3.7 Identity

It is often useful in languages for predicate logic to have a binary predicate
tetter which expresses fdentity, the equality of two things. For this reason, we
now introduce a new logical constant, =, which will always be interpreted as
the relation of identity. The symbol =, of course, has been used many times in
this book as an informal equoality symbol derived from natural language or, if
the reader prefers, as a symbol which is commonly added to natural language
in order to express equality. We will confinue to use = in this informal way,
but this need not lead {0 any confusion.

A strong sense of the notion identify is intended hete: by a = b we do not
mean that the entities to which a and b refer are identical in the sense that they
resemnble each other very closely, like identical twins, for example. What we
mean is that they are the same, so that 2 = b is true just in case a and b refer to
the same entity. To put this in terms of valvations, we want ¥,{(a = b) = lin
any model M jest in case [{a) = Iib). (The first = in the sentence was in a
formal language, the object language; the other two were in natural language,
the metalanguage.)

The right valuations can be obtained if we stipulate that I will always be such
that: I{=) = {{d, &) € D?|d = e}, or a shorter notation: I[{=) = H{d, dy|d € D}
Then, with approach A, we have Vy,(a = b} = 1iff {1{a}, I{b)) & (=) iff I{a) =
I(b). And with method B, we have Vy {a = b) = 1iff {{aly ., [blw,.2 € K=)iff
[al e = Bl iff L(a) = 1),

The identity synibol can be used for more than just translations of sentences
like The morning star is the evening star and Shakespeare and Becon are nne
and the some personr. Some have been given in (93):

(48)
Sentence . Transtation
[John loves Mary, but ! Lim A Ix{lmx A x # )
: Mary loves someone else. |

Joho does not love Mary —Ljm A Ax(Ljx A x F m)
but someone else.
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John loves no one but | ¥x(Ljx < x = m}
Mary, |

Mo one but John loves
Mary.

John loves everyone ex-
cept Mary.

Everyone loves Mary ex-
cept John.

¥x{lxm — x =1}
¥alljx <« x # m)

Wxilam <« x # )

The keys to the transiations are the obyvious ones and have been left out. Tn all
cases, the domain is one with just people in it. We shall always write 5 # t
instead of s = 1.

It the domain in the above examples were to include things other than
peaple, then ¥x(Hx — would have io be substiteted for ¥x in all the transla-
tions, and Ax(Hx A for Ix. Quite generally, if a sentence says that of all en-
titics which have some property A, only a bears the relation R 1o b, then that
sentence can be translated as ¥x{Ax — (Rxb <+ x = a)); but if a sentence
states that all entities which have A bear R 10 b except the one entity a, then
that sentence can be translated as ¥x{Ax — (Rxb +« x ¥ a)). We can also
handle more complicated sentences, such as (993

(99 Only john loves no one but Mary,

Sentence {99) can be rendered as ¥x{Wy(Lxy <>y =m)} «— x = 1) That this is
carrect should be fairly clear if it is rernembered that ¥y(Lxy <> y = m) says
that x loves no one but Mary.

One of Frege's discoveries was that the meanings of numerals can be ex-

_pressed by means of the quantifiers of [ predicate logic and identity. The prin-

ciple behind this is illustrated in {100), the last three rows of which contain
sentences expressing the numerals one, two, and hree. For any natural num-
ber n, we can express the proposition that there are ar least # things which
have some property A by saying that fhere are # mutually different things
which have A, That there are ar mest # different things which have A can be

Y, expressed by saying that of any # + I (not necessarily different) things which
. have A, at least two must be identical. That there are exacily 1 entities with 4

can now be expressed by saying that there are at least, and at most, # entities
with A. So, for example, IxAx A ¥a¥y((Ax ~ AY) —+ 1 = ¥) can be used fo
say that there is exactly one x such that Ax. But shorter formuilas that have the
same effect can be found if we follow the procedure illustrated in (100). We
say that there are # different entities and that any entity which has the property

v . A must be one of these,

(100
There is at least one x such AxAx
that Ax.

There are at least two (dif-
ferent) x such that Ax.

There are at least three (dif-
ferent) x such that Ax,

There is at most one x such
that Ax.

There are at most two {dif-
ferent} x such that Ax.

There are at most three (dif-
ferent} x such thar Ax.

.

There is exactly one x such
that Ax.

There are exacdy two x
such that Ax.

There are exactly three x
such that Ax.

