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F.003

REGULAR EXPRESSIONS
AND FINITE-STATE AUTOMATA

The theoretical foundations of computer science were derived from several disciplines:
logic {the foundations of mathematics); clectrical engineering (the design of switching
circuits), brain research (models of neurons), and lingustics (the formal specification of
languages).

As discussed briefly in Sections 6.4 and 7.4, the 1930s saw the development of mathe-
matical treatments of basic questions concerning what can be proved in mathematics and

. what can be computed by means of a finite sequence of mechanized operations. Although

the first digital computers were not built until the early 1940s, ten years earlier Alan Tur-
ing developed a simple abstract model of 2 machine, now called a Turing machine, by
means of which he defined what it would mean for a function to be computable.

Around the same time, somewhat similar models of computation were developed by
the American logicians Alonzo Church, Stephen C. Kleene, and Emil Post (who was
barn in Poland but came to the United. States as a child), but Church and others showed
these all to be equivalent. As a result, Church formulated a conjecture, now known as
the Church-Turing thesis, asserting that the Turing machine is universal in the sense
that anything that can ever be computed on a machine can be computed with a Turing
machine. I this thesis is correct—which is widely believed—then all computers that
have been or will ever be constructed are theoretically equivalent in what they can do,
although they may differ widely in speed and storape capacity. For instance, quantum
computers may have the capability to compute certain quantities enormously faster than

classical cornputers. But Church’s thesis implies that the theory of computation is likely
to remain fundamentally the same, even though the enabling technology is subject to

constant change.

In the early 1940s, Warren S. McCulloch and Walter Pitts, working at the
Massachusetts Institute of Technology (M.LT.), developed a modeél of how the neurons
in the brain might work and how models of neurons could be combined 1o make “eir-
cuits™ or “automata” capable of more complicated computations. To a certain extent, they
were influenced by the results of Claude Shannon, who also worked at M.LT. and had in
the 19305 developed the foundations of a theory that implemented Boolean functions as
switching circuits. In the 1950s, Kleene analyzed the work of McCulloch and Pitts and
connccted it with versions of the machine models introduced by Turing and others.

_Another development of the 19505 was the introduction of high-level computer lan-

“guages. During the same years, linguist Noam Chomsky's attempts to understand the

underlying principles by means of which human beings generate speech led him to develop
a theory of formal lunguages, which he defined using sets of abstract rules, called

779
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; granmars, of varying levels of complexity. It soon became apparcnt that Chomsky's
! theory way of great utility in the analysis and consteuction of computer languages. For
' computer science, the mogt useful of Chomsky's language classifications are also the two
! simplest: the regular lunguages and the comtext-free languages.
; . Regular languages, which are defined by regular expressions, are used extensively for
[ matching patterns within text (as in word processing or Internet searches) and for lexical
analysis in computer language compilers. They are part of sophisticated text editors and
a number of UNIX* utilities, and they are also used in transforming XML'documents.
Through use of the Backus-Naur notation (introduced in Section 10.3), context-free
| languages are able to describe many of the more complex aspects of modern high-leve]
! computer languages, and they form the basis for the main part of compilers, which trans.
F lute programs written in a high-level language into machine code suitable for execution.
E A remarkable fact is that all of the subjects referred 1o previously ace related. Each
| context-free grammar turns out 1o be eguivalent to a type of automaton called a prsh-
i down automaton, and each regular expression turns out to be equivalent to a type of
‘ autotnaton called i finite-state artemnaton. In this chapter, we focus on the study of regular
Nots  Acrnmr i the languages and finite-state automata, leaving the subject of context-free grammars and
plural of witomaton, their equivalent automata to a later course in compiler construction or automata theory.

12.1 Formal Languages and Regular Expressions

The mind has finite means bur it makes wibonnded wse of them and in very specific and
arganized ways. Thar's the core problem of languwage that it became poysible to face
[&y the mid-rwentieth centiry]. — Noam Chomsky. cirey 1993

An English sentence can be regarded as u string of 'words, and an English word can be
regarded s a string of letters. Not every string of letters is a legitimate word, and not
every string of words is a gramenatical sentence. We could say that a word is legilimate if
it can be found in an unabridged English dictionary and that a sentence is grammatical if
it satisfies the rules in a standard English grammar book.

Computer lunguages are similar to English in that certain strings of characters are
legitimate words of the language and certain strings of words can be put together accord-
ing to certain rules to form syntactically comrect programs. A compiler for a computer
language analyzes the stream of characters in a program—first to recognize individual
word and sentence units (this part of the compiler is called a lexical scanner), then to ana-
lyze the syntax, or gramimar, of the sentences (this part is called a syntactic analyzer), and
tinally to translate the sentences into machine code (this part is called a code generator).
Noam Chensky In computer stience it has proved useful to ]c:?ok at languages from a very abstract
(born 1928) point of vicw as strings of certain fundamental units and allow any finite set of symbols

to be used as an alphabet. It is common to denote an alphabet by a capital Greek sigma:
E. (This just happens to be the same symbol as the one used for summation, but the two
concepts have no other connection.)
The definition of a string of charuciers of an alphabet T {or a siring over ) isa
; generalization of the definition of string introduced earlier. A formal language over o
| alphabet is any set of sirings of characters of the alphabet. Thesc definttions are giveo
formally on the next page.

Phata by Monman Lenburg, 1979, Cowtesy
Wniversily of Wisconsun-Madisan Archives,

“UINIX is an operating system that was develaped in 1969 by Kenncth Thompson at Bell Labo-
ratovics. It was kaer rewritten in Dennis Ritchie’s € language, which was also developed at Bell
Laboeratories.

*XML is a standurd Tor defining sarkup langusges used for Internet applications.
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y Alphabet X; a finite set of characters

String over I: (1) a finite sequence of elements (called characters)
i of Z or (2) the null string ¢

Length of a string over £:  The number of characters that made up the string,
with the null string having length 0.

Formal language over £: g setof strings over the alphabet

Note that the empty set satisfies the criteria for being a formal language. Allowing
the empty set 1o be a formal language turns out to be convenient in certain technical
siluations,

Example 12.1.1 Examples of Formal Languages
Let the alphabet £ = {g, b}.

A. Define a language L over T to be the set of all strings that begin with the character g
and have length at most three characters. Find L.

b. A palindrome is 1 string that looks the same if the order of its characters is reversed.
For instance, abu and baab are palindromes. Define a language Ly over E to be the
set of ali palindromes obtained using the characters of T. Write ten elements of L.

Solution
a Ly = [a,aa, ub, waa, aab, aba, abb}
b. L contains the following ten strings (among infinitely many others);

&.a, b, aa, bb, waa, bub, abba, babaabal, abaabbbbboaab [ ]

Let I be an alphabet. For each nonnegative integer n, let

1" = the set of all strings over T that have length n,
T+ = the set of all strings over T that have length at least 1, and

£* = the set of all strings over .

Unmrsﬁy ol Wiscansin

Note that Z" is essentially the Cartesian product of i copies of X, The language £*is
called the Kleene elosure of X, in honor of Stephen C. Kleene {pronounced CLAY-knee),
(1909-1994) L7 is the set of all strings over T except for € and is called the positive closure of ¥,

Example 12.1.2 The Languages £, £+, and L*
' LetZ = {a, b}

a. Find E“,__E_.'._':_'{_".__'-’, and T4,

F.00B

b. Let A==xVUX"and B = £2U =% Use words to describe A B.and AU B.

¢. Describe a systematic way of writing the elements of £, What change needs to be
; made to obtain the ¢lements of £*?
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Solution

:! 2. B0 = (). T = {0, b}, £ = [aa, ab, ba, bb), and £ = {vaa, aab, aba, abb, bug,
| : hab, bbu, bbk)

ro b. A is the set of all strings over T of length at most 1.
B is the set of all strings over E ol length 2 or 3.
AU B is the set of all strings over X of length at most 3.

¢. Elements of Z¥ can be written systematically by writing all the strings of length |,
then all the strings of length 2, and s forth,

LT a. b, aa, ab, bu, bb, aaa, aak, aba, abb, baa, bab, bba, bbb, aaaa, . .

