
Chapter
T H R E E

Undecidability

SECTION 3.0
Number Theory

In this chapter we will focus our attention on a
specific language, the language of number theory.
This will be the first-order language with equality
and with the following parameters:

∀, intended to mean “for all natural numbers.”
(Recall that the set N of natural numbers is the set
{0, 1, 2, . . .}. Zero is natural.)

0, a constant symbol intended to denote the
number 0.

S, a one-place function symbol intended to de-
note the successor function S : N → N, i.e., the
function for which S(n) = n + 1.

<, a two-place predicate symbol intended to
denote the usual (strict) ordering relation on N.

+, ·, E, two-place function symbols intended
to denote the operations +, ·, and E of addition,
multiplication, and exponentiation, respectively.

We will let N be the intended structure for this
language. Thus we may informally write

N = (N; 0, S, <, +, ·, E).

(More precisely, |N| = N, 0N = 0, and so forth.)
By number theory we mean the theory of this

structure, Th N. As warmup exercises we will
study (in Sections 3.1 and 3.2) certain reducts of N,

182

Chapter 3: Undecidability 183

i.e., restrictions of N to sublanguages:

NS = (N; 0, S),

NL = (N; 0, S, <),

NA = (N; 0, S, <, +).

Finally, in Section 3.8 we will consider

NM = (N; 0, S, <, +, ·).

For each of these structures we will raise the same questions:

(A) Is the theory of the structure decidable? If so, what is a nice set
of axioms for the theory? Is there a finite set of axioms?

(B) What subsets of N are definable in the structure?
(C) What do the nonstandard models of the theory of the structure

look like? (By “nonstandard” we mean “not isomorphic to the intended
structure.”)

Our reason for choosing number theory (rather than, say, group
theory) for special study is this: We can show that a certain subtheory of
number theory is an undecidable set of sentences. We will also be able to
infer that any satisfiable theory that is at least as strong as this fragment
of number theory (e.g., the full number theory or set theory) must be
undecidable. In particular, such a theory cannot be both complete and
axiomatizable.

In order to show that our subtheory of number theory is undecid-
able, we will show that it is strong enough to represent (in a sense
to be made precise) facts about sequences of numbers, certain opera-
tions on numbers, and ultimately facts about decision procedures. This
last feature then lets us perform a diagonal argument that demonstrates
undecidability.

We could alternatively use, in place of a subtheory of number theory,
some other theory (such as a fragment of the theory of finite sets) in
which we could conveniently represent facts about decision procedures.

Before giving examples of the expressiveness of the language of num-
ber theory, it is convenient to introduce some notational conventions.
As a concession to everyday usage, we will write

x < y, x + y, x · y, and x E y

in place of the official

< xy, + xy, · xy, and E xy.

For each natural number k we have a term Sk0 (the numeral for k) that
denotes it:

S00 = 0, S10 = S0, S20 = SS0, etc.

(The set of numerals is generated from {0} by the operation of

184 A Mathematical Introduction to Logic

prefixing S.) The fact that every natural number can be named in the
language will be a useful feature.

Even though only countably many relations on N are definable in N,
almost all the familiar relations are definable. For example, the set of
primes is defined in N by

v1 "= S10 ∧ ∀ v2 ∀ v3(v1 = v2 · v3 → v2 = S10 ∨ v3 = S10).

Later we will find it important to show that many other specific relations
are definable in N.

One naturally expects the expressiveness of the language to be
severely restricted when some of the parameters are omitted. For exam-
ple, the set of primes, as we shall see, is not definable in NA. On the
other hand, in Section 3.8 we will show that any relation definable in N
is also definable in NM .

Preview
The main theorems of this chapter — the theorems associated with the
names of Gödel, Tarski, and Church — are proved in Section 3.5. But
we can already sketch here some of the ideas involved. We want to
compare the concepts of truth and proof ; that is, we want to compare
the set of sentences true in N with the set of sentences that might be
provable from an appropriate set A of axioms.

We can assign to each formula α of the language of number theory
an integer "α, called the Gödel number of α. Any sufficiently straight-
forward way of assigning distinct integers to formulas would suffice
for our purposes; a particular assignment is adopted at the beginning of
Section 3.4. What is important is that from α we can effectively find
the number "α, and conversely. Similarly, to each finite sequence D of
formulas (such as a deduction) we assign an integer G(D). Note that for
any set A of formulas, we can form the corresponding set {"α | α ∈ A}
of numbers.

There are now three ways in which to proceed: the self-reference ap-
proach, the diagonalization approach, and the computability approach.
It will be argued later, however, that the three approaches are more
closely related than they appear — they are three aspects of one ap-
proach.

First, in the self-reference approach, we make a sentence σ that can
be thought of as saying, “I am unprovable.” More specifically, we have
the following:

THEOREM 30A Let A ⊆ Th N be a set of sentences true in N, and
assume that the set {"α | α ∈ A} of Gödel numbers of members
of A is a set definable in N. Then we can find a sentence σ such
that σ is true in N but σ is not deducible from A.

Chapter 3: Undecidability 185

PROOF. We will construct σ to express (in an indirect way) that σ
itself is not a theorem of A. Then the argument will go roughly as
follows: If A $ σ , then what σ says is false, contradicting the fact
that A consists of true sentences. And so A ! σ , whence σ is true.

To construct σ , we begin by considering the ternary relation R
defined by

〈a, b, c〉 ∈ R iff a is the Gödel number of some formula
α and c is the value of G at some
deduction from A of α(Sb0).

Then because {"α |α ∈ A} is definable in N, it follows that R
is definable also. (The details of this step must wait until later
sections.) Let ρ be a formula that defines R in N. Let q be the
Gödel number of

∀ v3 ¬ ρ(v1, v1, v3).

(We use here the notation: ϕ(t) = ϕv1
t , ϕ(t1, t2) = (ϕv1

t1)v2
t2 , and

so forth.) Then let σ be

∀ v3 ¬ ρ(Sq0, Sq0, v3).

Thus σ says that no number is the value of G at a deduction from
A of the result of replacing, in formula number q , the variable
v1 by the numeral for q; i.e., no number is the value of G at a
deduction of σ .

Suppose that, contrary to our expectations, there is a deduc-
tion of σ from A. Let k be the value of G at a deduction. Then
〈q, q, k〉 ∈ R and hence

|=N ρ(Sq0, Sq0, Sk0).

It is clear that

σ $ ¬ ρ(Sq0, Sq0, Sk0)

and the two displayed lines tell us that σ is false in N. But A $ σ
and the members of A are true in N, so we have a contradiction.

Hence there is no deduction of σ from A. And so for every k,
we have 〈q, q, k〉 /∈ R. Thus for every k

|=N ¬ ρ(Sq0, Sq0, Sk0),

from which it follows (with the help of the substitution lemma)
that

|=N ∀ v3 ¬ ρ(Sq0, Sq0, v3);

i.e., σ is true in N. '

We will argue later — using something called Church’s thesis — that
any decidable set of natural numbers must be definable in N. The con-
clusion will then be that Th N is not axiomatizable.

186 A Mathematical Introduction to Logic

COROLLARY 30B The set {"τ | |=N τ } of Gödel numbers of sentences
true in N is a set that is not definable in N.

PROOF. If this set were definable, we could take A = Th N in the
preceding theorem to obtain a contradiction. '

Section 3.5 will follow the self-reference approach, but with a varia-
tion in which the sentence σ tries to say, “I am false.” (The well-known
liar paradox is relevant here!)

But if this “self-reference” construction seems too much like a magic
trick, there is a second way to describe the situation: the diagonalization
approach, which does not use an obvious self-reference.

We start by defining the following binary relation P on the natural
numbers:

〈a, b〉 ∈ P ⇐⇒ a is the Gödel number of a formula α(v1)

(with just v1 free) and |=N α(Sb0).

(More informally, 〈a, b〉 ∈ P⇔ “a is true of b.”) Then any set of natural
numbers that is definable in N equals, for some a, the “vertical section”

Pa = {b | 〈a, b〉 ∈ P}

of P . Namely, we take a to be the Gödel number of a formula defining
the set, and use the fact that |=N α(Sb0)⇔ |=N α(v1)[[b]].

So any definable (in N) set of natural numbers is somewhere on the
list P1, P2, Now we “diagonalize out” of the list. Define the set:

H = {b | 〈b, b〉 /∈ P}.

(More informally, b ∈ H ⇔ “b is not true of b.”) Then H is nowhere
on the list P1, P2, (H += P3 because 3 ∈ H ⇔ 3 /∈ P3, so the
number 3 belongs to exactly one of these two sets and not to the other.)
Therefore H is not definable in N.

Why is H undefinable? After all, we have above specified that

b ∈ H ⇐⇒ not [b is not the Gödel number of a formula α(v1)

(with just v1 free) and |=N α(Sb0)].

What is the barrier to translating this specification into the language of
arithmetic? We will show that the barrier is not being the Gödel number
of a formula — we can translate that — and the barrier is not having v1

free and not substituting the numeral Sb0 into a formula. By the process
of elimination, we will show that the only possible barrier is saying of
a sentence that is true in N.

THEOREM 30C (a) The set {"τ | |=Nτ } of Gödel numbers of sen-
tences true in N is not definable in N.

'(b) The theory Th N is undecidable.
'(c) The theory Th N is not axiomatizable.

Chapter 3: Undecidability 187

PROOF. Part (a), which is the same as Corollary 30B in the self-
reference approach, has the diagonal proof sketched above. That
is, if to the contrary Th N were definable in N, then the above set
H would also be definable, which it is not.

Part (b) will then follow, after we argue every decidable set
of natural numbers must be definable in N. If Th N were decid-
able, then the corresponding set {"τ | |=N τ } of numbers would
be decidable and hence definable in N, which it is not.

And part (c) is an immediate consequence of part (b) and
Corollary 26I, since Th N is a complete theory. '

And thirdly, the computability approach presents us with a stark
difference between what is true and what is provable. From Section 2.6
we know that whenever A is a decidable set (or even an effectively
enumerable set) of axioms we might choose for Th N, the set Cn A of
provable sentence will be an effectively enumerable set.

In contrast, the computability approach will show — using Church’s
thesis — that the set Th N of all true sentences is not effectively enu-
merable. This fact, which is closely related to Theorem 30C, will follow
from another diagonal argument in Section 3.6.

!THEOREM 30D For any decidable (or even effectively enumerable)
set A of axioms,

Cn A += Th N

because the set on the left is effectively enumerable and the set
on the right is not.

Theorem 30D presents the dilemma: Either the axioms are lying to
us by allowing us to deduce false sentences, or else the axioms are
incomplete, in the sense that some true sentences cannot be deduced
from those axioms.

This computability approach is implicit in parts of Section 3.5, but
it is in Section 3.6 that the approach explicitly appears, and where it is
compared with the other two approaches.

SECTION 3.1
Natural Numbers with Successor

We begin with a situation that is simple enough to let us give reasonably
complete answers to our questions. We reduce the set of parameters
to just ∀, 0, and S, eliminating <, +, ·, and E. The corresponding
reduct of N is

NS = (N; 0, S).

188 A Mathematical Introduction to Logic

In this restricted language we still have the numerals, naming each point
in N. But the sentences we can express in the language are, from the
viewpoint of arithmetic, uninteresting.

We want to ask about NS the same questions that interest us in the
case of N. We want to know about the complexity of the set Th NS; we
want to study definability in NS; and we want to survey the nonstandard
models of NS .

To study the theory of the natural numbers with successor (Th NS),
we begin by listing a few of its members, i.e., sentences true in NS .
(These sentences will ultimately provide an axiomatization for the
theory.)

S1. ∀ x Sx "= 0, a sentence asserting that zero has no predecessor.
S2. ∀ x ∀ y(Sx = Sy → x = y). This asserts that the successor

function is one-to-one.
S3. ∀ y(y "= 0→∃ x y = Sx). This asserts that any nonzero number

is the successor of something.
S4.1 ∀ x Sx "= x .
S4.2 ∀ x SSx "= x .
· · ·
S4.n ∀ x Sn x "= x , where the superscript n indicates that the symbol

S occurs at n consecutive places.

Let AS be the set consisting of the above sentences S1, S2, S3, S4.n
(n = 1, 2, . . .). Clearly these sentences are true in NS; i.e., NS is a
model of AS . Hence

Cn AS ⊆ Th NS.

(Anything true in every model of AS is true in this model.) What is
not so obvious is that equality holds. We will prove this by considering
arbitrary models of AS .

What can be said of an arbitrary model

A = (|A|; 0A, SA)

of the axioms AS? SA must be a one-to-one map of |A| onto |A|− {0A},
by S1, S2, and S3. And by S4.n, there can be no loops of size n. Thus
|A| must contain the “standard” points:

0A → SA(0A)→ SA(SA(0A))→ . . . ,

which are all distinct. The arrow here indicates the action of SA. There
may or may not be other points. If there is another point a in |A|, then
there will be the successor of a, its successor, etc. Not only that, but
since (by S3) each nonzero element has a predecessor (something of
which it is the successor) which is (by S2) unique, |A| must contain
the predecessor of a, its predecessor, etc. These must all be distinct lest

Chapter 3: Undecidability 189

there be a finite loop. Thus a belongs to a “Z-chain”:

· · · ∗ → ∗ → a → SA(a)→ SA(SA(a))→ · · · .

(We refer to these as Z-chains because they are arranged like the set
Z of all integers {. . . ,−1, 0, 1, 2, . . .}.) There can be any number of
Z-chains. But any two Z-chains must be disjoint, as S2 prohibits merg-
ing. Similarly, any Z-chain must be disjoint from the standard part.

This can be restated in another way. Say that two points a and b in |A|
are equivalent if the function SA can be applied a finite number of times
to one point to yield the other point. This is an equivalence relation. (It
is clearly reflexive and symmetric; the transitivity follows from the fact
that SA is one-to-one.) The standard part of |A| is the equivalence class
containing 0A. For any other point (if any) a in |A|, the equivalence class
of a is the set generated from {a} by SA and its inverse. This equivalence
class is the Z-chain described above.

Conversely, any structure B (for this language) that has a stan-
dard part

0B → SB(0B)→ SB(SB(0B))→ · · ·

and a nonstandard part consisting of any number of separate Z-chains
is a model of AS . (Check through the list of axioms in AS , and note that
each is true in B.) We thus have a complete characterization of what
the models of AS must look like.

If a model A of AS has only countably many Z-chains, then |A|
is countable. In general, if the set of Z-chains has cardinality1 λ, then
altogether the number of points in |A| isℵ0 + ℵ0 ·λ. By facts of cardinal
arithmetic (cf. Chapter 0) this number is the larger of ℵ0 and λ. Hence

card |A| =
{
ℵ0 if A has countably many Z-chains,
λ if A has an uncountable number λ of Z-chains.

LEMMA 31A If A and A′ are models of AS having the same number
of Z-chains, then they are isomorphic.

PROOF. There is a unique isomorphism between the standard part
of A and the standard part of A′. By hypothesis we are given a
one-to-one correspondence between the set of Z-chains of A and
the set of Z-chains of A′; thus each chain of A is paired with a chain
of A′. Clearly any two Z-chains are isomorphic. By combining
all the individual isomorphisms (which uses the axiom of choice)
we have an isomorphism of A onto A′. '

Thus a model of AS is determined to within isomorphism by its num-
ber of Z-chains. For NS this number is zero, but any number is possible.

1 To avoid uncountable cardinals, see Exercise 3.

190 A Mathematical Introduction to Logic

The reader should note that there is no sentence of the language which
says, “There are no Z-chains.” In fact, there is no set) of sentences
such that a model A of AS satisfies) iff A has no Z-chains. For by the
LST theorem there is an uncountable structure A with A ≡ NS . But A
has uncountably many Z-chains and NS has none.

THEOREM 31B Let A and B be uncountable models of AS of the
same cardinality. Then A is isomorphic to B.

PROOF. By the above discussion, A has card A Z-chains, and B
has card B Z-chains. Since card A = card B, they have the same
number of Z-chains and hence are isomorphic. '

THEOREM 31C Cn AS is a complete theory.

PROOF. Apply the !Loś–Vaught test of Section 2.6. The preceding
theorem asserts that the theory Cn AS is categorical in any un-
countable power. Furthermore, AS has no finite models. Hence
the !Loś–Vaught test applies. '

COROLLARY 31D Cn AS = Th NS .

PROOF. We have Cn AS ⊆ Th NS; the first theory is complete and
the second is satisfiable. '

!COROLLARY 31E Th NS is decidable.

PROOF. Any complete and axiomatizable theory is decidable (by
Corollary 25G). AS is a decidable set of axioms for this theory.

'

Elimination of Quantifiers
Once one knows a theory to be decidable, it is tempting to try to find a
realistically practical decision procedure. We will give such a procedure
for Th NS , based on “elimination of quantifiers.”

DEFINITION. A theory T admits elimination of quantifiers iff for
every formula ϕ there is a quantifier-free formula ψ such that

T |= (ϕ↔ψ).

