b,c
respectively and an adjective for X; as for example

2. Oslo is more clean than Ydstebghavn. Ydstebghavn is more clean
than Trondheim. Therefore Oslo is more clean than Trondheim.

Arguments like (2) which result from such substitutions are called instances
of the schema (1). Traditional logicians collected valid argument schemas
such as (1). This activity used to be known as formal logic on the grounds
that it was concerned with the forms of arguments. (Today we more often
speak of formal versus informal logic, just as formal versus informal seman-
tics, meaning mathematically precise versus mathematically imprecise.)
The ancients and the medievals had concerned themselves with small
numbers of argument schemas gathered more or less ad hoc. Aristotle’s
syllogisms give twenty-four schemas, of which Aristotle himself mentions
nineteen. The watershed between classical and modern logic lies in 1847,
when George Boole (1815-1864) published a calculus which yielded infinitely
many valid argument schemas of arbitrarily high complexity (Boole [1847;
1854]). Today we know Boole’s calculus as propositional logic. Other early
researchers who belong among the Traditionals are Augustus De Morgan
(1806-1871) and C. S. Peirce (1839-1914). Their writings are lively with
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examples of people 7 being enemies to people j at time k, and other people
overdrawing their bank accounts.

The second group of originators were the Proof Theorists. Among these
should be included Gottlob Frege (1848-1925), Giuseppe Peano (1858-
1932), David Hilbert (1862-1943), Bertrand Russell (1872-1970), Jacques
Herbrand (1908-1931) and Gerhard Gentzen (1909-1945). Their aim was
to systematise mathematical reasoning so that all assumptions were made
explicit and all steps rigorous. For Frege this was a matter of integrity and
mental hygiene. For Hilbert the aim was to make mathematical reasoning
itself the object of mathematical study, partly in order to justify infinitary
mathematics but partly also as a new method of mathematical research.
This group devised both the notation and the proof theory of first-order
logic. The earliest calculus adequate for first-order logic was the system
which Frege published in his Begriffschrift [1879]. This was also the first
work to discuss quantifiers.

With a slight anachronism I call the third group the Model Theorists.
Their aim was to study mathematical structures from the point of view of
the laws which these structures obey. The group includes Ernst Schroder
(1841-1902), Leopold Lowenheim (1878-1957), Thoralf Skolem (1887-1963),
C. H. Langford (18957-1964), Kurt Godel (1906-1978) and Alfred Tarski
(1901-1983). The notion of a first-order property is already clear in
Schréder’s work [1895], though the earliest use I could find of the term
“first-order’ in the modern sense is in Langford [1927]. (Langford quotes the
slightly different use of the term Principia Mathematica, Whitehead and
Russell [1910].)

Our present understanding of what first-order logic is about was painstak-
ingly built up by this group of workers during the years 1915 to 1935. The
progress was conceptual as much as technical; a historian of logic feels his
fingers tingle as he watches it. Increasing precision was an important part
of it. But it is worth reflecting that by 1935 a logician could safely say ‘The
formal sentence S is true in the structure A’ and mean it. Frege [1906] had
found such language morally reprehensible (cf. Section 12 below). Skolem
[1922] talked of formal axioms ‘holding in a domain’, but he felt obliged
to add that this was ‘only a manner of speaking, which can lead only to
purely formal propositions—perhaps made up of very beautiful words...’.
(On taking truth literally, see above all Kurt Godel’s letters to Hao Wang,
[1974, p. 8 ff] and the analysis by Solomon Feferman [1984]. R. L. Vaught’s
historical paper [1974] is also valuable.)

Other groups with other aims have arisen more recently and found first-
order logic helpful for their purposes. Let me mention two.

One group (if we can lump together such a vast army of workers) are
the computer scientists. There is wide agreement that trainee computer
scientists need to study logic, and a range of textbooks have come onto
the market aimed specifically at them. (To mention just two, Reeves and
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Clarke [1990] is an introductory text and Gallier [1986] is more advanced.)
But this is mainly for training; first-order logic itself is not the logic of
choice for many computer science applications. The artificial intelligence
community consume logics on a grand scale, but they tend to prefer logics
which are modal or intensional. By and large, specification languages need
to be able to define functions, and this forces them to incorporate some
higher-order features. Very often the structures which concern a computer
scientist are finite, and (as Yuri Gurevich [1984] argued) first-order logic
seems not to be the best logic for classifying finite structures.

Computer science has raised several questions which cast fresh light on
first-order logic. For example, how does one search for a proof? The ques-
tion itself is not new—philosophers from Aristotle to Leibniz considered it.
What is completely new is the mathematical analysis of systematic searches
through all possible proofs in a formal calculus. Searches of this kind arise
naturally in automated theorem proving. Robert Kowalski [1979] proposed
that one could read some first-order sentences as instructions to search for a
proof; the standard interpretation of the programming language PROLOG
rests on his idea. Another question is the cost of a formal proof, in terms of
the number of assumptions which are needed and the number of times each
assumption is used; this line of enquiry has led to fragments of first-order
logic in which one has some control over the cost (see for example Jean-Yves
Girard [1987; 1995] on linear logic and Dogen and Schroeder-Heister [1993]
on substructural logics in general).

Last but in no way least come the linguists. After Chomsky had revo-
lutionised the study of syntax of natural languages in the 1950s and 60s,
many linguists shifted the spotlight from grammar to meaning. It was nat-
ural to presume that the meaning of a sentence in a natural language is
built up from the meanings of its component words in a way which re-
flects the grammatical structure of the sentence. The problem then is to
describe the structure of meanings. One can see the beginnings of this en-
terprise in Bertrand Russell’s theory of propositions and the ‘logical forms’
beloved of English philosophers earlier in this century; but the aims of these
early investigations were not often clearly articulated. Round about 1970
the generative semanticists (we may cite G. Lakoff and J. D. McCawley)
began to use apparatus from first-order logic in their analyses of natural lan-
guage sentences; some of their analyses looked very much like the formulas
which an up-to-date Traditional Logician might write down in the course of
knocking arguments into tractable forms. Then Richard Montague [1974]
opened a fruitful line of research by using tools from logic to give extremely
precise analyses of both the grammar and semantics of some fragments of
English. (Cf. Dowty et al. [1981] for an introduction to Montague gram-
mar.) I should add that many researchers on natural language semantics,
from Montague onwards, have found that they needed logical devices which
go far beyond first-order logic. More recently some of the apparatus of first-
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order proof theory has turned up unexpectedly in the analysis of grammar;
see for example Morrill [1994] and Kempson [1995].

Logicians like to debate over coffee when ‘real’ first-order logic first
appeared in print. The earliest textbook account was in the Grundzige
der theoretischen Logik of Hilbert and Ackermann [1928], based on Hilbert’s
lectures of 1917-1922. Skolem’s paper [1920] is undeniably about first-order
logic. But Whitehead and Russell’s Principia Mathematica [1910] belongs
to an earlier era. It contains notation, axioms and theorems which we now
regard as part of first-order logic, and for this reason it was quoted as a
reference by Post, Langford, Herbrand and Godel up to 1931, when it fig-
ured in the title of Gddel’s famous paper on incompleteness, [Goédel, 1931b].
But the first-order part of Prinicipia is not distinguished from the rest;
and more important, its authors had no notion of a precise syntax or the
interpretation of formulas in structures.

[  Propositional Logic

1 TRUTH FUNCTORS

In propositional logic we use six artificial symbols =, A,V, —, <>, L, called
truth-functors. These symbols all have agreed meanings. They can be used
in English, or they can have an artificial language built around them.

Let me explain one of these symbols, A, quite carefully. The remainder
will then be easy.

We use A between sentences ¢, to form a new sentence

(1) (pAY).

The brackets are an essential part of the notation. Here and below, ‘sen-
tence’ means ‘indicative sentence’. If ¢ and i are sentences, then in any
situation,

(2) (¢ A1) is true iff ¢ is true and 9 is true; otherwise it is false.

(‘Iff” means ‘if and only if’.) This defines the meaning of A.

Several points about this definition call for comment. First, we had to
mention the situation, because a sentence can be true in one situation and
not true in another. For example, the sentence may contain demonstrative
pronouns or other indexicals that need to be given a reference, or words that
need to be disambiguated. (The situation is not necessarily the ‘context of
utterance’—a sentence can be true in situations where it is never uttered.)

In propositional logic we assume that in every situation, each sentence
under discussion is determinately either true or false and not both. This
assumption is completely innocent. We can make it correct by adopting
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either or both of the following conventions. First, we can agree that although
we intend to use the word ‘true’ as it is normally used, we shall take ‘false’
to mean simply ‘not true’. And second, we can take it as understood that
the term ‘situation’ covers only situations in which the relevant sentences
are either true or false and not both. (We may also wish to put an embargo
on nonsensical sentences, but this is not necessary.) There are of course
several ways of being not true, but propositional logic doesn’t distinguish
between them.

Logicians always make one further assumption here: they assume that
truth and falsehood—7" and F' for short—are objects. Then they say that
the truth-value of a sentence is 7' if the sentence is true, and F' otherwise.
(Frege [1912]: “...in logic we have only two objects, in the first place: the
two truth-values.”) But I think in fact even the most scrupulous sceptic
could follow the literature if he defined the truth-value of all true sentences
to be his left big toe and that of false sentences to be his right. Many
writers take truth to be the number 1, which they identify with the set
{0}, and falsehood to be the number 0, which is identified with the empty
set. Nobody is obliged to follow these choices, but technically they are very
convenient. For example (2) says that if the truth-value of ¢ is z and the
truth-value of 9 is y, then that of (¢ A ¢) is wy.

With this notation, the definition (2) of the meaning of A can be written
in a self-explanatory chart:

B) ¢ ¢v|(@AY)

T T T
T F F
F T F
F F F

The diagram (3) is called the truth-table of A. Truth-tables were first intro-
duced by C. S. Peirce in [1902].

Does (3) really define the meaning of A? Couldn’t there be two symbols
A1 and Ay with different meanings, which both satisfied (3)7

The answer is that there certainly can be. For example, if A; is any
symbol whose meaning agrees with (3), then we can introduce another such
symbol Ao by declaring that (¢ As 1) shall mean the same as the sentence

(4) (¢ A1) and the number 7 is irrational.

(Wittgenstein [1910] said that A; and A then mean the same! Tractatus
4.46fF, 4.465 in particular.) But this is the wrong way to read (3). Diagram
(3) should be read as stating what one has to check in order to determine
that (¢ A1) is true. One can verify that (¢ A ¢) is true without knowing
that 7 is irrational, but not without verifying that ¢ and v are true. (See
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Michael Dummett [1958/59; 1975] on the relation between meaning and
truth-conditions.)

Some logicians have claimed that the sentence (¢ A ) means the same
as the sentence

(5) ¢ and 1.

Is this correct? Obviously the meanings are very close. But there are some
apparent differences. For example, consider Mr Slippery who said in a court
of law:

(6) I heard a shot and I saw the girl fall.

when the facts are that he saw the girl fall and then heard the shot. Under
these circumstances

(7) (I heard a shot A I saw the girl fall)

was true, but Mr Slippery could still get himself locked up for perjury. One
might maintain that (6) does mean the same as (7) and was equally true,
but that the conventions of normal discourse would have led Mr Slippery
to choose a different sentence from (6) if he had not wanted to mislead the
jury. (See Grice [1975] for these conventions; Cohen [1971] discusses the
connection with truth-tables.)

Assuming, then, that the truth-table (3) does adequately define the mean-
ing of A, we can define the meanings of the remaining truth-functors in the
same way. For convenience I repeat the table for A.

@) ¢ |0 ¢NY dVY oY s L

T T | F T T T T F
T F F T F F
F T|T F T T F
F F F F T T

—¢ is read ‘Not ¢’ and called the negation of ¢. (¢ A1) is read ‘¢ and ¢’
and called the conjunction of ¢ and ¥, with conjuncts ¢ and 1. (¢ V ) is
read ‘¢ or ¢’ and called the disjunction of ¢ and v, with disjuncts ¢ and
Y. (¢ — 1) is read ‘If ¢ then ¢’ or ‘¢ arrow 1’; it is called a material
implication with antecedent ¢ and consequent ¥. (¢ <> ) is read ‘¢ if and
only if ¢’, and is called the biconditional of ¢ and . The symbol L is read
as ‘absurdity’, and it forms a sentence by itself; this sentence is false in all
situations.
There are some alternative notations in common use; for example

(9) —¢or ~¢ for—g.
(¢&v) for (¢ A 1).
(92¥) for (¢ — v).
(p=v) for (¢ < 1)
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Also the truth-functor symbols are often used for other purposes. For exam-
ple the intutionists use the symbols =, A, V, —, <> but not with the meanings
given in (8); cf. van Dalen’s chapter on Intutionistic Logic in a later volume.
Some writers use the symbol — for other kinds of implication, or even as a
shorthand for the English words ‘If ...then’.

A remark on metavariables. The symbols ‘¢’ and ‘¢)’ are not themselves
sentences and are not the names of particular sentences. They are used
as above, for making statements about any and all sentences. Symbols
used in this way are called (sentence) metavariables. They are part of
the metalanguage, i.e. the language we use for talking about formulas. I
follow the convention that when we talk about a formula, symbols which
are not metavariables are used as names for themselves. So for example
the expression in line (1) means the same as: the formula consisting of ‘(’
followed by ¢ followed by ‘A’ followed by v followed by ‘)’. I use quotation
marks only when clarity or style demand them. These conventions, which
are normal in mathematical writing, cut down the clutter but put some
obligation on reader and writer to watch for ambiguities and be sensible
about them. Sometimes a more rigorous convention is needed. Quine’s
corners " supply one; see Quine [1940, Section 6]. There are some more
remarks about notation in Section 4 below.

2 PROPOSITIONAL ARGUMENTS

Besides the truth-functors, propositional logic uses a second kind of symbol,
namely the sentence letters

(10) D,q,Ty -3 P1, P25 005

These letters have no fixed meaning. They serve to mark spaces where
English sentences can be written. We can combine them with the truth-
functors to produce expressions called formulas, which become sentences
when the sentence letters are replaced by sentences.

For example, from the sentence letters p,q and r we can build up the
formula

(11) (pA((pVg) — 1))

as follows:
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P\ /q

(rVa)

/ '
R\\\\ (pVg) =)
APV —r))
We call (12) the formation tree of the formula (11). Sentence letters them-
selves are reckoned to be atomic formulas, while formulas which use truth-
functors are called compound formulas. In a compound formula there is
always a truth-functor which was added last in the formation tree; this oc-
currence of the truth-functor is called the main connective of the formula.
In (11) the main connective is the occurrence of A. The main connective of
1 is reckoned to be L itself.

Suppose ¢ is a formula. An instance of ¢ is a sentence which is got
from ¢ by replacing each sentence letter in ¢ by an English sentence, in
such a way that no sentence letter gets replaced by different sentences at
different occurrences. (Henceforth, the symbols ‘¢’, ‘)’ are metavariables for
formulas as well as sentences. The letters ‘p’, ‘¢’ etc. are not metavariables;
they are the actual symbols of propositional logic.)

Now if we know the truth-values of the inserted sentences in an instance
of ¢, then we can work out by table (8) what the truth-value of the whole
instance must be. Taking (11) as an example, consider the following table:

(13) p g 1| (A(pVg —r)
() T T T|TIT TIT TT

i)/’ T T F|TF TTT FF

(iit)y T F T|TT TTF TT

(vy T F F|TF TTF FF

(w F T T|FF FTT TT

(wiy F T F|FF FTT FF

(viiy F F T|FF FFF TT

(viii) F F F|FF FFF TF

17 253 64

The rows (i)—(viii) on the left list all the possible ways in which the sen-
tences put for p and ¢ can have truth-values. The columns on the right are
computed in the order shown by the numbers at the bottom. (The numbers
at left and bottom are not normally written—I put them in to help the ex-
planation.) Columns 1, 2, 3, 4 just repeat the columns on the left. Column
5 shows the truth-value of (p V ¢), and is calculated from columns 2 and 3
by means of table (8). Then column 6 is worked out from columns 5 and
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4, using the truth-table for (¢ — ) in (8). Finally, column 7 comes from
columns 1 and 6 by the table for (¢ A ¢). Column 7 is written under the
main connective of (11) and shows the truth-value of the whole instance of
(11) under each of the eight possibilities listed on the left.

Table (13) is called the truth-table of the formula (11). As we constructed
it, we were working out truth-tables for all the formulas shown in the for-
mation tree (12), starting at the top and working downwards.

We are now equipped to use propositional logic to prove the validity of
an argument. Consider:

(14) That was a hornet, and soda only makes hornet and wasp stings
worse. So you don’t want to use soda.

This contains an argument along the following lines:

(15) (You were stung by a hornet A ((you were stung by a hornet V you
were stung by a wasp) — soda will make the sting worse)).
Therefore soda will make the sting worse.

We replace the component sentences by letters according to the scheme:

(16) p: You were stung by a hornet.
q : You were stung by a wasp.
r : Soda will make the sting worse.

The result is:
(17) (pA((pV q) = 1)). Therefore r.

Then we calculate truth-tables for both premise and conclusion of (17) at
the same time. Only the main columns are shown below.

(18) (pA((pVq) —r1)). Thereforer

(4)

)

(vi7)
(iv)
(
(
(
(

<

v
vi)
vit)
viii)

RIS RS s s s B B | S

Rl B BT R | S
Bl e B T |
M TNENTN
RSl RS B B e B B

Table (18) shows that if the premise of (15) is true then so is the conclusion.
For if the premise is true, then the column under the premise shows that
we are in row (i) or row (iii). In both of these rows, the last column in (18)
shows that the conclusion is true. There is no row which has a 7' below
(pA((pVq) — r)) and an F below r. Hence, (15) is valid.
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In the language of the traditional logician, these calculations showed that
(17) is a valid argument schema. Every instance of (17) is a valid argument.

Note how the proof of the validity of an argument falls into two parts.
The first is to translate the argument into the symbols of propositional logic.
This involves no calculation, though a gauche translation can frustrate the
second part. I say no more about this first part—the elementary text-
books give hundreds of examples [Kalish and Montague, 1964; Mates, 1965;
Thomason, 1970; Hodges, 1977). The second part of the proof is pure me-
chanical calculation using the truth-table definitions of the truth-functors.
What remains to discuss below is the theory behind this mechanical part.

First and foremost, why does it work?

3 WHY TRUTH-TABLES WORK

If ¢ is any formula of propositional logic, then any assignment of truth-
values to the sentence letters which occur in ¢ can be extended, by means of
the truth-table definitions of the truth-functors, to give a truth-value to ¢;
this truth-value assigned to ¢ is uniquely determined and it can be computed
mechanically.

This is the central thesis of propositional logic. In Section 2 I showed
how the assignment to ¢ is calculated, with an example. But we shouldn’t
rest satisfied until we see, first, that this procedure must always work, and
second, that the outcome is uniquely determined by the truth-table defini-
tions. Now there are infinitely many formulas ¢ to be considered. Hence
we have no hope of setting out all the possibilities on a page; we need to
invoke some abstract principle to see why the thesis is true.

There is no doubt what principle has to be invoked. It is the principle of
induction on the natural numbers, otherwise called mathematical induction.
This principle says the following:

(19) Suppose that the number 0 has a certain property, and suppose
also that whenever all numbers from 0 to n inclusive have the
property, n + 1 must also have the property. Then all natural
numbers from 0 upwards have the property.

This principle can be put in several forms; the form above is called course-
of-values induction. (See Appendix B below.) For the moment we shall only
be using one or two highly specific instances of it, where the property in
question is a mechanically checkable property of arrays of symbols. Several
writers have maintained that one knows the truth of any such instance of
(19) by a kind of inspection (Anschauung). (See for example [Herbrand,
1930, Introduction] and [Hilbert, 1923]. There is a discussion of the point
in [Steiner, 1975].)

Essentially what we have to do is to tie a number n to each formula ¢,
calling n the complexity of ¢, so that we can then use induction to prove:



ELEMENTARY PREDICATE LOGIC 11

(20) For each number n from 0 upwards, the thesis stated at the begin-
ning of this section is true for all formulas of complexity n.

There are several ways of carrying this through, but they all rest on the
same idea, namely this: all formulas are generated from atomic formulas in
a finite number of steps and in a unique way; therefore each formula can
be assigned a complexity which is greater than the complexities assigned to
any formulas that went into the making of it. It was Emil Post, one of the
founders of formal language theory, who first showed the importance of this
idea in his paper on truth-tables:

(21) “It is desirable in what follows to have before us the vision of
the totality of these [formulas] streaming out from the unmodified
[sentence letters] through forms of ever-growing complexity ...”
(Post [1921], p. 266 of van Heijenoort [1967]).

For an exact definition of formulas and their complexities, we need to
say precisely what sentence letters we are using. But it would be a pity to
lumber ourselves with a set of letters that was inconvenient for some future
purposes. So we adopt a compromise. Let X be any set of symbols to be
used as sentence letters. Then we shall define the propositional language of
similarity type X, in symbols L(X). The set X is not fixed in advance; but
as soon as it is fixed, the definition of L(X) becomes completely precise.
This is the usual modern practice.

The notions ‘formula of similarity type X’ (we say ‘formula’ for short)
and ‘complexity of a formula’ are defined as follows.

1. Every symbol in X is a formula of complexity 0. L is a formula of
complexity 1.

2. If ¢ and ¢ are formulas of complexities m and n respectively, then —¢
is a formula with complexity m + 1, and (¢ A ), (¢ V), (¢ — ¢) and
(¢ <> 1) are formulas of complexity m + n + 1.

3. Nothing is a formula except as required by (1) and (2).

For definiteness the language of similarity type X,L(X), can be defined as
the ordered pair (X, F') where F' is the set of all formulas of similarity type
X. A propositional language is a language L(X) where X is a set of symbols;
the formulas of L(X) are the formulas of similarity type X.

Frege would have asked: How do we know there is a unique notion ‘for-
mula of similarity type X’ with the properties (1)—(3)? A full answer to this
question lies in the theory of inductive definitions; cf. Appendix B below.
But for the present it will be enough to note that by (1) and (2), every
formation tree has a formula as its bottom line, and conversely by (3) every
formula is the bottom line of a formation tree. We can prove rigorously by
induction that if a formula has complexity n by definition (1)-(3) then it
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can’t also have complexity m where m # n. This is actually not trivial.
It depends on showing that the main connective in a compound formula is
uniquely determined, and—ignoring — and L for simplicity—we can do that
by showing that the main connective is the only truth-functor occurrence
which has one more ‘(’ than ‘)’ to the left of it. (Cf. [Kleene, 1952, pp.
21f].) The proof shows at the same time that every formula has a unique
formation tree.

The atomic formulas are those which have complexity 0. A formula is
called basic if it is either atomic or the negation of an atomic formula.

Now that the language has been adequately formulated, we come back
to truth-tables. Let L be a propositional language with similarity type X.
Then we define an L-structure to be a function from the set X to the set
{T, F'} of truth-values. (Set-theoretic notions such as ‘function’ are defined
in Appendix C below, or in any elementary textbook of set theory.) So
an L-structure assigns a truth-value to each sentence letter of L. For each
sentence letter ¢ we write Iy (¢) for the truth-value assigned to ¢ by the
L-structure 2. In a truth-table where the sentence letters of L are listed
at top left, each row on the left will describe an L-structure, and every
L-structure corresponds to just one row of the table.

Now we shall define when a formula ¢ of L is true in an L-structure 2,
or in symbols

(22) AF 6.

The definition of (22) will be by induction of the complexity of ¢. This
means that when ¢ has low complexity, the truth or falsity of (22) will
be determined outright; when ¢ has higher complexity the truth of (22)
depends in an unambiguous way on the truth of statements ‘A F ¢’ for
formulas ¢ of lower complexity than ¢. (Cf. Appendix B.) We can prove
by induction on the natural numbers that this definition determines exactly
when (22) is true, and in fact that the truth or otherwise of (22) can be
calculated mechanically once we know what 2 and ¢ are. The definition is
as follows:

(23) For each sentence letter ¢, A F ¢ iff In(¢p) = T.

It is false that A F L.

For all formulas ¢, of L,
2A F —¢ if it is not true that 2 F ¢;
AE (pAY) iff AFE p and A E o;
AE (p V) iff either A F ¢ or A E 9 or both;
AFE (¢ — ) iff not: AE ¢ but not A F .
AE (¢ <> ) iff either A F ¢ and A F 1, or neither A F ¢ nor A F .

Definition (23) is known as the truth definition for the language L. The
statement ‘A F ¢’ is sometimes read as: 2 is a model of ¢.
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The reader can verify that (23) matches the truth-table definitions of
the truth-functors, in the following sense. The left-hand part of any row
of a truth-table for ¢ describes an L-structure 2 (for some appropriate
language L). The truth-table gives ¢ the value T in this row if and only if
A F ¢; moreover the steps by which we calculated this value for ¢ in the
table exactly match the steps by which the definition (23) above determines
whether 2 F ¢. In this sense, and only in this sense, (23) is a correct
‘definition of truth for L’. Nobody claims that (23) explains what is meant
by the word ‘true’.

I should mention a useful piece of notation. We can write ||¢||o for the
truth-value assigned to the formula ¢ by the structure . Then [|¢||o can
be defined in terms of F by:

T ifAFE ¢,
F otherwise.

@@HMM={

Some writers prefer to define || || directly, and then F in terms of || ||o. If
we write 1 for T' and 0 for F', an inductive definition of || ||a will contain
clauses such as

(25) [I=¢lla =1 —=lolla;  [I(¢V )l = max {[[Bllar, |[eo]]a}-

4 SOME POINTS OF NOTATION

In Section 3 we put the truth-table method onto a more solid footing. We
extended it a little too, because we made no assumption that the language L
had just finitely many sentence letters. The original purpose of the exercise
was to prove valid argument schemas, and we can now redefine these in
sharper terms too.

Let L be a fixed propositional language and ¢, ..., ¢, any formulas
of L. Then the statement

(26) (Zsl;"';(bn':’l/}

will mean: for every L-structure A, if A F ¢; and ... A FE ¢, then A F .
We allow n to be zero; thus

27) Fy

means that for every L-structure 2,2 F . To say that (26) is false, we
write

(28) ¢1,...,0n F 0.

Note that (26)—(28) are statements about formulas of L and not themselves
formulas of L.
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It is a misfortune that custom requires us to use the same symbol F both
in ‘AE ¢ (cf. (22) above) and in ‘¢y, ..., ¢, E¥’. It means quite different
things in the two cases. But one can always see which is meant, because in
the first case a structure 2 is mentioned immediately to the left of F, and
in the second usage F follows either a formula or an empty space. F can
be pronounced ‘double turnstile’ or ‘semantic turnstile’, to contrast it with
the symbol - (‘turnstile’ or ‘syntactic turnstile’) which occurs in the study
of formal proof calculi (cf. Section 7 below).

The point of definition (26) should be clear. It says in effect that if
we make any consistent replacement of the sentence letters by sentences of
English, then in any situation where the sentences resulting from ¢1, ..., ¢,
are true, the sentence got from ¢ will be true too. In short (26) says that

(29) ¢1,...,dyn. Therefore 1.

is a valid argument schema. What’s more, it says it without mentioning
either English sentences or possible situations. Statements of form (26) or
(27) are called sequents (= ‘things that follow’ in Latin). When (26) is true,
o1, .-, ¢ are said to logically imply 1». When (27) is true, ¢ is said to be a
tautology; for a language with a finite number of sentence letters, this means
that the truth-table of ¢ has T' all the way down its main column. Some
elementary texts give long lists of tautologies (e.g. Kalish and Montague
(1964, pp. 80— 84]).

While we are introducing notation, let me mention some useful abbrevi-
ations. Too many brackets can make a formula hard to read. So we shall
agree that when naming formulas we can leave out some of the brackets.
First, we can leave off the brackets at the two ends of an occurrence of (¢pA))
or (¢ V1) provided that the only truth-functor which occurs immediately
outside them is either — or <». For example we can abbreviate

(30) (p ¢ (¢Ar)) and ((pAg) = (rV s))
to

(3l) (p>gAr)and (pAg—TV5)
respectively; but we can not abbreviate
(32) (=(pAgq) =) and ((p < q) A1)

to

(33) (-pAg—r)and (p< gAT)

respectively.
Second, we can leave off brackets at the ends of a formula. So the formulas
in (31) can also be written
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(34) pgArand pAgq—rVs

respectively.
Third, if we have a string of A’s with their associated brackets bunched
up towards the left end of the formula, as in

(35) (((gAT)As)AL),
then we can omit all but the outermost brackets:
(36) (gATrAsAt).

Formula (36) is called a conjunction whose conjuncts are ¢,r,s,t. Likewise
we can abbreviate (((¢ V r) V s) V t) to the disjunction (¢ V rV sV t) with
disjuncts q,r,s,t. (But the corresponding move with — or < is not allowed.)

All these conventions can be applied together, as when we write
(B7) pAgAT = s

for

(38) ((pAg)AT) = 5).

When only these abbreviations are used, it is always possible to work out
exactly which brackets have been omitted, so that there is no loss of infor-
mation.

Jan Lukasiewicz pointed out that if we always write connectives to the
left of the formulas they connect, then there is no need for any brackets at
all. In this style the second formula of (30) could be written

(39) — Apg V rs, or in Lukasiewicz’s notation CKpgArs.

Prior [1962] uses Lukasiewicz’s notation throughout.

Note that the abbreviations described above only affect the way we talk
about formulas of L—the formulas themselves remain untouched. The def-
inition of ‘formula of similarity type X’ given in Section 3 stands without
alteration. Some early writers were rather carefree about this point, making
it difficult to follow what language L they really had in mind. If anybody
wants to do calculations in L but still take advantage of our abbreviations,
there is an easy way he can do it. He simply writes down abbreviated names
of formulas instead of the formulas themselves. In other words, he works
always in the metalanguage and never in the object language. This cheap
trick will allow him the best of both worlds: a rigorously defined language
and a relaxed and generous notation. Practising logicians do it all the time.
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5 PROPERTIES OF F

This section gathers up some properties of F which can be proved directly
from the definitions in Sections 3 and 4 above. They are rather a ragbag,
but there are some common themes.

THEOREM 1. If2A and®B are structures which assign the same truth-values
as each other to each sentence letter occurring in ¢, then A= ¢ iff BE ¢.

This is obvious from (23), but it can also be proved rigorously by induc-
tion on the complexity of ¢. The most important consequence of Theorem
1is:

THEOREM 2. The truth of the sequent ‘py,..., ¢, F 10’ doesn’t depend on
what language L the formulas ¢1,..., ¢, and 1 come from.

In other words, although the definition of ‘¢, ..., ¢, F ¢’ was stated in
terms of one language L containing ¢y, . . ., ¢, and ¢, any two such languages
would give the same outcome. At first sight Theorem 2 seems a reasonable
property to expect of any decent notion of entailment. But in other logics,
notions of entailment which violate Theorem 2 have sometimes been pro-
posed. (There is an example in Dunn and Belnap [1968], and another in
Section 15 below.)

The next result turns all problems about sequents into problems about
tautologies.

THEOREM 3 (Deduction Theorem).  ¢1,...,¢, F ¢ if and only if ¢1, . . .,
(bnfl = ¢n — ’l/}

Theorem 3 moves formulas to the right of F. It has a twin that does the
opposite:
THEOREM 4. ¢1,...,0n EV iff ¢1,...,¢n, 0 E L.

We say that the formula ¢ is logically equivalent to the formula v if ¢ F ¢
and ¢ F ¢. This is equivalent to saying that F ¢ <> . Intuitively speaking,
logically equivalent formulas are formulas which behave in exactly the same
way inside arguments. Theorem 5 makes this more precise:

THEOREM 5. If ¢1,...,¢, F ¥, and we take an occurrence of a formula
X inside one of ¢1,...,0n, 0 and replace it by an occurrence of a formula
which is logically equivalent to x, then the resulting sequent holds too.

For example, —p V ¢ is logically equivalent to p — ¢ (as truth-tables will
confirm). Also we can easily check that

(40) r - (-pVaq),pET —¢.
Then Theorem 5 tells us that the following sequent holds too:

41) r—>(pP—4q),pFr—q.
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An interesting consequence of Theorem 5 is:

THEOREM 6. FEvery formula ¢ is logically equivalent to a formula which
uses the same sentence letters as ¢, but no truth-functors except L,— and
—.

Proof. Truth-tables will quickly show that

(42) ¢ A x is logically equivalent to (¢ — =),
¥ V x is logically equivalent to (=) — x), and
¥ ¢ x is logically equivalent to =((¢p = x) = —(x = ¥)).