Of course the process of writing the strings in =+ would continue forever, becayse
I+ is an infinite set. The only change that needs to be made to oblain Z* is to place
‘ the null string at the beginning of the list. ]

Example 12.1.3 Polish Notation: A Language Consisting of Postfix Expressions

An expression such as ¢ + b, in which a binary operator such as + sits between the
two quantities on which it acts, is said to be written in infix notation. Alternative nota-
tions are called prefix notation (in which the binary operator precedes the quantities on
which it acts) and postfix notation (in which the binary operator follows the quantities
on which it acts). In prefix notation, a =+ b is written - b, In postfix nolation, a + b is
wrilten ab +.

Prefix and postfix notations were introduced in 1920 by the Polish mathematician
Jan Lukasiewicz (pronounced Wu-cash-AY-vich). In his honor—-and because some peo-
ple have difficulty pronouncing his name—they are often referred to as Polish notation
and reverse Polish motation, respectively. A great advantage of these notations i3 that
they climinate the need for parentheses in writing arithmetic expressions. For instance,
in postfix (or reverse Polish) notation, the expression 8 4 4 6 / is evaluated from left to
right as follows: Add 8 and 4 to ¢btain 12, and then divide 12 by 6 to obtain 2. As ancther
example, if the expression (& + ) -¢ in infix notation is converted to postfix notation, the
resultisab +c-.

a. If the expression ab-ed-+ in postfix notation is converied w infix notation, what is
the result?

b. Let & =1{4,1, 4+, -}, and let L = the set of all strings over ¥ obtained by writing
either a 4 or a 1 first, then either a 4 or a 1, and fnally either a + or a —. List all
elements of L between braces, and evaluate the resulting cxpressions,

Solution

a a-b + c-d
b L=[dl+, 41—, 144, 14—, 444+ 44—~ 114+, 11=})
414+ =4+ 1 =05, 4]~ =4=1=3, 144+ =1 4+4=23,

ld— =1 -4 =-3 444+ =44+4 =8, 44—~ =4 —-4 =10,

il =1+1=2 11— =F1I-1 =0 |

The following definition describes ways in which languages can be combined to form
new lunguages.
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Let £ be an alphabet. Given any strings x and y ovet I, the concatenation of x and
J is the string obtained by writing all the characters of x followed by all the charac-

ter of y. For any languages L and L’ over T, threc new languages can be defined as
follows:

The concatenation of I and L' , denoted LE', is
LU =(xylxeLandy e L),
The union of L and l;', denoted LU LY, s
LUL'=|x{xeLorx el
The Kleene closure of L, denoted L* 15

L* = {x ) x is a concatenation of any finite number of strings in L}.

Note that € iz in L* because it is regarded as a concatenation of zero strings in L.

Example 12.1.4 New Languages from Old

Let L) be the set of all strings consisting of an even number of ¢'s {namely, 2, aa, agaa,
dgaadaad, ...), and let Ly = (bbb, bbb} Find L Ly, LU Ly and (L) U La)* Note that
the null string € is in L because O is an even number.

Solution

LyLy = the set of all strings that consist of an even number of a”s followed by b or
by bb or by bbb,

Ly U L; = the set that includes the strings &, bb. bbb and any strings consisting of un
even number of a's.

(L1 U Lz)* = the set of all strings of a's and b's in which cvery occurrence of ¢
i5 in a block consisting of an even number of a's. ]

The Language Defined by a Regular Expression

One of the most useful ways to define a language is by means of a regular expression, a
concept first introduced by Kleene, We give a recursive definition for generaling the set
of all regular expressions over an alphabet.

Given an alphabet X, the following are regular expressions over X:
I. BASE: ¢, €, and each individual symbol in ¥ are regular expressions over T,

I1. RECURSION: If r and s are regular expressions over E, then the following are
also regular expressions over T

M) (Dr[s) (i) (r%)

where s denotes the concatenation of r and 5, r* denotes the concatenation of
r with itself any finite number (including zero) of times, and r | 5 denotes either

F.007%

—OREDE the strhHE ¥ EEUIaT TXpression £+ 15 called the Kleene closure

of r,

HI. RESTRICTION: Nothing is a regular expression over & except for objects
defined in (I) and (1) above, N

B SRS AR = r e
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As an exarmple, one regular expression over & = {a, b, ¢} is
a| (k| o) | (ab)*.

If the alphabet T happens to include symbols—such as (]) *—special provisions
have to be made to avoid ambiguity. An escape character, usually a backslash, is added
before the potentially ambiguous symbol. For instance, a left parcnthests would be writien
as \( and the backslash itself would be writien as \\.

To eliminate parentheses, an order of precedenee for the operations used to define
regular expressions has been introduced. The highest is *, concatenation is next, and |
is the lowest. It is also customary to climinate the outer set of parentheses in a regular
expression, because doing so does not produce ambiguity. Thus

{a{(bc)™)) = a(be)* and (af(bc)) =albe.

Example 12.1.5 Order of Precedence for the Qperations in a Regular Expression

a. Add parcntheses to make the order of precedence clear in the following expression:
ab™ | b*a.

b. Use the convention about order of precedence to eliminate the parentheses in the
following expression: ((a | ((&*)c)a™).

Solution

a. ((a(b*)}| (6" )ea)) b. (b c)a* B

Given a finite alphabet, every regular expression r over the alphabet defines a formal
language L(r). The function £, is defincd recursively.

For any finite alphabet X, the function L that associates a language to each regular
expression over X is defined by (I) and (II) below. For cach such regular expression
r, L(r) is called the language defined by r.

I. BASE: L(@) = @, L(¢) == {¢}, L(a) = |a} forevery a in E.

1I. RECURSION: If L{r) and L{r"} are the languages defined by the regular expres-
sions r and ' over I, then

(i) Lere") = LLGD  Gi) L) ey = LN U LK) Gil) Lir*) = (L(r)L

Note that any finite language can be defined by a regular expression, For instance,
the language {cat, dog. bird} is dcfined by the regular expression (cat | dog | bird). An
important example is the following.

Example 12.1.6 Using Set Notation to Describe the Language Defined by a Regular Expression
e e s o Let B = fagbleand consider the banguage dlefined by the resular expression (o 1h)*. Us U?"'

sel notation to find this language, and describe it in words. T
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Solution  The language defined by (e | &% is
Lltaih)y = (La | b))*
= (L{a)U L{IH)*
= (e} U {&DH"
= {a, b}* by detinition of operativns oa languiges
= the sct of all strings of a's and b's
=E"

Note that concitenating stringx and taking unions of sets are both associative opera-
tions. Thus for any regular expressions r, s and I,
L{(rs)r) = Lir{sn).
Moreover,
L(r]s)lt)y=(L(r|snU L) by dhelinition of |

=(LYULG)DULE) by definiion of |
=Lr)ULEYU L)) bythe annaiciativ ity oF union for sety
=LiryU(Listy by detinitiog ol |
=L{r|(s|t) by detinition of |.

Because of these relationships, it is customary to drop the parentheses in “associative™
situations and write

rst = (rs)r =rist)
and rlslt=(rls)ft=r|(s|t).

As you become accustomed to working with regular cxpressions, you will find that
you ¢ty not need to go through a formal derivation in order to determine the lunguage
defined by an expression.

Example 12.1.7 The Language Defined by a Regular Expression

Let Z = [0, I}. Use words to describe the languages defined by the following regular
expressions over X,
a gr1t 1o b. 00} 1)*

Solution

a. The strings in this language consist either of a string of s followed by a string of
I’s or of a string of 1's followed by a string of ("s. However, in cither case the strings
could be empty, which means that ¢ is also in the language.

b. The strings in this language have o start with 2 0, The 0 may be fullowed by any finite
number {including zero) of 0% and 1’3 in any order. Thus the language is the set of all
strings of 0's and I's that start with a 0, =

F.009

Example 12.1.8 Individual Strings in the Language Defined

..hy a Regular Expression - e

Ineach of (a) and (b), let & = {a, b} and consider the language L over T defined by the
given regular expression.

