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{2} ¥xax/dx(Ba ~ Bx).

{h) ¥x3vRxy/AxRax.

{3} YxRxx/¥x¥yRay.

(j] FaV¥yRxy, VaRxx/¥aVy(Rxy v Ryx).

(k) ¥aIdyRxy, ¥xiRxx + Ax}yIxAx.

(I ¥adyBRxy, ¥a¥y(Ruy v Ry ¥a¥yVe{{Rxy ~ Ryz} — Ruz).

(m) ¥adyRuy, Va¥yVe({Rxy » Ryz) —» RExz)/ IxRax.

fn) ¥a¥y(Ray — Ryx), ¥a¥y¥a((Rxy A Ryz) — Rxz)f IxRxx.

(o) Jxdy¥Waix = z v ¥ = Z¥a¥y(z = ¥)

() Wxdwix # v AxTyTa(x F vy Ax F 2 Ay # )

() WxIviRxy ~ x # y) WaVyWa({Ruy ~ Byz) — Rxzh¥a¥y(x = y v Ray
w Ryx).

(1) Wx{Ax «— YyRxy) Ix¥y(Ay < x = yWVVy{(Rxx A Ryy) - x = .

4.2.2 The Principle of Extensionality

We shall now say some more about thefprinciple of extensionalityifor predi-
cate logic and the closely related substinwivity propeetics, which will to some
extent be proved. The following theorem, which shows a link between argu-
ments from premises {o conclusions and material implications from anteced-
enis (o consequents, will serve as an introduction:

Theorem 1

(@ = Pifi = o b
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Proaf: A proof of (b) wilk do, since (a) is a special case of {b).

(b} = Suppose &, - . . , @, F . Suppose furthermore that for
some suitable ¥ {we shall leave out any references to the model
which ¥ originates from, if they are irrelevant} Vig) = ... =
¥ih,-1) = 1. We have to show that V(g — #) = 1 too. Suppose this
iz not the case. Then from the treth table for —, Vg, ) = I and ¥
= [1, But that is impossible, since then alt of Wid ), . . ., ¥,

would be I, in which case it follows from &, . . ., ¢, F ¢ that
Wb = 1 and not 0.

(by <: Suppose ¢y, . . . , ¢, F b, — ¢r. Suppose furthermore
that for some suitable ¥, Wi 1 =. . . = ¥igp,) = 1. We have to show
that then necessanily Vi) = 1. Now if Vid,) = .. . =Vip =1,
then obviously Vigh} = . . . = Vg, ;) = 1; according 10 the as-

sumption, we then have ¥, — @) = 1, and with ¥{é) = 1 it fol-
lows that V{} = 1. [
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One direct consequence of this theorem is that in order to determine what
argument schemata are valid, it is sufficient to know what formulas are univer-
sally valid. This is spelled out in theorem 2:

Theorem 2

BB FEEITES i~ (.. = (d, =W DN
Eiga. . Ad) 2

Proof: a repeated application of theorem 1. O
There is & theoremn on material equivalence which parallels theorem 1 and
which we have already encountered in propositienal logic.

Theorem 3 .

The following assertions can be deduced from each other; they are equivalent:

G ¢Fpamdyg¢
(ii) ¢isequivalenttod | G- oo Do il 2 e e
(i) Fd ST e e

: Proof: Tt suffices to prove: (i) = (i) = {iii) => (i}

(i) => (ii): Assume (i). Suppose, first, that V(¢ = 1. Then ¥{ip) = 1

because & F . Mow suppose that ¥y = 0. Then it is impossible

- that V() = 1, since in that case it would follow from ¢ = ¢ that

s Wi = 1, so V(i) = 0 too. Apparently Vig) = V(i) under all cir-
r.¢ . cumsiances, so that ¢ and 4 are equivalent by definition.

(i) = {iii): Asseme (ii). We now have to prove that ¥ig— @ =1
for any suitable V. But that is immediately evident, since under all
circumstances ¥l = V().

