4 Arguments and Inferences

4.1 Arguments and Argoment Schemata

30 Far we have mainly been concerned with the truth of sentences. To this end
we have comstructed a formal fanguape, that of predicate logic, and have
shown how (o translate {certain kinds of ) natural Janguage sentences into it.
We have also developed conditions which determnine the treth or falsity of
geven sentences in predicate logic under given circumstances, that is, in any
given models. Mot that we had any particular sentences in mind whose truth or
falsity we wished to assess. Our idea was 1o show how the trith valee of a
sentence depends on the meanings of the parcts from which it is built up.

We shail now furn to another, refated matter: the ways that accepting certain
sentences can, COMITIT one kg accept other sentences. This is an important facet
of the more general question of the interdependencies between the meanings
of sentences,

It is quite commen, in everyday language, to accept a sentence just becanse
one has previously accepted certain other sentences from which it follows by
some kind of argument. The simplest arguments are those in which a number
of previously accepted sentences (the assumptions, or premises) are followed
by an expression such as #eir and then a new sentence (the argument’s concli-
siome ). We saw some examples of arguments in §1.1. In chapters 2 and 3 we
translated sentences derived from natural fanguage into formal language, and
now we shall do the same for arguments. But we shall stick to these simple
kinds of arguments, since so many factors determine the forms of arguments
and the extent to which they are found convincing that a general treatment
would seem still to be beyond cur reach. You could say that we resirict our-
selves in logic to the results which an argument yields, which is in a way
another extensionalization: the cnly thing which really matters about an argu-
ment is whether or not its conclusion is justified by its assumptions. Translat-
ing the assumptions of a given argument into predicate logic as the sentences
@y, - - ., b, and its conclusion as the sentence W, we obtain an argument
schemad, . .., . Ithas ¢, . . ., B, asits premises and o as its con-
clusion. If accepting ¢, . . . , ¢, commits one 1o accepting W, then this ar-
gument schema is said to be ua?) and ¥ is said to be a logfea? conseqi
of ¢y, . . ., &, An informal argument is also said to be valid if Tt can he
translated mm a valid argument schema.
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The logical constants appearing in the formnlas of an argument schema are
the unr_s.}EET)?sthose meaning defermings whether it is valid or not. This
can rgmm&ng pronounced invalid, since
expressions other than logical constants can hide aspects of meaning which
lend arguments intuitive credibility. This can be avoided, for example, by
making the hidden meanings explicit in additional premises. Indeed, we saw

an example of just this in the discussion of argument (8) in §3.1, here re-
numbered as argument {13,

(1} Casper is bigger than John.
John is bigger than Peter,

Casper is bigger than Peter,

A direct translation results in an argument scherna which (as we shall seg) is
wwalid: Bej, Bjp/Bep. But adding the transitivity of bigger than. mentioned in
that discussion, results in the following argument schema, which (as we shall
see) i valid: Bej,Bjp, ¥x¥y¥Yz((Bxy ~ Byz) — Bxz)iBep.

There are two essentially different approaches (o the notion of validity as it
applies to argument schemata. The fiest of these i§ fhe_semantic approach
which involves the interpretation of the sentences of predicate logic and fus
concepts like models and truth. This approach will be developed systemati-
cally in §4.2, but it can do no harm fo anticipate by giving the obvious defini-
tion of (semantic) validity for argumeat schemata in predicate logic.

Definition 1 TIPS

N W 5?’@1? for all models M which interpret all
the predicate letters and constants and any finction symbols appearing in
di. .o and for which Vyf(d) = .. . = Viu(é,) = I, we also have
Ylh) =

In other words, ¢, . . . , ¢/ is (semantically) valid if it is not possible
that both ¥yldh,) = . . . = V() = 1 and Viyith) = (. Accepting the fruth of
@, - . ., ¢, thus commits one to accepting the truth of . Where b, . . . .
¢,/ does not contain any premises, so that # = 0, the validity of the argu-
ment schema depends on whether or not J can be concleded anyway, from
nothing at all. Then the definition reduces to: I!q!: s semantically valid iff o is

universally valid (in propositional logic: actautolady). foricsof,
The second line of approach to the notion of validity is vialsyntactic meth-

