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Definability in a Structure
Suppose we want to study the real field, (R; 0, 1, +, ·), consisting of the
set R of real numbers, together with the distinguished elements 0 and 1
and the two operations of addition and multiplication. We can consider
the real field as a structure

R = (R; 0, 1, +, ·)

where the language (with equality) has constant symbols 0 and 1 and
two-place function symbols + and ·.

Although we have not included an ordering symbol < in the lan-
guage, we still have a way to say “x ≥ 0.” Because in this structure, the
nonnegative elements are exactly the elements with square roots. That
is, the formula ∃ v2 x = v2 · v2 is satisfied in the structure R whenever
x is assigned a nonnegative number, and only then:

|=R ∃ v2 v1 = v2 · v2 [[a]] ⇐⇒ a ≥ 0.

Because of this fact, we will say that the interval [0,∞) is definable in
R, and that the formula ∃ v2 v1 = v2 · v2 defines it.

Moreover, the ordering relation on the reals, i.e., the binary relation

{〈a, b〉 ∈ R × R | a ≤ b},

is defined in the structure R by the formula expressing “v1 ≤ v2”:

∃v3 v2 = v1 + v3 · v3.

For a smaller example, take the directed graph

A = ({a, b, c}; {〈a, b〉, 〈a, c〉})

where the language has parameters ∀ and E :

cb
a

Then in A, the set {b, c} (the range of the relation EA) is defined by the
formula ∃ v2 Ev2v1. In contrast, the set {b} is not definable in A. This
is because there is no definable property in this structure that would
separate b and c; the proof of this fact will utilize the homomorphism
theorem, to be proved later in this section.

We now want to set forth precisely this concept of definability of
a subset of the universe or of a relation on the universe. Consider a
structure A and a formula ϕ whose free variables are among v1, . . . , vk .
Then we can construct the k-ary relation on |A|

{〈a1, . . . , ak〉 | |=A ϕ[[a1, . . . , ak]]}.

Call this the k-ary relation ϕ defines in A. In general, a k-ary relation



Chapter 2: First-Order Logic 91

on |A| is said to be definable in A iff there is a formula (whose free
variables are among v1, . . . , vk) that defines it there.

EXAMPLE. Assume that we have a part of the language for number
theory, specifically that our language has the parameters ∀, 0, S,
+, and ·. Let N be the intended structure:

|N| = N, the set of natural numbers.
0N = 0, the number 0.
SN, +N, and ·N are S, +, and ·, the functions of successor,

addition, and multiplication.

In one equation,

N = (N; 0, S, +, ·).

Some relations on N are definable in N and some are not. One
way to show that some are not definable is to use the fact that
there are uncountably many relations on N but only countably
many possible defining formulas. (There is, however, an inherent
difficulty in giving a specific example. After all, if something is
undefinable, then it is hard to say exactly what it is! Later we
will get to see a specific example, the set of Gödel numbers of
sentences true in N; see Section 3.5.)

1. The ordering relation {〈m, n〉 | m < n} is defined in N by
the formula

∃ v3 v1 + Sv3 = v2.

2. For any natural number n, {n} is definable. For example, {2}
is defined by the equation

v1 = SS0.

Because of this we say that n is a definable element in N.
3. The set of primes is definable inN. We could use the formula

1 < v1 ∧ ∀ v2 ∀ v3(v1 = v2 · v3 → v2 = 1 ∨ v3 = 1)

if we had parameters 1 and < for 1 and <. But since {1} and <

are definable in N, it is really quite unnecessary to add parameters
for them; we can simply use their definitions instead. Thus the set
of primes is definable by

∃ v3 S0 + Sv3 = v1 ∧ ∀ v2 ∀ v3 (v1 = v2 · v3→
v2 = S0 ∨ v3 = S0).

4. Exponentiation, {〈m, n, p〉 | p = mn} is also definable in
N. This is by no means obvious; we will give a proof later (in
Section 3.8) using the Chinese remainder theorem.
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In fact, we will argue later that any decidable relation on N is definable
in N, as is any effectively enumerable relation and a great many others.
To some extent the complexity of a definable relation can be measured
by the complexity of the simplest defining formula. This idea will come
up again at the end of Section 3.5.

