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Cardinal Numbers
All infinite sets are big, but some are bigger than others. (For example,
the set of real numbers is bigger than the set of integers.) Cardinal num-
bers provide a convenient, although not indispensable, way of talking
about the size of sets.

It is natural to say that two sets A and B have the same size iff there is
a function that maps A one-to-one onto B. If A and B are finite, then this
concept is equivalent to the usual one: If you count the members of A
and the members of B, then you get the same number both times. But it
is applicable even to infinite sets A and B, where counting is difficult.

Formally, then, say that A and B are equinumerous (written A ∼ B)
iff there is a one-to-one function mapping A onto B. For example, the
set N of natural numbers and the set Z of integers are equinumerous. It
is easy to see that equinumerosity is reflexive, symmetric, and transitive.

For finite sets we can use natural numbers as measures of size. The
same natural number would be assigned to two finite sets (as measures
of their size) iff the sets were equinumerous. Cardinal numbers are
introduced to enable us to generalize this situation to infinite sets.

To each set A we can assign a certain object, the cardinal number
(or cardinality) of A (written card A), in such a way that two sets are
assigned the same cardinality iff they are equinumerous:

card A = card B iff A ∼ B. (K)

There are several ways of accomplishing this; the standard one these
days takes card A to be the least ordinal equinumerous with A. (The
success of this definition relies on the axiom of choice.) We will not
discuss ordinals here, since for our purposes it matters very little what
card A actually is, any more than it matters what the number 2 actually
is. What matters most is that (K) holds. It is helpful, however, if for a
finite set A, card A is the natural number telling how many elements A
has. Something is a cardinal number, or simply a cardinal, iff it is card A
for some set A.

(Georg Cantor, who first introduced the concept of cardinal number,
characterized in 1895 the cardinal number of a set M as “the general
concept which, with the help of our active intelligence, comes from the
set M upon abstraction from the nature of its various elements and from
the order of their being given.”)

Say that A is dominated by B (written A " B) iff A is equinumerous
with a subset of B. In other words, A " B iff there is a one-to-one
function mapping A into B. The companion concept for cardinals is

card A ≤ card B iff A " B.

(It is easy to see that ≤ is well defined; that is, whether or not κ ≤ λ

depends only on the cardinals κ and λ themselves, and not the choice of
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sets having these cardinalities.) Dominance is reflexive and transitive. A
set A is dominated by N iff A is countable. The following is a standard
result in this subject.

SCHRÖDER–BERNSTEIN THEOREM (a) For any sets A and B, if A " B
and B " A, then A ∼ B.

(b) For any cardinal numbers κ and λ, if κ ≤ λ and λ ≤ κ , then
κ = λ.

Part (b) is a simple restatement of part (a) in terms of cardinal num-
bers. The following theorem, which happens to be equivalent to the
axiom of choice, is stated in the same dual manner.

THEOREM 0C (a) For any sets A and B, either A " B or B " A.
(b) For any cardinal numbers κ and λ, either κ ≤ λ or λ ≤ κ .

Thus of any two cardinals, one is smaller than the other. (In fact, any
nonempty set of cardinal numbers contains a smallest member.) The
smallest cardinals are those of finite sets: 0, 1, 2, . . . . There is next the
smallest infinite cardinal, card N, which is given the name ℵ0. Thus we
have

0, 1, 2, . . . , ℵ0, ℵ1, . . . ,

where ℵ1 is the smallest cardinal larger than ℵ0. The cardinality of the
real numbers, card R, is called “2ℵ0 .” Since R is uncountable, we have
ℵ0 < 2ℵ0 .

The operations of addition and multiplication, long familiar for finite
cardinals, can be extended to all cardinals. To compute κ +λ we choose
disjoint sets A and B of cardinality κ and λ, respectively. Then

κ + λ = card(A ∪ B).

This is well defined; i.e., κ +λ depends only on κ and λ, and not on the
choice of the disjoint sets A and B. For multiplication we use

κ · λ = card(A × B).

Clearly these definitions are correct for finite cardinals. The arithmetic
of infinite cardinals is surprisingly simple (with the axiom of choice).
The sum or product of two infinite cardinals is simply the larger of them:

CARDINAL ARITHMETIC THEOREM For cardinal numbersκ andλ, ifκ ≤
λ and λ is infinite, then κ + λ = λ. Furthermore, if κ '= 0, then
κ · λ = λ.

In particular, for infinite cardinals κ ,

ℵ0 · κ = κ.
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THEOREM 0D For an infinite set A, the set
⋃

n An+1 of all finite se-
quences of elements of A has cardinality equal to card A.

We already proved this for the case of a countable A (see Theo-
rem 0B).

PROOF. Each An+1 has cardinality equal to card A, by the cardinal
arithmetic theorem (applied n times). So we have the union of ℵ0

sets of this size, yielding ℵ0 · card A = card A points altogether.
(

EXAMPLE. It follows that the set of algebraic numbers has cardinal-
ity ℵ0. First, we can identify each polynomial (in one variable)
over the integers with the sequence of its coefficients. Then by
the theorem there are ℵ0 polynomials. Each polynomial has a fi-
nite number of roots. To give an extravagant upper bound, note
that even if each polynomial had ℵ0 roots, we would then have
ℵ0 · ℵ0 = ℵ0 algebraic numbers altogether. Since there are at least
this many, we are done.

Since there are uncountably many (in fact, 2ℵ0 ) real numbers, it
follows that there are uncountably many (in fact, 2ℵ0 ) transcendental
numbers.