ods) Although semantic methods tend to give one a better understanding (and

tend to be more fertile with regard to, for example, linguistic applications), no
introduction o logic would be complete without a syntactic treatment of the
notion of inference, The semantic notion of validity is based on universal
quantification over that nysterions totality, the class of all models {there are
infinitely many models, and models can themselves be infinitely large). The
notion of meaning which we use in the syntactic approach is more instrumen-
tal: the meaning of some part of a sentence lies in the conclusions which, be-
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cause precisely that part appears at precisely that place, can be drawn from
that sentence. Against the background formed by such considerations, a very
precise and finite list of small, almost entirely trivial steps of reasoning is
drawn up. These steps can be linked to form the longer, formal chains of rea-
soning which are called derfvations. Relations of syntactic inference are then
of the form: ¢, . . . , &,/ is pyrarricatly validifl there is a derivation of 4
from &, . . . , §,. The syntactic approach which we have chosen is that of
natural dedwction. It llustrates the instrumnental point of view on the meaning
of connectives and quantifiers most clearly. And rhis new point of view shorld
also help to deepen our understanding of what the logical constants mean.

We will discuss the semantic and syntactic approaches in §$4.2 and 4.3,
respectively. Then we avilt discuss important connections between the two in
§4.4. It turns out that?h%séiﬁ:(l:‘ dtlﬁ‘ﬁ'{ééhi)methods ultimately lead to exactly
ihe same argument scf:lemata being pronounced valid. It is comforting to know
that the semantic notion of validity, with its heavy ontological commitment, is
parallel to simple combinatory methods which entirely avoid such absiract
concepts (see $4.4).

We conclude this section with a few remarks on the connection between
indgrence relafions and the meaning of a sentence or a part of a senfence. Ac-
tually, the fact that, for example, W follows from o {$/ir is valid) indicafes 3
connection between the meanings of ¢ and 3. But if not only does ¢ follow
;- from ¢ but ¢ in urn follows from s, then there is a sense in which < and or

" . have the same meaning. In such cases ¢ and 4 are said to have the same exten-

sional meaning. It is not too difficult to see (and it will be proved in theorem 3
in §4.2.2) that semantically speaking, this amounts to the equivalence of ¢
and . Predicate logic has the property that ¢ and 4 can be freely substinmed
for sach other without loss of extensional meaning as long as they are equiva-
lent (i.e., as long as they have the same extensional meaning). We referred to
this asghe principle of extensionatity for predicate Togic | These remarks apply

directly only to these sentences which share the same meaning in the strict,
fogical” sense. Pairs like (2) and (3} are a bit more complicated:

(1} Casper is bigger than Peter.
Peter is smaller than Casper.

(3} Pierre is a bachelor.
Pierre is an unmarried man.

We will discuss this briefly in §4.2.2.

4.2 Semantic Inference Relations
4.2.1 Semantic validity

Let us first review the definition of [@@ which we shall refer to
simply as velidity, in a slightly different manner. We give the definition for
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predicate logic first; the obvious restriction to propositional logic follows
immediately.

Definition 2
(@) A model M is suitable for the acgument schema o, . . ., &/ if all
predicate letters, constants, and furction symbols appearing in &, . .

- o

oorindrarcinterpreted in M. . g0 7 :

(b) by, . . ., B, is said to be valid {shoTter notation: ¢y, . . . , ¢, = ¢ if
for every model M which is suitable for ¢,, . . . , &,/ and such that
Valdg) = ... = Wylg) = L, V) = 1. .

In that case we also say that i is a imlﬂf‘?n C e

.. Iy, ..., ¢,/ is not valid, then this may also be writtenas ¢, . . . ,

$o F 4. )

Note that the validity of ¢, . . . , ¢/ reduces to the universal validity of
$if » = 0, and that the notation = is therefore no more than an expansion
of the notation introduced in §3.6.4, The definition for propositional logic is
slightly simpler: el

Definition 3
For formulas ¢, . . . , ¢, ¥ in propositionat logic, ¢, . . . , ¢, F v holds
Just in case for all valuations ¥ such that Viu(d,) = . . . = Viu(é,) = 1,
Wig(th) = 1.

We could of course restrict ourselves to valuations ‘suitable” for ¢, . . . ,
&,/ these being functions which map all the propositional letters appearing
ing,, ....d,, ponto0or i, but not necessarily all the others. In fact, that
is more or less what is done in teuth tables.

