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3. Carry out the argument for Lemma 13B for the case of the operation
E¬.

4. Suppose that we modify our definition of wff by omitting all right
parentheses. Thus instead of

((A ∧ (¬ B)) → (C ∨ D))

we use

((A ∧ (¬ B → (C ∨ D.

Show that we still have unique readability (i.e., each wff still has
only one possible decomposition). Suggestion: These expressions
have the same number of parentheses as connective symbols.

5. The English language has a tendency to use two-part connectives:
“both . . . and . . .” “either . . . or . . .” “if . . . , then . . . .” How does
this affect unique readability in English?

6. We have given an algorithm for analyzing a wff by constructing its
tree from the top down. There are also ways of constructing the tree
from the bottom up. This can be done by looking through the formula
for innermost pairs of parentheses. Give a complete description of
an algorithm of this sort.

7. Suppose that left and right parentheses are indistinguishable. Thus,
instead of (α ∨ (β ∧ γ )) we have |α ∨ |β ∧ γ ||. Do formulas still
have unique decomposition?

SECTION 1.4
Induction and Recursion1

Induction
There is one special type of construction that occurs frequently both in
logic and in other branches of mathematics. We may want to construct
a certain subset of a set U by starting with some initial elements of U,

and applying certain operations to them over and over again. The set we
seek will be the smallest set containing the initial elements and closed
under the operations. Its members will be those elements of U which
can be built up from the initial elements by applying the operations
some finite number of times.

1 On the one hand, the concepts in this section are important, and they arise in many
places throughout mathematics. On the other hand, readers may want to postpone — not
skip — study of this section.
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In the special case of immediate interest to us, U is the set of expres-
sions, the initial elements are the sentence symbols, and the operations
are E¬, E∧, etc. The set to be constructed is the set of wffs. But we will
encounter other special cases later, and it will be helpful to view the
situation abstractly here.

To simplify our discussion, we will consider an initial set B ⊆ U
and a class F of functions containing just two members f and g, where

f : U × U → U and g : U → U.

Thus f is a binary operation on U and g is a unary operation. (Actu-
ally F need not be finite; it will be seen that our simplified discussion
here is, in fact, applicable to a more general situation. F can be any
set of relations on U , and in Chapter 2 this greater generality will be
utilized. But the case discussed here is easier to visualize and is gen-
eral enough to illustrate the ideas. For a less restricted version, see
Exercise 3.)

If B contains points a and b, then the set C we wish to construct will
contain, for example,

b, f (b, b), g(a), f (g(a), f (b, b)), g( f (g(a), f (b, b))).

Of course these might not all be distinct. The idea is that we are given
certain bricks to work with, and certain types of mortar, and we want C
to contain just the things we are able to build.

In defining C more formally, we have our choice of two definitions.
We can define it “from the top down” as follows: Say that a subset S of
U is closed under f and g iff whenever elements x and y belong to S,
then so also do f (x, y) and g(x). Say that S is inductive iff B ⊆ S and
S is closed under f and g. Let C$ be the intersection of all the inductive
subsets of U ; thus x ∈ C$ iff x belongs to every inductive subset of
U. It is not hard to see (and the reader should check) that C$ is itself
inductive. Furthermore, C$ is the smallest such set, being included in
all the other inductive sets.

The second (and equivalent) definition works “from the bottom up.”
We want C$ to contain the things that can be reached from B by applying
f and g a finite number of times. Temporarily define a construction
sequence to be a finite sequence 〈x1, . . . , xn〉 of elements of U such that
for each i ≤ n we have at least one of

xi ∈ B,

xi = f (x j , xk) for some j < i, k < i,
xi = g(x j ) for some j < i.

In other words, each member of the sequence either is in B or results
from earlier members by applying f or g. Then let C$ be the set of all
points x such that some construction sequence ends with x .
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Let Cn be the set of points x such that some construction sequence
of length n ends with x . Then C1 = B,

C1 ⊆ C2 ⊆ C3 ⊆ · · · ,

and C$ =
⋃

n Cn . For example, g( f (a, f (b, b))) is in C5 and hence in
C$, as can be seen by contemplating the tree shown:

We obtain a construction sequence for g( f (a, f (b, b))) by squashing
this tree into a linear sequence.

EXAMPLES

1. The natural numbers. Let U be the set of all real numbers,
and let B = {0}. Take one operation S, where S(x) = x +1. Then

C$ = {0, 1, 2, . . .}.

