5.5 Many-Valued Logic

5.5.1 fatroduction

In standard propositional logic {and of course in standard predicate logic), for-
mulas all end up with either | or O as their truth value. We say that classical
logic is two-valired. In a two-valued logic, the formula known as the principle
of the excluded midddle, v, is valid. But ather systems with three or even
an infinity of truth values have been developed for various reasons and for a
variety of applications. Logical systems with more than two values are called
many-vaheed fogical systems, or many-valued logics.

In this section we will discuss several many-vatued propositional logics.
their intuitive bases, and their applications. Most attention will be paid to
those aspects which are relevant to research into natural langurage. In particu-
lar, we will consider possible applications of many-valued logic in the analysis
of the semantic concept of presupposition.

Many-valued propositional logics are not, in the sense introduced in §5. i,
extensions of standard logic. They are what we have called deviasions from
standard propositionat logic. Many-valued jogicai sysfems are not conceived
in order to interpret more kinds of expressions but to reclify what is seen as a
shortcoming in the existing interpretations of formulas. Once a new logical
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ir4 Chapter Five

system has been developed, it often proves desirable and possible to introduce
new kinds of expressions, and then the deviation becomes, in addition, an ex-
tension. But we shall begin with the familiar languages of standard proposi-
tional logic and show how a semantics with more than two truth values can be
given for these.

5.5.2 Three-Volued Logical Svstems

Since as far back as Aristotle, criticism of the principle of the excluded middie
has been intimately linked to the status of propesitions about contingent events
in the future, and thus to the philosophical problem of determinism. This also
applies to the three-valued system originated by the Polish logician Lukasie-
wicz, whose argument against bivalence derives from Aristotle’s sea barile
argument. Consider the sentenice A sea barde will be fought tomorrow. This
sentence states that a contingent event will take place in the future: it is pos-
sible that the sea battle will take place, but it is also possible that it will not.
From this we can conclude that today the sentence is neither true nor false. For
if the sentence were already true, then the sea battle would necessarily take
place, and if it were already false, then it would be impossible for the sea
battle to take place. Either way, this does not conform to the contingency of
the sea battle. Accepting that propositions about future contingent events are
now true or false amounts to accepting determinism and fatalism.

The vaiidity of this argument is debatable. Its form can be represented as
follows:

(36) < — necessary ¢

(57) ¢ — impossible ¢ {= " > necessary )
(38) v g

(39) necessary ¢ v necessary T

In order to escape the deterministic conclusion {59, Aristotle rejected {38},
the law of the excluded middle. These days, though, one would be mach more
inclined to think that something is wrong with premises (56) and (57} than
with (38). From the truth of ¢ we cannot infer that recessary ¢, and the same
applies to falsity. From the falsity of ¢ we cannot conclude that necessary
—p. In order to defend this conception properly, a logical analysis of the no-
tion of necessity is required. One soch analysis is given in modal logic, which
is discussed in volume 2. There the (injvalidity of arguments like the above is
discussed in §2.3.5.

Although the original motivation for Lukasiewicz’s many-valued logic is
not watertight, it is interesting enough i is ewn right, since motivations other
than the eriginal one can be {and have been) given. fukasiewicz's system can
be given by means of the truth tables in (G0} '

Beyond Suandard Logic £75

w0 ¢ | =h Al

! 0 |k # 0
# | 2 ¢
0 i | I P 0

# # # 0

0 8] p 0

P vl Pg—

w L# 0 vl 1 # o
¢ ¢
1 1 - 1 1 1 # !
# i # # # 1 1o #
0 I # 0 0 1 1. 1

The third value {#) stands for indefinite or possidie. It should be clear how .

these tables should be read. They are sli ghtly different in form from the truth
tables we have dealt with so far. Figure (61a) shows how the two-valued trh
table for the conjunction can be written in this manner. And figure (61
shows how the three-valued conjunction can be written in the original way.

(61) a. o b b, & iy &b Aol
W ! 0 | 1 1
P t # #
1 ‘ I 0 1 0 0
0 0 0 # ! #
# # #
# 0 0
0 [ 0
0 # 0
i 0 0

Tables like those in {61) are useful if we only want to say how the connectives
should be interpreted, but we have to stick with the original way of writing
truth tables if we want to use them for calculating the truth values of com-
posite formulas from the truth values of the proposition letters in them.

