2.3 Formulas

Having come this far, we can now capture the concepts we introduced above
in precise definitions. :

A language L for propositional fogic has its own reservoir of propesitional
letiers. We shall not specify these: we shail just agree to refer to them by
means of the metavariables p, 4, and 1, if necessary with subscripts appended.
Then there are the brackets and connectives (11, A, v, —,) which are com-
mon to all languages for propositional logic. Together these form the vocabu-
lary of L. In the syntax we define what is meant by the weli-formed
expressions { formulas, semtences} in L. The definition is the same for all
propositional langnages.

Definition 1

(i» Propositional letters in the vocabulary of L are formulas in L.

(i) If 4 is a formula in L, then - is too.

(i} I ¢ and ¢ are formulas in L., then (¢ ~), (B v), (b — o), and
(g <= 4) are too.

{iv} Only that which can be generated by the clauses (i)—{iii} in a finite num-
ber of sieps is a formula in L.,

The first three clauses of the definition give a recipe for preparing formulas;
(iv} adds that only that which has been prepared according to the tecipe is a
formula,

We illustrate the definition by examining a few examples of strings of sym-
bols which this definition declares are well-formed, and a few examples of
strings which cannot be considered well-formed. According to definition 1, p,

Rl Chapter Twe

T, ((op Aag o), and (0fp v g =) = 1) are examples of
formulas, while pg, ~{7—pl, ~ pg, and 2{{p — g v 1)) are not,

That p is a formula follows from clavse {i}. which states that all proposi-
tional letters of L are formwdas of L. And ~1—==p is a formula on the basis of
(i) and {ii): according to (i), p is a formula, and (ii) allews us to form a new
formula from a existing one by prefizing the negation symbol, an operation
which has been applied here four times in arow. In{{—p ~ q) ~ 1), clause {iii)
has been applied twice: it forms a new formula from two existing ones by first
introducing an opening, or left, bracket, then the first formuia, followed by
the conjunction sign and the second formda, and ending with a closing, or
right, bracket. In forming {{—p ~ g} ~ 1), the operation has been applied first
to —p and ¢, which resolts in {(—p A g}, and then to this reselt and r. Form-
ing disjunctions, implications, and equivalences also involves the introduc-
tion of brackets. This is evident from the fourth example, ((Dip v q}—
Sg) <+ 1), in which the outermost brackets are the result of forming the
equivalence of (—{p w g) = q) and r; the innermost are introduced by
the constructton of the disjunction of p and g; the middie ones result from the
introduction of the implication sign. Note that forming the negation does not
involve the introduction of brackets. It is not necessary, since no confusion
can arise as to what part of a formula a negation sign applies to: either it is
prefixed to a propositional letter, or to a formula that begins with a negation
sign, or it stands in front of a formaula, in whose constriction clause {1ii) was
the last to be applied. In that case the brackets introduced by (iii) make it
unambiguously clear what the negation sign applies to.

That pq, i.e.. the proposition letter p immediately followed by the proposi-
tion letter q, is not a formmla is clear: the only way to have two propositional
lefters together make up a fermula is by forming their conjunction, disivnc-
tion, implication, or equivalence. The string 7{——p) does not qualify, be-
cause brackets occcur in it, but no conjunction, disjonction, implication, or
equivalence sign, and these are the only ones that introduce brackets. Of
course, 71 Tp is well-formed. In A pq, the conjunction sign appears be-
tore the conjuncts, and not, as clause (iii) prascribes, between them. Also, the
brackets ave missing. In —{{p — q v 1)), finally, the brackets are misplaced,
the result being ambiguous between —{p — (g v ©)) and 2{{p = q) v).

Ezercise 1

For each of the following expressions, determing whether it is a formula of
propositional logic.