The set C$ of natural numbers contains exactly those numbers
obtainable from 0 by applying the successor operation repeatedly.

2. The integers. Let U be the set of all real numbers; let B =
{0}. This time take two operations, the successor operation S and
the predecessor operation P:

S(x) = x + 1 and P(x) = x − 1.

Now C$ contains all the integers,

C$ = {. . . , −2,−1, 0, 1, 2, . . .}.

Notice that there is more than one way of obtaining 2 as a member
of C$. For 2 is S(S(0)), but it is also S(P(S(S(0)))).

3. The algebraic functions. Let U contain all functions whose
domain and range are each sets of real numbers. Let B contain
the identity function and all constant functions. Let F contain the
operations (on functions) of addition, multiplication, division, and
root extraction. Then C$ is the class of algebraic functions.

4. The well-formed formulas. Let U be the set of all expres-
sions and let B be the set of sentence symbols. Let F contain the
five formula-building operations on expressions: E¬, E∧, E∨, E→,
and E↔. Then C$ is the set of all wffs.
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At this point we should verify that our two definitions are actually
equivalent, i.e., that C$ = C$.

To show that C$ ⊆ C$ we need only check that C$ is inductive, i.e.,
that B ⊆ C$ and C$ is closed under the functions. Clearly B = C1 ⊆ C$.
If x and y are in C$, then we can concatenate their construction sequences
and append f (x, y) to obtain a construction sequence placing f (x, y)

in C$. Similarly, C$ is closed under g.
Finally, to show that C$ ⊆ C$ we consider a point in C$ and a

construction sequence 〈x0, . . . , xn〉 for it. By ordinary induction on i ,
we can see that xi ∈ C$, i ≤ n. First x0 ∈ B ⊆ C$. For the inductive
step we use the fact that C$ is closed under the functions. Thus we
conclude that

⋃

n

Cn = C$ = C$ =
⋂

{S | S is inductive}.

(A parenthetical remark: Suppose our present study is embedded in
axiomatic set theory, where the natural numbers are usually defined
from the top down. Then our definition of C$ (employing finiteness and
hence natural numbers) is not really different from our definition of C$.
But we are not working within axiomatic set theory; we are working
within informal mathematics. And the notion of natural number seems
to be a solid, well-understood intuitive concept.)

Since C$ = C$, we call the set simply C and refer to it as the set
generated from B by the functions in F . We will often want to prove
theorems by using the following:

INDUCTION PRINCIPLE Assume that C is the set generated from B by
the functions in F . If S is a subset of C that includes B and is
closed under the functions of F then S = C .

PROOF. S is inductive, so C = C$ ⊆ S. We are given the other
inclusion. )

The special case now of interest to us is, of course, Example 4. Here
C is the class of wffs generated from the set of sentence symbols by the
formula-building operations. This special case has interesting features
of its own. Both α and β are proper segments ofE∧(α, β), i.e., of (α ∧β).
More generally, if we look at the family tree of a wff, we see that each
constituent is a proper segment of the end product.
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Suppose, for example, that we temporarily call an expression spe-
cial if the only sentence symbols in it are among {A2, A3, A5} and the
only connective symbols in it are among {¬,→}. Then no special wff
requires A9 or E∧ for its construction. In fact, every special wff belongs
to the set Cs generated from {A2, A3, A5} by E¬ and E→. (We can use
the induction principle to show that every wff either belongs to Cs or is
not special.)

Recursion
We return now to the more abstract case. There is a set U (such as the
set of all expressions), a subset B of U (such as the set of sentence
symbols), and two functions f and g, where

f : U × U → U and g : U → U.

C is the set generated from B by f and g.
The problem we now want to consider is that of defining a function

on C recursively. That is, we suppose we are given

1. Rules for computing h(x) for x ∈ B.
2a. Rules for computing h( f (x, y)), making use of h(x) and h(y).
2b. Rules for computing h(g(x)), making use of h(x).

(For example, this is the situation discussed in Section 1.2, where h is
the extension of a truth assignment for B.) It is not hard to see that there
can be at most one function h on C meeting all the given requirements.

But it is possible that no such h exists; the rules may be contradictory.
For example, let

U = the set of real numbers,
B = {0},

f (x, y) = x · y,

g(x) = x + 1.

