3.6 The Semantics of Predicate Logic

The semantics of predicate logic is concerned with how the meanings of sen-
tences, which just as in propositional logic, amount to their truth valoes,
depend on the meanings of the parts of which they arc composed. But since
the parts need not themselves be sentences, or even formulas—they may also
be predicate letters, constants, or variables—we will not be able to restrict
ourselves to truth values in interpreting languages of predicate logic. We will
need functions other thag the valuations we'encountered withjin propositional
logic, and ultimately the truth values of sentences will have o reduce to the
interpretations of the constants and predicate letters and everything else which
appears in them. Valuations, however, retain a central tole, and it is instruc-
tive to start off just with thern and to build up the rest of the apparatus for the
interpretation of predicate logic from there. One first attempt to do this is
found in the fellowing definition, tn which valuations are extended to the fan-
guages of predicate logic. It turns out that this is in itself not enough, so re-
member that the definition is only preliminary.

Definition 5

A valuation for a language L of predicate logic is a function with the sentences
in L as its domain and {0, 1} as its range, and such that;

(i} V() = Ll V (d) = 0;
(i) Vg~ g) = 1 Vip) = Land Vig) = I;
(i) ¥(p v ) =1iT Vi) = lor V() = 1;



88 Chapter Three

(v) Vid—4)=Lilf ¥ig)=O0or Vh) = 1;

(v} Vid < )= 1ifl V{$} = Vi,

(vi) V{¥ad) = Liff V{[c/x]d) = [ for all constants ¢ in L

fwil) Wi{3xg) = L iff V{fc/x]) = 1 for at least one constant ¢ in L.

The idea is that ¥x4 is true just in case [¢/x1¢ is true for every ¢ in L, and that
dxgh is true just in case [c/x]¢h is true for at least one ¢ in L. This could be
motivated with reference to (30) and (91}. For (90} is true just in case EVEry
substitution of the name of an individual human being inko the open space in
(%1} results in a true sentence, And (92} is true just in case there is at least one
name the substitetion of which inte (917 resulis in a true sentence,

(90)  Eweryone is friendly.
(O ... is friendly.
(92)  Someone is friendly.

One thing should be obvious right from the start: in formal semantics, as in
informal semantics, it is necessary (o introduce a domain af discourse. For
(90 may very well be troe if the inhabitants of the Pacific state of Hawaii are
taken as the domain, but untrue if all human beings are included. So in order
to judge the truth value of {90), it is necessary to know what we are talking
about, i.e., what the domain of discourse is. $. Interpretations of a language L of
predmate logzc will thm:e.fo;e'rélwa}rs be with reference to some domain set 1. |
. It is usual to suppose that there is always at least one thing to talk about—so \l
_ftgy_ounyentmn the domain is not empty. o e

3.6.1 frterpretation Functions

We will aiso have to be more precise about the relationship berween the con-
stants in L and the domain D. For if we wish to establish the truth value of
{50} in the domain consisting of all inhabitants of Hawaii, then the truth value
of Liffuokalani is friendly is of importance, while the truth value of Gor-
bachev is friendly is of no importance at all, since Lilivokalani is the pame of
an inhabitant of Hawaii (in fact she is, or at least was, one of its queens),
while Gorbachey, barring unlikely coincidences, is not. Now it is a general
characteristic of a proper name in natural language that it refers to some fixed
thing. This is not the case in formal languages, where it is necessary to stipu-
late what the constants refer to. So an interpretation of L will have to include a
specification of what each constant in L refers to. In this manner, constants
refer to entities in the domain D, and as far as predicate logic 1s concerned,
their meanings can be restricted to the entities to which they refer. The inter-
retation of the constants in L. will therefore be an attribution of some entity in
mh—ﬁ'ﬂ]em that is, a function with the set of constanis in L as its
domain and D as its range. Such functions are called inferpretation functions.
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Kc) is called the interprefation of a constant ¢, or its reference or its denota-
tion, and if e is the entity in I¥ such that Ifc} = e, then c is said o be one of s

nenes (e may have several different narnes
Now we have a domain I and an mte_rpretatmn funcucnjbu! We are not

quite there yet, It could well be that

{93) Some are white.

is true for the domain consisting of all snowflakes without there really being
any English sentence of the form a is white in which a is the name of a snow-
flake. For although snowflakes tend to be white, it could well be that none of
them has an English name. It should be clear from this that definition 5§ does
not work as it is supposed to as soon as we admit domains with unnamed ele-
ments. So two appreaches are open to us:

A. We could stick to definition 5 but make sure that all objects in our de-
mains have names. In this case, it will sometimes be necessary to add con-
stants o a Ianguage if it does not contain enough constants to give a unigue
name o ever}rthlng n some domain that we are wnrk]ng with.

euutles lack names.

We shall take both approaches. Approach B seems preferable, because of
A's intuitive shortcomings: it would be strange if the truth of a sentence in
predicate logic were to depend on a contingency such as whether or not afl of
the entities being talked about had a name. After all, the sentences in predi-
cate logic do not seem to be saying these kinds of things about the domains in
which they are interpreted. But we shall aiso discuss A, since this approach,
where it is possible, is simpler and is equivalent to B.