(1) 2{opwvaq
(i) p gl
(i) gl

{iv} (PP P
{v) ip—{p—ai}
(vit [p—+pr—={g—q)

Propositiopal Eogic 37

(vii} {[Pza Pk — Pl
(viii} (p—{p—=qi—g
{ixy (pvigwm)
(x) pvgwvr)

(X (Tpwvoop
(i} (pwvpl

Leaving off the cuter hrackets of formulas makes them easicr to read and

does not carry any danger of ambiguity. So in most of what follows, we prefer
o abbreviate {(7p A g} A 0) as Cpagar ((O{pv g g <) as
PV > o (pAgA@QAP)as (pAgAlgAap), (pog)
a8 p—+q, and (Tp —+q) as ~p =g, Analogously, we shall write ¢ » o,
VAL D o, A (D v x), ete,

Definition 1 enables us to associate a unique constraction tree with each

formul_a. (Cpv @ gl e, for example, must have been constructed
according to the tree given in figure (30).

{300 {(Hpval »70gl e (ilen)
(P v gl g) e LR EL

P v gl {ii) il (11}

P¥q (i) "'=|4 (i

p oA q (i “'l q (i)

|

q {i)
That each formula has a unique construction tree is due o the fact that, be-
cause of the brackets, logical formulas are unambiguous. Beside each rode in
the tree we see the number of the clavse from defaition 1 according o which
t!lf.‘.' formuia at that node is a formula. A formula obtained by applying clanse
{1i}_is said to be a negation, and v is said to be its #ain sige; similarly, the
main sign of a formula obtained by clause (iii) is the connective thereby intro-
duced (in the example, it is written next to the formula). The main sign of the
formula at the top of the tree is, for example, +», and the formula is an
equivalence. Note that the formulas at the lowest nodes are all atomic.

A formula ¢ appearing in the construction tree of ¢ is said to be a
subformuia of . The subformulas of —(p v @) are thus: Ip, q7 p v_:]";ﬁd—
—{p v g}, while the subformulas of (e v @)= Q) e roare: P q, I,
g, g, g, pvg, ip v g, ip v Q) —g, and (olpwvq)
— —|—r-—|q} «>r. Any subformuila ¢ of ff is a string of consecutive symbois
occurring in the string of symbols ¥, which is itself a formula. And con-
versely, it can be shown that any string of consecutive symbols taken from o
which is itself a formula is a subformula of . The proof will be omitted here.

35 Chaprer Two

Exercise 2

(a] Draw the construction trees of {p, <> p;) v —p, and p; <+ {p, v ;) and
of ((p v @) v or) = {p v (g vri) In each of the three cases give the
subformulas of the formula under consideration,

{b) Give all formulas that can be made out of the following sequence of sym-
bols by sipplying brackets: p » g — 1. Also sepply their construction
trees.

fc} Classify each of the following sentences as an alomic formula, a nega-
tion, a conjunction, a disjunction, an implication, or an equivalence.

(i) p—q (vity (p—=ghwig——p)
iy -p (vii} p,

(i} p (viit) (py—pd v

(iv) {prghafgap) (x) —(p AP AT,

v —p—q} [x) prfgamiivp

We now discuss the nature of the last clawse of definition 1. which reads:

Only that which can be generated by the clauses (i)—{iii} in a finite num-
ber of steps is a formula in L.

A clause like this is sometimes called the {nduction clanse of a definition. Tt
plays a special and important role. If someone were o define a sheep as that
which is the offspring of two sheep, we would not find this very satisfactory. It
doesn’t seem to say very much, since if vou don’t know what a sheep is, then
you are not going to be much wiser from hearing the definition, The definition
of a sheep as the offspring of two sheep is cirenlar. Now it might seem that
definition 1 is circular too: clzuse i), for example, states that a - followed by
a formala is a formula. But there is really no problem here, since the formula
¢ oceurring after the 1 iz simpler than the formula 7¢b, in the sense that it
coniaing fewer connectives, or equivalently, that it can be generated by
clauses (iy—(iil) in fewer steps. Given that this ¢ is a formula, it most be a
formula according to one of the clauses {i)—(iii). This means that either ¢ is a
propositional letter {and we know what these are}, or else it is a composiie
formula built up of simpler formulas. So ultimately everything reduces to
propositional letters.