But then by Theorem 5, if we replace a part of ¢ of form () A x) by =(¢ —
—X), the resulting formula will be logically equivalent to ¢. By replacements
of this kind we can eliminate in turn all the occurrences of A,V and < in
¢, and be left with a formula which is logically equivalent to ¢. This proves
Theorem 6. Noting that

(43) —¢ is logically equivalent to ¢ — L,

we can eliminate — too, at the cost of introducing some more occurrences
of L. ]

An argument just like the proof of Theorem 6 shows that every formula
is logically equivalent to one whose only truth-functors are — and A, and to
one whose only truth-functors are — and V. But there are some limits to
this style of reduction: there is no way of eliminating - and L in favour of
A, V,— and .

The next result is a useful theorem of Post [1921]. In Section 2 we found
a truth-table for each formula. Now we go the opposite way and find a
formula for each truth-table.

THEOREM 7. Let P be a truth-table which writes either T or F against
each possible assignment of truth-values to the sentence letters pi,...,pPn.-
Then P is the truth-table of some formula using no sentence letters apart

from p1, ... py-

Proof. I sketch the proof. Consider the jth row of the table, and write ¢;
for the formula pi A---Apl,, where each p} is p; if the jth row makes p; true,
and —p; if the jth row makes p; false. Then ¢; is a formula which is true at
just the jth row of the table. Suppose the rows to which the table gives the
value 1" are rows ji,...,ji. Then take ¢ to be ¢;, V---V ¢;, . If the table
has F' all the way down, take ¢ to be L. Then P is the truth-table of ¢. W

Theorem 7 says in effect that we could never get a more expressive logic
by inventing new truth-functors. Anything we could say with the new truth-
functors could also be said using the ones we already have.
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A formula is said to be in disjunctive normal form if it is either L or
a disjunction of conjunctions of basic formulas (basic = atomic or negated
atomic). The proof of Theorem 7 actually shows that P is the truth-table
of some formula in disjunctive normal form. Suppose now that we take any
formula ¢, work out its truth-table P, and find a formula ¢ in disjunctive
normal form with truth-table P. Then 9 and ¢ are logically equivalent,
because they have the same truth-table. So we have proved:

THEOREM 8. Every formula is logically equivalent to a formula in dis-
junctive normal form.

One can also show that every formula is logically equivalent to one in
conjunctive normal form, i.e. either =L or a conjunction of disjunctions of
basic formulas.

LEMMA 9 (Craig’s Interpolation Lemma for propositional logic). If¢ E x
then there exists a formula ¢ such that ¢y F ¢ and ¢ E x, and every sentence
letter which occurs in ¢ occurs both in ¥ and in x.

Proof. Let L be the language whose sentence letters are those which occur
both in ¢ and in x, and L' the language whose sentence letters are those
in either ¢ or y. Write out a truth-table for the letters in L, putting T’
against a row if and only if the assignment of truth-values in that row
can be expanded to form a model of ¢y. By Theorem 7, this table is the
truth-table of some formula ¢ of L. Now we show ¢ F x. Let 2 be any
L*-structure such that 2 £ ¢. Let € be the L-structure which agrees with
2 on all letters in L. Then € F ¢ by Theorem 1. By the definition of ¢
it follows that some model B of ¢ agrees with € on all letters in L. Now
we can put together an LT -structure ® which agrees with B on all letters
occurring in ¢, and with 2 on all letters occurring in x. (The overlap was
L, but & and B both agree with € and hence with each other on all letters
in L.) Then © F ¢ and hence © E x since ¢ E x; but then 2 F x too. The
proof that ¢ F ¢ is easier and I leave it to the reader. |

Craig’s Lemma is the most recent fundamental discovery in propositional
logic. It is easy to state and to prove, but it was first published over a
hundred years after propositional logic was invented [Craig, 1957a]. The
corresponding lemma holds for full first-order logic too; this is much harder
to prove. (See Lemma 32 below.)

Most of the topics in this section are taken further in Hilbert and Bernays
[1934], Kleene [1952], Rasiowa and Sikorski [1963] and Bell and Machover
[1977].
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6 DECISION METHODS

Propositional logic owes much of its flavour to the fact that all interesting
problems within it can be solved by scribbled calculations on the back of an
envelope. If somebody presents you with formulas ¢,,...,¢, and ¥, and
asks you whether ¢1, ..., ¢, logically imply ¢, then you can calculate the
answer as follows. First choose a language L whose sentence letters are just
those which occur in the formulas ¢, ..., ¢,,%¥. If L has k sentence letters
then there are just 2% different L-structures. For each such structure you
can check in a finite time whether it is a model of ¢, and . ..and ¢, but not
of ¢. If you find an L-structure with these properties, then ¢, ..., ¢, don’t
logically imply ¢; if you don’t, they do. This is the truth-table decision
method for logical implication.

The question I want to consider next is whether this decision method
can be improved. This is not a precise question. Some alternatives to
truth-tables are very fast for very short sequents but get quite unwieldy for
long ones. Other alternatives grow steadily more efficient as we progress to
longer sequents. Some methods are easy to run on a computer but messy
on paper; some are as handy one way as another.

Let me sketch one alternative to truth-tables. An example will show the
gist. We want to determine whether the following sequent holds.

(44) pAg,~(pAT)E .
By Theorem 4, (44) holds if and only if
(45) pAg=(pAT),~rE L

Now (45) says that any structure in which all the formulas on the left of
E are true is a model of L. But L has no models; so (45) says there is no
model of p A q,—(p Ar) and ——r simultaneously. We try to refute this by
constructing such a model. At each stage we ask: what must be true in the
model for it to be a model of these sentences? For example, -—r is true in a
structure 20 if and only if r is true in 2; so we can simplify (45) by replacing
——r by r:

(46) pAgq, —(pAT), ——rEL

pAg, —(pAr), TEL

Likewise a structure is a model of p A ¢ if and only if it is both a model of
p and a model of ¢; so we can replace p A ¢ by the two formulas p and ¢:

(47) pAg~(pAr),-rF L
pAgG(pAT),rE L

p,q¢,~(pAr),rE L
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Now there are just two ways of making —(pAr) true, namely to make —p true
and to make —r true. (Of course these ways are not mutually exclusive.)
So in our attempt to refute (45) we have two possible options to try, and
the diagram accordingly branches in two directions:

(48) pAg,~(pAT),~—rE L
pAgG-(pAT),TE L

p,q,—lp/\r),rP_L

p,q,p, T F L p,q,—r,rE L

But there is no chance of having both p and —p true in the same structure.
So the left-hand fork is a non-starter, and we block it off with aline. Likewise
the right-hand fork expects a structure in which —r and r are both true, so
it must be blocked off:

(49) pPAgG-(pAT),~—r = L

pAg(pAT),rE L
p,¢,2(pAr),r E L

p;qa_'par|:-l- p,q,_l’l",’l"|:J_

Since every possibility has been explored and closed off, we conclude that
there is no possible way of refuting (45), and so (45) is correct.

What happens if we apply the same technique to an incorrect sequent?
Here is an example:

(50) pV—(q—r71),q—>rEq.

I leave it to the reader to check the reasons for the steps below—he should
note that ¢ — 7 is true if and only if either —q is true or r is true:

(51) pV-lg—=r),g—rgEL
p;q_>r7_'q'=l —l(q—>r),q—>r,—|q|=J_

RN

P,7q, g = L P, = L

Here two branches remain open, and since all the formulas in them have
been decomposed into atomic formulas or negations of atomic formulas,
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there is nothing more we can do with them. In every such case it turns
out that each open branch describes a structure which refutes the original
sequent. For example, take the leftmost branch in (51). The formulas on
the left side of the bottom sequent describe a structure 2 in which p is
true and g is false. The sequent says nothing about 7, so we can make an
arbitrary choice: let r be false in 2. Then 2 is a structure in which the two
formulas on the left in (50) are true but that on the right is false.

This method always leads in a finite time either to a tree diagram with
all branches closed off, in which case the beginning sequent was correct; or
to a diagram in which at least one branch remains resolutely open, in which
case this branch describes a structure which shows that the sequent was
incorrect.

Diagrams constructed along the lines of (49) or (51) above are known
as semantic tableaux. They were first invented, upside-down and with a
different explanation, by Gentzen [1934]. The explanation given above is
from Beth [1955] and Hintikka [1955].

We can cut out a lot of unnecessary writing by omitting the ‘= L’ at the
end of each sequent. Also in all sequents below the top one, we need only
write the new formulas. In this abbreviated style the diagrams are called
truth-trees. Written as truth-trees, (49) looks like this:

(52) pV g, (pAr),—r
l
l
:
N
and (51) becomes
(53) pV-lg—=r)qg =1,

/N

p (g =)

/ \

_Iq 'S
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The rules for breaking down formulas in truth-trees can be worked out
straight from the truth-table definitions of the truth-functors, but for the
reader’s convenience I list them:

(54) ¢ OAY  S(eAY)  gVe a8V
| | / \ / \ |
¢ e ¢
¥ )

One is allowed to close off a branch as soon as either 1 or any outright
contradiction ¢, ¢ appears among the formulas in a branch. (Truth-trees
are used in Jeffrey [1967]; see [Smullyan, 1968; Bell and Machover, 1977] for
mathematical analyses.) Truth-trees are one dialect of semantic tableaux.
Here is another. We shall understand the generalised sequent

(55) (lsla"';(bn':wl;"';'(/)m

to mean that there is no structure which makes ¢1,...,¢, all true and
Y1,. ..,y all false. A structure in which ¢4, ..., ¢, aretrue and ¢, ..., ¥
are false is called a counterezample to (55). When there is only one formula
to the right of F, (55) means just the same as our previous sequents (26).

Generalised sequents have the following two symmetrical properties:

(56) ¢1:---:¢n:_‘X':1/J1:---:¢m iff ¢17"'7¢n':¢17"'7¢m7X'

(57) ¢17"'7¢n7':¢17"'7¢m7_'x iff ¢17"'7¢7’L7X':¢17"'7¢m'

Suppose now that we construct semantic tableaux as first described above,
but using generalised sequents instead of sequents. The effect of (56) and
(57) is that we handle — by itself; as (54) shows, our previous tableaux could
only tackle = two at a time or in combination with another truth-functor.

Using generalised sequents, a proof of (44) goes as follows:
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(58) pAgG—(pAT) |-
(i) |
pAg-(pAT),T =
(i) |
PAgTIEDPAT

(iid) |

p,q,r EpPAT
(iv) RN
p,q,r EPp D, ET

Steps (i) and (ii) are by (57) and (56) respectively. Step (iv) is justified as
follows. We are trying to build a structure in which p,q and r are true but
p A r is false, as a counterexample to the sequent ‘p,q,r E p Ar’. By the
truth-table for A, it is necessary and sufficient to build either a structure in
which p, q,r are true and p is false, or a structure in which p, ¢, r are true
and r is false. We can close off under the bottom left sequent ‘p,q,r F p’
because a formula p occurs both on the right and on the left of F, so that in a
counterexample it would have to be both false and true, which is impossible.
Likewise at bottom right.

Proofs with generalised sequents are virtually identical with the cut-free
sequent proofs of [Gentzen, 1934], except that he wrote them upside down.
Beth [1955; 1962] used them as a method for testing sequents. He wrote
them in a form where, after the first sequent, one only needs to mention the
new formulas.

Quine [1950] presents another quite fast decision method which he calls
fell swoop (to be contrasted with the ‘full sweep’ of truth-tables).

I turn to the question how fast a decision method of testing sequents can
be in the long run, i.e. as the number and lengths of the formulas increase.
At the time of writing, this is one of the major unsolved problems of com-
putation theory. A function p(n) of the number n is said to be polynomial if
it is calculated from n and some other fixed numbers by adding, subtracting
and multiplying. (So for example n? + 3 and 2n® — n are polynomial func-
tions of n but 3", n! and 1/(n? 4+ 1) are not.) It is not known whether there
exist a decision method M for sequents of propositional logic, and a poly-
nomial function p(n), such that for every sequent S, if n is the number of
symbols in S then M can determine in less than p(n) steps whether or not S
is correct. If the answer is Yes there are such M and p(n), then we say that
the decision problem for propositional logic is solvable in polynomial time.
Cook [1971] showed that a large number of other interesting computational
problems will be solvable in polynomial time if this one is. (See [Garey and
Johnson, 1979].) T have the impression that everybody working in the field
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expects the answer to be No. This would mean in effect that for longer
sequents the problem is too hard to be solved efficiently by a deterministic
computer.

7 FORMAL PROOF CALCULI

During the first third of this century, a good deal of effort was put into
constructing various formal proof calculi for logic. The purpose of this
work was to reduce reasoning—or at least a sizeable part of mathematical
reasoning—to precise mechanical rules. I should explain at once what a
formal proof calculus (or formal system) is.

A formal proof calculus, call it ¥, is a device for proving sequents in
a language L. First, ¥ gives us a set of rules for writing down arrays of
symbols on a page. An array which is written down according to the rules
is called a formal proof in ¥. The rules must be such that one can check
by inspection and calculation whether or not an array is a formal proof.
Second, the calculus contains a rule to tell us how we can mechanically
work out what are the premises and the conclusion of each formal proof.

We write

(59) ¢1,...,0n Fx ¥ or more briefly ¢y,...,¢, F ¢

to mean that there is a formal proof in the calculus ¥ whose premises all
appear in the list ¢q, ..., ¢,, and whose conclusion is . Some other ways
of expressing (59) are:

‘O1,...,0n F Y is a derivable sequent of X;
1 is deducible from ¢1,...,¢, in X;
D1y, Op yield Y in X.

We call ¢ a derivable formula of X if there is a formal proof in 3 with
conclusion % and no premises. The symbol |- is called turnstile or syntactic
turnstile.

We say that the calculus ¥ is:

sound if ¢1,...,¢, Fy implies ¢q,..., ¢, E Y
strongly complete if ¢1, ..., ¢, F Y implies ¢1,...,¢0, Fx ¥,
weakly complete if E 1 implies Fyx 1),

where ¢1,...,¢,,% range over the formulas of L. These definitions also
make sense when F is defined in terms of other logics, not necessarily first-
order. In this chapter ‘complete’ will always mean ‘strongly complete’.
The formal proofs in a calculus ¥ are in general meaningless arrays of
symbols. They need not be genuine proofs, that is, demonstrations that
something is the case. But if we know that X is sound, then the fact that a
certain sequent is derivable in ¥ will prove that the corresponding sequent
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with F is correct. In some proof calculi the formal proofs are made to look
as much as possible like intuitively correct reasoning, so that soundness can
be checked easily.

We already have the makings of one formal proof calculus in Section 6
above: the cut-free sequent proofs using generalised sequents. As proofs,
these are usually written the other way up, with F in place of F, and with
horizontal lines separating the sequents. Also there is no need to put in
the lines which mark the branches that are closed, because every branch is
closed.

For example, here is a cut-free sequent proof of the sequent ‘pAq, —(pAr) F
—r’; compare it with (58):

pkp rEr

P,q, T p p,q, T
p,q,TEpAT

(60) —_—
pAg,TEPpAT

pAg,(pAT),TE

PAgG(pAT)FE -

To justify this proof we would show, working upwards from the bottom, that
if there is a counterexample to the bottom sequent then at least one of the
top sequents has a counterexample, which is impossible. Or equivalently, we
could start by noting that the top sequents are correct, and then work down
the tree, showing that each of the sequents must also be correct. By this
kind of argument we can show that the cut-free sequent calculus is sound.
To prove that the calculus is complete, we borrow another argument
from Section 6 above. Assuming that a sequent S is not derivable, we have
to prove that it is not correct. To do this, we try to construct a cut-free
sequent proof, working upwards from S. After a finite number of steps we
shall have broken down the formulas as much as possible, but the resulting
diagram can’t be a proof of S because we assumed there isn’t one. So at
least one branch must still be ‘open’ in the sense that it hasn’t revealed any
immediate contradiction. Let B be such a branch. Let By be the set of all
formulas which occur to the left of I in some generalised sequent in B, and
let Bg be the same with ‘right’ for ‘left’. We can define a structure 2 by

(61) In(¢) = T if ¢ is a sentence letter which is in By,
P) =\ F if ¢ is a sentence letter not in By

Then we can prove, by induction on the complexity of the formula v, that
if ¢ is any formula in By, then 2 F 1, and if ¢ is any formula in By then
A E ). It follows that 2 is a counterexample to the bottom sequent S, so
that S is not correct.
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The cut-free sequent calculus itself consists of a set of mechanical rules
for constructing proofs, and it could be operated by somebody who had not
the least idea what F or any of the other symbols mean. These rules are
listed in Sundholm (in Volume 2 of this Handbook.).

Gentzen [1934] had another formal proof calculus, known simply as the
sequent calculus. This was the same as the cut-free sequent calculus, except
that it allowed a further rule called the cut rule (because it cuts out a
formula):

oo Rk, co X F Rk
(62) X X

R ks

This rule often permits much shorter proofs. Gentzen justified it by showing
that any proof which uses the cut rule can be converted into a cut-free proof
of the same sequent. This cut elimination theorem is easily the best math-
ematical theorem about proofs. Gentzen himself adapted it to give a proof
of the consistency of first-order Peano arithmetic. By analysing Gentzen’s
argument we can get sharp information about the degree to which different
parts of mathematics rely on infinite sets. (Cf. [Schiitte, 1977]. Gentzen’s
results on cut-elimination were closely related to deep but undigested work
on quantifier logic which Jacques Herbrand had done before his death in
a mountaineering accident at the age of 23; see [Herbrand, 1930] and the
Introduction to [Herbrand, 1971].) Further details of Gentzen’s sequent cal-
culi, including the intuitionistic versions, are given in [Kleene, 1952, Ch XV]
and Sundholm (in Volume 2 of this Handbook).

In the same paper, Gentzen [1934] described yet a third formal proof
calculus. This is known as the natural deduction calculus because proofs
in this calculus start with their premises and finish at their conclusions
(unlike sequent calculi and semantic tableaux), and all the steps between are
intuitively natural (unlike the Hilbert-style calculi to be described below).

A proof in the natural deduction calculus is a tree of formulas, with a
single formula at the bottom. The formulas at the tops of the branches
are called the assumptions of the proof. Some of the assumptions may
be discharged or cancelled by having square brackets [ | written around
them. The premises of the proof are its uncancelled assumptions, and the
conclusion of the proof is the formula at the bottom.

Sundholm (in his chapter in Volume D2 of this Handbook) gives the full
rules of the natural deduction calculus. Here are a few illustrations. Leaving
aside — and L for the moment, there are two rules for each truth-functor,
namely an introduction rule and an elimination rule. The introduction rule
for A is:

¢

63
()d)/\zp
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i.e. from ¢ and 9 deduce ¢ A . The elimination rule for A comes in a
left-hand version and a right-hand version:

d A ¢ A1
¢ v

The introduction rule for — says that if we have a proof of ¢ from certain
assumptions, then we can deduce ¢ — ¢ from those assumptions less ¢:

(65)  [9]

(64)

Y
b v

The elimination rule for — is the modus ponens of the medievals:

66 27V

For example, to prove
(67) ¢,pANgq—=TED—>T

in the natural deduction calculus we write:

[p] ¢

PANGg pAg—T

-
(68) DT

Note that the assumption p is discharged at the last step when p — r is
introduced.

The calculus reads —¢ as a shorthand for ¢ — L. So for example, from
¢ and —¢ we deduce L by (66). There is an elimination rule for L. It
says: given a proof of L from certain assumptions, derive ¢ from the same
assumptions less ¢ — L:

(69) [¢— L]
1
0

This is a form of reductio ad absurdum.

The rule about cancelling assumptions in (65) should be understood as
follows. When we make the deduction, we are allowed to cancel ¢ wherever
it occurs as an assumption. But we are not obliged to; we can cancel some
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occurrences of ¢ and not others, or we can leave it completely uncancelled.
The formula ¢ may not occur as an assumption anyway, in which case we
can forget about cancelling it. The same applies to ¢ — L in (69). So (69)
implies the following weaker rule in which we make no cancellations:

(10) =

¢
(‘Anything follows from a contradiction’.) Intuitionist logic accepts (70)
but rejects the stronger rule (69) (cf. van Dalen (Volume 7).

Belnap [1962] and Prawitz [1965] have explained the idea behind the
natural deduction calculus in an interesting way. For each truth-functor
the rules are of two sorts, the introduction rules and the elimination rules.
In every case the elimination rules only allow us to infer from a formula
what we had to know in order to introduce the formula. For example we can
remove ¢ — 1 only by rule (66), i.e. by using it to deduce ¢ from ¢; but
¢ — 1 can only be introduced either as an explicit assumption or (by (65))
when we already know that ¢ can be deduced from ¢. (Rule (69) is in a
special category. It expresses (1) that everything is deducible from L, and
(2) that for each formula ¢, at least one of ¢ and ¢ — L is true.)

Popper [1946/47, particularly p. 284] rashly claimed that he could define
truth-functors just by writing down natural deduction rules for them. Prior
[1960] gave a neat example to show that this led to absurdities. He invented
the new truth-functor fonk, which is defined by the rules

10) o tonk
¢ tonk P

and then proceeded to infer everything from anything. Belnap [1962] points
out that Prior’s example works because its introduction and elimination
rules fail to match up in the way described above. Popper should at least
have imposed a requirement that the rules must match up. (Cf. [Prawitz,
1979], [Tennant, 1978, p. 74ff], and Sundholm (Volume 2).)

Natural deduction calculi, all of them variants of Gentzen’s, are given by
Anderson and Johnstone [1962], Fitch [1952], Kalish and Montague [1964],
Lemmon [1965], Prawitz [1965], Quine [1950], Suppes [1957], Tennant [1978],
Thomason [1970] and van Dalen [1980]. Fitch (followed e.g. by Thomason)
makes the trees branch to the right. Some versions (e.g. Quine’s) disguise
the pattern by writing the formulas in a vertical column. So they have to
supply some other way of marking which formulas depend on which assump-
tions; different versions do this in different ways.

Just as a semantic tableau with its branches closed is at heart the same
thing as a cut-free sequent proof written upside down, Prawitz [1965] has
shown that after removing redundant steps, a natural deduction proof is
really the same thing as a cut-free sequent proof written sideways. (See

(71
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also Zucker [1974].) The relationship becomes clearer if we adapt the nat-
ural deduction calculus so as to allow a proof to have several alternative
conclusions, just as it has several premises. Details of such calculi have
been worked out by Kneale [1956] and more fully by Shoesmith and Smiley
[1978].

A proof of pV —p in Gentzen’s natural deduction calculus takes several
lines. This is a pity, because formulas of the form ¢V —¢ are useful halfway
steps in proofs of other formulas. So some versions of natural deduction
allow us to quote a few tautologies such as ¢ V —¢ whenever we need them
in a proof. These tautologies are then called azioms. Technically they are
formulas deduced from no assumptions, so we draw a line across the top of
them, as at top right in (72) below.

If we wanted to undermine the whole idea of natural deduction proofs, we
could introduce axioms which replace all the natural deduction rules except
modus ponens. For example we can put (63) out of a job by using the axiom
¢ = (Y = ¢ Ap). Whenever Gentzen used (63) in a proof, we can replace
it by

¢ = (Y= PNY)
(72) Y= dAY
pNY

using (66) twice. Likewise (64) become redundant if we use the axioms
dNYp — ¢ and ¢ Ay — 1. Rule (65) is a little harder to dislodge, but it
can be done, using the axioms ¢ — (¥ — ¢) and (¢ = ¢¥) = ((¢ = (¥ —
X)) = (6 = X)).

At the end of these manipulations we have what is called a Hilbert-style
proof calculus. A Hilbert-style calculus consists of a set of formulas called
axioms, together with one or two derivation rules for getting new formulas
out of given ones. To prove ¢1,...,¢, E ¢ in such a calculus, we apply
the derivation rules as many times as we like to ¢1,..., ¢, and the axioms,
until they give us 1.

One Hilbert-style system is described in Appendix A below. Mates [1965]
works out another such system in detail. Hilbert-style calculi for proposi-
tional logic were given by Frege [1879; 1893], Peirce [1885], Hilbert [1923]
and Lukasiewicz (see [Lukasiewicz and Tarski, 1930]). (Cf. Sundholm (Vol-
ume 2 of this Handbook).)

The typical Hilbert-style calculus is inefficient and barbarously unintu-
itive. But they do have two merits. The first is that their mechanics are
usually very simple to describe—many Hilbert-style calculi for propositional
logic have only one derivation rule, namely modus ponens. This makes them
suitable for encoding into arithmetic (Section 24 below). The second merit is
that we can strengthen or weaken them quite straightforwardly by tamper-
ing with the axioms, and this commends them to researchers in non-classical
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logics.

Soundness for these calculi is usually easy to prove: one shows (a) that
the axioms are true in every structure and (b) that the derivation rules
never lead from truth to falsehood. One way of proving completeness is to
show that every natural deduction proof can be converted into a Hilbert-
style proof of the same sequent, as hinted above. (Kleene [1952] Section
77 shows how to convert sequent proofs into Hilbert-style proofs and wvice
versa; see Sundholm (Volume 2 of this Handbook).)

Alternatively we can prove their completeness directly, using maximal
consistent sets. Since this is a very un-proof-theoretic approach, and this
section is already too long, let me promise to come back to the matter at the
end of Section 16 below. (Kalmar [1934/5] and Kleene independently found
a neat proof of the weak completeness of Hilbert-style calculi, by converting
a truth-table into a formal proof; cf. Kleene [1952, p. 132ff] or Mendelson
(1987, p. 34].)

IT: Predicate Logic

8 BETWEEN PROPOSITIONAL LOGIC AND PREDICATE LOGIC

If we asked a Proof Theorist to explain what it means to say

(73) ¢1,..., by logically imply 9,

where ¢1,...,¢, and ¢ are formulas from propositional logic, he would
explain that it means this: there is a proof of ¥ from ¢1,...,¢, in one
of the standard proof calculi. A Model Theorist would prefer to use the
definition we gave in Section 4 above, and say that (73) means: whenever
¢1,--.,0, are true in a structure, then 1 is true in that structure too. The
Traditional Logician for his part would explain it thus: every argument of
the form ‘¢1,...,¢,. Therefore ¢’ is valid. There need be no fight between
these three honest scholars, because it is elementary to show that (73) is
true under any one of these definitions if and only if it is true under any
other.

In the next few sections we shall turn from propositional logic to predicate
logic, and the correct interpretation of (73) will become more contentious.

When ¢q,...,¢, and 9 are sentences from predicate logic, the Proof
Theorist has a definition of (73) which is a straightforward extension of his
definition for propositional logic, so he at any rate is happy.

But the Traditional Logician will be in difficulties, because the quanti-
fier expressions of predicate logic have a quite different grammar from all
locutions of normal English; so he is hard put to say what would count as
an argument of the form ‘¢q,...,¢,. Therefore ¢’. He will be tempted to
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say that really we should look at sentences whose deep structures (which he
may call logical forms) are like the formulas ¢4, ..., @,,1. This may satisfy
him, but it will hardly impress people who know that in the present state
of the linguistic art one can find experts to mount convincing arguments for
any one of seventeen deep structures for a single sentence. A more objective
but admittedly vague option would be for him to say that (73) means that
any argument which can be paraphrased into this form, using the apparatus
of first-order logic, is valid.

But the man in the worst trouble is the Model Theorist. On the surface
all is well—he has a good notion of ‘structure’, which he took over from the
algebraists, and he can say just what it means for a formula of predicate
logic to be ‘true in’ a structure. So he can say, just as he did for propositional
logic, that (73) means that whenever ¢, ..., ¢, are true in a structure, then
1) is true in that structure too. His problems start as soon as he asks himself
what a structure really is, and how he knows that they exist.

Structures, as they are presented in any textbook of model theory, are
abstract set-theoretic objects. There are uncountably many of them and
most of them are infinite. They can’t be inspected on a page (like proofs
in a formal calculus) or heard at Hyde Park Corner (like valid arguments).
True, several writers have claimed that the only structures which exist are
those which somebody constructs. (E.g. Putnam [1980, p. 482]: ‘Models
are ...constructions within our theory itself, and they have names from
birth.”) Unfortunately this claim is in flat contradiction to about half the
major theorems of model theory (such as the Upward Lowenheim-Skolem
Theorem, Theorem 14 in Section 17 below).

Anybody who wants to share in present-day model theory has to accept
that structures are as disparate and intangible as sets are. One must handle
them by set-theoretic principles and not by explicit calculation. Many model
theorists have wider horizons even than this. They regard the whole universe
V of sets as a structure, and they claim that first-order formulas in the
language of set theory are true or false in this structure by just the same
criteria as in smaller structures. The axioms of Zermelo—Fraenkel set theory,
they claim, are simply true in V.

It is actually a theorem of set theory that a notion of truth adequate
to cope with the whole universe of sets cannot be formalised within set
theory. (We prove this in Section 24 below.) So a model theorist with this
wider horizon is strictly not entitled to use formal set-theoretic principles
either, and he is forced back onto his intuitive understanding of words like
‘true’, ‘and’; ‘there is’ and so forth. In mathematical practice this causes
no problems whatever. The problems arise when one tries to justify what
the mathematicians are doing.

In any event it is a major exercise to show that these three interpreta-
tions of (73) in predicate logic—or four if we allow the Model Theorist his
wider and narrower options—agree with each other. But logicians pride
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themselves that it can be done. Section 17 will show how.

9 QUANTIFIERS

First-order predicate logic comes from propositional logic by adding the
words ‘every’ and ‘some’.

Let me open with some remarks about the meaning of the word ‘every’.
There is no space here to rebut rival views (Cf. Leblanc (see Volume 2 of this
Handbook); on substitutional quantification see [Dunn and Belnap, 1968;
Kripke, 1976; Stevenson, 1973].) But anybody who puts a significantly
different interpretation on ‘every’ from the one presented below will have to
see first-order logic in a different light too.

A person who understands the words ‘every’, ‘Pole’, the sentence

(74) Richard is a Catholic.

and the principles of English sentence construction must also understand
the sentence

(75) Every Pole is a Catholic.

How?
First, (74) is true if and only if Richard satisfies a certain condition,
namely that

(76) He is a Catholic.

I underline the pronoun that stands for whatever does or does not satisfy
the condition. Note that the condition expressed by (76) is one which people
either satisfy or do not satisfy, regardless of how or whether we can identify
them. Understanding the condition is a necessary part of understanding
(74). In Michael Dummett’s words [1973, p. 517]:

...given that we understand a sentence from which a predicate
has been formed by omission of certain occurrences of a name,
we are capable of recognising what concept that predicate stands
for in the sense of knowing what it is for it to be true of or false
of any arbitrary object, whether or not the language contains a
name for that object.

Second, the truth or otherwise of (75) in a situation depends on what class
of Poles is on the agenda. Maybe only Poles at this end of town are under
discussion, maybe Poles anywhere in the world; maybe only Poles alive now,
maybe Poles for the last hundred years or so. Possibly the speaker was a
little vague about which Poles he meant to include. I count the specification
of the relevant class of Poles as part of the situation in which (75) has a
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truth-value. This class of Poles is called the domain of quantification for the
phrase ‘every Pole’ in (75). The word ‘Pole’ is called the restriction term,
because it restricts us to Poles; any further restrictions on the domain of
quantification are called conteztual restrictions.

So when (75) is used in a context, the word ‘Pole’ contributes a domain
of quantification and the words ‘is a Catholic’ contribute a condition. The
contribution of the word ‘Every’ is as follows: In any situation, (75) is true
iff every individual in the domain of quantification satisfies the condition.

This analysis applies equally well to other simple sentences containing
‘Every’, such as:

(77) She ate every flower in the garden.

For (77), the situation must determine what the garden is, and hence what
is the class of flowers that were in the garden. This class is the domain of
quantification; ‘lower in the garden’ is the restriction term. The sentence

(78) She ate it.

expresses a condition which things do or do not satisfy, once the situation
has determined who ‘she’ refers to. So in this example the condition varies
with the situation. The passage from condition and domain of quantification
to truth-value is exactly as before.

The analysis of

(79) Some Pole is a Catholic
(80) She ate some flower (that was) in the garden,

is the same as that of (75), (77) respectively, except at the last step. For
(79) or (80) to be true we require that at least one individual in the domain
of quantification satisfies the condition.

In the light of these analyses we can introduce some notation from first-
order logic. In place of the underlined pronoun in (76) and (78) we shall use
an individual variable, i.e. (usually) a lower-case letter from near the end of
the alphabet, possibly with a subscript. Thus:

(81) = is a Catholic.

Generalising (81), we use the phrase I-place predicate to mean a string
consisting of words and one individual variable (which may be repeated),
such that if the variable is understood as a pronoun referring to a certain
person or object, then the string becomes a sentence which expresses that
the person or object referred to satisfies a certain condition. The condition
may depend on the situation into which the sentence is put.