Definability of a Class of Structures
Many a mathematics class, on its first day, begins with the instructor
saying something like one of the following:

1. “A graph is defined to consist of a nonempty set V together with
a set E such that. . . .”

2. “A group is defined to consist of a nonempty set G together with
a binary operation ◦ satisfying the axioms. . . .”

3. “An ordered field is defined to consist of a nonempty set F together
with two binary operations + and · and a binary relation < satisfying
the axioms. . . .”

4. “A vector space is defined to consist of a nonempty set V together
with a binary operation + and, for each real number r , an operation
called scalar multiplication such that. . . .”

We want to abstract from this situation. In each case, the objects of
study (the graphs, the groups, and so forth) are structures for a suitable
language. Moreover, they are required to satisfy a certain set " of sen-
tences (referred to as “axioms”). The course in question then studies the
models of the set " of axioms — or at least some of the models.

For a set " of sentences, let Mod " be the class of all models of ",
i.e., the class of all structures for the language in which every member
of " is true. For a single sentence τ we write simply “Mod τ” instead
of “Mod {τ }.” (The reader familiar with axiomatic set theory will notice
that Mod ", if nonempty, is a proper class; i.e., it is too large to be a set.)

A class K of structures for our language is an elementary class (EC)
iff K = Mod τ for some sentence τ . K is an elementary class in the
wider sense (EC$) iff K = Mod " for some set " of sentences. (The
adjective “elementary” is employed as a synonym for “first-order.”)

EXAMPLES

1. Assume that the language has equality and the two pa-
rameters ∀ and E , where E is a two-place predicate symbol.
Then a graph is a structure for this language A = (V ; EA)

consisting of a nonempty set V of objects called vertices (or
nodes), and an edge relation EA that is symmetric (if uEAv then
vEAu) and irreflexive (never vEAv). The axiom stating that the
edge relation is symmetric and irreflexive can be translated by
the sentence
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∀ x(¬ x Ex ∧ ∀ y(x Ey → yEx)).

So the class of all graphs is an elementary class. For directed
graphs or digraphs, the assumption of symmetry is dropped. And
if one wants to allow “loops” then the assumption of irreflexivity
is dropped. But perhaps the instructor then explains that the course
will study only finite graphs. Is the class of all finite graphs an
elementary class? No, we will prove later that it is not, not even
in the wider sense.

2. Assume that the language has equality and the parameters
∀ and P , where P is a two-place predicate symbol. As before, a
structure (A; R) for the language consists of a nonempty set A
together with a binary relation R on A. (A; R) is called an ordered
set iff R is transitive and satisfies the trichotomy condition (which
states that for any a and b in A, exactly one of 〈a, b〉 ∈ R, a = b,
〈b, a〉 ∈ R holds). Because these conditions can be translated into
a sentence of the formal language, the class of nonempty ordered
sets is an elementary class. It is, in fact, Mod τ , where τ is the
conjunction of the three sentences

∀ x ∀ y ∀ z(x Py → y Pz → x Pz);
∀ x ∀ y(x Py ∨ x = y ∨ y Px);
∀ x ∀ y(x Py→ ¬y Px).

The next two examples assume that the reader has had some
contact with algebra.

3. Assume that the language has = and the parameters ∀ and
◦, where ◦ is a two-place function symbol. The class of all groups
is an elementary class, being the class of all models of the con-
junction of the group axioms:

∀ x ∀ y ∀ z (x ◦ y) ◦ z = x ◦ (y ◦ z);
∀ x ∀ y ∃ z x ◦ z = y;
∀ x ∀ y ∃ z z ◦ x = y.

The class of all infinite groups is EC$. To see this, let

λ2 = ∃ x ∃ y x &= y,

λ3 = ∃ x ∃ y ∃ z(x &= y ∧ x &= z ∧ y &= z),
. . . .

