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and the product of two numbers are associative functions, since for all num-
bers %, v, and z we have: (x + ¥} +z=x+{y +zjand (x X y) Xz =xX
(y x z). The difference function is not associative: {4 —2) — 2=10, blut
4 — {2 — 2) = 4. The associativity of a function f means that that we can write
x,f5,8%, . . . X,.fx, without having fo insert any brackets, since the value
of the expression is independent of where they are inserted. Th.us, for ex-
ample, we have: (x, + % + (% + 1,0 = % + {8, + x3) + x4} First one has
(Bt ) F g Hx) =5, it (Kt x ), since (xHy) Fz=x + iy +z)
for any %, ¥, and 2, so in particular for x = x,, ¥ = X, and 2 = %; + %,
And X, + (%, + (6, + X)) = %, + (x5 + %x3) + X,), since Xy + %y + %) =
(%, + x5 +ox,.

2.5 The Semantics of Propositional Logic

The valuations we have spoken of can now, in the terms just introduced, be
described as (unary) functions mapping formulas onto truth val.ues. But n_m
every function with formulas as its domain and truth values as its range will
do as a valuation. A valuation must agree with the intexpretations of the con-
nectives which are given in their truth tables. A function which attributes_the
value 1 1o both p and —p, for example, cannot be accepled as a valuation,
since it does not agree with the interpretation of negation. The truth table for
= (see (14)) miles that for every valuation ¥ and for all formulas é:

@) Viod) = 1iff Vig) =0,

This is because the truth value 1 is written under =gh in the truth table just in
case a () is written under ¢. Since ¢ can only have 1 or O as its tfuth value
{the range of ¥ contains only 1 and 03, we can express the same thing by:

(') Vo) = Oiff Vi) = L.

That is, a 0 is written under b just in case a 1 is written under ¢.
Similarty, according fo the other truth tables we have:

(i) Vi A= 1l Vi$) = Land Vi) = 1.
(i) V(g v P = Liff V() = Lor Vi) = 1.
(iv) V(d ) = 0iff Vig) = 1 and Vi) = 0.
(v} Vid ) =10 V{h) = V). .

Recall that or is interpreted as andior. Clause (iil) can be paraphrasgd
as: Wi v gy =0 iff ¥ip)=0 and ¥{$H)=0; {iv) as: Vi — ili}. = .1 iff
Vi) = 0 or ¥} = 1 (or = andlor). And if, perhaps somewhat artificially,
we treat the truth values 1 and 0 as ordinary numbers, we can also paraphrase
(iv) as: lﬁ-’fﬁ;ﬁ= { iffi@’-ﬁ_ﬁ"_ﬁf}ﬂ(since whilt 0 <0, 0<1,and 1 <1,
we do ndl Rave 1 =< 0). _ .

A valuation V is wholly determined by the truth values which it atLr.st_:utes
to the propositional letters, Once we know what 1t does with the propositions,
we can ealenlate the W of anv formula o by means of ¢ construction tree. If
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Vip) = 1 and ¥{g) = I, for example, then ¥{—{—p A —q)) can be calculated
as follows. We see that V(—p) = 0 and V(—q) =0, s0 Vi{-p A= 0and
s V{—{p A gl = B Now it should be clear that only the values which
¥ altributes 1o the propesition letters actually appearing in ¢ can have any
influence on V{g). So in order to see how the math value of ¢ varies with
valuations, it suffices to draw up what is called a composite iruth table, in
which the truth values of all subformulas of ¢ are calculated for every pos-
sible distribution of truth values among the propositional letters appearing in
. To continue with the same example, the composite troth table for the for-
mula ={7p A—g) is given as {31):

(310 L2 3| 4 5 6
Pl 7P {g | ipA g | Tp A Tg)

Vo[l ]1 ] {0 0 L

Vo |1 |0 0 1 0 1

Vo |01 i 0 0 1

v, lolg 1 [ i 0

The four different distributions of truth values among p and g are given in
columns 1 and 2. In columns 3 and 4, the corresponding truth values of —p
and ~1q have been given; they are caleulated in accordance with the truth table
for negation. Then in colemn 5 we see the truth values of —p A g, caleulated
from columns 3 and 4 using the truth table for conjunction. And finally, in
column 6 we see the truth values of =(—p A —q) correspending to each of the
four possible distributions of truth values among p and q, which are calculated
from column 5 by means of the truth table for negation.