The validity of every argement schema in propositional logic can be de-
cided by means of truth tables. We shall discuss schemata (47 and {5) as
examples:

4 pol@arn,g—w/ip
(35)  "p—=igAar),og— rdp
A truth table for {4) is given in (6}

@ pla|rflaar|p—=gad|r|g—=—r]|/]|p
11141 1 1 0 0
11110 Q 0 L |
11311 0 0 0 1
LG |0 H 0 1 1
d11]1 1 1 a 0
(110 0 1 } i 1
o101 0 1 a i 1
Ol0ol0 0 1 1 1 1
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We only have to consider the valuation of the conclusion —p in those cases
{marked with a *) in which the valuations of the premises p — {q ~ r) and
g — 7 are both 1. Now —p has the value | in each of these three cases. So
p—+igar)g—rEap,

The truth table for schema (3) is in (7):

(7}
plaq|r]||p | |gar | p— (g AT g | g—er || p
1111 0 0 0 1 8] 1 1
L {10 O 1 1 1 4] 1 1
1101 |0 0 | 1 G
Ljofo|f o 1 0 1 1 1 *11
1171 1 0 G { 8] 1
O (110 1 1 1 1 0 1 *0
dlo0]1 1 U 0 ] 1 0
01010 1 1 1] d 1 1

From the troth table it is apparent that if ¥ is such that Vip) = 0, Vigy = 1,
and ¥{r} = {, then V{—p —{g » 1} = ¥{g = ) = | and Vip} = 0 hold
for ¥. From this it is clear that —p — {g » 1), =g — —r ¥p. A valuation like
¥ owith Vip) = @, ¥W{g) = 1, and ¥(r} = 0 which shows that an argument
schema 1s not valid is called a counterexample to that argument schema. (The
given ¥ is a counterexample to —p — (g » 1), T — —rfp, for example.)

Such a counterexample can always be turned into a real-life counterexample
if one wishes, by replacing the propositional letters by actual sentences with
the same truth values as the propositions they replace. In this case, for exanple:

p: Mew York is in the United Kingdom; q: London is in the United King-
dem; r: Moscow is in the United Kingdom,

Exercise 1

Determine whether the following argument schemata are valid. If a schema is
invalid, give a counterexample.

{a) p A qip (i} p, piy

(b} p ~ gfyg (k) p = (g ~ q@iop

) pvgip (l pwvgp—=r14q—rr
({dyp.giprg  (mipvg {paqg —or
(e} p/ip v g (m) pvq.p—q/q

(£) a/p v q (©) pwvwq.p—ap

(g pipr g (P} p—~q,g/p
Wp.p=>g/q Q) p—gp—g

() p.g—pfg

One essential difference between propositional logic and predicate logic is
this: %mmber of {su1table] valuations will always “suffice to deter—j
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| mine the validity of an argument scherna in proposﬂmnal ]Ugl(: whereas an l
infinite number of models can be relevant to the validity of an argument |
schema in predicate Jogic: and the models can themselves be infinite ag well.

determine in a finite number of steps whether any given argnment schema in
predicate logic is valid or not. The snspicion that no general method exists has
been given a precise formulation and has been proved, tis is surely one of the
most striking results in modern logic (see Church’s Theorem, §4.4). There are
systematic methods for investigating the wvalidity of argument schemata n
predicate logic, incidentally, but these cannot guarantee a positive or negative
result within a finite ime for every argument schema. We will not discuss any
of these systematic methods but will give a few examples which show that in
practice things are not so bad as long as we stick to simple formaulas,

For schemata of predicate calculus, counterexamples are also referred fo
as conmtermodels. As we mentioned in §3.6.3, we can restrict ourselves to
models in which every element in the domain has a name. We do this in ex-
amples (a}—{h).

{a) To begin with, a simple invalid argoment schema: AxLx/Valx (the
translation of a natoral argument schema like There are Hars. 5o everyone is
a far}.

Froof: (that the schema is not valid). We need for this purpose a model M
with Vi {dxLx) = 1 and Vi, (¥xLx) = 0. Any such model is called a counter-
example to, or countermodel for, the schema. in this case it is not difficult
o constriet a counterexample. For example, let D = {1, 2}, I{L) = {1},
Ka,} = 1, and I{a;) = 2. Then we have ¥ (Jxlx) = 1, since Vy(La,) = 1
becanse | £ (L), And on the other hand, Vi, {(¥xLx) = 0, since Vy{La,) =0
because 2 & [{L). A more concrete countermodel M butlt on the same lines is
this. We assume that Anne is & liar and that Betty is not, We take Dy, =
{Anne, Betty}, L. (L) = {Anne} and also lyy(a,) = Amne and I, (a,) = Betty.
Then exactly the same reasoning as above shows that V. (3xLx) = 1, while
Voo (Walx) = 0. It is even more realistic if M is defined with Dy, = the set of
all people and 1,(L) = the set of all liars. If we once again assume that Anne
is a liar and Betty is not and introdoce a wvast number of other constants
in order to give everyone else a name oo, then much the same reasoning as
above again gives Vi {IxLx) = 1 and Ve (¥=Lx) = 0. It should be fairly
clear not only that abstract models are easier to handle but also that they help
us ko avoid smuggling in presuppositions. In what follows, then, the counter-
examples will all be absiract models with sets of numbers s their domains.