For an example in which a variable occurs twice,
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(82) z handed the melon to Schmidt, who gave it back to x.

is a 1-place predicate. It expresses the condition which Braun satisfies if
and only Braun handed the melon to Schmidt and Schmidt gave it back to
Braun.

To return to (75), ‘Every Pole is a Catholic’: we have now analysed this
sentence into (a) a quantifier word ‘Every’, (b) the restriction term ‘Pole’,
and (c) the predicate ‘x is a Catholic’.

The separating out of the predicate (by [Frege, 1879], see also [Mitchell,
1883] and [Peirce, 1883]) was vital for the development of modern logic.
Predicates have the grammatical form of sentences, so that they can be
combined by truth-functors. For example

(83) (z is a Catholic A z is a philatelist)

is a predicate which is got by conjoining two other predicates with A. It
expresses the condition which a person satisfies if he is both a Catholic and a
philatelist. Incidentally I have seen it suggested that the symbol A must
have a different meaning in (83) from its meaning in propositional logic,
because in (83) it stands between predicates which do not have truth-values.
The answer is that predicates do gain truth-values when their variables are
either replaced by or interpreted as names. The truth-value gained in this
way by the compound predicate (83) is related to the truth-values gained
by its two conjuncts in exactly the way the truth-table for A describes.

(A historical aside: Peirce [1885] points out that by separating off the
predicate we can combine quantifiers with propositional logic; he says that
all attempts to do this were ‘more or less complete failures until Mr Mitchell
showed how it was to be effected’. Mitchell published in a volume of essays
by students of Peirce at Johns Hopkins [Members of the Johns Hopkins
University, Boston, 1883]. Christine Ladd’s paper in the same volume men-
tions both Frege’s Begriffschrift [1879] and Schrdder’s review of it. It is
abundantly clear that nobody in Peirce’s group had read either. The same
happens today.)

The account of quantifiers given above agrees with what Frege said in his
Funktion und Begriff [1891] and Grundgesetze [1893], except in one point.
Frege required that all conditions on possible values of the variable should
be stated in the predicate. In other words, he allowed only one domain of
quantification, namely absolutely everything. For example, if someone were
to say, a propos of Poles in New York, ‘Every Pole is a Catholic’, Frege
would take this to mean that absolutely everything satisfies the condition

(84) If z is a Pole in New York City then z is a Catholic.
If a person were to say

(85) Somebody has stolen my lipstick.
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Frege’s first move would be to interpret this as saying that at least one thing
satisfies the condition expressed by

(86) w is a person and z has stolen my lipstick.

Thus Frege removed the restriction term, barred all contextual restrictions,
and hence trivialised the domain of quantification.

There are two obvious advantages in getting rid of the restriction term:
we have fewer separate expressions to deal with, and everything is thrown
into the predicate where it can be analysed by way of truth-functors.

However, it is often useful to keep the restriction terms, if only because
it makes formulas easier to read. (There are solid technical dividends too,
see Feferman [1968b; 1974].) Most logicians who do this follow the advice of
Peirce [1885] and use a special style of variable to indicate the restriction.
For example set theorists use Greek variables when the restriction is to
ordinals. Variables that indicate a special restriction are said to be sorted
or sortal. Two variables marked with the same restriction are said to be of
the same sort. Logics which use this device are said to be many-sorted.

One can also go halfway with Frege and convert the restriction term into
another predicate. In this style, ‘Every Pole is a Catholic’ comes out as
a combination of three units: the quantifier word ‘Every’, the predicate
‘z is a Catholic’, and a second relativisation predicate ‘x is a pole’. The
mathematical literature is full of ad hoc examples of this approach. See for
example the bounded quantifiers of number theory in Section 24 below.

When people started to look seriously at other quantifier words besides
‘every’ and ‘some’, it became clear that Frege’s method of eliminating the
restriction term won’t always work. For example, the sentence ‘Most judges
are freemasons’ can’t be understood as saying that most things satisfy a
certain condition. (For a proof of this, and many other examples, see the
study of natural language quantifiers by Barwise and Cooper [1981].) For
this reason Neil Tennant [Altham and Tennant, 1975] and Barwise [1974]
proposed very general formalisms which keep the relativisation predicate
separate from the main predicate.

Frege also avoided contextual restrictions. Given his aim, which was to
make everything in mathematical reasoning fully explicit, this might seem
natural. But it was a bad move. Contextual restrictions do occur, and a
logician ought to be prepared to operate with them. In any case various
writers have raised philosophical objections to Frege’s habit of talking about
just everything. Do we really have an undefinable notion of ‘object’, as
Frege supposed? Is it determinate what objects there are? Don’t we falsify
the meanings of English sentences if we suppose that they state something
about everything there is, when on the face of it they are only about Poles?

For a historical study of quantifiers in first-order logic, consult
Goldfarb [1979].
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10 SATISFACTION

As a convenient and well-known shorthand, we shall say that a person or
thing satisfies the 1-place predicate ¢ if he or it satisfies the condition which
the predicate ¢ expresses. (Notice that we are now allowing the metavari-
ables ‘¢’ ‘i)’ etc. to range over predicates as well as sentences and formulas.
This shouldn’t cause any confusion.)

Many writers put it a little differently. They say that a person or thing
satisfies ¢ if the result of putting a name of the person or thing in place of
every occurrence of the variable in ¢ is a true sentence. This way of phrasing
matters is fine as a first approximation, but it runs into two hazards.

The first hazard is that not everything has a name, even if we allow
phrases of the form ‘the such-and-such’ as names. For example there are
uncountably many real numbers and only countably many names.

I can dispose of this objection quickly, as follows. I decree that for pur-
poses of naming arbitrary objects, any ordered pair whose first term is an
object and whose second term is the Ayatollah Khalkhali shall be a name
of that object. There is a problem about using these names in sentences,
but that’s just a matter of finding an appropriate convention. So it is clear
that if we have an abstract enough notion of what a name is, then every
object can have a name.

More conscientious authors have tried to mount reasoned arguments to
show that everything is in principle nameable. The results are not always a
success. In one paper I recall, the author was apparently under the impres-
sion that the nub of the problem was to find a symbol that could be used
for naming hitherto nameless objects. After quoting quite a lot of formulas
from Quine’s Methods of Logic, he eventually announced that lower-case
italic w can always be used for the purpose. No doubt it can!

There is a second hazard in the ‘inserted name’ definition of satisfaction.
If we allow phrases of the form ‘the such-and-such’ to count as names, it
can happen that on the natural reading, a name means something different
within the context of the sentence from what it means in isolation. For
example, if my uncle is the mayor of Pinner, and in 1954 he fainted during
the opening ceremony of the Pinner Fair, then the mayor of Pinner satisfies
the predicate:

(87) In 1954 z fainted during the opening ceremony of the Pinner Fair.

But on the natural reading the sentence

(88) In 1954 the mayor of Pinner fainted during the opening ceremony
of the Pinner Fair.

says something quite different and is probably false. One can avoid this
phenomenon by sticking to names like ‘the present mayor of Pinner’ which
automatically extract themselves from the scope of surrounding temporal
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operators (cf. [Kamp, 1971]). But other examples are less easily sorted
out. If the programme note says simply ‘Peter Warlock wrote this song’,
then Philip Heseltine, one of whose pen-names was ‘Peter Warlock’, surely
satisfies the predicate

(89) The programme note attributes this song to .
But my feeling is that on the natural reading, the sentence
(90) The programme note attributes this song to Philip Heseltine

is false. Examples like these should warn us to be careful in applying first-
order formalisms to English discourse. (Cf. Bduerle and Cresswell’s chapter
‘Propositional Attitudes’ to be found in a later Volume of this Handbook.)

I turn to some more technical points. We shall need to handle expressions
like

(91) z was observed handing a marked envelope to y

which expresses a condition on pairs of people or things. It is, I think, quite
obvious how to generalize the notion of a 1-place predicate to that of an
n-place predicate, where n counts the number of distinct individual variables
that stand in place of proper names. (Predicates with any positive number
of places are also called open sentences.) Expression (91) is clearly a 2-place
predicate. The only problem is to devise a convention for steering the right
objects to the right variables. We do it as follows.

By the free variables of a predicate, we mean the individual variables
which occur in proper name places in the predicate; so an n-place predicate
has n free variables. (In Section 11 we shall have to revise this definition and
exclude certain variables from being free.) A predicate with no free variables
is called a sentence. We define an assignment g to a set of variables (in a
situation) to be a function whose domain is that set of variables, with the
stipulation that if = is a sorted variable then (in that situation) g(z) meets
the restriction which goes with the variable. So for example g(¥raccoon) has
to be a raccoon.

We say that an assignment g is suitable for a predicate ¢ if every free
variable of ¢ is in the domain of g. Using the inserted name definition of
satisfaction as a temporary expedient, we define: if ¢ is a predicate and g is
an assignment which is suitable for ¢, then g satisfies ¢ (in a given situation)
iff a true sentence results (in that situation) when we replace each variable
x in ¢ by a name of the object g(x).

We shall write

(92) a/x, By, v/z ...

to name the assignment g such that g(z) = a,9(y) = 5,9(z) = v etc. If
2 is a situation, ¢ a predicate and g an assignment suitable for ¢, then we
write
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(93) 2AF ¢lg]

to mean that g satisfies ¢ in the situation 2. The notation (93) is basic for
all that follows, so let me give some examples. For simplicity I take 2 to be
the real world here and now. The following are true:

(94) 2L E In the year y, © was appointed Assistant Professor of Math-
ematics at w at the age of 19 years. [Dr Harvey Friedman/z,
1967 /y, Stanford University California/w].

Example (94) asserts that in 1967 Dr Harvey Friedman was appointed As-
sistant Professor of Mathematics at Stanford University California at the
age of 19 years; which must be true because the Guinness Book of Records
says so.

(95) 2L F v is the smallest number which can be expressed in two dif-
ferent ways as the sum of two squares. [65/v].

(96) A E z wrote poems about the physical anatomy of z. [Walt
Whitman/x].

This notation connects predicates with objects, not with names of objects.

In (96) it is Mr Whitman himself who satisfies the predicate shown.

In the literature a slightly different and less formal convention is often
used. The first time that a predicate ¢ is mentioned, it is referred to, say,
as ¢(y,t). This means that ¢ has at most the free variables y and ¢, and
that these variables are to be considered in that order. To illustrate, let
¢(w,z,y) be the predicate

(97) In the year y, x was appointed Assistant Professor of Mathematics
at w at the age of 19 years.

Then (94) will be written simply as
(98) 2 E ¢ [Stanford University California, Dr Harvey Friedman, 1967].

This handy convention can save us having to mention the variables again
after the first time that a predicate is introduced.

There is another variant of (93) which is often used in the study of logics.
Suppose that in situation 2, g is an assignment which is suitable for the
predicate ¢, and S is a sentence which is got from ¢ by replacing each free
variable x in ¢ by a name of g(x). Then the truth-value of S is determined
by U, g and ¢, and it can be written

(99) g2(#) or [l

So we have

(100) AF ¢lg] iff g5 (o) =T.
In (99), g4 can be thought of as a function taking predicates to truth-

values. Sometimes it is abbreviated to gg or even g, where this leads to no
ambiguity.
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11 QUANTIFIER NOTATION

Let us use the symbols Zhey, Yboy etc. as sorted variables which are restricted
to boys. We shall read the two sentences

(101) Vapoy(2boy has remembered to bring his woggle).
(102) Frpoy(zboy has remembered to bring his woggle).

as meaning exactly the same as (103) and (104) respectively:

(103) Every boy has remembered to bring his woggle.
(104) Some boy has remembered to bring his woggle.

In other words, (101) is true in a situation if and only if in that situation,
every member of the domain of quantification of Vzy,,, satisfies the predicate

(105) xpoy has remembered to bring his woggle.

Likewise (102) is true if and only if some member of the domain of quan-
tification of Jxpey satisties (105). The situation has to determine what the
domain of quantification is, i.e. what boys are being talked about.

The expression Vzy,, is called a universal quantifier and the expression
oy is called an existential quantifier. Because of the restriction ‘boy’ on
the variable, they are called sorted or sortal quantifiers. The symbols V, 3
are called respectively the universal and existential quantifier symbols; V is
read ‘for all’, 3 is read ‘for some’ or ‘there is’.

For unsorted quantifiers using plain variables x,y, z, etc., similar defi-
nitions apply, but now the domain of quantification for such a quantifier
can be any class of things. Most uses of unsorted quantifiers are so remote
from anything in ordinary language that we can’t rely on the conventions
of speech to locate a domain of quantification for us. So instead we have to
assume that each situation specifies a class which is to serve as the domain
of quantification for all unsorted quantifiers. Then

(106) Vz (if z is a boy then z has remembered to bring his woggle).

counts as true in a situation if and only if in that situation, every object in
the domain of quantification satisfies the predicate

(107) if z is a boy then x has remembered to bring his woggle.

There is a corresponding criterion for the truth of a sentence starting with
the unsorted existential quantifier 3x; the reader can easily supply it.

The occurrences of the variable 1,0y in (101) and (102), and of  in (106),
are no longer doing duty for pronouns or marking places where names can be
inserted. They are simply part of the quantifier notation. We express this by
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saying that these occurrences are bound in the respective sentences. We also
say, for example, that the quantifier at the beginning of (101) binds the two
occurrences of 1,0y in that sentence. By contrast an occurrence of a variable
in a predicate is called free in the predicate if it serves the role we discussed
in Sections 9 and 10, of referring to whoever or whatever the predicate
expresses a condition on. What we called the free variables of a predicate
in Section 10 are simply those variables which have free occurrences in
the predicate. Note that the concepts ‘free’ and ‘bound’ are relative: the
occurrence of zp,, before ‘has’ in (101) is bound in (101) but free in (105).
Consider also the predicate

(108) xpoy forgot his whistle, but Vaney (Zhoy has remembered to bring
his woggle).

Predicate (108) expresses the condition which Billy satisfies if Billy forgot
his whistle but every boy has remembered to bring his woggle. So the first
occurrence of xpoy in (108) is free in (108) but the other two occurrences
are bound in (108).

I should recall here the well-known fact that in natural languages, a
pronoun can be linked to a quantifier phrase that occurs much earlier, even
in a different sentence:

(109) HE: This evening I heard a nightingale in the pear tree.
SHE: It was a thrush—we don’t get nightingales here.

In our notation this can’t happen. Our quantifiers bind only variables in
themselves and the clause immediately following them. We express this by
saying that the scope of an occurrence of a quantifier consists of the quan-
tifier itself and the clause immediately following it; a quantifier occurrence
Vo or dz binds all and only occurrences of the same variable  which lie
within its scope.

It is worth digressing for a moment to ask why (109) makes life hard for
logicians. The crucial question is: just when is the woman’s remark ‘It was
a thrush’ a true statement? We want to say that it’s true if and only if the
object referred to by ‘It’ is a thrush. But what is there for ‘It’ to refer to?
Arguably the man hasn’t referred to any nightingale, he has merely said
that there was at least one that he heard in the pear tree. Also we want to
say that if her remark is true, then it follows that he heard a thrush in the
pear tree. But if this follows, why doesn’t it also follow that the nightingale
in the pear tree was a thrush? (which is absurd.)

There is a large literature on the problems of cross-reference in natural
languages. See for example [Chastain, 1975; Partee, 1978; Evans, 1980].
In the early 1980s Hans Kamp and Irene Heim independently proposed
formalisms to handle the matter systematically ([Kamp, 1981; Heim, 1988];
see also [Kamp and Reyle, 1993]). These new formalisms are fundamentally
different from first-order logic. Jeroen Groenendijk and Martin Stokhof
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[1991] gave an ingenious new semantics for first-order logic which is based
on Kamp’s ideas and allows a quantifier to pick up a free variable in a later
sentence. Their underlying idea is that the meaning of a sentence is the
change which it makes to the information provided by earlier sentences in
the conversation. This opens up new possibilities, but it heads in a very
different direction from the usual first-order logic.

Returning to first-order logic, consider the sentence

(110) 3xpoy(wboy kissed Brenda).

This sentence can be turned into a predicate by putting a variable in place of
‘Brenda’. Naturally the variable we use has to be different from oy, or
else it would get bound by the quantifier at the beginning. Apart from that
constraint, any variable will do. For instance:

(]-]-]-) beoy(xboy kissed ygirlwithpigtails)-

We need to describe the conditions in which Brenda satisfies (111). Brenda
must of course be a girl with pigtails. She satisfies (111) if and only if there
is a boy (3 such that the assignment

(112) ﬂ/xboya Brenda/ygirlwithpigtails

satisfies the predicate ‘wyoy kissed Ygirlwithpigtails’- Formal details will follow
in Section 14 below.

12 AMBIGUOUS CONSTANTS

In his Wissenschaftslehre II [1837, Section 147] Bernard Bolzano noted that
we use demonstrative pronouns at different times and places to refer now
to this, now to that. He continued:

Since we do this anyhow, it is worth the effort to undertake
this procedure with full consciousness and with the intention of
gaining more precise knowledge about the nature of such propo-
sitions by observing their behaviour with respect to truth. Given
a proposition, we could merely inquire whether it is true or false.
But some very remarkable properties of propositions can be dis-
covered if, in addition, we consider the truth values of all those
propositions which can be generated from it, if we take some of
its constituent ideas as variable and replace them by any other
ideas whatever.

We can abandon to the nineteenth century the notion of ‘variable ideas’.
What Bolzano did in fact was to introduce totally ambiguous symbols. When
a writer uses such a symbol, he has to indicate what it means, just as he has
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to make clear what his demonstrative pronouns refer to. In our terminology,
the situation must fix the meanings of such symbols. Each totally ambiguous
symbol has a certain grammatical type, and the meaning supplied must fit
the grammatical type; but that apart, anything goes.

Let us refer to a sentence which contains totally ambiguous symbols as
a sentence schema. Then an argument schema will consist of a string of
sentence schemas called premises, followed by the word ‘ Therefore’, followed
by a sentence schema called the conclusion. A typical argument schema
might be:

(113) a is more X than b. b is more X than c¢. Therefore a is more X
than c.

A traditional logician would have said that (113) is a valid argument schema
if and only if all its instances are valid arguments (cf. (1) in the Introduction
above). Bolzano said something different. Following him, we shall say that
(113) is Bolzano-valid if for every situation in which a, b, ¢ are interpreted
as names and X is interpreted as an adjective, either one or more of the
premises are not true, or the conclusion is true. We say that the premises
in (113) Bolzano-entail the conclusion if (113) is Bolzano-valid.

Note the differences. For the traditional logician entailment is from
sentences to sentences, not from sentence schemas to sentence schemas.
Bolzano’s entailment is between schemas, not sentences, and moreover he
defines it without mentioning entailment between sentences. The schemas
become sentences of a sort when their symbols are interpreted, but Bolzano
never asks whether these sentences “can’t be true without certain other sen-
tences being true” (to recall our definition of entailment in the Introduction)—
he merely asks when they are true.

The crucial relationship between Bolzano’s ideas and the traditional ones
is that every instance of a Bolzano-valid argument schema is a valid argu-
ment. If an argument is an instance of a Bolzano-valid argument schema,
then that fact itself is a reason why the premises can’t be true without the
conclusion also being true, and so the argument is valid. The traditional lo-
gician may want to add a caution here: the argument need not be logically
valid unless the schema is Bolzano-valid for logical reasons—whatever we
take ‘logical’ to mean. Tarski [1936] made this point. (Let me take the op-
portunity to add that recent discussions of the nature of logical consequence
have been clouded by some very unhistorical readings of [Tarski, 1936]. For-
tunately there is an excellent historical analysis by Gémez-Torrente [1996).)

In first-order logic we follow Bolzano and study entailments between
schemas. We use two kinds of totally ambiguous constants. The first kind
are the individual constants, which are normally chosen from lower-case
letters near the beginning of the alphabet: a,b, ¢ etc. These behave gram-
matically as singular proper names, and are taken to stand for objects. The
other kind are the predicate (or relation) constants. These are usually cho-
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sen from the letters P, @, R etc. They behave as verbs or predicates, in the
following way. To specify a meaning for the predicate constant P, we could
write

(114) Pxyz means « aimed at y and hit z.
The choice of variables here is quite arbitrary, so (114) says the same as:
(115) Pyst means y aimed at s and hit ¢.

We shall say that under the interpretation (114), an ordered 3-tuple {a, 3, 7)
of objects satisfies P if and only if the assignment

(116) a/x,B/y,v/=

satisfies the predicate ‘x aimed at y and hit z’. So for example the ordered
3-tuple (Bert, Angelo, Chen) satisfies P under the interpretation (114) or
(115) if and only if Bert aimed at Angelo and hit Chen. (We take P to be
satisfied by ordered 3-tuples rather than by assignments because, unlike a
predicate, the symbol P comes without benefit of variables.) The collection
of all ordered 3-tuples which satisfy P in a situation where P has the inter-
pretation (114) is called the extension of P in that situation. In general a
collection of ordered n-tuples is called an n-place relation.

Since P is followed by three variables in (114), we say that P in (114)
is serving as a 3-place predicate constant. One can have n-place predicate
constants for any positive integer n; the extension of such a constant in a
situation is always an n-place relation. In theory a predicate constant could
be used both as a 3-place and as a 5-place predicate constant in the same
setting without causing mishap, but in practice logicians try to avoid doing
this.

Now consider the sentence

(117) Vz (if Rxc then x is red).

with 2-place predicate constant R and individual constant ¢. What do we
need to be told about a situation 2 in order to determine whether (117) is
true or false in 2?7 The relevant items in 2 seem to be:

(a) the domain of quantification for V.

(b) the object named by the constant ¢. (Note: it is irrelevant what
meaning ¢ has over and above naming this object, because R will be
interpreted by a predicate.) We call this object Iy(c).

(c) the extension of the constant R. (Note: it is irrelevant what predicate
is used to give R this extension; the extension contains all relevant
information.) We call this extension Iy (R).
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(d) the class of red things.

In Section 14 we shall define the important notion of a structure by ex-
tracting what is essential from (a)—(d). Logicians normally put into the
definition of ‘structure’ some requirements that are designed to make them
simpler to handle. Before matters get buried under symbolism, let me say
what these requirements amount to in terms of 2. (See Appendix C below
for the set-theoretic notions used.)

1. There is to be a collection of objects called the domain of 2, in symbols

|24

2. |l is the domain of quantification for all unsorted quantifiers. Two
sorted quantifiers with variables of the same sort (if there are any)
always have the same domain of quantification, which is included in

R

3. For every individual constant ¢, the interpretation Iy (c) is a member
of |2|; for every predicate constant R, the relation Iy(R) is a relation
on |

4. Some authors require |2| to be a pure set. Most authors require it to
have at least one member. A very few authors (e.g. [Carnap, 1956;
Hintikka, 1955]) require it to be at most countable.

Requirements (1)—(3) mean in effect that first-order logicians abandon any
pretence of following the way that domains of quantification are fixed in
natural languages. Frege’s device of Section 9 (e.g. (84)) shows how we
can meet these requirements and still say what we wanted to say, though
at greater length. Requirements (4) are an odd bunch; I shall study their
reasons and justifications in due course below.

Logicians also allow one important relaxation of (1)—(4). They permit an
n-place predicate symbol to be interpreted by any n-place relation on the
domain, not just one that comes from a predicate. Likewise they permit
an individual constant to stand for any member of the domain, regardless
of whether we can identify that member. The point is that the question
whether we can describe the extension or the member is totally irrelevant
to the question what is true in the structure.

Note here the 3-way analogy
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predicate constant P Iy(P)

predicate ¢ extension of ¢

individual constant ¢ I (C)

name object named

The front face of this cube is essentially due to Frege. Would he have
accepted the back?

No, he would not. In 1899 Hilbert published a study of the axioms of
geometry. Among other things, he asked questions of the form ‘Do axioms
A, B, C together entail axiom D?’ (The famous problem of the indepen-
dence of Euclid’s parallel postulate is a question of this sort.) Hilbert
answered these questions by regarding the axioms as schemas containing
ambiguous signs, and then giving number-theoretic interpretations which
made the premises A, B and C true but the conclusion D false. Frege read
the book [Hilbert, 1899] and reacted angrily. After a brief correspondence
with Hilbert (Frege and Hilbert [1899-1900], he published a detailed critique
[1906], declaring [Frege, 1971, p. 66]: “Indeed, if it were a matter of de-
ceiving oneself and others, there would be no better means than ambiguous
signs.”

Part of Frege’s complaint was that Hilbert had merely shown that certain
argument schemas were not Bolzano-valid; he had not shown that axioms
A, B and C, taken literally as statements about points, lines etc. in real
space, do not entail axiom D taken literally. This is true and need not detain
us—Hilbert had answered the questions he wanted to answer. Much more
seriously, Frege asserted that Hilbert’s propositions, being ambiguous, did
not express determinate thoughts and hence could not serve as the premises
or conclusions of inferences. In short, Frege refused to consider Bolzano-
valid argument schemas as any kind of valid argument. So adamant was he
about this that he undertook to translate the core of Hilbert’s reasoning into
what he considered an acceptable form which never mentioned schematic
sentences. This is not difficult to do— it is a matter of replacing statements
of the form ‘Axiom A entails axiom B’ by statements of the form ‘For all
relations P and R, if P and R do this then they do that’. But the resulting
translation is quite unreadable, so good mathematics is thrown away and
all for no purpose.

Frege’s rejection of ambiguous symbols is part and parcel of his refusal
to handle indexical expressions; see [Perry, 1977] for some discussion of the
issue. It is sad to learn that the grand architect of modern logic fiercely
rejected the one last advance which was needed to make his ideas fruitful.
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In fact it took some years for logicians to accept the use of ambiguous
symbols in the semantics of first-order logic. For example Tarski’s paper
[1936] on logical deduction made no use of them; Tarski found another
device with the same effect (at the cost of adapting the word ‘model’ to mean
‘re-interpretation’ rather than ‘interpretation’). But in his model-theoretic
work of the 1950s and later, Tarski used ambiguous constants wholesale in
the modern fashion, as a form of indexical. (Cf. [Hodges, 1985/86].)

13 FIRST-ORDER SYNTAX FORMALISED

The main purpose of this section and the next is to extract the formal con-
tent of Sections 9-12 above. I give the definitions first under the assumption
that there are no sorted variables. Also I ignore for the moment the fact
that some first-order logicians use = and function symbols. Section 18 below
will be more broad-minded.

A similarity type is defined to be a set of individual constants together
with a set of predicate constants; each predicate constant is assumed to be
labelled somehow to indicate that it is an n-place predicate constant, for
some positive integer n. Some writers include the n as a superscript: R'33
is a 133-place predicate constant.

We shall define the first-order language L of similarity type X. For def-
initeness, L shall be an ordered triple (X,T(X), F(X)) where X is the
similarity type, and T'(X) and F(X) are respectively the set of all terms
and formulas of similarity type X (known more briefly as the terms and for-
mulas of L). Grammatically speaking, the terms of L are its noun phrases
and the formulas are its sentences. Metavariables o, 7 will range over terms,
and metavariables ¢, ¥, x will range over formulas.

We start the definition by defining the variables to be the countably many
symbols

(118) Lo, L1,L2,y----

Unofficially everybody uses the symbol z,y, z etc. as variables. But in the
spirit of Section 4 above, these can be understood as metavariables ranging
over variables. The terms of L are defined to be the variables of L. and the
individual constants in X.

An atomic formula of L is an expression of form P(oy,...,0,) where P
is an n-place predicate constant in X and oq,...,0, are terms of L. The
class of formulas of L is defined inductively, and as the induction proceeds
we shall define also the set of subformulas of the formula ¢, and the set
FV(¢) of free variables of ¢:

(a) Every atomic formula ¢ of L is a formula of L; it is its only subformula,
and F'V(¢) is the set of all variables which occur in ¢. L is a formula
of L; it is its only subformula, and FV (L) is empty.
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(b) Suppose ¢ and ¢ are formulas of L and z is a variable. Then: —¢ is
a formula of L; its subformulas are itself and the subformulas of ¢;
FV(=) is FV(9). Also (6 A%), (6 V 1), (6 — ) and (¢  ¢) are
formulas of L; the subformulas of each of these formulas are itself, the
subformulas of ¢ and the subformulas of ¢; its free variables are those
of ¢ together with those of ¢. Also Vx¢ and Jz¢ are formulas of L;
for each of these, its subformulas are itself and the subformulas of ¢;
its free variables are those of ¢ excluding x.

(c) Nothing is a formula of L except as required by (a) and (b).

The complezity of a formula ¢ is defined to be the number of subformulas
of ¢. This definition disagrees with that in Section 3, but it retains the
crucial property that every formula has a higher complexity than any of its
proper subformulas. (The proper subformulas of ¢ are all the subformulas
of ¢ except ¢ itself.) A formula is said to be closed, or to be a sentence, if it
has no free variables. Closed formulas correspond to sentences of English,
non-closed formulas to predicates or open sentences of English. Formulas
of a formal language are sometimes called well-formed formulas or wffs for
short.

If ¢ is a formula, x is a variable and 7 is a term, then there is a formula
¢[7/z] which ‘says the same thing about the object 7 as ¢ says about the
object ’. At a first approximation, ¢[7/xz] can be described as the formula
which results if we put 7 in place of each free occurrence of x in ¢; when this
description works, we say 7 is free for x in ¢ or substitutable for x in ¢. Here
is an example where the approximation doesn’t work: ¢ is JyR(z,y) and 7
is y. If we put y for z in ¢, the resulting formula JyR(y,y) says nothing
at all about ‘the object y’, because the inserted y becomes bound by the
quantifier 3y—a phenomenon known as clash of variables. In such cases we
have to define ¢[7/x] to be 3zR(y, z) where z is some other variable. (There
is a good account of this messy matter in Bell and Machover [1977, Chapter
2, Section 3].)

Note the useful shorthand: if ¢ is described at its first occurrence as ¢(z),
then ¢(7) means ¢[r/z]. Likewise if ¢ is introduced as ¢(yi,...,y,) then
¢(m1,...,7,) means the formula which says about the objects 71, ..., 7, the
same thing as ¢ says about the objects yi1,...,yn.

Not much in the definitions above needs to be changed if you want a
system with sorted variables. You must start by deciding what kind of
sortal system you want. There will be a set S of sorts s,% etc., and for
each sort s there will be sorted variables z§, s, x5 etc. But then (a) do you
want every object to belong to some sort? If so, the similarity type must
assign each individual constant to at least one sort. (b) Do you want the
sorts to be mutually exclusive? Then the similarity type must assign each
individual constant to at most one sort. (c) Do you want to be able to say
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‘everything’, rather than just ‘everything of such-and-such a sort’? If not
then the unsorted variables (118) should be struck out.

Some formal languages allow restricted quantification. For example in
languages designed for talking about numbers, we have formulas (Vo < y)¢
and (Jz < y)¢, read respectively as ‘For all numbers z less than y, ¢’ and
“There is a number x less than y such that ¢’. These expressions can be
regarded as metalanguage abbreviations for Vz(z < y — ¢) and Jz(z <
y A @) respectively (where ‘z < y’ in turn is an abbreviation for ‘< (z,y)’).
Or we can alter the definition of ‘formula of L’ to allow restricted quantifiers
in L itself.

One often sees abbreviations such as ‘Vay¢’ or ‘37¢’. These are metalan-
guage abbreviations. Vzy is short for VxVy. 2 means a finite sequence zy, . . .,
zn,. Furthermore, the abbreviations of Section 4 remain in force.

All the syntactic notions described in this section can be defined using
only concrete instances of the induction axiom as in Section 3 above.

14 FIRST-ORDER SEMANTICS FORMALISED

We turn to the definition of structures. (They are also known as models—
but it is better to reserve this term for the context ‘model of ¢’.) Let L be
a language with similarity type X. Then an L-structure 2 is defined to be
an ordered pair (A4, I) where:

1. A is a class called the domain of 2, in symbols |2|. The elements of
A are called the elements of 2(, and the cardinality of A is called the
cardinality of 2. So for example we call 2 finite or empty if A is finite
or empty. Many writers use the convention that A, B and C are the
domains of 2,8 and € respectively.

2. I is a function which assigns to each individual constant ¢ of X an
element I(c) of A, and to each n-place predicate symbol R of X an
n-place relation I(R) on A. I is referred to as Iy.

Structure means: L-structure for some language L.

If Z is a set of variables, then an assignment to Z in 2 is defined to be
a function from Z to A. If g is an assignment to Z in 2,z is a variable not
in Z and « is an element of 2, then we write

(119) g,/

for the assignment h got from g by adding x to ¢g’s domain and putting
h(z) = a. (Some writers call assignments valuations.)

For each assignment g in 2 and each individual constant ¢ we define c[g]
to be the element Iy (c). For each variable  and assignment g whose domain
contains , we define z[g] to be the element g(x). Then 7[g] is ‘the element
named by the term 7 under the assignment g’.
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For each formula ¢ of L and each assignment g to the free variables of
¢ in A, we shall now define the conditions under which 2 F ¢[g] (cf. (93)
above). The definition is by induction on the complexity of ¢.