Then C is the set of natural numbers. Suppose we impose the following
requirements on h:

1. h(0) = 0.
2a. h( f (x, y)) = f (h(x), h(y)).
2b. h(g(x)) = h(x) + 2.

Then no such function h can exist. (Try computing h(1), noting that we
have both 1 = g(0) and 1 = f (g(0), g(0)).)

A similar situation is encountered in algebra.2 Suppose that you
have a group G that is generated from B by the group multiplication

2 It is hoped that examples such as this will be useful to the reader with some algebraic
experience. The other readers will be glad to know that these examples are merely
illustrative and not essential to our development of the subject.
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and inverse operation. Then an arbitrary map of B into a group H is
not necessarily extendible to a homomorphism of the entire group G
into H . But if G happens to be a free group with set B of independent
generators, then any such map is extendible to a homomorphism of the
entire group.

Say that C is freely generated from B by f and g iff in addition to
the requirements for being generated, the restrictions fC and gC of f
and g to C meet the following conditions:

1. fC and gC are one-to-one.
2. The range of fC , the range of gC , and the set B are pairwise

disjoint.

The main result of this section, the recursion theorem, says that if C
is freely generated then a function h on B always has an extension h on
C that follows the sorts of rules considered above.

RECURSION THEOREM Assume that the subset C of U is freely gen-
erated from B by f and g, where

f : U × U → U,

g : U → U.

Further assume that V is a set and F , G, and h functions such that

h : B → V,

F : V × V → V,

G : V → V .

Then there is a unique function

h : C → V

such that

(i) For x in B, h(x) = h(x);
(ii) For x, y in C ,

h( f (x, y)) = F(h(x), h(y)),

h(g(x)) = G(h(x)).

Viewed algebraically, the conclusion of this theorem says that any
map h of B into V can be extended to a homomorphism h from C (with
operations f and g) into V (with operations F and G).

If the content of the recursion theorem is not immediately apparent,
try looking at it chromatically. You want to have a function h that paints
each member of C some color. You have before you

1. h, telling you how to color the initial elements in B;
2. F , which tells you how to combine the color of x and y to obtain

the color of f (x, y) (i.e., it gives h( f (x, y)) in terms of h(x) and h(y));
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3. G, which similarly tells you how to convert the color of x into the
color of g(x).

The danger is that of a conflict in which, for example, F is saying
“green” but G is saying “red” for the same point (unlucky enough to
be equal both to f (x, y) and g(z) for some x, y, z). But if C is freely
generated, then this danger is avoided.

EXAMPLES. Consider again the examples of the preceding subsection.

1. B = {0} with one operation, the successor operation S.
Then C is the set N of natural numbers. Since the successor oper-
ation is one-to-one and 0 is not in its range, C is freely generated
from {0} by S. Therefore, by the recursion theorem, for any set
V , any a ∈ V , and any F : V → V there is a unique h : N → V
such that h(0) = a and h(S(x)) = F(h(x)) for each x ∈ N.
For example, there is a unique h : N → N such that h(0) = 0
and h(S(x)) = 1 − h(x). This function has the value 0 at even
numbers and the value 1 at odd numbers.

2. The integers are generated from {0} by the successor and
predecessor operations but not freely generated.

3. Freeness fails also for the generation of the algebraic func-
tions in the manner described.

4. The wffs are freely generated from the sentence symbols by
the five formula-building operations. This fact is implicit in the
parsing algorithm of the preceding section; we now want to focus
on it here:

UNIQUE READABILITY THEOREM The five formula-building operations,
when restricted to the set of wffs,

(a) Have ranges that are disjoint from each other and from the
set of sentence symbols, and

(b) Are one-to-one.

In other words, the set of wffs is freely generated from the set
of sentence symbols by the five operations.

PROOF. To show that the restriction of E∧ is one-to-one, suppose
that

(α ∧ β) = (γ ∧ δ),

where α, β, γ , and δ are wffs. Delete the first symbol of each
sequence, obtaining

α ∧ β) = γ ∧ δ).

Then we must have α = γ , lest one be a proper initial segment of
the other (in contradiction to Lemma 13B). And then it follows at



Chapter 1: Sentential Logic 41

once that β = δ. The same argument applies to E∨, E→, and E↔;
for E¬ a simpler argument suffices.

A similar line of reasoning tells us that the operations have
disjoint ranges. For example, if

(α ∧ β) = (γ → δ)

where α, β, γ , and δ are wffs, then as in the above paragraph
we have α = γ . But that implies that ∧ = →, contradicting
the fact that our symbols are distinct. Hence E∧ and E→ (when
restricted to wffs) have disjoint ranges. Similarly for any two
binary connectives.