. The regular expression is a*b(a | b)*. Write five strings that belong to L.
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b. The regular expression s o™ (ab)*. Indicate which of the following stringg
helong to L:
a b oaaaa abba  abubab

Solution

a. The strings b, ab, abbb, abaaa, and «babba are five strings from the infinitely
many in L.

b. The following strings ara the only ones listed that belong wo Lt @, aaae, and ababab.
The string b does not belong to L because it is neither a string of ¢'s nor a string of
possibly repeated «b’s. The string abba does not belong to L because any two b's that
might oceur in a string of L are separated by an «. |

Example 12.1.9 A Regular Expression That Defines a Language
Let ¥ = {0, 1}. Find regular cxpressions over I that define that following languages,

a. The language consisting of alf sirings of 0's and 1's that have even length and in which
the 0°s and 175 alternate.

h. The lunguage ronsisting of all strings of 0's and 1's with an even number of 1's. Such
strings are said to have even parity.
¢. The language consisting of all strings of 0" and 1's that do not contain two consecu-
tive 1's,
Solution

a TIf a string in the language stasts with a 1, the patern 10 must continue for the length of
the string. If it starts with 0, the pattern OF must continue for the length of the string.
Also, the null string satisfies the condition by default. Thus an answer is

(10)* | (01)".

b. Basic strings with even parity are €, O, and 10* . Concatenation of sirings with even
parity also have even parily. Because such a string may start or end with a string of
s, an answer i5

10"
c. Note that a string may end ina 1, but any other 1 must be followed immediately by a

0. Thus, it is enough to enforce the rule that 2 T must be followed by a 0, unless the 1
iz at the end of the string. A regular expression satisfying these conditions is

(0]10)*(ei1}). [ |

Note that a given language may be defined by more than one regular expression. For
example, both '
(@*|b*) and (a|b)”

define the language consisting of the set of all stirings of «’s and b's,

. Example 12.1.16 Deciding Whether Regular Expressions Define the Same Language

In (a) and (b), determine whether the given regular expressions define the same lapguage.
If they do, deseribe the language, If they do not, give an example of a string that is in onc
of the languages but not the other.

a. (a]e) and a* b, 0| 1* and (01)*
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Solution

3. Note-that because the null string € has no characters, when it is concatenated with any
other steing ¢, the result is just x: for all strings x, xe = €x = .x. Now L{{a [ €)*) is the
set of strings formed using a and ¢ in any arder, and so, because e = ea = ¢, this is
the sume as the set of strings consisting of zero or more a's. Thus L{{a | €)*) = L{a*).

b. The two languages defined by the given regular expressions are not the same: 0101 s
in the second language but not the first. B

Practical Uses of Regular Expressions

Many applications of computers involve performing operations on pieces of text. For
instance, word and text processing programs allow us to find certain words or phrases in
a document and possibly replace them with others, A cornpiler for a computer language
analyzes an incoming stream of characters to find groupings that represent aspects of
the computer language such as keywords, constants, identifiers, and operators. And in
bioinformatics, pattern matehing and flexible searching techniques are used extensively
to analyze the long sequences of the characters A, C, G, and T that occur in DNA,

Through their connection with finite-state automata, which we discuss in the nexr see-
tion, regular expressions provide un extremely useful way to describe a pattern in order to
identify a string or a collection of strings within a piece of text. Regular expressions make
it possible to replace a long, complicated set of if-then-clse statements with code that is
easy both to produce and to understand. Because of their convenience, regular expres-
sions were introduced into a number of UNIX utilities, such as grep (short for globully
scarch for regular expression and print) and egrep (extended grep), in text editars, such
as QEL (short for Quick EDitor, the first text editor to 1se tegular expressions), vi (short
for visual interface), sed (short for stream editor and originally developed for UNIX but
now used by many systems), and Emacs (short for Editor macros), and in the lexical
scanner component of a compiler. The computer language Perl has a particularly power-
ful implementation for regutar expressions, which has become 2 de facto standard, The
implementations used in Java and .NET are similar.

A number of shorthand notations have been developed to Facilitate working with reg-
ular expressions in text processing. When characters in an alphabet or in a part of an
dlphabet are understood to oceur in a standard order, the notation [heginning characier—
ending character] is commonly used to represent the regular expression that consists of
a single character in the range from the beginning 1o the ending character. It is called 2
character class. Thus

[A—C] standsfor (A} B|C)
ind .
10—9] stands for WII2[137415]16]7|8|9).

Character classes are also allowed to include more than one range of characters. For
instunce,

[A—Cux—2z1 stands for (AIB|C|x[¥]D

As an example, consider the languase defiged by the regular expression

F.011

[A—Za—zl[A=Za—z]|[0—-9D".
The following are some strings in the language:

Account Number, 723, jsmith109, Drafilrev.
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In general, the [anguage is the sct of all strings that starl with a letter followed by a
sequence of digits or letters. This sct is the same as the set of allowable identifiers g a
nimber of computer languages.

Other commonly vsed shorthands are

[ABCliwostand for (A | 8| C)
and a single dot .
. to stand for an arbitrary character.
Thus, for instance, if £ = {A, 8, Cl, then
A.C standsfor (AAC | ABC | ACC).

When the symbol ~ is placed at the beginning of a character class, it indicates that 5
character of the sume type as those in the range of the class is {0 occur at that point in the
string, except for one of the specific cheracters indicated after the ™ sign. For instance,

["D - Z)[0~ S0~ 9]

stands for any string starting with s letter of the alphabet different from D to Z, followed
by any positive number of digits from 0 to 9. Examples are 83097, CO046, and so forth,
If r is a regular expression, the notation r+ denotes the concatenation of r with itself any
positive finite number of tirmes. In symbols,

r+=rr".

For example, {A—-Z1+

represents any nonempty string of capital letters. 1 r is a regular expression, then
r?={(e|r).

That iz, r? denotes either zero occurrences or exactly one occurrence of r. Finally, if m
and # are positive integers with m < n,

r{n} denotes the coneatenation of r with itself exactly n times,
and
rlm.n} denotes the concatenation of r with itself anywhere from m through n times.

Thus a check to help determine whether a given string is a local telephone number in the
United States is to see whether it has the form

[0~ 9][0 - 9][0 =9]- [0 —9][0—9]|0 —9)[0 - 9],
or, equivalently, whether it has the form
[0~ 9]{3} - [0 =9[4}

Example 12.1.11 A Regular Expression for a Dute

People often write dates in a variety of formats. For instance, in the United States the

fottowmgarepresentthefittrof FebmrarreF2056 e e
21512050 2-5-2050 02/05/2050 02-05-2050
of the world these

e\ prassians represent the Write a regular expression that would help check whether a given string might be a valid
secomd of Muy af 2050, date written in ong of these ferms.

Note  [n st of the rost
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Solution  The language defined by the following regular expression consists of all strings
that begin with one or two digits followed by either a hyphen or a slash, followed by
either one or two digits, followed by either a hyphen or a slash, followed by four digits.

[0 — 9101, 2710 — 91{1, 2)[0 - 9] {4}

All validd dutes of the given furmat are elements of the lan guage defined by this expression,
but the lunguage also includes strings that arc not valid dates. For instance, 09/54/1978
15 in the lunguage, but it is not a valid date because September does not have 54 days, and
38/12/2184 is not vulid because there is no 38th month, It is possible to wrilc 2 more com-
plicated regular expression that could be used to check all aspects of the validity of a date
{see cxercise 40 at the end of the section), hut the kind of simpler expression given above
is nonetheless useful. For instance, it provides an easy way to notify a user of an inter-
active program that a eertain kind of mistake was made and that information should be

reentered. B
Test Yourself
Answers to Test Yourself guestions are lovated at the end of each section.
1. If x and ¥ are strings, the concatenmion of ¢ and yig . L= and Liay = for every a in I, The
' . RECURSION for the definition specifics that it L{r} and
- IF L and L' are languages. the concatenati and L' i ; :
2 and L are [anguages. the concatenition of £ and L' is L{r') ure the lunguages defined by the repular expression r
- ad rover Zothen Lirr'y=__ | L{r|r) = L any
3. It L and L' are lunguages, the unjon of L and L' ix Lir'y=
4. If L is a bangunge, the Kleene closure of L is 7. The notation [A - C] i an example of o ____ and denotes
- the repulur expression .
3. The set of regular expressions.over an alphabet T is defined £ P
recursively. The BASE for the definition is the statement 8. Use ol asingle dut in a regular expression stands for
that . The I zhinition specifies . _—
ar _ The RECURSION for the (._lr.,hﬂlll()l‘l specifies 9. The symhol *, placed at the beginning of a character class.
that if r and & are any repular expressions over T, then indicates
the following arve also regular expressions in the sey: T
- and 10, IE r is a regular expression, the notation r+ denotes
6. The function that associates a language 10 euch regular 1L If r is o regular expression, the notation r? denotes
expreasion over an alphabet T s defined recursively. The 12 Ifr is lare ion. the notati denote
BASE for the definition is the stutement that L) = = 17 A resular expression. the notation ria] denotes
and the nottion r{m, n] denows _
Exercise Set 12.1*
Inland 2 let £ = {x. v} bean alphubet, c. Let A=ETUE? and B =3'U B Describe A, £,
.. . and AU B in words.
L a Let Ly be the fangunge consisting of all sirings over T
that are palindromes and have length < 4. List the ele- H 3. a. If the capression ab + cd + « in postfix notation is con-

ments of L, between bruces,

b. Let L; be the language consisting of al strings over T
that begin with an x and have lensth = 3. List the ele-
ments of La.