3.6.2 Interpretation by Substitution

First we shall discuss approach A, which may be referred to as e inter-
pretation of gquantifiers by substitution. We shall now say more precisely what
we mean when we say that each element in the demain has a name in L, Given
the terminology introduced in §2.4, we can be quite succinet: the interpreta-
tion function I must be a function from_the constants in L_seea I3 This means
that for every element d in D, there is at least one constant ¢ in L such that
lic) = d. i.e., c is a name of d. S0 we will only be allowed to make use of the
definition if [ is a function onto D,

But even this is not wholly satisfactory. Se far, the meaning of predicate
letters has only been given syncalegorematically. This can be seen clearly if
the question is transplanted into natural language: definition 5 enables us o
know the meaning of the word friesdly onky to the extent that we know which
semtences of the form @ @5 friendly are true. 1If we want to give a direct, cate-
goreimalic interpretation of friendly, then the interpretation will have to he
such that the truth values of sentences of the form e i friendfy can be deduced

0
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from it. And that is the requirement that can be placed on it, since we have
restricted the meanings of sentences to their truth values. As a result, the only
thing which matters as far as sentences of the form a is friendly are concerned
is their fruth values. An interpretation which establishes which people are
iriendly and which are not will satisfy this requirement. For example, Gor-
Eerehev is friendly 1s true just in case Gorbachey is friendly, since Gorbachey
is one name for the man Gorbachev. Thus we can establish which people are
friendly and which are not jost by taking the set of all friendly people in our
domain as the interpretation of friendfy. In general then, as the interpretation
ItA) of a unary predicate Ietter A we take the set of all entities e in D such that
for some constant a, Aa is true and I(a) = e, So I{A) = {I(a}| Aais true} or, in
other words, Aa is tree just in case I(a} E I{A)

Interpreting A as a set of entities is not the only approach open to us, We
might also mterpret & a5 a property and determine whether a given element of
D has this property. Indeed, this seems to be the most natoral interpretation. If
it is a predicate letter, we would expect A o refer to a property. What we have
done here is fo take, not properties themselves, but the sets of all things
having them, as the interpretations of unary predicate letters. This approach
may be Jess natral, but if has the advantage of emphasizing that in predicate
logic the only thing we need to know in order to determine the truth or falsity
of a sentence asserting that something has some property is which of the
things in the domain bave that property. It does not matter, for example, how
we know this or whether things could be otherwise. As far as truth values are
concermed, anything else which may be said about the property is irrelevant.
Ii the set of friendly Hawaiians were to coincide precisely with the set of batd
ones, then in this approach, fidendly and bafd would have the same meaning,
at least if we took the set of Hawaiians as our domain. We say that predicate
letters are exiensional in predicate logic. It is characteristic of modern logic
that such restrictions are explored in depth and subsequently relaxed. More
than extensional meaning is attributed to expressions, for example, in infen-
sipral logical systems, which will be studied in volome 2.

To continue with appreach A, and assurning that 1 is a fonction onto D as
far as the constants are concerned, we turn to the interpretations of binary
predicaie letters. Just as with unary predicates, the interpretation of any given
binary predicate B does not have to do anything more than determine the d
and e in D for which Bab is true if [{a) = d and I(b} = e. This can be done by
interpreting B as a set of ordered pairs {d, ¢} in D* and taking Bab to be true if

"Kz) = d'and I{b) — e. The interpretation must consist of ordered pairs, be-
cause the order of 2 and b matters. The interpretation of B is, in other words, a
subset of D?, and we have KB) = {{I(a}, I{b)}| Bab is true} or equivalently,
Bab is true just in case {Ka}, I(b)} € I{B}. Here too it may seem mone inluitive
to interpret B as a relation on [ and to say that Bab is true if and only if I{2)
and I{0) bear this relation to each other. For reasons already mentioned, how-
ever, we prefer the extensional approach and interpret a binary predicate Ietter
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not as a relation itself but as the set of ordered pairs of domain elements which
{in the order they have in the pairs) have this relation to each other. And we
thus have the principte of extensionality here too: two relations which hold for
the same ordered pairs are identical, Ternary predicates and predicates of all
higher arities are given an analogous treatment. if C is a ternary predicate
letier, then I{C) is a subset of DY, and if C is an n-ary predicate, then I(C) is
a_subset of D". We shall now summarize all of this in the following two
definitions:

Defimition 6
A modef M for a language L of predicate logic consists of a domain D (this
being & nonempty set) and an interpretation function I which is defined on the

set of constants and predicate letters in the vocabulary of L and which con-
forms 1o the following requiremenis:

(3 if c is a constant in L, then Ifc) € Dy
{iiy if B is an n-ary predicate letter in L, then I{B) C Do,

Definition 7

If M is a model for 1. whose interpretation function I is a function of the con-
stants in L onte the domain D, then ¥, the valuation V based on M, is
defined as follows:

(i} IfAa, ...a,isan atomic sentence in L, then VplAa, ... a)=11f
and only if {Ita,), . . ., Ha, 1 € (A

() Vo) = 1iff V(g = 0.

(i) Vil A ) = 1iff Vi) = 1 and V() = 1.

{iv) Vnld v ) = 1 iff Vig(d) = 1 or V() = L ,

V) Vyld =) = 1T V() = Dor Vu(py = 1. b=

(v} Vild = ) = Liff Viu(d) = Viu{o.

(vil) V(W) = [ iff Vi ([e/x]dd = 1 for all constants ¢ i L.