.Accurding to the table for negation in (60), the value of o is always indeter-
minate if the value of =¢h is. And from the table for disjunction it follows that
the law of the exciuded middfe does not hotd. As can be seen from (62}, ¢ v
Db never has the trith value O, bul it doesn't always have the value | either. 1¢
¢ has # as s (ruth vakue, then g has value # too.
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)¢ | 2 | dv-d

1 0 I
# # #
0 i 1

It follows similarly from the table for conjunction that the faw of nonconiradic-
tion ey A @) does not held. The faw of identity, on the other hand, does
hold: ¢ — ¢ is valid, since according to {(63) it always has 1 as its truth value.

©3) o ¢ —
1 1
# l
4] |
This is because according to the table for implication in (60), if ¢ has # as its
truth value, then ¢¢ — ¢é has, not #, but | as its truth value. Related to this is
the fact that while the interdefinability of v+ and A by means of = still holds,
the interdefinability of v and —, or that of » and —, dees not. The reason for
this is that both ¢ v % and ¢ A i have truth value # if both ¢ and i have
value #, while ¢ — 3 has | as its truth value in that case.
Kleene has proposed a three-valued system which differs from Eukasie-
wicz's on exactly this point, His interpretation for — is given in (64):

64} a. @ =g b, d A
1 0 W o1 # 0
#| # &
0 ! I 1 # 0
# # # 0
0 0 0 0
c. Pl d. B
| I # 0 W 1 # 0
i o
1 1 1 1 L 1 # 0
# 1 # # # 1 E#E #
0 1 # 0 0 ] 1 L

Although Kleene's system only differs from Lukasiewicz’s system in the im-
plication, we have listed it completely in (64), since we will often want to
refer to it in what is to come. According to Kleene's table for irplication,
 — ¢ is no longer a valid formula. On the other hand, the interdefinability of

v and — via negation, as well as that of ~ and —, has been regained. Kleene
interprets the third value not as ‘indefinite’ but as ‘undefined’. The value of a
composite formula can be definite or defined even if the value of one or more

of its parts is not. This is the case if the known value of sotme part is encugh to
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decide the value of the whole formula. We know, for example, that ¢ — i is
always tree if its antecedent is false, whatever the value of the consequent is.
S0 if ¢ has the value 0, then ¢ — y has the value L, whether or not s #*,

One undesirable result of the interpretation of the third value as *undefined”
is that the truth value of ¢ v ¢ is undefined if that of ¢ is. This is not very
satisfactary, since even if it is not known yet what the value of & is, it cer-
tainly is clear that the value of ¢ depends on that of —1¢b. We don't know what
value ¢ has, but we do know that ~¢ has the value 1 if ¢ has value Q, and vice
versa. So one could argue that we kinow that ¢ v b has 1 as its truth value,
even it we do not know yet what truth value ¢ has.

Yan Fraag;en's method of supervaluations was developed in order to meet
this difficulty. This method gives all formulas which have the same vahue
under all valuations in standard logic (that is, the tautologies and contradic-
tions of standard logic) that same value. But the same does not apply to con-
tingent formulas. We shall not further discuss supervaluations here.

Another sort of three-valued system originates when the third value is inter-
preted as meaningless or nonsense, and Bochvar proposed the three-valued
system presented in (65} with this interpretation in mind

(65} a. o ml b. oo
i 0 | 1 # 0
# # B
0 ! I L # 0
# # # 0 #
0 a # 0
c 6w d. ¢ —
| 1 # 0 w 1 # 0
@ , i ¢ |
1 1 # 1 1 1 # 1)
# # # # # # #  #
0 1 # 0 0 i #5 1

The third value in (65} is dominant in the sense that a composite formuia re-
ceives # as ils value whenever any of its composite parts does. If any part of a
sentence is nonsense, then the sentence as a whole is nonsense. This inter-
pretation of the connectives is known as the weak interpretation, this in con-
tradistinction to Kieene's sirong interpreiation. Yukasiewicz’s, Kleene’s, and
Bochvar’s systems all agree in giving the same truth value as classical logic to
any formula whose subformulas all have classical treth values. Bochvar's 5¥S-
tem differs from the other two in that if a formula has a classical truth value in
his system, then all of its subformulas must too. As we have just seen, in
Lukasiewicz’s and Kleene's system, a formula can have a classical truch value
even if some of its subformulas do not.
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178 Chapter Five

One important if much-debated appiicatinn of three-valued lﬂgic in 11ngu1sti{:5
is in dealing with presupposition. In §5.2 we saw how Russell’s theory of de-
scriptions analyzes sentenices with definite descriptions, like (66) and (67):

{66) The king of France is bald.
{67} The queen of the Netherlands is riding a bieyele.