Actually it is enough to consider only formulas ψ of a rather special
form:

THEOREM 31F Assume that for every formula ϕ of the form

∃ x(α0 ∧ · · · ∧ αn),

where each αi is an atomic formula or the negation of an atomic
formula, there is a quantifier-free formula ψ such that T |=
(ϕ↔ψ). Then T admits elimination of quantifiers.

Chapter 3: Undecidability 191

PROOF. First we claim that we can find a quantifier-free equivalent
for any formula of the form ∃ x θ for quantifier-free θ . We begin
by putting θ into disjunctive normal form (Corollary 15C). The
resulting formula,

∃ x[(α0 ∧ · · · ∧ αm) ∨ (β0 ∧ · · · ∧ βn) ∨ · · · ∨ (ξ0 ∧ · · · ∧ ξt)],

is logically equivalent to

∃ x(α0 ∧ · · · ∧ αm) ∨ ∃ x(β0 ∧ · · · ∧ βn) ∨ · · ·

∨ ∃ x(ξ0 ∧ · · · ∧ ξt).

By assumption, each disjunct of this formula can be replaced by
a quantifier-free formula.

We leave it to the reader to show (in Exercise 2) that by using
the above paragraph one can obtain a quantifier-free equivalent
for an arbitrary formula. '

In the special case where the theory in question is the theory Th A of
a structure A, the definition can be restated: Th A admits elimination of
quantifiers iff for every formula ϕ there is a quantifier-free formula ψ
such that ϕ and ψ are “equivalent in A”; i.e.,

|=A (ϕ↔ψ)[s]

for any map s of the variables into |A|.

THEOREM 31G Th NS admits elimination of quantifiers.

PROOF. By the preceding theorem, it suffices to consider a formula

∃ x(α0 ∧ · · · ∧ αq),

where each αi is atomic or is the negation of an atomic formula.
We will describe how to replace this formula by another that is
quantifier-free. The equivalence of the new formula to the given
one will, in fact, be a consequence of AS; see Exercise 3.

In the language of NS the only terms are of the form Sku, where
u is 0 or a variable. The only atomic formulas are equations. We
may suppose that the variable x occurs in each αi . For if x does
not occur in α, then

∃ x(α ∧ β) |==| α ∧ ∃ x β.

Thus each αi has the form

Sm x = Snu

or the negation of this equation, where u is 0 or a variable. We
may further suppose u is different from x , since Sm x = Sn x could
be replaced by 0 = 0 if m = n, and by 0 "= 0 if m += n.

192 A Mathematical Introduction to Logic

Case 1: Eachαi is the negation of an equation. Then the formula
may be replaced by 0 = 0. (Why?)

Case 2: There is at least one αi not negated; say α0 is

Sm x = t,

where the term t does not contain x . Since the solution for x must
be non-negative, we replace α0 by

t "= 0 ∧ · · · ∧ t "= Sm−10

(or by 0 = 0 if m = 0). Then in each other α j we replace, say,

Sk x = u

first by
Sk+m x = Smu,

which in turn becomes

Sk t = Smu.

We now have a formula in which x no longer occurs, so the quan-
tifier may be omitted. '

There are several interesting by-products of the quantifier elimi-
nation procedure. For one, we get an alternative proof of the com-
pleteness of Cn AS . Suppose we begin with a sentence σ . The
quantifier elimination procedure gives a quantifier-free sentence τ such
that (by Exercise 3) AS |= (σ↔ τ). Now we claim that either AS |= τ

or AS |= ¬ τ . For τ is built up from atomic sentences by means of ¬
and →. An atomic sentence must be of the form Sk0 = Sl0 and is de-
ducible from AS if k = l, but is refutable (i.e., its negation is deducible)
from AS if k += l. (In fact, just {S1, S2} suffices for this.) Since every
atomic sentence can be deduced or refuted, so can every quantifier-
free sentence. This establishes the claim. And so either AS |= σ or
AS |= ¬ σ .

Another by-product concerns the problem of definability in NS; see
Exercises 4 and 5. For any formula ϕ in which just v1 and v2 occur free
we now can find a quantifier-free ψ (with the same variables free) such
that

Th NS |= ∀ v1 ∀ v2(ϕ↔ψ);

i.e.,
|=NS ∀ v1 ∀ v2(ϕ↔ψ).

Thus the relationϕ defined is also definable by a quantifier-free formula.

Chapter 3: Undecidability 193

Exercises
1. Let A∗S be the set of sentences consisting of S1, S2, and all sentences

of the form

ϕ(0) → ∀ v1(ϕ(v1) → ϕ(Sv1)) → ∀ v1 ϕ(v1),

where ϕ is a wff (in the language of NS) in which no variable except
v1 occurs free. Show that AS ⊆ Cn A∗S . Conclude that Cn A∗S =
Th NS . (Here ϕ(t) is by definition ϕv1

t . The sentence displayed above
is called the induction axiom for ϕ.)

2. Complete the proof of Theorem 31F. Suggestion: Use induction.

3. The proof of quantifier elimination for Th NS showed how, given a
formula ϕ, to find a quantifier-free ψ . Show that

AS |= (ϕ↔ψ)

without using the completeness of Cn AS . (This yields an alternative
proof of the completeness of Cn AS , not involving Z-chains or the
!Loś–Vaught test.)

4. Show that a subset of N is definable in NS iff either it is finite or its
complement (in N) is finite.

5. Show that the ordering relation {〈m, n〉 | m < n in N} is not definable
in NS . Suggestion: It suffices to show there is no quantifier-free
definition of ordering. Call a relation R ⊆ N × N linear if it can
be covered by a finite number of lines. Call R colinear if it is the
complement of a linear relation. Show that any relation definable
in NS is either linear or colinear. And that the ordering relation is
neither linear nor colinear.

6. Show that Th NS is not finitely axiomatizable. Suggestion: Show that
no finite subset of AS suffices, and then apply Section 2.6.

SECTION 3.2
Other Reducts of Number Theory1

First let us add the ordering symbol < to the language. The intended
structure is

NL = (N; 0, S, <).

1 This section may be omitted without disastrous effects.

194 A Mathematical Introduction to Logic

We want to show that the theory of this structure is (like Th NS) decidable
and also admits elimination of quantifiers. But unlike Th NS , it is finitely
axiomatizable and is not categorical in any infinite cardinality.

As axioms of Th NL we will take the finite set AL consisting of the
six sentences listed below. Here x ≤ y is, of course, an abbreviation for
(x < y ∨ x = y), and x "≤ y abbreviates the negation of this formula.

∀ y (y "= 0 → ∃ x y = Sx) (S3)

∀ x ∀ y (x < Sy ↔ x ≤ y) (L1)

∀ x x "< 0 (L2)

∀ x ∀ y (x < y ∨ x = y ∨ y < x) (L3)

∀ x ∀ y (x < y → y "< x) (L4)

∀ x ∀ y ∀ z (x < y → y < z → x < z) (L5)

On the one hand, it is easy to see that all six axioms are true in NL .
Thus Cn AL ⊆ Th NL . On the other hand, the opposite inclusion is not
obvious, and requires proof. We begin by listing some consequence of
these axioms.

(1) AL $ ∀ x x < Sx .

PROOF. In L1 take y to be x . '

(2) AL $ ∀ x x "< x .

PROOF. In L4 take y to be x . '

(3) AL $ ∀ x ∀ y(x "< y ↔ y ≤ x) (trichotomy).

PROOF. For “→” use L3. For “←” use L4 and (2). '

(4) AL $ ∀ x ∀ y(x < y ↔ Sx < Sy).

PROOF. From AL we can deduce the biconditionals:

x < y ↔ y "≤ x by (3);
↔ y "< Sx by L1;
↔ Sx ≤ y by (3);
↔ Sx < Sy by L1.

'

(5) AL $ S1 and AL $ S2.

PROOF. S1 follows from L2 and (1). S2 comes from (4) by use of
L3 and (2). '

(6) AL $ S4.n for n = 1, 2,

PROOF. This follows from (1) and (2), by using L5. '

Chapter 3: Undecidability 195

Thus any model A of AL is (when we ignore <A) also a model of
AS . So it must consist of a standard part plus zero or more Z-chains. In
addition, it is ordered by <A.

THEOREM 32A The theory Cn AL admits elimination of quantifiers.

PROOF. Again we consider a formula

∃ x(β0 ∧ · · · ∧ βp),

where each βi is atomic or the negation of an atomic formula. The
terms are, as in Section 3.1, of the form Sku, where u is 0 or a
variable. There are two possibilities for atomic formulas,

Sku = Sl t and Sku < Sl t.

1. We can eliminate the negation symbol. Replace t1 "< t2 by
t2 < t1 ∨ t1 = t2 and replace t1 "= t2 by t1 < t2 ∨ t2 < t1. (This is
justified by L3 and L4.) By regrouping the atomic formulas and
noting that

∃ x(ϕ ∧ ψ) |==| ∃ x ϕ ∧ ∃ x ψ,

we may again reach formulas of the form

∃ x(α0 ∧ · · · ∧ αq),

where now each αi is atomic.
2. We may suppose that the variable x occurs in each αi . This

is because if x does not occur in α, then

∃ x(α ∧ β) |==| α ∧ ∃ x β.

Furthermore, we may suppose that x occurs on only one side of
the equality or inequality αi . For Sk x = Sl x can be dealt with as
in Section 3.1. Sk x < Sl x can be replaced by 0 = 0 if k < l, and
0 "= 0 otherwise. (This is justified by L1 and L4.)

Case 1: Suppose that some αi is an equality. Then we can
proceed as in case 2 of the quantifier-elimination proof of
Theorem 31G.

Case 2: Otherwise each αi is an inequality. Then the formula
can be rewritten

∃ x

(
∧

i

ti < Smi x ∧
∧

j

Sn j x < u j

)
.

(Here
∧

i indicates the conjunction of formulas indexed by i , so
γ0 ∧ γ1 ∧ · · · ∧ γk can be abbreviated

∧
i γi .) In the first con-

junction,
∧

i ti < Smi x , we have the lower bounds on x ; in the
second conjunction,

∧
j Sn j x < u j , we have the upper bounds. If

the second conjunction is empty (i.e., if there are no upper bounds

196 A Mathematical Introduction to Logic

on x), then we can replace the formula by 0 = 0. (Why?) If the
first conjunction is empty (i.e., if there are no lower bounds on x),
then we can replace the formula by

∧

j

Sn j 0 < u j ,

which asserts that zero satisfies the upper bounds. Otherwise, we
rewrite the formula successively as

∃ x
∧

i, j

(ti < Smi x ∧ Sn j x < u j). (1)

∃ x
∧

i, j

(Sn j ti < Smi +n j x < Smi u j). (2)

∧

i, j

Sn j +1ti < Smi u j

 ∧

∧

j

Sn j 0 < u j . (3)

This last formula says “any lower bound plus one satisfies any up-
per bound, and furthermore zero satisfies any upper bound.” This
implies that there is a gap between the greatest lower bound and
the least upper bound, whence there is a solution for x . The second
part guarantees that the solution for x is not forced to be negative.

In each case, we have arrived at a quantifier-free version of the
given formula. '

COROLLARY 32B (a) Cn AL is complete.
(b) Cn AL = Th NL .
'(c) Th NL is decidable.

PROOF. (a) The argument that followed the proof of Theorem 31G
is applicable here also. (b) This follows from (a), since Cn AL ⊆
Th NL and Th NL is satisfiable. For (c), we can use the fact that
any complete axiomatizable theory is decidable. But the quantifier
elimination proof yields a more efficient decision procedure. '

COROLLARY 32C A subset of N is definable in NL iff it is either
finite or has finite complement.

PROOF. Compare Exercise 4 of the preceding section. '

On the other hand, NL has more definable binary relations than has
NS . For the ordering relation {〈m, n〉 | m < n} is not definable in NS ,
by Exercise 5 of the preceding section.

COROLLARY 32D The addition relation,

{〈m, n, p〉 | m + n = p},
is not definable in NL .

Chapter 3: Undecidability 197

PROOF. If we could define addition, we could then define the set of
even natural numbers. But this set is neither finite nor has finite
complement. '

Now suppose we augment the language by the addition symbol +.
The intended structure is

NA = (N; 0, S, <, +).

The theory of this structure is also decidable, as we will prove shortly.
But to keep matters from getting even more complicated, we will avoid
listing any convenient set of axioms for the theory.

The nonstandard models of Th NA must also be models of Th NL .
So they have a standard part, followed by some Z-chains. But ordering
among the Z-chains can no longer be arbitrary. Let A be a nonstandard
model of Th NA. The ordering <A induces a well-defined ordering on
the set of Z-chains. (See Exercise 3.) We claim that there is no largest
Z-chain, there is no smallest Z-chain, and there is between any two Z-
chains another one. The reasons, in outline, can be stated simply: If a
belongs to some Z-chain (i.e., is an infinite element of A), then a +A a
is in a larger Z-chain. There must be some b such that b +A b is either
a or its successor; b must be in a smaller Z-chain. If a1 and a2 belong to
different Z-chains, then there must be some b such that b+A b is either
a1 +A a2 or its successor. And b will lie in a Z-chain between that of
a1 and that of a2. (These statements should seem quite plausible. The
reader who enjoys working with infinite numbers might supply some
details.)

!THEOREM 32E (PRESBURGER, 1929) The theory of the structure
NA = (N; 0, S, <, +) is decidable.

The proof is again based on a quantifier elimination procedure.
The theory of NA itself does not admit elimination of quantifiers.
For example, the formula defining the set of even numbers

∃ y v1 = y + y

is not equivalent to any quantifier-free formula. We can overcome
this by adding a new symbol ≡2 for congruence modulo 2. Sim-
ilarly, we add symbols ≡3, ≡4, The intended structure for
this expanded language is

N≡ = (N; 0, S, <, +,≡2,≡3, . . .),

where ≡k is the binary relation of congruence modulo k. It turns
out that the theory of this structure does admit elimination of
quantifiers.

This by itself does not imply that the theory of either structure
is decidable. After all, we can start with any structure, and expand

198 A Mathematical Introduction to Logic

it to a structure having additional relations until a structure is ob-
tained that admits elimination of quantifiers. To obtain decidabil-
ity, we must show that we can, given a sentence σ , (1) effectively
find a quantifier-free equivalent σ ′, and then (2) effectively decide
if σ ′ is true.

We will now give the quantifier elimination procedure for
Th N≡. For a term t and a natural number n, let nt be the term
t + t + · · · + t , with n summands. 0t is 0. Then any term can be
expanded to one of the form

Sn0 0 + n1x1 + · · · + nk xk

for k ≥ 0, ni ≥ 0 (where the xi ’s are variables). For example,

S(x + S0) + Sy

becomes
S30 + x + y.

As usual we begin with a formula ∃ y(β1 ∧ · · · ∧ βn), where
βi is an atomic formula or the negation of one.

1. Eliminate negation. Replace ¬(t1 = t2) by (t1<t2∨t2 < t1).
Replace ¬(t1 < t2) by (t1 = t2 ∨ t2 < t1). And replace ¬(t1 ≡m t2)
by

t1 ≡m t2 + S10 ∨ · · · ∨ t1 ≡m t2 + Sm−10.

Then regroup into a disjunction of formulas of the form

∃ y(α1 ∧ · · · ∧ αm),

where each αi is atomic. We may further suppose, as before, that
y occurs in each αi , and in fact that αi has one of the four forms

ny + t = u,

ny + t ≡m u,

ny + t < u,

u < ny + t,

where u and t are terms not containing y. In what follows we
will take the liberty of writing these formulas with a subtraction
symbol:

ny = u − t,
ny ≡m u − t,
ny < u − t,

u − t < ny.

These are merely abbreviations for the formulas without subtrac-
tion obtained by transposing terms.

Chapter 3: Undecidability 199

For example, we might have at this point the formula

∃ y(w < 4y ∧ 2y < u ∧ 3y < v ∧ y ≡3 t),

where t, u, v, and w are terms not containing y.
2. Uniformize the coefficients of y. Let p be the least common

multiple of the coefficients of y. Each atomic formula can be
converted to one in which the coefficient of y is p, by “multiplying
through” by the appropriate factor. This is obviously legitimate
for equalities and inequalities. In the case of congruences one
must remember to raise the modulus also:

a ≡m b iff ka ≡km kb.

In the example above p is 12, and we obtain

∃ y(3w < 12y ∧ 12y < 6u ∧ 12y < 4v ∧ 12y ≡36 12t).

3. Eliminate the coefficient of y. Replace py by x and add the
new conjunct x ≡p 0. (In place of ∃ y · · · 12y · · · we can equally
well have, “There exists a multiple x of 12 such that · · · x · · · .”)
Our example is now converted to

∃ x(3w < x ∧ x < 6u ∧ x < 4v ∧ x ≡36 12t ∧ x ≡12 0).

4. Special case. If one of the atomic formulas is an equality,
x + t = u, then we can replace

∃ x θ
by

θ x
u−t ∧ t ≤ u.