(wiil] Vye({Ixeh) = 1 iff W, {[c/x]) = 1 for at least one constant ¢ in L.

If Vi) = 1, then ¢ is said to be zree in model M.

If the condition that I be a function onto > is not fulfilled, then approach B
will still enable us to define a svitable valuation function Vy,, though this func-
tion will no longer fulfill clanses (vii} and (viii} of definition 7. Before show-
ing how this can be done, we shall first give a few examples to illustrate
method A.

Example L

We turn the key to & translation into a model,

Key: Lxy: % loves v; domain: Hawaiians.

We take H, the set of all Hawaiians, as the domain of model M, Besides the
binary predicate L, our language must contain enowgh constants to give each
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Hawaiian a name; a,, . . . , 4, gy o Should be enough. Now for each § from 1
to 1,000,000 inclusive, a, most be interpreted as a Hawaiian: I{a,) € H, and
this in such a way that for each Hawaiian h there is some a, which is inter-
preted as that Hawaiian, that is, for which l{z,) = h. The interpretation of L

is the following subset of H?, i.e., the set of pairs of Hawaiians: {{d, ei|d

Toves e}. Lets us now determine the truth value of JxIw{Lxy ~ Lyx}, which is
the translation of some peaple love each other. Suppose that John loves Mary,
that Mary’s love for John is no less, that I{a,.} is Mary, and that Ifa,,) is John.
Then {I{ay), Ifa,; )} € UL}, and {lta.;}, Kax)) € [L). According o defini-
tion 7i, we have Vy(Layay) = 1 and Viy(Laga,) = 1, so that according
to definition 7iii, we have Viy(Lawa, ~ Laxa,) = 1. One application
of definition 7viii now gives us ¥y (IyiLa,y ~ Lyay)} = 1, and a second
gives us Vi {dxdwilxy ~ Lyx) = 1. Of course, it doesn’t matter at all
which constants are interpreted as which people. We could have shown that
Va(3=x3y{Lxy A Lyx)) = 1 just as well if I{a,} had been John and I(a,) had
been Mary. This is a general fact; the truth of a sentence acking constants is in
any model independent of the interpretations of the constants in that model—
wilh the proviso that everything in the domain has a name. A comiment such as
thiz should of course be proved, but we do not have the space here.

It is perhaps worth pointing out at this stage that semantics is not really
concerned with finding out which sentences are in fact true and which are
false. One’s ideas about this are unlikely to be influenced much by the analysis
given here. Essentially, semantics is concerned with the wavs the truth vafwes
of sentences depend on the meanings of their parts and the ways the truth
vetues of different sentences are refated. This is analogous to the analysis of
the notion of grammaticality tn linguistics. It is assumed that it is clear which
expressions are grammatical and which are not; the problem is to conceive a
systematic theory on the subject. _

The following ecxamples contain a few extremely simple mathematical
structures. We shall leave off the index M in V,, if it is clear what model the
valuation is based on.

Example 2

The language we will interpret contains three constants, a,, a,, and a,, and the
binary predicate letter R. The domain D of the model is the set of points
[P, P, P} represented in figure (94).

o) p Sy, p
P,

The constants are interpreted as follows: Ifa, ) = P; I(a,) = P,; and I(2,) = P,.
The mterpretation of R is the relation holding between any two not neces-
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sarily different points with an arrow pointing from the first to the second.
S0 the following interpretation of R can be read from figure (94): KR} =
{Py, P (P B, (D, P}, (P, B3 Representing this by means of a key, Rxy:
there is an arrow pointing from x to y_ Itis directly obvious that ¥(Ra,a,) = |,
¥{Ra,a;) = 1, ViRaga,} = 1, and ¥{Ra a,) = 1 in all other cases, V{Rbc) =
0, so that, for example, V{Ra,a,) = 0 and WiRa,a,) = 0. We shall now defer-
mine the truth value of ¥xJyRxy (which means every point has an arrow
Polirting awey from it ).

(a) V(IyRa,¥) = I follows from ViRa,a;) = 1 with definition 7wviii:
tb) VidyRa,y) = 1 follows from ViRasa;) = 1 with definition Tviii;
(e} ¥{dvRa;y) = | follows from ¥V {Rasa;) = 1 with definition 7wviii.

From fa), (b}, and (c}. we can now conclude that V{¥:3yRxy) = | with
defimition Fvii. The truth valee of YxIyRyx (which means every point has an
arrow potating to it} can be determined in just the same way:

(d} ¥(IyRya,] = 1 follows from ViRaya,} = 1 with definition Fwviii;
{e) ¥(3yRya,) = I follows from V(Raja,) = 1 with definition Tviii;
{f) ¥{dyRya,) = 1 follows from V{Ra,a,) = 1 with definition 7viii.

From (d), {2), and (f), we conclude that V(VadyRyx) = 1 with defini-
tion i,

Finally, we shall determine the truth value of Fa¥yRxy (which means:
there is a point from which arrows go to alf other pointsy:

(2) ¥(¥yRa,y) = 0 follows from ¥{Ra,a,;) = 0 with definition Tvii;
{h) V(¥yRa,y) = 0 follows from V{Ra,a,) = 0 with definition Fii;
(i} ¥{¥yRa,y) = O follows from V{Ra,a,) = 0 with definition 7vii.