Thus λn translates, “There are at least n things.” Then the group
axioms together with {λ2, λ3, . . .} form a set " for which Mod "

is exactly the class of infinite groups. We will eventually (in Sec-
tion 2.6) be able to show that the class of infinite groups is not EC.

4. Assume that the language has equality and the parameters
∀, 0, 1, +, ·. Fields can be regarded as structures for this language.
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The class of all fields is an elementary class. The class of fields of
characteristic zero is EC$. It is not EC, a fact which will follow
from the compactness theorem for first-order logic (Section 2.6
again).

Homomorphisms1

In courses about graphs or groups or vector spaces, one usually encoun-
ters the concept of what it means for two of the structures in question, A
and B, to be isomorphic: Roughly speaking, there must be a one-to-one
correspondence between their universes |A| and |B| that “preserves”
the operations and relations.

It is then explained that two isomorphic structures, although not
identical, must have all the same mathematical properties. We want to
define here the isomorphism concept in a general setting, and to show
that two isomorphic structures must satisfy exactly the same sentences.

Let A, B be structures for the language. A homomorphism h of A
into B is a function h : |A| → |B| with the properties:

(a) For each n-place predicate parameter P and each n-tuple 〈a1, . . . ,

an〉 of elements of |A|,

〈a1, . . . , an〉 ∈ PA iff 〈h(a1), . . . , h(an)〉 ∈ PB.

(b) For each n-place function symbol f and each such n-tuple,

h( f A(a1, . . . , an)) = f B(h(a1), . . . , h(an)).

In the case of a constant symbol c this becomes

h(cA) = cB.

Conditions (a) and (b) are usually stated: “h preserves the relations
and functions.” (It must be admitted that some authors use a weakened
version of condition (a); our homomorphisms are their “strong homo-
morphisms.”)

If, in addition, h is one-to-one, it is then called an isomorphism (or
an isomorphic embedding) of A into B. If there is an isomorphism of
A onto B (i.e., an isomorphism h for which ran h = |B|), then A and
B are said to be isomorphic (written A ∼= B).

The reader has quite possibly encountered this concept before in
special cases such as structures that are groups or fields.

1 This topic can be postponed somewhat. But homomorphisms will be used in the proof
of the completeness theorem (with equality). And we make use of the isomorphism
concept, starting in Section 6 of Chapter 2.
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EXAMPLE. Assume that we have a language with the parameters ∀,
+, and ·. Let A be the structure (N; +, ·). We can define a function
h : N → {e, o} by

h(n) =
{

e if n is even,

o if n is odd.

Then h is a homomorphism of A onto B, where |B| = {e, o} and
+B, ·B are given by the following tables:

+B e o ·B e o
e e o e e e
o o e o e o

It can then be verified that condition (b) of the definition is satis-
fied. For example, if a and b are both odd numbers, then h(a+b) =
e and h(a) +B h(b) = o +B o = e.

EXAMPLE. Let P be the set of positive integers, let <P be the usual
ordering relation on P, and let <N be the usual ordering relation
on N. Then there is an isomorphism h from the structure (P; <P)

onto (N; <N ); we take h(n) = n − 1. Also the identity map
I d : P → N is an isomorphism of (P; <P) into (N; <N ). Because
of this last fact, we say that (P; <P) is a substructure of (N; <N ).

More generally consider two structures A and B for the language
such that |A| ⊆ |B|. It is clear from the definition of homomorphism
that the identity map from |A| into |B| is an isomorphism of A into
B iff

(a) PA is the restriction of PB to |A|, for each predicate param-
eter P;

(b) f A is the restriction of f B to |A|, for each function symbol f ,
and cA = cB for each constant symbol c.

If these conditions are met, then A is said to be a substructure of B,
and B is an extension of A.

For example, in a language with a two-place function symbol +, the
structure (Q; +Q) is a substructure of (C; +C). Here +C is the addition
operation on complex numbers. And +Q , addition on the rationals, is
exactly the restriction of +C to the set Q.