(a) If R is an n-place predicate constant in X and 7,...,7, are terms,
then A F R(m,...,7,) iff the ordered n-tuple (11[g],...,T[g]) is in
Iy(R).

(b) It is never true that A F L.

() AF —lg] iff it is not true that A F @lg].
AE dAY[g] iff A E ¢[g1] and A E ¢[g2], where g; and g are the
results of restricting g to the free variables of ¢ and 9 respectively.
Etc. as in (23).

(d) If z is a free variable of ¢, then:
A E Vag[g] iff for every element « of A, A F ¢[g, o/ x];
A E Jxg[g] iff for at least one element « of 4,2 E @[g, a/x].
If « is not a free variable of ¢, then 2 F Vxg[g] iff A E ¢[g], and
A E Jzolg] iff A F Pg].

We say an assignment g in 2 is suitable for the formula ¢ if every free
variable of ¢ is in the domain of g. If g is suitable for ¢, we say that
A E ¢[g] if and only if A F ¢[h], where h comes from g by throwing out of
the domain of g those variables which are not free variables of ¢.

If ¢ is a sentence, then ¢ has no free variables and we can write just
2A F ¢ in place of A F ¢[ ]. This notation agrees with (22) above. When
A E ¢, we say that 2 is a model of ¢, or that ¢ is true in A. ‘A E P[g]’ can
be pronounced ‘g satisfies ¢ in A .

To anybody who has mastered the symbolism it should be obvious that
clauses (a)—(d) really do determine whether or not 2 F ¢, for every L-
structure 2 and every sentence ¢ of L. If2l is a set then we can formalise
the definition in the language of set theory and prove that it determines
F uniquely, using only quite weak set-theoretic axioms (cf. [Barwise, 1975,
Chapter 3]). Set structures are adequate for most applications of first-order
logic in mathematics, so that many textbooks simply state without apology
that a structure has to be a set. We shall return to this point in Section 17
below.

The definition of F given above is called the truth-definition, because it
specifies exactly when a symbolic formula is to count as ‘true in’ a structure.
It solves no substantive problems about what is true—we are just as much in
the dark about the Riemann hypothesis or the Reichstag fire after writing it
down as we were before. But it has attracted a lot of attention as a possible
answer to the question of what is Truth. Many variants of it have appeared
in the literature, which can cause anguish to people anxious to get to the
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heart of the matter. Let me briefly describe three of these variants; they
are all mathematically equivalent to the version given above. (Cf. Leblanc
[Volume 2 of this Handbook].)

In the first variant, assignments are sequences. More precisely an assign-
ment in 2 is defined to be a function g from the natural numbers N to the
domain A of . Such a function can be thought of as an infinite sequence
(9(0),9(1),9(2),...). The element g(i) is assigned to the ith variable z;, so
that z;[g] is defined to be g(¢). In (c) and (d) we have to make some changes
for the purely technical reason that g assigns elements to every variable and
not just those free in ¢. In (¢) the clause for ¢ A ¢ becomes

AEGAYlg] if AF gg] and A F Plg],

which is an improvement (and similarly with (pV)), (¢ — 1) and (¢ <> ¥)).
But (d) becomes distorted, because g already makes an assignment to the
quantified variable x; this assignment is irrelevant to the truth of 2 E Va[g],
so we have to discard it as follows. For each number ¢ and element « of 2,
let g(«/i) be the assignment h which is exactly like g except that h(i) = a.
Then (d) is replaced by:

(d") For each variable z; : A F Vz;¢[g] iff for every element a of A, A E
¢lg(a/i)]-
together with a similar clause for Jx;¢.

In the second variant, we copy (24) and define the truth-value of ¢ in %,
[|#ll2, to be the set of all assignments g to the free variables of ¢ such that
A F ¢lg]. When ¢ is a sentence, there is only one assignment to the free
variables of ¢, namely the empty function 0; so ||¢||« is {0} if ¢ is true in
2, and the empty set (again 0) if ¢ is false in 2. This variant is barely more
than a change of notation. Instead of ‘A F ¢[g]’ we write ‘g € ||¢||a’. The
clauses (a)—(d) can be translated easily into the new notation.

Some writers combine our first and second variants, taking ||¢[|a to be
the set of all sequences g such that 2 F ¢[g]. In this style, the clause for
¢ A in (c) becomes rather elegant:

6 Ablla = @l OV [[4)]]sx-

However, when ¢ is a sentence the definition of ‘¢ is true in 2’ becomes
‘every sequence is in ||¢||a’, or equivalently ‘at least one sequence is in
[|l|l2’. I have heard students repeat this definition with baffled awe as if
they learned it in the Eleusinian Mysteries.

The third variant dispenses with assignments altogether and adds new
constant names to the language L. Write L(c) for the language got from L
by adding ¢ as an extra individual constant. If 2 is an L-structure and « is
an element of A, write (A, «) for the L(c)-structure B which is the same as
2 except that Ip(c) = a. If ¢ is a formula of L with just the free variable
x, one can prove by induction on the complexity of ¢ that
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(120) (A, ) E @lc/z] iff AE dla/x].

(Warning: [c/z] on the left is a substitution in the formula ¢; a/z on the
right is an assignment to the variable z.) The two sides in (120) are just
different ways of expressing that « satisfies ¢ in 2. Hence we have

(121) A EVag iff  for every element a of A, (A, a) F @[c/z],

and a similar clause for 3z¢. In our third variant, (121) is taken as the
definition of F for sentences of form Va¢. This trick sidesteps assignments.
Its disadvantage is that we have to alter the language and the structure each
time we come to apply clause (d). The great merit of assignments is that
they enable us to keep the structure fixed while we wiggle around elements
in order to handle the quantifiers.

There are L-structures whose elements are all named by individual con-
stants of L. For example, the natural numbers are sometimes understood as
a structure in which every number n is named by a numeral constant 7 of
the language. For such structures, and only for such structures, (121) can
be replaced by

(122) A EVag iff for every individual constant ¢ of L, E ¢[c/x].

Some writers confine themselves to structures for which (122) applies.

Alfred Tarski’s famous paper on the concept of truth in formalised lan-
guages [1935] was the first paper to present anything like our definition of F.
Readers should be aware of one vital difference between his notion and ours.
His languages have no ambiguous constants. True, Tarski says they have
constants. But he explains that by ‘constants’ he means negation signs,
quantifier symbols and suchlike, together with symbols of fixed meaning
such as the inclusion sign C in set theory. (See Section 20 below on symbols
with an ‘intended interpretation’.) The only concession that Tarski makes
to the notion of an L-structure is that he allows the domain of elements to
be any class, not necessarily the class of everything. Even then he says that
relativising to a particular class is ‘not essential for the understanding of the
main theme of this work’! (Cf. pages 199, 212 of the English translation of
[Tarski, 1935].) Carnap’s truth-definition [1935] is also little sideways from
modern versions.

There is no problem about adapting Tarski’s definition to our setting. It
can be done in several ways. Probably the simplest is to allow some of his
constants to turn ambiguous; then his definition becomes our first variant.

Finally I should mention structures for many-sorted languages, if only to
say that no new issues of principle arise. If the language L has a set S of
sorts, then for each sort s in .S, an L-structure 2 must carry a class s(2) of
elements of sort s. In accordance with Section 12, s(2() must be included in
|2(]. If the individual constant c¢ is of sort s, then Iy (c) must be an element
of s(A). If we have required that every element should be of at least one
sort, then |2(| must be the union of the classes s(2).
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15 FIRST-ORDER IMPLICATIONS

Let me make a leap that will seem absurd to the Traditional Logician, and
define sequents with infinitely many premises.

Suppose L is a first-order language. By a theory in L we shall mean a set
of sentences of L—it can be finite or infinite. The metavariables A, T", 0, A
will range over theories. If A is a theory in L and 2 is an L-structure, we
say that 2 is a model of A if 2 is a model of every sentence in A.

For any theory A in L and sentence ¢ of L, we define

(123) AE ¢ (‘A logically implies ¢, ‘¢ is a logical consequence of A’)

to mean that every L-structure which is a model of A is also a model of ¢. If
A has no models, (123) is reckoned to be true by default. A counterezample
to (123) is an L-structure which is a model of A but not of ¢. We write

(124) E¢ (‘¢ is logically valid)

to mean that every L-structure is a model of ¢; a counterezample to (124) is
an L-structure which is not a model of ¢. The expressions (123) and (124)
are called sequents. This definition of logical implication was first set down
by Tarski [1936], though it only makes precise what Bolzano [1837, Section
155] and Hilbert [1899] already understood.

Warning: (123) is a definition of logical consequence for first-order schemas.
It doesn’t make sense as a definition of logical consequence between mean-
ingful sentences, even when the sentences are written in first-order notation;
logical consequence might hold between the sentences for reasons not ex-
pressed in the first-order notation. This is obvious: let ‘p’ stand for your
favourite logical truth, and consider ‘= p’. I mention this because I have
seen a small river of philosophical papers which criticise (123) under the
impression that it is intended as a definition of logical consequence be-
tween sentences of English (they call it the ‘model-theoretic definition of
logical consequence’). In one case where I collared the author and traced
the mistake to source, it turned out to be a straight misreading of that
excellent textbook [Enderton, 1972]; though I am not sure the author ac-
cepted my correction. One can track down some of these confusions to the
terminology of Etchemendy [1990], who uses phrases such as ‘the set of log-
ical truths of any given first-order language’ [Etchemendy, 1990, p. 148] to
mean those sentences of a fully interpreted first-order language which are (in
Etchemendy’s sense) intuitively logically true. In his Chapter 11 especially,
Etchemendy’s terminology is way out of line with that of the authors he is
commenting on.

If the language L has at least one individual constant ¢, then every L-
structure must have an element Iy (c), so the domain of 2 can’t be empty.
It follows that in this language the sentence dx—L1 must be logically valid,
so we can ‘prove’ that at least one thing exists.
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On the other hand if L has no individual constants, then there is an L-
structure whose domain is empty. This is not just a quirk of our conventions:
one can quite easily think of English sentences uttered in contexts where the
natural domain of quantification happens to be empty. In such a language
L, dz—1 is not logically valid.

This odd state of affairs deserves some analysis. Suppose L does have
an individual constant ¢. By the Bolzano—Tarski definition (123), when we
consider logical implication in L. we are only concerned with structures in
which ¢ names something. In other words, the Bolzano—Tarski definition
slips into every argument a tacit premise that every name does in fact
name something. If we wanted to, we could adapt the Traditional Logician’s
notion of a valid argument in just the same way. For a traditional example,
consider

(125) Every man runs. Therefore Socrates, if he is a man, runs.

On the traditional view, (125) is not a valid argument—it could happen that
every man runs and yet there is no such entity as Socrates. On the Bolzano—
Tarski view we must consider only situations in which ‘Socrates’ names
something or someone, and on that reckoning, (125) is valid. (According to
Walter Burleigh in the fourteenth century, (125) is not valid outright, but
it is valid at the times when Socrates exists. Cf. Bocheriski [1970, p. 193];
I have slightly altered Burleigh’s example. I don’t know how one and the
same argument can be valid at 4 p.m. and invalid at 5 p.m.).

Once this much is clear, we can decide whether we want to do anything
about it. From the Traditional Logician’s point of view it might seem sen-
sible to amend the Bolzano—Tarski definition. This is the direction which
free logic has taken. Cf. Bencivenga, (Volume 7 of this Handbook).

The mainstream has gone the other way. Non-referring constants are
anathema in most mathematics. Besides, Hilbert-style calculi with identity
always have Jz(x = x) as a provable formula. (See Remark 6 in Appendix
A below. On the other hand semantic tableau systems which allow empty
structures, such as Hodges [1977], are arguably a little simpler and more
natural than versions which exclude them.) If Jz—_1 is logically valid in
some languages and not in others, the easiest remedy is to make it logically
valid in all languages, and we can do that by requiring all structures to have
non-empty domains. Henceforth we shall do so (after pausing to note that
Schréder [1895, p. 5] required all structures to have at least two elements).

Let us review some properties of F. Analogues of Theorems 1-4 (allowing
infinitely many premises!) and Theorem 5 of Section 5 now hold. The rele-
vant notion of logical equivalence is this: the formula ¢ is logically equivalent
to the formula ¢ if for every structure 2 and every assignment ¢ in 2l which
is suitable for both ¢ and ¥, A E @[g] if and only if A F ¢[g]. For example

(126) V¢ is logically equivalent to —Jz—¢,
Jx¢ is logically equivalent to —=Vz—¢.
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A formula is said to be basic if it is either atomic or the negation of an
atomic formula. A formula is in disjunctive normal form if it is either L or
a disjunction of conjunctions of basic formulas. One can show:

(127) Every formula of L is logically equivalent to a formula of L with the
same free variables, in which all quantifiers are at the left-hand
end, and the part after the quantifiers is in disjunctive normal
form.

A formula with its quantifiers all at the front is said to be in prenex form.
(In Section 25 below we meet Skolem normal forms, which are different from
(127) but also prenex.)

Proof calculi for propositional logic are generally quite easy to adapt
to predicate logic. Sundholm (Volume 2 of this Handbook) surveys the
possibilities. Usually in predicate logic one allows arbitrary formulas to
occur in a proof, not just sentences, and this can make it a little tricky to
say exactly what is the informal idea expressed by a proof. (This applies
particularly to Hilbert-style calculi; cf. Remarks 4 and 5 in Appendix A
below. Some calculi paper over the difficulty by writing the free variables
as constants.) When one speaks of a formal calculus for predicate logic as
being sound or complete (cf. Section 7 above), one always ignores formulas
which have free variables.

Gentzen’s natural deduction calculus can be adapted to predicate logic
simply by adding four rules, namely introduction and elimination rules for
V and d. The introduction rule for 3 says:

(128) From ¢[r/x] infer Jz¢.

(If the object 7 satisfies ¢, then at least one thing satisfies ¢.) The elimi-
nation rule for 3 says:

(129) Given a proof of ¢ from ¢[y/z] and assumptions x1, ..., Xn, where
y is not free in any of Iz, v, x1,- .., Xn, deduce ¢ from Jz¢ and

X153 Xn-

The justification of (129) is of some philosophical interest, as the following
example will show. We want to deduce an absurdity from the assumption
that there is a greatest integer. So we let y be a greatest integer, we get a
contradiction y < y + 1 < y, whence L. Then by (129) we deduce L from
Jdz (z is a greatest integer). Now the problem is: How can we possibly ‘let
y be a greatest integer’, since there aren’t any? Some logicians exhort us
to ‘emagine that y is a greatest integer’, but I always found that this one
defeats my powers of imagination.

The Bolzano—Tarski definition of logical implication is a real help here,
because it steers us away from matters of ‘If it were the case that ...’
towards questions about what actually is the case in structures which do
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exist. We have to decide how natural deduction proofs are supposed to
match the Bolzano—Tarski definition, bearing in mind that formulas with
free variables may occur. The following interpretation is the right one:
the existence of a natural deduction proof with conclusion i and premises
X1, - - - » Xn Should tell us that for every structure 2 and every assignment g in
20 which is suitable for all of ¥, x1, ..., Xn, wehave A E (x1A- - -Axn — ¥)[g].
(This is not obvious— for Hilbert-style calculi one has to supply a quite
different rationale, cf. Remark 5 on Hilbert-style calculi in Appendix A.)

Now we can justify (129). Let 2 be a structure and g an assignment in
2 which is suitable for Jz¢, x1,- ., xn and . We wish to show that:

(130) AE (FzdpAx1 A==+ Axn — V)g)-

By the truth-definition in Section 14 we can assume that the domain of ¢
is just the set of variables free in the formulas listed, so that in particular
y is not in the domain of g. There are now two cases. The first is that
A F =(Jxdp Ax1 A--- Axn)lg]l. Then truth-tables show that (130) holds.
The second case is that 2 E (3zd A x1 A--- A xn)[g], so there is an element
a of A such that A E (¢p[y/x] Ax1 A+ Axn = ¥)]g, a/y], so A E P[g, a/y].
But then since y is not free in v, 2 E ¢[g], which again implies (130).

I do not think this solves all the philosophical problems raised by (129).
Wiredu [1973] seems relevant.

The references given for the proof calculi discussed in Section 7 remain
relevant, except Lukasiewicz and Tarski [1930] which is only about propo-
sitional logic. The various theorems of Gentzen [1934], including the cut-
elimination theorem, all apply to predicate logic. From the point of view of
these calculi, the difference between propositional and predicate logic is rel-
atively slight and has to do with checking that certain symbols don’t occur
in the wrong places in proofs.

Proof calculi for many-sorted languages are also not hard to come by. See
[Schmidt, 1938; Wang, 1952; Feferman, 1968a).

Quantifiers did provoke one quite new proof-theoretic contrivance. In
the 1920s a number of logicians (notably Skolem, Hilbert, Herbrand) re-
garded quantifiers as an intrusion of infinity into the finite-minded world of
propositional logic, and they tried various ways of—so to say—deactivating
quantifiers. Hilbert proposed the following: replace Jx¢ everywhere by
the sentence ¢lexd/z], where ‘cx¢’ is interpreted as ‘the element I choose
among those that satisfy ¢’. The interpretation is of course outrageous, but
Hilbert showed that his e-calculus proved exactly the same sequents as more
conventional calculi. See Hilbert and Bernays [1939] and Leisenring [1969].

It can easily be checked that any sequent which can be proved by the
natural deduction calculus sketched above (cf. Sundholm’s Chapter in a
following volume of this Handbook for details) is correct. But nobody could
claim to see, just by staring at it, that this calculus can prove every correct
sequent of predicate logic. Nevertheless it can, as the next section will show.
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16 CREATING MODELS

The natural deduction calculus for first-order logic is complete in the sense
that if A F ¢ then the calculus gives a proof of ¢ from assumptions in A.
This result, or rather the same result for an equivalent Hilbert-style calculus,
was first proved by Kurt Gédel in his doctoral dissertation [1930]. Strictly
Thoralf Skolem had already proved it in his brilliant papers [1922; 1928;
1929], but he was blissfully unaware that he had done so. (See [Vaught, 1974;
Wang, 1970]; Skolem’s finitist philosophical leanings seem to have blinded
him to some mathematical implications of his work.)

A theory A in the language L is said to be consistent for a particular
proof calculus if the calculus gives no proof of L from assumptions in A.
(Some writers say instead: ‘gives no proof of a contradiction ¢ A —¢ from
assumptions in A’. For the calculi we are considering, this amounts to the
same thing.) We shall demonstrate that if A is consistent for the natural
deduction calculus then A has a model. This implies that the calculus is
complete, as follows. Suppose A F ). Then A;¢p — L E L (cf. Theorem 4
in Section 5), hence A together with ¢» — L has no model. But then the
theory consisting of A together with ¢» — L is not consistent for the natural
deduction calculus, so we have a proof of L from ¥ — L and sentences in
A. One can then quickly construct a proof of ¢ from sentences in A by the
rule (69) for L.

So the main problem is to show that every consistent theory has a model.
This involves constructing a model—but out of what? Spontaneous cre-
ation is not allowed in mathematics; the pieces must come from somewhere.
Skolem [1922] and Gédel [1930] made their models out of natural numbers,
using an informal induction to define the relations. A much more direct
source of materials was noticed by Henkin [1949] and independently by Ra-
siowa and Sikorski [1950]: they constructed the model of A out of the theory
A itself. (Their proof was closely related to Kronecker’s [1882] method of
constructing extension fields of a field K out of polynomials over K. Both
he and they factored out a maximal ideal in a ring.)

Hintikka [1955] and Schiitte [1956] extracted the essentials of the Henkin—
Rasiowa—Sikorski proof in an elegant form, and what follows is based on
their account. For simplicity we assume that the language L has infinitely
many individual constants but its only truth-functors are = and A and its
only quantifier symbol is 3. A theory A in L is called a Hintikka set if it
satisfies these seven conditions:

1. L isnot in A.

2. If ¢ is an atomic formula in A then —¢ is not in A.
3. If ==t isin A then ¢ is in A.

4. If ¢ A x is in A then ¢ and x are both in A.
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5. If =(v» A x) is in A then either =) is in A or —x is in A.
6. If Jzep is in A then ¢[c/z] is in A for some individual constant c.
7. If —=3z9) is in A then —¢p[c/z] is in A for each individual constant c.

We can construct an L-structure 2 out of a theory A as follows. The
elements of 2 are the individual constants of L. For each constant ¢, Iy(c)
is ¢ itself. For each n-place predicate constant R of L the relation Iy (R)
is defined to be the set of all ordered n-tuples (ci,...,c,) such that the
sentence R(cy,...,cp) isin A.

Let A be a Hintikka set. We claim that the structure 2 built out of
A is a model of A. It suffices to show the following, by induction on the
complexity of ¢: if ¢ is in A then ¢ is true in 2, and if =¢ is in A then —¢
is true in 2. I consider two sample cases. First let ¢ be atomic. If ¢ is in
A then the construction of 2 guarantees that 2 F ¢. If =¢ is in A, then
by clause (2), ¢ is not in A; so by the construction of 2 again, 2 is not a
model of ¢ and hence A F —¢. Next suppose ¢ is Y A x. If ¢ is in A, then
by clause (4), both ¢ and x are in A; since they have lower complexities
than ¢, we infer that 2 F ¢ and 2 F x; so again A F ¢. If =¢ is in A then
by clause (5) either =) is in A or —x is in A; suppose the former. Since ¢
has lower complexity than ¢, we have 2 E —); it follows again that 2 F —¢.
The remaining cases are similar. So every Hintikka set has a model.

It remains to show that if A is consistent, then by adding sentences to A
we can get a Hintikka set AT; AT will then have a model, which must also
be a model of A because AT includes A. The strategy is as follows.

Step 1.  Extend the language L of T to a language L1 which has in-
finitely many new individual constants cy,c1,cs,.... These new constants

are known as the witnesses (because in (6) above they will serve as witnesses
to the truth of Jz1)).

Step 2. List all the sentences of L1 as ¢, ¢1, . .. in an infinite list so that
every sentence occurs infinitely often in the list. This can be done by some
kind of zigzagging back and forth.

Step 3. At this very last step there is a parting of the ways. Three
different arguments will lead us home. Let me describe them and then
compare them.

The first argument we may call the direct argument: we simply add
sentences to A as required by (3)—(7), making sure as we do so that (1) and
(2) are not violated. To spell out the details, we define by induction theories
Ag,Aq, ... in the language L™ so that (i) every theory A; is consistent; (ii)
for all 4, A; 4, includes A; (iii) for each 7, only finitely many of the witnesses
appear in the sentences in A;; (iv) Ag is A; and (v) for each i, if ¢; is in
A; then:
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3" if ¢; is of form ——p then A;y; is A; together with ;
4" if ¢; is of form ¥ A x then A;y; is A; together with ¢ and x;

5" if ¢; is of form — () A x) then A;y; is A; together with at least one of
Y, X

6" if ¢; is of form Jzep then A;1; is A; together with ¢[c/z] for some
witness ¢ which doesn’t occur in Ay;

7" if ¢; is of form -z then A;y; is A; together with —w)[c/z] for the
first witness ¢ such that —[c/z] is not already in A;.

It has to be shown that theories A; exist meeting conditions (1)—(5). The
proof is by induction. We satisfy (1)—(5) for Ag by putting Ag = A (and this
is the point where we use the assumption that A is consistent for natural
deduction). Then we must show that if we have got as far as A; safely,
A1 can be constructed too. Conditions (2) and (3) are actually implied
by the others and (4) is guaranteed from the beginning. So we merely need
to show that

(131) assuming A; is consistent, A;y; can be chosen so that it is con-
sistent and satisfies the appropriate one of (3')— (7).

There are five cases to consider. Let me take the hardest, which is (6). It is
assumed that ¢; is Jzy and is in A;. By (3) so far, some witness has not yet
been used; let ¢ be the first such witness and let A;;; be A; together with
¥[e/x]. If by misfortune A;1; was inconsistent, then since ¢ never occurs in
A; or ¢;, the elimination rule for 3 (section 15 or Sundholm, Volume 2 of this
Handbook) shows that we can prove L already from 3zt and assumptions
in A;. But dzy was in A;, so we have a contradiction to our assumption
that A; was consistent. Hence A;1; is consistent as required.

When the theories A; have been constructed, let AT be the set of all
sentences which are in at least one theory A;. Since each A; was consistent,
AT satisfies conditions (1) and (2) for a Hintikka set. The requirements
(3")—(7"), and the fact that in the listing ¢g, ¢1, ... we keep coming round
to each sentence infinitely often, ensure that A satisfies conditions (3)—(7)
as well. So AT is a Hintikka set and has a model, which completes the
construction of a model of A.

The second argument we may call the tree argument. A hint of it is in
[Skolem, 1929]. We imagine a man constructing the theories A; as in the
direct argument above. When he faces clauses (3'), (4'), (6') or (7'), he
knows at once how he should construct A;;1; out of A;; the hardest thing
he has to do is to work out which is the first witness not yet used in A; in
the case of clause (6). But in (5') we can only prove for him that at least
one of ) and —x can consistently be added to A;, so he must check for
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himself whether A; together with — is in fact consistent. Let us imagine
that he is allergic to consistency calculations. Then the best he can do is to
make two alternative suggestions for A1, viz. A; with =), and A; with
—x- Thus he will make not a chain of theories Ag, Ay, ... but a branching
tree of theories:

Age— A"
ab
Agbi A4

ba
Aga A4 .

/

\
(132) Ag ——— A4

/

\Agb AR

Now he no longer knows which of these theories are consistent. So he
forgets about consistency and looks directly at conditions (1) and (2) in the
definition of a Hintikka set. At least he can tell by inspection whether a
theory violates these. So he prunes off the tree all theories which fail (1) or
(2)—he can do this as he goes along. Some theories in the tree will become
dead ends. But the argument we gave for the earlier direct approach shows
that at every level in the tree there must be some theory which can be
extended to the next level.

Now a combinatorial theorem known as Konig’s tree lemma says that if
a tree has a positive but finite number of items at the nth level, for every
natural number n, then the tree has a branch which runs up through all these
levels. So we know that (132) has an infinite branch. Let Ag, Ay, Ao, ...
be such a branch and let A* be the set of all sentences which occur in
at least one theory A; in the branch. The previous argument shows that
AT satisfies (3)-(7), and we know that AT satisfies (1) and (2) because
otherwise it would have been pruned off at some finite stage. So again AT
is a Hintikka set.

The third argument is the mazimising argument, sometimes known as the
Henkin-style argument, though Skolem’s argument in [1922] seems to be of
this type. This argument is an opposite to the second kind of argument:
instead of using (1)—(7) in the construction and forgetting consistency, we
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exploit consistency and leave (1)—(7) on one side until the very end. We
define by induction theories Ag, Ay, ... in the language LT so that (i) every
theory A; is consistent; (ii) for all i, A;;+1 includes A;; (iii) for each ¢, only
finitely many of the witnesses appear in the sentences in A;; (iv) Ag is A;
and (v) for each i,

(a) if A; together with ¢; is consistent then A;y; contains ¢;;

(B) if ¢; is in A1 and is of form Jxep, then for some witness ¢ which
doesn’t occur in A; or in ¢;,¢[c/x] is in Aypq.

The argument to justify this construction is the same as for the direct
argument, except that (3'), (4), (5") and (7’) are now irrelevant. As before,
let AT be the set of sentences which occur in at least one theory A;. Clause
() in the construction guarantees that

(133) for every sentence ¢ of L1, if AT together with ¢ is consistent,
then ¢ is in AT,

From (133) and properties of natural deduction we infer

(134) for every sentence ¢ of LT, if ¢ is provable from assumptions in
AT then ¢ is in AT.

Knowing (133) and (134), we can show that A* satisfies (3)—(7). For ex-
ample, take (5) and suppose that —=(¢) A x) is in AT but —¢) is not in AT,
Then by (133) there is a proof of 1 from AT and —). Using the natural
deduction rules we can adapt this proof to get a proof of =y from AT, and
it follows by (134) that —y is in AT. Since the A; are all consistent, AT
also satisfies (1) and (2). So once again A" is a Hintikka set.

Some authors take care of clause () before the main construction. They
can do it by adding to A a collection of sentences of the form dzy — ¥[c/x].
The argument which justified (6') will justify this too.

The first and third arguments above are very closely related. I gave
both of them in the form that would serve for a countable language, but
they adapt to first-order languages of any cardinality. The merit of the
maximising argument is that the construction is easy to describe. (For
example, the listing ¢o, ¢1, ... need not repeat any formulas.)

The first and second arguments have one advantage over the third. Sup-
pose A is a finite set of prenex sentences of form ¥V, with no quantifiers
in 1. Then these two arguments find AT after only a finite number of steps
in the construction. So AT is finite and has a finite model, and it follows
that we can compute whether or not a sentence of this form has a model.
(This is no longer true if function symbols are added to the language as in
Section 18 below.) The decidability of propositional logic is a special case
of this. So also are various theorems about finite models for modal logics.
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When Ay is finite, closer inspection of the trees (132) shows that they
are just the natural extension to predicate logic of the semantic tableaux of
propositional logic. If Ay has no models then every branch comes to a dead
end after a finite number of steps. If Ay has a model, then the tree has a
branch which never closes, and we can read this branch as a description of
a model. So the tree argument has given us a complete proof calculus for
predicate logic. (Cf. Beth [1955; 1962], Jeffrey [1967], Smullyan [1968], Bell
and Machover [1977] for predicate logic semantic tableaux.) Incidentally it
is most unpleasant to prove the completeness of semantic tableaux by the
direct or maximising arguments. One needs facts of the form: if A F ¢ and
A, x then A F x. To prove these is to prove Gentzen’s cut-elimination
theorem.

Notice that even when Ay is finite, semantic tableaux no longer provide
a method for deciding whether Ay has a model. If it does have a model, the
tree may simply go on branching forever, and we may never know whether
it is going to close off in the next minute or the next century. In Section 24
below we prove a theorem of Church [1936] which says that there is not and
cannot be any mechanical method for deciding which sentences of predicate
logic have models.

17 CONSEQUENCES OF THE CONSTRUCTION OF MODELS

Many of the most important consequences of the construction in the pre-
vious section are got by making some changes in the details. For example,
instead of using the individual constants of the language as elements, we
can number these constants as by, by, ..., and use the number n in place of
the constant b,. Since numbers can be thought of as pure sets ([Mendelson,
1987, pp. 187 ff.] or Appendix C below), the structure which emerges at
the end will be a pure set structure. Hence, for any standard proof calculus
for a language L of predicate logic:

THEOREM 10. Suppose T is a theory and ¢ a sentence of L, such that the
calculus doesn’t prove i from T. Then there is a pure set structure which
is a model of T and not of Y.

In terms of the discussion in Section 8 above, this shows that the Proof
Theorist’s notion of logical implication agrees with the Model Theorist’s,
whether or not the Model Theorist restricts himself to pure set structures.

We can take matters one step further by encoding all symbols and for-
mulas of L as natural numbers. So a theory in L will be a set of numbers.
Suppose the theory T is in fact the set of all numbers which satisfy the first-
order formula ¢ in the language of arithmetic; then by analysing the proof
of Theorem 10 we can find another first-order formula x in the language of
arithmetic, which defines a structure with natural numbers as its elements,
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so that:

THEOREM 11. In first-order Peano arithmetic we can prove that if some
standard proof calculus doesn’t prove T is inconsistent, then the structure
defined by x is a model of T'.

(Cf. [Kleene, 1952, p. 394] and [Hasenjaeger, 1953] for a sharper result.)

Theorem 11 is philosophically very interesting. Suppose T is a finite
theory, and proof-theoretically T doesn’t imply . Applying Theorem 11
to the theory T'U {—}, we get a formula y which defines a natural number
structure 2 in which 7" is true and ¢ is false. By means of y, the formulas
of T" and ¢ can be read as meaningful statements about 20 and hence about
the natural numbers. The statements in 7" are true but ¢ is false, so we have
found an invalid argument of the form ‘T". Therefore ¢’. It follows that if a
first-order sequent is correct by the Traditional Logician’s definition, then it
is correct by the Proof Theorist’s too. Since the converse is straightforward
to prove, we have a demonstration that the Traditional Logician’s notion of
validity exactly coincides with the Proof Theorist’s. The proof of this result
uses nothing stronger than the assumption that the axioms of first-order
Peano arithmetic have a model.