From ig), ¢h), and {i}, we can now conclude that ¥(3x¥yFoy) = 0 with defi-
nition Fwiii.

Example 3

We consider a language with a unary predicate letter E, a binary predicate
letier L., and constants ag, a,, a,, a,, . . . . We take N, the set {0, 1, 2, 3,
-+ .} of natural numbers, as our domain. We choose V{a;) = i for every i and
interpret E as the set of even numbers, so that () = 10, 2, 4, 6, . . J We
interpret L as <<, so that I{L) = {{m, n) |m less than n}. As true sentences we
then have, for exampte, Fa,, La,a,, and ¥x3Iyilxy A Ey) (these mean 2 is
ever, 4 i less than 5, and for every number there is a larger number which is
odd, respectively). We shall expand on the last of these. Consider any number
m. This oumber must be ither even or odd.

If m is even, then m -+ 1 is odd, so that V(Ea, . ) =0and V{—Ea,, )= L
We also have Wila,a,,,) = 1, since m < m + i. From this we may conclude
that V{la,a,,, » Ea,,,) = 1, and finally that V{dy(La,y ~ "By} = 1.

If, on the other hand, mis odd, then m + 2 is odd too, so that Vi(Ea,_ .} =
(and ¥(—Ea_,,} = 1. We also have ¥ila a,,.0=1,sincem < m + 2, and
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thus ¥(La,a,., A 1Ea,,,,) = 1, 5o that we have V({3IyiLa,y A -Ey)) = 1 in
this case as well. Since this line of reasoning applies to an arbitrary number
m, we have for every a: V(Iy(La,y » "Ey)) = 1. Now we have shown that
Vi¥xIv(Lxy A =Ey)} = 1.

(95) p.@ ®P:

N/

&

Py

Exercise 7

Madel M is given in figure (95). The language has three constants a,, 8, and

a; tnterpreted as the points P, P, and Py, a unary predicate letter A inter-

preted as the predicate that applies to a point if it has a circle around it, and a

binary predicate letter R to be interpreted as in example 2.

{a) Describe exactly the interpretation function I of the model M.

(b)) Determine on the basis of their meaning the truth or falsity of the follow-
ing sentences on model M and then Justify this in detail, using defini-

tion 7
(i) dxIyJz(Rxy ~ Ay ~ Rxz A TAz),
{ii}  ¥xRxx.

(1) Vx(Rxx «» nAx).

(iv) IxIy{Rxy A Ax A AY).

(v} ¥x(Rxx — IwRxy A Ay,

{vi) ¥x{Ax — Jy Rxy).

{viz) JIxIy(Rxy A TRyx A Jz(Raz ~ Rzy)).

3.6.3 Imterpretation by means af assignmenis

We have now come to the explication of appreach B. To recapitolate: we
have a language L, a domain D, and an interpretation function 1 which maps
all of L's constants info D but whick is not necessarily a fonction onto 1. That
is, we bave no guarantee that everything in the domain Mant as
its name. This means that the truth of sentences Ix¢p and ¥xg can no jonger
be reduced 0 that of sentences of the form [c/x]¢. Actually, this reduction is
not that attractive anyway, if we wish to take the principle of compositionality
stetctly. This principle requires that the meaning (i.e., the truth value) of an
expression be reducibie to that of its composite parts. But sentences Ixgh and
Y do not bave seniences of the form [e/x]d as their component parts, be-
cause they are obtained by placing a quantifier in front of a formula o, which
normafly has a free varfable x and therefore js not even another sentence.
What this means is that we will have to find some way to attach meanings to
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E’L"E}MM we can no longer restrict ourselves (o the special case of
sentences.

We have reserved the name propositional funciion for formulas with free
variables. in part because sentences can be obtained by replacing the free vari-
ables with constants, and in part because a formula with free variables does
nol seem to €xpress a proposition but rather a property or a relation. But we
could also take a different view and say that formulas with free variables ex-
Press propositions just as much as sentences do, only these propositions are
about unspecified entities. This would be why they are suited to express prop-
erties and relations.

In order te see how a meaning can be attached to these kinds of formulas,
Iet us return again to (96} {={93m:

(96) Some are whitg,

This was to be interpreted in the domain consisting of all snowfakes. What
we want to do is determine the truth value of (96) with reference to the mean-
ing of x is white interpreted in the domain consisting of all snowflakes. Now
i, as we have emphasized, has no meaning of its own, so it must not refer to
sorne fixed entity in the domain as if it were a constant. This roay be compared
with the way pronouns refer in sentences like ke is white and she is black. But
precisely for this reason, it may make sense to consider x as the lemparary
name of some entity. The ide s to consider mode]l M together with an exita
atiribution of denotations to x and ali the other variables; x will receive a tem-
porary interpretation as an element in D. It is then quite easy 1 defermine the
truth valee of (96): (96) is true if and only if there is some attribation of a
denotation in the domain of ail snowRakes to x, such that x is wfiite becomes a
true senfence. In other words, (96) is true just in case there is some snowflake
which, if it is given the name %, will tiurn x is white into 4 true sentence—and
that is exactly what we need.
The meaning of

{97} They are all hiack,

i the domain consisting of all snowflakes can be handled in much the same
way: (97) is trwe if and only if every attribution of a denctation o x in this
domain turns x is black into a true sentence. Analyzing this idea brings up
maore technical problems than most things we have encountered so far,

In order to determine the truth valve of a sentence like FxIy(Hxy ~ Hyx),
It is necessary to work back (in two steps) to the meaning of its subformula
Hay ~ Hyx, which has two fiee variables. Obviously since no limitation is
placed on the length of formulas, such subformulas can conlain any number
of free variables. This means that we must deal with the meanings of formulas
with_any-number of free variables in order to determine the tmth values of
sentences. What matters is the truth value of a formula once all of its free
variables have been given a temporary denotation, buf it turns out that it is
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easiest to give all free variables a denotation at the same time. It is oun-
necessarily difficult to keep track of what free variables each formula has and
to assign denotations o them. What we do is use certain functions called «s-
sigrments which have the set of atl variables in the language as their domain,
and I, the domain of the model, as their range.