- Let L3 be the language consisting of all strings over &

of length < 3 in which all the x's appear to the left of all

the v, List the elements of Ly between braces

verted to infix notation, what is the result?

b. Let T = {1,2,*,/} wnd let L be the st of all strings
ewver E obtained by writing first a number (1 or 2), then
2 second number {1 or 2), which can be the same us the
ficst one, and Anadly an operation (% or / where * jndi-
cates mehiplication and / indicates division). Then L i3
u set of postfix, or reverse Polish, expressions. List all the

F.013

. Listbetween braces the elements of T4, the set of strings
of length 4 over T,

FIFHTCTIS OF L BRTWEen tracos, an SviIRie the tesuim
expressions,

"For exercises with biue numbers or letters, solutions are given in Appendix B. The symbol H indicates that anly a hint or o partiyl
solution is given. The symbaol #* signals that an exercise is more chalienging than usugal,
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In 4-6, deseribe LiLy. LU Lo and (L W L))" for the given
langitigres Ly and L,

4. Ly is the set of all strings of 2% and &% that start with an
& and contain only that one a; L; is the set of all strings of
"% and A5 that contain an even number of a's.

§. L, is the set of all strings of a's, b's, and ¢'s that conlain
no ¢'3 and have the same number of a's as £'s; L2 18 the
sat of all strings of a's, P's, and ¢'s that contain no a’s
or b's.

6. L, is the sct of all strings of ("s and 1’5 that start with a
0, and La s the ser of all sirings of 0's and. 1's thut cnd
with a 0.

In 7-9. add parentheses w make the order of prevedenee vlear
in the given expressions,

7. {a| b b¥a* |ab)
9. ey x| v

g 01 |01y

fn {12 use the comvention about veder of precadenes to clim-
inute the pareatheses i the oiven regular expression.

ML ((a(e*)) | (e (B )0) {(ac) [ (Ded)
L CHEE)Y L 0™ L1731
P20 (e (e )™y ) | ¥)™))

In 13-15 use set notation to devive the Tanguage defined by (he
ajven revelar expression. Assume & = {a¢. 0, ¢,

13. ¢|ab 14, e 15. (a|b)c

En 16-18 wrile five strings that belong to the language detined
by the given regular expression
16, 071(0"1")* 17. b* | b*ab? 18. x*(yxey]x)”

In 19-21 use words 1o describe the [anguage defined by the
given regulir expression.

1%, b*ab*abta 200 I{0| 1)"00 21 (e ¥Ivle|lm*

In 22-24 indicate whether the given strings balong to the lan-
guage delined by the given regular expression. Briefly justify
Yiuar HITER Y

22, Expression: (b | €)a{a | h)*alk | €), strings: auaba, baahb
23. Expression: (x*y | £y*)*, slrings: gyyxo, 2yyoy
24, Expression; (0072)*, sirings: 120, 01202

In 25=27 find o repulur expression that defines the givea lan-
suage,

25. The language consisting of all strings of 0's and 175 with

an ndd number, of 1's._(Such a string iz sid 1o have odd

F.014

26, ‘The language consisting of all strings of @'s and &5 §
whith the third character from the end is a &.

27, The language consisting of strings of x's and 's in which
the elements in every pair of x's ure scparated by at Jepst
one y.

Let 7, 5. anud ¢ be revolar expressivns over Z = {o, b In 2830

determine whether tie two regular expressions define the sane

language. W they do, describe the language. It they do nor, give
an examiple of a string that is inone of the languages but nor the
other,

I8, (r|s)and ri|st

30, (rs)* and ({rs)*)*

29, (51" and rest

In 31-39 write a regular expiession (o deline e given set of
strings, Wse the shorthand notations given in the section when
ever coinvenient, In most cases, your expression will deseribe
avher strings in addition to the given ones, byt try o make your
answer fit the given strings as closely as possible within reason-
able spiee lintations.

31 All words that are written in Jower-case letters and start
with the letters pre but do not consist of pre all by itself.

Lol
[ 1Y)

. All words that are written in upper-case letters, and contain
the letters BIO (as a unit) or INFO (as a unit),

33. All words that are writlen in lower-case [etters, end in fx,
and contain at least five letters.

34 All words that arc written in lower-case letters and contain
ut least one of the vowels a. e,1, 0, or i,

33, Al words that are written in lower-case letters and contain
cxactly one of the vowels a, e, i, 0, oru.

6. Al words that arc written in upper-case letters and do not
start with oo of the vowels A, E, I, O, or U but contain
exactly two of these vowels next 1o each other.

37. All United Siates social security numbers (which consist
of three digits, a hyphen, two digits, another hyphen, and
finally four more digits), where the final four digits start

with a 3 and end with a 6.

el
o

All telephone numbers thut have three digits, then a hyphen,
then three more digits, then a hyphen, and then four digits,
where the first three digits are either 800 or 888 and the last
Four digits start and end with a2,

34

All signed or unsigned numbers with or without @ decimal
point. A signed number has one of the prefixes + or —
and an unsigned number does not have g prefix. Represent
the decimal point 25 \. to distinguish it from the single dot
symbol for an arbilrary character,

prity.)
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H 40, Write a regular expression to perform o complete check ¥ 41, Write a regular expression to define the set of strings of Oy
to determine whether a given string represents w valid and 1's with an even number of 0's and even number of 1's.
date from 1980 to 2079 wrilten in one of the formats of

Example 12.1.01. (During this period. leap years oceur
cvery four veurs starting in J9%0.)

Answers for Test Yourself

1. the string obtained by writing all the characters of x followed by all the characters of ¥y JfevixeLandye ') 3dislse L
ors € L'} 4. {t|¢is a concatenation of any finite number of strings in L) 5. 9, €. and each individual symbol in ¥ are regular
expressions over E3 (r5) 1 {r[s); (r*) 6. el [akh L(AL(GF) LiryU L{#'); (L{r)* 7. character class; (4 | B|C) " & an
arbitrary character 9. a charactor of the same type as those in the range of the class is to occur at that point in the string except for
one of the specific characters indicated after the * sign. 10, The concatenation of r with itself any positive finite number of limes
11. (e |r) P2 the concatenztion of ¢ with itself exactly n times; the concatenation of r with itself anywhere fram mr through n times

12.2 Finite-State Automata

The world of the fittiere will be an ever more demaneding struggle against the limitations
of vur intelligence. not a comfortable hammock in which we can lie down lo be waited
apon by outr robor slaves, — Norbert Wiener, 1964

The kind of circuit discussed in Section 2.4 is called a combinational circuit. Such a cir-
cuit is churacterized by the fact that its output is completely determined by its input/output
table, or, in other words, by a Boolean function. Its output does not depend in any way
on the history of previous inputs to the circuit. For this reason, 2 combinational circuit is
sdid to have no memory.

Combinational circuits arc very important in computer design, but they are not the
only type of circuits used. Equally important are sequential circuits. For sequential cir-
cuits one cannot predict the oulput corresponding 10 a particular input unless one also
knows something about the prior history of the circuit, or, more tcchnically, unless one
knows the state the circuit was in before receiving the input. The behavior of a sequential
cireuit is a function not only of the input to the circuit but also of the state the circuit is in
when the input is received. A computer memory circuit is a type of sequential cirquit,

A finite-state antomaton (aw-TAHM-uh-tahn} is an idealized machine that embodies
the essential idea of a sequential circuit. Each piece of input to a finite-state automaton
leads to a change in the state of the antomaton, which in turn affects how subsequent
input is processed. Imagine, for example, the act of dialing a telephone number. Dialing
1-800 puts the telephone circuit in a state of readiness to reccive the final seven digits of
a toll-free call, whereas dialing 328 lcads 1o a state of expectation for the four digits of a
local call. Vending machines operate similarly. Just knowing that you put a quarter into
a vending machine is not enough for you to be able to predict what the behavior of the
machine will be. You also have to know the state the machine was in when the quarter
was insetted. If 75¢ had alreudy been deposited, you might get a beverage or some candy,
but if the quarter was the first coin deposited, you would probably get nothing at all.