The Traditional Logician’s notion of logical implication is quite informal—
on any version it involves the imprecise notion of a ‘valid English argument’.
Nevertheless we have now proved that it agrees exactly with the mathe-
matically precise notion of logical implication given by the Proof Theorist.
(Cf. [Kreisel, 1967].) People are apt to say that it is impossible to prove
that an informal notion and a formal one agree exactly. Since we have just
done the impossible, maybe I should add a comment. Although the notion
of a valid argument is vague, there is no doubt that (i) if there is a for-
mal proof of a sequent, then any argument with the form of that sequent
must be valid, and (ii) if there is an explicitly definable counterexample
to the sequent, then there is an invalid argument of that form. We have
shown, by strict mathematics, that every finite sequent has either a formal
proof or an explicitly definable counterexample. So we have trapped the in-
formal notion between two formal ones. Contrast Church’s thesis, that the
effectively computable functions (informal notion) are exactly the recursive
ones (formal). There is no doubt that the existence of a recursive definition
for a function makes the function effectively computable. But nobody has
yet thought of any kind of mathematical object whose existence undeniably
implies that a function is not effectively computable. So Church’s thesis
remains unproved. (Van Dalen’s chapter in this Volume discusses Church’s
thesis.)

I return to the completeness proof. By coding all expressions of L into
numbers or sets, we made it completely irrelevant that the symbols of L can
be written on a page, or even that there are at most countably many of them.
So let us now allow arbitrary sets to serve instead of symbols. Languages
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of this abstract type can be called set languages. They are in common use
today even among proof theorists. Of course to use these languages we
have to rely either on our intuitions about sets or on proofs in axiomatic
set theory; there is no question of checking by inspection. Henkin’s [1949]
completeness proof was given in this setting. In fact he proved:

THEOREM 12. IfL is a first-order set language and T a theory in L whose
cardinality is at most the infinite cardinal K, then either a finite part of T
can be proved inconsistent by a proof calculus, or T has a model with at
most k elements.

Theorem 12 has several important mathematical consequences. For exam-
ple, the Compactness Theorem says:

THEOREM 13. Let T be a first-order theory (in a set language). If every
finite set of sentences in T has a model, then T has a model.

Theorem 13 for countable languages was proved by Gédel in [1930]. For
propositional logic with arbitrarily many symbols it was proved by Godel
[1931a), in answer to a question of Menger. The first proof of Theorem
13 was sketched rather inadequately by Anatolii Mal'tsev in [1936] (see
the review of [Mal'tsev, 1941] by Henkin and Mostowski [1959]). But in
[1941] Mal’tsev showed that Theorem 13 has interesting and far from trivial
consequences in group theory, thus beginning one of the most important
lines of application of first-order logic in mathematics.

The last consequence I shall draw from Theorem 12 is not really interest-
ing until identity is added to the language (see the next section); but this is
a convenient place to state it. It is the Upward and Downward Lowenheim—
Skolem Theorem:

THEOREM 14. LetT be a first-order theory in a language with A formulas,
and K an infinite cardinal at least as great as A\. If T has a model with
infinitely many elements then T has one with exactly k elements.

Theorem 13 was proved in successively stronger versions by Lowenheim
[1915], Skolem [1920; 1922], Tarski in unpublished lectures in 1928, Mal’tsev
[1936] and Tarski and Vaught [1956]; see [Vaught, 1974] for a thorough his-
tory of this and Theorems 12 and 13. The texts of Bell and Slomson [1969],
Chang and Keisler [1973] and Hodges [1993a] develop these theorems, and
Sacks [1972] and Cherlin [1976] study some of their applications in alge-
bra. Skolem [1955] expressly dissociated himself from the Upward version
of Theorem 14, which he regarded as nonsense.

18 IDENTITY

The symbol ‘=" is reserved for use as a 2-place predicate symbol with the
intended meaning
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(135) a =Dbiff a and b are one and the same thing.

)

When 2 is a structure for a language containing ‘=", we say that 2 has
standard identity if the relation Iy (=) holds between elements a and 3 of
2 precisely when a and 3 are the same element.

‘e = y’ is read as ‘x equals y’, rather misleadingly—all men may be
created equal but they are not created one and the same man. Another
reading is ‘x is identical with y’. As far as English usage goes, this is not
much improvement on ‘equals’: there are two identical birds feeding outside
my window, but they aren’t the same bird (and think of identical twins).

Be that as it may, ‘=’ is called the identity sign and the relation it expresses
in (135) is called identity.
Let L be a language containing the symbol ‘=’. It would be pleasant if

we could find a theory A in L whose models are exactly the L-structures
with standard identity. Alas, there is no such theory. For every L-structure
A with standard identity there is an L-structure B which is a model of the
same sentences of L as A but doesn’t have standard identity. Let us prove
this.

Take an L-structure & with standard identity and let d1, ..., 02,000,000 be
two million objects which are not in the domain of 2. Let 5 be an element
of A. We construct the L-structure 9B thus. The elements of 9B are those
of A together with d1,. .., 82 000,000. For each individual constant ¢ we put
I (c) = Iy(c). For each element a of B we define an element & of A as
follows: if « is in the domain of A then & is «, and if « is one of the J;’s
then & is B. For every n-place predicate constant R we choose I (R) so
that if (a1,...,a,) is any n-tuple of elements of 9B, then:

(136) (ay, ..., o) is in I (R) iff (61, ..., ) is in Iy (R).

This defines 8. By induction on the complexity of ¢ we can prove that for
every formula ¢(x1, ..., x,) of L and every n-tuple (a1, ..., a,) of elements
of B,

(137) B E glar/x1,...,an/zp] it AE ¢lay /21, ..., an/2y].

In particular 2 and 98 are models of exactly the same sentences of L. Since
2 has standard identity, 2 E (z = «)[/«]. Then from (136) it follows that
the relation Iy (=) holds between any two of the elements d1, .. ., 42,000,000,
and so I (=) is vastly different from standard identity.

So we look for a second best. Is there a theory A which is true in all L-
structures with standard identity, and which logically implies every sentence
of LL that is true in all such L-structures? This time the answer is positive.
The following theory will do the job:

(138) Vo x = x.
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(139) All sentences of the form VZzry(z =y = (¢ — ¢ly/z])).

Formula (138) is known as the law of reflexivity of identity. (139) is not a
single sentence but an infinite family of sentences, namely all those which
can be got by putting any formula ¢ of L into the expression in (139); 2
are all the free variables of ¢ except for  and y. These sentences (139) are
collectively known as Leibniz’ Law. They are the nearest we can get within
L to saying that if a = b then anything which is true of a is true of b too.

By inspection it is clear that every L-structure with standard identity is
a model of (138) and (139). To show that (138) and (139) logically imply
every sentence true in all structures with standard identity, let me prove
something stronger, namely: For every L-structure 8 which is a model of
(138) and (139) there is an L-structure A which is a model of exactly the
same sentences of L as B and has standard identity. Supposing this has
been proved, let A be the theory consisting of (138) and (139), and let ¢ be
a sentence of L which is not logically implied by A. Then some L-structure
B is a model of A and —; so some structure 2 with standard identity
is also a model of —¢. It follows that ¢ is not true in all structures with
standard identity.

To prove what I undertook to prove, let 8 be a model of A. Then we
can show that the following hold, where we write =g for Iy (=):

(140) the relation I (=) is an equivalence relation;

(141) for every mn-place predicate constant R of L, if a; =g
Bi,-.,an = By and (a1, ..., ay) is in Ig(R) then (81,...,0,)
is in Is (R).

Statement (141) can be proved by applying Leibniz’ Law n times. Then
(140) follows from (141) and reflexivity of identity, taking ‘=’ for R. State-
ments (140) and (141) together are summarised by saying that the relation
=g is a congruence for L. For each element a of B, we write a~ for the
equivalence class of o under the relation =g.

Now we define the L-structure 2 as follows. The domain of 2 is the
class of all equivalence classes a~ of elements « of 8. For each individual
constant ¢ we define Iy (c) to be Iy (¢)=. For each n-place predicate symbol
R of L we define Iy (R) by:

(142) (aT,...,ay) isin Iy(R) iff (aq,...,ay) is in In(R).

Definition (142) presupposes that the right-hand side of (142) is true or false
depending only on the equivalence classes of ay, ..., a,; but (141) assured
this.

In particular, a= =g 0~ if and only if @ =g (3, in other words, if and
only if a= equals =. Hence, 2 has standard identity. It remains only to

show that for every formula ¢(z1,...,z,) of L and all elements a1, ..., a,
of B,
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(143) AF (;5[041:/331,...,0(;/37”] iff B F Qs[al/wl;-'-;an/mn]'

Statement (143) is proved by induction on the complexity of ¢.

Most logicians include ‘=’ as part of the vocabulary of every language for
predicate logic, and interpret it always to mean standard identity. Since it
is in every language, it is usually not mentioned in the similarity type. The
proof calculi have to be extended to accommodate ‘=". One way to extend
the natural deduction calculus is to add two new rules:
r=y ¢

T=a oly /]
The first rule deduces £ = x from no premises.

Identity is needed for virtually all mathematical applications of logic.
It also makes it possible to express in formulas the meanings of various
English phrases such as ‘the’, ‘only’; ‘at least one’, ‘at most eight’, etc. (see
e.g. Section 21 below).

Many mathematical applications of logic need symbols of another kind,
called function symbols. The definitions given above can be stretched to
allow function symbols as follows. Symbols f,g,h etc., with or without
subscripts, are called function constants. A similarity type may contain
function constants, each of which is labelled as an n-place constant for some
positive integer n. If the language L has an n-place function constant f
and 20 is an L-structure, then f is interpreted by 2 as an n-place function
Iy (f) which assigns one element of 2 to each ordered n-tuple of elements
of /. For example the 2-place function constant ‘+’ may be interpreted as
a function which assigns 5 to (2,3), 18 to (9,9) and so forth—though of
course it can also be interpreted as some quite different function.

There are various ways of writing functions, such as

(144)

(145) sin z,v/z, 22, 2,9Y,x + vy, (z,y).

But the general style is ‘f(z1,...,,)’, and logicians’ notation tends to
follow this style. The details of syntax and proof theory with function
symbols are rather messy, so I omit them and refer the reader to [Hilbert
and Bernays, 1934] for details.

One rarely needs function symbols outside mathematical contexts. In any
case, provided we have ‘=’ in our language, everything that can be said with
function symbols can also be said without them. Briefly, the idea is to use a
predicate constant R in such a way that ‘R(x1,...,op+1) means ‘f(z1,.. .,
ZTpn) = Tns1’- When the function symbol f is in the language, it is true in
all structures—and hence logically valid—that for all zq,...,z, there is a
unique Z,41 such that f(zi,...,x,) = x,41. Translating f into R, this
becomes

(146) Vi ---zp2tIy((R(x1,...,Tn,2) A R(x1,...,Tp,t) = 2z = t)A
R(zy,...,xn,y))-
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Since (146) is not logically valid, it may have to be assumed as an extra
premise when we translate arguments involving f into arguments involving

R.

19 AXIOMS AS DEFINITIONS

Axioms are, roughly speaking, the statements which one writes down at the
beginning of a book in order to define the subject-matter of the book and
provide a basis for deductions made in the book. For example any textbook
of group theory will start by telling you that a group is a triple (G, x*,e)
where x is a binary operation in the set G and e is an element of G such
that

(147) = is associative, i.e. for all z,y and z,z * (y x 2) = (x * y) * 2,
(148) e is an identity, i.e. for all z,x xe =exx =,

(149) every element x has an inverse, i.e. an element y such that zxy =
YyxxT =e.

Statements (147)—(149) are known as the azioms for groups. I could have
chosen examples from physics, economics or even ethics.

It is often said that in an ‘axiomatic theory’ such as group theory, the
axioms are ‘assumed’ and the remaining results are ‘deduced from the ax-
ioms’. This is completely wrong. W. R. Scott’s textbook Group Theory
[1964] contains 457 pages of facts about groups, and the last fact which
can by any stretch of the imagination be described as being ‘deduced from
(147)—(149)’ occurs on page 8. We could indeed rewrite Scott’s book as a
set of deductions from assumed axioms, but the axioms would be those of
set theory, not (147)—(149). These three group axioms would appear, not
as assumptions but as part of the definition of ‘group’.

The definition of a group can be paraphrased as follows. First we can
recast the triple (G, *,e) as an L-structure & = (G, Ig) in a first-order
language L with one 2-place function symbol % and one individual constant
e. Then & is a group if and only if & is a model of the following three
sentences:

(150) Vayz o * (yx2) = (z *x y) * 2,
(151) Ye(zxe=xz Aexx = x),
(152) VaJy(z xy =eAyxx =e).

Generalising this, let A be any theory in a first-order language L. Let
K be a class of L-structures. Then A is said to aziomatise K, and K is
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called Mod(A), if K is the class of all L-structures which are models of A.
The sentences in A are called azioms for K. Classes of form Mod({¢}) for
a single first-order sentence ¢ are said to be first-order definable. Classes
of form Mod(A) for a first-order theory A are said to be generalised first-
order definable. The class of groups is first-order definable—we can use the
conjunction of the three sentences (150)—(152).

Many other classes of structure which appear in pure or applied mathe-
matics are (generalised) first-order definable. To give examples I need only
list the axioms. First, equivalence relations:

(153) VaR(z,x) ‘R is reflexive’
(154) Vzy(R(z,y) = R(y,x)) ‘R is symmetric’
(155) Vzyz(R(z,y) A R(y,z) — R(z,z2)) ‘R is transitive’.

Next, partial orderings:

(156) Ve x < x ‘< is reflexive’
(157) Vayz(z <yAy<z—=z<z) ‘< is transitive’
(158) Vay(x <yAy <z —x=y) ‘< is antisymmetric’.

Then total or linear orderings are axiomatised by (157) and (158) and
(159) Vzy(x <yVy<x) ‘< is connected’.
Total orderings can also be axiomatised as follows, using < instead of <:
(160) Vayz(z <yAy<z—oz<z)

(161) Voo < x

(162) Vey(x <yVy<zVz=y).

A total ordering in the second style can be converted into a total ordering
in the first style by reading ¢ < y as meaning ¢z < y V& = y. There is a
similar conversion from the first style to the second. We can express various
conditions on linear orderings by adding further axioms to (157)—(159):

(163) daVy y < z ‘there is a last element’

(164) Vady(-z=yAVz(z <z ax=2zVy<z)
‘every element has an immediate successor’.

Algebra is particularly rich in first-order or generalised first-order definable
classes, for example rings, fields, lattices, categories, toposes, algebraically
closed fields, vector spaces over a given field. Commutative groups are ax-
iomatised by adding to (150)—(152) the axiom
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(165) Vay zxy =y *x.

All the examples mentioned so far are first-order definable except for alge-
braically closed fields and vector spaces over an infinite field, which need
infinitely many sentences to define them.

The notion of first-order definable classes was first made explicit in a
paper of Tarski [1954]. If we know that a class of structures is generalised
first-order definable then we immediately know various other facts about it,
for example that it is closed under taking ultraproducts (cf. [Chang and
Keisler, 1973] or [Bell and Slomson, 1969]—they are defined in Appendix
C below) and that implicit definitions in the class can all be made explicit
(‘Beth’s theorem’—Theorem 33 in Section 27 below). On the other hand, if
one is not interested in model-theoretic facts like these, the informal style of
(147)—(149) makes just as good a definition of a class as any set of first-order
formulas. (In the philosophy of science, structuralists have given reasons for
preferring the informal set-theoretic style; see [Sneed, 1971] and [Stegmiiller,
1976].)

It was Hilbert and his school who first exploited axioms, higher-order as
well as first-order, as a means of defining classes of structures. Hilbert was
horrifically inaccurate in describing what he was doing. When he set up
geometric axioms, he said that they defined what was meant by a point.
Frege then caustically asked how he could use this definition to determine
whether his pocket watch was a point ([Frege and Hilbert, 1899-1900]).
Hilbert had simply confused defining a class of structures with defining the
component relations and elements of a single structure. (Cf. the comments
of [Bernays, 1942].) In this matter Hilbert was a spokesman for a confusion
which many people shared. Even today one meets hopeful souls who believe
that the axioms of set theory define what is meant by ‘set’.

Hilbert added the lunatic remark that ‘If . . . arbitrarily posited axioms to-
gether with all their consequences do not contradict one another, then they
are true and the things defined by these axioms exist’ [Frege and Hilbert,
1899-1900]. For example, one infers, if the axioms which say there is a
measurable cardinal are consistent, then there is a measurable cardinal. If
the axioms which say there is no measurable cardinal are consistent, then
there is no measurable cardinal. If both sets of axioms are consistent . ...
In later years he was more cautious. In fairness to Hilbert, one should set
his remark against the background beliefs of his time, one of which was the
now happily discredited theory of ‘implicit definition’ (nothing to do with
Beth’s theorem of that name). See [Coffa, 1991], who puts the Frege-Hilbert
debate helpfully into a broad historical context. Be that as it may, readers
of Hilbert’s philosophical remarks should always bear in mind his slogan
‘Wir sind Mathematiker’ [Hilbert, 1926].
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20 AXIOMS WITH INTENDED MODELS

Axioms are not always intended to define a class of structures as in Section
19 above. Often they are written down in order to set on record certain facts
about a particular structure. The structure in question is then called the
intended interpretation or standard model of the axioms. The best known
example is probably the axioms of Peano arithmetic, which were set down
by Dedekind [1888; 1967] as a statement of the ‘fundamental properties’ of
the natural number sequence (the first-order formalisation is due to Godel
[1931b], cf. Appendix B below). Euclid’s axioms and postulates of geom-
etry are another example, since he undoubtedly had space in mind as the
intended interpretation.

The object in both Dedekind’s case and Euclid’s was to write down some
elementary facts about the standard model so that further information could
be got by making deductions from these facts. With this aim it becomes
very natural to write the axioms in a first-order language, because we un-
derstand first-order deducibility well and so we shall know exactly what we
are entitled to deduce from the axioms.

However, there is no hope at all of defining the natural numbers, even
up to isomorphism, by means of any first-order axioms. Let me sketch a
proof of this—it will be useful later. Suppose L is the first-order language
of arithmetic, with symbols to represent plus and times, a 2-place predicate
constant < (‘less than’), and a name n* for each natural number n. Let
L* be L with a new individual constant ¢ added. Let A be the set of all
sentences of L which are true in the standard model. Let AT be A together
with the sentences

(166) 0* <e¢, 1"<e¢, 2*<eg,....

Now if ' is any finite set of sentences from A* then I' has a model: take
the standard model of A and let ¢ stand for some natural number which is
greater than every number mentioned in I'. So by the Compactness Theorem
(Theorem 13 in Section 17 above), AT has a model 2. Since A includes
A, 2 is a model of A and hence is a model of exactly the same sentences of
L as the standard model. But 2 also has an element Iy (c¢) which by (166)
is ‘greater than’ Iy (0%), Iy (1*), I (2*) and all the ‘natural numbers’ of .
So 2 is a model of A with an ‘infinite element’. Such models of A are called
non-standard models of arithmetic. They were first constructed by Skolem
[1934], and today people hold conferences on them.

But one can reasonably ask whether, say, the first-order Peano axioms
(cf. Appendix B) imply all first-order sentences which are true in the stan-
dard model. This is equivalent to asking whether the axioms are a complete
theory in the sense that if ¢ is any sentence of their language, then either ¢
or —¢ is a consequence of the axioms. Gddel’s epoch-making paper [1931b]
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showed that the first-order Peano axioms are not complete; in fact no me-
chanically describable theory in this language is both complete and true in
the standard model. In Section 24 below I shall sketch a proof of this.

There is a halfway house between the use of axioms to define a class and
their use to say things about a standard model. Often we want to work with
a class K of L-structures which may not be generalised first-order definable.
In such cases we say that a theory A is a set of axioms for K if every
structure in K is a model of A; we call it a complete set of axioms for K if
moreover every sentence of L which is true in all structures in K is a logical
consequence of A.

Let me give three examples. (i) For the first, paraphrasing Carnap [1956,
p. 222 ff] I consider the class of all structures which represent possible
worlds, with domain the set of all people, ‘Bz’ interpreted as ‘z is a bachelor’
and ‘Ma’ as ‘o is married’. Obviously this class is not generalised first-order
definable. But the following sentence is a complete set of axioms:

(167) Va(Bx — ~Mu).

In Carnap’s terminology, when K is the class of all structures in which
certain symbols have certain fixed meanings, axioms for K are called mean-
ing postulates. (Lakoff [1972] discusses some trade-offs between meaning
postulates and deep structure analysis in linguistics.)

(ii) For a second sample, consider second-order logic (cf. [Chapter 4,
below]). In this logic we are able to say ‘for all subsets P of the domain,
...”, using second-order quantifiers ‘VP’. For reasons explained in Chapter
4 below, there is no hope of constructing a complete proof calculus for
second-order logic. But we do have some incomplete calculi which are good
for most practical purposes. They prove, among other things, the formula

(168) VPQ(Vz(P(2) < Q(2)) = P = Q)

which is the second-order logician’s version of the axiom of extensionality.

Second-order logic can be translated wholesale into a kind of two-sorted
first-order logic by the following device. Let L be any (first-order) language.
Form a two-sorted language L* with the same predicate and individual
constants as L, together with one new 2-place predicate constant €. For
each L-structure 2, form the L*-structure 2+ as follows. The domain of A+
is |A| U P|2L|, |2 is the domain for the first sort and P|2l| is the domain for
the second. (PX = the set of all subsets of X.) If & and (3 are elements of
A4 then

(169) (a,B)isin Iyi(e) iff «is an element of the first sort,
3 of the second sort, and « € 3.

The constants of L are interpreted in the first sort of 2+ just as they were in
2A. Now each second-order statement ¢ about L-structures 2 is equivalent to
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a first-order statement ¢* about L*- structures 2*. For example, if we use
number superscripts to distinguish the first and second sorts of variables,
the axiom of extensionality (168) translates into

(170) Va?y?(V2'(ztea?® < 2tey®) — 22 = y?).

Axiom (170) is a first-order sentence in L*.

Let K be the class of all L*-structures of form 2+ for some L-structure
2. Let QC? be some standard proof calculus for second-order logic, and
let A be the set of all sentences ¢* such that ¢ is provable by QC?. Then
A is a set of axioms of K, though not a complete one. The L*-structures
in K are known as the standard models of A. There will be plenty of non-
standard models of A too, but because of (170) they can all be seen as
‘parts of’ standard models in the following way. For each element § of the
second sort in the model B of A, let 31 be the set of elements « such that
(a, B) € Is(g). By (170), B+ = v implies 3 = 7. So in B we can replace
each element (3 of the second sort by 3%. Then the second sort consists of
subsets of the domain of the first sort, but not necessarily all the subsets.
All the subsets are in the second domain if and only if this doctored version
of B is a standard model. (Models of A, standard or non-standard, are
known as Henkin models of second-order logic, in view of [Henkin, 1950].)

How can one distinguish between a proof calculus for second-order logic
on the one hand, and on the other hand a first-order proof calculus which
also proves the sentences in A? The answer is easy: one can’t. In our no-
tation above, the proof calculus for second-order logic has ‘P(z)’ where the
first-order calculus has ‘z'ex?’, but this is no more than a difference of nota-
tion. Take away this difference and the two calculi become exactly the same
thing. Don’t be misled by texts like Church [1956] which present ‘calculi of
first order’ in one chapter and ‘calculi of second order’ in another. The lat-
ter calculi are certainly different from the former, because they incorporate
a certain amount of set theory. But what makes them second-order calculi,
as opposed to two-sorted first-order calculi with extra non-logical axioms,
is solely their intended interpretation.

It follows, incidentally, that it is quite meaningless to ask whether the
proof theory of actual mathematics is first-order or higher-order. (I recently
saw this question asked. The questioner concluded that the problem is ‘not
easy’.)

Where then can one meaningfully distinguish second-order from first-
order? One place is the classification of structures. The class K of standard
models of A is not a first-order definable class of L¥-structures, but it is
second-order definable.

More controversially, we can distinguish between first-order and second-
order statements about a specific structure, even when there is no question
of classification. For example the sentence (168) says about an L-structure
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2 something which can’t be expressed in the first-order language of 2. This
is not a matter of classification, because (168) is true in all L-structures.

(iii) In Section 18 we studied the class of all L-structures with standard
identity. Quine [1970, p. 63f] studies them too, and I admire his nerve. He
first demonstrates that in any language L with finite similarity type there is
a formula ¢ which defines a congruence relation in every L-structure. From
Section 18 we know that ¢ cannot always express identity. Never mind, says
Quine, let us redefine identity by the formula ¢. This happy redefinition
instantly makes identity first-order definable, at least when the similarity
type is finite. It also has the consequence, not mentioned by Quine, that
for any two different things there is some language in which they are the
same thing. (Excuse me for a moment while I redefine exams as things that
I don’t have to set.)

21 NOUN PHRASES

In this section I want to consider whether we can make any headway by
adding to first-order logic some symbols for various types of noun phrase.
Some types of noun phrase, such as ‘most Xs’, are not really fit for formal-
ising because their meanings are too vague or too shifting. Of those which
can be formalised, some never give us anything new, in the sense that any
formula using a symbol for them is logically equivalent to a formula of first-
order logic (with =); to express this we say that these formalisations give
conservative extensions of first-order logic. Conservative extensions are not
necessarily a waste of time. Sometimes they enable us to say quickly some-
thing that can only be said lengthily in first-order symbols, sometimes they
behave more like natural languages than first-order logic does. So they may
be useful to linguists or to logicians in a hurry.

Many (perhaps most) English noun phrases have to be symbolised as
quantifiers and not as terms. For example the English sentence

(171) T have inspected every batch.
finds itself symbolised by something of form
(172) For every batch z, I have inspected x.

Let me recall the reason for this. If we copied English and simply put the
noun phrase in place of the variable x, there would be no way of distin-
guishing between (i) the negation of ‘I have inspected every batch’ and (ii)
the sentence which asserts, of every batch, that I have not inspected it. In
style (172) there is no confusion between (i), viz.

(173) — For every batch z, I have inspected x.

and (ii), viz.
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(174) For every batch z, = I have inspected z.

Confusions like that between (i) and (ii) are so disastrous in logic that it
constantly amazes logicians to see that natural languages, using style (171),
have not yet collapsed into total anarchy.

In the logician’s terminology, the scope of the quantifier ‘For every batch
2’ in (174) is the whole sentence, while in (173) it is only the part after the
negation sign. Unlike its English counterpart, the quantifier doesn’t replace
the free occurrences of x in the predicate, it binds them. (More precisely, an
occurrence of a quantifier with variable z binds all occurrences of x which
are within its scope and not already bound.) This terminology carries over
at once to the other kinds of quantifier that we shall consider, for example

(175) — For one in every three men z,z is colour blind.

The quantifier ‘For one in every three men z’ binds both occurrences of the
variable, and doesn’t include the negation in its scope.

I shall consider three groups of noun phrases. The first yield conservative
extensions of first-order logic and are quite unproblematic. The second
again give conservative extensions and are awkward. The third don’t yield
conservative extensions—we shall prove this. In all cases I assume that we
start with a first-order language L with identity.

The first group are noun phrases such as ‘At least n things z such that
¢’. We do it recursively:

(176) Isoxdis —L; Isiz is Iue.

(177) Fspp1z¢ is y(oly/z] A I>pz(—z =y A ¢)) when n > 1.
To these definitions we add:

(178) J<pxd is 7I>pt120.

(179) F_pz¢ is I>pxd A I<p0.

J_1x¢ is sometimes written Ilxe.

Definitions (176)—(179) are in the metalanguage; they simply select for-
mulas of L. But there is no difficulty at all in adding the symbols 35,
Jd<, and d—,, for each natural number to the language L, and supplying the
needed extra clauses in the definition of F, together with a complete formal
calculus.

The second group are singular noun phrases of the form ‘The such-and-
such’. These are known as definite descriptions. Verbal variants of definite
descriptions, such as ‘My father’s beard’ for ‘The beard of my father’, are
generally allowed to be definite descriptions too.

According to Bertrand Russell [1905], Whitehead and Russell
[1910, Introduction, Chapter III], the sentence
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(180) The author of ‘Slawkenburgius on Noses’ was a poet.

can be paraphrased as stating three things: (1) at least one person wrote
‘Slawkenburgius on Noses’; (2) at most one person wrote ‘Slawkenburgius
on Noses’; (3) some person who did write ‘Slawkenburgius on Noses’ was
a poet. I happily leave to Bencivenga [4.5] and Salmon [8.5] the question
whether Russell was right about this. But assuming he was, his theory calls
for the following symbolisation. We write ‘{2z1}’ to represent ‘the person
or thing x such that ¢’, and we define

(181) {r2vp}¢ to mean I_yxtp A Jz(¢p A §).

Expression (181) can be read either as a metalinguistic definition of a for-
mula L, or as a shorthand explanation of how the expressions {12} can be
added to L. In the latter case the definition of F has to sprout one extra
clause:

(182) A E {1zy}¢[g] iff there is a unique element a of A such that
A E 9lg,a/x], and for this «, A F ¢[g, a/z].

There is something quite strongly counterintuitive about the formulas
on either side in (181). It seems in a way obvious that when there is a
unique such-and-such, we can refer to it by saying ‘the such-and-such’. But
Russell’s paraphrase never allows us to use the expression {1z} this way.
For example if we want to say that the such-and-such equals 5, Russell will
not allow us to render this as ‘{1z¢} = 5’. The expression {1z} has the
wrong grammatical type, and the semantical explanation in (182) doesn’t
make it work like a name. On the right-hand side in (181) the position is
even worse—the definition description has vanished without trace.

Leaving intuition on one side, there are any number of places in the
course of formal calculation where one wants to be able to say ‘the such-
and-such’, and then operate with this expression as a term. For example
formal number theorists would be in dire straits if they were forbidden use
of the term

(183) pzx1, i.e. the least number x such that .
Likewise formal set theorists need a term
(184) {z|t}, i-e. the set of all sets = such that .

Less urgently, there are a number of mathematical terms which bind vari-
ables, for example the integral fba f(x)dz with bound variable z, which are
naturally defined as ‘the number A such that ... (here follows half a page
of calculus)’. If we are concerned to formalise mathematics, the straightfor-
ward way to formalise such an integral is by a definite description term.
Necessity breeds invention, and in the event it is quite easy to extend the
first-order language L by adding terms 1x1p. (The definitions of ‘term’ and
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‘formula’ in Section 13 above have to be rewritten so that the classes are
defined by simultaneous induction, because now we can form terms out of
formulas as well as forming formulas out of terms.) There are two ways to
proceed. One is to take 721 as a name of the unique element satisfying 1), if
there is such a unique element, and as undefined otherwise; then to reckon
an atomic formula false whenever it contains an undefined term. This is
equivalent to giving each occurrence of 1z the smallest possible scope, so
that the notation need not indicate any scope. (Cf. [Kleene, 1952, p. 327];
[Kalish and Montague, 1964, Chapter VII].) The second is to note that
questions of scope only arise if there is not a unique such-and-such. So we
can choose a constant of the language, say 0, and read 7z as

(185) the element which is equal to the unique x such that ¢ if there is
such a unique z, and is equal to 0 if there is not.

(Cf. [Montague and Vaught, 1959; Suppes, 1972].)

Russell himself claimed to believe that definite descriptions ‘do not name’.
So it is curious to note (as Kaplan does in his illuminating paper [1966] on
Russell’s theory of descriptions) that Russell himself didn’t use the notation
(181) which makes definite descriptions into quantifiers. What he did in-
stead was to invent the notation 1z and then use it both as a quantifier and
as a term, even though this makes for a contorted syntax. Kaplan detects
in this ‘a lingering ambivalence’ in the mind of the noble lord.

The third group of noun phrases express things which can’t be said with
first-order formulas. Peirce [1885] invented the two-thirds quantifier which
enables us to say ‘At least % of the company have white neckties’. (His
example.) Peirce’s quantifier was unrestricted. It seems more natural, and
changes nothing in principle, if we allow a relativisation predicate and write
22(1), ¢) to mean ‘At least 2 of the things & which satisfy ¢ satisfy ¢’.

Can this quantifier be defined away in the spirit of (176)—(179)7 Unfor-
tunately not. Let me prove this. By a functionall shall mean an expression
which is a first-order formula except that formula metavariables may occur
in it, and it has no constant symbols except perhaps =. By substitut-
ing actual formulas for the metavariables, we get a first-order formula. Two
functionals will be reckoned logically equivalent if whenever the same formu-
las are substituted for the metavariables in both functionals, the resulting
first-order formulas are logically equivalent. For example the expression
I>ox0, viz.

(186) Fy(Bly/z] A Jx(—z =y A $)),

is a functional which is logically equivalent to I>3x¢ V d—s2x¢. Notice that
we allow the functional to change some variables which it binds, so as to
avoid clash of variables.