The number of rows in the composite truth table For a formula depends only
on tile number of different propositional tetters occurring in that formula. Two
different propositional letters give rise to four rows, and we can say quite gen-
erally that # propositional letters give rise to 2" rows, since that is the number
of different distributions of the two truth values among » propositions. Every
valuation corresponds to just one row in a truth table_ So if we restrict our-
selves 1o the propositional letters p and g, there are just four possible valua-
tioms: the V|, ¥,, ¥;, and ¥, given in (31). And these four are the only
valvations which matter for formulas in which p and g are the only proposi-
tional letters, since as we have just scen, what V does with ¢ is wholly deter-
mined by what V does with the propositional letters actually appearing in .
This means that we may add new celumns to (31) for the evaluation of as
many formulas as we wish composed from just the letters p and q together
with connectives. That this is of some importance can be seen as follows.

Note that the composite forroula —{—p ~ g} is true whenever any cne of
the proposition letters p and g is true, and false if both p and q are false. This

is just the inclusive disjusction of p and q. Now consider the compaosite teuth
table given in (32}
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(32) 12 3| 4 5 6 7

plall-p|™a]|prog | Mpag jpvg
vili|t|l oo 0 1 1
violilofl o1 0 1 ]
viloltll 1| o 0 1 1
volololl 111 1 0 0

What we have done is add a new colunin fo the truth table mentioned above in
which the truth value of p v g is given for each distribution of truth values
among p and g, this being calculated in accordance with the truth table for the
disjunction. This shows clearly that the truth values of {7 p A~ gl andp v q
are the same under each valuation, since

Vid{mpaq=Vipva=1;

Vi{pag=Vipval=1;

Vi (paTg=Vipvag =1

Y (o(Tp Agl) = Valp v q) = 0.
So for every valuation V we have: ¥(—(—p A g} = Vip v q). The formulas

{—p Ay and p v gare (logically) equivalent. To put it more explicitly,ld
i || and  are said to be (logicalfy) equivalent just in casc for every valvation ¥ I|'
2 | we have: V{g) = V() The qualification fogical is to preciude any confosion

with material equivalence,

In order to see how all formulas of the form —{—d A ) and ¢b b be-
have under all possible valuations, a composite truth table just like (32) can be
drawn up by means of the truth tables for negation, conjunction, and disjunc-
tion. The result is given in {33):

BN ¢lw| || bA [ AT [PV

1|1 0 0 0 1 1
1|0 U 1 8] 1 1
0|1 3 0 0 1 1
a10 1 1 1 0 0

In this truth table it can clearly be seen that the equivalence of formulas of the
form — (b A ) and ¢ v i is quite general (for a general explication of
relationships of this sort, see theorem 13 in §4.2.2).

Consider another example. All formulas of the forms 7 and ¢ are
equivalent, as is apparent from (34}

B34 ¢ || ¢ | e

1 H 0 | 1

4] 1 0

This equivalence is known as the foew of doable negation. And the last ex-

ample we shall give is a truth table which demonstrates that (¢ v ) v x is
cquivalent to d v (0 v x), and (@ A ) A x 1o oA [ aox); see (35
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The latter two equivalences are known as the associativity of » and the asso-
ciativiey of v, respectively, by analogy with the concept which was introduced
in connection with fimctions and which bears the same name. (For a closer
connection between these concepts, see §2.6.) Just as with functions, the as-
sociafivity of v and A means that we can omit brackets in formulas, since
their meaning is independent of where they are placed. This assumes, of
course, that we are only interested in the truth values of the formulas. [n gen-
eral, then, we shall feel free to write pah A x, (P —4) A (- x) A
[x = et b Aalaoy is true just in case all of ¢, W, and ¥ are true, while
¢ v vy is true just in case any one of them is true.