In this example, the set Q is closed under +C ; that is, the sum of two
rational numbers is rational. More generally, whenever A is a substruc-
ture of B, then |A| must be closed under f B for every function symbol
f . After all, f B(0a) (where 0a ∈ |A|n) is nothing but f A(0a), which must
be some element in |A|. This closure property even holds for the 0-place
function symbols; cB must belong to |A| for each constant symbol c.
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Conversely, suppose we have a structure B, and let A be any non-
empty subset of |B| that is closed under all of B’s functions, as in
the preceding paragraph. Then we can make a substructure of B with
universe A. In fact there is only one way to do this. The universe is A,
each predicate parameter P is assigned the restriction of PB to A, and
similarly for the function symbols. As an extreme case, if the language
has no function symbols at all (not even constant symbols), then we can
make a substructure out of any nonempty subset A of |B|.

These are basically algebraic concepts, but the following theorem
relates them to the logical concepts of truth and satisfaction.

HOMOMORPHISM THEOREM Let h be a homomorphism of A into B,
and let s map the set of variables into |A|.

(a) For any term t , we have h(s(t)) = h ◦ s(t), where s(t) is
computed in A and h ◦ s(t) is computed in B.

(b) For any quantifier-free formula α not containing the equal-
ity symbol,

|=A α[s] iff |=B α[h◦s].

(c) If h is one-to-one (i.e., is an isomorphism of A into B),
then in part (b) we may delete the restriction “not containing the
equality symbol.”

(d) If h is a homomorphism of A onto B, then in (b) we may
delete the restriction “quantifier-free.”

PROOF. Part (a) uses induction on t ; see Exercise 13. Note that h ◦ s
maps the set of variables into |B|; its extension to the set of all
terms is h ◦ s. It is h ◦ s that is here being evaluated at t .

(b) For an atomic formula such as Pt , we have

|=A Pt[s] ⇔ s(t) ∈ PA

⇔ h(s(t)) ∈ PB since h is a homomorphism
⇔ h ◦ s(t) ∈ PB by (a)
⇔ |=B Pt[h ◦ s].

An inductive argument is then required to handle the connective
symbols ¬ and → , but it is completely routine.

(c) In any case,

|=A u = t[s] ⇔ s(u) = s(t)
⇒ h(s(u)) = h(s(t))
⇔ h ◦ s(u) = h ◦ s(t) by (a)
⇔ |=B u = t[h ◦ s].

If h is one-to-one, the arrow in the second step can be reversed.
(d) We must extend the routine inductive argument of part (b)

to include the quantifier step. That is, we must show that if ϕ has
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the property that for every s,

|=A ϕ[s] ⇔ |=B ϕ[h ◦ s],

then ∀ x ϕ enjoys the same property. We have in any case (as a
consequence of the inductive hypothesis on ϕ) the implication

|=B ∀ x ϕ[h ◦ s] ⇒ |=A ∀ x ϕ[s].

This is intuitively very plausible; if ϕ is true of everything in the
larger set |B|, then a fortiori it is true of everything in the smaller
set ran h. The details are, for an element a of |A|,
|=B ∀ x ϕ[h ◦ s]⇒ |=B ϕ[(h ◦ s)(x | h(a))]

⇔ |=B ϕ[h ◦ (s(x | a))], the functions
being the same

⇔ |=A ϕ[s(x | a)] by the inductive
hypothesis.

Now for the converse, suppose that 2|=B ∀ x ϕ[h ◦ s], so that
|=B ¬ϕ[(h ◦ s)(x | b)] for some element b in |B|. We need the
implication

If for some b in |B|, |=B ¬ϕ[(h ◦ s)(x | b)], then for(∗)
some a in |A|, |=B ¬ϕ[(h ◦ s)(s | h(a))].

For given (∗), we can proceed:

|=B ¬ϕ[(h ◦ s)(x | h(a))] ⇔ |=B ¬ϕ[h ◦ (s(x | a))], the functions
being the same

⇔ |=A ¬ϕ[s(x | a)] by the inductive
hypothesis

⇒ 2|=A ∀ x ϕ[s].

If h maps |A| onto |B|, then (∗) is immediate; we take a such that
b = h(a). (But there might be other fortunate times when (∗) can
be asserted even if h fails to have range |B|.) 4

Two structures A and B for the language are said to be elementarily
equivalent (written A ≡ B) iff for any sentence σ ,

|=A σ ⇔ |=B σ.