Here replacement of x by “u−t” is the natural thing; we transpose
terms to compensate for the absence of subtraction. For example,

(x ≡m v)x
u−t is u ≡m v + t.

5. We may assume henceforth that = does not occur. So we
have a formula of the form

∃ x[r0 − s0 < x ∧ · · · ∧ rl−1 − sl−1 < x
∧ x < t0 − u0 ∧ · · · ∧ x < tk−1 − uk−1

∧ x ≡m0 v0 − w0 ∧ · · · ∧ x ≡mn−1 vn−1 − wn−1],

where ri , si , ti , ui , vi , and wi are terms not containing x . This can
be abbreviated

∃ x

∧

j<l

r j − s j < x ∧
∧

i<k

x < ti − ui ∧
∧

i<n

x ≡mi vi − wi

.

If there are no congruences (i.e., n = 0), then the formula as-
serts that there is a nonnegative space between the lower and

200 A Mathematical Introduction to Logic

upper bounds. We can replace the formula by the quantifier-free
formula:

∧

i<k

∧

j<l

(r j − s j) + S0 < ti − ui ∧
∧

i<k

0 < ti − ui .

Let M be the least common multiple of the moduli m0, . . . ,

mn−1. Then a + M ≡mi a. So as a increases, the pattern of residues
of a modulo m0, . . . , mn−1 has period M . Thus, in searching for a
solution to the congruences, we need only search M consecutive
integers.

We now have a formula that asserts the existence of a natural
number which is not less than certain lower bounds L1, . . . , Ll

and which satisfies certain upper bounds and certain congruences.
If there is such a solution, then one of the following is a solution:

L1, L1 + 1, . . . , L1 + M − 1,

L2, L2 + 1, . . . , L2 + M − 1,

· · ·
Ll , Ll + 1, . . . , Ll + M − 1,

0, 1, . . . , M − 1.

(The last line is needed to cover the case in which every L j is
negative. To avoid having to treat this line as a special case, we
will add a new lower bound of 0. That is, let rl = 0 and sl = S0
so that

rl − sl < x

is a formula 0 < x + S0 asserting that x is nonnegative. We now
have l + 1 lower bounds.)

Our formula (asserting the existence of a solution for x) can
now be replaced by a quantifier-free disjunction that asserts that
one of the numbers in the above matrix is a nonnegative solution:

∨

j≤l

∨

1≤q≤M

[
∧

i≤l

ri − si < (r j − s j)+ Sq0

∧
∧

i<k

(r j − s j)+ Sq0 < ti − ui

∧
∧

i<n

(r j − s j)+Sq0 ≡mi vi − wi

]
.

In our continuing example we have, after adding the new lower
bound on x ,

∃ x(3w < x ∧ 0 < x + S0 ∧ x < 6u ∧ x < 4v

∧ x ≡36 12t ∧ x ≡12 0).

The quantifier-free equivalent is a disjunction of 72 conjunctions.
Each conjunction has six constituents.

Chapter 3: Undecidability 201

This proves half of the theorem. If we are given a sentence σ ,
the above procedure tells us how to find effectively a quantifier-
free sentence τ (in the language of N≡) that is true (in the intended
structure) iff σ is. Now we must decide if τ is true.

But this is easy. It is enough to look at atomic sentences. Any
variable-free term can be put in the form Sn0. Then, for example,

Sn0 ≡m Sp0

is true iff n ≡m p. '

Thus we have a decision procedure for Th NA. In 1974 Michael
Fischer and Michael Rabin showed, however, that there is no decision
procedure that is fast enough to be feasible for very long formulas.

A set D of natural numbers is said to be periodic if for some positive
p, any number n is in D iff n + p is in D. D is eventually periodic iff
there exist positive numbers M and p such that for all n greater than M ,
n ∈ D iff n + p ∈ D.

THEOREM 32F A set of natural numbers is definable in (N; 0, S,

<, +) iff it is eventually periodic.

PROOF. Exercise 1 asserts that every eventually periodic set is de-
finable. Conversely, suppose D is definable. Then D is defin-
able in N≡ by a quantifier-free formula (whose only variable is
v1). Since the class of eventually periodic sets is closed under
union, intersection, and complementation, it suffices to show that
every atomic formula in the language of N≡ whose only vari-
able is v1 defines an eventually periodic set. There are only four
possibilities:

nv1 + t = u,

nv1 + t < u,

u < nv1 + t,
nv1 + t ≡m u,

where u and t are numerals. The first two formulas define finite
sets (which eventually have period 1), the third defines a set with
finite complement, and the last formula defines a periodic set with
period m. '

COROLLARY 32G The multiplication relation

{〈m, n, p〉 | p = m · n in N}

is not definable in (N; 0, S, <, +).

PROOF. If we had a definition of multiplication, we could then use
that to define the set of squares. But the set of squares is not
eventually periodic. '

202 A Mathematical Introduction to Logic

Exercises
1. Show that any eventually periodic set of natural numbers is definable

in the structure NA.

2. Show that in the structure (N; +) the following relations are
definable:
(a) Ordering, {〈m, n〉 | m < n}.
(b) Zero, {0}.
(c) Successor, {〈m, n〉 | n = S(m)}.

3. Let A be a model of Th NL (or equivalently a model of AL). For a
and b in |A| define the equivalence relation:

a ∼ b ⇐⇒ SA can be applied a finite number of times to one
of a, b to reach the other.

Let [a] be the equivalence class to which a belongs. Order equiva-
lence classes by

[a] ≺ [b] iff a <A b and a +∼ b.

Show that this is a well-defined ordering on the set of equivalence
classes.

4. Show that the theory of the real numbers with its usual ordering,
Th(R; <), admits elimination of quantifiers. (Assume that the lan-
guage includes equality.)

SECTION 3.3
A Subtheory of Number Theory

We now return to the full language of number theory, as described in
Section 3.0. The parameters of the language are ∀, 0, S, <,+, ·, and
E. The intended structure for this language is

N = (N; 0, S, <, +, ·, E).

Actually in (N; ·, E) we can define {0}, S, <, and +. (See Exercise 1.)
As we will show in Section 3.8, in (N; +, ·) we can define E as well as
0, S, and <. So there are ways in which we could economize. The luxury
of having all these parameters (particularly E) will simplify some of the
proofs.

As we shall see, Th N is a very strong theory and is neither decidable
nor axiomatizable. In order to prove this fact (and a number of related
results), it will be strategically wise to select for study a finitely axiom-
atizable subtheory of Th N. As hinted at in Section 3.0, this subtheory
should be strong enough to represent (in a sense to be made precise)
facts about decidable sets. The subtheory we have selected is Cn AE ,

Chapter 3: Undecidability 203

where AE is the set consisting of the eleven sentences listed below. (As
in the preceding section, x ≤ y abbreviates x < y ∨ x = y.)

Set AE of Axioms
∀ x Sx "= 0 (S1)

∀ x ∀ y (Sx = Sy → x = y) (S2)

∀ x ∀ y (x < Sy ↔ x ≤ y) (L1)

∀ x x "< 0 (L2)

∀ x ∀ y (x < y ∨ x = y ∨ y < x) (L3)

∀ x x + 0 = x (A1)

∀ x ∀ y x + Sy = S(x + y) (A2)

∀ x x · 0 = 0 (M1)

∀ x ∀ y x · Sy = x · y + x (M2)

∀ x xE0 = S0 (E1)

∀ x ∀ y x E Sy = x E y · x (E2)

Since N is a model of AE , we have Cn AE ⊆ Th N. But (as we will
prove in Section 3.5) equality does not hold here. In fact, it can be shown
that AE ! S3, where S3 is the sentence ∀ y(y += 0 → ∃ x y = Sx).

The first five axioms give us some, but not all, of the axioms regard-
ing S and < that were useful in the preceding sections. The other six
axioms are the “recursion” equations for addition, multiplication, and
exponentiation.

We first show that certain simple sentences in Th N are deducible
from AE .

LEMMA 33A (a) AE $ ∀ x x "< 0.
(b) For any natural number k,

AE $ ∀ x(x < Sk+10 ↔ x = S00 ∨ · · · ∨ x = Sk0).

Notice that (a) can be thought of as the k = −1 case of (b), where
the empty disjunction is ⊥. The lemma tells us that AE “knows” that
the numbers less than 7, for example, are exactly 0, 1, 2, 3, 4, 5, 6. So in
any model of AE , the standard points — the ones denoted by numerals
Sk0 — are ordered in the natural way, and (by L3) the infinite points, if
any, are all larger than any standard point.

PROOF. Part (a) is L2. For (b) we use induction (in English) on k.
We have as a consequence of L1,

x < S0 ↔ x < 0 ∨ x = 0,

204 A Mathematical Introduction to Logic

which together with L2 gives

x < S0 ↔ x = 0,

which is the k = 0 case of (b). For the inductive step we again
apply L1:

x < Sk+10 ↔ x < Sk0 ∨ x = Sk0.

By the inductive hypothesis, x < Sk0 can be replaced by

x = S00 ∨ · · · ∨ x = Sk−10,

whereby we obtain (b). '

LEMMA 33B For any variable-free term t , there is a unique natural
number n such that

AE $ t = Sn0.

PROOF. The uniqueness is immediate. (Why? Because AE , weak
as it is, at least knows, by S1, that 7 += 0, and by S2 80 times,
that 87 += 80.) For the existence half, we use induction on t . If t
is 0, we take n = 0. If t is Su, then by the inductive hypothesis
AE $ u = Sm0 for some m. Hence AE $ t = Sm+10.

Now suppose t is u1 + u2. By the inductive hypothesis
AE $ t = Sm0 + Sn0 for some m and n. We now apply A2 n
times and A1 once to obtain AE $ t = Sm+n0. The arguments for
multiplication and exponentiation are similar. '

As a special case of this lemma we have “2 + 2 = 4” (i.e., S20 +
S20 = S40) as a consequence of AE . AE is at least smart enough to
evaluate variable-free terms. And the proof shows more than this. The
proof provides exact instructions for how, given such a term t , to find
effectively the unique number n such that AE $ t = Sn0.

THEOREM 33C For any quantifier-free sentence τ true in N, AE $ τ .

PROOF. Exercise 2. Start with the atomic sentences; these will be of
the form t1 = t2 or t1 < t2 for variable-free terms t1 and t2. Show
that AE proves τ if τ is true in N, and refutes τ (i.e., proves ¬ τ)
if τ is false in N. '

Later on, we will improve on Theorem 33C by allowing τ to contain
“bounded quantifiers”; see Theorem 33I.

A simplified notation (used earlier in Section 2.7) for substitution
will be helpful in the coming pages:

ϕ(t) = ϕv1
t ,

ϕ(t1, t2) =
(
ϕv1

t1

)v2

t2
,

and so forth. Thus ϕ = ϕ(v1) = ϕ(v1, v2). Usually the term substituted

Chapter 3: Undecidability 205

will be a numeral, for example

ϕ(Sa0, Sb0) =
(
ϕv1

Sa0

)v2

Sb0.

But at times we will also substitute other terms, e.g., ϕ(x) = ϕv1
x , where

x is a variable. If, however, x is not substitutable for v1 in ϕ, then we
must take ϕ(x) = ψv1

x , where ψ is a suitable alphabetic variant of ϕ.
In the next proof (and elsewhere in this chapter) we make use of

the following consequence of the substitution lemma of Section 2.5:
For a formula ϕ in which at most v1, . . . , vn occur free and for natural
numbers a1, . . . , an ,

|=N ϕ[[a1, . . . , an]]⇔ |=N ϕ(Sa1 0, . . . , San 0).

An existential (∃1) formula is one of the form ∃ x1 · · · ∃ xkθ , where
θ is quantifier-free. The following result improves Theorem 33C:

COROLLARY 33D If τ is an existential sentence true in N, then
AE $ τ .

PROOF. If ∃ v1 ∃ v2θ is true in N, then for some natural numbers
m and n, θ(Sm0, Sn0) is true in N. As this is a quantifier-free true
sentence, it is deducible from AE . But it in turn logically implies
∃ v1 ∃ v2 θ . '

On the other hand, it is known that there are true universal (∀1)
sentences (i.e., of the form ∀ x1 · · · ∀ xkθ for quantifier-free θ) that are
not in Cn AE .

Representable Relations
Let R be an m-ary relation on N; i.e., R ⊆ Nm . We know that a formula
ρ (in which only v1, . . . , vm occur free) defines R in N iff for every
a1, . . . , am in N,

〈a1, . . . , am〉 ∈ R ⇔ |=N ρ[[a1, . . . , am]]
⇔ |=N ρ(Sa1 0, . . . , Sam 0).

(The last condition here is equivalent to the preceding one by the sub-
stitution lemma.) We can recast this into two implications:

〈a1, . . . , am〉 ∈ R ⇒ |=N ρ(Sa1 0, . . . , Sam 0),

〈a1, . . . , am〉 /∈ R ⇒ |=N ¬ ρ(Sa1 0, . . . , Sam 0).

We will say that ρ also represents R in the theory Cn AE if in these two
implications the notion of truth in N can be replaced by the stronger
notion of deducibility from AE .

More generally, let T be any theory in a language with 0 and S. Then
ρ represents R in T iff for every a1, . . . , am in N:

〈a1, . . . , am〉 ∈ R ⇒ ρ(Sa1 0, . . . , Sam 0) ∈ T,

〈a1, . . . , am〉 /∈ R ⇒ (¬ ρ(Sa1 0, . . . , Sam 0)) ∈ T .

206 A Mathematical Introduction to Logic

For example, ρ represents R in the theory Th N iff ρ defines R in N.
But ρ represents R in Cn AE iff for all a1, . . . , am :

〈a1, . . . , am〉 ∈ R ⇒ AE $ ρ(Sa1 0, . . . , Sam 0),

〈a1, . . . , am〉 /∈ R ⇒ AE $ ¬ ρ(Sa1 0, . . . , Sam 0).

The equality relation on N, for example, is represented in Cn AE by the
formula v1 = v2. For

m = n ⇒ $ Sm0 = Sn0,

m = n ⇒ {S1, S2} $ ¬ Sm0 = Sn0.

A relation is representable in T iff there exists some formula that rep-
resents it in T .

The concept of representability should be compared with that of
definability. In both cases we are somehow describing relations on the
natural numbers by formulas. In the case of definability, we ask about
the truth of sentences in the interpretation. In the case of representability
in Cn AE , we ask instead about the deducibility of sentences from the
axioms.

Say that a formula ϕ, in which no variables other than v1, . . . , vm

occur free, is numeralwise determined by AE iff for every m-tuple
a1, . . . , am of natural numbers, either

AE $ ϕ(Sa1 0, . . . , Sam 0)

or
AE $ ¬ϕ(Sa1 0, . . . , Sam 0)

THEOREM 33E A formula ρ represents a relation R in Cn AE iff

(1) ρ is numeralwise determined by AE , and
(2) ρ defines R in N.

PROOF. We use the fact that N is a model of AE . If ρ represents R
in Cn AE , then it is clear that (1) holds; (2) holds since “AE $”
implies “|=N.” Conversely, if (1) and (2) hold, then we have

〈a1, . . . , am〉 ∈ R ⇒ |=N ρ(Sa1 0, . . . , Sam 0) by (2)
⇒ AE ! ¬ ρ(Sa1 0, . . . , Sam 0) since N is a model

of AE

⇒ AE $ ρ(Sa1 0, . . . , Sam 0) by (1).

Similarly for the complement of R and ¬ ρ. '

Church’s Thesis
We now turn to the relationship of the concepts of representability and
decidability.

!THEOREM 33F Assume that R is a relation representable in a con-
sistent axiomatizable theory. Then R is decidable.

Chapter 3: Undecidability 207

PROOF. Say that ρ represents R in the consistent axiomatizable
theory T . Recall that T is effectively enumerable (Corollary 25F).
The decision procedure is as follows:

Given a1, . . . , am , enumerate the members of T . If, in the
enumeration, ρ(Sa1 0, . . . , Sam 0) is found, then we are done and
〈a1, . . . , am〉 ∈ R. If, in the enumeration, ¬ ρ(Sa1 0, . . . , Sam 0) is
found, then we are done and 〈a1, . . . , am〉 /∈ R.

By the representability, one sentence or the other always ap-
pears eventually, whereupon the procedure terminates. Since T is
consistent, the answer given by the procedure is correct. '

!COROLLARY 33G Any relation representable in a consistent finitely
axiomatizable theory is decidable.

What about the converse to the above corollary? We cannot really
hope to prove the converse on the basis of our informal notion of de-
cidability. For our informal approach is usable only for giving lower
bounds on the class of decidable relations (i.e., for showing that certain
relations are decidable) and is unsuited to giving upper bounds (i.e., for
showing undecidability).

It is nevertheless possible to make plausibility arguments in support
of the converse. This will be easier to do at the end of Section 3.4 than
here. Roughly, the idea is that in a finite number of axioms we could
capture the (finitely long) instructions for the decision procedure.