Exercise ¢

A large number of well-known equivalences are given in this exercise. In
erder to get the feel of the method, it is worthwhile o demonstrate that a few
of them are equivalences by means of truth tables and further to try to under-
stand why they must hold, given what the connectives mean. The reader may
find this easier if the metavariables , 1, and x are replaced by senlences de-
rived from matural language.

Prove that in each of the following, all the formulas are logically equivalent
to cach other {independently of which fermuias are represented by ¢, 1, and ¥):
(@) $. 711G, b Ad DV dAD V), VDAY
(®) b, b — (i A )

(el e v ik, 7 A b (De Morsan's Law)

{d}y g A bl v vl (De Morgan's Law)

) ¢v b v, 1d =, (T A, (b )i

) &b nd i@ =), 2(Td v )

(g &=, 76 v, A, T g

(h} & -, ¥ — g {law of contraposition) sk B3

@) dod =P Alhodhidad)viodag bl

(D v ) ATl A, Tl < i), D v b, (and b, though officially
it is not a formula of propositional logic according to the definition’}

(K] oA (v X, (oA ) v (B A x) (distribative law)

(1 o i A x), v ) A (v ) (distribusive faw)

(m) (b iv i) = x, (b — xpinjld > 3 2lee

W o 0frrxh@oddailg2x 2o 2

) ¢—= =) pad)—y

The equivalence of ¢ v and fr v & and of  ~ b and | A b as mentioned
under (e} and (f) in cxercise 6 are known as the comprtativiy of v and A,
respectively. {For the connection with the commutativity of functions, see
§2.6.) Both the equivalence mentioned uvoder (L) and the equivalence of
¢ — & and 7 = b given in (g) in exercise 6 are known as the law of
COREPAPG RO,

Logically equivalent formulas always have the same _truth values. This
means that the formula x’ which results when one subformuld i of a formula
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] |

X i@@mﬁiﬂl&%ﬁﬂmm;ﬁmm itself be equivalent to x. This is
because the truth value of ¥* depends on that of ¥rin fust the same way as the
truth value of y depends on that of é. For example, if ¢ and i are equivalent,
then ¢ — & and & — @ are too. One result of this is that he brackets in.

Ak Ay can also be omitted where it appears a3 a subformula of some
Targer formula, so that we can write ¢ A A x) — 8, for example, instead of
e A Ax) =8 and 8 — (= W) A (o 3) A (x v ) instead of § —
(g — i) A (= % A (x v $)). More generally, we have here 2 useful way
of proving equivalences on the basis of other equivalences which are known to

hold. As an exampie, we shall demonstrate that ¢ — (= ¥ is equivalent
to > f—x). According to exercise 6(c}, ¢ — ( ¥} is equivalont to
(Do) —x. Now d A is equivalent to P A b (commitativity of AJ,
S0 (g A ) —+ x s equivalent 1o (ih A ) — x. Applying 6{o) once more, this
time with iy, ¢, and y instzad of ¢, ¥, and y, we see that (b » @) - x is
equivalent to i — (¢ — ). If we now link all these equivalences, we see that

(¢ A ) — x is equivalent to ¢ — (¢ — xJ). which is just what we needed.
Exercise 7

Show on the basis of equivalences of exercise 6 that the following formulas
are equivalent;

(3] ¢erandafesgh (commutativity af <)