Example 12.2.1 A Simple Veading Machine

A Simpic vending TN dispenses botIes of JUiCe that Cost §T each, The machine — -
accepts quarters and half-dollars only and does not give change. As soon as the amount
deposited equals or exceeds $1 the machine releases a bottle of juice. The next coin
deposited starts the process over again. The operation of the machine is represented by

the diagram of Figure 12.2.1.
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25¢
deposited

hall-dallar

hadt-dullar

depusited

half-dollat

deposited

half-duollar

Figure 12.2.1 A Simple Vending Machine

Each circle represents a state of the machine: the state in which O¢ has been deposited,
23¢, 50¢, 73¢, and $1 or morc. The unlabeled arrow pointing to “0¢ deposited” jndi-
cates that this is the initial state of the machine. The double circle around “§] or more
deposited” indicates that a bottle of juice is released when the machine has reached this
state. (Tt is called an accepting siate of the machine because when the machine is in this
state, it has accepted the input sequence of coins as paymeént for juice.) The amows that
link the states indicate what happens when a particular input is made to the machine
in each of its various states. For instance, the arrow labeled “quarter™ that goes from
"0¢ deposited™ to “25¢ deposited” indicates that when the machine is in the state *(y
deposited” and a quarter is inserted, the machine goes to the state “25¢ deposited ™ The
arrow labeled “half-dollar” that goes from “75¢ deposited” to “$1 o more deposited™
indicates that when the machine is in the state “15¢ dcposited™ and a half-dollar is inserted,
the machine goes to the state “$1 or more deposited™ and Juice is dispensed. (In this case
the purchaser would pay $1.25 for the juice because the tachine does not return change.)
The arow labeled “quarter” that zoes from “$1 or more deposited™ to “25¢ deposited”
indicates that when the machine is in the state “$1 or more deposited™ and a quater is
inserted, the machine goes back to the state “25¢ deposited.” (This corresponds to the fact
that after the machine has dispensed a bottle of juice, it starts operation all over again.)

Equivaleatly, the operation of the vending machine can be reprexcntecd by a nev-siate
table as shown in Table 12.2.1,

Table 12.2,1 Next-State Table

Input
Quarter Half-Dollar
- 0¢ deposited 25¢ deposited 50¢ deposited
25¢ deposited 50¢ deposited 75¢ deposited
State 50¢ deposited T5¢deposited  $1 or more deposited
75¢deposited | $1 or more deposited  $1 or more deposited
a3, $1 ur more deposited 25¢ deposited S0¢ deposited

The arrow pointing to “O¢ deposited™ in the table indicates that the machine begins
operation in this statc. The double circle next to “3] or more deposited” indicates that 2
bottle of juice is released when the machine has reached this state. Entries in the body of

ihis

*.
1.4 F 1l |

column labeled Half-Dollar shows that when the machine is in statc “50¢ deposited” and
2 half-dollar is deposited, it goes to state “$1 or more deposited.”

Note that Tuble 12.2.1 conveys exactly the same information as the diagram of Figure
12.2.1. If the diagram is given, the table can be constructed; arid if the tuble is given, the
diagram can be drawn, ‘ H



; A finite-state automaton A consists of five objects:
! ). A finite set 7, called the input alphabet, of input symbols;
b . .
i 2. A finite set S of states the automaton can be in; .
! 3. A designated state sy called the Initial state;
|
4. A designated set of states called the set of accepling states;
3. A next-state function N: § x I — § that associates a “next-state™ to each
ordered pair consisting of a “current state” and a “current input.” For each state s
in § and input symbol m in I, N(s, m) is the state to which A goes if m is input
to A when A is in state s,
The operation of a finite-state, alitomaton is commonly descrihed by # dinaram called
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Observe that the vending machine described in Example]12.2.1 can be thought of as
having a primitive memory: [t “remembers” how much money has been deposited (within
limits) by referring to the state it is in. This capability for storing information and acting
upon it is what gives finite-state automata their tremendous power,

The most important finite-state automata are digital computers. Each computer con-
sists of several subsystems: input devices, a processor, and Output devices. A proces-
sor typically consists of a central processing unit and a finite number of memory loca-
tions. At any given time, the state of the processor is determined by the locations and
values of all the bits stored within its memory, A computer that has n different loca-
tions for storing a single bit can therefore exist in 2" different stales. For a modetny
computer, s is many billions or even trillions, so the total number of states is enor-
mous. But it is finite. Therefore, despite the complexity of a computer, just as for a
vending machine, it is possiblc to predict the next state given knowledge of the cur-
rent state and the input, Indeed, this is essentially what programmers try to do every time
they write a program. Fortunately, modern, high-level computer languages provide a lot
of help.

The basic theory of automata was developed to answer very theoretical questions
aboutt the foundations of mathematics posed by the great German mathematician David
Hillbert in 1900. The ground-breaking work on automata was done in the mid- {9304
by the English mathematician and logician Alan M. Tuting. In the 1940s and 19505,
Turing’s work played an important role in the development of real-world automatic
computers. ‘

Definition of a Finite-State Automaton

A general finite-state antomaton is completely described by giving a set of states, together
with an indication about which is the initial state and which are the accepting stares
(when something special happens), a list of all input elements, and specification for a
hext-state function that defines which state is produced by each input in each state. This
is formalized in the following definition:

. = Definition

F.017%

a (state-)transition diagram, similar to that of Figure 12.2.1. It is called a transition
diagram because it shows the transitions the machine makes from one state to anather
in response to various inputs. Tn a transition diagram, states are represented by circles
and accepting states by double circles. There is one amrow that points to the initial state
and other arrows that are labeled with input symbols and point from each state to other
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. states 1o indicate the action of the next-state function. Specifically, an arrow from state ¢
i to state ¢ labeled m means that N{(s,m) = .

The next-state table for an automaton shows the values of the next-state function §
for all possible states 5 and inpui symbols ;. In the annotated next-state table, the injtiy]
; state js indicated by an arrow and the accepting states are marked by double circles.

- Example 12.2.2 A Finite-State Automaton Given by a Transition Diagram

) Consider the finjtc-state automaton A defined by the wansition diagram shown g
Figure 12.2.2,

a. What are the states of A?
| b. What are the input symbols of A?
c. What is the initial state of A?

d. What are the accepting states of A?

¢. Determine N (g, 1).

Figure 12.2.2

f. Construct the annotated next-state table for A.

Solution

a. The states of A are sy, 5, and 51 [since these are the lubels of the circles],

b. The input symbols of A are O and 1 fyince these are the labels of the arrows].

c. The initial state of A is s [since the unfabeled arrow pointy to sy).

d. The only accepting state of A 15 53 [since this is the only state marked by a double eircle].

¢ N(si, 1) = 51 fsince there (s an areow from 5 ter 52 lubeled 1]

¥ - f. Input
0 1
. - Su L3 S0
|| State 5 5 £
I ' o 52 5y S n

Example 12.2.3 A Finite-State Automaton Given by an Annotated Next-State Table

. : Consider the finite-state automaton A defined by the following annotated next-state table:

a. What are the states of A?

b. What are the input symbols of A? Inpnt
c. What is the initial state of A? a b ¢
. U z Y Y
d. What are the accepting states of A7 ;: viv v v
e. Find N(U, c). Stute Y z Vv Y
i I N R S

f. Draw the transition diagram for A.
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Solution
a. The states of A are £/, V, ¥, and Z,
b. The input symbols of A are «, b, and .
c. The initiul state of A is U [since the arrow points to U], ‘
d. The accepting states of A are V and Z [since these are marked with double circles].
e N(U,¢) =Y [since the entry in the row labeled U and the column labeled ¢ of the
next-state rable is Y,
f. The transition diagram for A is shown in Figure 12.2.3. It can bé drawn more com-

pactly by labeling arrows with multiple-input symbols where appropriate. This is illus-
trated in Figure 12.2.4.

Figure 12.2.3 Figure [2.2.4

The Language Accepted by an Automaton

Now suppose a string of input symbols is fed into 2 finite-state automaton in sequence.
At the end of the process, after each successive input symbol has changed the state of the
automaton, the automaton ends up in a certain state, which may be either an accepting
state or a nonaccepling state, In this way, the action of a finite-state automaton separates
the set of all strings of input symbols into two subsets: thosk that send the automaton
10 an accepling state and those that do not. Those strings that send the automaton 1o an
accepting state are said to be accepred by the automaton.