The assertion that both the above corollary and its converse are cor-
rect is generally known as Church’s thesis. This assertion is not really
a mathematical statement susceptible to proof or disproof; rather it is a
judgment that the correct formalization of the informal notion of decid-
ability is by means of representability in consistent and finitely axiom-
atizable theories.

DEFINITION. A relation R on the natural numbers is recursive iff it
is representable in some consistent finitely axiomatizable theory
(in a language with 0 and S).

Church’s thesis now can be put more succinctly: A relation is de-
cidable iff it is recursive. Or perhaps more accurately: The concept of
recursiveness is the correct precise counterpart to the informal concept
of decidability. The situation is analogous to one encountered in calcu-
lus. An intuitively continuous function (defined on an interval) is one
whose graph you can draw without lifting your pencil off the paper. But
to prove theorems, some formal counterpart of this notion is needed.
And so one gives the usual definition of ε-δ-continuity. One should ask
if the precise notion of ε-δ-continuity is an accurate formalization of
intuitive continuity. If anything, the class of ε-δ-continuous functions is
too broad. It includes nowhere differentiable functions, whose graphs
cannot be drawn without lifting the pencil. But accurate or not, the class

208 A Mathematical Introduction to Logic

of ε-δ-continuous functions has been found to be a natural and important
class in mathematical analysis.

Very much the same situation occurs with recursiveness. One should
ask if the precise notion of recursiveness is an accurate formalization of
the informal notion of decidability. Again, the precisely defined class
(of recursive relations) appears to be, if anything, too broad. It includes
relations for which any decision procedure will, for large inputs, require
so much computing time and memory (“scratchpad”) space as to make
implementation absurd. Recursiveness corresponds to decidability in
an idealized world, where length of computation and amount of mem-
ory are disregarded. But in any case, the class of recursive relations
has been found to be a natural and important class in mathematical
logic.

Empirical evidence that the class of recursive relations is not too
narrow is provided by the following:

1. Any relation considered thus far that mathematicians have felt
was decidable has been found to be recursive.

2. Several people have tried giving precise definitions of idealized
computing agents. The best-known such idealized agents are the “Turing
machines,” introduced by Alan Turing in 1936. (A variation on that idea
leads to the register machines described in Section 3.6.) The idea was
to devise something that could carry out any effective procedure. In
all cases, the class of relations having decision procedures executable
by such a computing agent has been exactly the class of recursive
relations. (Because of the importance of Turing’s analysis of effec-
tive computability, Church’s thesis is often called the Church–Turing
thesis.)

The fact that so many different (yet equivalent) definitions for the
class of recursive relations have been found is some indication of the
naturalness and importance of the concept.

In this book we will continue to exclude the informal notion of decid-
ability from nonstarred theorems. But in the remainder of the exposition
we will accept Church’s thesis. For example, we will speak of a set’s
being undecidable when we have a theorem stating it to be nonrecursive.

Obviously any relation representable in Cn AE is recursive. We will
prove later that the converse also holds; if a relation is representable in
any consistent finitely axiomatizable theory, then it is representable in
the one theory we have selected for special study. (This was, of course,
a motivating factor in our selection.)

The use of the word “recursive” in this context is the result of histori-
cal accident — even of historical error. Recently several mathematicians
have argued that the word “computable” would more accurately reflect
the intended ideas. But in the present context, we want to reserve the
word “computable” for an informal concept, to be defined next. For
relations we have the informal concept of decidability; for functions the

Chapter 3: Undecidability 209

analogous concept is computability. (As notational shorthand, a string
a1, . . . , ak can be written as 8a.)

'DEFINITION. A function f : Nk → N is computable iff there is an
effective procedure that, given any k-tuple 8a of natural numbers,
will produce f (8a).

For example, addition and multiplication are computable. Effective
procedures, using base-10 notation, for these functions are taught in the
elementary schools. (Strictly speaking, in the concept of computabil-
ity one should refer to being given numerals, not numbers. For it is
numerals — strings of symbols like the triple 317 or the triple XCI —
that can be communicated. Nonetheless, we will suppress this point.) On
the other hand, of the uncountably many functions from Nk into N, only
countably many can be computable, because there are only countably
many effective procedures.

We want to give a mathematical counterpart to the informal concept
of computability, just as in the case of decidable relations. The clue to
the correct counterpart is provided by the next theorem. Recall that any
function f : Nk → N is also a (k + 1)-ary relation on N:

〈a1, . . . , ak, b〉 ∈ f ⇐⇒ f (a1, . . . , ak) = b.

At one time it was popular to distinguish between the function and
the relation (which was called the graph of the function). Current set-
theoretic usage takes a function to be the same thing as its graph. But
we still have the two ways of looking at the function.

!THEOREM 33H The following three conditions on a function
f : Nk → N are equivalent:

(a) f is computable.
(b) When viewed as a relation, f is a decidable relation.
(c) When viewed as a relation, f is an effectively enumerable

relation.

PROOF. (a) ⇒ (b): Assume that f is computable; we will de-
scribe the decision procedure. Given 〈a1, . . . , ak, b〉, first com-
pute f (a1, . . . , ak). Then look to see if the result is equal to b. If
it is say “yes,” otherwise say “no.”

(b) ⇒ (c): Any decidable relation is effectively enumerable.
For we can enumerate the set of all (k +1)-tuples of numbers, and
place on the output list those which meet the test of belonging to
the relation.

(c)⇒ (a): Assume that we have an effective enumeration of
(the graph of) f . To compute f (a1, . . . , ak) we examine the
(k +1)-tuples in the enumeration until we find the one that begins
with a1 . . . , ak . Its last component is then the desired function
value. '

210 A Mathematical Introduction to Logic

Thus by using Church’s thesis, we can say that f is computable iff
f (viewed as a relation) is recursive. The class of recursive functions is
an interesting class even apart from its connection with incompleteness
theorems of logic. It represents an upper bound to the class of functions
that can actually be computed by programs for digital computers. The
recursive functions are those which are calculable by digital comput-
ers, provided one ignores practical limitations on computing time and
memory space.

We can now describe our plans for this section and the next. Our
basic goal is to obtain the theorems of Section 3.5. But some ground-
work is required before we can prove those theorems; we must ver-
ify that a number of relations (intuitively decidable) and a number
of functions (intuitively computable) are representable in Cn AE and
hence are recursive. In the process we will show (Theorem 34A) that
recursiveness is equivalent to representability in Cn AE . In the remain-
der of the present section we will establish general facts about rep-
resentability, and will show, for example, that certain functions for
encoding finite sequences of numbers into single numbers are repre-
sentable. Then in Section 3.4 we apply these results to particular re-
lations and functions related to the syntactical features of the formal
language.

The author is sufficiently realistic to know that many readers will be
more interested in the theorems of Section 3.5 than in the preliminary
spadework. If the reader is willing to believe that intuitively decidable re-
lations are all representable in Cn AE , and intuitively computable func-
tions are functionally representable (a concept we will define shortly)
there, then most if not all of the proofs in this spadework become un-
necessary. But it is hoped that the definitions and the statements of the
results will still receive some attention.

Numeralwise Determined Formulas
Theorem 33E tells us that we can show a relation to be representable
in Cn AE by finding a formula that defines it in N and is numeralwise
determined by AE . The next theorem will be useful in establishing
numeralwise determination.

THEOREM 33I (a) Any atomic formula is numeralwise determined
by AE .

(b) If ϕ and ψ are numeralwise determined by AE , then so are
¬ϕ and ϕ→ψ .

(c) If ϕ is numeralwise determined by AE , then so are the fol-
lowing formulas (obtained from ϕ by “bounded quantification”):

∀ x(x < y → ϕ),
∃ x(x < y ∧ϕ).

Chapter 3: Undecidability 211

PROOF. Part (a) follows from Theorem 33C. Part (b) is easy. It
remains to prove part (c). We will consider a formula

∃ x(x < y ∧ ϕ(x, y, z))

in which just the variables y and z occur free. Consider two natural
numbers a and b; we must show that either

AE $ ∃ x(x < Sa0 ∧ ϕ(x, Sa0, Sb0))

or
AE $ ¬ ∃ x(x < Sa0 ∧ ϕ(x, Sa0, Sb0)).

Case 1: For some c less than a,

AE $ ϕ(Sc0, Sa0, Sb0). (1)

(This case occurs iff ∃ x(x < Sa0 ∧ϕ(x, Sa0, Sb0)) is true in N.)
We also have

AE $ Sc0 < Sa0. (2)

And the sentences in (1) and (2) logically imply the sentence

∃ x(x < Sa0 ∧ ϕ(x, Sa0, Sb0)).

Case 2: Otherwise for every c less than a,

AE $ ¬ϕ(Sc0, Sa0, Sb0). (3)

(This case occurs iff ∀ x(x < Sa0 → ¬ϕ(x, Sa0, Sb0)) is true in
N.) We know from Lemma 33A that

AE $ ∀ x(x < Sa0 → x = S00 ∨ · · · ∨ x = Sa−10). (4)

The sentence in (4) together with the sentences in (3) (for
c = 0, . . . , a − 1) logically imply

∀ x(x < Sa0 → ¬ϕ(x, Sa0, Sb0)).

And this is equivalent to

¬ ∃ x(x < Sa0 ∧ ϕ(x, Sa0, Sb0)).

This shows that ∃ x(x < y ∧ ϕ(x, y, z)) is numeralwise deter-
mined by AE . By applying this result to ¬ϕ we obtain the fact
that the dual formula, ∀ x(x < y → ϕ(x, y, z)), is numeralwise
determined by AE as well. '

The argument in case 2 relied on the fact that the x quantifier was
bounded by Sa0. We will see that it is possible for

¬ψ(S00), ¬ψ(S10), . . .

212 A Mathematical Introduction to Logic

all to be consequences of AE without having

∀ x ¬ψ(x)

be a consequence.
The preceding theorem is a useful tool for showing many relations

to be representable in Cn AE . For example, the set of primes is repre-
sented by

S10 < v1 ∧ ∀ x(x < v1 → ∀ y(y < v1 → x · y "= v1)).

This formula defines the primes in N, and by the preceding theorem is
numeralwise determined by AE . It therefore represents the set of primes
in Cn AE .

Representable Functions
Often it is more convenient to work with functions than with relations.
Let f : Nm→N be an m-place function on the natural numbers. A for-
mulaϕ in which onlyv1, . . . , vm+1 occur free will be said to functionally
represent f (in the theory Cn AE) iff for every a1, . . . , am in N,

AE $ ∀ vm+1
[
ϕ(Sa1 0, . . . , Sam 0, vm+1) ↔ vm+1 = S f (a1,...,am)0

]
.

(Observe that the “←” half of this sentence is equivalent to ϕ(Sa1 0, . . . ,

Sam 0, S f (a1,...,am)0). The “→” half adds an assertion of uniqueness.)

THEOREM 33J If ϕ functionally represents f in Cn AE , then it also
represents f (as a relation) in Cn AE .

PROOF, WITH m = 1. Since ϕ functionally represents f , we have
for any b:

AE $ ϕ(Sa0, Sb0) ↔ Sb0 = S f (a)0.

If 〈a, b〉 ∈ f , i.e., if f (a) = b, then the right half of this bicondi-
tional is valid and we get

AE $ ϕ(Sa0, Sb0).

But otherwise the right half is refutable from AE (i.e., its negation
is deducible), whence

AE $ ¬ϕ(Sa0, Sb0). '

The converse of this theorem is false. But we can change the formula:

THEOREM 33K Let f be a function on N that is (as a relation) repre-
sentable in Cn AE . Then we can find a formula ϕ that functionally
represents f in Cn AE .

Chapter 3: Undecidability 213

PROOF. To simplify the notation we will take f to be a one-place
function on N. The desired sentence,

∀ v2[ϕ(Sa0, v2) ↔ v2 = S f (a)0],

is equivalent to the conjunction of the two sentences

ϕ(Sa0, S f (a)0) (1)
and

∀ v2[ϕ(Sa0, v2) → v2 = S f (a)0]. (2)

The sentence (1) is a theorem of AE whenever ϕ represents f .
The sentence (2) is an assertion of uniqueness; we must construct
ϕ in such a way that this will also be a theorem of AE .

Begin with a formula θ known to represent f (as a binary
relation). Let ϕ be

θ(v1, v2) ∧ ∀ z(z < v2 → ¬ θ(v1, z)).

We can then rewrite (2) as

∀ v2[θ(Sa0, v2) ∧ ∀ z(z < v2 → ¬ θ(Sa0, z))

→ v2 = S f (a)0]. (2′)

To show this to be a theorem of AE it clearly suffices to show that

AE ∪ {θ(Sa0, v2), ∀ z(z < v2 → ¬ θ(Sa0, z))} $ v2 = S f (a)0.

Call this set of hypotheses (to the left of “$”) 1. Since L3 ∈ AE

it suffices to show that

1 $ v2 "< S f (a)0 (3)
and

1 $ S f (a)0 "< v2. (4)

It is easy to obtain (4), since from the last member of 1 we get

S f (a)0 < v2 → ¬ θ(Sa0, S f (a)0)

and we know that

AE $ θ(Sa0, S f (a)0). (5)

To obtain (3) we first note that we have as theorems of AE ,

v2 < S f (a)0 ↔ v2 = S00 ∨ · · · ∨ v2 = S f (a)−10 (6)
and

¬ θ(Sa0, Sb0) for b = 0, . . . , f (a)− 1. (7)

The formulas (6) and (7) imply the formula

v2 < S f (a)0 → ¬ θ(Sa0, v2). (8)

Since θ(Sa0, v2) ∈ 1, we have (3).

214 A Mathematical Introduction to Logic

This shows (2) to be a theorem of AE ; (5) and (8) show (1) to
be a theorem of AE as well. '

We next want to show that certain basic functions are representable
(in Cn AE) and that the class of representable functions has certain clo-
sure properties. Henceforth in this section, when we say that a function
or relation is representable, we will mean that it is representable in the
theory Cn AE . But the phrase “in Cn AE ” will usually be omitted.

In simple cases, an m-place function might be represented by an
equation

vm+1 = t.

In fact, any such equation, when the variables in t are among v1, . . . , vm ,
defines in N an m-place function f . (The value of f at 〈a1, . . . , am〉
is the number assigned in N to t when vi is assigned ai , 1 ≤ i ≤ m.)
Furthermore, we know that any equation is numeralwise determined by
AE , so the equation represents f as a relation. In fact, it even functionally
represents f , for the sentence

∀ vm+1[vm+1 = t (Sa1 0, . . . , Sam 0) ↔ vm+1 = S f (a1,...,am)0]

is logically equivalent to

t (Sa1 0, . . . , Sam 0)= S f (a1,...,am)0,

which is a quantifier-free sentence true in N. (Here t (u1, . . . , um) is the
term obtained by replacing v1 by u1, then v2 by u2, etc.) For example:

1. The successor function is represented (functionally) by the
equation

v2 = Sv1.

2. Any constant function is representable. The m-place function that
constantly assumes the value b is represented by the equation

vm+1 = Sb0.

3. The projection function (where 1 ≤ i ≤ m)

I m
i (a1, . . . , am) = ai

is represented by the equation

vm+1 = vi .

4. Addition, multiplication, and exponentiation are represented by
the equations

v3 = v1 + v2,

v3 = v1 · v2,

v3 = v1 E v2,

respectively.

Chapter 3: Undecidability 215

The reader should not be misled by these simple examples; not every
representable function is representable by an equation.

We next want to show that the family of representable functions is
closed under composition. To simplify the notation, we will consider a
one-place function f on N, where

f (a) = g(h1(a), h2(a)).

Suppose that g is functionally represented byψ and hi by θi . To represent
f it would be reasonable to try either

∀ y1 ∀ y2(θ1(v1, y1) → θ2(v1, y2) → ψ(y1, y2, v2))
or

∃ y1 ∃ y2(θ1(v1, y1) ∧ θ2(v1, y2) ∧ ψ(y1, y2, v2)).

(Think of ψ(y1, y2, v2) as saying “g(y1, y2) = v2” and think of
θi (v1, y1) as saying “hi (v1) = yi .” Then the first formula translates,
“For any y1, y2, if h1(v1) = y1 and h2(v1) = y2, then g(y1, y2) = v2.”
The second formula translates, “There exist y1, y2 such that h1(v1) = y1

and h2(v1) = y2 and g(y1, y2) = v2.” Either one is a reasonable way
of saying, “g(h1(v1), h2(v1)) = v2.” There are two choices, because
when something is unique, either quantifier can be used for it.)

Actually either formula would work; let ϕ be

∀ y1 ∀ y2(θ1(v1, y1) → θ2(v1, y2) → ψ(y1, y2, v2)).