COROLLARY 22D Isomorphic structures are elementarily equivalent:

A ∼= B ⇒ A ≡ B

Actually more is true. Isomorphic structures are alike in every “struc-
tural” way; not only do they satisfy the same first-order sentences, they
also satisfy the same second-order (and higher) sentences (i.e., they are
secondarily equivalent and more).

There are elementarily equivalent structures that are not isomorphic.
For example, it can be shown that the structure (R; <R) consisting of
the set of real numbers with its usual ordering relation is elementarily
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equivalent to the structure (Q;<Q) consisting of the set of rational
numbers with its ordering (see Section 2.6). But Q is a countable set
whereas R is not, so these structures cannot be isomorphic. In Section 2.6
we will see how easy it is to make elementarily equivalent structures of
differing cardinalities.

EXAMPLE, revisited. We had an isomorphism h from (P; <P) onto
(N; <N ). So in particular, (P; <P) ≡ (N; <N ); these structures
are indistinguishable by first-order sentences.

We furthermore noted that the identity map was an isomor-
phic embedding of (P; <P) into (N; <N ). Hence for a function s:
V → P and a quantifier-free ϕ,

|=(P;<P ) ϕ[s] ⇔ |=(N;<N ) ϕ[s].

This equivalence may fail if ϕ contains quantifiers. For example,

|=(P;<P ) ∀ v2(v1 &= v2 → v1 < v2)[[1]],

but

2|=(N;<N ) ∀ v2(v1 &= v2 → v1 < v2)[[1]].

An automorphism of the structure A is an isomorphism of A onto
A. The identity function on |A| is trivially an automorphism of A. A
may or may not have nontrivial automorphisms. (We say that A is rigid
if the identity function is its only automorphism.) As a consequence of
the homomorphism theorem, we can show that an automorphism must
preserve the definable relations:

COROLLARY 22E Let h be an automorphism of the structure A, and
let R be an n-ary relation on |A| definable in A. Then for any
a1, . . . , an in |A|,

〈a1, . . . , an〉 ∈ R ⇔ 〈h(a1), . . . , h(an)〉 ∈ R.

PROOF. Let ϕ be a formula that defines R in A. We need to know
that

|=A ϕ[[a1, . . . , an]] ⇔ |=A ϕ[[h(a1), . . . , h(an)]].

But this is immediate from the homomorphism theorem. 4

This corollary is sometimes useful in showing that a given relation
is not definable. Consider, for example, the structure (R; <) consisting
of the set of real numbers with its usual ordering. An automorphism
of this structure is simply a function h from R onto R that is strictly
increasing:

a < b ⇔ h(a) < h(b).
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One such automorphism is the function h for which h(a) = a3. Since
this function maps points outside of N into N, the set N is not definable
in this structure.

Another example is provided by elementary algebra books, which
sometimes explain that the length of a vector in the plane cannot be
defined in terms of vector addition and scalar multiplication. For the
map that takes a vector x into the vector 2x is an automorphism of the
plane with respect to vector addition and scalar multiplication, but it is
not length-preserving. From our viewpoint, the structure in question,

(E; +, fr )r∈R,

has for its universe the plane E , has the binary operation + of vector
addition, and has (for each r in the set R) the unary operation fr of scalar
multiplication by r . (Thus the language in question has a one-place
function symbol for each real number.) The doubling map described
above is an automorphism of this structure. But it does not preserve the
set of unit vectors,

{x | x ∈ E and x has length 1}.

So this set cannot be definable in the structure. (Incidentally, the homo-
morphisms of vector spaces are called linear transformations.)

Exercises
1. Show that (a) (; α |= ϕ iff ( |= (α → ϕ); and (b) ϕ |==| ψ iff

|= (ϕ ↔ ψ).
2. Show that no one of the following sentences is logically implied

by the other two. (This is done by giving a structure in which the
sentence in question is false, while the other two are true.)
(a) ∀ x ∀ y ∀ z(Pxy → Pyz → Pxz). Recall that by our conven-

tion α →β → γ is α → (β → γ ).
(b) ∀ x ∀ y(Pxy → Pyx → x = y).
(c) ∀ x ∃ y Pxy → ∃ y ∀ x Pxy.