{iii} = (i} Assume (iii). Suppose now that for some ¥ which is
suitable for ¢ = i, Vi) = 1. Since ¢ <> 1 is universally valid,
Vih) = ¥((¥) holds for all V. It follows that V(i) = 1, and we have
thus proved that ¢ F os; ff F ¢ can be proved in exactly the same
manner. [

This thecrem can be strengthened in the same way that fheorem 1 (a) is
strengthened to theorem 1 (b):

Theorem 4
by, ..., Exade,, ..., xFPiTd, ..., o Fhox

The reader will be spared a proof.
We are now in a position to give a simple version of the promised theorem
tensional meaning_ijl_pr_egjﬁite logic, just as in propositional logic. We shall
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. formulate this theorem for semtences fiest, that is, for formulas without any

free variables.

Theorem S

It ¢ and r are equivalent, ¢ is a subformula of x, and [§/¢p]y is the Formula
obtained by replacing this subformula ¢ in X by i, then x and [f/d]x are
equlvgl_ept 77777

Sketch of @ proof: A rigorous proof can be given by induction on (the con-
struction of } x. Tt is, however, clear (Frege’s principle of compositionality!)
that the truth value of ¢ has precisely the same effect on the truth value of ¥ as
the truth value of f has on the truth valee of [f/d]x. So if ¢ and i bave the
same iruth values, then y and |y@/]x must too. O

The same reasoning also proves the following, stronger theorem {in which
. b, w, [ ]y are the same as abllf:u[e}: ‘Jﬁ"l

petr
Theorem 6 (Principle of extensionality for sentences in predicate logic)
e x o [y

And one direct consequence of theorem 6 is:

Theorem 7
If{i}l!‘ . '-[Ifjn 'th)'f—?'lf.l', t]:’]EI"':J{:’I: L s{i}n '=XH[‘I—‘J"¢]X-

Proof: Assume that ¢, . . ., ¢, = & <> . And for any suttable V, let
Vigh} = ... = Wig,) = 1. Then of course ¥(d « ) = 1. According to

theorem & we then have Wiy < [iplx) = 1, whence ¢, . . . , b, F x
[hfch]y is proved. O}

Theorern 7 can be paraphrased as follows: if two sentences are equivalent
(have the same extensional meaning} under given assumptions, then under the
same assumptions, they may be sul:_rgti[u_[@d,fﬂf each other without loss of ex-
tensional meaning. There is also a principle of extensionality for formudas in
general; bat first we will have to generalize theorem 3 so that we can use the
equivalence of formulas more easily,

Theorem 8

If the free variables in  and in s are ail among x,, . . . , X, then ¢ and ¥ are.

equivalent ilf F¥x, . . . Wi (d < ).

Proof: The proof will only be given for # = 1, since the general case is not
essentially different. We will write x for x,.

= Suppose ¢ and ¢ are equivalent. Then by definition, for every
suitable M and g, Vi, {9 = ¥y (). That is, for every suitable M
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and g, Va (@ <+ @) = 1. Bui then, for every suitable M, g, andd €
Dy ¥ gpafd = ) = 1. According to Tarski’s trath definition,, this
means that for every suitable M and g, ¥y (Vx(¢ < 47} = 1. And
this is the conclusion we needed.

<=: The above proof of => also works in reverse. [

We can now prove a principle of extensionality for formulas ie predicate I
logic, just as we proved theorems 6 and 7. We give the theorems and omit -
their proofs. The conditions on &, o, x, and [/ x are the same as above,, by
except that ¢ and b may now be formulas, with the proviso that their free!.-
variables are all among x,, . . ., %, (if ¢» and ¢ are sentences, then = = 0).

