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and Tenumber aif of the fines in the derivation of ¢ — i all nembers (dany
forget those after the Formulas) are raised by o And then we add an applics.-
tion of E— at the bettom, deriving the conclosion Jr

m. ¢
m+ 1.
m £ 1. :ﬁ—}q[r

m+n+ [y E-;_m-l—n__m

The ewd resuli s & derivation of .

All of the rles apply equally with premises. As an e\:ample we shall prove
(vi*} in the following form;

L B X | T S
Frogf = Suppose we have a derivation of =14 from 1 ,. Thiz
cam very casily be turned into a derbvation of & from o, . . ., L, b}r adding

one new kine in which the conclusion ¢ is drawn From —gh by means of the -
“1-Tiie.

<: The required alterations can be read from the following schema:

I o
n l'li'rl'l
m. ®
ol T assumption
m + 2. i3 E-m+i,m
m + 3. —|—:¢. 1- O

Exercise 16

Show that = b A 3 iff - ¢ zad + gr

4.4 Seundaess and Comypleteness

I_zl this section we shall (without giving rigorous proofs) g0 into the connec-
tops between the semantic and syntactic approaches to Jogical inference, that

Arguments and [aferences 149

t5, terween & and . As we have said, these amount to the same thing. Ot
1o put it more precisely, for any sentences ¢y, - . . . . o In any langunage L
of predicate logic, we have by, . . . ., F pifandonlyif ¢, . . i B
. This can be divided into two implications, enc in each direction. We shall
treai them separately. formulating them as fwo theorems.

_: Theorem 14 {Soundicess Thearem for Predicate Logic]

. For all sentences &, . . .. .. i (in some language L of predicate logic), 1f

By, - b then dy, .., By F o0,

S
Theorem 15 {C ompfzﬂ-eness Theorem for Predicate Logic)

For all sentences ¢,. . . ., .. P {in some languape L. of predicate logic. if
Lo el then dv L L L ah, ol ton,

bl B

These theorems are primarily statements abeut the rubes we have given for

- the system of natwral deduction. The soundness theogem establishes that the

rudes are sound: applying them o some premises &, . . . . &, . alk of which
are true in some mode] M. can oniy give rise o cenchusions which are them-
selves true in M. In order to prove this theorem [which we shall not do). it &
sufficient t0 check the above tor each of the rudes 1o tern. The intraduction
nile for ~ is sound, for example, since if both Vyddl = | and Yyl = |

then we can be sure that Vi ~ ) = £ too. The proof for the other rules
poses no real problems, although there are a fow complications in the roles for
the quantifiers, which we encountered io connection with the restrictions (o
the rirles. The soundness theorem assores us that the resirictions are sufficient
te biock all undesirable cenclusions which might otherwise be drawn. 1n the
special case of r = 0, it can be seen that the soundness theorem reduces ta: if

- ¢ can be derived without premises. then ¢ is universally valid.

The completeness theorem assures us that the rules are complete in the
seose that iF ¢, . . LD Shisvalid, e if ;. . . . . &, F . then there are
enough rules to enable ns to derive o from o, - . - . .. In other words, the
tules are i themselves safficient to generate all vzild argument schemata; |

thing has been forgotien TS TIEaT Mhat TS Tesmit el 1255 obvions tan
the sowndness theorem, even if we fhought we could obtain afl valid argument
schemata while ferming the tules, and in particular, that we could derive all
tankologics and other universally vatid formulas without premises {see the dis-
cussion on the EFSQ and ——-rules). And this result is not only less obvious,
it is also less easily proved.

But the soundness and completeness theorems are not only statements

about the derivation mles, They also also say something about semanncs‘ about rq%.qg}f’

__.-—--——h——"

the concept of sernantic validity, What is characteristic {:

that they leave absolutely no room for doubt about what combinations of sym-
bols are proper derivations and what combinations are not. This is tree of \
natural deduction. bud it is equally essential to other existing formal proof sys-
tems. What soundness and completeness theorems say is that valid argument
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schemata are precisely those which can be obtzined as derivations in the

formal system in question. This is by no imeans always the case: it holds for

predicate ﬁ}gic hufz-t}oes not hold for second-order leglcﬁr for mathemntics
A

in ge for more on this, see below]. :

It should be noted that the compieteness theorem in no way contradicis
Church’s Theorem on the undecidability of predicate. logic, which was briefly
mentioned in §4.2. If a given argument schema hizppens 1o be yalid, then we
are assured that there is some finite derivation of its conclusion from its prem-
ises. So we have a method at our disposal which is mener

ot later that the schema is valid: we just start generating derivations and wait
until the right one tums up. The problem ts with the schemata which are not
valid; we have no method which 15 gua:ante:ed 10 dlSCO\'E-T t this for us, Generat-
ng derivations will not help us here, since in that case we would have to wait
1o make sure that the argument schema does nof turn ap. And since there are
infinitely many possible detivations, we could never be sure.