His theory analyzes the sentences in sach 4 way that the existence of a king of
France and a queen of the Netherlands are among the things which these sen-
tences state, A sentence like (69) is then, accordinng to Russell, false. Russell's
analysis of definite descriptions was criticized by Strawson in *On Referring’
(1950). According to Strawson, Russell’s theory gives a distorted picture of
the way definite descriptions are used. That there is a king of France is not
something which is being stated when sentence (66) is stated; it is something
which is assumed by (66), a presupposition. And if there is no king of France,
then sentence (56} 15 not false, since then there is no proposition of which it
can be said that it is tre or false.

It has always been a moot point what feld the concept of presupposition
belongs to,-semantics or pragmatics. If it belongs to semantics, then the fal-
sity of a presupposition affects the truth value of a sentence. And if it belongs
to pragmatics, then the concept of presupposition must be described in terms
of the ways we use language. In order to utter a sentence correctly, a speaker,
for example, must believe all of its presuppositions. We shall not attempt to
decide the issue here. But in chapter 6 we return to the distinction between
semantic and pragmatic aspects of meaning.

In the following, we shall restrict ourselves in the examples (o the existen-

tial presuppositions of definite descriptions. The existenifal presupposition of

a definite description is the assumption that there is some individual answer-
ing to it. There is also the presupposifion of unigueness, which is the presup-
position that no more than a single individual answers to it. And other kinds of
expressions have their own special kinds of presuppositions. Verbs and verb
phrases like to krow and fo be furions have factive presuppositions, for ex-
ample. Sentences (68) and {69) both presuppose that Jobn kissed Mary:

{68) Peter knows that Jﬂhn kussed Mary

Verbs like to befieve and to say, on the other hand, do not carry factive pre-
suppositions. One last example.

(70)  All of John's children are bald.

A sentence like (70} also has an existential presuppositian, parnely, that Jobn
has children. ' -
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Proponents of many-valued fogic in the analysis of presupposition see it as a
semantic concept. Strawson’s position is then presented as follows. If one of a
sentence’s presuppositions is not true, then the senfence is neither true nor
false, but has a third truth value, A mistaken presupposition would thus affect
the truth value of  sentence. This approach leads to the following definition
for presuppositions:

Definition 3

¢ris a presupposition of ¢ iff for all valuations V- if V() # 1, then Vig) # 1
and Vig)y # 0.

In a three-valued system, this means that if ¥(g) # 1 and V() # 0, then
Wi = #. S0 definition 3 is equivaient to the more usual formulation:

7l ¢isa presuppusmon nf o iff for all valuations ¥: if ¥ = 1,
then V{gh) =

Megation has been the same in aii three-valued systems we have seen so far. In

particular, in all cases, Vi) = # iff V() = #. Together with (71}, this

gives us {73):

(72} i is a presupposition of ¢ just in case y is a presupposition
of .

This property is considered characteristic of presuppositions. Mot only sen-
tences {66} and (67) but also their negations, (73) and {74), respectively, pre-
suppose the existence of a French king and a Dutch queen:

(73] The king of France is not bald.
(74} The queen of the Netherlands is oot riding a bicycle. | i

We could also have taken the fact that presuppositions are retained under
negation as our starting point and used it as an argument in favor of many-
valued logic in the analysis of semantic presuppositions. We could then reason
as follows: Both the truth of (67) and that of its negation (74} “imply’ the truth
of {75}:

- i
! i

(75) There is a queen of the Netherlands.