We will now describe the truth values a roodel M gives to the formulas of L
under an assignment g by means of a valuation function V) ,. This function
will be defined by modifying conditions (i}—{viii) of definition 7 above.

The complications begin with clause (). There is no problem as long as we
deal with an atomic formula containing only variables and no constants: we
are then dealing with Vi (Ax; . . . %}, and it is clear that we wish to have
Vi (A%, ... x,) = Lif and only if {g{x,), . . . , g(x,)} € I(A), since the
only difference from the earlier situation is that we have an assignment g at-
tributing denotations to varizbles instead of an interpretation I atiributing
denotations to constants. But it becomes more difficult to_write things up
propely for formulas of the form At, . . . &, in which t,, . . ., (, may.be
clther constants.or variables. What we do is introduce term as the collective
name for the constants and variables of L. We first define what we mean by
[lpy,e» the interpretation of a term t in a model M under an assignment g.

IDEﬁ]]iﬁl)n 8

'J[[timgg = 1ty if t is A constant In L, and

[tdys, = glty if t is a variable.
Mow we can generatize (1) in definition 7 to:
V!H,g(ﬁt] e tn:l = 1iff {Etl]bi.g:l ELRL | [[tl'.]]]ﬁ'l,g.::I S I(A}-

It is clear that the value of Vi {At, . . . {,) does not depend on the value of
g{y) if y does not appear among the terms £, . . . . &,

Clauses (i) to {vi) in definition 7 can be transferred to the definition of Vi, ,
without modification. The second clause we have to adapt is (viii}, the clause
for Wy .(Ayd). Note that ¢ may have free variables other than y. Let us return
to the model given in example 1. only this time for a language lacking con-
stants. We take Lxy as our b, Now how is Vi, ,(IyLxy) to be defined? Under
an assignment g, X is treated as if' it denotes g(x), so IyLxy means that gix}
loves someone. So the definition must result in Wy  (3yLxy) = 1 if and only if
there is a d € H such that {g(x), 4j € I(L). The idea was to reduce the mean-
ing of IyLxy to the meaning of Lxy. But we cannot take ¥y (3yLxy).= 1 if
and only if ¥y (Lxy) = 1, since Vi (Lxy) = 1if and only if {g(x}, gy)) €
IfLy, that is, if and oaly if gix} loves g(y). For it may well be that g(x) loves
someone without this someone being g(y). The existential quantifier forces us

to consider assignments other than g which ooly differ from g in the value
which they assign to y. since the denowation of x may clearly not be changed.
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On the one hand, if there is an assignment g which differs from g only in
the value it assigns to y and such that V¥, .(Lxy} = 1, then {g'(x), g'(y)) €
KL}, and thus, because gix} = g'(x), {gix), g'{¥)} € I{L). 5S¢ for some d € H,
{g(x), d} € KL). On the other hand, if there is some 4 € H such that {g{x), d}
€ I{L), then it can easily be seen that there is always an assignment g' such
that W, .(Lxy) = 1. Choose g’, for example, the assignment obtained by
taking g and then just changing the value assigned to ¥ to d. Then {g'(x),
g'(y}} € (L), and so Vy,(Lxy} = 1. This argument can be repeated for any
given formula, s0 now we can give a first version of the new clause for
existential formulas. It is this: Vyy (3ylxy) = 1 if and only if there is a g’
which differs from g only in its value for y and for which ¥y, (Lxy) = 1. So
g' is uniquely determined by g, and the value g' is assigned 1o the variable y.
This means that we can adopt the following notation: we write g[x."dl,]for g if
this assignment assigns d to y and assigns the same values as g to alt the other
variables, (Note that ¢ in the notation x| refers to 4'Constant in L, whereas
the d in g{yd} refers to an entity in the domain; the frst expression refers to
the result of a syntactic operation, and the second does not.} The assignments
giy/d] and g tend to differ. But that is not necessarily the case, since they are
identical if g(y} = d. So now we can give the final version of the new clause
for existential formulas. It is this:

Vi, (3yd) = | iff there is a d € D such that V¥rgn (@) = 1.