The completeness theorem can also be presented in another form which is
of some interest. But first we will introduce the concept of consistency and
prove a few simple things about it

Definition 4
[ . oy, 15 said to !Je. o @

ﬁr:ﬁ& i Eaple Loy

:;bn,lﬁ J_! :j},,..., g, 15
5ald to !}-e consistent if it s not incoRsistent, Ehat is, if e . . B T
Theorem 16 i
(@) ¢y, . .., b, Jris inconsistent iff ,, ., &, - —4s |
B, .. .., gis consistentjffri:l, ce e

Dy, ..., ﬁ¢isconsisientiﬁ¢], -

Frogf {a] = Sappose ¢, . . ., ¢,, ¥ is inconsistent, that is,
suppise by, - . ., @ b L. Then there is a derivation of 1 from
... .., . This derivation can be converted into a deritvation

|
I
{ of = from . . . . . &, by adding 1= as a last step:
I ' -
{ 1 &, assumpton
i .
[
1. @, assumption
n+ 1 o assumption
m AL
m+ 1 Iy I
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<: Suppose @, . . ., &, & —wp. Then a derivation of ~fr from
Py, - . . . P, 15 given. Now form a derivation starting with the as-
sumptions &, - . - . $,. @, followed by the remainder of the giwj'n
derivation £some of the numbers will have to be adapted). This will
result in 2 derivation of —ar frem <, . . . . $,. ¥ (in which ne real
use is made of ). This derivalion can now be turned inte a deriva-

tionof L from ¢, . . - . .. ¥ by adding E—as a last step:
1. Lo assurnpticn
n. ;tug ASSUMPHON
n+ 1. ' assumption
m + L. Bl
m + 2. 1 Eo,p+ 1, m—+ 1 i
{h) is an immfxiiatc consegquence of {a).
(), . ... &, —fis consistent iff (according to (b)) &y, - - - . B,
23 —u—l:,llr iff {according to (vi*}given i §4.3. Ny, . ... &,
o, O
Before we present the completeness theorem in s alternative form, con-
sider first its contraposition: if @y, . . . , ¢, * W then ,, .. . . @, ¥

Now if the antecedent of this is replaced by means of theorem !Gc, then we
obtain: if &, . .., ¢, —ib is consistent, then Prpa v - -0 By FE u,!n._ Reformu-
lating the consequent uf this, we obtain: 1f o ., G s cnnmstent, then

there is a model M suitable for &, .. . W and such thag Vol

Vol @, = 1and ¥ (¥ =0.Or in other wurds ifehy, ..., —dis cm:tslstem,
then there is some suitable model M such that Vi (d)) = ... = V(¢ ) =

- Vy{—4) = 1. I in order to keep things short we just say that M is a mode!
- Tor the string of formulas x|, - .

= V) =1,

¥ justincase ¥V, () =

* then we see that Wﬁnﬂbﬁm

" result.

Theoxrem 17 {Consistency Theorem)

If the string of senfences ¥,, . . - , ¥, is consistent, then there is a model for i

A3 - - -1 Xme —
the soundness thecrem can be shown o be the reverse of theorem 17 in

exactly the same mmanner:
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‘Theorem 18
If the string of semences Xy - - - - Xm has a model, then x,. . . .. ¥, ds
consistent.

Nowadays it is usual to prove theorem 17 instead of proving the com-
pleteness theorem directly. One _ASSMIHES that a sef cf Semences is conmstent
E{E‘Eﬂ tries o provide it wuh a medr:l This idea was initiated b\r Henkin
(1949, The eriginal prool of the cnmpletf:ness theorem, the one given by
Gadel {19307, was more direct.

All these iheorems demenstrate a striking peculiarity of medern logic: its
ability to theorize abowt its own systems and prove significant resuts about
them. This "seff-reflecting’ activity is sometimes cafled metafogic. In modern
metalogic there are many more concerns than those touched wpon so Far, For
instance. one can inquire into soundness and completeness for systems_otber
thean standard predicate logic, such as inluitionistic logic or higher-order logte
{see thap 3}. But there are also other important metalopical theorems abouwt
predicate fogic itself; we will s survey a few, taking our Grst cue from an earlier
theme.