But then the implicational relation between (673 and (75) and that between
(74 and (75) cannot be a normal notion of logical inference in a two-valued
system, since in any such logical system, tautologies are the only formulas

‘tmplied by both a formula and its negation, while (753 is clearly a contingent

proposition. This can be seen as follows. That both ¢ and b “imply” the
formula  means:

{76) For all valuations V: if Vig} = 1, then V(i) = I; and if
Y¥(d) = 1, then ¥y = 1.
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This is equivalent to:

(773 For all valuations V: if ¥{d) = I or V(—¢b} = 1, then
Vi) = 1.

But the antecedent of (77}, Vi) = 1 or V(—¢) = 1, is always true in a two-
valued system, 50 {77) amounts to;

{78} For all valuations ¥: V(i) = 1.
That is, 1 is a tautology. The he remedy is to abandon bivalence, that is, the

requirement that for any sentence ¢, cither V() = | or V(—¢) = I. (Russell
had a different remedy: withdraw the assumption that (74) is the direct ne-
gation of (67).) In a three-valued system with — defined as in the tables in
§5.5.2, (77} is equivalent to the definiendum of definition 3, the definition of
presupposition. So a preference for 2 semantic treatment of the concept of pre-
supposition gives us an argument in favor of three-valued logic.

In §5.2.2 we presented a number of different three-valued systems. The
question arises at this point as to which of these systems is best suited fora.
treatment of presupposition. This question is related to the way the presup-
positions of a composite sentence depend on the presuppositions of its com-
posite parts, which is known as the projection problem for presuppositions.
As we shall see, the diffepent man].-walued systems with their different truth
tables for the connectives give different answers.

If we choose Bochvar's system, in which composite sentences receive # as
their value whenever any of their composite parts does, presupposition be-
comes cuwilative. The presuppositions of a composite sentence are just all
the presuppositions of its composite parts. If any presupposition of any of the
composite parts fails, then a presupposition of the sentence as a whole like-
wise fails. If a presupposition of any of the composite parts does not have 1 as
its truth vaiue, then the whole formula has ## as its truth value, This follows
directly from the truth tables given for the connectives in (63) and definition 3.

K we add a new operator P to our propositional languages, then Peb can
stand for the presuppesitions of ¢. We define Lhis operator as in {79);

% ¢ Pg

1 1

# 0

g |
The formula P¢ is equivalent to the necessary and sufficient conditions for the
satisfaction of ¢’s presuppositions. The formula Pes receives value | if all ¢'s
presuppositions are satisfied, and otherwise it receives 0. P itself does not.
have any presupposition, since it never receives # as its value. PPg is always
a tautology. The logical consequences of Pg are precisely the presuppositions
of ¢. It can easily be checked that the following equivalences hold by con-
structing truth tables:
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{800 P¢ and Péh are equivalent,
(81) Pid v @), Pl ~ ), and P{gp — ) are equivalent to
P A P

Here {80 is just a reformulation of the characteristic property of presupposi-
tion already given as (72}, namely, that ¢ and —¢ have the same presuppo-
sitions, What (81) says is that if presuppositions are cumulative, then the
Presuppositions of a conjunction and a disjunction can be written as the con-
junction of the presuppositions of s conjuncts and disjuencts, respectively,
and the presupposition of an implication can be written as the conjunction of
the presupposition of its antecedent and its consequent. This is because # ap-
pears in the same places in the truth tables of all three connectives in Bochwvar's
system. The value # appears whenever any of the formulas joined by the con-
nective has # as its valoe, (See (65).]

So by using Bochvars systcm, we oblain a cumulative notion of presup-
are cases in which ﬁrésupposnmns dare, as we say, o cancefed in the formatmn
of composite formulas, and this makes the projection problem much more in-
teresting. Sentences (82)—(84) are clear examples of the fact that a formula
does not need to inherit all the presuppositions of its subformulas:

{82) If there is a king of France, then the king of France is baid.
{83} Either there is no king of France or the king of France is bald.
(84 There is a king of France and the kKing of France is bald.
Sentence (R3):
{85) The king of France is bald.
is & part of (82), (83), and (84). Sentence (36): .
_ !Eéﬁ} There, is é_king of France.