» Theorem 9 { Principle of extensionaliiy for predicate logic) S S PSS

Vi, ... Wi (¢ =) Fy e [dalx

< P

Theorem 10 Targid
].f¢|s P ,¢ml=‘b’xl. . .VKH{{i}ﬂ:—}il;_},men{i;l, L !{me:xH[‘-I!JI'I(#]X

Theorem 10 again expresses the fact that formoulas with the same extensional
meaning can be substituted for each other without loss of extensional mean-
ing. Actually this theorem sanctions, for example, leaving off the brackets
in conjunctions and disjunctions with more than two members {see $2.5).
Theorems 9 and 10 can be generalized so that ¢ need not have precisely the L
variables x,, . . . , %, i1 ¥. A more general formulation is, however, some- |
what tricky, and for that reason will not be given. |

We conclude our discussion of the principle of extensionality for predicate
logic with a few examples. The formulas ¥xiAx ~ Bx) and ¥xAx » ¥xBx
are equivalent. From this it follows from theorem 3 that ¥x(Ax ~ Bx) &
WxAx ~ ¥xBx, that ¥xAx » YiBx E ¥xiAx A Bx), and that E¥x{Ax A
Bx) <« (¥xAX ~ YXBx). This last can be used for theorem 10, withn = 0. I
we choose Wx{Ax ~ Bx) — Ix—Cx as our y, then it follows that ¥x{Ax A
Bx) — Fx1Cx and (¥xAx A ¥xBx) — Ix—Cx are equivalent. And so on.

The equivalence of Ax A Bx and Bx A Ax results, using theorem 3, in
E¥u({Ax a Bx) + (Bx ~ Ax)}) Applying theorem 10 to this, we obtain the
equivalence of ¥Wx{(Ax ~ Bx) — JyRay) and Wx{(Bx ~ Ax) — JyRxy).
Equivalences other than the commutativity of ~ can also be applied, the asso-
ciative laws for ~ and v, for example, which result in the fact that in predi-
cale logic as in propositional logic, brackets can be left out both in strings of
conjunchions and in strings of disjunctions. Here is an application of theo-
rem 10 with m > O if is not difficult to establish that ~{dxAx A IxBx) F
Wx(Ax v Bz) — (¥xAx v ¥xBx). It follows that 7{dxAx A JxBx) &
(YaCx — WilAx v Bx)) — (¥xCx — (W¥xAx + ¥xBx)), to take just one arbi-
tracy example.

Given the above, we are also in a position o say more about problems with
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" tences lll;e {E} (=2

{8}  Casper is bigger than Peter
Peter is smaller than Casper

Having translated x is bigger than y into predicate logic as Bxy, and x ix
smaller than y as Sxy. we now take VxVy(Bxy < Syx] as a permanent as-
simption, since we are ondy interested in models M in which Vo (V¥y(Bxy

oo <> Syx)} = 1. Under this assumption, Bxy and Syx are equivalent. Further-
© more, according to theorem 10, Bzw and Swz are equivalent for arbitrary

variables z and w, since Yi¥y{Bxy < Syx) E¥e¥wiBew < Swzl. In fact, it
is not too difficult to see that Bt;t, and St.f, are also eguivalent for arbitrary
terms t, and t;, as in Ba,a, and Sa,a,, for example, so that if Casper is trans-
lated as a, and Petfer as a,, both of the sentences in (8) have the same exten-
sional mezning. An assumption like the one we are discussing is called a
meaning postuiate. The problem with (91 (=(3)):
(9}  Picrre is a bachelor.
Pierre is an unmarried man.

can be resolved in much the same marmer by taking ¥x{{Mx » 7" Wx) < Bx)
as our meaning postolate; the key to the translation is Bx: x is a bachelor,
Wi x is married; Mx: x is a man. What meaning postulates do is provide
information about what words mean. They are comparable with dictionary

definitions in which bachefor, for example, is defined as unmarried man. In

mathematics, som&’aﬁmms play the role of meaning postulates. For instance,

the following axioms relate the meanings of some key notions in geometry. If
we interpret Px as x 13 a point; Lx as x is 2 line; and Oxy as x lies on y, for
exanmple, the following geometrical axioms can be drawn up: ¥x¥v((Px A Py
Ax F yl — 3lz{Lz A Oxz ~ Ovz)), that is, given two different points, ex-
actly one line can be drawn which passes through both, and ¥x¥y({Lx » Ly
Ax F v = ¥ewi((Pz A Pw A Ozx A Ozy A Owx A Owy) — 2 = w), that

_.38, twa different lines have at most ene point in common.