{b} Now for a very simple example of a valid argument schema: ¥xS5x/8a,
{for example, as the teanslation of Evervone is morial. Thus, Socrates is mor-
tat). We have to show that Vi;(5a,) = 1 for every svitable model M such that
¥y (Fx5x) = 1. Let us assume that. Then for every constant a interpreted in
M, Vi {Sa) = |. The censtant a, must be interpreted in M, since M is seitable

Wmm may well be no method which would enable us to
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for ¥x8x/8a,. So it must be the case that V,(Sa,) = 1. We have now proved
that ¥x8x F8a,.

{¢) The valid schema ¥Yx(Mx — Sx), Ma,/Sa, (a translation of Al rmen are
mortal. Socrates is @ man. This, Socrates is morial, for example) is slightly
more complicated. Let M be suitable for this schema and ¥, (¥x(Mx — Sx)}
= Vy(Ma)) = 1. Then Vyy(Ma — Sa) = I must hold for every constant a
which is interpreted in M, so in particelar we have ¥y(Ma, — 8a,) = 1. To-
gether with Vi (Ma, ) = 1, this directly implies that ¥,,{5a,) = 1. So we have
now shown that ¥xiMx — Sxy, Ma, F Sa.

{d) The schema ¥xIyLxy/dy¥WxLxy {a translation of Evervbody loves
somebody. Thus, there is somebody whom everybody Ioves) is invalid. In
order {0 demonstrate this we need a model M in which L is interpreted
and such that ¥, {¥xJdyLxy) = | while ¥,(I¥¥xLlxy) = 0. We choose D =
11, 2}, a,) = 1, and I{a;) = Z and (L) = {{1, 2}, {2, 13} {so we interpret L
as the relation of inequality in D: the pairs {1, 1} and {2, 2} are absent in
LY. Now we have Vo, (WxdylLxy) = I, because (i} Vy,{IyLa,¥) = 1, since
VwilLaja;) = [; and (ii) Vi{IyLa,y) = L, since V{La.a,) = 1. But on the
other hand, we have ¥y, (Ay¥xLxy) = 0, because (iit} Vy(¥xLxa, ) = (, since
Vy(La,a ) = 0; and (iv) ¥ (¥xLxa,) = 0, since ¥ (La.a,) = 0. S0 we have
now shown that Yxdylxy ¥ Jy¥xLxy Interpreting L as the relation of
cquality also gives a counterexample, and in view of fhe translation, this is
perhaps more realistic. The counterexample given in (d) can easily be modi-
fied in such a way as to give a counterexample to the argument schema in ().

(e) ¥x(Ox — Fy(By ~ Lxy)v(By A ¥x(Ox — Lay)) {a translation of AH
fogicians are reading o book. Thus, there is a book which afl logicians are
reading, for example). The counterexample given in (d) will also work as a
counterexample for this schema, if we take If03) = D and {B) = D. Tech-
nically, this is quite correct, but nevertheless one might have objections. The
informal schema of which this purports to be a translation seems to implicitly
presuppose that logicians are not books, and books are not logicians, and that
there are more things in owr world than just logicians and books. These im-
plicit presuppositions can be made explicit by including premises which ex-
press them in the argument schema. The schema thus developed, Yx(Ox —
TBx), Hx{Ox A 0Ba), ¥x(0x - Iy(By ~ Lxy))/IviBy » ¥x(Ox —
Lxy]}, is no more valid than the original one. In 3 countermodel M’ we now
choose Dy = {1, 2, 3, 4, 5}, Wa,} = 1, Ita,) = 2, ekc, I00}={1, 2}, LiB) =
{3. 4}, and NL) = {{i, 3}, {2, 4}}. Then it is not too difficult to check that
we do mdeed have Vi, (Wx(Ox - ~1Bx)) = Vi (Ix(00x A —Bx)) =
Vie (WfOx — y(By » Lxyh = 1, while Vi (I9By A ¥x(Ox - Lxy))=0.