Let A be a finite-state automaton with set of input symbols /. Let I* be the set of
all strings over /, and let w» be a string in 7*. Then w is accepted by A if, and only

oo ... JE_A gOES (O an accepting state when the symbols of w are input ta A in sequence_|..

F.019

from left to right, starting when A is in its initial state. The language accepted by
A, denoted L(A), is the set of all strings that are accepted by A.
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Example 12.2.4 Finding the Language Accepted by an Automaton

Consider the finite-state automaton A defined in Example 12.2.2 and shown again below,

a. To what states does A go if the symbols of the following strings are input to 4 ip
sequence, starting from the initial state?

(i 01 (i) 0011 (i) 0101100 (iv) 10101
b. Which of the strings in part (a) send A to an accepting state?
¢. What is the language accepted by A?
B d. Is there a repular expression that defines the same language?

Solution

| a )5 (i) s (i) s (V) s
I b. The strings 01 and 10101 send A to an accepting state.

¢. Observe that if w is any string that ends in 01, then w is accepted by A, Forif wis
any string of lenath n = 2, then after the first # —~ 2 symbols of w have been input, A
is in one of ils three states: s, 5;, or sa. But from any of these three states, input of the
symbels 0] in sequence sends A first to 5; and then to the accepting state 5. Hence
any string that ends in 01 is accepted by A,

Also note that the only strings accepted by A are those that end in 01, (That is, no
other strings besides those ending in 01 are accepted by A.) The reason for this is that
the only accepting state of A is 55, and the only arrow pointing to sy comes from 5 and
is labeled 1. Thus in order for an input string w of length 72 to send A to an accepting
state, the last symbol of w must be a | and the first # — | symbols of w must send A
to state 5;. Now three arrows point 1o 51, one from each of the three states of A, and
all are labeled 0. Thus the last of the first 1 — | symbols of w must be 0, or, in other

- words, the next-to-the-last symbol of w must be 0. Hence the last two symbols of w
' ! must be 01, and thus

L{A) = the set of all strings of "5 and 1's that end in 01,
d. Yes. One regular expression that defines L(A) is (0} 1)*01. ]

A finite-state automaton with multiple accepting states can have ouiput devices
attached to each one so that the automaton can classify Input strings into a variety of
different categories, one for each accepting state. This is how finite-state automata are
used in the lexical scanner component of a computer compiler to group the symbols from
a stream of input characters into identifiers, keywords, and so forth,

The Eventual-5tate Function

Now suppose a finite-state automaton is in one of its states (not necessarily the initial

state) and a string of input symbols is fed into it in sequence, To what staic will the
| automaton eventually go? The function that gives the answer to this question for everY
N possible combination of input strings and states of the automaton is called the evental-
' state function,
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Let A be a finite-state automaten with set of input symbols [, set of states §, and
next-state function N: § % [ — §. Let 7* be the set of all strings over 7, and define
the eventual-state function N*: § x I* — § as follows:

For any state 5 and for any input string w,

the state to which 4 goes if the
N*(s, w) = | symbols of w are input to A in sequence,
starting when A is in state 5

Example 12.2.5 Computing Values of the Eventual-State Function

Consider again the finite-state automaton of Example 12.2.2 shown below for conven-
ience, Find N*(s,, 10] 10).

Solution By definition of the eventual-state function,

the state to which 4 goes if the
N*(s1, 10110) = | symbols of 10110 are input to 4 in
sequence, starting when A is in state 5,

By referring to the transition diagram for A, you can see that starting from 5, when a |
i5 input, A goes to $2; then when a Q i input, A goes back to 81 after that, whena 1 is
input, A goes to 51: from there, when a | is input, A 2oes to Sy and finally, when a 0 is
input, A goes back to %1. This sequence of state transitions can be wrillen as follows:

t 0 I I o
F —r 53 —F ——— 53 — L11] —* &

Thus, after all the symbols of 10119 have becn input in sequence, the eventual state of 4
is 51, so

N*(.\'.,IOIIO)=51. . L

The definitions of strin g and languuge aceepted by an automaton can be restated sym-
bolically using the eventual_state function. Suppose A is a finjte-state automaton with set
ofinput symbols / and next-state function N and suppose that 7* is the set of all strings
over / and that w is a string in /*.

wisacceptedby A & N *{59. w) is an uccepting state of A"

F.0Z21

l LIA) =Tw e I"[ N* (s, w) ix an accepling state of 4)

Designing a Finite-State Automaton

Now consider the problem of starting with a description of a language and designing an
automaton o accept exactly that language,
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Example 12.2.6 A Finite-State Aulomaton That Accepts the Set of Strings of #'s snd 1’y
for Which the Nomber of 1's Ts Divisible by 3

a. Design a Anite-state automaton A that accepts the set of all strings of 0%s and 1°s such
that the number of 1's in the string is divisible by 3.

b. Is there u regular expression that defines this sct?
Solution

a. Let sy be the initial state of A, s ils stzle after one | has been input, and £ its state
after two 1's have been input. Note that sy i3 the state of A after zero 1's have becp
input, and since zero is divisible by 3(0 = 0-3), sy must be an accepiing state, The
states sy, 57, and 52 must be different from one another because from state sy three 1%
are needed to reach a new total divisible by 3, whereas from state 5| two additional 1'g
are necessary, and from state s» just one more 1 is required,

Now the state of A after three 1's have been input can also be taken to be 5,
because after three 1°s have been input, three more are needed to reach a new total
divisible by 3. More generally, if 3k 1's have been input to A, where & is any non-
negative integer, then three more are needed for the total again to be divisible by 3
(since 3k 4+ 3 = 3(k 4 1)). Thus the state in which 3k I's have been input, for any
nonnegative integer k, can be taken to be the initial state 5.

By similar reasoning. the states in which (3k + D) 1's and (3% 4+ 2) 1's have been
input, where £ is o nonnegative integer, can be taken to be 5y and ., respectively.

Now every nonnegative integer can be written in one of the three forms 3k, 3k + 1,
or 3k + 2 (see Section 4.4), 2o the three states sy, 51, and 5 are all that is needed to
create 4. Thus the states of A can be drawn and labeled as shown below.,

()

Next consider the possible inputs to A in each of its states. No maiter what state
A is in, if a 0 is input the total number of 1's in the input string remains unchanged.
Thus there is a loop at each state labeled 0.

Now suppose a | is input to A when it i3 in state so. Then A goes to state 5y (since
the total number of 1's in the input string has changed from 3k to 3k + I). Similarly,
ifa ] isinput to A when it is in state 5|, then A goes (e state 5; (since the total number
of 1's in the input string has changed from 3k + 1 to 3k + 2). Finally, if a 1 is input
to A when it is in state 5, then it goes to state sp (since the total number of 1's in the
input string becomes (3k +2) + 1 = 3%k + 3 = 3(k + 1), which is a multiple of 3.)

It follows that the transition diagram for A has the appearance shown below.

This automaton accepts the set
of strings of 0's and 1's fur which
the number of 1's i# divisible by 3.

b. A regular expression that defines the given st is 0% | (0" 10*10*10*)*. 2
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Example 12.2.7 A Finite-State Automaton That Aceepts the Set of AN Strings of 0's and 1's
Containing Exactly One 1

a. Design a finite-state automaton A 1o accept the set of all strings of 0's and 175 that
contuin exactly onc 1.

b. Is there a regular expression that defines this set?
Solution

a. The automaton A must have at least two distinet states:
so: initial sinte;
12 state to which A goes when the input string contains exactly one .

If A is in state sp and a O is input, A may as well stay in state s, (since it stilf necds
to wait for a | to move to state s;), but as soon as a | is input, A moves to state 5.
Thus a partial drawing of the transition diagram is as shown below.

{
(-

Now consider what happens when A is in state £, If a O is input, the input siring
stll has a single 1, so A stays in state 5,. But if a 1 is input, then the input string
contains more than one |, so A must leave s, (since no string with more than one 1 is
to be accepted by A). It cannot go back to state s, because there is a way [0 get from
fp t0 5, and after input of the second |, 4 can never return to state 51. Hence A must
80 10 a third state, sz, from which there is no return to 5. Thus from 5, every input

may as well leave A in state s2. It follows that the completed transition diagram for A
has the appearance shown below,

0 0 0.1
[

b. A regular expression that defines the given set is 0% 10", [

This automton accepts the sel of
strings 05 and 1's, with exactly one [,

Simulating a Finite-State Automaton Using Software

Suppose items have been coded with strings of 0's and 1's. A program is to be written

to govern the processing of items coded with strings that end 01 1; items coded any other
way are to be ignored. This situation ¢an be modeled by the finite-state automaton shown
in Figure 12.2.5, ‘

___This nutomatan. geeoynizes

F.0Z3

strings that end 011.