A theorem of Skolem [1919] and Behmann [1922] (cf. [Ackermann, 1962,
pp. 41-47]) states that if a functional binds only one variable in each in-
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serted formula, then it is logically equivalent to a combination by -, N\ and
V of equations y = z and functionals of the form J_,xx where x is a
functional without quantifiers. Suppose now that we could define away the
quantifier 2z(,). The result would be a functional binding just the variable
x in ¢ and ¢, so by the Skolem—Behmann theorem we could rewrite it as a
propositional compound of a finite number of functionals of the form 3_,, z,
and some equations. (The equations we can forget, because the meaning of
%m(@/}, ¢) shows that it has no significant free variables beyond those in ¢
or ¢.) If n is the greatest integer for which 3,z occurs in the functional,
then the functional is incapable of distinguishing any two numbers greater
than n, so that it can’t possibly express that one of them is at least § times
the other.
A harder example is

(187) The average Briton speaks at least two-thirds of a foreign language.

I take this to mean that if we add up the number of foreign languages spoken
by each Briton, and divide the sum total by the number of Britons, then the
answer is at least % Putting ¢ () for ‘z is a Briton’ and ¢(z, y) for ‘y is a for-
eign language spoken by z’; this can be symbolised as {Av%wy}(@/}, ¢). Can
the quantifier {AvZzy} be defined away in a first-order language? Again
the answer is no. This time the Skolem—Behmann result won’t apply di-
rectly, because {Av%:ﬂy} binds two variables,  and y, in the second formula
¢. But indirectly the same argument will work. %m(@/}, ¢) expresses just the
same thing as Vz(¢[z/z] = {AvZzy} (v, z = 2 A ply/z] AY[y/z])). Hence if
{AvZzy} could be defined away, then so could 2z, and we have seen that
this is impossible.

Barwise and Cooper [1981] made a thorough study of the logical prop-
erties of natural language noun phrases. See also [Montague, 1970; Mon-
tague, 1973, particularly his discussion of ‘the’. Van Benthem and Doets
(this Volume) have a fuller discussion of things not expressible in first-order
language.

III: The Expressive Power of First-order Logic

22 AFTER ALL THAT, WHAT IS FIRST-ORDER LOGIC?

It may seem perverse to write twenty-one sections of a chapter about ele-
mentary (i.e. first-order) logic without ever saying what elementary logic is.
But the easiest definition is ostensive: elementary logic is the logic that we
have been doing in Sections 1-18 above. But then, why set that logic apart
from any other? What particular virtues and vices does it have?
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At first sight the Traditional Logician might well prefer a stronger logic.
After all, the more valid argument schemas you can find him the happier
he is. But in fact Traditional Logicians tend to draw a line between what is
‘genuinely logic’ and what is really mathematics. The ‘genuine logic’ usually
turns out to be a version of first-order logic.

One argument often put forward for this choice of ‘genuine logic’ runs
along the following lines. In English we can group the parts of speech
into two groups. The first group consists of open classes such as nouns,
verbs, adjectives. These classes expand and contract as people absorb new
technology or abandon old-fashioned morality. Every word in these classes
carries its own meaning and subject-matter. In the second group are the
closed classes such as pronouns and conjunctions. Each of these classes
contains a fixed, small stock of words; these words have no subject-matter,
and their meaning lies in the way they combine with open-class words to
form phrases. Quirk and Greenbaum [1973, p.18] list the following examples
of closed-class words: the, a, that, this, he, they, anybody, one, which, of,
at, in, without, in spite of, and, that, when, although, oh, ah, ugh, phew.

The Traditional Logicians’ claim is essentially this: ‘genuine logic’ is
the logic which assembles those valid argument schemas in which open-
class words are replaced by schematic letters and closed-class words are
not. Quirk and Greenbaum’s list already gives us A ‘and’, — ‘without’, V
‘anybody’, 3 ‘a’, and of course the words ‘not’, ‘if’, ‘then’, ‘or’ are also
closed-class words. The presence of ‘at’, ‘in spite of’ and ‘phew’ in their list
doesn’t imply we ought to have added any such items to our logic, because
these words don’t play any distinctive role in arguments. (The presence of
‘when’ is suggestive though.) Arguably it is impossible to express second-
order conditions in English without using open-class words such as ‘set’ or
‘concept’.

It’s a pretty theory. Related ideas run through Quine’s [1970]. But for
myself I can’t see why features of the surface grammar of a few languages
that we know and love should be considered relevant to the question what
is ‘genuine logic’.

We turn to the Proof Theorist. His views are not very helpful to us
here. As we saw in Section 20 above, there is in principle no difference
between a first-order proof calculus and a non-first-order one. Still, he
is likely to make the following comment, which is worth passing on. For
certain kinds of application of logic in mathematics, a stronger logic may
lead to weaker results. To quote one example among thousands: in a famous
paper [1965] Ax and Kochen showed that for each positive integer d there
are only finitely many primes which contradict a conjecture of Artin about
d. Their proof used heavy set theory and gave no indication what these
primes were. Then Cohen [1969] found a proof of the same result using no
set-theoretic assumptions at all. From his proof one can calculate, for each
d, what the bad primes are. By using the heavy guns, Ax and Kochen had
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gained intuition but lost information. The moral is that we should think
twice before strengthening our logic. The mere fact that a thing is provable
in a weaker logic may lead us to further information.

We turn to the Model Theorist. He was probably taught that ‘first-order’
means we only quantify over elements, not over subsets of the domain of a
structure. By now he will have learned (Section 21 above) that some kinds
of quantification over elements are not first-order either.

What really matters to a Model Theorist in his language is the interplay of
strength and weakness. Suppose he finds a language which is so weak that
it can’t tell a Montagu from a Capulet. Then at once he will try to use it
to prove things about Capulets, as follows. First he shows that something
is true for all Montagus, and then he shows that this thing is expressible in
his weak language L. Then this thing must be true for at least one Capulet
too, otherwise he could use it to distinguish Montagus from Capulets in L.
If L is bad enough at telling Montagus and Capulets apart, he may even
be able to deduce that all Capulets have the feature in question. These
methods, which are variously known as overspill or transfer methods, can
be extremely useful if Montagus are easier to study than Capulets.

It happens that first-order languages are excellent for encoding finite
combinatorial information (e.g. about finite sequences or syntax), but hope-
lessly bad at distinguishing one infinite cardinal or infinite ordering from
another infinite cardinal or infinite ordering. This particular combination
makes first-order model theory very rich in transfer arguments. For example
the whole of Abraham Robinson’s non-standard analysis [Robinson, 1967]
is one vast transfer argument. The Model Theorist will not lightly give
up a language which is as splendidly weak as the Upward and Downward
Lowenheim—Skolem Theorem and the Compactness Theorem (Section 17
above) show first-order languages to be.

This is the setting into which Per Lindstrém’s theorem came (Section 27
below). He showed that any language which has as much coding power as
first-order languages, but also the same weaknesses which have just been
mentioned, must actually be a first-order language in the sense that each of
its sentences has exactly the same models as some first-order sentence.

23 SET THEORY

In 1922 Skolem described a set of first-order sentences which have become
accepted, with slight variations, as the definitive axiomatisation of set the-
ory and hence in some sense a foundation for mathematics. Skolem’s ax-
ioms were in fact a first-order version of the informal axioms which Zer-
melo [1908] had given, together with one extra axiom (Replacement) which
Fraenkel [1922] had also seen was necessary. The axioms are known as
ZFC—Zermelo—Fraenkel set theory with Choice. They are listed in Ap-
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pendix C below and developed in detail in [Suppes, 1972] and [Levy, 1979].

When these axioms are used as a foundation for set theory or any other
part of mathematics, they are read as being about a particular collection V,
the class of all sets. Mathematicians differ about whether we have any ac-
cess to this collection V independently of the axioms. Some writers [Gddel,
1947] believe V is the standard model of the axioms, while others [von Neu-
mann, 1925] regard the symbol ‘V’ as having no literal meaning at all. But
everybody agrees that the axioms have a standard reading, namely as being
about V. In this the axioms of ZFC differ from, say, the axioms for group
theory, which are never read as being about The Group, but simply as being
true in any group.

These axioms form a foundation for mathematics in two different ways.
First, some parts of mathematics are directly about sets, so that all their
theorems can be phrased quite naturally as statements about V. For ex-
ample the natural numbers are now often taken to be sets. If they are sets,
then the integers, the rationals, the reals, the complex numbers and various
vector spaces over the complex numbers are sets too. Thus the whole of
real and complex analysis is now recognised as being part of set theory and
can be developed from the axioms of ZFC.

Some other parts of mathematics are not about sets, but can be encoded
in V. We already have an example in Section 17 above, where we converted
languages into sets. There are two parts to an encoding. First the entities
under discussion are replaced by sets, and we check that all the relations
between the original entities go over into relations in V' that can be defined
within the language of first-order set theory. In the case of our encoded
languages, it was enough to note that any finite sequence of sets a1, ..., a,
can be coded into an ordered n-tuple (ai,...,a,), and that lengths of se-
quences, concatenations of sequences and the result of altering one term of
a sequence can all be defined. (Cf. [Gandy, 1974].)

The second part of an encoding is to check that all the theorems one
wants to prove can be deduced from the axioms of ZFC. Most theorems of
elementary syntax can be proved using only the much weaker axioms of
Kripke-Platek set theory (cf. [Barwise, 1975]); these axioms plus the axiom
of infinity suffice for most elementary model theory too. (Harnik [1985] and
[1987] analyses the set-theoretic assumptions needed for various theorems
in model theory.) Thus the possibility of encoding pieces of mathematics
in set theory rests on two things: first the expressive power of the first-
order language for talking about sets, and second the proving power of
the set-theoretic axioms. Most of modern mathematics lies within V' or
can be encoded within it in the way just described. Not all the encodings
can be done in a uniform way; see for example Feferman [1969] for a way of
handling tricky items from category theory, and the next section below for a
trickier item from set theory itself. I think it is fair to say that all of modern
mathematics can be encoded in set theory, but it has to be done locally and
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not all at once, and sometimes there is a perceptible loss of meaning in the
encoding. (Incidentally the rival system of Principia Mathematica, using a
higher-order logic, came nowhere near this goal. As Godel says of Principia
in his [1951]: ‘it is clear that the theory of real numbers in its present form
cannot be obtained’.)

One naturally asks how much of the credit for this universality lies with
first-order logic. Might a weaker logic suffice? The question turns out to
be not entirely well-posed; if this other logic can in some sense express
everything that can be expressed in first-order logic, then in what sense is
it ‘weaker’? In case any reader feels disposed to look at the question and
clarify it, let me mention some reductions to other logics.

First, workers in logic programming or algebraic specification are con-
stantly reducing first-order statements to universal Horn expressions. One
can systematise these reductions; see for example Hodges [1993b, Section
10], or Padawitz [1988, Section 4.8]. Second, using very much subtler meth-
ods, Tarski and Givant [1987] showed that one can develop set theory within
an equational relational calculus £*. In their Preface they comment:

... L% is equipollent (in a natural sense) to a certain fragment
... of first-order logic having one binary predicate and containing
just three variables. ...It is therefore quite surprising that £*
proves adequate for the formalization of practically all known
systems of set theory and hence for the development of all of
classical mathematics.

And third, there may be some mileage in the fact that essentially any piece
of mathematics can be encoded in an elementary topos (cf. [Johnstone,
1977]).

Amazingly, Skolem’s purpose in writing down the axioms of ZFC was to
debunk the enterprise: ‘But in recent times I have seen to my surprise that
so many mathematicians think that these axioms of set theory provide the
ideal foundation for mathematics; therefore it seemed to me that the time
had come to publish a critique’ [Skolem, 1922].

In fact Skolem showed that, since the axioms form a countable first-
order theory, they have a countable model 2. In 2 there are ‘sets’ which
satisfy the predicate ‘x is uncountable’, but since 2 is countable, these ‘sets’
have only countably many ‘members’. This has become known as Skolem’s
Paradox, though in fact there is no paradox. The set-theoretic predicate ‘z
is uncountable’ is written so as to catch the uncountable elements of V', and
there is no reason at all to expect it to distinguish the uncountable elements
of other models of set theory. More precisely, this predicate says ‘there is
no 1-1 function from z to the set w’. In a model 2 which is different from
V, this only expresses that there is no function which is an element of 2
and which is 1-1 from z to w.
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According to several writers the real moral of Skolem’s Paradox is that
there is no standard model of ZFC, since for any model 2 of ZFC there
is another model B which is not isomorphic to 2 but is indistinguishable
from 2 by first-order sentences. If you have already convinced yourself that
the only things we can say about an abstract structure 2 are of the form
‘Such-and-such first-order sentences are true in 2’, then you should find
this argument persuasive. (See [Klenk, 1976; Putnam, 1980] for further
discussion.)

Skolem’s own explanation of why his argument debunks axiomatic set-
theoretic foundations is very obscure. He says in several places that the
conclusion is that the meaning of ‘uncountable’ is relative to the axioms of
set theory. I have no idea what this means. The obvious conclusion, surely,
is that the meaning of ‘uncountable’ is relative to the model. But Skolem
said that he didn’t believe in the existence of uncountable sets anyway, and
we learn he found it disagreeable to review the articles of people who did
[Skolem, 1955].

Contemporary set theorists make free use of non-standard—especially
countable—models of ZFC. One usually requires the models to be well-
founded, i.e. to have no elements which descend in an infinite sequence

(188) --- € a2 € a; € ap.

It is easy to see that this is not a first-order condition on models (for exam-
ple, Hodges [1972] constructs models of full first-order set theory with arbi-
trarily long descending sequences of ordinals but no uncountable increasing
well-ordered sequences—these models are almost inversely well-founded.)
However, if we restrict ourselves to models which are subsets of V', then
the statement that such a model contains no sequence (188) can be writ-
ten as a first-order formula in the language of V. The moral is that it is
simply meaningless to classify mathematical statements absolutely as ‘first-
order’ or ‘not first-order’. One and the same statement can perfectly well
express a second-order condition on structure 20 but a first-order condition
on structure B. (Cf. Section 20 above.)

Meanwhile since the 1950s a number of set theorists have been exploring
first-order axioms which imply that the universe of sets is not well-founded.
Axioms of this kind are called anti-foundation axioms; they are rivals to
the Foundation (or Regularity) axiom ZF3 in Appendix C below. For many
years this work went largely unnoticed, probably because nobody saw any
foundational use for it (forgive the pun). But in the 1980s Aczel [1988]
saw how to use models of anti-foundation axioms in order to build repre-
sentations of infinite processes. Barwise generalised Aczel’s idea and used
non-well-founded sets to represent self-referential phenomena in semantics
and elsewhere (cf. [Barwise and Moss, 1996]). Of course there is no prob-
lem about describing non-well-founded relations in conventional set theory.
The advantage of models of anti-foundation axioms is that they take the
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membership relation € itself to be non-well-founded, and it is claimed that
this allows us to fall back on other intuitions that we already have about
set membership.

24 ENCODING SYNTAX

I begin by showing that the definition of truth in the class V' of all sets is
not itself expressible in V' by a first-order formula. This will demonstrate
that there is at least one piece of mathematics which can’t be encoded in
set theory without serious change of meaning.

As we saw in the previous section, there is no problem about encoding
the first-order language L of set theory into V. Without going into details,
let me add that we can go one stage further and add to the language L a
name for each set; the resulting language L™ can still be encoded in V as
a definable proper class. Let us assume this has been done, so that every
formula of L™ is in fact a set. For each set b, we write "b™ for the constant of
L which names b. (This is nothing to do with Quine’s corners ~ 7. ) When
we speak of sentences of L being true in V', we mean that they are true in
the structure whose domain is V' where ‘€’ is interpreted as set membership
and each constant "b7 is taken as a name of b.

A class X of sets is said to be definable by the formula v if for every set
Q,

(189) V E ¢[a/z] iff a € X.
Since every set « has a name ", (189) is equivalent to:
(190) VE¢(Ta/z) if a € X

where I now write ¥("a™/x) for the result of putting "a™ in place of free
occurrences of x in .

Suppose now that the class of true sentences of LT can be defined by a
formula True of L™ with the free variable #. Then for every sentence ¢ of
LT, according to (190),

(191) VE True ("¢/x) it V E ¢.

But since the syntax of L is definable in V, there is a formula y of L™ with
just z free, such that for every formula ¢ of L with just « free, if "¢7 = b
then

(192) VEx("0/z) iff VE = True (Top("07/x) /).
Now put b = "x ™. Then by (191) and (192),

(193) VEx("0/z) it VE True ("x(T07/z)7/z) it V E =x("0"/z).
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Evidently the two ends of (193) make a contradiction. Hence the class of
true sentences of L can’t be defined by any formula of L. Thus we have
shown that

THEOREM 15. The class of pairs {¢,g) where ¢ is a formula of the lan-
guage L of set theory, g is an assignment in V and V' E @|g], is not definable
in 'V by any formula of the language L™ of set theory with names for arbi-
trary sets.

This is one version of Tarski’s [1935] theorem on the undefinability of
truth. Another version, with essentially the same proof, is:

THEOREM 16. The class of sentences ¢ of L which are true in V is not
definable in V' by any formula of L.

Of course the set b of all true sentences of L would be definable in V' if
we allowed ourselves a name for b. Hence the difference between Theorems
15 and 16. These two theorems mean that the matter of truth in V' has to
be handled either informally or not at all.

Lévy [1965] gives several refined theorems about definability of truth in
V. He shows that truth for certain limited classes of sentences of LT can
be defined in V; in fact each sentence of Lt lies in one of his classes. As I
remarked earlier, everything can be encoded, but not all at once.

Tarski’s argument was based on a famous paper of Godel [1931b], to
which I now turn. When formalising the language of arithmetic it is com-
mon to include two restricted quantifiers (Va < y) and (3z < y), meaning
respectively ‘for all x which are less than y’ and ‘there is an x which is less
than y, such that’. A formula in which every quantifier is restricted is called
a Ay formula. Formulas of form VZ¢ and 3Z¢, where ¢ is a Ay formula, are
said to be II; and ¥; respectively. (See under ‘Arithmetical hierarchy’ in
van Dalen (this Volume).)

N shall be the structure whose elements are the natural numbers; each
natural number is named by an individual constant "n™, and there are
relations or functions giving ‘plus’ and ‘times’. A relation on the domain of
N which is defined by a II; or ¥; formula is said to be a II; or ¥, relation
respectively. Some relations can be defined in both ways; these are said to
be A; relations. The interest of these classifications lies in a theorem of
Kleene [1943].

THEOREM 17. An n-place relation R on the natural numbers is Ay iff
there is a computational test which decides whether any given n-tuple is in
R; an n-tuple relation R on the natural numbers is X1 iff a computer can
be programmed to print out all and only the n-tuples in R.

Hilbert in [1926], the paper that started this whole line of enquiry, had
laid great stress on the fact that we can test the truth of a Ay sentence in a
finite number of steps, because each time we meet a restricted quantifier we
have only to check a finite number of numbers. This is the central idea of



ELEMENTARY PREDICATE LOGIC 85

the proofs from left to right in Kleene’s equivalences. The other directions
are proved by encoding computers into N; see Theorems 2.5 and 2.14 in
Van Dalen (this Volume).

Now all grammatical properties of a sentence can be checked by me-
chanical computation. So we can encode the language of first-order Peano
arithmetic into N in such a way that all the grammatical notions are ex-
pressed by A; relations. (This follows from Theorem 17, but Gdédel [1931b]
wrote out an encoding explicitly.) We shall suppose that this has been done,
so that from now on every formula or symbol of the language of arithmetic
is simply a number. Thus every formula ¢ is a number which is named by
the individual constant "¢'. Here "¢7 is also a number, but generally a
different number from ¢; "¢ is called the Gddel number of ¢. Note that
if T is any mechanically describable theory in the language of arithmetic,
then a suitably programmed computer can spew out all the consequences
of T one by one, so that by Kleene’s equivalences (Theorem 17), the set of
all sentences ¢ such that 7'+ ¢ is a 37 set.

We need one other piece of general theory. Tarski et al. [1953] describe
a sentence @) in the language of arithmetic which is true in N and has the
remarkable property that for every 3; sentence ¢,

(194) Q + ¢ iff N E ¢.

We shall use these facts to show that the set of numbers n which are not
sentences deducible from @) is not a ¥; set. Suppose it were a 31 set, defined
by the ¥; formula v. Then for every number n we would have

(195) NEy(™n/z) iff not(Q F n).

Now since all syntactic notions are A, with a little care one can find a 3
formula x with just z free, such that for every formula ¢ with just z free, if
¢ =n then

(196) NEx("n/z) iff NEY(H(n/z)"/x).
Putting n = "x " we get by (194), (195) and (196):

(197) N Ex("'n/x) it NEP(x(Tn/x)x)
iff not(Q F x("n/x))
iff not(N E x("n7/x))

where the last equivalence is because x("n7/z) is a ¥; sentence. The two
ends of (197) make a contradiction; so we have proved that the set of num-
bers n which are not sentences deducible from @ is not X;. Hence the set
of numbers which are deducible is not Aj, and therefore by Theorem 17
there is no mechanical test for what numbers belong to it. We have proved:
there is no mechanical test which determines, for any given sentence ¢ of
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the language of arithmetic, whether or not F (¢ — ¢). This immediately
implies Church’s theorem [1936]:

THEOREM 18. There is no mechanical test to determine which sentences
of first-order languages are logically valid.

Now we can very easily prove a weak version of Gédel’s [1931b] incom-
pleteness theorem too. Let P be first-order Peano arithmetic. Then it can
be shown that P+ @. Hence from (194) we can infer that (194) holds with
P in place of (). So the same argument as above shows that the set of
non-consequences of P is not X;. If P had as consequences all the sentences
true in NV, then the non-consequences of P would consist of (i) the sentences
¢ such that P F —¢, and (ii) the numbers which are not sentences. But
these together form a X; set. Hence, as Gddel proved,

THEOREM 19. There are sentences which are true in N but not deducible
from P.

Finally Tarski’s theorem (Theorems 15, 16) on the undefinability of truth
applies to arithmetic just as well as to set theory. A set of numbers which
is definable in N by a first-order formula is said to be arithmetical. Tarski’s
theorem on the undefinability of truth in N states:

THEOREM 20. The class of first-order sentences which are true in N is
not arithmetical.

Van Benthem and Doets (this Volume) show why Theorem 19 implies
that there can be no complete formal proof calculus for second-order logic.

For work connecting Gédel’s argument with modal logic, see Boolos [1979;
1993] and Smorytiski (Volume 9 of this Handbook).

25 SKOLEM FUNCTIONS

When Hilbert interpreted dz¢ as saying in effect ‘The element z which I
choose satisfies ¢’ (cf. Section 15 above), Brouwer accused him of ‘causing
mathematics to degenerate into a game’ [Hilbert, 1928]. Hilbert was de-
lighted with this description, as well he might have been, since games which
are closely related to Hilbert’s idea have turned out to be an extremely
powerful tool for understanding quantifiers.

Before the technicalities, here is an example. Take the sentence

(198) Everybody in Croydon owns a dog.

Imagine a game G: you make the first move by producing someone who
lives in Croydon, and I have to reply by producing a dog. I win if and only
if the dog I produced belongs to the person you produced. Assuming that
I have free access to other people’s dogs, (198) is true if and only if I can
always win the game G. This can be rephrased: (198) is true if and only if



ELEMENTARY PREDICATE LOGIC 87

there is a function F assigning a dog to each person living in Croydon, such
that whenever we play GG, whatever person z you produce, if I retaliate with
dog F(z) then I win. A function F with this property is called a winning
strategy for me in the game G. By translating (198) into a statement about
winning strategies, we have turned a statement of form Vx3dy¢ into one of
form AFVzi).

Now come the technicalities. For simplicity, I shall assume that our
language L doesn’t contain L, — or ¢», and that all occurrences of — are
immediately in front of atomic formulas. The arguments of Sections 5 and
15 show that every first-order formula is logically equivalent to one in this
form, so the theorems proved below hold without this restriction on L. 2
shall be a fixed L-structure. For each formula ¢ of L and assignment g in 2
to the free variables of ¢, we shall define a game G(2, ¢; g) to be played by
two players V and 3 (male and female). The definition of G(2, ¢;g) is by
induction on the complexity of ¢, and it very closely follows the definition
of F in Section 14:

1. If ¢ is atomic then neither player makes any move in G(2,¢;g) or
G, —¢;g9); player 3 wins G(2A,¢;9) if A F ¢[g], and she wins
G, —¢; g) if A FE —¢[g]; player V wins iff player 3 doesn’t win.

2. Suppose ¢ is ¥ A x, and g1 and g, are respectively the restrictions
of g to the free variables of 9, x; then player V has the first move in
G2, ¢; g), and the move consists of deciding whether the game shall
proceed as G(2,1; g1) or as G(2, x; g2)-

3. Suppose ¢ is ¥ V x, and g1, g2 are as in (2); then player 3 moves by
deciding whether the game shall continue as G(2, 1; g1) or G(, x; g2)-

4. If ¢ is Varp then player V chooses an element « of 2, and the game
proceeds as G(, ¢; g, a/x).

5. If ¢ is dzep then player 3 chooses an element a of 2, and the game
proceeds as G(2,v; g, a/x).

If g is an assignment suitable for ¢, and h is the restriction of g to the free
variables of ¢, then G(, ¢; g) shall be G(2, ¢; h). When ¢ is a sentence, h
is empty and we write the game simply as G(2, ¢).

The quantifier clauses for these games were introduced in [Henkin, 1961].
It is then clear how to handle the other clauses; see [Hintikka, 1973, Chap-
ter V]. Lorenzen [1961; 1962] (cf. also Lorenzen and Schwemmer [1975])
described similar games, but in his versions the winning player had to prove
a sentence, so that his games turned out to define intuitionistic provability
where ours will define truth. (Cf. Felscher (Volume 7 of this Handbook.) In
Lorenzen [1962] one sees a clear link with cut-free sequent proofs.
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A strategy for a player in a game is a set of rules that tell him how he
should play, in terms of the previous moves of the other player. The strategy
is called winning if the player wins every time he uses it, regardless of how
the other player moves. Leaving aside the game-theoretic setting, the next
result probably ought to be credited to Skolem [1920]:

THEOREM 21. Assume the axiom of choice (cf. Appendix C). Then for
every L-structure 2, every formula ¢ of L and every assignment g in A
which is suitable for ¢, A E ¢[g] iff player I has a winning strategy for the
game G(2, ¢; 9).

Theorem 21 is proved by induction on the complexity of ¢. I consider only
clause (4), which is the one that needs the axiom of choice. The ‘if’ direction
is not hard to prove. For the ‘only if’, suppose that 2 F Vzi)[g], where g is
an assignment to the free variables of Yatp. Then 2 F ¢[g, /] for every
element «a; so by the induction assumption, player 3 has a winning strategy
for each G(,¢;g9,a/z). Now choose a winning strategy S, for player 3 in
each game G(2,v¢; g, a/x). Player I’s winning strategy for G(2, ¢; g) shall
be as follows: wait to see what element « player V chooses, and then follow
Sq for the rest of the game.

Theorem 21 has a wide range of consequences. First, it shows that games
can be used to give a definition of truth in structures. In fact this was
Henkin’s purpose in introducing them. See Chapter III of Hintikka [1973]
for some phenomenological reflections on this kind of truth-definition.

For the next applications we should bear in mind that every first-order
formula can be converted into a logically equivalent first-order formula which
is prenez, i.e. with all its quantifiers at the left-hand end. (Cf. (127).)
When ¢ is prenex, a strategy for player 3 takes a particularly simple form.
It consists of a set of functions, one for each existential quantifier in ¢,
which tell player 3 what element to choose, depending on what elements
were chosen by player V at earlier universal quantifiers.

For example if ¢ is Yo3yVz3tR(z,y, z,t), then a strategy for player 3 in
G(2, ¢) will consist of two functions, a 1-place function F, and a 2-place
function F;. This strategy will be winning if and only if

(199) for all elements a and v, A F R(z,y,z,t)[a/z, Fy(a)/y,v/z,
Fy(a,v)/t].

Statement (199) can be paraphrased as follows. Introduce new function
symbols f, and f;. Write ¢" for the sentence got from ¢ by removing the
existential quantifiers and then putting f,(x), fi(z, z) in place of y, ¢ respec-
tively. So ¢" is VaVzR(z, f,(x), z, fi(z,2)). We expand 2 to a structure A"
by adding interpretations Ig-(f,) and Ig-(f:) for the new function symbols;
let F,, and F}; be these interpretations. Then by (199),

(200) F,, F; are a winning strategy for player 3 in G(2, ¢) iff A" F ¢".
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Functions F,, F; which do satisfy either side of (200) are called Skolem
functions for ¢. Putting together (200) and Theorem 21, we get

(201) A E ¢ iff by adding functions to A we can get a structure A" such
that A" F ¢".

A sentence ¢" can be defined in the same way whenever ¢ is any prenex
sentence; (201) will still apply. Note that ¢” is of the form V#Zy where ¢ has
no quantifiers; a formula of this form is said to be universal.

From (201) we can deduce:

THEOREM 22. Every prenez first-order sentence ¢ is logically equivalent
to a second-order sentence 3f¢" in which ¢~ is universal.

In other words, we can always push existential quantifiers to the left of
universal quantifiers, provided that we convert the existential quantifiers
into second-order function quantifiers 3f. Another consequence of (201)
is:

LEMMA 23. For every prenez first-order sentence ¢ we can effectively find
a universal sentence @ which has a model iff ¢ has a model.

Because of Lemma 23, ¢" is known as the Skolem normal form of ¢ for
satisfiability.

Lemma 23 is handy for simplifying various logical problems. But it would
be handier still if no function symbols were involved. At the end of Section
18 we saw that anything that can be said with a function constant can also
be said with a relation constant. However, in order to make the implication
from right to left in (201) still hold when relations are used instead of
functions, we have to require that the relations really do represent functions,
in other words some sentences of form (146) must hold. These sentences
are V3 sentences, i.e. they have form VZ3y where ¢ has no quantifiers.
The upshot is that for every prenex first-order sentence ¢ without function
symbols we can effectively find an V3 first-order sentence ¢, without function
symbols but with extra relation symbols, such that ¢ has a model if and only
if ¢ has a model. The sentence ¢, is also known as the Skolem normal
form of ¢ for satisfiability.

For more on Skolem normal forms see [Kreisel and Krivine, 1967, Chap-
ter 2].

Skolem also applied Theorem 21 to prove his part of the Lowenheim—
Skolem Theorem 14. We say that L-structures 21 and B are elementarily
equivalent to each other if exactly the same sentences of L are true in 2 as
in B. Skolem showed:

THEOREM 24. If L is a language with at most countably many formulas
and U is an infinite L-structure, then by choosing countably many elements
of A and throwing out the rest, we can get a countable L-structure B which
is elementarily equivalent to 2.
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This is proved as follows. There are countably many sentences of L which
are true in 2. For each of these sentences ¢, player 3 has a winning strategy
Se for G(2A, ¢). All we need to do is find a countable set X of elements of
2 such that if player V chooses his elements from X, all the strategies Sy
tell player 3 to pick elements which are in X too. Then X will serve as
the domain of 9B, and player 3 will win each G(8, ¢) by playing the same
strategy Sy as for G(2, ¢). Starting from any countable set Xy of elements
of A, let X,,+1 be X, together with all elements called forth by any of the
strategies Sy when player V chooses from X,,; then X can be the set of all
elements which occur in X, for at least one natural number n.

In his paper [1920], Skolem noticed that the proof of Theorem 21 gives
us information in a rather broader setting too. Let £,,, be the logic we get
if, starting from first-order logic, we allow formulas to contain conjunctions
or disjunctions of countably many formulas at a time. For example, in £,
there is an infinite sentence

(202) Ve(z =0V =1V =2V--)

which says ‘Every element is a natural number’. If we add (202) to the
axioms of first-order Peano arithmetic we get a theory whose only models are
the natural number system and other structures which are exact copies of it.
This implies that the Compactness Theorem (Theorem 13) and the Upward
Léwenheim—Skolem Theorem (Theorem 14) both fail when we replace first-
order logic by £,,..

Skolem noticed that the proof of Theorem 21 tells us:

THEOREM 25. If ¢ is a sentence of the logic £,,, and 2 is a model of ¢,
then by choosing at most countably many elements of A we can get an at
most countable structure B which is also a model of ¢.

So a form of the Downward Lowenheim—Skolem Theorem (cf. Theorem
14) does hold in £,, ..