Predicate Logic
Ixdy(a # ¥ A Ax A AY)

xdyFex Fy n x££z
¥ F 2 A A A AY A AZ)

YXVy({Ax A Ay) »x = y)

LELL S ﬁ}rnﬁz}
A=y VvEX=EvVYy=E)
VaWyVaW¥wilAx ~ Ay ~
Az A AW =y v

A= EVI T WY Y= EY
¥=wWEZ=w)

IVylAy «+y = x)

TFxTwix # vy » Va(Az —
(z=2xwvz=y))
TyTzx =y axFz A
¥y ¥ £ AYwlaw — (w=x
VW Sy v ow = 21
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This procedure is illustrated for a unary predicate letter 4, but it works just as
well for fornmulas . The formula Ix¥y([y/x]h <> v = x), for example, says
that there is exactly one thing such that ¢, with the proviso that ¥y must be a
variable which is free for x in ¢ and does net oceur free in . Sometimes a
special notation is used for a sentence expressing There is exacily one x such
that ¢, IXVy([y/x]d < y = x) being abbreviated as J'xe.

We now give a few examples of sentences which can be transiated by
means of =. We do not specify the domains, since any set which is large
encugh will do.

{101} There is just one queen.
Translation: Jx¥y (Qy — ¥ = 1.
Key: Qx: x is a queen.
(102) There is just one queen, who is the head of state.
‘ﬁm =x) A Xx=h)
Key: Qx: x is a queen; h: the head of state.
(This should be contgasted with 31x(Qx » x = h); which ex-
presses that only one person is a governing queen, although
there may be other queens arownd.)

(103} Two toddlers are sitting on a fence.
Translation: Ix(Fx A Iy, Iy.ly, # ¥, » ¥z((Tz ~ Szx) —
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Z=y ve=y
Key: Tx: x is a toddter; Szy: % is sitting on y; Fx: x is a fence.

{104} If two people fight for something, another will win it.

Translation: ¥xWy¥z{(Px A Py A x # y A Tz A Fxyz) —
FAwiPw now # xawFy A Wwz)l,

Key: Px: x is a person; Tx: x is a thing; Fxyz: x and v fight for
Z; Way: X wins y.

Exercise 11

{a)
(b}
{c)
fd)

(e)
0y
(2}
{h}
(i)
(1
{k}
n

No man is more clever than himself.

For every man there exists another who is more clever,

There is some man who is more clever than everybody except himself.
There is somebody whe is more clever than anybody except himself, and
that is the prime minister.

There are at least two gueens.

There are al most teo queens.

There are no queens except Beatrix.

If two people make an exchange, then one of the two wili be badly off.
Any person has two parents.

Mary only likes men.

Charles loves no one but Eisie and Betty.

Charles loves none but those loved by Betry.

(m) Nobody understands somebody who loves nobody except Mary.

{n)
(o]
(P
(g
(1)
(s}
{
{u)

[ help only those who help themselves,

Everybody loves exactly one person.

Everybody loves exactly one other person.

Everybody loves a different person.

All people love only themselves.

People who love everybody but themselves are altruists,
Altruists love gach other,

People who love each other are happy.

Exercise 12

£1]

In many books, the dependencies between the different chapters or sec-
tions is given in the introduction by a figure. An example is figure a taken
from Chang and Keisler's Model Theory (North-Holland, 1973). One can
read figure a as a model having as its domain the set of sections {1.1,
1.3, ..., 5.4, 5.5} in which the binary predicate letter B has been in-
terpreted as dependency, according to the key: Rxy: y depends on x. Sec-
tion 4.1, for example, depends on §3.1, but also on §§2.1, | 4, and
1.3. Forexample, §2.1, 5.1) E{R), and {1.4, 5.3} = (R}, bt £2.2, 4.1}
& {R).

4.
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Dat.ermine the truth values of the sentences below in the model on the
bas1s_ of their meaning. Do not give ali details. (With method A that is not
possible anyway, since the entities in the model have not been named.)