Consider any natural number a; we have at our disposal

∀ v2[ψ(Sh1(a)0, Sh2(a)0, v2) ↔ v2 = S f (a)0]. (1)

∀ y1[θ1(Sa0, y1) ↔ y1 = Sh1(a)0]. (2)

∀ y2[θ2(Sa0, y2) ↔ y2 = Sh2(a)0]. (3)

And we want

∀ v2(ϕ(Sa0, v2) ↔ v2 = S f (a)0), (4)

i.e.,

∀ v2(∀ y1 ∀ y2[θ1(Sa0, y1) → θ2(Sa0, y2) →ψ(y1, y2, v2)]

↔ v2 = S f (a)0). (4)

But (1), (2), and (3) imply (4), as the reader is asked to verify in
Exercise 4.

More generally we have

THEOREM 33L Let g be an n-place function, let h1, . . . , hn be m-
place functions, and let f be defined by

f (a1, . . . , am) = g(h1(a1, . . . , am), . . . , hn(a1, . . . , am)).

216 A Mathematical Introduction to Logic

From formulas functionally representing g and h1, . . . , hn we can
find a formula that functionally represents f .

In the above proof we have m = 1 and n = 2. But the general case
is proved in exactly the same way.

In order to obtain a function such as

f (a, b) = g(h(a), b),

we note that

f (a, b) = g
(
h
(

I 2
1 (a, b)

)
, I 2

2 (a, b)
)
.

The above theorem then can be applied (twice) to show that f is repre-
sentable (provided that g and h are).

To facilitate discussion of functions with an arbitrary number of
variables, we will use vector notation. For example, the equation in the
above theorem can be written

f (8a) = g(h1(8a), . . . , hn(8a)).

Another important closure property of the functions representable in
Cn AE is closure under the “least-zero” operator.

THEOREM 33M Assume that the (m + 1)-place function g is repre-
sentable and that for every a1, . . . , am there is a b such that

g(a1, . . . , am, b) = 0.

Then we can find a formula that represents the m-place function
f , where

f (a1, . . . , am) = the least b such that g(a1, . . . , am, b) = 0.

(In vector notation we can rewrite this last equation:

f (8a) = the least b such that g(8a, b) = 0.

The traditional notation for the least-zero operator is

f (8a) = µb[g(8a, b) = 0]

and the operator is often called “the µ-operator.”)

PROOF. To simplify the notation we take m = 1; thus

f (a) = b iff g(a, b) = 0 and for all c < b, g(a, c) += 0.

Ifψ represents g, then we can obtain a formula representing f (as
a relation) simply by formalizing the right side of this equivalence:

ψ(v1, v2, 0) ∧ ∀ y(y < v2 → ¬ψ(v1, y, 0)).

Chapter 3: Undecidability 217

This formula defines (the graph of) f and is numeralwise deter-
mined by AE . '

A Catalog
We now construct a repertoire of representable (in Cn AE) functions and
relations, including in particular functions for encoding and decoding
sequences.

0. As a consequence of Theorem 33I, any relation that has (in N) a
quantifier-free definition is representable. And the class of representable
relations is closed under unions, intersections, and complements. And
if R is representable, then so are

{〈a1, . . . , am, b〉 | for all c < b, 〈a1, . . . , am, c〉 ∈ R}
and

{〈a1, . . . , am, b〉 | for some c < b, 〈a1, . . . , am, c〉 ∈ R}.
For example, any finite relation has a quantifier-free definition, as does
the ordering relation.

1. A relation R is representable iff its characteristic function K R is.
(K R is the function for which K R(8a) = 1 when 8a ∈ R, and K R(8a) = 0
otherwise.)

PROOF. (⇐) Say that R is a unary relation (a subset of N) and
that K R is represented by ψ(v1, v2). We claim that ψ(v1, S0)

represents R. For it defines R and is numeralwise determined
by AE .

(⇒) Say that ϕ(v1) represents R. Then

(ϕ(v1) ∧ v2 = S0) ∨ (¬ϕ(v1) ∧ v2 = 0)

represents (the graph of) K R , for the same reason as in the last
paragraph. (Actually this formula even functionally represents
K R , as the reader can verify.) '

2. If R is a representable binary relation and f , g are representable
functions, then

{8a | 〈 f (8a), g(8a)〉 ∈ R}
is representable. Similarly for an m-ary relation R and functions
f1, . . . , fm .

PROOF. Its characteristic function at 8a has the value K R(f (8a),

g(8a)). Thus it is obtained from representable functions by com-
position. '

For example, suppose that R is a representable ternary relation. Then

{〈x, y〉 | 〈y, x, x〉 ∈ R}

218 A Mathematical Introduction to Logic

is representable, being
{
〈x, y〉

∣∣〈I 2
2 (x, y), I 2

1 (x, y), I 2
1 (x, y)

〉
∈ R

}
.

In this way we can rearrange and repeat variables in describing a repre-
sentable relation.

3. If R is a representable binary relation, then so is

P = {〈a, b〉 | for some c ≤ b, 〈a, c〉 ∈ R}.

PROOF. We have from catalog item 0 that if

Q = {〈a, b〉 | for some c < b, 〈a, c〉 ∈ R},

then Q is representable. And

〈a, b〉 ∈ P ⇔ 〈a, S(b)〉 ∈ Q
⇔

〈
I 2
1 (a, b), S

(
I 2
2 (a, b)

)〉
∈ Q.

Hence by catalog item 2, P is representable. '

More generally, if R is a representable (m + 1)-ary relation, then

{〈a1, . . . , am, b〉 | for some c ≤ b, 〈a1, . . . , am, c〉 ∈ R}

is also representable. In vector notation this relation becomes

{〈8a, b〉 | for some c ≤ b, 〈8a, c〉 ∈ R}.

Similarly
{〈8a, b〉 | for all c ≤ b, 〈8a, c〉 ∈ R}

is representable.
4. The divisibility relation

{〈a, b〉 | a divides b in N}

is representable.

PROOF. We have a divides b iff for some q ≤ b, a ·q = b. We know
that {〈a, b, q〉 | a·q = b} is representable, as it has a quantifier-free
definition. Upon applying the above items, we get the divisibility
relation. (In yet further detail, from catalog item 3 we get the
representability of

R = {〈a, b, c〉 | for some q ≤ c, a · q = b}

and a divides b iff 〈a, b, b〉 ∈ R.) '

5. The set of primes is representable.
6. The set of pairs of adjacent primes is representable.

PROOF. 〈a, b〉 is a pair of adjacent primes iff a is prime and b is
prime and a < b and there does not exist any c < b such that

Chapter 3: Undecidability 219

a < c and c is prime. The right side of this equivalence is easily
formalized by a numeralwise determined formula. '

Note (for future use in Section 3.8) that we have not yet used the fact
that exponentiation is representable.

Observe that as this catalog progresses, we are in effect building up
a “language” L such that anything (any relation, any function) that is
L-definable (in N) will be certain to be representable in our theory.
Thus, Theorem 33I tells us that (a) atomic formulas are allowed in L,
(b) all sentential connectives are permitted, and (c) bounded quantifiers
can be used. (Unbounded quantifiers are not in general allowed.) Then
our catalog gradually adds particular predicate symbols and function
symbols; catalog item 6 adds a two-place predicate symbol for “adja-
cent primality”; and catalog item 7 will add a function symbol for the
prime-listing function. Theorem 33L justifies using these function sym-
bols inside expressions of L.

7. The function whose value at a is pa , the (a + 1)st prime, is
representable. (Thus p0 = 2, p1 = 3, p2 = 5, p3 = 7, p4 = 11, and so
forth.)

PROOF. pa = b iff b is prime and there exists some c ≤ ba2
, such

that (i)–(iii) hold:

(i) 2 does not divide c.
(ii) For any q < b and any r ≤ b, if 〈q, r〉 is a pair of adjacent

primes, then for all j < c,

q j divides c ⇐⇒ r j+1 divides c.

(iii) ba divides c and ba+1 does not.

This equivalence is not obvious, but at least the relation defined
by the right-hand side is representable. To verify the equivalence,
first note that if pa = b, then we can take

c = 20 · 31 · 52 · . . . · pa
a .

It is easy to check that this value of c meets all the conditions.
Conversely, suppose c is a number meeting conditions (i)–(iii).
We claim that c must be

20 · 31 · . . . · ba · powers of larger primes.

Certainly the exponent of 2 in c is 0, by (i). We can use (ii) to
work our way across to the prime b. But by (iii) the exponent of
b is a, so b must be the (a + 1)st prime, pa . '

220 A Mathematical Introduction to Logic

This function will be very useful in encoding finite sequences of
numbers into single numbers. Let

〈a0, . . . , am〉 = pa0+1
0 · · · · · pam+1

m

=
∏

i≤m
pai +1

i .

This holds also for m = −1; we define 〈 〉 = 1. For example,

〈2, 1〉 = 23 · 32 = 72.

The idea is that 72 safely encodes the pair 〈2, 1〉.
There are other ways to encode pairs of numbers and finite sequences

of numbers. In Section 3.8, we will make use of a pairing function

J (a, b) = 1
2

[(a + b)2 + 3a + b]

that has the advantage of growing at a polynomial rate, unlike the growth
rate of 2a+13b+1. Here is a very different way to encode, for example, the
numbers 24, 117, 11 (in that order). First we convert to numerals in base
9: 26, 140, 12. Secondly, we concatenate these numerals, separated by
9’s: 269140912. The triple is encoded by the number thereby designated
(in base 10), that is, 269,140,912. This method may seem tricky, but it
produces a result that is much smaller than 2253118512, which requires
73 digits in base 10.

8. For each m, the function whose value at a0, . . . , am is 〈a0, . . . , am〉
is representable.

9. There is a representable function (whose value at 〈a, b〉 is written
(a)b) such that for b ≤ m,

(〈a0, . . . , am〉)b = ab.

(This is our “decoding” function. For example, (72)0 = 2 and (72)1 = 1.)

PROOF. We define (a)b to be the least n such that either a = 0 or
pn+2

b does not divide a. (There always is such an n.) Observe that
(0)b = 0, and for a += 0, (a)b is one less than the exponent of
pb in the prime factorization of a (but not less than 0). Hence for
b ≤ m,

(〈a0, . . . , am〉)b = ab.

To prove representability we use the least-zero operator. Let

R = {〈a, b, n〉 | a = 0 or pn+2
b does not divide a}.

Then (a)b = µn[K R(a, b, n) = 0], where R is the complement
of R. '

Since the method used in the above proof will be useful elsewhere
as well, we here state it separately:

Chapter 3: Undecidability 221

THEOREM 33N Assume that R is a representable relation such that
for every 8a there is some n such that 〈8a, n〉 ∈ R. Then the function
f defined by

f (8a) = the least n such that 〈8a, n〉 ∈ R

is representable.

PROOF. f (8a) = µn[K R(8a, n) = 0]. '

We will later use the notation

f (8a) = µn[〈8a, n〉 ∈ R].

10. Say that b is a sequence number iff for some m ≥ −1 and some
a0, . . . , am ,

b = 〈a0, . . . , am〉.

(When m = −1 we get 〈 〉 = 1.) Then the set of sequence numbers is
representable.

PROOF. Exercise 5. '

11. There is a representable function lh such that

lh〈a0, . . . , am〉 = m + 1.

(Here “lh” stands for “length.” For example, lh 72 = 2.)

PROOF. We define lh a to be the least n such that either a = 0 or
pn does not divide a. This works. '

12. There is a representable function (whose value at 〈a, b〉 is called
the restriction of a to b, written a ! b) such that for any b ≤ m + 1,

〈a0, . . . , am〉 ! b = 〈a0, . . . , ab−1〉.

PROOF. Let a ! b be the least n such that either a = 0 or both n += 0
and for any j < b, any k < a

pk
j divides a ⇒ pk

j divides n.

This works. '

13. (Primitive recursion) With a (k + 1)-place function f we asso-
ciate another function f such that f (a, b1, . . . , bk) encodes the values
of f (j, b1, . . . , bk) for all j < a. Specifically, let

f (a, 8b) = 〈 f (0, 8b), . . . , f (a − 1, 8b)〉.

For example, f (0, 8b) = 〈 〉 = 1, encoding the first zero values of
f . f (1, 8b) = 〈 f (0, 8b)〉. In any case, f (a, 8b) is a sequence number of
length a, encoding the first a values of f .

222 A Mathematical Introduction to Logic

Now suppose we are given a (k + 2)-place function g. There exists
a unique function f satisfying

f (a, 8b) = g(f (a, 8b), a, 8b).

For example,

f (0, 8b) = g(〈 〉, 0, 8b),

f (1, 8b) = g(〈 f (0, 8b)〉, 1, 8b).

(The existence and uniqueness of this f should be intuitively clear. For
a proof, we can apply the recursion theorem of Section 1.4, obtaining
first f and then extracting f .)

THEOREM 33P Let g be a (k + 2)-place function and let f be the
unique (k + 1)-place function such that for all a and (k-tuples) 8b,

f (a, 8b) = g(f (a, 8b), a, 8b).

If g is representable, then so is f .

PROOF. First we claim that f is representable.
This follows from the fact that

f (a, 8b) = the least s such that s is a sequence number of
length a and for i less than a, (s)i = g(s ! i, i, 8b).

It then follows that f is representable, since

f (a, 8b) = g(f (a, 8b), a, 8b)

and the functions on the right are representable. '

Actually the phrase “primitive recursion” is more commonly applied
to a simpler version of this, given in Exercise 8.

14. For a representable function F , the function whose value at
a, 8b is ∏

i<a

F(i, 8b)

is also representable. Similarly with) in place of 2. (For a = 0, we
use the standard conventions: The empty product — the product of no
numbers — is 1, and the empty sum is 0.)

PROOF. Call this function G; then

G(0, 8b) = 1,

G(a + 1, 8b) = F(a, 8b) · G(a, 8b).

Apply Exercise 8. '

15. Define the concatenation of a and b, a ∗ b, by

a ∗ b = a ·
∏

i<lhb

p(b)i +1
i+lh a .

Chapter 3: Undecidability 223

This is a representable function of a and b, and

〈a1, . . . , am〉 ∗ 〈b1, . . . , bn〉 = 〈a1, . . . , am, b1, . . . , bn〉.

The concatenation operation has the further property of being associa-
tive on sequence numbers.

16. We will also want a “capital asterisk” operation. Let

∗i<a f (i) = f (0) ∗ f (1) ∗ · · · ∗ f (a − 1).

For a representable function F , the function whose value at a, 8b is
∗i<a F(i, 8b) is representable.

PROOF. ∗i<0 F(i, 8b) = 〈 〉 = 1 and

∗i<a+1 F(i, 8b) = ∗i<a F(i, 8b) ∗ F(a, 8b).

So this is just like catalog item 14. '

Exercises
1. Show that in the structure (N; ·, E) we can define the addition re-

lation {〈m, n, m + n〉 | m, n in N}. Conclude that in this structure
{0}, the ordering relation <, and the successor relation {〈n, S(n)〉 |
n ∈ N} are definable. (Remark: This result can be strengthened by
replacing the structure (N; ·, E) by simply (N; E). The multipli-
cation relation is definable here, by exploiting one of the laws of
exponents: (da)b = dab.)

2. Prove Theorem 33C, stating that true (in N) quantifier-free sen-
tences are theorems of AE . (See the outline given there.)

3. A theory T (in a language with 0 and S) is called ω-complete iff
for any formula ϕ and variable x , if ϕx

Sn0 belongs to T for every
natural number n, then ∀ xϕ belongs to T . Show that if T is a
consistent ω-complete theory in the language of N and if AE ⊆ T ,
then T = Th N.

4. Show that in the proof preceding Theorem 33L, formula (4) is
logically implied by the set consisting of formulas (1), (2), and (3).

5. Show that the set of sequence numbers is representable (catalog
item 10).

6. Is 3 a sequence number? What is lh 3? Find (1∗3)∗6 and 1∗(3∗6).

7. Establish the following facts:
(a) a + 1 < pa .
(b) (b)k ≤ b; equality holds iff b = 0.
(c) lh a ≤ a; equality holds iff a = 0.
(d) a ! i ≤ a.
(e) lh(a ! i) is the smaller of i and lh a.

224 A Mathematical Introduction to Logic

8. Let g and h be representable functions, and assume that

f (0, b) = g(b),

f (a + 1, b) = h(f (a, b), a, b).

Show that f is representable.

9. Show that there is a representable function f such that for every
n, a0, . . . , an ,

f (〈a0, . . . , an〉) = an.

(For example, f (72) = 1 and f (750) = 2.)

10. Assume that R is a representable relation and that g and h are
representable functions. Show that f is representable, where

f (8a) =
{

g(8a) if 8a ∈ R,

h(8a) if 8a /∈ R.

11. (Monotone recursion) Assume that R is a representable binary re-
lation on N. Let C be the smallest subset of N (i.e., the intersection
of all subsets) such that for all n, a0, . . . , an−1, b,

〈〈a0, . . . , an−1〉, b〉 ∈ R & ai ∈ C (for all i < n) ⇒ b ∈ C.