A similar development can be given for the new clause for the universal quan-
tifier. So now we can complete this discussion of the B approach by giving the
following definition. It is well known as Tazski’s truth definition, in honor of
the mathematician A. Tarski who initiated it; it is a generalization of definition
7. Although clauses {ii)—{vi} are not essentially changed, we give the defini
tion in fuli for ease of reference. )

Definition 9
If M is a model, D is its domain, 1 is its interpretation function, and g is an
assignment into D, then

() WaglAy . ) =1 (It - -
(i) Wy (@} = Liff Vi () = 05

(1) Wy leh Ao} = 13T ¥ () = L and V(¢ = 1;
{iv} vu.g[ﬁb v = LAl Wy {d) = Lor ¥y, (@ = 1;

(V) Wi (b = b = Ll ¥y b = 0 or Wy () = 1,

(vi) Vgl o o) = 1iff Vo (D) = Wy (0,

(Vi) Vi, (Vi) = liffforalid €D, Vi 0(d) = 1,

oo [tlag? € LAY

(vil]) Vyy, (Ixh) = 1iff there is at least one d € D such that Vg e (@) = 1

We now state a few facts about this definition which we shall not prove. First,
the only values of g which ¥y () is dependent on are the values which g

I'G ¥

e
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assigns fo varfables which occur as free variabies in ¢y so ¢ has the same |

value for every g in the extreme ¢ase in which @ is a sentence, This means that

for sentences ¢ we can just write Vy(@). Consequently, it holds for sentences |'I

e that if’ b is true with respect to some 8. then 1t is tue with respectto all g. If !
all elements of the domain of M ha[w?namés 'then for any senience ¢, ap-
proach A and approach B give the same values for V(). {n such cases then,

teither can be taken. We shatl now return to the examples given in connection

with approach &, and reconsider them with B.

Example 1

There is Just a single binary predicate letter L in the language; the domain is
H, the set of all Hawaiians; (L) = {{d, e} € H?|d loves e}, and John and Mary
are two members of the domatn who love one another. We now define gix) =
John and g(y) = Mary; we complete g by assigning the other variables at ran-
dom. Then Vi, (Lxy} = |, since {([x|y,. f¥lm.r = {gix) gy} = {John,
Mary; & 1(L}. Analogously, Vi, (Lyx) = 1, so that we also have ¥y, (Lxy A
Lyx) = L. This means that ¥, {IyLxy ~ Lyx)) = 1, since g = gly/Mary,
and that ¥y, (IxIylxy » Lyx)) = 1 too, since g = g[xsJohn].

Example 2

There is just 2 single binary predicate letter R in the langeage; the domain is
{Pl " PI: PB}; [(R} = {{P] 1 pl}t {Pl . Pl}: {PE.? P}}: {Pﬂ El Pl}}' Nﬂw fCII' dan a]bitm}r g
wi ave:

if gz} = P, then Ve {Rxy) = 1, since {P,, P,} € I(R);
if gix} = Py, then ¥y ., (Rxy) = 1, since {P,, P} € I[R);
if g(x) = Py, then Vyy .0, (Rxy) = 1, since (P, P;} € (R).

This means that for every g there is a d € {P,, B, B} such that
VarpatB2¥} = 1. This means that ¥y, (dvRxy) = 1. Since this holds for an
arbitrary g, we may conclude that Yy . (FyRxy) = | forevery d € D. We
have row shown that ¥y ,(¥x3yRxy} = 1. That ¥y (¥xIyRyx) = | can be
shown in the same way,

Mow for the truth value of IxYvyRxy. For arbitrary g, we have:

if g(x] = B, then ¥ .., (Rxy) = 0, since {F;, B) & WR);
if g(x) = F., then W, (Rxy} = 0, since {B,, B} & I(R);
if g{x] = P_i, ﬂ'!EI‘I Vhflgh;pﬂ{ﬁxy} = ﬂ, SillCﬁ {P]!- P-Jv} & I{R].
This means that for every g there is ad € {P,, P», Py} such that Vi .4 (Rxy) =

0. From this it is clear that for every g we have Vi, (¥yRxy) = 0, and thus that
for every d € D, Vi (VyRxy) = 0; and this gives Vi (IxVyRuy) =

Example 3

The language contains a unary predicate letter E and a binary predicate letier
L. The domain of cur model M is the set N, {E) = {0, 2, 4, 6, . . .}, and I{L}
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= {{m, n}|m < n}. Now let g be chosen at random. Then there are two
possibiliftes:

(2) g(x) is an even nember. In that case gix) + 1 is odd, so that
glx) + 1 & I(E), from which it follows that Yitarrara+ (E¥) = 0 and that
Vitgwga+nl TE¥) = 1. Futhermore, {g(x), g{x) + 1} € L), and therefors
Whtaryean rilL%¥) = I, s0 that we have ¥y, e LAY A TEY) = 1

{b} g{x) is an odd number. In that case, g(x) + 2 is an odd number too.
From this it follows, as in {a), that ¥, eipenpn) L2y A TBy) = 1. In both
cases, then, there is an n € N such that V), .. (Lxy » 7Ey) = 1. This means
that for every g, Vi (3y(Lxy ~ "Ey)) = 1, from which it is clear that
Vi L ¥idy{lay A =Ey)} = 1.

Exercise

Work out exercise Thi, iii, and v again, now according to approach B (defini-
tion %),

3.6.4 Lniversal Volidity .

In predicate logic as in propositional logic, we speak of contradictions, these
being sentences ¢ such that Vyy($) = 0 for all models M in the Tanguage from
which « is taken. Here are some examples of contradictions: ¥x(Ax ~ 1 Ax),
VxAx ~ y-Ay, IxVy(Ryx < —Ryv) (the last one is a formalization of
Russell’s parados).