(b) ¢—=ep and ¢

() f A A x)andy A (P A G}

d) ¢—~id—d)and -4

() ¢ocpand dh—ap

(£} foomip, oo, and b

In a sense two equivalent formulas & and i have the same meaning. We say
that ¢ and o have the same logical mearing, 50 the remark made ahove can
be given the following concise reformulation: logical meaning is conserved
under replacement of a subformula by another formula which has the same
logical meaning, et o

Itis werth dwelling on the equivalence of ¢ 2oy and ¢ +» —p for a moment
{exercise 7e). What this means is that A unless B and A provided not B have
the same logical meaning: in logical terms then, (36} means the same as (37)

{= {20}):

(36) We ace going to see a film tonight, Er_%d We are not going
to the beach this afternoon. -

(37)  We are going to see a film tonight, unless we aré going to the
beach this afternoon.

Analogous points can be made with reference to the equivalences given in ex-
ercise 7f: A unless not B and net A uness B have the same logical meaning as
A provided B, which means, among other things, that (38), (39} and (40
= (29)) all cxpress the same logical meaning:
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(38)  We are poing to see a fitm tonight unless the dishes have not a <=: and usually proceeds by first assuming B and then showing that A ingvi-
heen dome. tably follows. So the preof of our first theorem goes like this:
(39)  We are not going to see a film tonight enless the dishes have = Suppose ¢ and p are logically equivalent. This means that for
been done. ' every valuation V for the propositional letters occurring in ¢ and o,
¥ = ¥i{h). Th diti i
(40 We are going 1o see a film tonight, provided the dishes have h;ff;}\"(qb Ef)lm :eil conciton (v) on valuations says that we must
been done. < Suppose that V(¢ « ¥} = 1 for all valeations V. Then there
There are, of course, various reasons why one sentence may be preferred to can be no V such that V(@) # V(ys), since otherwise Vi oy =0,
another in any given context. What the equivalence of (38}, (39), and (40) S0 1_'0r every V it must hold that ¥ig) = Vi), whence ¢ and i are
shows is thal the reasons have nothing to do with the logical meaning of the togically equivalent. [ '
selzr{tgn;gs.tThe dlifn;:;epces b;t['fveﬁn t;wSﬂ SED:IE]EQESthm ?ffﬁumagil" 1o bf;l"’ : The box [ indicates that the proof has been completed.
F ame tr:lanh SIS O ) fen;;on ! '(;_ﬂ:ro Ej;: a}l ]s ];[ ei:f;;“_ il an cxplana- —Intheorem 2 in 34.2.2 we shall see thay formulas < such that V{(¢} = [ for ;
ton Is 1o be sought for the peculiar nature of a sentence like: I! every w:ra]uation V are of special interest. These formulas can be known to be |
{41)  We are not going to see a film tonight provided we 20 to the ||true without any information comcerning the truth of the parts of which they
beach this afternoon. {'are cmlnpn@ed. Such formulas ¢ are called fagtodogicsf and that & is a taue-
Lology is expressed by ¢ So theorem 1 can now be rewritten as follows:

That there is a comnection between material and logical equivalence is appar-
ent if we compare the truth tables of the logically equivalent formulas p and = > b iff  and p are logically equivalent,
Tp, and pag oand qap, with those of the material equivalences

[’H" f’}?i.g:

Now theorem 1 gives us an ample supply of tautologics all at once, for ex-

P> 7p and (p 4 )« g A p); see figures (42) and (43): ample: (v 91} v )} < (v (i v XD, {$ V i) — (g A9), de Mor
42 p | —p I ~—p i p <> mmp gan’s laws, ete. And given that Fip — r and E4fp » ¢ whenever FEh s, we

. o " ) have even more. (This last is because if for every V, Vig) = Vg, then we

0 , 0 | can be sure that for every V, V(¢) < V) and ¥(f) < Vig).) As examples of

tautofogies we now have all formulas of the form (g — b} — (i = =), and

43 p | 9 || prg | 9ap | pAgeigap : ail those of the form (@ v ¥) > X) = (b — ¥) A (4 — ). But there are