Figure 12.2.5
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The symbols of the code for the jtem are fed into this automaten in sequence, angd
every string of symbols in a given code sends the automaton to ane of the four states
fp. 51, 52, o0 83, IF state g5 is reached, the tem is processed; if not, the item is ignored.

The action of this finite-state automaton can be simulated by a cornputer algotithm a8
given in Algorithm 12.2.1,

Algorithm 12.2.1 A Finit=-5tate Automaton

—
[This algorithm simulures the action of the finite-state automaton of Figure 12.2.5 by
mimicking the functioning of the transition diagram. The states are denoted 0, 1,2,
and 3,] '

Input: string (a string of 0's and V's plus an end marker e i
Algorithm Body:
state ;=0
symbol = first symbol in the input string
while (symbal +£ #)
if srate=0  then il symbel = 0
then stare ;= 1
else state == 0
clse if state = | then if symbol = 0
then stare 1= 1
else stare 1= 2
else if siate = 2 then if symbol = 0
then state == |
else srare 1= 3
else if stare = 3 then if symbol = 0
then stare (= 1
else srare ;=0
symbol 1= next symbol in the input string
end while

[After execttivn of the while loop, the value of state is 3 if. and only if, the in-
it string endy in 0lie.}
Output: state

Note how use of the finite-state automaton allows the creator of the algorithm to focus
on each step of the analysis of the input string independently of the other steps.

An alternative way to program this automaton is to enter the values of the next-state
function directly as a two-dimensional array. This is done in Algorithm 12,2.2,

Algorithm 12.2.2 A Finite-State Automaton

[This algorithm simulates the action of the finite-state automaton of Figure 12.2.5 hy-
repeated application of the next-state function, The states are denoted ©, 1,7, and 3.

Input: string fa string of 0's and 1's plus an end marker e
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Algorithm Body:
N(0,0) := 1, N, 1) := 0, N(1,0) := [, N(I, 1) := 2,
NEZ0) =1, N2 1) :=3, NGO :i=1,N(3, 1) :=0
state 1 =0
symbol : = first symbol in the input string
while (symbol & &)
state ;= N (state, symbol).
symbol :== next symbol in the input string
end while

[After execution of the while loop, the value of stute is 3 if, and only if, the input string
ends inQl1e.}
Output: srare

Finite-State Automata and Regular Expressions

In the previous sections, each time we considered a language accepted by a finite-state
automaton, we found a regular expression that defined the same language. Staphen Kleene
showed that our ability to do this is not sheer coincidence. He proved that any fanguage
accepted by a finite-state automaton ean be defined by a regular expression and that, con-
versely, any language defined by a regular expreéssion is accepted by a finite-state automa-
ton. Thus for the many applications of regular expressions discussed in Scction 12.1, it
is theoretically possible to find a corresponding finite-state autornaton, which can then be
simulated using the kinds of computer algorithms described in the previous subscction,

In practice, it 1s often of interest to retain only picces of the patterns sought. For
instance, to obtain a reference in an HTML document, one would specify a regular
expression defining the full HTML tag, <a href= “the desired URL"™=>, but one would
be interested in retrieving only the string between the quotation marks, Because of these
kinds of considerations, actual implementations of finite-state automata include addi-
tional features.*

We break the statement of Kleene's theorem into two parts,

Kleene’s Theorem, Part 1

Given any language that is accepted by a finite-state automaton, there is a regular
expression that defines the same language,

Proof:

Suppose A is a finite-state automaton with a set f of input symbols, a set § of n
states, and a next-state function N: § x 7 — §. Let I* denote the set of all strings
over £, Number the states 5y, 53, 51, ..., 5, using 5; to denote the initial state, and
foreachinteger b = 1,2, 3, ... L, let

when the symbols of x are input to A in sequence, A
L,’-‘J = {* € 1™ | goes from state 5; to state 5; without traveling through
an intermediate state 5, for which b = &

continned on page 802

*For more information, see Mastering Regulnr Expressions, 3rd e, by leffrey E. F Friedl,
(Scbastopol, CA: O'Reilly & Associates, 2006), .
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Note that cither index ¢ or index j in Lf_ j could be greater than &; the only
restriction is that the symbols of a string in Lf‘ ; cannat make A both enter and exit
an intermediate state with index greater than £.

If 5; isan accepting state and if £ = nand i = 1, then LY ; is the set of all strings
that send A to 5; when the symbols of the string are inputto A in sequence starting
from %;. Thus

y ; E L{A).

Moreaver, because the sequence of symbols in every string in L{A) sends A to some
accepling state s,

L(A) is the union of all the sets LY ;, where 5; is an accepting state.

We use a version of mathematical induction to build up a set of regular expres-
sions over 7. Let the property P(m) be the sentence
For any pair of integers i and j with 1 =i, j < n,
there is a regular expression r'" that defines L7, — Pim)

Show that P(0) is true: For each pair of integers i and j withl < i, j < n, L" is the
set of all strings that send A from 5; to s; without sending it through any intermediare
state s;, for which & = (. Because the subscript of every state in A is greater than
zero, the sirings in LR ;j donot send A through any intermediate states at all, and so
each is a single input symbol from I, In other words, far all integers  and j with
l =i, j=n,

L?_j =la e I| N{s;, a} =55}

Hence L} is a subsct of 7, and so (because [ is finite) we my denote the elements
of L?J as follows:
L?j ={ay, az,ay.....auy} E L.

Now, by definition of regular expression, each single input symbol of 7 is a reg-
ular expression over /; thus every clement of LY ; is a regular expression over 1.
The result is that for all integers { and j with | = {, j = n, the following regular
expression defines LY -

a |azlal- - lay

Show that for all integers k with 0 = k < n, if P(k) is true then P(k + 1} is true:
Let k be any integer with | = &k < n, and suppose that

For each pair of integers p and gwith]l = p.g =n, — Pk
there is a regular expression l" lh.ll defines L" inductive hypuhesis

We will show that

For each pair of integers i and j with 1 < i, j = n,

there is a regular expression rX*+! that defines L{. — P+

So suppose that i and j are any pair of integers with 1 £/, j < n, and observe that
any string in L""’l sends A from s; to 5, either by a route that makes A pass through

._-£k+|-ﬂLb¥_n_:mﬁe:J_h.1Ldﬂﬂsnulekﬂ A pass through s, 1. Now. muhslnngthubends L

A from 5 to 55 and makes A pass theough 5,4, one or more times can be broken into
segments. The symbols in the first scgment send A from §; to s¢41 without making
A pass through s - thosc in each of the intermediate segments send 5,4 to itself

without making A pass through s.4(; and those in the final segment send A from
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$p4) o s; without making A pass through 5.4 . (The intermediale scement could
be the null string,) A typical path showing two intermediate seaments is illustrated
below,

Note that euch intermediate segment of the string is in Ly . and by assumption
the regular expression {, , ,; defincs this set. By the same reasoning, rf, , | defines
the set of all possible first segments of the siring, and rf, | , defines the set of all
possible final segments of the string. In addition, rf ; defincs the set of all strings that
send A frem 5 to 5; without making it pass through a stale 5, withm = k. Thus we

may definc the regular expression 7+ as follows:

Kk k k * k
i =Tl ("k+|.x+1) i1,

Then r ' defincs the set of all strings that send A from s; to 5; without muking it

pass through any states 5, with mr = k + 1, and so rfj.' defines L‘,‘j] fas wus e be

shown].
To complete the proof, let s, 55, ..., $; be the accepting state of A. Because
L(A) is the union of ull the L] ; where 5; is an accepting state, we have

Ly =i(r)ue(,ueue ()
=1L (r;'_ eyl ;)

Thusif weletr =],

by the recursive delinition for the
lunpbape defined by a regular expression

r]"_,.ll e Iri'_j" » we have that L(A) = L{r). In other words,
we have constructed a regular expression r that defines the language accepted by A.

Kleene's Theorem, Part 2

Given any language defined by a regular expression, there is a finite-state automaton

that accepts the same language.