{f) IyV¥alxy/WxIyLxy (a translation of There is Someone whom everyone
foves. Thus evervone loves someone, for example). Unlike the qutiifier

switch i {d), this quaatitier switch is valid. Suppose Vi{Iy¥xLxy) = 1. We
have to show that fhen ¥V, (¥x3yLxy) = 1. 7
According to the assurmption, there is a constant a interpreted in M such

Arguments and Inferences 11

that ¥y {¥xlLxa) = 1. This means that ¥y ([.ba) = 1 for every constant b which
is interpreted in M. Now for any such b, it must also hold that ¥, (IyLby) =
1, so that Vi {¥xdyLxy) = { is guaraneeed and Jy¥xLxy &= ¥adyLxy is
proved. The proof thar reversing (e} results in a valid argument schema is a
fittle more complicated but goes along the same lines.

(g) Wabvlx/Tubx {2 wanslation of Evervene is mortal. Thus, someonc
is mortad, for example). Suppose M is suitable for this schema and that
Vi (WxM3x) = 1. Then we have ¥y {Ma) = I for every constant a which is
interpreted in M. There must be some such constant, since we have agreed
that domains may never be empty, while in our approach A every element in
the domain has a name. S0 Vi (3xMx) = 1. We have now proved that the
scherna is valid: Wxhix E 3xMx. The validity of this schema depends on our
choice of nonempty domains. In addition, Aristotle considered only predi-
cates with nonempty extensions. 3o in his logic—unlike modern Jogic—the
following schema was valid.

thy ¥xilx — MxWIxildx ~ Mx) (2 translation of Afl men are mortal,
Thus, some men are moriel, for example), As a counterexample we have, for
example, M with Dy, = {1}, IH) = I{M} = &5, and I{z,) = 1. For then we
have ¥, (Ha, — Ma,) = 1, so that ¥,(¥x(Hx — Mx)) = 1, while Vi,{Ha, ~
Ma,} = 0, so that ¥y (Tx{Hx ~ Mx)) = 0. If this seems a bit strange, then it
should be remembered that this schema can also be seen as a translation of the
intuitively invalid schema Aff unfcorns are quadrupeds. Thus, there are uni-
corns which are quadrupeds, Farthermore, the original translation involves
the implicit presupposition that there are in fact ‘men’, in the archaic sense of
human beings. This presupposition can be made explicit by adding a premise
which expresses it, and the resulting argument schema, ¥x{Hx — M),
JxHx/AxiHx ~ Mx), is valid. In order to see this, let M be any model which
is suitable for this schema aod such that Vi{¥z(Hx — Mx}) = 1 and
Vi (IxHx) = 1. We now have 0 show that Vi (3a(Hx » Mxd} = 1. The sec-
ond assumption gives us a constant 4 which is interpreted in M and for which
Yy(Ha) = 1. From the assemption that Vi, (¥xa(Hx — Mx)) = 1 it follows
that, in particular, ¥y,(Ha — Ma) = 1, from which it follows with the trth
table for — that Vi, (Ma} = 1, and then with the trieth table for A that ¥y, {Ha ~
May = 1. New it follows divectly that W (Ix(Hx ~ Mx)) = 1.

Exercise 2

Show that the argument schemata below are invalid by giving counter-
examnples.

{a) JAnaAx, IxBx/Ixz{ax A Bx).

(b WxlAx v Bx)¥xAx v ¥xBx

(c} Wa{Ax — Ba), JaBxz/IxAx.

(dy Fx{Ax ~ Bx), IxiBx ~ Cx}InfAx » Cx).

fe} WxlAx v Bx), Ix—Ax, IxBx, ¥a({Ax » Bx) — Cxl/TxCx,

(f} "WxlAx — Bx), "VaBx/¥xAx.
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{g) ¥xax/3x(Bx A —Bx}.

{hy Y¥xdyRxy/AxRax.

(i) VxRax/VxvvRay.

(j) FaV¥yRxy, VaxRxx/¥avyBxy v Ryx).

() ¥xIyBxy, VuBxx — Ax}IxAxX.

(I} ¥adyRay, ¥x¥y(Ray v Ryxi¥aV¥yVa((Rxy ~ Ryz} — Ruz).

{m) ¥adyRay, Ve¥yVe({Rxy ~ Ryz) - Rxz)/IxRux.

(n) Wa¥y(Rxy — Ryx), ¥avyVa((Rxy A Ryz) — Rxz)iIxRxx.

(o) Jady¥a(x = z v ¥ = 2z = v),

(P) Wxdyix # )i TxTyTe(x Fxy AxF 2y # 2,

() ¥xIviBxy ~ox # ), ¥a¥yWa((Ruy A Ryz) - RxzliWaVy(x = y v Ray
~ Ryx).

(1) Wx{Ax — YyRay)h Aa¥y(Ay — x = y)¥a¥y(Bax A Ryy) = x = yl.