Further assume that (1) for all n, a0, . . . , an−1, b,

〈〈a0, . . . , an−1〉, b〉 ∈ R ⇒ ai < b (for all i < n),

and (2) there is a representable function f such that for all n,
a0, . . . , an−1, b,

〈〈a0, . . . , an−1〉, b〉 ∈ R ⇒ n < f (b)

Show that C is representable. (C is, in a sense, generated by R.
C += ∅ in general because if 〈〈 〉, b〉 ∈ R, then b ∈ C .)

SECTION 3.4
Arithmetization of Syntax

In this section we intend to develop two themes:

1. Certain assertions about wffs can be converted into assertions
about natural numbers (by assigning numbers to expressions).

2. These (English) assertions about natural numbers can in many
cases be translated into the formal language. And the theory Cn AE is
strong enough to prove many of the translations so obtained.

This will give us the ability to construct formulas that, by expressing
facts about numbers, indirectly express facts about formulas (even about
themselves!). Such an ability will be exploited in Section 3.5 to obtain
results of undefinability and undecidability.

Chapter 3: Undecidability 225

Gödel Numbers
We first want to assign numbers to expressions of the formal language.
Recall that the symbols of our language are those listed in Table IX.

TABLE IX

Parameters Logical symbols

0. ∀ 1. (
2. 0 3.)
4. S 5. ¬
6. < 7. →
8. + 9. =

10. · 11. v1

12. E 13. v2, etc.

There is a function h assigning to each symbol the integer listed to
its left. Thus h(∀) = 0, h(0) = 2, and h(vi) = 9 + 2i . In order to make
our subsequent work more widely applicable, we will assume only that
we have some language with 0 and S which is recursively numbered. By
this we mean that we have a one-to-one function h from the parameters
of that language into the even numbers such that the two relations

{〈k, m〉 | k is the value of h at some m-place predicate parameter}

and

{〈k, m〉 | k is the value of h at some m-place function symbol}

are both representable in Cn AE . Of course in the case of the lan-
guage of N these sets are even finite. The first set is {〈6, 2〉} and the
second is

{〈2, 0〉, 〈4, 1〉, 〈8, 2〉, 〈10, 2〉, 〈12, 2〉}.

We define h on the logical symbols as before; thus h(s) is an odd number
for each logical symbol s.

For an expression ε = s0 · · · sn of the language we define its Gödel
number, "(ε), by

"(s0 · · · sn) = 〈h(s0), . . . , h(sn)〉.

For example, using our original function h for the language of N, we
obtain

"(∃ v3 v3 = 0)

= "((¬ ∀ v3(¬=v30)))
= 〈1, 5, 0, 15, 1, 5, 9, 15, 2, 3, 3〉
= 22 · 36 · 51 · 716 · 112 · 136 · 1710 · 1916 · 233 · 294 · 314.

226 A Mathematical Introduction to Logic

This is a large number, being of the order of 1.3× 1075. To a set 4
of expressions we assign the set

"4 = {"(ε) | ε ∈ 4}

of Gödel numbers.
To a sequence 〈α0, . . . ,αn〉 of expressions (such as a deduction), we

assign the number

G(〈α0, . . . ,αn〉) = 〈"α0, . . . , "αn〉.

We now proceed to show that various relations and functions having
to do with Gödel numbers are representable in Cn AE (and hence are
recursive). As in the preceding section, whenever we say that a relation
or function is representable (without specifying a theory) we mean that
it is representable in the theory Cn AE .

We will make use of certain abbreviations in the language we use (i.e.,
English, although it is coming to differ more and more from what one
ordinarily thinks of as English). For “there is a number a such that” we
write “∃a.” In the same spirit, “∃a, b < c” means “there are numbers
a and b both of which are less than c such that.” Similarly, we may
employ “∀.” We would not have dared to employ such abbreviations in
Chapter 2, for fear of creating confusion between the formal language
and the meta-language (English). But by now we trust the reader to
avoid such erroneous ways.

1. The set of Gödel numbers of variables is representable.

PROOF. It is {a | (∃b < a)a = 〈11 + 2b〉}. It follows from results
of the preceding section that this is a representable set. '

2. The set of Gödel numbers of terms is representable.

PROOF. The set of terms was defined inductively. And terms were
built up from constituents with smaller Gödel numbers. We will
treat this case in some detail, since it is typical of the argument
used for inductively defined relations.

Let f be the characteristic function of the set of Gödel numbers
of terms. From the definition of “term” we obtain

f (a) =

1 if a is the Gödel number of a variable,
1 if (∃i < ", ∃k < a) [i is a sequence number

& (∀ j < lh i) f ((i) j) = 1 & k is the value of
h at some (lh i)-place function symbol &
a = 〈k〉 ∗ ∗ j<lh i (i) j],

0 otherwise.

But what upper bound for i can we use in place of that “"”
symbol? Before we can argue that f is representable, we will

Chapter 3: Undecidability 227

need an upper bound on i that depends in some representable
way on a.

The claim is that we can take i < aa lh a . To see this, suppose
that a = "st1 · · · tn (where s is an n-place function symbol and
t1, . . . , tn are terms). Then we want to take i = 〈"t1, . . . , "tn〉.
How big could this be, in terms of a? We have the bounds:

i = 2"t1+1 · · · p"tn+1
n−1

≤ 2a · · · pa
n−1

< 2a · · · pa
lh a−1 because n = lh i < lh a

≤ aa · · · aa (lh a times) because a = 2(a)0+1 · · · p(a)lh a−1+1
lh a−1 ≥ plh a−1

= (aa)lh a = aa lh a

So in the above equation for f , we replace " by aa lh a .
Although the right side of this equation refers to f , it refers

only to f ((i) j), where (i) j < a. This feature permits us to apply
primitive recursion. f (a) = g(f (a), a), where

g(s, a) =

1 if a is the Gödel number of a variable,
1 if (∃i < aa lh a, ∃k < a) [i is a sequence number

& (∀ j < lh i)(s)(i) j = 1 & k is the value of
h at some (lh i)-place function symbol &
a = 〈k〉 ∗ ∗ j<lh i (i) j],

0 otherwise.

For if in this equation we set s equal to f (a), then (s)(i) j = f ((i) j)

for (i) j < a. Hence by Theorem 33P, f is representable provided
that g is.

It remains to show that g is representable. But this is straight-
forward, by using results of the preceding section. Briefly, the
graph of g is the union of three relations, corresponding to the
three clauses in the above equation. Each of the three is obtained
from equality and other representable relations by bounded quan-
tification and the substitution of representable functions. '

3. The set of Gödel numbers of atomic formulas is representable.

PROOF. a is the Gödel number of an atomic formula iff (∃i <

aa lh a, ∃k < a) [i is a sequence number & (∀ j < lh i)(i) j is the
Gödel number of a term & k is the value of h at some (lh i)-place
predicate symbol & a = 〈k〉 ∗ ∗ j<lh i (i) j]. '

4. The set of Gödel numbers of wffs is representable.

228 A Mathematical Introduction to Logic

PROOF. The wffs were inductively defined. Let f be the character-
istic function of the set, then

f (a) =

1 if a is the Gödel number of an atomic formula,
1 if (∃i < a)[a = 〈h((), h(¬)〉 ∗ i ∗ 〈h())〉

& f (i) = 1],
1 if (∃i, j < a)[a = 〈h(()〉 ∗ i ∗ 〈h(→)〉 ∗ j ∗ 〈h())〉

& f (i) = f (j) = 1],
1 if (∃i, j < a)[a = 〈h(∀)〉 ∗ i ∗ j & i is the Gödel

number of a variable and f (j) = 1],
0 otherwise.

By the same argument used for the set of Gödel numbers of terms,
we have the representability of f . '

5. There is a representable function Sb such that for a term or formula
α, variable x , and term t ,

Sb("α, "x, "t) = "αx
t .

PROOF. We will need to define Sb(a, b, c) making use of values
Sb(i, b, c) where i < a. As in the case of catalog item 2 (the char-
acteristic function of the set of terms), it will then be possible to
show that both Sb and Sb are representable.

The function Sb is described by the following six clauses
(i)–(vi):

(i) If a is the Gödel number of a variable and a = b then

Sb(a, b, c) = c.

(ii) If (∃i < aa lh a, ∃k < a)[i is a sequence number & (∀ j <

lh i)(i) j is the Gödel number of a term & k is the value of h at some
(lh i)-place function or predicate symbol & a = 〈k〉∗∗ j<lh i (i) j]
then

Sb(a, b, c) = 〈k〉 ∗ ∗ j<lh i Sb((i) j , b, c)

for that i and k.
(iii) If (∃i < a)[i is the Gödel number of a wff & a =

〈h((), h(¬)〉 ∗ i ∗ 〈h())〉] then

Sb(a, b, c) = 〈h((), h(¬)〉 ∗ Sb(i, b, c) ∗ 〈h())〉

for that i .
(iv) If (∃i, j < a)[i and j are Gödel numbers of wffs & a =

〈h(()〉 ∗ i ∗ 〈h(→)〉 ∗ j ∗ 〈h())〉] then

Sb(a, b, c) = 〈h(()〉 ∗ Sb(i, b, c) ∗ 〈h(→)〉 ∗ Sb(j, b, c) ∗ 〈h())〉

for that i and j .

Chapter 3: Undecidability 229

(v) If (∃i, j < a)[i is the Gödel number of a variable & i += b
& j is the Gödel number of a wff & a = 〈h(∀)〉 ∗ i ∗ j] then

Sb(a, b, c) = 〈h(∀)〉 ∗ i ∗ Sb(j, b, c)

for that i and j .
(vi) If none of the above conditions on a and b are met (where

we ignore the displayed equation for Sb(a, b, c)) then

Sb(a, b, c) = a.

Then the function Sb is obtained by primitive recursion

Sb(a, b, c) = G(Sb(a, b, c), a, b, c)

where G is a 4-place function. The graph of G is the union of six
5-ary relations

G = R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5 ∪ R6

corresponding to the six clauses above.
The first of the six is

R1 = {〈s, a, b, c, d〉 | a is the Gödel number of a variable &
a = b & d = c}.

The second one is

R2 = {〈s, a, b, c, d〉 | (∃i < aa lh a, ∃k < a)[i is a sequence number
& (∀ j < lh i)(i) j is the Gödel number of a term & k is the
value of h at some (lh i)-place function or predicate symbol &
a = 〈k〉 ∗ ∗ j<lh i (i) j & d = 〈k〉 ∗ ∗ j<lh i (s)(i) j]}

and the others are similar translations of the corresponding clauses
in the description of Sb.

It is necessary to note that G is indeed a function; it is single-
valued. This is because no two clauses could apply to one number
a. And if, for example, clause (ii) applies to a, then we know from
Section 2.3 that the numbers i and k are uniquely determined.

Finally, we apply the usual methods to verify that R1–R6 are
representable, so G is representable, so Sb is representable, so Sb
is representable. (Substitution is a complicated operation!) '

6. The function whose value at n is "(Sn0) is representable.

PROOF. Call this function f ; then

f (0) = 〈h(0)〉,
f (n + 1) = 〈h(S)〉 ∗ f (n).

Apply Exercise 8 of the preceding section. '

7. There is a representable relation Fr such that for a term or formula
α and a variable x ,

〈"α, "x〉 ∈ Fr⇔ x occurs free in α.

230 A Mathematical Introduction to Logic

PROOF. 〈a, b〉 ∈ Fr ⇔ Sb(a, b, "0) += a. '

8. The set of Gödel numbers of sentences is representable.

PROOF. a is the Gödel number of a sentence iff a is the Gödel
number of a formula and for any b < a, if b is the Gödel number
of a variable then 〈a, b〉 /∈ Fr. '

9. There is a representable relation Sbl such that for a formula α,
variable x , and term t , 〈"a, "x, "t〉 ∈ Sbl iff t is substitutable for x in α.

PROOF. Exercise 1. '

10. The relation Gen, where 〈a, b〉 ∈ Gen iff a is the Gödel number of
a formula and b is the Gödel number of a generalization of that formula,
is representable.

PROOF. 〈a, b〉 ∈ Gen iff a = b or (∃i, j < b)[i is the Gödel number
of a variable and 〈a, j〉 ∈ Gen and b = 〈(h(∀)〉 ∗ i ∗ j]. Apply
the usual argument to the characteristic function of Gen. '

11. The set of Gödel numbers of tautologies is representable.

The set of tautologies is informally decidable since we can use the
method of truth tables. To obtain representability, we recast truth tables
in terms of Gödel numbers. There are several preliminary steps:

11.1 The relation R, such that 〈a, b〉 ∈ R iff a is the Gödel number
of a formula α and b is the Gödel number of a prime constituent of α,
is representable.

PROOF. 〈a, b〉 ∈ R ⇔ a is the Gödel number of a formula and one
of the following:

(i) a = b & (a)0 += h(().
(ii) (∃i < a)[a = 〈h((), h(¬)〉 ∗ i ∗ 〈(h())〉 and 〈i, b〉 ∈ R].

(iii) The analogue to (ii) but with →.

Apply the usual argument to the characteristic function of R. '

11.2 There is a representable function P such that for a formula
α, P("α) = 〈"β1, . . . , "βn〉, the list of Gödel numbers of prime con-
stituents of α, in numerical order.

PROOF. First define a function g for locating the next prime con-
stituent in 5a after 5y (where 5a is the formula α for which
a = "α).

g(a, y) = the least n such that either n = a + 1 or both
y < n and 〈a, n〉 ∈ R.

Next define a function h such that h(a, n) gives the (n+1)st prime
constituent of 5a (if there are that many):

h(a, 0) = g(a, 0) h(a, n + 1) = g(a, h(a, n)).

Chapter 3: Undecidability 231

Finally, let P(a) = ∗i<k〈h(a, i)〉 where k is the least number for
which h(a, k) > a. '

11.3 Say that the integer v encodes a truth assignment for α iff v is
a sequence number and lh v = lh P("α) and (∀i < lh v)(∃e < 2)(v)i =
〈(P("α))i , e〉. This is a representable condition on v and "α.

For example, if P("α) = 〈"β0, . . . , "βn〉, then

v = 〈〈"β0, e0〉, . . . , 〈"βn, en〉〉,

where each ei is 0 or 1. We will later need an upper bound for v in terms
of "α. The largest v is obtained when each ei is 1. Also "βi ≤ "α, so
that

v ≤ 〈〈"α, 1〉, . . . , 〈"α, 1〉〉
= ∗i<lh P("α)〈〈"α, 1〉〉.

11.4 There is a representable relation Tr such that for a formula α
and a v which encodes a truth assignment for α (or more), 〈"α, v〉 ∈ Tr
iff that truth assignment satisfies α.

PROOF. Exercise 2. '

Finally, α is a tautology iff α is a formula and for every v encoding a
truth assignment for α, 〈"α, v〉 ∈ Tr. The (English) quantifier on v can
be bounded by a representable function of "α, as explained in 11.3.

12. The set of Gödel numbers of formulas of the form ∀ x ϕ → ϕx
t ,

where t is a term substitutable for the variable x in ϕ, is representable.

PROOF. α is of this form iff (∃wff ϕ < α)(∃ variable x < α)(∃ term
t < α)[t is substitutable for x in ϕ and α = ∀ x ϕ → ϕx

t]. Here
“ϕ < α” means that "ϕ < "α. This is easily rewritten in terms of
Gödel numbers: a belongs to the set iff (∃ f < a)(∃x < a)(∃t < a)

[f is the Gödel number of a formula & x is the Gödel number of
a variable & t is the Gödel number of term and 〈 f, x, t〉 ∈ Sbl &

a = 〈h((), h(∀)〉 ∗ x ∗ f ∗ 〈h(→)〉 ∗ Sb(f, x, t) ∗ 〈h())〉].

13. The set of Gödel numbers of formulas of the form ∀ x(α→β)→
∀ x α → ∀ x β is representable.

PROOF. γ is of this form iff (∃ variable x < γ)(∃ formulas
α,β < γ) [γ = ∀ x(α → β) → ∀ x α → ∀ x β]. This is eas-
ily rewritten in terms of Gödel numbers, as in 12. '

14. The set of Gödel numbers of formulas of the form α → ∀ x α,
where x does not occur free in α, is representable.

PROOF. Similar to 13. '

15. The set of Gödel numbers of formulas of the form x = x is
representable.

232 A Mathematical Introduction to Logic

PROOF. Similar to 13. '
16. The set of Gödel numbers of formulas of the form x=y→α→α′,

where α is atomic and α′ is obtained from α by replacing x at zero or
more places by y, is representable.

PROOF. This is similar to 13, except for the relation of “partial
substitution.” Let 〈a, b, x, y〉 ∈ Psb iff x and y are Gödel numbers
of variables, a is the Gödel number of an atomic formula, b is a
sequence number of length lh a, and for all j < lh a, either (a) j =
(b) j or (a) j = x and (b) j = y. This relation is representable. '

17. The set of Gödel numbers of logical axioms is representable.

PROOF. α is a logical axiom iff ∃β ≤ α such that α is a generaliza-
tion of β and β is in one of the sets in items 11–16. '

18. For a finite set A of formulas,

{G(D) | D is a deduction from A}
is representable. In fact it is enough here for "A to be representable.