1 1 I . ) many rnore, for example. all formulas of the form @ — (i — &}, as is appar-
1 0 o 0 I ent from figure (44):
O] 1 0 0 1 Bhe [ ¢ || -0 | ¢o@—g

In both cases we see that just one truth value occurs in the columns for 1 i 1 1

the material equivalences, namely, 1. This is of course not entirely coinci- | 1l 1 0 l

dental. It is precisely because under any valuation ¥, Vip) = V{(——p) and | 0 o I i

Vip A gl =V¥i(gap) that we always have V{p < —p} =1 and Vip A Q) Exercise 8

=+ (g A pil = 1. Now this insight can be formulated as a general theorem: '
Show of the following formuias that they are tautologics (for cach ¢, W,

et of /.II

Thearem 1 0 . wirie o fiire e B and x):
¢ and b are logically equivalent iff for every valuation V, V(¢ « ) = 1. (i ® — ¢ (this actually follows from the equivalence of ¢ to itself)
- i} {drd)—e
Progf: Generally speaking, a proof of a theorem of the form: A iff B is iy B (d v )
divided into (i) a proof that if A then B; and (ii} a proof that if B then A. The v} (b — i) (ex falso sequitur quodiiber)
proof under (i) is headed by a =: and usually proceeds by first assuming A v} & v ¢ Uaw of the excluded middle)

and then showing that B inevitably follows. The proof under (ii) is headed by I e O R (R R P ¥
: ¥ . L
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vii) (@ =) v W~ ¢}
(visid  ({g = f) — ) = b (Peirce’s faw)

Obviously ail tautologies are equivalent to each other; if we always have
Vig) = I and V(i) = 1, then we certainly always have V{($) = V().

That a formula ¢ is not a tautclogy is expressed as Fdh, If o, then there
is a valuation ¥ such that V(g} = 0. Any such V is called a counterexample fo
& (s being a tauslogy). In §4.2.1 we shall go into this terminology in more
detail. As an example we take the formuola (p - q) — {—p — —g), which can
be considered as the schema for invalid arguments like this: ff one has money,
then one has friends. So if one has no money, then oue has wo friends. Con-
sider the truth table in (43):

mli; | {P—bq)—){‘lp—!_lq}
1

(45 plafip|~ale—=q]|p
1{1ffo]| o

.
| 1
1ol o 1 1] 1 1
afil 1 0 1 | 0
oln 1 1 | 1 |
It appears that #{p —q) — {—~p —-—q), since a ( occurs in the third row of
the treth table. This row is completely determined by the circumstance that
Y¥i{p) = 0 and V{g) = 1, in the sensc that for every valvation ¥V with ¥{p) = 0
and ¥(g) = 1 we bave Vi{{p — g} — (—p ——q)) == 0. For this reason we can
say that ¥(p) =0, Vig) = 1is a connterexample to (p — q} — (7p — —g).
We must be very clear that in spite of this we cannot say whether a sentence
of the form (¢ — ) — (7 =) s a tautology or not without more infor-
miation about the ¢ and . If, for examgple, we choose p for both ¢ and oy, then
we get the tautology (p —p) — (7p —1p), and if we choese p v -p and q
for ¢ and o, respectively, then we pget the tautology {{p v p}—q} —
{—(p v 7p) = ). But if we choose p and g for  and ¥, respectively, then
we arrive at the sentence {p — g) — {—p —1q), which, as we saw in (45), is
not a tautology.