In a definition such as definition 1, objects are said to have a given property
{in this case that of being a formula) if they can be constructed from other,
‘simpler” objects with that property, and ultimately from some group of ob-
Jects which are simply said to have that property. Such definitions are said to
be inductive or recursive,

The circular definition of a sheep as the offspring of two sheep can be
turned into an inductive definition (i) by stipulating two ancestral sheep, let us
call them Adam and Eve; and (ii} by ruling that precisely those things are
sheep which are required fo be sheep by {i) and the clause saying that the off-
spring of twa sheep is a sheep. The construction tree of any given sheep, ac-
cording 1o this inductive definition, would be a complete family tree Foing

Propositional Logic 39

back to the first ancestral sheep Adam and Eve {though contrary to usual prac-
tice with family trees, Adam and Eve will appear at the bottom).

Most of what follows applies equally to all propositional langnages, se in-
stead of referring to the formulas of any particular propositional language, we
shall refer to the formulas of propositional logic.

Because the concept of a formula is defined inductively, we have at our
disposal a simple method by which we can prove that all formulas have some
particular property which we may be interested in. It is this. In order to prove
that all formulas have a propecty A, it is sufficient to show that:

(i} The propositional letters all have property A;

(i) if a formula ¢ has A, then —¢b must too;

(i) if ¢ and o have property A, then (b ~], (v k. (- i}, and
f <) must oo,

This is sufficient because of mduction clause (iv), which ensures that every
composite formula must be composed of some simpler formula(s) from which
it inherits property A. A proof of this sort is called a proof by induction on the
complexity of the formula {or a proof by induction on the fength of the for-
mufa). As an example of a proof by induction on the complexity of a formula,
we have the following simple, rigorous proof of the fact that all formulas of

propositional logic have just as many right brackets as leff hrackets:

(i) Propositional letters have no brackets at all.

(i) If ¢ has the same nuember of right brackets as left brackets, then ¢
must oo, since no brackets have been added or taken away.

(i) 1f ¢ and each have as many right brackets as left brackets, then
{h Ao, (b v b, (b — o), and (¢h <) must too, since in all of these
exactly one left and one right bracket have been added.

Quite generally, for every inductive definition there is a corresponding kind of
proof by induction.

There are various points in this book where if complete mathematical rigor
had been the aim, inductive proofs would have been given. Instead we choose
merely to note that strictly speaking, a proef is required.

The fact that the concept of a formula has been strictly defined by definition
1 enables us to give strict inductive definitions of notions about formulas. For
exampie, let us define the function (¢b)° from formulas to natural numbers by:

=0,
{(Tg)* = ()" 7
{leh * 4]0 = (B} + ()" + 2, for each two-place connective *,

Then, for each formula ¢, ()" gives the number of brackets in the formupla .

Exercise 3 ¢

(a) The operator depth of a formula of propositional logic is the maximat
Iength of a *nest’ of operators occurring in it. E.e.. (o A a¥ A —r) has

P.004.-039

40 Chapter Two
operator depth 3. Give a precise definition of this notion, using the induc-
tive definition of formulas.
(b} Think of the construction trees of formulas. What concepts are defined by
means of the following (*simultanecus’) induction?
Ap =1 Bipm=1
Al = Al + 1 AT = max(B{g), Algn + 1)
Al o x} = max(AQP), (Ax)y+ 1 Blygrox) = max(B), B,
for the two-place connectives = Alg) + Alx) + 1},
Exercise 4 O
{a) What notions are described by the following definition by induction on
formulas?
pF=0 for propositional letiers p
(D)t = P
(pan*=g*+P*+] for two-place connectives ©
pr=
) = bt
(o)t =g+ +* for two-place connectives °

{b)

Prove by induction that for all formulas ¢, ¢ = @* + 1.