The remaining cases are simple. If (¬α) = (β ∧ γ ), then
β begins with ¬, which no wff does. No sentence symbol is a
sequence of symbols beginning with (. )

Now let us return to the question of extending a truth assignment v

to v. First consider the special case where v is a truth assignment for
the set of all sentence symbols. Then by applying the unique readability
theorem and the recursion theorem we conclude that there is a unique
extension v to the set of all wffs with the desired properties.

Next take the general case where v is a truth assignment for a set S
of sentence symbols. The set S generated from S by the five formula-
building operations is freely generated, as a consequence of the unique
readability theorem. So by the recursion theorem there is a unique ex-
tension v of v to that set, having the desired properties.

EXAMPLE. We can apply the recursion theorem to establish that there
is a unique function h defined on the set of wffs such that

h(A) = 1 for a sentence symbol A,

h((¬α)) = 3 + h(α),

h((α ∧ β)) = 3 + h(α) + h(β),

and similarly for ∨, →, and ↔. This function gives the length of
each wff.

PROOF OF THE RECURSION THEOREM. The idea is to let h be the union
of many approximating functions. Temporarily call a function v

(which maps part of C into V ) acceptable if it meets the conditions
imposed on h by (i) and (ii). More precisely, v is acceptable iff
the domain of v is a subset of C , the range a subset of V, and for
any x and y in C :

(i′) If x belongs to B and to the domain of v, then v(x) = h(x).
(ii′) If f (x, y) belongs to the domain of v, then so do x and y,

and v( f (x, y)) = F(v(x), v(y)). If g(x) belongs to the domain
of v, then so does x , and v(g(x)) = G(v(x)).
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Let K be the collection of all acceptable functions, and let h =⋃
K , the union of all the acceptable functions. Thus

〈x, z〉 ∈ h iff 〈x, z〉 belongs to some acceptable v

iff v(x) = z for some acceptable v.
(1.1)

We claim that h meets our requirements. The argument is set-
theoretic, and comprises four steps. First, here is an outline of
four steps:

1. We claim that h is a function (i.e., that it is single-valued).
Let

S = {x ∈ C | for at most one z, 〈x, z〉 ∈ h}
= {x ∈ C | all acceptable functions defined at x agree

there}

It is easy to verify that S is inductive, by using (i′) and (ii′). Hence
S = C and h is a function.

2. We claim that h ∈ K ; i.e., that h itself is an acceptable
function. This follows fairly easily from the definition of h and
the fact that it is a function.

3. We claim that h is defined throughout C . It suffices to show
that the domain of h is inductive. It is here that the assumption of
freeness is used. For example, one case is the following: Suppose
that x is in the domain of h. Then h; 〈g(x), G(h(x))〉 is accept-
able. (The freeness is required in showing that it is acceptable.)
Consequently, g(x) is in the domain of h.

4. We claim that h is unique. For given two such functions,
let S be the set on which they agree. Then S is inductive, and so
equals C . )

Now for the details.

1. As above, let

S = {x ∈ C | for at most one z, 〈x, z〉 ∈ h}
= {x ∈ C | all acceptable functions defined at x agree there}

Toward showing that S is inductive, first consider some x in B.
Suppose that v1 and v2 are acceptable functions defined at x ; we
seek to show that v1(x) = v2(x). But condition (i′) tells us that
both v1(x) and v2(x) must equal h(x), so indeed v1(x) = v2(x).
This shows that x ∈ S; since x was an arbitrary member of B we
have B ⊆ S.

Secondly we must check that S is closed under f and g. So
suppose that some x and y are in S; we ask whether f (x, y) is in
S. So suppose that v1 and v2 are acceptable functions defined at
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f (x, y); we seek to show that they agree there. But condition (ii′)
tells us that v1( f (x, y)) = F(v1(x), v1(y)) and v2( f (x, y)) =
F(v2(x), v2(y)). And because x and y are in S, we have v1(x) =
v2(x) and v1(y) = v2(y) (and these are defined). So we conclude
that v1( f (x, y)) = v2( f (x, y)). This shows that f (x, y) ∈ S.
Hence S is closed under f . A similar argument shows that S is
closed under g.