Formulas ¢ such that ¥y,{¢} = I for all models M for the langnage from
which ¢ is taken are calfed pniversally velidformulas (they are not nocmally
ca@&a@} That ¢ is universally valid is written as =¢. Here are
some examples of universally valid formulas (more will follow later): Wx{Ax
W AR, Wx{AX A Bx) — YeAx, (VriAx v Bx) A JxAx) — JxBx.

Pm,dm predicate logic as in propositional logic, sentences < and 4 are said
1o ber @mmtem‘ if they always have the same truth vaIues that is, if for every
model M for the langrage from which ¢ and 4 are taken, V() = Wyt On
approach B, this can be generalized to: two formulas ¢ and 1 are equivalent if
for every model M for the language from which they are taken and every as-
signient g inta M, ¥, () = V), (#). As an example of a pair of equivalent
sentences, we have ¥xAx, WyAy, as can casily be ch&cke;d' More generally, |
are Wap and Yy(ly/x1d) always equivalent? Not when y occurs free in ot
viously JxLxy is not equivalent to IyLyy: somebody may love y without any-
body loving him- or herself.

It might be thought though, that ¥x¢ and ¥y({[y/xl¢) are equivalent for any
< in which ¥ does not occur free This is, however, not the case, as can be
seen from the fact that ‘H’zﬁlyﬂxl and ¥yJyAfy are not equivalent, In
VydyAyy, the quantifier ¥y does not bind any variable y, and therefore
VyJyAyy is equivalent to IyAyy. But clearly ¥xFyAxy can be true without
JyAyy being true. Everyone has a mother, for example, but there is no one
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wha is his or her own mother. The problern, of course, is that ¥ has been
substituted for a free variable x within the range of the quantifier ¥y. If we
want to furn the above into a theorem, thes we need at least one restriction
saying that this may not oceur. The following definition enables us to formu-
late such restrictions more easily:

Deiinition 10 Tae e b apel
Y 18 free { for substition) for x in ¢ if x does not oceur as a free variable

For example, ¥ will clearly be free for x in ¢ if ¥ doesn’t appear in ¢ In
. general, it is not difficult to prove (by induction on the complexity of ¢) that
' _for ¢ in which y does not occur free, o and Yy([y/xld} are indeed equivalent
" y s free for x in ¢

In predicate logic as in propositional logic, substituti

ivalent subfor-

iz mulas for each other does not affect equivalence. We will discuss this in §4.2,

W use it in the following list of pairs of equivalent formulas:

{8) ¥xb is equivalent 0 ~Ixeh. This is apparent from the fact that
! Vaugl¥agh) = 1 iff for every d € D, Vicarwg( @) = L iff for every
d € Dy, Vi (@) = 05 ifF it is not the case that there is a d € Dy, such that
Wit gl @) = 15 00T it is ot the case that Vi (Txeh} = 150 ¥y LhAxg) = 0, iff
Vi (o 3ng) = 1.

(b} Wx¢b is equivalent to ~IAx ¢, since Wb is equivatent to Wx ¢, and
thus, according to {a}, to 2 Jx b too,

(c) Wxd is equivalent to Ix1gh, since Ix1gp is equivalent to T 3x g,
and thus, according to (b), to ~¥aé too.

(d) ¥z is equivalent to Ixgb. According 1o (c), ¥xh is equivalent
to Ix1 b, and thus to I,

() Yx(Ax ~ Bx) is equivalent to WxAx ~ ¥xBx, since Vi (VE(AX A Bx))
= 1 iff for every d & Dy,: Ve (A% A Br) = 1) iff forevery d € Dry:
Vi gmalAx) = 1 and Ve B2) = 15 ifF for every d € Dy, ¥y el AX) =
L. while for every d € Dy V,, el BXY = 1; iff ¥y (¥xAx) = I and
Vi fVxBx) = 1; iff Vi (¥XAZ A WxBx)) = 1,

(£ ¥xisp A 1) is equivalent io Wi A ¥, ‘This is a generalization of (e),
and its proof s the same.

(2) Jx{eb ' fr} is equivalent to Ixgh v Txeh, since Ixip v ) is equivalent

to ¥ v i, and thes to —YR(T1¢ A ) {de Morgan) and thus, accord-
g to (), to ~{¥xd A ¥x), and thus to "Wz v ¥ (de Mor-
gan), and thus, according to (d), to Ixeh v Iy,
N.B. ¥x(b v ) i¥nod necessarily equivalent to Yud v W, For example,
each is male or female in the domain of human beings, but it is not the case
that either all are male or all are female. I A ¢} and Jxeh A s are not
necessarily equivaient either. What we do have, and can casily prove, is:
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{h) ¥x(é v ) is equivalent to ¢ v Vb if X is_not_free in ¢, and to
¥ v o if 1 is not free in o, Similarly:

(k) i A ) is equivalent to Txd ~ o if x is oot free in o, aod o & A
Jxeh if x is not free in b, L

(D @p — ) is equivalent to ¢ — Wxiif x is not free in b, since
Wilch — ) is equivalent to ¥Wx{¢b v ) and thus, according to (h), o ¢ v
W, and thus to ¢ — ¥xb, An example: For evervone it holdy that if the
weather is fine, then he or she is in a good moeod means the same as If the
weather is fine, then everyone is in a_good mood.