14
=
(3] (32 [53] [54]
(i)  AxRxx

(i) 3xIy{x # y A Ray A Ryx)

(i) Ix("IyRyx ~ —IyRxy)

(iv) IaIy(x Fy AWz IwRzw (2 =x vz = ¥IN

(v} FxIyJzly # z A ¥w(Rxw — fw=1yvw=z

(vi} IxTylx # y » TzRuz A TzRyz A Yz(Raz Ryz))

{vii) EI:;,Elszlxﬁx.,ElxijﬁElx?{Rxlxz A Rxaxs A Rxgx, A Rxgxg A
Bxsx, A Rugxs)

(it) W W Wisin, # 1, A x, # x5 A Ay F %y ATRK X, A RKGx, A
TRX Ky A REGK, A SRR K A RYGx,) —=dy(Rx,¥ A Rxy A
Rx;¥)

(ix) ¥x¥yilx # y A “Rxy » TRyx} - FzFwiz # w oA “Rew A
—Rwz A Bxz A Ryz A Rxw A Rywl)

{by Consider the model given in figure b. Its domair consists of the points

and the lines in the fipure. Hence D = {P,, PPy Py P L L LG, 1)
rl‘hc langnage contains the unary predicate letter P with the POInts as jts
interpretation; the unary predicate letter L with the lines as its mterpreta-
tton; the binary predicate letter G with, as its interpretation, fie on (key:
ny tjhe point x lies on the line ¥); and the ternary predicate letier B with,
as It 1nterpretation, fie between (key: Bxyz: y lies between x and -
l{.B‘J = {{P!, Ph P-‘t}: {Eh Pz: Pl}1 I:P31 R!s Ps}s {PS: qu Pj.}}}



F.0305048Y

11:3b

ShE=30-4013

108 Chagter Three

b. P,
P,
L
P, F, P
Ly L 1
Asin (a}, determine the truth value in the model of the sentences below
or the basis of their meaning,
{1 ¥xalx < JyOvx)
(i)  ¥x¥y{(Lx ~ Ly) - Jz(Pz ~ Ozx ~ Ozy)}
(i) ¥a¥y((Px ~ Py) — dz{Lz » Onz » Oyz)}
{iv) FxIyVeiPz — (Ozx v Ozy}}
(v} FxTy Ty Ty, (0 #F 247 F Yanys T ¥ 2 Val{Pz a0zx)
EZ= VIS ¥avE T Yl
{vi) Ty, IxaTvaln, # 5 oAy, F v A Oy A Ox vy~ DXy, A
Ox,y,}
{vii) ¥x¥y¥z({Bxyz — Bzya)
{viii) Wallx — IyTzTw{Oyx ~ Ozx A Owx A Byzw))
(i) ¥Wa¥yWalix #y axE 2z oy £2 0 IwiOuw ~ Oyw A Ozw)) -
(Bxyz v Byzx v Bzxy))
() Vady Ty.(v, £y, ~ Oxy, A Oxy,) — Fz,3=,B7,x7,)
Exercise 13

There ts actually a great deal of fiexibility in the semantic schema presented
here. Although the main emphasis has been on the case where a forpoula o 35
interpretq:ﬂd_i_ﬂ_@_givf__ odel (“verification’), there are various other modes of
employment. For instance, given only some formula ¢, one may ask for all
models where it holds, Or conversely, given some model M, one may try ko
describe exactly those formuias that are trie in it. And given some formulas
and some nontinguistic sitwation, ene may even Iry to set up an interpretation
function that makes the formmlas true in that situation: this happens when we
learn a foreign language. For instance, given a domain of three objects, what
different interpretation functions will verify the following formula?
YaVy{Rxy v Ry w x = v} A WxWwRauy — 7Ry}

Exercise 14 <

Formulas can have different numbers of models of different sizes. Show that
{i) Axy(Rxay «» 7 Ryy} has no models.
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(ii} YxWyiRxy v Ryx v x = y) A Va¥y(Rxy «> 2(Px < Py)) has only
finite models of size at most two.

(i} YxdyRxy » ¥x—oRxx A IxWy—Ryx a Vx¥yVz((Rxz ~ Ryz)} -
% = ¥) has only models with infisite domains.

Exercise 15

Describe all models with finite domains of 1, 2,3, . . objects for the con-
junction of the following formulas:

Y Rxx

¥xIyRxy

VaVyVe({Rxy ~ Rxz) >y = 7)

ViVyVz{(Rxz A Ryz) — x = y)

Exercise 16 &

In natural language (and alse in science), discourse ofien has changing do-
mains. Therefore it is interesting to stady what happens to the truth of
formalas in a model when that model undergoes some transformation. For

instance, in semantics| a formula is sometimes called persistent when its truth |
is not affected by enlarging the modefs with new objects] Which of the follow-

g formulas are generally persistent?
() Jxbx

(1i) Y¥xPx

(ini} IxWyRxy

{iv}  Va¥yRxy
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Exercise 18

There are certain natural operations on binary relations that transform them
into other relations. One example is regation, whichk wrns a relation H into its
complement, —H; another is ronverse, which turns a relation H into a=
fix, vi|{y. x3 = H}. Such operations may or may not preserve the special
properties of the relations defined above. Which of the following ace pre-
" served under negation or converse?