To return for a moment to the games at the beginning of this section:
Hintikka [1996] has pointed out that there is an unspoken assumption that
each player is allowed to know the previous choices of the other player. (If
I don’t know what person in Croydon you have produced, how can I know
which dog to choose?) He has proposed that we should recast first-order
logic so that this assumption need no longer hold. For example, in his
notation, if ¢ is the sentence

(203) Vz(Jy/Vz)xr =y

then in the game G (2, ¢), player V chooses an element a of 2, then player
3 chooses an element b of 2 without being told what a is. Player 3 wins
if and only if @ = b. (One easily sees that if 2 has at least two elements,
then neither player has a winning strategy for this game.) These added
slash quantifiers greatly add to the expressive power of first-order logic. For
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example there is now a sentence which is true in a structure 2 if and only if 2
has infinitely many elements; there is no such sentence of ordinary first-order
logic. As a result, the compactness theorem fails for Hintikka’s logic, and
hence in turn the logic has no complete proof calculus. One can construct a
Tarski-style semantics for the new logic (by a slight adaptation of [Hodges,
1997b]), but it has some very odd features. It no longer makes sense to
talk of an element satisfying a formula; instead one has to use the notion of
a set of elements uniformly satisfying the formula, where ‘uniform’ means
essentially that player 3 doesn’t need any forbidden information about which
element within the set has been chosen. Hintikka claims, boldly, that the
extended logic is in several ways more natural than the usual first-order
logic.

26 BACK-AND-FORTH EQUIVALENCE

In this section and the next, we shall prove that certain things are definable
by first-order formulas. The original versions of the theorems we prove go
back to the mid 1950s. But for us their interest lies in the proofs which Per
Lindstrém gave in [1969]. He very cleverly used the facts (1) that first-order
logic is good for encoding finite sequences, and (2) that first-order logic is
bad for distinguishing infinite cardinals. His proofs showed that anything we
can say using a logic which shares features (1) and (2) with first-order logic
can also be said with a first-order sentence; so first-order logic is essentially
the only logic with these features.

I should say what we mean by a logic. A logic £ is a family of languages,
one for each similarity type, together with a definition of what it is for a
sentence of a language L of £ to be true in an L-structure. Just as in first-
order logic, an L-structure is a structure which has named relations and
elements corresponding to the similarity type of L. We shall always assume
that the analogue of Theorem 1 holds for £, i.e., that the truth-value of a
sentence ¢ in a structure 2 doesn’t depend on how 2{ interprets constants
which don’t occur in ¢.

We shall say that a logic £ is an extension of first-order logic if, roughly
speaking, it can do everything that first-order logic can do and maybe a bit
more. More precisely, it must satisfy three conditions. (i) Every first-order
formula must be a formula of £. (ii) If ¢ and ¢ are formulas of £ then so
are =p, oAV, dV U, ¢ = Y, d < Y, Vo, Jxd; we assume the symbols - etc.
keep their usual meanings. (iii) £ is closed under relativisation. This means
that for every sentence ¢ of £ and every 1-place predicate constant P not in
#, there is a sentence ¢¥) such that a structure 2 is a model of ¢ if and
only if the part of 2 with domain Iy (P) satisfies ¢. For example, if £ can
say ‘Two-thirds of the elements satisfy R(z)’, then it must also be able to
say ‘Two-thirds of the elements which satisfy P(z) satisfy R(z)’. First-order
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logic itself is closed under relativisation; although I haven’t called attention
to it earlier, it is a device which is constantly used in applications.

The logic £,,, mentioned in the previous section is a logic in the sense
defined above, and it is an extension of first-order logic. Another logic
which extends first-order logic is £, ; this is like first-order logic except
that we are allowed to form conjunctions and disjunctions of arbitrary sets
of formulas, never mind how large. Russell’s logic, got by adding definite
description operators to first-order logic, is another extension of first-order
logic though it never enables us to say anything new.

We shall always require logics to obey one more condition, which needs
some definitions. L-structures 2 and B are said to be isomorphic to each
other if there is a function F' from the domain of 2 to the domain of B
which is bijective, and such that for all elements ag,ay, ..., of A and every
atomic formula ¢ of L,

(204) A E (;5[040/3:0,041/:61,...] iff BE (lﬁ[F(ao)/Cﬂo,F(al)/ﬂfl,...].

It will be helpful in this section and the next if we omit the z;’s when writing
conditions like (204); so (205) means the same as (204) but is briefer:

(205) AFE (ZS[O[(),OQ, .. ] iff BF QS[F(CY(O,F(OQ), .. ]

If (204) or equivalently (205) holds, where F' is a bijection from the domain
of 2 to that of B, we say that F'is an isomorphism from 2 to B. Intuitively,
20 is isomorphic to B when 9B is a perfect copy of 2.

If £ is a logic, we say that structures 21 and B are £-equivalent to each
other if every sentence of £ which is true in one is true in the other. Thus
‘elementarily equivalent’ means £-equivalent where £ is first-order logic.
The further condition we impose on logics is this: structures which are
isomorphic to each other must also be £-equivalent to each other. Obviously
this is a reasonable requirement. Any logic you think of will meet it.

Now we shall introduce another kind of game. This one is used for com-
paring two structures. Let 2 and B be L-structures. The game EF,, (2; B)
is played by two players ¥V and 3 as follows. There are infinitely many moves.
At the ith move, player V chooses one of 2 and 8 and then selects an el-
ement of the structure he has chosen; then player 3 must pick an element
from the other structure. The elements chosen from 2 and B at the ith
move are written «; and f3; respectively. Player 3 wins the game if and only
if for every atomic formula ¢ of L,

(206) 2AFE ¢[a0,a1, . ] iff BE ¢[ﬁ0,ﬁ1, . ]

We say that 2 and B are back-and-forth equivalent to each other if player
3 has a winning strategy for this game.

The game EF, (2;B) is known as the Ehrenfeucht—Fraissé game of length
w, for reasons that will appear in the next section. One feels that the more
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similar 2 and B are, the easier it ought to be for player 3 to win the game.
The rest of this section is devoted to turning this feeling into theorems. For
an easy start:

THEOREM 26. If 2 is isomorphic to B then A is back-and-forth equivalent
to ‘B.

Given an isomorphism F' from 2 to B, player 3 should always choose so
that for each natural number ¢, 3; = F(«;). Then she wins. Warning: we
are talking set theory now, so F’' may not be describable in terms which any
human player could use, even if he could last out the game.

As a partial converse to Theorem 26:

THEOREM 27. If A is back-and-forth equivalent to B and both 2 and B
have at most countably many elements, then A is isomorphic to B.

For this, imagine that player V chooses his moves so that he picks each
element of 2 or B at least once during the game; he can do this if both
structures are countable. Let player 3 use her winning strategy. When all
the @;’s and §;’s have been picked, define F' by putting F(«;) = §; for each
i. (The definition is possible because (206) holds for each atomic formula
‘x; = x;’.) Comparing (205) with (206), we see that F' is an isomorphism.
The idea of this proof was first stated by Huntington [1904] and Hausdorff
[1914, p. 99] in proofs of a theorem of Cantor about dense linear orderings.
Fraissé [1954] noticed that the argument works just as well for structures as
for orderings.

Now we are going to show that whether or not 2 and B have count-
ably many elements, if 2 and B are back-and-forth equivalent then they
are elementarily equivalent. This was known to Fraissé [1955], and Karp
[1965] gave a direct proof of the stronger result that 2 is back-and-forth
equivalent to B if and only if % is £-equivalent to B. The interest of our
proof (which was extracted from Lindstrém [1969] by Barwise [1974]) is that
it works for any extension of first-order logic which obeys the Downward
Léwenheim—Skolem Theorem. To be precise:

THEOREM 28. Suppose £ is an extension of first-order logic, and every
structure of at most countable similarity type is £-equivalent to a structure
with at most countably many elements. Suppose also that every sentence of
£ has at most countably many distinct symbols. Then any two structures
which are back-and-forth equivalent are £-equivalent to each other.

Theorem 28 can be used to prove Karp’s result too, by a piece of set-
theoretic strong-arm tactics called ‘collapsing cardinals’ (as in [Barwise,
1973]). By Skolem’s observation (Theorem 25), Theorem 28 applies almost
directly to £,,,, (though one still has to use ‘countable fragments’ of £,,,,—I
omit details).

Let me sketch the proof of Theorem 28. Assume all the assumptions of
Theorem 28, and let A and B be L-structures which are back-and-forth
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equivalent. We have to show that 2l and B are £-equivalent. Replacing 8B
by an isomorphic copy if necessary, we can assume that 2 and 8 have no
elements in common. Now we construct a jumbo structure:

(207) ¢: @

The language of € shall contain two 1-place predicate constants 9% and
0%. Also for each predicate constant R and individual constant ¢ of L the
language of € shall contain two symbols R*, R® and c¢*,c¢®. The elements
in I¢(0%) are precisely the elements of 2, and each I¢(R*) and I¢(c¥)
is to be identical with Iy (R) and Ig(c) respectively. Thus € contains an
exact copy of 2. Likewise with % in place of 2. The remaining pieces of
¢ outside 2 and B consist of enough set-theoretic apparatus to code up all
finite sequences of elements of A and 5. Finally the language of ¢ shall
have a 2-place predicate constant S which encodes the winning strategy of
player 3 in the game EF,, (2;B) as follows:

(208) I¢(S) contains exactly those ordered pairs ({(7o,--.,Yn—1), Vn)
such that 7, is the element which player 3’s winning strategy
tells her to play if player V’s previous moves were vg, ..., Vn—1-

Now we wish to show that any sentence £ which is true in 2 is true also in B,
and wice versa. Since each sentence of £ contains at most countably many
symbols, we can assume without any loss of generality that the similarity
type of & and 9B has just countably many symbols; hence the same is true
for €, and thus by the assumption in Theorem 28, € is £-equivalent to a
structure ¢’ with at most countably many elements. The sets I/ (0%) and
I (0%) of €' define L-structures 2 and 9B’ which are £-equivalent to 2L
and B respectively, since everything we say in £ about 2 can be rewritten
as a statement about € using % and the R* and ¢*. (Here we use the fact
that £ allows relativisation.)

Since £ contains all first-order logic, everything that we can say in a first-
order language about € must also be true in ¢'. For example we can say in
first-order sentences that for every finite sequence o, ..., v,—1 of elements
of 2 or B there is a unique element =, such that ({(vo,...,Yn-1),Vn) is in
I¢(S); also that if player 3 in EF,,(2;B) reads I¢(S) as a strategy for her,
then she wins. So all these things must be true also for ', B’ and Ie (S).
(The reader can profitably check for himself that all this can be coded into
first-order sentences, but if he gets stuck he can consult [Barwise, 1974] or
[Flum, 1975].)

Therefore 2’ is back-and-forth equivalent to B’. But both 2" and B’
are bits of €', so they have at most countably many elements. Hence by
Theorem 27, 2’ is isomorphic to B’ and therefore 2’ is £-equivalent to B’.
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But 2" was L-equivalent to 2 and B’ was £-equivalent to 9. So finally we
deduce that A and B are £-equivalent.

In our definition of logics, we allowed the formulas to include some items
that go beyond first-order logic, but we made no change in the class of L-
structures. The methods of this section, and many of those of the next
section too (in particular Theorem 29), still work if one restricts attention
to finite structures. Ebbinghaus and Flum [1995] explore the implications
of this fact, with an eye on complexity theory.

27 LINDSTROM’S THEOREM

Theorem 28 showed that any extension of first-order logic which obeys a
form of the Downward Lowenheim—Skolem Theorem is in a sense no stronger
than the infinitary logic £.,. This result is relatively shallow and not
terribly useful; the logic £, is quite powerful and not very well understood.
(See Van Benthem and Doets [this Volume].) Lindstrém [1969] found a
stronger and more subtle result: he showed that if in addition £ obeys a form
of the Compactness Theorem or the Upward Léwenheim—Skolem Theorem
then every sentence of £ has exactly the same models as some first-order
sentence. Since a first-order sentence contains only finitely many symbols,
this result evidently needs some finiteness restriction on the sentences of £.
So from now on we shall assume that all similarity types are finite and have
no function symbols.

Lindstrém’s argument relies on some detailed information about Ehren-
feucht—Fraissé games. The Ehrenfeucht-Fraissé game EF,, (;B) of length
n, where n is a natural number, is fought and won exactly like EF,, (2(; B)
except that the players stop after n moves. We say that the structures
A and B are n-equivalent if player 3 has a winning strategy for the game
EF,(2;%B). If 2 and B are back-and-forth equivalent then they are n-
equivalent for all n; the converse is not true.

Ehrenfeucht—Fraissé games of finite length were invented by Ehrenfeucht
[1960] as a means of showing that two structures are elementarily equiva-
lent. He showed that if two structures 2 and B are n-equivalent for all finite
n then A and B are elementarily equivalent (which follows easily from The-
orem 28), and that if the similarity type is finite and contains no function
symbols, then the converse holds too. Fraissé’s definitions were different,
but in his [1955] he proved close analogues of Ehrenfeucht’s theorems, in-
cluding an analogue of the following:

THEOREM 29. Let L be a first-order language. Then for every natural
number n there is a finite set of sentences oy 1,...,0n,, of L such that:

1. every L-structure 2 is a model of exactly one of opy,...,0n,;, ; if
A F op,; we say that A has n-type oy ;;
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2. L-structures 2 and B are n-equivalent iff they have the same n-type.

Theorem 29 is best proved by defining a more complicated game. Sup-
pose Yo,...,Vk—1 are elements of 2 and dy,...,0r_1 are elements of B.
Then the game EF,, (2, v0,...,7-1;%,d0,...,0k—1) shall be played ex-
actly like EF,,(2;2B), but at the end when elements ayp, . .., a,—1 of 2 and
Bo,---,0n-1 of B have been chosen, player 3 wins if and only if for every
atomic formula ¢,

(209) Q[':¢[707"'77k—17a07"'7an—1]
ift B E P[do, ..., 0k—1,00,---,Fn-1]-

So this game is harder for player 3 to win than EF,,(2;B) was. We say
that (A, Y0, .-.,7k—1) i n—equivalent to (B,do,...,0k—1) if player I has
a winning strategy for the game EF,, (2,70, ..., Vk—1;B,00,.-.,0k-1). We
assert that for each finite k and n there is a finite set of formulas of |, 0% ,
etc. of L such that

1. for every L-structure 2 and elements 7p,...,vx—1 of A there is a
unique i such that 2 & of ;[y0,...,7k—1]; this of ; is called the n-
type of (Q[a%; v 77’671);

2. (A, v0,. -, Yk—1) and (B, do,...,0k_1) are n-equivalent iff they have
the same n-type.

Theorem 29 will then follow by taking k£ to be 0. We prove the assertion
above for each k by induction on n.

When n = 0, for each k there are just finitely many sequences (2, o, . ..,
~Yk—1) which can be distinguished by atomic formulas. (Here we use the fact
that the similarity type is finite and there are no function symbols.) So we
can write down finitely many formulas O'(Iil, 06“72 etc. which distinguish all
the sequences that can be distinguished.

When the formulas have been constructed and (1), (2) proved for the
number n, we construct and prove them for n + 1 as follows. Player 3 has
a winning strategy for EF,1(%,70,-- -, Yk=1;B, do, - - ., 0k—1) if and only if
she can make her first move so that she has a winning strategy from that
point onwards, i.e. if she can ensure that ag and 3y are picked so that

(A, 70, - - -, V-1, Qo) is n-equivalent to (B, do, - . -, dk—1, Bo)-
In other words, using (2) for n which we assume has already been proved,
player 3 has this winning strategy if and only if for every element a of A

there is an element 3 of B so that

(A, 70, - - -, Ye—1, ) has the same n-type as (B, 0do, - - .,0k—1, ),
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and vice versa with 2 and B reversed. But this is equivalent to the condi-
tion:

for every 1,
A Jzpo o, .., ye 1] iff B E Jzpot T[S0, ..., 0k 1]

)8 n,i

It follows that we can build suitable formulas oF +1,; by taking conjunc-

tions of formulas of form Eia:koﬁjgl or —Elsnkafﬁl, running through all the
possibilities.

When the formulas o ; have all been defined, we take oy,; to be of ;.
Thus Theorem 29 is proved.

Barwise [1975, Chapter VIL6] describes the formulas Ufm in detail in a
rather more general setting. The sentences oy, ; were first described by Hin-
tikka [1953] (cf. also [Hintikka, 1973, Chapter XI]), but their meaning was
mysterious until Ehrenfeucht’s paper appeared. We shall call the sentences
Hintikka sentences. Hintikka proved that every first-order sentence is log-
ically equivalent to a (finite) disjunction of Hintikka sentences. We shall
prove this too, but by Lindstrém’s proof [1969] which assumes only some
general facts about the expressive power of first-order logic; so the proof will
show that any sentence in any logic with this expressive power has the same
models as some first-order sentence, viz. a disjunction of Hintikka sentences.

Lindstréom proved:

THEOREM 30. Let £ be any extension of first-order logic with the two
properties:

(a) (Downward Léwenheim—Skolem) If a sentence ¢ of £ has an infinite
model then ¢ has a model with at most countably many elements.

(b) Either (Upward Léwenheim—Skolem) if a sentence of £ has an infinite
model then it has one with uncountably many elements; or (Compact-
ness) if A is a theory in £ such that every finite set of sentences from
A has a model then A has a model.

Then every sentence of £ has exactly the same models as some first-order
sentence.

The proof is by the same kind of coding as the proof of Theorem 28.
Instead of proving Theorem 30 directly, we shall show:

THEOREM 31. Let £ be any extension of first-order logic obeying (a) and
(b) as in Theorem 30, and let ¢ and 1 be sentences of £ such that no model
of ¢ is also a model of 1. Then for some integer n there is a disjunction o
of Hintikka sentences o, ; such that ¢ F o and ¢ F —o.

To get Theorem 30 from Theorem 31, let ¢ be —¢.
Suppose then that Theorem 31 is false. This means that there exist
sentences ¢ and ¢ of £ with no models in common, and for every natural
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number n there is no disjunction of Hintikka sentences oy, ; which separates
the models of ¢ from the models of 1. So by Theorem 29 there are, for each
n, n-equivalent structures 2,, and B,, such that 2,, is a model of ¢ and
B, is a model of ¢. By (a) we can assume that 2(,, and 2B, have at most
countably many elements (since the sentences ¢, ; A ¢ and o, ; A are both
in £).

So now once again we build a mammoth model ¢:

) @ @
@) @) @

0 1 2

=
—

The coding is more complicated this time. € contains a copy of the natural
numbers N, picked out by a predicate constant &Y. There are 2-place
predicate constants 0%,0%. I¢(0%) contains just those pairs (a,n) such
that n is a natural number and « is an element of 2,,. Similarly with
the %B,,. Also € has constants which describe each 2, and 9B,, completely,
and € contains all finite sequences of elements taken from any 2, or B,
together with enough set theory to describe lengths of sequences etc. There
is a relation I¢(S) which encodes the winning strategies for player 3 in all
games EF,,(2,,,%,,). Finally € can be assumed to have just countably many
elements, so we can incorporate a relation which sets up a bijection between
N and the whole of the domain of €.

We shall need the fact that everything salient about € can be said in
one single sentence x of £. Since N is in € and we can build in as much
set-theoretic equipment as we please, this is no problem, bearing in mind
that £ is an extension of first-order logic. Barwise [1974] and Flum [1975]
give details.

Now by (b), the sentence x has a model ¢’ in which some ‘infinite’ number
oo comes after all the ‘natural numbers’ I¢: (0), I/ (1), Ier (2), - . . in Ie (ON).
If the Upward Lowenheim—Skolem property holds, then this is because the
N-part of any uncountable model of x must have the same cardinality as
the whole model, in view of the bijection which we incorporated. If on the
other hand the Compactness property holds, we follow the construction of
non-standard models in Section 20 above.

By means of I¢(0%) and I/ (0%), the structure €' encodes structures
AL and B, and I¢ (S) encodes a winning strategy for player 3 in the
game EF (AL ;B ). All this is implied by a suitable choice of x. The
game EF (AL ;BL ) turns out to be bizarre and quite unplayable; but the
important point is that if player 3 has a winning strategy for this game,
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then she has one for the shorter and entirely playable game EF,, (A ;B ).
Hence 2 and B., are back-and-forth equivalent.

But now x records that all the structures encoded by &% are models of
#, while those encoded by 0% are models of 1. Hence 2 F ¢ but B/ F
¥. Since ¢ and ¢ have no models in common, it follows that B/ E —¢.
The final step is to use assumption (a), the Downward Léwenheim—Skolem
property, to prove a slightly sharpened version of Theorem 28. To be precise,
since AL, and B are back-and-forth equivalent and 2. is a model of the
sentence ¢ of £,/ must also be a model of ¢. (The proof is like that in
Section 26, but we use the fact that the similarity type is finite and has no
function symbols in order to boil down the essential properties of € into a
single sentence.) So we have reached a contradiction, and Theorem 31 is
proved.

The proof of Theorem 31, less the last paragraph, adapts to give a proof
of Craig’s Interpolation Lemma for predicate logic:

LEMMA 32. Let ¢ and v be sentences of first-order predicate logic such
that ¢ E —p. Then there is a first-order sentence o such that ¢ F 0,9 F =0,
and every constant symbol which occurs in o occurs both in ¢ and .

Let £ in the proof of Theorem 31 be first-order logic and let L be the
first-order language whose constants are those which occur both in ¢ and in
1. Using Section 18, we can assume that L has no function symbols. If 2 is
any model of ¢, then we get an L-structure 2|L by discarding all constant
symbols not in L, without changing the elements or the interpretations of the
symbols which are in L. Likewise for every model 8 of ¢. Now suppose that
the conclusion of Lemma 32 fails. Then for each natural number n there is
no disjunction o of Hintikka sentences oy, ; in the language L such that ¢ F o
and ¢ F =, and hence there are models 2,,,B,, of ¢, respectively, such
that ,|L is n-equivalent to 8, |L. Proceed now as in the proof of Theorem
31, using the Compactness and Downward Lowenheim—Skolem Theorems
to find a countable €’ with an infinite natural number co. Excavate models
A, BL of ¢, from € as before, noting this time that 2’ _|L is back-and-
forth equivalent to B’ _|L. Then by Theorem 27, since A/ _|L and B/ _|L are
countable and back-and-forth equivalent, they are isomorphic. It follows
that we can add to 2. interpretations of those symbols which are in ¢
but not in L, using B, as a template. Let ® be the resulting structure.
Then © F ¢ since AL F ¢, and D F ¢ since B/ F ¢. This contradicts the
assumption that ¢ F —). Hence Lemma 32 is proved.

Craig himself [1957b] used his interpolation result to give a proof of
Beth’s Definability Theorem [Beth, 1953]:

THEOREM 33. Let L be a first-order language and A a first-order theory
which uses the language L together with one extra n-place predicate constant
R. Suppose that for every L-structure 2 there is at most one way of adding
to A an interpretation of R so that the resulting structure is a model of A.
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Then A has a consequence of form Vzi,...,x,(R(x1,...,x,) < ¢), where
¢ is a formula in the language L.

Time’s winged chariot prevents a proper discussion of implicit and explicit
definitions here, but Beth’s theorem is proved in Section 5.5 of [Hodges,
1997a), and Section 2.2 of Chang and Keisler [1973]. There is some useful
background on implicit definitions in [Suppes, 1957, Chapter 8]. Craig’s
and Beth’s results have interested philosophers of science; see e.g. [Sneed,
1971].

28 LAWS OF THOUGHT?

This section is new in the second edition. I am not sure that it belongs at
Section 28, but this was the simplest place to add it.

Frege fought many battles against the enemies of sound reason. One bat-
tle which engaged some of his best energies was that against psychologism.
Psychologism, put briefly, was the view that the proper definitions of logical
notions (such as validity) make essential reference to the contents of minds.
Today psychologism in first-order logic is a dead duck; not necessarily be-
cause Frege convinced anybody, but simply because there is no room for
any mention of minds in the agreed definitions of the subject. The question
whether the sequent

pAqg F p

is valid has nothing more to do with minds than it has to do with the
virginity of Artemis or the war in Indonesia.

Still, psychology fights back. The next generation has to learn the
subject—and so we find ourselves asking: How does one teach logic? How
does one learn it? How far do people think logically anyway, without benefit
of logic texts? and what are the mental mechanisms involved?

During the 1980s a number of computer programs for teaching elemen-
tary logic came onto the market. Generally they would give the student a
sequent and allow him or her to build a formal proof on the screen; then
they would check it for correctness. Sometimes they would offer hints on
possible ways to find a proof. One can still find such programs today, but
mostly they are high-tech practical aids for working computer scientists,
and they work in higher-order logic as happily as in first-order. (There is a
review of teaching packages in [Goldson, Reeves and Bornat, 1993].) To a
great extent the introductory teaching packages were driven out by a better
program, Tarski’s World. This was a sophisticated stand-alone Macintosh
program put on the market in 1986 by a team of logicians and computer
scientists at Stanford University led by Jon Barwise and John Etchemendy
[1991].



ELEMENTARY PREDICATE LOGIC 101

Tarski’s World teaches the notation of first-order logic, by means of the
Hintikka games which we studied in Section 25 above. The student sees
on the screen a formal sentence, together with a ‘world’ which consists of
a checker board with various objects on it, some labelled with constant
symbols. The predicate symbols in the sentence all have fixed meanings
such as ‘z is a tetrahedron’ or ‘z is between y and 2’. The student is invited
to guess whether the given world makes the sentence true or false, and to
defend the guess by playing a game against the machine. (A little later but
independently, a group in Omsk produced a similar package for teaching
logic to students in Siberia. The Russian version didn’t use the notion of
games, and its ‘worlds’ consisted of graphs.)

As it stands, Tarski’s World is no use for learning about logical conse-
quence: in the first place it contains no proof theory, and in the second
place the geometrical interpretations of the predicate symbols are built into
the program, so that there is no possibility of constructing counterexamples
in general—even small ones. Barwise and Etchemendy found an innovative
way to plug the gap. Their next computer package, Hyperproof [Barwise
and Etchemendy, 1994], consists of a natural deduction theorem prover for
first-order logic, together with a device that allows students to represent
facts pictorially rather than by sentences. Thus the picture for ‘a is a small
tetrahedron’ is a small tetrahedron labelled a. The picture for ‘a is small’
is subtler: we have to represent a without showing what shape it is, so the
picture is a small paper bag labelled a. There are devices for reading off
sentences from pictures, and for adjusting pictures to fit stated sentences.
Proofs are allowed to contain both sentences and pictures.

The language is limited to a small number of predicates with fixed mean-
ings: ‘z is between y and z’, ‘@ likes y’ and a few others. The student is
allowed (in fact encouraged) to use geometrical knowledge about the proper-
ties of betweenness and the shape of the picture frame. As this suggests, the
package aims to teach the students to reason, rather than teaching them
logical theory. (On pictorial reasoning in first-order logic, see [Hammer,
1995] and his references.)

There has already been some research on how good Hyperproof is at
teaching students to reason, compared with more ‘syntactic’ logic courses.

Stenning, Cox and Oberlander [1995] found that one can divide students
into two groups—which they call DetHi and DetLo—in terms of their per-
formance on reasoning tests before they take a logic course. DetHi students
benefit from Hyperproof, whereas a syntactic logic course tends if anything
to make them less able to reason about positions of blocks in space. For
this spatial reasoning, DetLo students gain more advantage from a syntactic
course than from Hyperproof. Different patterns emerge on other measures
of reasoning skill. Stenning et al. comment:

...the evidence presented here already indicates both that dif-
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ferent teaching methods can induce opposite effects in different
groups of students, and that the same teaching method admin-
istered in a strictly controlled computerised environment using
the same examples, and the same advice can induce different
groups of students to develop quite distinct reasoning styles.

We need replications and extensions of this research, not least because there
are several ways in which logic courses can differ. Hyperproof is more picto-
rial than any other logic course that I know. But it also belongs with those
courses that give equal weight to deduction and consistency, using both
proofs and counterexamples; this is a different dimension, and Stenning et
al. suggest that it might account for some of their findings. Another fea-
ture is that students using computer logic programs get immediate feedback
from the computer, unlike students learning in a class from a textbook.

These findings are a good peg to hang several other questions on. First,
do classes in first-order logic really help students to do anything except
first-order logic? Before the days of the Trade Descriptions Act, one early
twentieth-century textbook of syllogisms advertised them as a cure for
blushing and stammering. (I quote from memory; the book has long since
disappeared from libraries.) Psychological experimenters have usually been
much more pessimistic, claiming that there is very little transfer of skills
from logic courses to any other kind of reasoning. For example Nisbett,
Fong, Lehman and Cheng [1987] found that if you want to improve a stu-
dent’s logical skills (as measured by the Wason selection task mentioned
below—admittedly a narrow and untypical test), you should teach her two
years of law, medicine or psychology; a standard undergraduate course in
logic is completely ineffectual. On the other hand Stenning et al. [1995]
found that a logic course gave an average overall improvement of about
12% on the Analytical Reasoning score in the US Graduate Record Exam
(I thank Keith Stenning for this figure). Their results suggest that the
improvement may vary sharply with the kind of logic course, the kind of
student and the kind of test.

Second, what is the brute native competence in first-order reasoning of
a person with average intelligence and education but no specific training in
logic? One of the most thorough-going attempts to answer this question
is the work of Lance Rips [1994]. Rips writes a theorem-proving program
called PSYCOP, which is designed to have more or less the same proficiency
in first-order reasoning as the man on the Clapham omnibus. He defends it
with a large amount of empirical evidence. A typical example of a piece of
reasoning which is beyond PSYCOP is:

NOT (IF Calvin passes history THEN Calvin will graduate).
Therefore Calvin passes history.

One has to say straight away that the man on the Clapham omnibus has
never seen the basic symbols of first-order logic, and there could be a great
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deal of slippage in the translation between first-order formalism and the
words used in the experiments. In Rips’ work there certainly is some
slippage. For example he regards Vzdy—¢(z,y) as the same sentence as
—JdxVyo(x,y), which makes it impossible for him to ask whether people
are successful in deducing one from the other—even though the two forms
suggest quite different sentences of English.

It might seem shocking that there are simple first-order inferences which
the average person can’t make. One suspects that this must be a misde-
scription of the facts. Anybody who does suspect as much should look
at the astonishing ‘selection task’ experiment of P. C. Wason [1966], who
showed that in broad daylight, with no tricks and no race against a clock,
average subjects can reliably and repeatedly be brought to make horren-
dous mistakes of truth-table reasoning. This experiment has generated a
huge amount of work, testing various hypotheses about what causes these
mistakes; see [Manktelow and Over, 1990].

Third, what are the mental mechanisms that an untrained person uses in
making logical deductions? Credit for raising this as an experimental issue
goes to P. N. Johnson-Laird, who with his various collaborators has put to-
gether a considerable body of empirical facts (summarised in Johnson-Laird
and Byrne [1991], see also the critiques in Behavioral and Brain Sciences,
16, 323-380, 1993). Unfortunately it is hard for an outsider to see what
thesis Johnson-Laird is aiming to prove with these facts. He uses some of
the jargon of logical theory to set up a dichotomy between rule-based rea-
soning and model-based reasoning, and he claims that his evidence supports
the latter against the former. But for anybody who comes to it from the
side of logical theory, Johnson-Laird’s dichotomy is a nonsense. If it has any
meaning at all, it can only be an operational one in terms of the computer
simulation which he offers, and I hope the reader can make more sense of
that than I could. Perhaps two things emerge clearly. The first is that
what he calls model-based reasoning is meta-level—it is reasoning about
reasoning; which leaves us asking what his theory of object-level reasoning
can be. The second claim to emerge from the mist is that we regularly use
a form of proof-by-cases, and the main cause of making deductions that we
shouldn’t have done is that we fail to list all the necessary cases. This is an
interesting suggestion, but I was unable to see how the theory explains the
cases where we fail to make deductions that we should have done.

It would be a pity to end on a negative note. This section has shown, I
hope, that at the end of the millenium first-order logic is still full of surprises
for the old hands and new opportunities for young researchers.
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IV: Appendices

These three appendices will show in outline how one can construct a
formal calculus of set theory, which in some sense formalises the whole of
mathematics. I have put this material into appendices, first because it is
turgid, and second because I should hate to resuscitate the dreadful notion
that the business of logicians is to produce all-embracing formal systems.

A. A FORMAL PROOF SYSTEM

We shall define a formal proof system for predicate logic with identity. To
cover propositional logic too, the language will have some sentence letters.
The calculus is a Hilbert-style system.

First we define the language L, by describing its similarity type, its set
of terms and its set of formulas (cf. Sections 3 and 13 above).

The similarity type of L is made up of the following sentence letters, indi-
vidual constants, predicate constants and function constants. The sentence
letters are the expressions p,, where n is a natural number subscript. The
individual constants are the expressions c,, where n is a natural number
subscript. The predicate constants are the expressions P, where n is a
natural number subscript and m is a positive integer superscript. The func-
tion constants are the expressions f,*, where n is a natural number subscript
and m is a positive integer superscript. A predicate or function constant is
said to be m-place if its superscript is m.