We said belore thar the validity of an inference may be described as the
absence of any counterexamples. And we also noted what a staggering task is
invgbved in defermiming the latter state of affairs, since ali inteepretations in afl
medels might be ehgible In prirciple. But perhaps our apprehension in the
face of “the immense wtaliy of alt interpretations” seems a lritle exagperated.
After all, in propositional logic one can manage by checking the finiee lise of
isterpretations which are relevant to the validity of any given schema. In this,
a5 1n 50 many other respects, however, propositional logic is hardly represen-
tative of bogical theories. Thus, afl stroctures with arbitrary domains D have to
e taken into account when evabuating schemata in predicate logic. And there
is indeed an ‘immense’ number of these. The domain D may be finite or in-
finite, and within the latter type therc are different varieties: among these
S0mE are ::ﬂuntably infinite {like the natural numbers} and Some are un-cuunt-

. proved that pred:cate ]{:glc is al Ieast insensitive to th:: Eatier dtfferf:nce br:-'
© tween infinite sizes: !

if an inference has a counterexample with an infinite domain, then it
has a counterexample with a counsably infinite domam

The tree force ot this result can probably only be appreciated against the
background of a working knowledge of Cantor's set theory. But the foltow-
ing stronger formulation, which i recerved in the Bands of D, Hilbert and
P. Bernays in 1939, muse still be quite surprising:
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- predicales of arithmetic, the formulasﬁthus bemg S£En as pmposmuns
about natural members, o

This theorem led W. V. Q. Quine (1970} to an interesting msight. In good
nominalistic style, he comparcs the notions of validity that we have consid-
cred, F and F=, to the *substitutional account’ of validity: every substitution
of suitabte linguistic expressions in g, - . ., , ¢ which renders al! of the
premises true ajso renders the conclusion true.

Tt can easily be checked that syntactic derivabifity implies this form of
validity. But conversely, nonderivabtlity also implies (according to the Com-
pleteness Theorem) the existence of a counterexample, which in turn {accord-
ing to the Hilber-Bernays resulfy provides a counterexample in arithmetic
which can serve as a nominalistic counterexample. Mow nominalists do ot
believe in abstract structures ke those involved in the definition of =._ The
effect of Quine’s idea is that the nominabists can nevertheless be reconciled o
the nottor: at least with regard to predicate logic, there is nothing wrong with
=. S0 metalogical theorems can sometimes be used to make philosophical

points.
We have now seen how we cag use finite and countably infinite stractures to

determine validity in Erpﬂgg}_@jggg; If there are CDI:]'ITE:EEX&I‘I‘IP[&S to he found,

then they are to be found among these strictares. Can this be improved upon?
Can we perhaps use just the finite structures? The answer is that we cannot.
Every finile model of ¥x—-Rxx (ehe wrellexivity of R} and ¥xVyVzi{Rxy ~
Ryz} — Bxz) (the transitivity of R), for example, has an R-maximal element
(Ix¥y—Rxy). But the derivation of the fast of these formulas from the fivst
bwer is nevertheless invalid. As a counterexample we have, for example, the
patural numbers with B interpreted as_fess than (compare this with what is

prorised by Hilbert and cha}-s’s Completenass ’Ihtc-rf,m} Even warse, as

. for the class of predlcate glcal mff:reuces which are valid on finite struc-

 ures { These msights are also of at least some importance for the semantics of
natoral language. Given that the structures which natural language sentences
are intended to pertain to are generally finite, the above shows that the infinite
structures are_not just a theoretical nicety: they are indispensable if we are to
have a syntactically characterizable notion of validity.

In 1969, P. Lindstrom proved that the metaproperties which we have dis-
cussed are essentially characteristic of predicate logic. (We are now con-
cerned only with languages with the same nonlogical vocabulary as predicate
logic.) -

gﬁn?iugiéarl'syataﬁ:l plus semantics which includes predicate logic
iand sach that a completeness theorem and Ldwenheim's theorem
hold must ceincide with predicate loglc i