3. Show that

{∀ x(α → β), ∀ x α} |= ∀ x β.

4. Show that if x does not occur free in α, then α |= ∀ x α.

5. Show that the formula x = y → Pz f x → Pz f y (where f is a
one-place function symbol and P is a two-place predicate symbol)
is valid.

6. Show that a formula θ is valid iff ∀ x θ is valid.

7. Restate the definition of “A satisfies ϕ with s” in the way described
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on page 84. That is, define by recursion a function h such that A
satisfies ϕ with s iff s ∈ h(ϕ).

8. Assume that " is a set of sentences such that for any sentence τ ,
either " |= τ or " |= ¬ τ . Assume that A is a model of ". Show
that for any sentence τ , we have |=A τ iff " |= τ .

9. Assume that the language has equality and a two-place predicate
symbol P . For each of the following conditions, find a sentence σ

such that the structure A is a model of σ iff the condition is met.
(a) |A| has exactly two members.
(b) PA is a function from |A| into |A|. (A function is a single-valued

relation, as in Chapter 0. For f to be a function from A into B,
the domain of f must be all of A; the range of f is a subset,
not necessarily proper, of B.)

(c) PA is a permutation of |A|; i.e., PA is a one-to-one function
with domain and range equal to |A|.

10. Show that

|=A ∀ v2 Qv1v2[[cA]] iff |=A ∀ v2 Qcv2.

Here Q is a two-place predicate symbol and c is a constant symbol.

11. For each of the following relations, give a formula which defines
it in (N; +, ·). (The language is assumed to have equality and the
parameters ∀, +, and ·).
(a) {0}.
(b) {1}.
(c) {〈m, n〉 | n is the successor of m in N }.
(d) {〈m, n〉 | m < n in N}.

Digression: This is merely the tip of the iceberg. A relation on
N is said to be arithmetical if it is definable in this structure.
All decidable relations are arithmetical, as are many others.
The arithmetical relations can be arranged in a hierarchy; see
Section 3.5.

12. Let R be the structure (R; +, ·). (The language is assumed to have
equality and the parameters ∀, +, and ·. R is the structure whose
universe is the set R of real numbers and such that +R and ·R are
the usual addition and multiplication operations.)
(a) Give a formula that defines in R the interval [0, ∞).
(b) Give a formula that defines in R the set {2}.

∗(c) Show that any finite union of intervals, the endpoints of which
are algebraic, is definable in R. (The converse is also true; these
are the only definable sets in the structure. But we will not prove
this fact.)

13. Prove part (a) of the homomorphism theorem.
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14. What subsets of the real line R are definable in (R; <)? What subsets
of the plane R × R are definable in (R; <)?

Remarks: The nice thing about (R; <) is that its automorphisms
are exactly the order-preserving maps from R onto itself. But stop
after the binary relations. There are 213 definable ternary relations,
so you do not want to catalog all of them.

15. Show that the addition relation, {〈m, n, p〉 | p = m + n}, is not
definable in (N; ·). Suggestion: Consider an automorphism of (N; ·)
that switches two primes.

Digression: Algebraically, the structure of the natural numbers
with multiplication is nothing but the free Abelian semigroup with
ℵ0 generators (viz. the primes), together with a zero element. There
is no way you could define addition here. If you could define addi-
tion, then you could define ordering (by Exercise 11 and the natural
transitivity statement). But one generator looks just like another.
That is, there are 2ℵ0 automorphisms — simply permute the primes.
None of them is order-preserving except the identity.

16. Give a sentence having models of size 2n for every positive inte-
ger n, but no finite models of odd size. (Here the language should
include equality and will have whatever parameters you choose.)
Suggestion: One method is to make a sentence that says, “Every-
thing is either red or blue, and f is a color-reversing permutation.”