is a presupposition of (83), but not of (82}—(84). IIf sentence (36} is false, then
(32) and (83} are tree, and (84) is false. This can be explained if we choose,

not Bochvar's system, but Kleene’s. A sentence like (32 is of the form p — q,
in which p is a presupposition of q. That p is not a presupposition of p — q in
Kleene’s system can now be seen as follows. Suppose p has value 0; then q has
#, since p is one of its presuppositions. But according to Kleene’s truth table
for implication, the whole implication still has 1 as its value, since its anteced-
ent has vaiue 0. So according to definition 3, p is not a presupposition of
p —+ g, since aithough in this case, p does not have 1 as its value, p — g still
doesn’'t have # as its value. Something similar holds for sentence {83), which
is of the form —p v g, in which p is once again a presupposition of g. 1f p has
value 0 {in which case g has #), then Kleene's table for v stili results in=p v g
having | as its truth value. Sentence (84), finally, has the form p ~ g, with p
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again a presupposition of g. Now if p has truth vailue 0, then so does the whole
canjunction, in spite of the fact that g has # as its truth value. So Kleene's
three-valued sysiem explains why (86}, a presupposition of formula (85), is
canceled when the latter is incorporated into composite sentences (82)—{84),
In §3.5.6 we will see, however, that Kleens’s system is not the last word in the
~ analysis of presuppositions.

As in Bochvar's systen1, ¢'s presuppositions can be represented by means
of P in Kleene's system. Since negation is the same in both, equivalence (R0}
still holcds. But since the other connectives are different, the eguivalences in
(81} no longer hold. Instead we have the somewhat more complicated equiva-
lences in (B7)-(39).

(87} Pl v o) is equivalent 1o ((¢ A Pd) v PP} A {{dr A Py}
v Pl

(38) Pl A ) is equivalent to {{(— A Pd) v Py} A ({1 A P
w P,

(89}  Pldr — yr) is equivalent to ({7 A Pd) v Py A ((h A Py
v P,

We now introduce a second operamr,:ﬂ} to be interpreted according to {900
{(90) ¢ Ad
1 i

# 0
1] 0

Then as a result of the equivalence of A and ¢ A Pep) (87)-(89) amount to
(B1)-(93): -

(913 P v ) is equivalent to (Ad v P} A (Ad v P
(92)  P(d ~ o) is equivalent to (Anp v By A (A v Pap).
(93) P — i) is equivalent to (A v P} A (A v Peh).
A third way of writing P(¢ v W}, which avoids A, is:
‘ (94) Pig v 4} is equivalent o (b v Py} A (fr v Pb) A (P v Py).

Equations resembling (94} can of course also be given for the other two
connectives.

The P-operator can also be used to clarify the cancellation of presupposi-
tions in Kleene’s system. 1f (86) is the only presupposition of (85) then writing
q for (85} (and thus Pg for (86)), sententes (82)—~(84} can be represented as
follovwrs: o

(95) Pq—gq
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(96) -Pg v g
{97y Pgaq

That q’s presupposition Pq is canceled in the formation of {95)—(%7) is appar-
ent from the fact that (95)—{97) themselves have no presuppositions at all, or
more precisely, that they only have tautologies as their presuppositions, The
formulas P(Pq ~'q}, Pi—Pg v q}, and P(Pq ~ q} are tautologies; they always
have | as their truth value. This explains why the contingent sentence (86) is
not a presupposition of (32)—(84),

Equivalences like those in {(87)—(89) and (91)—(94) are interesting on more
than one account. First, they shed some light on how the pirojection problem
for presupposition is approached in a three-valued system like Kleene's, For
example, (87) says directly that the presuppositions of (¢ i) are satisfied in
cach of the following three cases: if the presuppositions of both ¢ and ) are
satisfied {compare this with cumnlative presupposition); if s presuppositions
are not satisfied, but 4 is true; and last, if J's presuppositions are not satistied,
but ¢ is true. That this concept of presupposition is weaker than the cumula-
tive one is because of the last two cases. They correspond 1o the two places in
Kleene's table for v (see (64)) in which there is a | instead of the # in
Bochvar's syster {see (65)).