In addition to the principles discussed above, there are also principles of
extensionality dealing with constants and variables, not in connection with
truth values, of course, but in terms of elements in & domain. Constants, and
variables too, by assignments, are interpreted as elements in a domain. Here
arc two examples of such theorems, without proofs:

Theerem 11

1f s and t are terms lacking variables, then for the formula [/s]¢r obtained by
substituting 1 for s in ¢, we have:|s = t = ¢ <> [t/s]dh]

—
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Theorem 12

If 5, 5, and 1 are terms whose variables are all AMONZ X1, - -« s X, then for
the term [sqfs It obtained by substituting s, for s, in t, we have; F= ¥x, ...
Y05, = s; - [suis,t = 0.

Here are some applications of these theorems, in a language with p as a
binary function symbol for the addition function: a, = plas. a,} = pla,, a,) =
p(plaz, &), pla;. a,)}, and =¥x¥WyVaip(x, y) = ply, x} — plpix, ¥), z) =
pipiy. x), z)).

We conclude this section by returning briefly to what we said in §1.1: that
substituting senfences for the variables of a valid argument schema is sup-
posed to result in another valid argement schema. Predicate logic does indeed
comply with this: substitutiugformu]asifor'ﬂiefpi'edfcm in valid ar-

Wata results in othv:r valid argument schemata But there are
restrictions have to be : placed on the substitutions, so that giving a general
formulation is difficul. We will just give an example: the substitution of
predicate-logical formulas in purely propositional argument schemata:

Theorem 13

Assume that ¢, . . ., ¢, = ¢ in propositional logic and that ¢,, . . . , ¢,

and 4 contain no propositional letters except p,, . . . s P And letx,, . ..,

Xm be sentences in some predicate-logical language L., while ¢, . . . , @/ and

%" are obtained from b, . . ., ¢, and o by {simultaneously) substituting ¥,
s XmfOrp, ., Py Then g, . .., & F o in predicate logic.

Froof: Suppose that b, . . . ., =, but !, . . ., & B o', Then there
18 a counterexample M which is responsible for the latter: Wl = .. . =
Vauld) = 1 and V(') = 0. Then a propositional counierzxample to the for-
mer argursent schema can be obtained by taking: Vip,) = Vi, (x,) for every i
between 1 and m. Then it is clear that Vig,) = . . . = ¥igh,) = 1 but that
Vi) = 0. since ¢, . . . , ¢, and ¢ are composed of p,, . . . , p, in exactly
the same way as ¢, . . . , ¢, and ¢’ are composed of ¥, . . . , x,,. We now
have a counterexample tc- our first assumption ¢, .. ., ¢_ = 4 so it cannot
bethecasethat ', ..., ¢ B . O]

One simple consﬁquencf: of theorem 13 is that substitution instances of
propositional tawtologies are universally valid formulas. Here are a few
applications:

(@) p ~ g F g ap. so, for example,
rvspafporqrE{p—=qg)a{rvshand
WxdyAxy » ¥xIyBxy = ¥Vx3yBxy ~ ¥x3IvAxy
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{b) E{ip — g} — p) — p. so, for example,
Ellp—>q =@ —{p+qi—(p—qgand
E({(¥xAx — IyBy) — ¥rAx) — YrAx.

We conciude this section with an example of an argument schema drawn
from predicate logic, for which formulating a general thecrem like the above
takes too much doing:

() ¥x{Ax v Bx}, JxAx = JxBx, so, for example,
Val{Ax A Bx) v (Ax » Cx)), Tx—(Ax A Bx) F Ix(Ax A Cx) and
W¥i(dyAxy v JzBxz), IxIvAxy F IxIzBxz.