(m¥ ¥xiih — W) is equivalent to Bxgl— i il % is not free in o, since ¥x(h >
s is ec]ﬁiﬁalent to ¥x(—¢h v ¢ and thus, according (o {h), to Wxg v o, and
thus, according to (a}, to 733 v P, and thos to Iz — . Ao example: For
everyone it holds that if e or she puir a penny in the slof, then o package of
chewing gum drops our means the same as If someone puis a penny in the
miachine, then a package of chewing gum rolls our.

{n} IxIy{Ax ~ By} is equivalent to AxAx ~ J¥By, since IxIy{Ax » By)
is equivalent to Ix{Ax ~ JyBy), given (k), and with another application of
(k). to IxAx ~ JyBy.

to) Ixd is equivalent to Iy([yi ] if ¥ does nol occur free in ¢ and v is
free for x in . since Ixgh is equivalent 1o 7¥x 1, according to (d). This in
ture is equivalent to ¥y [y/x] ), for v is free for x in  if v is free for x in
—p. And ¥y(dy/ix}h), finally, is equivalent to 3w{fy/x]d) by (d), since
[y %)} and [y/x] ¢ are one and the same formula.

(p) ¥a¥'yd is equivalent to ¥y¥ad, as can easily be proved.

(q) JxTy¢r is equivalent to IyJxugh, on the basis of (d) and {p).

(1) AxIyAxy is equivalent to IxdyAyx. According to (0], IxIyAxy is
equivalent to xIzAxz, with another application of (o), to IwIzAwsz, with
(@), to dzIwAwe, and applying (o) another two times, 0 IxTyAyx, _

In predicate logic too, for sentences ¢ and ¢, =g+ o iff ¢ and o are
gquivalent. And if =+ o, then both =g — frand =1 — . But it is quite
possible that Fqr — o without ¢ and ¥ being fully equivalent,

Here are some examples of universally valid formulas (proofs are omitted):

IO e,
ot

() Vxd > Txd W Boeta ol 3xyg o Bywxg T 7L 0
(iiy ¥xé — [x]ph (vil) YWrhAxx — Wadyhxy, e
i) [uxlp — Ixd .,
(V) (Vad A V) S V(b A ) (i) Vxid — ) — (Vxd — Yxp)
(v An(d A (Fxd A Tx) {x) Yxid — o) — (And — Ixy)

Exercise 9

Prove of (i), {ii), (v} and (vii) of the above formulas that they are universally
valid: prove (i) and (v) using approach A, assuming that all elements of a
model have a name; prove (i} and {vii) using approach B.

(wiil) InVyhxy — dxdxx | 0 0 0w
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Exercise 10 <

Find as many implications and nonimplications as you can in the set of all
possible formulas of the form Rxy prefized by two quantifiers Q) x, 2,y (Dot
necessarily in that order).

3.6.5 Rules

In order to discover universally valid formulas we may use certain rufes. First,
there is modus ponens.

(i) Tfl=¢ and = — i, then k=4,

It is not difficult to see that this rule is correct. For suppose that Fdé and
FEd — i, but that Fap. It follows from B that there is some model M with
Vil = 0, and it follows from = ¢ that V() = 1, and thus that Vielh = 1)
= 0, which contradicts E¢b — . Here are some more niles:

(ii] If B¢ and Fi, then Ed A e
(tiy 1If F¢b A b, then =,

(ivi If B¢, then Ed v .

) IfFd -, then E-wp —gh.
(vi) E-mgpiff Ed.

Such rules can be reduced to medus ponens. Take (v), for example, and sup-
pose Fg — ij!.r It is clear that E(d — ) — (wjr — 1), since this formula has
the form of a propositional tavtology (theorem 13 in §4.2.2 shows that sub-
stitutions into tawtologies like fis are universally valid). Then with modus
ponens it follows that = —¢h. Here is a different kind of rule:

tvil) = iff FWx{[x/c]d), if x is free for cin .

Intuitively this is clear enough: if ¢ is universally valid and ¢ is a constant
appearing in ¢, then apparently the truth of ¢ is independent of the interpreta-
tion given to ¢ {¢h holds for an “arbitrary’ ¢, so we might as well have a uni-
versal quantification instead of c,

Proof of (vii);

<: Suppose F¥x([x/cld). From example (iiy at the end of §3.6.4,
we may conclude that EVx([x/c]p) — [o/x] [x/clp, and [e/xx/c]d
is the same formuta as ¢ {since x is free for ¢ in ¢). Now F¢ follows
with modus ponens.

= Suppose F¢, while #¥x({x/cl¢). Then apparently there is
a model M with Vig([x/cl¢d = 0. This means that there is an
assignment g into M such that Vae[[Xiclg) = 0. H we now define
M’ such that M’ is the same as M (the same domain, the same
interpietations), except that Igi{c) = gfx), then it is clear that
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WVl = 0, since X appears as a free variable in [x/clé at precisely
the same points ai which ¢ appears in ¢, becawse x is free for ¢ in ¢.
This, however, cannot be the case, since ¢ is universally valid, so
lE=¥x{[x/c]dh) cannot be the case either. O

Rute (vii) pow opens all kinds of possibilities. From F{Ac A Bc) — Ac
{by substitution into a taulogy), it now foliows that F¥x({Ax » Bx) - Ax).
And applying (i) in §3.6.4 and modus ponens 1o this resul, we obtain
E¥xiAx ~ Bx) — ¥xAx