{i) reflexiviiy

(ii} symmmetry

{uii) transitivity

3.% Function symbols

A function is a special kind of relation. A function 1 from D inte D can always
be represented as a relation R defined as follows: {d, e} & UR) iff ofd) = e.
And then ¥x3 'Ry is true in the model in question. C:}nversely@f WxdlyRay
is true in some model for a binary relation R) then we can define a function r
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and variables do. Such expressions can therefore play the same roles as con-
stants and variables, appearing in just the same positions in formulas as con-
stants and variables do.

If the addition fanction on patural numbers is represented by means of the
binary function symbol p, then the commutativity and associativity of addi-
tion are mnvementl}f cxpressed by:

(107) Vx¥yipx s Eg Do

(108) "-fx‘ﬁ‘ﬂ'zip{p(i 3] zJ Ex ply, 201

S0 now we have not only simple terms like constants and variables but also
composite terms which can be constructed by prefixing function symbols to
the right number of other terms. For example, the expressions p(x, ¥}, ply, 5],
plpix, ¥), ), pix, ply, 23}, and ply, z) appearing in (107) and (108) are all
Lompaosite tecms. Composite terms are built up from simpler parts in much the
same way as composite formulas, so they too can be given an inductive
definition:

. & which assigns the unique e such that {d, e} € KR to any domain element d. Definition 11
["‘, [ 4~k S0 unary functions can be represented as binary relations, #-ary functions as (i) Iftis a variable or constant in L, then t #s a term in L.
ot w7 mt Loary relations. For example, the sum function + can be represented by (i} Iffisan a-ary function symbolinLandt , . . . , t, are terms in L, then
@7 means of a ernary predicate letter P. Given a model with the naturai numbers f(t,, . . ., t.}is a term in L too.

as its domain, we then define I{P) such that {n,, n,, n,} € Py ifin, + n, =
n;. Then, for example, (2, 2, 4 € I{PY and {2, 2, 57 € LF).

The commutativity of addition then amounts to the troth of Ya¥yW¥ePxyz
— Pyxz} in the model. Associativity is more difficult to express. But it can be
done; it is done by the following sentence: WaWyW¥zWw Yw Ww ((Pryw, A
Pw, zw, » Pyzwsy) — Px\-.-jw 1. This is rf:prf:sented graphically in figure
(106): .

{1:]6} (1 + !ll':l + 3.= i + (}r +

\/
N /\>/
¥y !
It is clear that expressing the propertics of functions by means of predicate
letters leads to fermulas which are not very readable. It is for this reason that
special symbols which are always interpreted as functions are often included
in predicate languages. the function sywrbaols.

Function symbols, like predicate letters, come in all kinds of arities: they
may be unary, binary, ternary, and so forth. But whereas an n-ary predicate
letter followed by & terms forms an atomic formula, an s-ary function symbol
followed by # terms forms another term, an expression which refers to some
entity in the domain of any model in which it is inferpreted, just as constants

The definition of the formulas of L does not have to be adapted. Their seman-
tics becomes slightly more complicated, since we now have to begin by inter-
preting terms. Natorally enough, we imterpret an n-ary function symbol T as
some n-ary function [{) which maps D=, the set of all n-tuples of elements of
the domain D of some model we are working with, into D. Variables and con-
stants are interpreted just as before, and the interpretations of composite terms
can be caleulated by means of the clause:

[[ﬂ:tls LR [n)]]rf[,g = ﬂ{f}j{{[[tl]h'[.gs A [[tm]]l'r![,g}}'

So now we can see why the idea behind definition § is vseful: it makes gener-
alizing s0 much easier. In approach A, by the way, we only have 1o consider
terms withount variables, in which case [t]y; can be defined instead of [y,

Our account of predicate logic so far has been biased woward predicates of
and refations among individual objects as the logically simple expressions. In
this we followed nawral language, wiich bas few (if any) basic, i.e., lexical
fenctional expressions, Nevertheless, it should be stressed that in many appli-
‘cations of predicate logic to mathemarics, functions are the basic notion rather
than predicates. (This is true, for instance, in ﬂggy_ﬂgjds of algebra.) More-
over, at a higher level, there is much functional behavior in natural language
too, as we shall see in a Jater chapter on type theory (see vol. 2.