Remark: Given a sentence σ , it might have some finite models
(i.e., models with finite universes). Define the spectrum of σ to be
the set of positive integers n such that σ has a model of size n. This
exercise shows that the set of even numbers is a spectrum.

For example if σ is the conjunction of the field axioms (there
are only finitely many, so we can take their conjunction), then its
spectrum is the set of powers of primes. This fact is proved in any
course on finite fields. The spectrum of ¬ σ , by contrast, is the set
of all positive integers (non-fields come in all sizes).

Günter Asser in 1955 raised the question: Is the complement of
every spectrum a spectrum? Once you realize that simply taking
a negation does not work (cf. the preceding paragraph), you see
that this is a nontrivial question. In fact the problem, known as the
spectrum problem, is still open. But modern work has tied it to
another open problem, whether or not co-NP = NP.

17. (a) Consider a language with equality whose only parameter (aside
from ∀) is a two-place predicate symbol P . Show that if A is
finite and A ≡ B, then A is isomorphic to B. Suggestion:
Suppose the universe of A has size n. Make a single sentence σ

of the form ∃ v1 · · · ∃ vn θ that describes A “completely.” That
is, on the one hand, σ must be true in A. And on the other hand,
any model of σ must be exactly like (i.e., isomorphic to) A.
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∗(b) Show that the result of part (a) holds regardless of what param-
eters the language contains.

18. A universal (∀1) formula is one of the form ∀ x1 · · · ∀ xn θ , where
θ is quantifier-free. An existential (∃1) formula is of the dual form
∃ x1 · · · ∃ xn θ . Let A be a substructure of B, and let s : V → |A|.
(a) Show that if |=A ψ[s] and ψ is existential, then |=B ψ[s]. And

if |=B ϕ[s] and ϕ is universal, then |=A ϕ[s].
(b) Conclude that the sentence ∃ x Px is not logically equivalent to

any universal sentence, nor ∀ x Px to any existential sentence.
Remark: Part (a) says (when ϕ is a sentence) that any univer-

sal sentence is “preserved under substructures.” Being universal
is a syntactic property — it has to do with the string of symbols.
In contrast, being preserved under substructures is a semantic
property — it has to do with satisfaction in structures. But this
semantic property captures the syntactic property up to logical
equivalence (which is all one could ask for). That is, if σ is a
sentence that is always preserved under substructures, then σ

is logically equivalent to a universal sentence. (This fact is due
to Łoś and Tarski.)

19. An ∃2 formula is one of the form ∃ x1 · · · ∃ xn θ , where θ is
universal.
(a) Show that if an ∃2 sentence in a language not containing func-

tion symbols (not even constant symbols) is true in A, then it
is true in some finite substructure of A.

(b) Conclude that ∀ x ∃ y Pxy is not logically equivalent to any ∃2

sentence.

20. Assume the language has equality and a two-place predicate symbol
P . Consider the two structures (N; <) and (R; <) for the language.
(a) Find a sentence true in one structure and false in the other.

∗(b) Show that any ∃2 sentence (as defined in the preceding exer-
cise) true in (R; <) is also true in (N; <). Suggestion: First,
for any finite set of real numbers, there is an automorphism
of (R; <) taking those real numbers to natural numbers. Sec-
ondly, by Exercise 18, universal formulas are preserved under
substructures.

21. We could consider enriching the language by the addition of a new
quantifier. The formula ∃!x α (read “there exists a unique x such
that α”) is to be satisfied in A by s iff there is one and only one
a ∈ |A| such that |=A α[s(x | a)]. Assume that the language has the
equality symbol and show that this apparent enrichment comes to
naught, in the sense that we can find an ordinary formula logically
equivalent to ∃!x α.

22. Assume that A is a structure and h is a function with ran h = |A|.
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Show that there is a structure B such that h is a homomorphism of
B onto A. Suggestion: We need to take |B| = dom h. In general,
the axiom of choice will be needed to define the functions in B,
unless h is one-to-one.

Remark: The result yields an “upward Löwenheim–Skolem the-
orem without equality” (cf. Section 2.6). That is, any structure A
has an extension to a structure B of any higher cardinality such that
A and B are elementarily equivalent, except for equality. There is
nothing deep about this. Not until you add equality.