Exercise 9

Determine of the foliowing formulas whether they are tautologies. If any is
not, give a counterexample. (Why is this exercise formulated with p and q,
and not with ¢ and ¥ as in exercise 87)

) (p=q—ig—p {iv) (pvaa(-p—>g)—q

(i pvip—q ) Up—=ql=pl=Up—q—q)
{in} ("pv g -=>Tipv g (v} {p—q—1)—={p—=ig—0)}
Closely related to the tautologies are those sentences ¢ such that for every
valuation ¥, ¥i¢) = 0. Such formulas are callﬂxgﬁ@iﬁh. Since they
are never true, only to utter a contradiction is virtually to contradict oneself.
Best known are those of the form ¢ A~ (see figure (463).
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@6y ¢ || e | A
1 “ 0 ‘ 0
0 ] 9

We can obtain many contradictions from

Thesrem 2
If ¢ is & tautology, then b is a contradiction.

Proof: Suppose ¢ is a tavtology. Then for every ¥, Vig) = 1_ But then for
every ¥V it must hold that (¥ Tp) = 0. So according 1o the definition, T is a
contradiction, [J

So g A} = (P A G (g — @), and e v ) are contradictions,
for example. An analogous proof gives us

Theprem 3

If ¢ 15 a contradiction, then g is a tautology.

This gives us some more tautologies of the form —{g ), the law of
Aoncontradiction. All contradictions are eguivalent, just like the tautologies.
Those formulas which are neither tawtologies nor contradictions are called
({ogical) contingencies. These are formulas ¢ such that there is both a valua-
tion ¥, with V,f¢} = | and a valuation V., with V. (¢h) = 0. The formula ¢
has, in other words, at least one | written under it in its truth table and at [east
one 0. Many formulas are contingent. Here are a few examples: p, g, p A g,
P=4q,p Vv Q. etc. It should be clear that not all contingencies are equivalent to
each other. One thing which can be said about them is-

Theorem 4

¢ is a contingency iff ~¢h is a CONNNgency.

Proof: (Another proof covld be given from theorems 2 and 3, but this direct
proof is no extra effort.)

= Suppose ¢ is contingent. Then there is ay,with Viigy = 1
and a ¥, with Vi() = 0. But then we have Vi) = 1| and
V(7)) = 0, from which it appears that & is contingent.

< Proceeds just like =. O

Exercise 10

Let ¢ .bc a tautology, tb a contradiction, amd ¥ a contingency. Which of the
follewing sentences are (i) taatological, (i) contradictory, (iii) contingent,
{iv} logically equivalent to .

M rp@Devn®Dean@d vinies mi) év Do
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Exercise 11
(1) Prove the following general assertions:
{a) H ¢ — o is a contradiction, then ¢ is a2 tautology and § a
contradiction.

(bY ¢ ~ i is a tautology iff ¢ and ¢ are both tantologies.
)] Refute the following general assertion by giving a formula to which it

does not apply.

If ¢b + 4fr is a tantology, then & is a tautology or 1 is a tautology.
{ii) & Prove the following general assertion:

If ¢b and ¢ have no propositional letters in common, then ¢ v Y is a

tantology iff ¢ is a tawtology or o is 2 taukology.
Refore we give the wrong impression, we should emphasize that propositional
logic is not just the science of tautalogies or inference. Our semantics can just
as well serve to model other important inteliectnal processes such as aocisi-
fation of information. Valuations on some set of propositional letters may be
viewed as {descriptions of ) states of the world, or situations, as far as they are
expressible in this vocabulary. Every formula then restricts attention to those
valuations {*worlds) where it holds: its “information content™. More dynami-
cally, successive new formulas in a discourse narmow down the possibilities,
as in figure (47).

(47) all valuations all valuztions
122522 [.ﬂ """""

s )
In the limiting case a unigue description of one actual world may result, Mote
the inversion in the picture: the more worlds there still are in the nformation

cange, the less information it contains. Propositions can be viewed here as
transformations on information contents, (in general) reducing uncertainty.

Exercise 12 &

Determine the valvations after the following three successive stages in a dis-
course {see (47}

{h "pafg—=nk 2) Mpalg-nhk 20— 3) 2pal@—oh
(p—=rp—r,r—ipwvq.