PROOF. A number d belongs to this set iff d is a sequence number
of positive length and for every i less than lh d, either

1. (d)i ∈ "A,
2. (d)i is the Gödel number of a logical axiom, or
3. (∃ j, k < i)[(d) j = 〈h(()〉 ∗ (d)k ∗ 〈h(→)〉∗(d)i ∗ 〈h())〉].

This is representable whenever "A is, as is certainly the case
for finite A. '

19. Any recursive relation is representable in Cn AE .

PROOF. Recall that the relation R is recursive iff there is some finite
consistent set A of sentences such that some formula ρ represents
R in Cn A. (There is no loss of generality in assuming that the
language has only finitely many parameters: those in the finite set
A, those in ρ, and 0, S, and ∀.) In the case of a unary relation R,
we have that a ∈ R iff the least D which is a deduction from A of
either ρ(Sa0) or ¬ ρ(Sa0) is, in fact, a deduction of the former.

More formally, a ∈ R iff the last component of f (a) is "ρ(Sa0),
where

f (a) = the least d such that d is in the set of item 18 and the
last component of d is either "ρ(Sa0) or "¬ ρ(Sa0).

For this (fixed) ρ, there always is such a d . '

Since the converse to item 19 is immediate, we have

THEOREM 34A A relation is recursive iff it is representable in the
theory Cn AE .

Chapter 3: Undecidability 233

Henceforth we will usually use the word “recursive” in preference
to “representable.”

COROLLARY 34B Any recursive relation is definable in N.

20. Now suppose we have a set A of sentences such that "A is re-
cursive. Then "Cn A need not be recursive (as we will show in the next
section). But we do have a way of defining Cn A from A:

a ∈ "Cn A iff ∃d[d is the number of a deduction from A
and the last component of d is a and a is the
Gödel number of a sentence]

The part in square brackets is recursive, by the proof to item 18. But we
cannot in general put any bound on the number d. The best we can say
is that "Cn A is the domain of a recursive relation (or, as we will say
later, is recursively enumerable).

Item 20 will play a key role our subsequent work. In particular, it
will later be restated as Theorem 35I.

21. If "A is recursive and Cn A is a complete theory, then "Cn A is
recursive.

In other words, a complete recursively axiomatizable theory is re-
cursive. This is the analogue to Corollary 25G, which asserts that a
complete axiomatizable theory is decidable.

The proof is essentially unchanged. Let (in the consistent case)

g(s) = the least d such that s is not the Gödel number of a sentence,
or d is in the set of item 18 and the last component of d is
either s or is 〈h((), h(¬)〉 ∗ s ∗ 〈h())〉.

Thus g("σ) is G of the least deduction of σ or (¬ σ) from A. And
s ∈ "Cn A iff s > 0 and the last component of g(s) is s. '

At this point we might reconsider the plausibility of Church’s thesis.
Suppose that the relation R is decidable. Then there is a finite list of
explicit instructions (a program) for the decision procedure. The pro-
cedure itself will presumably consist of certain atomic steps, which
are then performed repeatedly. (The reader familiar with computer pro-
gramming will know that a short program can still require much time
for its execution, but some commands will be utilized over and over.)
Any one atomic step is presumably very simple.

By devices akin to Gödel numbering, we can mirror the decision
procedure in the integers. The characteristic function of R can then be
put in the form

234 A Mathematical Introduction to Logic

K R(8a) = U [the least s such that

(i) (s)0 encodes the input 8a;
(ii) for all positive i < lh s, (s)i is obtained from (s)i−1 by perfor-

mance of the applicable atomic step;
(iii) the last component of s describes a terminal situation, at which

the computation is completed],

where U (the upshot function) is some simple function that extracts
from the last component of s the answer (affirmative or negative). The
recursiveness of R is now reduced to the recursiveness of U and of
the relations indicated in (i), (ii), and (iii). In special cases, such as
decision procedures provided by the register machines of Section 3.6,
the recursiveness of these components is easily verified. It seems most
improbable that any decision procedure will ever be regarded as effective
and yet will have components that are nonrecursive. For example, in (ii),
it seems that it ought to be possible to make each atomic step extremely
simple, and in particular to make each one recursive.

Exercises
1. Supply a proof for item 9 of this section.

2. Supply a proof for item 11.4 of this section.

3. Use Exercise 11 of Section 3.3 to give a new proof that the set of
Gödel numbers of terms is representable (item 2).

4. Let T be a consistent recursively axiomatizable theory (in a recur-
sively numbered language with 0 and S). Show that any relation
representable in T must be recursive.

SECTION 3.5
Incompleteness and Undecidability

In this section we reap the rewards of our work in Sections 3.3 and 3.4.
We have assigned Gödel numbers to expressions, and we have shown
that certain intuitively decidable relations on N (related to syntactical
notions about expressions) are representable in Cn AE .

Throughout this section we assume that the language in question is
the language of N. (This affects the meaning of “Cn” and “theory.”)

FIXED-POINT LEMMA Given any formula β in which only v1 occurs
free, we can find a sentence σ such that

AE $ [σ ↔β(S"σ0)].

We can think of σ as indirectly saying, “β is true of me.” Ac-
tually, of course, σ doesn’t say anything; it’s just a string of sym-
bols. And even when translated into English according to the intended

Chapter 3: Undecidability 235

structure N, it then talks of numbers and their successors and products
and so forth. It is only by virtue of our having associated numbers with
expressions that we can think of σ as referring to a formula, in this case
to σ itself.

PROOF. Let θ(v1, v2, v3) functionally represent in Cn AE a func-
tion whose value at 〈"α, n〉 is "(α(Sn0)). (See items 5 and 6 in
Section 3.4.) First consider the formula

∀ v3[θ(v1, v1, v3) → β(v3)]. (1)

(We may supposev3 is substitutable forv1 inβ. The above formula
has only v1 free. It defines in N a set to which "α belongs iff
"(α(S"α0)) is in the set defined by β.) Let q be the Gödel number
of (1). Let σ be

∀ v3[θ(Sq0, Sq0, v3) → β(v3)].

Thus σ is obtained from (1) by replacing v1, by Sq0. Notice that
σ does assert (under N) that "σ is in the set defined by β. But we
must check that

σ ↔ β(S"σ0) (2)

is a consequence of AE . Because θ functionally represents a func-
tion whose value at 〈q, q〉 is "σ , we have

AE $ ∀ v3[θ(Sq0, Sq0, v3) ↔ v3 = S"σ0]. (3)

We can obtain (2) as follows:
(→) It is clear (by looking at σ) that

σ $ θ(Sq0, Sq0, S"σ) → β(S"σ0).

And, by (3),

AE $ θ(Sq0, Sq0, S"σ0).

Hence

AE ; σ $ β(S"σ0),

which gives half of (2).
(←) The sentence in (3) implies

β(S"σ0) → [∀ v3(θ(Sq0, Sq0, v3) → β(v3))].

But the part in square brackets is just σ . '

(Sometimes the notation =σ > is used for S"σ0. In this notation, the
fixed-point lemma states that AE $ (σ ↔β(=σ >)).)

Our first application of this lemma does not concern the subtheory
Cn AE , and requires only the weaker fact that

|=N [σ ↔β(S"σ0)].

236 A Mathematical Introduction to Logic

TARSKI UNDEFINABILITY THEOREM (1933) The set "Th N is not defin-
able in N.

PROOF. Consider any formula β (which you suspect might define
"Th N). By the fixed-point lemma (applied to ¬β) we have a
sentence σ such that

|=N [σ ↔ ¬β(S"σ0)].

(If β did define "Th N, then σ would indirectly say “I am false.”)
Then

|=N σ ⇐⇒ +|=N β(S"σ0),

so either σ is true but (its Gödel number is) not in the set β defines,
or it is false and in that set. Either wayσ shows thatβ cannot define
"Th N. '

The above theorem gives at once the undecidability of the theory
of N:

COROLLARY 35A "Th N is not recursive.

PROOF. Any recursive set is (by Corollary 34B) definable in N.
'

GÖDEL INCOMPLETENESS THEOREM (1931) If A⊆ Th N and "A is re-
cursive, then Cn A is not a complete theory.

Thus there is no complete recursive axiomatization of Th N.

PROOF. Since A⊆ Th N, we have Cn A⊆ Th N. If Cn A is a com-
plete theory, then equality holds. But if Cn A is a complete theory,
then "Cn A is recursive (item 21 of the preceding section). And
by the above corollary, "Th N is not recursive. '

In particular, Cn AE is not a complete theory and so is not equal to
Th N. And the incompleteness would not be eliminated by the addition
of any recursive set of true axioms. (By a recursive set of sentences we
mean of course a set) for which ") is recursive.)

We can extract more information from the proof of Gödel’s theorem.
Suppose we have a particular recursive A ⊆ Th N in mind. Then by
item 20 in Section 3.4 we can find a formula β that defines "Cn A in
N. The sentence σ produced by the proof of Tarski’s theorem is (as we
noted there) a true sentence not in Cn A. This sentence asserts that "σ
does not belong to the set defined by β, i.e., it indirectly says, “I am
not a theorem of A.” Thus A ! σ , and of course A ! ¬ σ as well. This
way of viewing the proof is closer to Gödel’s original proof, which did
not involve a detour through Tarski’s theorem. For that matter, Gödel’s
statement of the theorem did not involve Th N; we have taken some
liberties in the labeling of theorems.

Chapter 3: Undecidability 237

Next we need a lemma which says (roughly) that one can add one
new axiom (and hence finitely many new axioms) to a recursive theory
without losing the property of recursiveness.

LEMMA 35B If "Cn) is recursive, then "Cn(); τ) is recursive.

PROOF. α ∈ Cn(); τ)⇔ (τ → α) ∈ Cn). Thus

a ∈ "Cn(); τ) ⇐⇒ a is the Gödel number of a sentence
and 〈h(()〉 ∗ "τ ∗ 〈h(→)〉 ∗ a ∗ 〈h())〉
is in "Cn).

This is recursive by the results of the preceding sections. '

THEOREM 35C (STRONG UNDECIDABILITY OF CN AE) Let T be a the-
ory such that T ∪ AE is consistent. Then "T is not recursive.

(Notice that because throughout this section the language in question
is the language of N, the word “theory” here means “theory in the
language of N.”)

PROOF. Let T ′ be the theory Cn(T ∪ AE). If "T is recursive, then
since AE is finite we can conclude by the above lemma that "T ′

is also recursive.
Suppose, then, that "T ′ is recursive and so is represented in

Cn AE by some formula β. From the fixed-point lemma we get a
sentence σ such that

AE $ [σ ↔ ¬β(S"σ0)]. (∗)
(Indirectly σ asserts, “I am not in T ′.”)

σ /∈ T ′ ⇒ "σ /∈ "T ′
⇒ AE $ ¬β(S"σ0)

⇒ AE $ σ by (∗)
⇒ σ ∈ T ′.

So we get σ ∈ T ′. But this, too, is untenable:

σ ∈ T ′ ⇒ "σ ∈ "T ′
⇒ AE $ β(S"σ0)

⇒ AE $ ¬ σ by (∗)
⇒ (¬ σ) ∈ T ′,

which contradicts the consistency of T ′. '

COROLLARY 35D Assume that ") is recursive and) ∪ AE is con-
sistent. Then Cn) is not a complete theory.

PROOF. A complete recursively axiomatizable theory is recursive
(item 21 of Section 3.4). But "Cn) is not recursive, by the above
theorem. '

This corollary is Gödel’s incompleteness theorem again, but with
truth in N replaced by consistency with AE .

238 A Mathematical Introduction to Logic

CHURCH’S THEOREM (1936) The set of Gödel numbers of valid sen-
tences (in the language of N) is not recursive.

PROOF. In the strong undecidability of Cn AE , take T to be the
smallest theory in the language, the set of valid sentences. '

The set of Gödel numbers of valid wffs is not recursive either, lest
the set of valid sentences be recursive.

This proof applies to the language of N. For a language with more
parameters, the set of valid sentences is still nonrecursive (lest its inter-
section with the language of N be recursive). Actually it is enough for
the language to contain at least one two-place predicate symbol. (See
Corollary 37G.) On the other hand, some lower bound on the language
is needed. If the language has ∀ as its only parameter (the language of
equality), then the set of valid formulas is decidable. (See Exercise 6.)
More generally, it is known that if the only parameters are ∀ and one-
place predicate symbols, then the set of valid formulas is decidable.

Recursive Enumerability
A relation on the natural numbers is said to be recursively enumerable
iff it is of the form

{8a | ∃b 〈8a, b〉 ∈ Q}

with Q recursive. Recursively enumerable relations play an important
role in logic. They constitute the formal counterpart to the effectively
enumerable relations (as will be explained presently).

(The standard abbreviation for “recursively enumerable” is “r.e.”
When the term “computable” is used instead of “recursive,” then one
speaks of computably enumerable — abbreviated c.e. — relations.)

Recursively enumerable relations are — like the recursive relations
— definable in N. If ϕ(v1, v2) defines in N a binary relation Q, then
∃ v2 ϕ(v1, v2) defines {a | ∃b 〈a, b〉 ∈ Q}.

THEOREM 35E The following conditions on an m-ary relation R are
equivalent:

1. R is recursively enumerable.
2. R is the domain of some recursive relation Q.
3. For some recursive (m + 1)-ary relation Q,

R = {〈a1, . . . , am〉 | ∃b 〈a1, . . . , am, b〉 ∈ Q}.

4. For some recursive (m + n)-ary relation Q,

R = {〈a1, . . . , am〉 | ∃b1, . . . , bn 〈a1, . . . , am, b1, . . . , bn〉 ∈ Q}.

PROOF. By definition 1 and 3 are equivalent. Also 2 and 3 are equiv-
alent by our definition (in Chapter 0) of domain and (m+1)-tuple.

Chapter 3: Undecidability 239

Clearly 3 implies 4. So we have only to show that 4 implies 3.
This is because

∃b1, . . . , bn 〈a1, . . . , am, b1, . . . , bn〉 ∈ Q
iff ∃c 〈a1, . . . , am, (c)0, . . . , (c)n−1〉 ∈ Q

and

{〈a1 . . . , am, c〉 | 〈a1, . . . , am, (c)0, . . . , (c)n−1〉 ∈ Q}

is recursive whenever Q is recursive. (Here we have used our
sequence decoding function to collapse a string of quantifiers into
a single one.) '

By part 4 of this theorem, R is recursively enumerable iff it is defin-
able in N by a formula ∃ x1 · · · ∃ xnϕ, where ϕ is numeralwise deter-
mined by AE . In fact, we can require here that ϕ be quantifier-free; this
result was proved in 1961 (with exponentiation) and in 1970 (without
exponentiation). The proofs involve some number theory; we will omit
them here.

Notice that any recursive relation is also recursively enumerable. For
if R is recursive, then it is defined in N by a formula ∃ x1 · · · ∃ xnϕ,
where ϕ is numeralwise determined by AE and x1, . . . , xn do not occur
in ϕ.

THEOREM 35F A relation is recursive iff both it and its complement
are recursively enumerable.

This is the formal counterpart to the fact (cf. Theorem 17F) that a
relation is decidable iff both it and its complement can be effectively
enumerated.

PROOF. If a relation is recursive, then so is its complement, whence
both are recursively enumerable.

Conversely, suppose that both P and its complement are re-
cursively enumerable; thus for any 8a,

8a ∈ P ⇔ ∃b 〈8a, b〉 ∈ Q
8a /∈ P ⇔ ∃b 〈8a, b〉 ∈ R

for some recursive Q and R. Let

f (8a) = the least b such that either 〈8a, b〉 ∈ Q or 〈8a, b〉 ∈ R.

Such a number b always exists, and f is recursive. Finally,

8a ∈ P ⇔ 〈8a, f (8a)〉 ∈ Q,

so P is recursive. '

The recursively enumerable relations constitute the formal counter-
part of the effectively enumerable relations. For we have the following

240 A Mathematical Introduction to Logic

informal result, paralleling a characterization of recursive enumerability
given by Theorem 35E.

!LEMMA 35G A relation is effectively enumerable iff it is the do-
main of a decidable relation.

PROOF. Assume that Q is effectively enumerated by some proce-
dure. Then 8a ∈ Q iff ∃n[8a appears in the enumeration in n steps].
The relation defined in square brackets is decidable and has do-
main Q.

Conversely, to enumerate {〈a, b〉 | ∃n〈a, b, n〉 ∈ R} for de-
cidable R, we check to see if 〈(m)0, (m)1, (m)2〉 ∈ R for m =
0, 1, 2, Whenever the answer is affirmative, we place 〈(m)0,

(m)1〉 on the output list. '
!COROLLARY 35H (CHURCH’S THESIS, SECOND FORM) A relation is

effectively enumerable iff it is recursively enumerable.