This is not put very precisely: finding an exact formu!‘anon for this meta-
logical theorem was actaally a nontrivial part of Lindstrém™s achievement.
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But the idea amounts to the following! Extending predicate logic means fosing
ab ]eaf*‘fi{‘? of the metaproperties of completeness, or the Laowepheim resule.
i_‘[ﬁpamcular, the stronger system of second-order logic >isfnm}rtpfea‘e, as
will appear in more detail in §5.4. There is po analogue of the completeness
theorem for it, because its class of uriversatly valid statements is too complex
to a»:%rnit of effective axiomatization. {Similar Lindstrom effects appear in con-
nection with the generafized guantifiers which will be considered in vol. 2,
like “most” and “for infinitely many’.) This is the phenomenon which, on the
one hand, makes predicate logic so felicitous, and on the other, makes all of
1ts extensions so nystertous znd such a challenge to investigate,
ﬁnﬁcati_]gr_g_ﬁ_pg{:_t of inferences which has been studied quite extensively is
thel_r:;déc&fabﬂfn'.i Is there, for some logical system, an effective methed for
dectding whether a given inference is valid or not? For propesitional logic
there is. As we have seen, for instance, using the truth table test; 1

Bei‘ng a valid argument schema in propesitional logic is a decidable
Rotion.

and a Fortior
Being a tautology of propositional logic is a decidable notion.

Mﬂ-.rfo\rf:f. by somewhat more complicated methods, one can also establish
decidability for_monadic predicaie Jogic: that part of predicate legic which

ses unary pr;:di‘caiq symbols. Predicate logic taken as a whale, however, is -
undecidable. In 936, A Church proved his previously mentioned ncgative

:';‘ésu]t [Church's theorem):

Being a universally valig Tormul3 of predicate logic is not 2 decidable
notion.

So the saine must apply to predicate logic's set of valid $Tonmant 5
The following s true, however, in the light of our earlier discussion

Fcn: thi's assertion is always true of a system with a syntactic prod calculus
which is complate with respect to its notion of inference. And predicate logic

15 suc.h a system. For incomplete logical systems, however, like the previously
mentioned second-order logic (or the theory of types to be presented in
vol. 20, there isn't even an analogue of the last-mentioned result. The set of
argument schemata which are valid in these systems has no effective syntactic

characterization. This does not mean that one cannet vse calculi of natwal
deduction in sech cases: in fact, there exist interesting-sound syntactic proof
calculi for second-order logic too. But in view of the inescapable jncom-
Ei_ﬁtﬁﬂﬂss of the system, they can never preduce all of its universally valid
ormulas.
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All uf these metaresults give insights into the powers and limitations of the
Togical apparatus of deduction. But concrete reasoning always involves two
distinct factors: there is inference and there are thefs nowledge strpc-
fures from which inference must follow. The second formal aspect has also

been studied extensively by logicians from a mathematical perspective, in a

long tradition of research into the foundations of mathematics {and occasion-
ally also other sciences}. This involves investigations imto the logical structure
of axiomatized mathematical theories, the various metalogical properties
which the theories can have, and the togical relationships they can have to
each other in the web of scientific knowledge. Many different facets of our
logical apparars become refevant to the study of such issues as efficient repre-
sentation and communication of knowledge. They range trom the cheice of an
optimal vocabulary in which to formulate it to the cheice of a suitable system
of inference by which to develop and transmit it. For example. lluminating
results have been achieved about the role of definifions in scientfic theories
(Beth's Thearem). Although foundational research tends ko take place within
an environment which is more concerned with scientific fanguage than matural
language, it is a source of inspiration for general logical and semantic smdies
too. {See Barwise (977 for a comprehensive survey}.

Exercise 17 & n

Some logic textbooks are based on meaintaining consistency rather than draw-

ing inferences as the basic logical skilf. So it is mieresting 1o stady the basic

properties of cofiSistency: Prove ot refite the following assertions for sats of

formulas X, Y and formulas ¢

)] Tf ¥ and ¥ are consistent, then so is their anion X U Y.

{ii) I X is consistent, then so is X U {é} or X U {—g}

fili}  Tf X is inconsistent and ¢ is not universaily valid, then there is a maxi-
mal consistent ¥ C X which does not imply ¢ Is this ¥ unique?

- Exercise 18 <

Although full predicate logic is undecidable, many of its fragments are better

behaved, As was observed in the text, for example, monadic predicate fogic

with only unary predicates is decidable. Another usefo! instance is the frag-

ment consisting of wriversal formedas. i.e., formulas with arbitrary predicates

but only universal quantifiers restricted 1o occurrences in front of quantifier-

free Formulas.

ti) Which of the earlier requirements on binary relations {see 3.3.8) are
universai?

{i1} Prove that valid consequence among sniversal formulas is decidable,
by showing that only certain finite models need be considered for its
assessment.

-
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