Thus S is inductive and so S = C . This shows that h is single-
valued, i.e., is a function. Because h includes every acceptable
function as a subset, we can say that

h(x) = v(x)

whenever v is an acceptable function and x ∈ dom v.
2. We claim that h is acceptable. Clearly dom h ⊆ C and

ran h ⊆ V (by (∗)), and we have just verified that h is a function.
It remains to check that h satisfies conditions (i′) and (ii′).

First we examine (i′). Assume x ∈ B and x ∈ dom h (so that
〈x, h(x)〉 ∈ h). There must be some acceptablev withv(x) = h(x).
Becausev satisfies (i′), we havev(x) = h(x)whence h(x) = h(x).
So h satisfies (i′).

Secondly we examine (ii′). Assume that f (x, y) ∈ dom h.
Again there must be some acceptable v with v( f (x, y)) =
h( f (x, y)). Because v satisfies (ii′), we have v( f (x, y))=
F(v(x), v(y)). Now h(x)= v(x) and h(y) = v(y) and hence

h( f (x, y)) = v( f (x, y)) = F(v(x), v(y)) = F(h(x), h(y)).

In a similar way, we find that h(g(x)) = G(h(x)) whenever
g(x) ∈ dom h. Hence h meets condition (ii′) and so is accept-
able.

3. Next we must show that dom h is inductive. First consider
a point x in B. Then the set {〈x, h(x)〉} is a (small) acceptable
function. For it clearly satisfies (i′). It also satisfies (ii′) because
x /∈ ran fC and x /∈ ran gC . Thus {〈x, h(x)〉} is acceptable and
therefore is included in h. Hence x ∈ dom h. This shows that
B ⊆ dom h.

We further claim that dom h is closed under f and g. Toward
this end, consider any s and t in dom h. We hope that f (s, t) ∈
dom h. But if not, then let

v = h ∪ {〈 f (s, t), F(h(s), h(t))〉},

the result of adding this one additional pair to h. It is clear that v is
a function, dom v ⊆ C , and ran v ⊆ V . We claim that v satisfies
(i′) and (ii′).
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First take (i′). If x ∈ B ∩ dom v then x .= f (s, t), by freeness.
Hence x ∈ dom h and we have v(x) = h(x) = h(x).

Next take (ii′). Assume that f (x, y) ∈ dom v for some x and
y in C . If f (x, y) ∈ dom h then v( f (x, y)) = h( f (x, y)) =
F(h(x), h(y)) = F(v(x), v(y)) since h is acceptable. The other
possibility is that f (x, y) = f (s, t). Then by freeness we have
x = s and y = t , and we know that these points are in dom h ⊆
dom v. By construction,

v( f (s, t)) = F(h(s), h(t))
= F(v(s), v(t)).

Finally suppose that g(x) ∈ dom v for x in C . Then by freeness
we have g(x) .= f (s, t). Hence g(x) ∈ dom h, and consequently
v(g(x)) = h(g(x)) = G(h(x)) = G(v(x)).

Thus v is acceptable. But that tells us that v ⊆ h, so that
f (s, t) ∈ dom h after all.

A similar argument shows that dom h is closed under g as well.
Hence dom h is inductive and therefore coincides with C .

4. To show that h is unique, suppose that h1 and h2 both satisfy
the conclusion of the theorem. Let S be the set on which they agree:

S = {x ∈ C | h1(x) = h2(x)}.

Then it is not hard to verify that S is inductive. Consequently
S = C and h1 = h2. )

One final comment on induction and recursion: The induction prin-
ciple we have stated is not the only one possible. It is entirely possible to
give proofs by induction (and definitions by recursion) on the length of
expressions, the number of places at which connective symbols occur,
etc. Such methods are inherently less basic but may be necessary in
some situations.

Exercises
1. Suppose that C is generated from a set B = {a, b} by the binary

operation f and unary operation g. List all the members of C2. How
many members might C3 have? C4?

2. Obviously (A3 → ∧A4) is not a wff. But prove that it is not a wff.

3. We can generalize the discussion in this section by requiring of F
only that it be a class of relations on U . C$ is defined as before,
except that 〈x0, x1, . . . , xn〉 is now a construction sequence provided
that for each i ≤ n we have either xi ∈ B or 〈x j1 , . . . , x jk , xi 〉 ∈ R
for some R ∈ F and some j1, . . . , jk all less than i . Give the correct
definition of C$ and show that C$ = C$.