The terms of L are defined inductively as follows: (i) Every variable is
a term, where the variables are the expressions x,, with natural number
subscript n. (ii) For each function symbol 7 if 7,..., 7, are terms then
the expression f(71,...,7) is a term. (iii) Nothing is a term except as
required by (i) and (ii).
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The formulas of L are defined inductively as follows: (i) Every sentence
letter is a formula. (ii) The expression L is a formula. (iii) For each predicate
constant R, if 71, ..., T, are terms then the expression R™(7,...,7,) is a
formula. (iv) If o and 7 are terms then the expression (o0 = 7) is a formula.
(v) If ¢ and ¢ are formulas, then so are the expressions —¢, (¢ A ¥), (¢ V
¥), (¢ = V), (¢ « ). (vi) For each variable z,,, if ¢ is a formula then so
are the expressions Vz,¢ and 3z, ¢. (vii) Nothing is a formula except as
required by (i)—(vi).

A full account would now define two further notions, FV (¢) (the set of
variables with free occurrences in ¢) and ¢[ry - - - 7 /@, - - - x5, ] (the formula
which results when we simultaneously replace all free occurrences of w;; in
¢ by 7;, for each j,1 < j < k, avoiding clash of variables). Cf. Section 13
above.

Now that L has been defined, formulas occurring below should be read
as metalinguistic names for formulas of L. Hence we can make free use of
the metalanguage abbreviations in Sections 4 and 13.

Now we define the proof system—Iet us call it H. We do this by describing
the axioms, the derivations, and the way in which a sequent is to be read
off from a derivation. (Sundholm (see Volume 2) describes an alternative
Hilbert-style system CQC which is equivalent to H.)

The azioms of H are all formulas of the following forms:

Hl. ¢— (¥ —9)

H2. (¢ —=¢) = (0= —=x) = (¢—=X)
H3. (76 = ¢) = ((=¢ = =) = ¢)

Hi ((¢p—L)—>L)—¢

H5. ¢ =Y —=9oN1)

H6. oA =@, dNY Y

H7. ¢—=0oVYy, ¢Yv—=>0VY

H8. (¢ —=x) = (= x) = (VY —=Xx)
HY. (p=9¢) = (¥ =¢) = (0e79))
H10. (p = ¢) = (0= 1), (9o ¢) =»¢ —9)
H11. ¢[r/z] = Jz¢

H12. Va¢ — @[1/x]

H13. z ==z

Hl4. z =y — (¢ — ¢ly/x])
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A derivation (or formal proof) in H is defined to be a finite sequence

(A]-) <<¢1;m1>7"'7<¢n;mn>>

such that n > 1, and for each ¢ (1 < i < n) one of the five following
conditions holds:

1. m; =1 and ¢; is an axiom;
2. m; = 2 and ¢; is any formula of L;
3. m; = 3 and there are j and kin {1,...,i— 1} such that ¢y is ¢; — &;;

4. m; = 4 and there is j (1 < j < @) such that ¢; has the form ¢ — ¥,
x is a variable not free in ¢, and ¢; is ¥ — Vzy;

5. m; = 5 and there is § (1 < j < 4) such that ¢; has the form ¢ — ¥,
« is a variable not free in y, and ¢; is Jxyp — x.

Conditions 3-5 are called the derivation rules of the calculus. They tell us
how we can add new formulas to the end of a derivation. Thus (3) says that
if ¢ and ¢ — x occur in a derivation, then we can add x at the end; this is
the rule of modus ponens.

The premises of the derivation (A.1) are those formulas ¢; such that
m; = 2. Its conclusion is ¢,,. We say that ¢ is derivable from x1,...,xk in
the calculus H, in symbols

(A.2) X1,---,Xn FH Y,

if there exists a derivation whose premises are all among xi,..., X, and
whose conclusion is .

Remarks

1. The calculus H is sound and strongly complete for propositional and
predicate logic with identity. (Cf. Section 7; as in Section 15, this says
nothing about provable sequents in which some variables occur free.)

2. In practice most logicians would write the formulas of a derivation as
a column or a tree, and they would omit the numbers m;.

3. To prove the completeness of H by either the first or the third method
in Section 16, one needs to know for all sentences x1,--., Xn and ¥,

(A3) ile:"':Xn l_HI/}then X15---5Xn—-1 I_H XTL_>/¢)

Statement (A.3) is the Deduction Theorem for H. It remains true if we
allow free variables to occur in the formulas, provided that they occur
only in certain ways. See [Kleene, 1952, Sections 21-24] for details.
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4. Completeness and soundness tell us that if x1,...,x, and ¢ are sen-
tences, then (A.2) holds if and only if x1,...,xn, FE ¢. This gives an
intuitive meaning to such sequents. But when x1, ..., x, and ¢ are al-

lowed to be any formulas of L, then to the best of my knowledge there
are no natural necessary and sufficient conditions for (A.2) to hold. So
it seems impossible to explain what if anything (A.2) tells us, except
by referring to the fine details of the calculus H. This is a general
feature of Hilbert-style calculi for predicate logic, and I submit that it
makes them thoroughly inappropriate for introducing undergraduates
to logic.

5. If we are thinking of varying the rules of the calculus, or even if we
just want a picture of what the calculus is about, it is helpful to have
at least a necessary condition for (A.2) to hold. The following supplies
one. The wuniversal closure of ¢ is Yyi,...,yn¢, where y1,...,y, are
the free variables of ¢. Let ¢; be the universal closure of x1 A---Axn
and ¢2 the universal closure of ¢). Then one can show that

(A4) ifx1,...,xXn Fa ¢ then ¢; F ¢s.

The proof of (A.4) is by induction on the lengths of derivations. State-
ment (A.4) is one way of showing that H is sound.

6. The following derivation shows that g Jz(z = z):

(A5) x =2 (axiom H13)
r=z — Jz(z =x) (axiom H11)
dz(z = z) (from above by modus ponens)

Statement (A.4) shows the reason, namely:
(A6) Ve(z=axA(x=x— Jz(r=1r)))F Jz(z=1).

On any reasonable semantic interpretation (cf. Section 14 above), the
left-hand side in (A.6) is true in the empty structure but the right-
hand side is false. Suppose now that we want to modify the calculus
in order to allow empty structures. Then we must alter the derivation
rule which took us from left to right in (A.6), and this is the rule of
modus ponens. (Cf. Bencivenga (Volume 7 of this Handbook.) It is
important to note here that even if (A.4) was a tidy two-way impli-
cation, the modus ponens rule would not express ‘¢ and ¢ — ¢ imply
1’, but rather something of the form ‘VZ(¢ A (¢ — 1)) implies Vii)'.
As it is, the meaning of modus ponens in H is quite obscure. (Cf.
[Kleene, 1952, Section 24].)
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B. ARITHMETIC

I begin with naive arithmetic, not formal Peano arithmetic. One needs to
have at least an intuitive grasp of naive arithmetic in order to understand
what a formal system is. In any case [Peano, 1889] reached his axioms by
throwing naive arithmetic into fancy symbols.

Nuaive arithmetic is adequately summed up by the following five axioms,
which come from Dedekind [1888; 1967]. Here and below, ‘number’ means
‘natural number’, and I start with 0 (Dedekind’s first number was 1).

NA1l. 0is a number.

NA2. For every number n there is a next number after n; this next number
is called Sn or the successor of n.

NA3. Two different numbers never have the same successor.
NA4. 0is not the successor of any number.

NA5. (Induction axiom) Let K be any set with the properties (i) 0 is in K,
(ii) for every number n in K, Sn is also in K. Then every number is
in K.

These axioms miss one vital feature of numbers, viz. their order. So we
define < as follows. First we define an initial segment to be a set K of
numbers such that if a number Sn is in K then n is also in K. We say:

(B.1) m < n iff there is an initial segment which contains m but not n.
The definition (B.1) implies:
(B.2) If m < Sn then either m < n or m =n.

For future reference I give a proof. Suppose m < Sn but not m = n. Then
there is an initial segment K such that m is in K and Sn is not in K. Now
there are two cases. Case I: n is not in K. Then by (B.1), m < n. Case 2
n is in K. Then let M be K with n omitted. Since m # n, M contains m
but not n. Also M is an initial segment; for if Sk is in M but k is not, then
by the definition of M we must have k = n, which implies that Sn is in M
and hence in K; contradiction. So we can use M in (B.1) to show m < n.

(B.3) For each number m it is false that m < 0.

(B.3) is proved ‘by induction on m’, using the induction axiom NA5. Proofs
of this type are written in a standard style, as follows:

Case 1. m =0. Then m < 0 would imply by (B.1) that there was a set
containing 0 but not 0, which is impossible.
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Case 2. m = Sk, assuming it proved when m = k. Suppose Sk < 0.
Then by (B.1) there is an initial segment containing Sk and not 0. Since
K is an initial segment containing Sk, k is also in K. So by (B.1) again,
K shows that £ < 0. But the induction hypothesis states that not k < 0;
contradiction.

This is all one would normally say in the proof. To connect it with NA5,
let M be the set of all numbers m such that not m < 0. The two cases
show exactly what has to be shown, according to NA5, in order to prove
that every number is in M.

Here are two more provable facts.

(B.4) The relation < is a linear ordering of the numbers (in the sense of
(157)—(159) in Section 19 above).

(B.5) Every non-empty set of numbers has a first element.

Fact (B.5) states that the numbers are well-ordered, and it is proved as
follows. Let X be any set of numbers without a first element. Let Y be
the set of numbers not in X. Then by induction on n we show that every
number n is in Y. So X is empty.

Fact (B.5) is one way of justifying course-of-values induction. This is
a style of argument like the proof of (B.3) above, except that in Case 2,
instead of proving the result for Sk assuming it was true for k, we prove it
for Sk assuming it was true for all numbers < k. In many theorems about
logic, one shows that every formula has some property A by showing (i)
that every atomic formula has property A and (ii) that if ¢ is a compound
formula whose proper subformulas have A then ¢ has A. Arguments of this
type are course-of-values inductions on the complexity of formulas.

In naive arithmetic we can justify two important types of definition. The
first is sometimes called recursive definition and sometimes definition by
induction. It is used for defining functions whose domain is the set of natural
numbers. To define such a function F' recursively, we first say outright what
F(0) is, and then we define F'(Sn) in terms of F(n). A typical example is
the recursive definition of addition:

(B.6) m+0=m, m+Sn=S(m+n).

Here F(n) is m + n; the definition says first that F'(0) is m and then that
for each number n, F(Sn) is SF(n). To justify such a definition, we have
to show that there is exactly one function F' which satisfies the stated con-
ditions. To show there is at most one such function, we suppose that F' and
G are two functions which meet the conditions, and we prove by induction
on n that for every n, F(n) = G(n); this is easy. To show that there is at
least one is harder. For this we define an n-approzimation to be a function
whose domain is the set of all numbers < n, and which obeys the conditions
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in the recursive definition for all numbers in its domain. Then we show by
induction on n (i) that there is at least one n-approximation, and (ii) that
if m < k <n, fisa k-approximation and g is an n-approximation, then
fim) = g(m). Then finally we define F' explicitly by saying that F(m) is
the unique number h such that f(m) = h whenever f is an n-approximation
for some number n greater than m.

After defining + by (B.6), we can go on to define - by:

(B.7) m-0=0, m-Sn=m-n+m.

The functions definable by a sequence of recursive definitions in this way,
using equations and previously defined functions, are called primitive recur-
sive functions. Van Dalen [this Volume] discusses them further.

There is a course-of-values recursive definition too: in this we define F'(0)
outright, and then F'(Sn) in terms of values F'(k) for numbers k < n. For
example if F'(n) is the set of all formulas of complexity n, understood as in
Section 3 above, then the definition of F'(n) will have to refer to the sets
F (k) for all k < n. Course-of-values definitions can be justified in the same
way as straightforward recursive definitions.

The second important type of definition that can be justified in naive
arithmetic is also known as inductive definition, though it is quite different
from the ‘definition by induction’ above. Let H be a function and X a set.
We say that X is closed under H if for every element = of X, if z is in the
domain of H then H(x) is also in X. We say that X is the closure of Y
under H if (i) every element of Y is in X, (ii) X is closed under H, and (iii)
if Z is any set which includes Y and is closed under H then Z also includes
X. (Briefly, ‘X is the smallest set which includes Y and is closed under
H’.) Similar definitions apply if we have a family of functions Hy, ..., Hy
instead of the one function H; also the functions can be n-place functions
with n > 1.

A set is said to be inductively defined if it is defined as being the closure of
some specified set Y under some specified functions Hy, ..., H;. A typical
inductive definition is the definition of the set of terms of a language L. The
usual form for such a definition is:

1. Every variable and every individual constant is a term.

2. For each function constant f, if f is n-place and 71, ..., 7, are terms,
then the expression f(71,...,7,) is a term.

3. Nothing is a term except as required by (1) and (2).

Here we are defining the set X of terms. The so-called basic clause (1)
describes Y as the set of all variables and all individual constants. The in-
ductive clause (2) describes the functions H;, one for each function constant.
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Finally the extremal clause (3) says that X is the closure of Y under the H;.
(Many writers omit the extremal clause, because it is rather predictable.)

Frege [1884] may have been the first to argue that inductive definitions
need to be justified. He kept asking: How do we know that there is a smallest
set which includes Y and is closed under H? One possible justification
runs as follows. We recursively define F'(n), for each positive integer n, to
be the set of all sequences (by,...,b,) such that b; is in Y and for every
i (1 <i<mn), biyr is H(b;). Then we define X to be the set of all b such
that for some number n there is a sequence in F'(n) whose last term is b.
Clearly Y is included in X, and we can show that X is closed under H. If
Z is any set which is closed under H and includes Y, then an induction on
the lengths of sequences shows that every element of X is in Z.

Naive arithmetic, as described above, is an axiomatic system but not
a formal one. Peano [1889] took the first step towards formalising it, by
inventing a good symbolism. But the arguments above use quite an amount
of set theory, and Peano made no attempt to write down what he was
assuming about sets. Skolem [1923] threw out the set theory and made his
assumptions precise, but his system was rather weak. First-order Peano
arithmetic, a formalisation of the first-order part of Peano’s axioms, was
introduced in [Godel, 1931b].

P, or first-order Peano Arithmetic, is the following formal system. The
constants of the language are an individual constant 0, a 1-place function
symbol S and 2-place functions symbols + and e, forming terms of form
Sz, (xr+y),(zey). Write m as an abbreviation for S. .. (n times)...S0; the
symbols 7 are called numerals. We use a standard proof calculus for first-
order logic (e.g. the calculus H of Appendix A) together with the following
axioms:

Pl. Vay(Sz =Sy >z =y)
P2. Vz—(Sz =0)

P3. (Axiom schema of induction ) All sentences of the form VZ(4[0/x] A
Vz(¢p — ¢[Sz/x]) — Vo)

P4. Va(z+0=2)

P5. Vay(z+ Sy = S(z +y))
P6. Va(xe0=0)

P7. Vay(zeSy= (zey)+x)

The axioms are read as being just about numbers, so that Vz is read as
‘for all numbers z’. In this way the symbols 0 and S in the language take
care of axioms NA1 and NA2 without further ado. Axioms NA3 and NA4
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appear as P1 and P2. Since we can refer only to numbers and not to sets,
axiom NAJH has to be recast as a condition on those sets of numbers which
are definable by first-order formulas; this accounts for the axiom schema of
induction, P3.

P4-P7 are the recursive definitions of addition and multiplication, cf.
(B.6) and (B.7) above. In naive arithmetic there was no need to assume
these as axioms, because we could prove that there are unique functions
meeting these conditions. However, the proof used some set-theoretic no-
tions like ‘function defined on the numbers 0,...,n — 17, which can’t be ex-
pressed in a first-order
language using just 0 and S. So we have to put the symbols +, e into the
language—in particular they occur in formulas in the axiom schema of
induction—and we have to assume the definitions P4 — P7 as axioms.

Godel showed that with the aid of first-order formulas involving only
0,5,+ and e, he could explicitly define a number of other notions. For
example

(B.8) z<yiff z(z+ Sz=y).

Also by using a clever trick with prime numbers he could encode each finite
sequence (mj,ms,...) of numbers as a single number

(B.9) 2mitl gmatl gmatl

and he could express the relation ‘z is the yth term of the sequence coded by
z’ by a first-order formula. But then he could carry out ‘in P’ all the parts
of naive arithmetic which use only numbers, finite sequences of numbers,
finite sequences of finite sequences of numbers, and so on. This includes the
argument which justifies primitive recursive definitions. In fact:

1. For every recursive definition 6 of a number function, using just first-
order formulas, there is a formula ¢(x,y) such that in P we can prove
that ¢ defines a function obeying §. (If 0 is primitive recursive then ¢
can be chosen to be X1, cf. Section 24.)

2. For every inductive definition of a set, where a formula v defines the
basic set Y and formulas x define the functions H in the inductive
clause, there is a formula ¢(x) such that we can prove in P that the
numbers satisfying ¢ are those which can be reached in a finite number
of steps from'Y by H. (If ¢ and x are X1 then ¢ can be chosen to be
%)

These two facts state in summary form why the whole of elementary syntax
can be formalised within P.

There are some things that can be said in the language of P but not
proved or refuted from the axioms of P. For example the statement that P
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itself is consistent (i.e. doesn’t yield 1) can be formalised in the language of
P. In [1931b] Go6del showed that this formalised statement is not deducible
from P, although we all hope it is true.

There are some other things that can’t even be said in the language of
P. For example we can’t say in this language that the set X defined by ¢ in
(2) above really is the closure of Y under H, because that would involve us
in saying that ‘if Z is any set which includes Y and is closed under H then
Z includes X’. In the first-order language of P there is no way of talking
about ‘all sets of numbers’. For the same reason, many statements about
real numbers can’t be expressed in the language of P—even though some
can by clever use of rational approximations.

In second-order arithmetic we can talk about real numbers, because real
numbers can be represented as sets of natural numbers. Actually the natural
numbers themselves are definable up to isomorphism in second-order logic
without special arithmetical axioms. In third-order logic we can talk about
sets of real numbers, fourth-order logic can talk about sets of sets of real
numbers, and so on. Most of the events that take place in any standard
textbook of real analysis can be recorded in, say, fifth-order logic. See Van
Benthem and Doets [this Volume] for these higher-order logics.

C. SET THEORY

The efforts of various nineteenth-century mathematicians reduced all the
concepts of real and complex number theory to one basic notion: classes.
So when Frege, in his Grundgesetze der Arithmetik I [1893], attempted a
formal system which was to be adequate for all of arithmetic and analysis,
the backbone of his system was a theory of classes. One of his assumptions
was that for every condition there is a corresponding class, namely the class
of all the objects that satisfy the condition. Unfortunately this assumption
leads to contradictions, as Russell and Zermelo showed. Frege’s approach
has now been abandoned.

Today the most commonly adopted theory of classes is Zermelo—Fraenkel
set theory, ZF. This theory was propounded by Zermelo [1908] as an informal
axiomatic theory. It reached its present shape through contributions from
Mirimanoff, Fraenkel, Skolem and von Neumann. (Cf. Fraenkel’s historical
introduction to [Bernays and Fraenkel, 1958].)

Officially ZF is a set of axioms in a first-order language whose only con-
stant is the 2-place predicate symbol € (‘is a member of’). But all set
theorists make free use of symbols introduced by definition.

Let me illustrate how a set theorist introduces new symbols. The axiom
of Extensionality says that no two different sets have the same members.
The Pair-set axiom says that if  and y are sets then there is at least one set
which has just  and y as members. Putting these two axioms together, we
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infer that there is exactly one set with just z and y as members. Introducing
a new symbol, we call this set {z,y}. There are also some definitions which
don’t depend on the axioms. For example we say z is included in y, or
a subset of y, if every member of x is a member of y. This prompts the
definition

(Cl)y zCy iff Vitex—tey).

The language with these extra defined symbols is in a sense impure, but it
is much easier to read than the pure set language with only €, and one can
always paraphrase away the new symbols when necessary. In what follows
I shall be relentlessly impure. (On introducing new terms by definition, cf.
Section 21 above. Suppes [1972] and Levy [1979] are careful about it.)

The first three axioms of ZF are about what kind of things we choose
to count as sets. The axiom of Extensionality says that sets will count as
equal when they have the same members:

ZF1.  (Extensionality) Vey(x CyAy Caz =z =y)

We think of sets as being built up by assembling their members, starting
with the empty or null set 0 which has no members:

ZF2. (Null-set) Vt ¢t €0 (z ¢ y means ~(z € y).)

In a formal calculus which proves dz x = z, the Null-set axiom is derivable
from the Separation axiom below and can be omitted. The axiom of Reg-
ularity (also known as the axiom of Foundation) expresses—as well as one
can express it with a first-order statement—that X will not count as a set
unless each of the members of z could be assembled together at an earlier
stage than z itself. (So for example there is no ‘set’ z such that z € z.)

ZF3. (Regularity) Ve(z =0V Iy(y € z AVz(z €y = 2z € x))).

The next three axioms state that certain collections can be built up:
ZF4. (Pair-set) Vayt(t € {z,y} o t=azVt=y)

ZF5.  (Union) Vat(t € Jz < Jy(t € y Ay € x))

ZF6. (Power-set) Vzt(t € Pz <> t C z).

Axioms ZF3-ZF6 allow some constructions. We write {z} for {z,z},zUy
for J{z,y}, {z1,z2, 23} for {z1,22} U {x3},{xa,...,24} for {z1,@2, 23} U
{4}, and so on. Likewise we can form ordered pairs (z,y) = {{z}, {z,y}},
ordered triplets (z,y, z) = ((z,y), z) and so on. Building up from 0 we can
form 1 = {0},2 ={0,1},3 = {0,1, 2} etc.; the axiom of Regularity implies
that 0,1,2,... are all distinct. We can regard 0,1,2,... as the natural
numbers.
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We need to be able to express ‘@ is a natural number’ in the language of
set theory, without using informal notions like ‘and so on’. It can be done as
follows. First, following von Neumann, we define Ord(z), ‘x is an ordinal’,

by:
(C2) Ord(z)if Jr CaxAVyz(y€easAhzex s>y€zVzeyVy=2z).

This somewhat technical definition implies that the ordinals are linearly
ordered by €, and that they are well-ordered (i.e. every non-empty set of
them has a least element, cf. (B.5) above). We can prove that the first
ordinals are 0,1,2,.... Greek letters «, 3, are used for ordinals. For every
ordinal « there is a first greater ordinal; it is written « + 1 and defined
as a U {a}. For every set X of ordinals there is a first ordinal 8 which is
greater than or equal to every ordinal in X, viz. 8 = |J X. Each ordinal
has just one of the following three forms: either 8 = 0, or 3 is a successor
(i.e. of form a+ 1), or B is a limit (i.e. of form |J X for a non-empty set X
of ordinals which has no greatest member). Now the natural numbers can
be defined as follows:

(C.3) =z is a natural number iff Ord(z) AVy(y€ez+1—-y=0Vyisa
successor).

The remaining four axioms, ZF7-ZF10, are needed for talking about
infinite sets. Each of them says that sets exist with certain properties.
Nothing in ZF1-ZF6 implies that there are any infinite sets. We fill the gap
by decreeing that the set w of all natural numbers exists:

ZF7. (Infinity) Vt(t € w < t is a natural number).

The next axiom says that within any given set  we can collect together
those members w which satisfy the formula ¢(Z,w). Here ¢ is allowed to
be any first-order formula in the language of set theory, and it can mention
other sets 2. Strictly ZF8 is an axiom schema and not a single axiom.

ZF8. (Separation) VZzt(t € {w € z|p} <> t € {x A @[t/w]}.

For example this tells us that for any sets z and y there is a set whose
members are exactly those members w of x which satisfy the formula w € y;
in symbols this set is {w € z|w € y}. So we can introduce a new symbol
for this set, and write t Ny = {w € z|w € y}. Similarly we can define:
Nz ={w e JzVz(z €z > w € 2)},z xy = {t € PP(zUy)|Fzw(z €
rAw €yAt=(z,w))},2? = x x and more generally 2! = 2" x x. An
n-place relation on the set x is a subset of 2. We can define ‘ f is a function
from z to y’, in symbols f : z — y, by:

(C4) fix—oyiff fCurxyAVw(w e xz— Vit =2z < (w,t) € f)).
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We say f is an n-place function from x to y if f : 2" — y. When f: 2 — y,
we call  the domain of f, and we can define it in terms of f by: domf =
{w € UU f|Fz(w, z) € f}. We define the value of f for argument w, in
symbols f(w), as {t € JUU f|Fz((w,z) € f At € 2)}. A bijection (or
one-one correspondence) from x to y is a function f such that f:z — y
and every element z of y is of form f(w) for exactly one w in z. A sequence
of length « is defined to be a function with domain a.

The system of axioms ZF1-ZF8 is sometimes known as Zermelo set the-
ory, or Z for short. It is adequate for formalising all of naive arithmetic, not
just the finite parts that can be axiomatised in first-order Peano arithmetic.
The Separation axiom is needed. For example in the proof of (B.2) we had
to know that there is a set M whose members are all the members of K
except n; M is {w € K|w # n}.

First-order languages can be defined formally within Z. For example we
can define a similarity type for predicate logic to be a set whose members
each have one of the following forms: (i) (1,z), (ii) (2,m,x) where m is a
positive natural number, (iii) (3, m, ) where m is a positive natural number.
The elements of form (i) are called individual constants, those of form (ii)
are the m-place predicate constants and those of form (iii) are the m-place
function constants. Variables can be defined as ordered pairs of form (4,n)
where n is a natural number. Terms can be defined inductively by: (a)
Every variable or individual constant is a term. (b) If f is an m-place
function constant and 7y, ..., 7, are terms then (5, f,71,...,7,) is a term.
(c) Nothing is a term except as required by (a) and (b). By similar devices
we can define the whole language L of a given similarity type X. L-structures
can be defined to be ordered pairs (A, I) where A is a non-empty set and
I is a function with domain X, such that for each individual constant ¢
of X,I(c) € A (and so on as in Section 14). Likewise we can define F for
L-structures.

The two remaining axioms of ZF are needed for various arguments in
infinite arithmetic.

In Appendix B we saw how one can define functions with domain the
natural numbers, by recursion. We want to be able to do the same in set
theory, but with any ordinal as the domain. For example if the language L is
not countable, then the proof of completeness in Section 16 above will need
to be revised so that we build a chain of theories A; for i € a, where a is
some ordinal greater than w. One can try to justify recursive definitions on
ordinals, just as we justified definitions in Appendix B. It turns out that one
piece of information is missing. We need to know that if a formula defines
a function f whose domain is an ordinal, then f is a set. The following
axiom supplies this missing information. It says that if a formula ¢ defines
a function with domain a set, then the image of this function is again a set:

ZF9. (Replacement)
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VZe(Vywt(y € A p A plw/t] = t = w) —
FuVt(t € u < Jy(y € x A 9))).

Like Separation, the Replacement axiom is really an axiom schema.

The final axiom is the axiom of Choice, which is needed for most kinds of
counting argument. This axiom can be given in many forms, all equivalent
in the sense that any one can be derived from any other using ZF1-ZF9. The
form given below, Zermelo’s Well-ordering principle, means intuitively that
the elements of any set can be checked off one by one against the ordinals,
and that the results of this checking can be gathered together into a set.

ZF10. (Well-ordering)
Vz3fa (« is an ordinal and f is a bijection from « to ).

Axiom ZF10 is unlike axioms ZF4-7ZF9 in a curious way. These earlier
axioms each said that there is a set with just such-and-such members. But
ZF10 says that a certain set exists (the function f) without telling us what
the members of the set are. So arguments which use the axiom of Choice
have to be less explicit than arguments which only use ZF1-ZF9.

Using ZF10, the theory of ‘cardinality proceeds as follows. The cardinality
|z] or 2= of a set x is the first ordinal a such that there is a bijection from
a to . Ordinals which are the cardinalities of sets are called cardinals.
Every cardinal is equal to its own cardinality. Every natural number is a
cardinal. A set is said to be finite if its cardinality is a natural number. The
cardinals which are not natural numbers are said to be infinite. The infinite
cardinals can be listed in increasing order as wp,w;,ws,...,;wy is w. For
every ordinal « there is an ath infinite cardinal w,, sometimes also written
as N,. It can be proved that there is no greatest cardinal, using Cantor’s
theorem that for every set x, P(x) has greater cardinality than x.

Let me give an example of a principle equivalent to ZF10. If I is a set
and for each i € I a set A; is given, then II;A; is defined to be the set of all
functions f : I — [J{A:|i € I} such that for each j € I, f(j) € A;. I} A; is
called the product of the sets A;. Then ZF10 is equivalent to the statement:
If the sets A; in a product are all non-empty then their product is also not
empty.

The compactness theorem for propositional logic with any set of sentence
letters is not provable from ZF1-ZF9. A fortiori neither is the compactness
theorem for predicate logic. Logicians have dissected the steps between
ZF10 and the compactness theorem, and the following notion is one of the
results. (It arose in other parts of mathematics too.)

Let I be any set. Then an wltrafilter on I is defined to be a subset D of
P(I) such that (i) if e and b € D thenanbe D, (ii) ifa € Danda CbC I
then b € D, and (iii) for all subsets a of I, exactly one of I and I —a is in D
(where I — a is the set of all elements of I which are not in a). For example
itieIand D = {a € P(I)|i € a} then D is an ultrafilter on I; ultrafilters
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of this form are called principal and they are uninteresting. From ZF1-ZF9
it is not even possible to show that there exist any non-principal ultrafilters
at all. But using ZF10 one can prove the following principle:

THEOREM C.5 Let I be any infinite set. Then there exist an ultrafilter
D on I and for each i € I an element a; € D, such that for every j € I the
set {i € I|j € a;} is finite.

An ultrafilter D with the property described in Theorem C.5 is said to be
reqular. Regular ultrafilters are always non-principal.

To derive the compactness theorem from Theorem C.5, we need to con-
nect ultrafilters with structures. This is done as follows. For simplicity we
can assume that the language L has just one constant symbol, the 2-place
predicate constant R. Let D be an ultrafilter on the set I. For each i € I,
let 2A; be an L-structure with domain A;. Define a relation ~ on II; A; by:

(C.6) f~giff {iclf(d) =9g(i)} €D.

Then since D is an ultrafilter, ~ is an equivalence relation; write f~ for
the equivalence class containing f. Let B be {f~|f € II;A;}. Define an
L-structure B = (B, Is) by putting

(C.7) (f7,97) € In(R) iff {i € I[(f(2),9(2)) € La;(R)} € D.

(Using the fact that D is an ultrafilter, this definition makes sense.) Then
B is called the ultraproduct of the ; by D, in symbols II1p2; or D-prod ;.
By a theorem of Jerzy Los, if ¢ is any sentence of the first-order language
L, then

(C.8) TIp2; E ¢ iff {i € I|U; E ¢} € D.

Using the facts above, we can give another proof of the compactness
theorem for predicate logic. Suppose that A is a first-order theory and
every finite subset of A has a model. We have to show that A has a model.
If A itself is finite, there is nothing to prove. So assume now that A is
infinite, and let I in Theorem C.5 be A. Let D and the sets ag (¢ € A)
be as in Theorem C.5. For each i € A, the set {@|i € ag} is finite, so
by assumption it has a model 2;. Let B be IIp2;. For each sentence
¢ € Aag C {i € A|; F ¢}, so by (ii) in the definition of an ultrafilter,
{i € A|%; F ¢} € D. It follows by Lo§’s theorem (C.8) that B F ¢. Hence
A has a model, namely 8.

There are full accounts of ultraproducts in Bell and Slomson [1969] and
Chang and Keisler [1973]. One principle which often turns up when ultra-
products are around is as follows. Let X be a set of subsets of a set I.
We say that X has the finite intersection property if for every finite subset
{ai,...,a,} of X, the set a3 N---Na, is not empty. The principle states
that if X has the finite intersection property then there is an ultrafilter D
on I such that X C D. This can be proved quite quickly from ZF10.
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Some writers refer to ZF1-ZF9, without the axiom of Choice, as ZF;
they write ZFC when Choice is included. There are a number of variants of
ZF. For example the set-class theory of Godel and Bernays (cf. [Mendelson,
1987]) allows one to talk about ‘the class of all sets which satisfy the formula
¢’ provided that ¢ has no quantifiers ranging over classes. This extension
of ZF is only a notational convenience. It enables one to replace axiom
schemas by single axioms, so as to get a system with just finitely many
axioms.

Another variant allows elements which are not sets—these elements are
called individuals. Thus we can talk about the set {Geoffrey Boycott} with-
out having to believe that Geoffrey Boycott is a set. In informal set theory
of course one considers such sets all the time. But there seems to be no
mathematical advantage in admitting individuals into formal set theory;
rather the contrary, we learn nothing new and the proofs are messier. A
set is called a pure set if its members, its members’ members, its members’
members’ members etc. are all of them sets. In ZF all sets are pure.
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