A second reason why these equivalences are interesting is that they have .-

much in common with the inductive definitions of the concept of a presupposi-
tion which have been published as an alternative to three-valued approaches.
These definitions inductively define a formula ¢ ™ which amounts to the set of
¢'s presuppositions. They begin by stipulating what the presuppositions of
atomnic formulas are. The inductive clauses are then, for example:

(98) (ng)® = gm ,
(99) (v 07 = (b A ™) v Y™ A (g A ™) v )

The remaining connectives have something similar. In the literature it is com-
mon to speak in terms of the set of a formula’s presuppositions. The approach
sketched here amounts to forming the conjunction of all formulas in such a
set. It has been suggested that this kind of inductive definition is more ade-
quake. than a treatment in terms of & three-valued semantics. But in view of the

similarity of (87) and (99) it seems likely. that both-approaches give the same .

results,

Although a three-valued system like Kleene's deals satisfactorily with cer-
tain aspects of the projection problem for presuppositions, it leaves certain
problems apen. These will be discussed to some extent in §5.5.6. But frst we
shall describe many-valued logical systems with more than three values
{$5.5.4) and their applications in the analysis of the semantic notion of pre-
supposition (§5.5.5).
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3.5.4 Logical systems with more than three values

So far the discussion of many-valued logical systems has gone no further than
three-valued systems. But logics with more than three values have also been
developed._ A system like Kleene’s, for example, can easily be generalized to
systems with any finite number » (n = 2) of truth values. One convenient
rotation: for the truth values of such a system uses fractions, with the number
s — 1 as their denominator and the numbers 0,1, ..., n— 1 as their numer-
ators. The three-valued system (# = 3) then has the truth values %, b, and %

or 0, ¥, and I. So the third value of the Kleene Systefm is written as 'x'z insteari
of as #. A four-valued system (n = 4) then has the truth values 95, ¥4, 25. and
¥, orQ, "f&, 34, and 1. The truth values of composite formulas ;n a: Kl,eene
system with s truth values can now be calculated as Foilows:

Definition 4
Vi) = | — Vig
Vg Ad) = V(g)if V(g < V()
= V(i) otherwise
V(g v ) = Vig)if V{d) = V(i)
= V(i) otherwise
Vidod) = VIE V() = (1- V()

= I — Vi) otherwise

S0 a conjunction is given the truth value of whichever of its conjuncts has the
](-I"Al'E:ST.— truth value; a disjunction is given the truth value of whichever of its
Fhs_]uncts has the highest truth value. The truth value of the implication ¢ —= ¢
is equal to that of the disjunction ¢ v . For a three-valued system, the toith
tables are the same as those in (64), but with ¥ instead of #. For r; = 2 this

reduces to standard propositional logic. A four-valued Ki
truth tables given in (100): eone system his the
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Similarly, a Kleene system can have infinitely many truth values, for example,
by taking all fractions between 0 and L as truth values.

The above systems with more than three values are all obtained by gener-
alizing a system with three values, Other systems with more than three values
can be obtained, for example, by ‘multiplying’ systems by each other. These
are called product systems. In such a product of two systems 5, and 8., for-
mulas are given truth values (v, v,}, in which v, derives from 5, and v, from
$,. A product system can be applied if we want to evaluate formulas under
two different and independent aspects and to represent the evaluations in com-
bination. We can, for example, multiply the standard two-valued system by
itself. We then obtain a four-valued system with the pairs {1, 1y, {1, 0},
{0, 1}, and {0, 0} as its trufh values. In order to calculate the truth value of a
formuta in the product system, we must first calculate its truth vatue in each of
the two systems of which it is a product. The value in the first system becomes
the first meenber of the ordered pair, and the value in the second system is the
second member. The trath tables for the connectives for this four-valued sys-
tem are as in (1013 (we write 11 instead of {1, 1}, elc.).

(10 ¢ | 7 H A
' 11| oo |11 1 01 00
10 | al b
G110 1 |11 10 01 00
W 111 qp |0 10 00 OO
a1 01 00 Ol oo
00 G0 00 00 OO
th v i th —
Nu 10 01 <0 Wll D ol 00
] &
11 111y 1l 11 11 1 01 o0
10 1n o1 11 10 15 11 01 o1
01 11 i1 0L 0l ol 11w 119

00 1 1 401 0c 00 11 11 1 11

Systems with different kinds and numbers of truth values can, of course, just
as easily be multiplied by each other. If one system has  truth values and the
other #, then the product systern will have m X n truth values.
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that here.