23. Let A be a structure and g a one-to-one function with dom g = |A|.
Show that there is a unique structure B such that g is an isomor-
phism of A onto B.

24. Let h be an isomorphic embedding of A into B. Show that there is
a structure C isomorphic to B such that A is a substructure of C.
Suggestion: Let g be a one-to-one function with domain |B| such
that g(h(a)) = a for a ∈ |A|. Form C such that g is an isomorphism
of B onto C.

Remark: The result stated in this exercise should not seem sur-
prising. On the contrary, it is one of those statements that is obvious
until you have to prove it. It says that if you can embed A isomor-
phically into B, then for all practical purposes you can pretend A
is a substructure of B.

25. Consider a fixed structure A. Expand the language by adding a
new constant symbol ca for each a ∈ |A|. Let A+ be the struc-
ture for this expanded language that agrees with A on the original
parameters and that assigns to ca the point a. A relation R on
|A| is said to be definable from points in A iff R is definable in
A+. (This differs from ordinary definability only in that we now
have parameters in the language for members of |A|.) Let R =
(R; <, +, ·).
(a) Show that if A is a subset of R consisting of the union of finitely

many intervals, then A is definable from points in R (cf. Exer-
cise 12).

(b) Assume that A ≡ R. Show that any subset of |A| that is non-
empty, bounded (in the ordering <A), and definable from points
in A has a least upper bound in |A|.

Digression: Often when people speak of definability within a
structure, this is the concept they mean. The more standard phrase
is “definable from parameters”; here “points” is used because the
word “parameter” is used in a different sense in this chapter.

The real ordered field can be characterized up to isomorphism
by saying that it is a complete ordered field. (This fact should
be included in any analysis course.) But completeness (i.e., that
nonempty bounded sets have least upper bounds) is not a first-
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order property. See Example 4 in Section 4.1 for its second-order
statement. The first-order “image” of completeness is given by the
schema obtained from that second-order statement by replacing X
by a first-order formula ϕ. The resulting schema (i.e., the set of
sentences you get by letting ϕ vary and taking universal closure)
says that the least-upper-bound property holds for the sets that are
definable from points. Ordered fields satisfying those sentences are
called “real closed-ordered fields.”

The surprising fact is that such fields were not invented by logi-
cians. They were previously studied by algebraists and you can read
about them in van der Waerden’s Modern Algebra book (volume I).
Of course, he uses a characterization of them that does not involve
logic.

What Tarski showed is that any real closed-ordered field is el-
ementarily equivalent to the field of real numbers. From this it
follows that the theory of the real-ordered field is decidable.

26. (a) Consider a fixed structure A and define its elementary type to
be the class of structures elementarily equivalent to A. Show
that this class is EC$. Suggestion: Show it is Mod Th A.

(b) Call a classK of structures elementarily closed or ECL if when-
ever a structure belongs to K then all elementarily equivalent
structures also belong. Show that any such class is a union of
EC$ classes. (A class that is a union of EC$ classes is said to
be an EC$" class; this notation is derived from topology.)

(c) Conversely, show that any class that is the union of EC$ classes
is elementarily closed.

27. Assume that the parameters of the language are ∀ and a two-place
predicate symbol P . List all of the non-isomorphic structures of
size 2. That is, give a list of structures (where the universe of each
has size 2) such that any structure of size 2 is isomorphic to exactly
one structure on the list.

28. For each of the following pairs of structures, show that they are
not elementarily equivalent, by giving a sentence true in one and
false in the other. (The language here contains ∀ and a two-place
function symbol ◦.)
(a) (R; ×) and (R∗; ×∗), where × is the usual multiplication op-

eration on the real numbers, R∗ is the set of non-zero reals, and
×∗ is × restricted to the non-zero reals.

(b) (N; +) and (P; +∗), where P is the set of positive integers, and
+∗ is usual addition operation restricted to P.

(c) Better yet, for each of the four structures of parts (a) and (b),
give a sentence true in that structure and false in the other
three.