The most common way to prove part 2 of Kleene's theorem is to introduce a pew cat-
egory of automata called nandeterministic finite-state automata. These are similat to the
(deterministic) finite-state sutomata we have been discussing, except that for any given
state and input symbol, the next state is a subset of the set of states of the automaton,
possibly even the empty set. Thus the next state of the automaton is not uniquely deter-
mined by the combination of a current state and an input symbol, A string is accepted by a
nondeterministic finite-state automaton if, and only if, when the symbols in the string are
input to the automaton in sequence, starling from an initial state, there is some sequence

of pext states throu i omatoacould travel that would cepd it to pase —— T

ing state. For instance, the transition diagram at the lefi is an example of a very simple
nondeterministic finite-state automaton that accepts the set of all strings beginning with
a 1. Observe that N (s, 1) = {5}, 52} and N (sy. 0) = M.

Given a language defined by any regular expression, there is a straightforward recur-
sive algorithm for finding a nondeterministic finite-state automaton that defines the same

F.0Z7
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language. The proof of Kleene's theorem is completed by showing that for any such non.
deterministic finite-stute automaton, there is a (deterministic) finite-state automaton thy
defines the same language. We leave the details of the proof to a course in antomagg
theory. ‘

Regular Languages

According to Kleene's theorem, the set of languages defined by regular expressions s
identical to the set of languages accepted by finite-state automata. Any such language js
called a regular language. The brief allusions we made earlier 1o context-free languages
and Chomsky’s classification of languages suggest that not every language is regular. We
will prove this by giving an example of a nonregular language.

To construct the example, note that because a finite-state automaton can assume only
a finite number of states and because there are infinitely many input sequences, by the
pigeonhole principle there must be at least one state 10 which the amtomaton returns over
and over again. This is the essential feature of an automaton that makes it possible to find
a nonregular language.

Exampie 12.2.8 Showing That 2 Language is Mot Regular

Let the language L consist of all sirings of the form a*b*, where £ is a positive integer.
Symbolically, L is the language over the alphabet £ = {a, b} defined by

L={s € £*|s =¢"b*, where k is a positive integer].

Use the pigeonhole principle to show that L is not regular. In other words. show that there
is no finite-state automaton that accepts L.

Soltion  {Use a proof by contradictipn. ] Suppose not. That is, suppose there is a finite-

state automaton A that accepts L. [A contradiction will be derived. ] Since A has only a
finite number of states, these states can be denoted sy, 52, 83, .. ., &y, where » is a positive
integer, Consider all input strings that consist entirely of a’s: a, a*, a*, a*, .... Now there
are infinitely many such strings and only finitely many states. Thus, by the pigeonhole
piinciple, there must be a state 5, and two input strings a® and g with p 3£ g such that
when either a” ar a? is input to A, A goes to stale 5, (See Figure 12.2.6.) [The pigeons
are the strings of a's, the pigeonholes are the states, and the correspondence associates each

string with the state lo which A goes when the string is input. |

Suwings of a's States of A

F
—_h

Fla') = the state to which A
gous when @ is input
= NSy, d)

Since F is not one-to-one, 3 strings
aP and ¥ with p#¢ such that both
a and «? send A to the same SLIE S,

7 N

There are un There are anly
infinite numher n stales,
of these sirings,

Figure 12.2.6
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Now, by supposition, A accepts L. Hence A aceepts the string
als?,
This means that after p ¢'s have been input, at which point A is in stute s, inpuiting p
additional 5’s sends A into an accepting state, say 5, But that implics that
athr
also sends A to the accepting state 5, and so a¥b" is accepted by A. The reason is that

after g a's have been input, A is also in state 5., and from that point, inputting p additional
b's sends A to state s,, which is an accepting state. Pictorially, if p < g, then

P s are input 7 #5 are loput

i

a [

o = pr addiional
a's are ippt

Now, by supposition, L is the language accepted by A, Thus since s is accepted by
A, s € L. But by definition of L. L consists only of strings with equal numbers of a’s

and b's_ Sosince p # ¢,5 ¢ L. Hences € L and s € L, which is a contradiction.

| It follows that the supposition is fslse, and so there is no finite-state avtornaton that
L accepts L, o

Test Yourself

1. The five objects that make up a finite-stale automaton are
. . . . » and

A, the eventual-state function N” is defined as follows: For
each state s of A and for each string w that consists of input
symbols of A, N*(s, w) =

2. The next-state tuble for an automaton shows the values of

7. One purt of Kleene’s theorem says that given any language

. In the annatated next-state table, the initial state s indicated

with an and the accepting states are marked by .

. A string w consisting of input symbols is accepted by a

finite-state automation 4 if, and only if,

. The language accepted by a finite-state avtomaton A4 is

. If & is the next-state function for a finite-state automation

Exerrice Sat 12 2

. A tegalar Linguape is

that is accepted by a finite-state automaton, there is

. The second part of Kleene's theorem says that given any

language defined by a regular expression, there is

. Given the language consisting of all strings of the form a*b*,

where k is a positive integer, the pigeonhole principle can be
used to show that the language is
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Answers for Test Yourself

L. a finitc set of input symbols; a finite set of stales; 2 designated initial state; a designated set of accepting states; a next-state function
that associates a “next-state™ with each state and input symbol of the automaton 2. the next-state function for each state and input
symbol of the automaton 3. arrow: double circles 4. when the symhbols in the string ar¢ input to the aulomaton in sequence from
left to right, starting from the initial state, the automaron ends up in an accepting state 3. the set of steings that are accepted by A
6. the state to which A goes if it is in state 5 and the characters of w are input to it in sequence 7. a regular expression that defines
the same languags 8. a finite-state automaton that accepts the same lunguage . a language defined by a regular expression ((j,—l a
language accepied by a finie-state automaton) 10, not regular '

12.3 Simplifying Finite-State Automata

Our life is fririered awoy by detil. ... Sipdify, simplify,
— Henry David Thoreau, Welden, 1854

Any String input to a finite-state automaton either sends the automaton to an accepting
state or not, and the sct of all strings accepted by an automaton is the language accepted
by the automaton. It often happens that when an automaton is created to do a certain
job (as in compiler construction, for example). the automaton that emerges “naturally”
from the development process is unnceessarily complicated; that 1s, thera may be an
autornaton with fewer states that accepts exactly the same language. It is desirable to
find such an automaton because the memory space required to store an automaton with
n states is approximately proportional to #?, Thus approximately 10,000 memory spaces
are required to store an auvtomaton with [0 states, whereas only about 100 memory
spaces are needed 1o store an automaton with 10 states. In addition, the fewer states an
automaion has, the easier it is to write a computer algonthm based on it; and to see that
two automata both accept the same language, it is easiest to simplify each to a minimal
nomber of states and compare the simplified automata. In this section we show how ta
take a given avtomaton and simplify it in the sense of finding an automaton with fewer
states that accepts the same language.

Example 12.3.1 An Overview

Consider the finite-state automata A and A’ in Figure 12.3.1. A moment"s thought should
convince you that A" accepts all those strings, and enly those strings, that contain an
even number of 1's, But A, although it appears more complicated, accepts exactly those -

Figure 12.3.1 Two Equivalent Automata
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strings also, Thus the two automata are “equivalent™ in the sense that they accept the same
language, even though A’ has fewer states than A

Roughly speaking, the reason for the equivalence of these automata is that some of
the states of 4 can be combined without affecting the acceptance or nonacceptance of
any input string. It tumns out that #2 can be combined with state s, and that 53 can be
combined with state 5. (How to figure out which states can be combined is explained
later in this section.) The automaton with the two combined siates (50, $2} and {s), 53) is
called the quotient automaton of A and is denoted A. lts transition diagram is obtained
by combining the circles for Sy and 53 and for 5, and 53 and by replacing any arrow from
a staie 5 10 a state 1 by an arrow from the combined state containing s to the combined
state containing r. For instance, since there is an arrow labeled | from s to s in A, therc
is an arrow labeled 1 from {51.53) to [5y. 53] in A. The complete transition diagram for
A is shown in Figure 12.3.2, As you can see, except for labeling the names of the states,
it is identical to the diagram for A’.

Figure 12.3.2 _ n

In general, simplification of a finite-state automaton involves identifying “equiva.
lent states™ that can be combined without affecting the action of the automaton on input
sirings. Mathematically speaking, this means defining an equivilence relation on the set
of states of the automaton and formi Mg 4 new automaton whose states are the equivadence
classes of the relation. The rost of this section is devoted to developing an algorithm to
carry out this process in a practical way.
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