5.5.6 The Limits of Many-Valued Logics in the Analysis of Presupposition

There are a few ways that a three- or four-valued Kleene system can furnish a
goed explanation for the cancellation of presuppositions in the composition of
sentences. But there are also certain problems. The first problem is displayed
very clezrly in sentences like (113) and (114).

(113) The king of France is not bald, since there is ng king of France.
(114) There is no king of France; thus the king of France is not bald.

If {113} is true, then both (115} and {116} must be trze (and the same applies
for (11490:

(115} The king of France is not bald.
{118} There is no king of France.
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But the problem is that (115) and (116) cannot both be true at the same time, = 5

because (116 is the negation of one of the presuppnsntmris of [i 1 5} What we
seem to need here is for (115} to be true even if there isn't any king of France.

This does oot present any prohlem for Russell’s theory of descriptions, since ®
according to Russell, sentence (115} is ambiguous (see §5.2). A similar sofu-
tion can be found within a many-valued system. We distinguish two readings
of (113}, introducing for this purpose a new kind of negation, ~, This nega-
tion is defined by the table in (117}

if p is a presupposition of g, then ~q is true according to the table for ~ if pis
not true. The negation ~ is called invernal negation and 1 external negation.
Intr:rprcnng the negation in (115) as external negation, (i15) and (116) can
both be true at the same time, so {113} and (114) can both be true.

Note that the -:}perators:ﬁ ar}HT?Ie interdefinable via - ~gb is equivalent
to A4 (and thus Ad is equivalent to ~~¢). By introducing operators like
~, A, and P we have extended standard propesitional logic by adding new
logical constants. But the introduction of these operators only makes sense if
we choose a many-valted interpretation. This is what we meant in §5.5.1
when we said that deviations from standard interpretations often give rise to
extensions,

The problem with sentences like (113} and (I 14) can then be soived by dis-
tinguishing two different kinds of negation. This seems a bit ad hoc, since we

have pot given any systematic way 1o determine ﬁ;hethcr a negation should be

L\)
C.'l
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given the internal or the external readmg There is, however, an even more_

Serious Eroblem ‘than that with ([ T3} and {114}. It can be illustrated by means
of z sentence like:

(118} If baldness is hereditary, then the king of France is bald.

MNow 1r1tu:t1'.r:eI;.J it is clear enough that one presupposition of (118) is (119
(= (86)):
(119) There is a king of France,

According to definition 3, then, no valuation which renders (119) false may
render (I 18) true. But consider (120):

(120) Baldness is hereditary.
Even though (120) is the antecedent of (118), it can be false without there

being a king of France, since sentences {119} and {120} are logically indepen-

dent of each other. So let ¥ be any valuation which renders both sentences
false. Then ¥ renders (118) true, since it renders jts antecedent { 120) false. So
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L' renders {119) false and (1 18] true, in contradiction with the above remark
that {119} is a presupposition of (1 18}. In general the probiem is this: implica-
tions with contingent antecedents which are logically independent of certain
presuppositions of their consequents have too many of their presuppositions
canceled. Similar complications arise with the other connectives,

At this point various lines of action could be taken. One idea wouid be to
try to find better many-valued definitions for the cornectives. Bochvars Sys-
tern would do very well for sentences like (118), but it has its own problems
with sentences like (82)—(84). So far no single system has been found which
deals with both {32)—{84) and (I8l ina satisfactory manner, and it is ques-
tionable if there is any such system to be found. A second possibility might be
to adapt definition 3. This has been tried a coupie of times, and the results
have not been satisfactory.

A third idea, which has so far been the most successhul, is to stick to-both a
three- or four-valued Kleene system and definition 3, but to drop the idea that
the presupposition of (118) that there is a king of France is o Semaniic presup-
position. We then give a pragmatic explanation for the fact that anyone who
asserts (118} or its negation must believe that France has a king. This means
that we must introduce the notion of Pragmaiic presuppositions as a com-
plement to the semantic notion, Any such pragmatic explanation must lean
heavily on Grice's theory of conversaiionai maxims. We shall return to these
maximns atﬁ!flngth in chapter 6, where we shall alsg briefiy consider the possi-
bility that,presupposition is net a semantic notion at_all but must be wholly
explained in pragmatic terms.
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