PROOF. By identifying the class of decidable relations with the class
of recursive relations, we automatically identify the domains of
decidable relations with domains of recursive relations. '

The second form of Church’s thesis is, in fact, equivalent to the first
form. To prove the first form from the second, we use Theorems 35F
and 17F.

We have already shown that a recursively axiomatizable theory is
recursively enumerable, but using different words. We restate the result
here, as it indicates the role recursive enumerability plays in logic.

THEOREM 35I If A is a set of sentences such that "A is recursive,
then "Cn A is recursively enumerable.

PROOF. Item 20 of Section 3.4. '

In particular, "Cn AE is recursively enumerable, but (by Theorem
35C) it is not recursive. In the next section, we will see other examples
of recursively enumerable sets that are not recursive.

This theorem is the precise counterpart of the informal fact that a
theory with a decidable set of axioms is effectively enumerable (Corol-
laries 25F and 26I). It indicates the gap between what is provable in
an axiomatic theory and what is true in the intended structure. With
a recursive set of axioms, all we can possibly obtain is a recursively
enumerable set of consequences. But by Tarski’s theorem, Th N is not
even definable in N, much less recursively enumerable.

Even if we expand the language or add new axioms, the same
phenomenon is present. As long as we can recursively distinguish de-
ductions from nondeductions, the set of theorems can be only recur-
sively enumerable. For example, the set of sentences of number theory
provable in your favorite system of axiomatic set theory is recursively

Chapter 3: Undecidability 241

enumerable. Furthermore, this set includes AE and is consistent (un-
less you have very strange favorites). It follows that this set theory is
nonrecursive and incomplete. (This topic is discussed more carefully in
Section 3.7.)

Weak Representability
Consider a recursively enumerable set Q, where

a ∈ Q ⇔ ∃b 〈a, b〉 ∈ R

for recursive R. We know there is a formula ρ that represents R in
Cn AE . Consequently, the formula ∃v2ρ defines Q in N. This formula
cannot represent Q in Cn AE unless Q is recursive. But it can come
halfway.

a ∈ Q ⇒ 〈a, b〉 ∈ R for some b
⇒ AE $ ρ(Sa0, Sb0) for some b
⇒ AE $ ∃ v2ρ(Sa0, v2)

a /∈ Q ⇒ 〈a, b〉 /∈ R for all b
⇒ AE $ ¬ ρ(Sa0, Sb0) for all b
⇒ AE ! ∃ v2ρ(Sa0, v2)

The last step is justified by the fact that if AE $ ¬ϕ(Sb0) for all
b, then AE ! ∃ x ϕ(x). (The term ω-consistency is given to this prop-
erty.) For it is impossible for ∃ x ϕ(x), ¬ϕ(S00), ¬ϕ(S10), . . . all to be
true in N.

Thus we have

a ∈ Q ⇔ AE $ ∃ v2ρ(Sa0, v2).

It will be convenient to formulate a definition of this half of repre-
sentability.

DEFINITION. Let Q be an n-ary relation on N, ψ a formula in which
only v1, . . . , vn occur free. Then ψ weakly represents Q in a
theory T iff for every a1, . . . , an in N,

〈a1, . . . , an〉 ∈ Q ⇔ ψ(Sa1 0, . . . , San 0) ∈ T .

Observe that if Q is representable in a consistent theory T , then Q
is also weakly representable in T .

THEOREM 35J A relation is weakly representable in Cn AE iff it is
recursively enumerable.

PROOF. We just showed that a recursively enumerable unary rela-
tion Q is weakly representable in Cn AE ; the same proof applies
to n-ary Q with only notational changes. Conversely, let Q be

242 A Mathematical Introduction to Logic

weakly represented by ψ in Cn AE . Then

〈a1, . . . , an〉 ∈ Q ⇔ ∃D [D is a deduction of ψ(Sa1 0, . . . , San 0)

from the axioms AE]
⇔ ∃d 〈d, f (a1, . . . , an)〉 ∈ P

for a certain recursive function f and recursive relation P . '

Arithmetical Hierarchy
Define a relation on the natural numbers to be arithmetical iff it is
definable in N. But some arithmetical relations are, in a sense, more
definable than others. We can organize the arithmetical relations into a
hierarchy according to how definable the relations are.

Let)1 be the class of recursively enumerable relations; these rela-
tions are “one quantifier away” from recursiveness. Extending this idea,
we define the class of)k relations and the class of 2k relations. For
example, the first few classes consist of relations of the form shown in
the second column:

)1 : {8a | ∃b 〈8a, b〉 ∈ R}, R recursive.
21 : {8a | ∀b 〈8a, b〉 ∈ R}, R recursive.
)2 : {8a | ∃c∀b 〈8a, b, c〉 ∈ R}, R recursive.
22 : {8a | ∀c∃b 〈8a, b, c〉 ∈ R}, R recursive.

In general, a relation Q is in 2k iff it is of the form

{8a | ∀b1∃b2 · · · "bk 〈8a, 8b〉 ∈ R}

for a recursive relation R. Here “"” is to be replaced by “∀” if k is odd
and by “∃” if k is even. Similarly, Q is in)k iff it has the form

{8a | ∃b1∀b2 · · · "bk 〈8a, 8b〉 ∈ R}

for recursive R, where now “"” is replaced by “∃” if k is odd and by
“∀” if k is even.

The classes)k and 2k can also be defined by recursion on k.)1 is
the class of recursively enumerable relations. Next, a relation belongs
to 2k iff its complement is in)k . And a relation is in)k+1 iff it is the
domain of a relation in 2k . (We can even start from k = 0, by letting
)0 be the class of recursive relations.)

EXAMPLE. The set of Gödel numbers of formulas numeralwise
determined by AE is in 22.

PROOF. a belongs to this set iff [a is the Gödel number of a for-
mula α] and ∀b∃d[d is G of a deduction from AE either of
α(S(b)0 0, S(b)1 0, . . .) or of the negation of this sentence]. By the
technique of Section 3.4, we can show that the phrases in
square brackets define recursive relations. By using the English

Chapter 3: Undecidability 243

counterpart to prenex form, we obtain the desired form,

{a | ∀b∃d 〈a, b, d〉 ∈ R},

with R recursive. '

One more bit of notation: Let 61 be the class of recursive relations.
Then our earlier result (Theorem 35F) stating that a relation is recursive
iff both it and its complement are recursively enumerable can now be
stated by the equation

61 =)1 ∩21.

Since this equation holds, we proceed to define 6n for n > 1 by the
analogous equation,

6n =)n ∩2n.

The following inclusions hold:

The case 61 ⊆)1 was mentioned previously (cf. Theorem 35F); its
proof hinged on the possibility of “vacuous quantification.” The proofs
of the other cases are conceptually the same. If x does not occur in
ϕ, then ϕ, ∀ x ϕ, and ∃ x ϕ are all equivalent. For example, a rela-
tion in)1 is defined by a formula ∃ y ϕ, where ϕ is numeralwise de-
termined by AE . But the same relation is defined by ∃ y ∀ x ϕ and
∀ x ∃ y ϕ (where x does not occur in ϕ). Hence the relation is also in)2

and 22.
It is also true that all the inclusions shown are proper inclusions,

i.e., equality does not hold. But we will not prove this fact here. The
inclusions are shown pictorially in Fig. 10.

The class of arithmetical relations equals
⋃

k)k and also
⋃

k 2k . For
example, any relation in)2 is arithmetical, being defined in N by a for-
mula ∃ x ∀ y ϕ, where ϕ is numeralwise determined by AE . Conversely,
any arithmetical relation is defined in N by some prenex formula. The
quantifier-free part of this prenex formula defines a recursive relation
(since quantifier-free formulas are numeralwise determined by AE).
Consequently, the defined relation falls somewhere in the hierarchy.
The technique of “collapsing” ∃∃ · · · ∃ quantifiers used in the proof of
Theorem 35E (and its dual technique for ∀∀ · · ·∀) can be used to good
advantage here.

244 A Mathematical Introduction to Logic

Figure 10. Picture of PN.

Thus we have the following result, which relates definability in N to
the hierarchy we have just built up from the recursive relations:

THEOREM 35K A relation on the natural numbers is arithmetical (i.e.,
definable in N) iff it is in)k for some k, and this property in turn
is equivalent to being in 2l for some l.

In particular, any recursively enumerable relation is arithmetical, as
noted previously.

There are certain tricks which are useful in locating specific arith-
metical relations in the hierarchy. For example, let A be the set of Gödel
numbers of formulas α such that for some n,

AE $ α(Sn0) and (∀i < n) AE $ ¬α(Si 0).

Then a ∈ A iff [a is the Gödel of a wff α] and ∃n∃D[D is a deduction
from AE of α(Sn0)] and (∀i < n)(∃Di)[Di is a deduction from AE of
¬α(Si 0)]. The parts in square brackets are recursive so we count the
remaining quantifiers. The bounded quantifier “∀i < n” need not be
counted. For we have

(∀i < n)(∃d)〈d, i〉 ∈ P ⇔ (∃d)(∀i < n)〈(d)i , i〉 ∈ P.

Use of this fact lets us push the bounded quantifier inward until it merges
with the recursive part. Consequently, A ∈)1.

The following theorem generalizes Theorem 35I.

Chapter 3: Undecidability 245

THEOREM 35L Let A be a set of sentences such that "A is in)k ,
where k > 0. Then "Cn A is also in)k .

PROOF. Return to the proofs of items 18 and 20 of Section 3.4. We
had there:

a ∈ "Cn A⇔ a is the Gödel number of a sentence and ∃d[d is a
sequence number and the last component of d is a and
for every i less than lh d, either (1) (d)i ∈ "A, (2) (d)i

is the Gödel number of a logical axiom, or (3) for some
j and l less than i, (d) j = 〈h(()〉 ∗ (d)l ∗ 〈h(→)〉
∗(d)i ∗ 〈h())〉].

Since "A ∈)k in (1) we must replace “(d)i ∈ "A” by something
of the form

∃b1∀b2 · · · "bk〈(d)i , 8b〉 ∈ Q

for recursive Q. It remains to convert the result into an English
prenex expression in)k form. We suggest that the reader set k = 2
and write out this expression; the device used in the preceding
example will help. '

Exercises
1. Show that there is no recursive set R such that "Cn AE ⊆ R and
"{σ | (¬ σ) ∈ Cn AE } ⊆ R, the complement of R. (This result can
be stated: The theorems of AE cannot be recursively separated from
the refutable sentences.) Suggestion: Make a sentenceσ saying “My
Gödel number is not in R.” Look to see where "σ is.

2. Let A be a recursive set of sentences in a recursively numbered
language with 0 and S. Assume that every recursive relation is rep-
resentable in the theory Cn A. Further assume that A isω-consistent;
i.e., there is no formula ϕ such that A $ ∃ x ϕ(x) and for all a ∈ N,
A $ ¬ϕ(Sa0). Construct a sentence σ indirectly asserting that it
is not a theorem of A, and show that neither A $ σ nor A $ ¬ σ .
Suggestion: See Section 3.0.

Remark: This is a version of the incompleteness theorem that
is closer to Gödel’s original 1931 argument. Note that there is no
requirement that the axioms A be true in N. Nor is it required that
A include AE ; the fixed-point argument can still be applied.

3. Let T be a theory in a recursively numbered language (with 0 and S).
Assume that all recursive subsets of N are weakly representable in
T . Show that "T is not recursive. Suggestion: Construct a binary
relation P such that any weakly representable subset of N equals
{b | 〈a, b〉 ∈ P} for some a, and such that P is recursive if "T is.

246 A Mathematical Introduction to Logic

Consider the set H = {b | 〈b, b〉 /∈ P}. See Section 3.0. The argu-
ment given there for the “diagonal approach” in the special case
T = Th N can be adapted here.

Remark: This exercise gives a version of the result, “Any suffi-
ciently strong theory is undecidable.”

4. Show that there exist 2ℵ0 nonisomorphic countable models of Th N.
Suggestion: For each set A of primes, make a model having an
element divisible by exactly the primes in A.

5. (Lindenbaum) Let T be a decidable consistent theory (in a rea-
sonable language). Show that T can be extended to a complete
decidable consistent theory T ′. Suggestion: Examine in turn each
sentence σ ; add either σ or ¬ σ to T . But take care to maintain
decidability.

6. Consider the language of equality, having ∀ as its only parameter.
Let λn be the translation of “There are at least n things,” cf. the
proof of Theorem 26A. Call a formula simple iff it can be built up
from atomic formulas and the λn’s by use of connective symbols
(but no quantifiers). Show how, given any formula in the language
of equality, we can find a logically equivalent simple formula. Sug-
gestion: View this as an elimination-of-quantifiers result (where the
quantifiers in λn do not count). Use Theorem 31F.

7. (a) Assume that A and B are subsets of N belonging to)k (or
2k). Show that A ∪ B and A ∩ B also belong to)k (or 2k ,
respectively).

(b) Assume that A is in)k (or 2k) and that the functions f1, . . . ,

fm are recursive. Show that

{8a : 〈 f1(8a), . . . , fm(8a)〉 ∈ A}

is also in)k (or 2k , respectively). Suggestion: First do this for
)1. Then observe that the argument used can be generalized.

8. Let T be a theory in a recursively numbered language (with 0 and
S). Let n be fixed, n ≥ 0. Assume that all subsets of N in)n are
weakly representable in T . Show that "T is not in2n . (Observe that
Exercise 3 is a special case of this, wherein n = 0. The suggestions
given there carry over to the present case.)

9. Show that

{"σ | AE ; σ is ω-consistent}

(see Exercise 2) is a 23 set.

10. The theory Cn AE has many complete extensions, of which Th N
is but one. How many? That is, what is the cardinality of the set of
complete theories (in the language) that extend AE ?

Chapter 3: Undecidability 247

SECTION 3.6
Recursive Functions

We have used recursive functions (i.e., functions that, when viewed
as relations, are recursive) to obtain theorems of incompleteness and
undecidability of theories. But the class of recursive functions is also
an interesting class in its own right, and in this section we will indicate
a few of its properties.

Recall that by Church’s thesis, a function is recursive iff it is com-
putable by an effective procedure (page 210). This fact is responsi-
ble for much of the interest in recursive functions. At the same time,
this fact makes possible an intuitive understanding of recursiveness,
which greatly facilitates the study of the subject. Suppose, for exam-
ple, that you are suddenly asked whether or not the inverse of a re-
cursive permutation of N is recursive. Before trying to prove this, you
should first ask yourself the intuitive counterpart: Is the inverse of a
computable permutation f also computable? You then — one hopes —
perceive that the answer is affirmative. To compute f −1(3), you can
compute f (0), f (1), . . . until for some k it is found that f (k) = 3.
Then f −1(3) = k. Having done this, you have gained two advan-
tages. For one, you feel certain that the answer to the question re-
garding recursive permutations must also be affirmative. And secondly,
you have a good outline of how to prove this; the proof is found
by making rigorous the intuitive proof. This strategy for approach-
ing problems involving recursiveness will be very useful in this
section.

Before proceeding, it might be wise to summarize here some of the
facts about recursive functions we have already established. We know
that a function f is recursive iff it (as a relation) is representable in
Cn AE , by Theorem 34A. Consequently, every recursive function is
weakly representable in this theory.

In Section 3.3 a repertoire of recursive functions was developed. In
addition, it was shown that the class of recursive functions is closed
under certain operations, such as composition (Theorem 33L) and the
“least-zero” operator (Theorem 33M).

We also know of a few functions that are not recursive. There are
uncountably many (to be exact, 2ℵ0) functions from Nm into N altogether,
but only countably many of them can be recursive. So an abundance of
nonrecursive functions exists, despite the fact that the most commonly
met functions (such as the polynomials) were shown in Section 3.3 to be
recursive. By catalog item 1 of Section 3.3, the characteristic function of
a nonrecursive set is nonrecursive. For example, if f (a) = 1 whenever
a is the Gödel number of a member of Cn AE and f (a) = 0 otherwise,
then f is not recursive.

248 A Mathematical Introduction to Logic

Normal Form
For any computable function, such as the polynomial function a2+3a+
5, one can in principle design a digital computer into which one feeds
a and out of which comes a2 + 3a + 5 (Fig. 11). But if you then want
a different function, you must build a different computer. (Or change
the wiring in the one you have.) It was recognized long ago that it is
usually more desirable to build a single general-purpose stored-program
computer. Into this you feed both a and the program for computing your
polynomial (Fig. 12). This “universal” computer requires two inputs,
and it will compute any one-place computable function (if supplied
with enough memory space), provided that the right program is fed
into it. Of course, there are some programs that do not produce any
function on N, as many a programmer has, to his sorrow, discovered.
(Such programs produce malfunctions instead!)

Figure 11. Special-purpose
computer.

Figure 12. General-purpose computer.

In this subsection and the next, we will repeat what has just been
said, but with recursive functions and with proofs. For our universal
computer we will have a recursive relation T1 and a recursive function
U . Then for any recursive f : N→ N there will exist an e (analogous
to the program) such that

f (a) = U (the least k such that 〈e, a, k〉 ∈ T1)

= U (µk 〈e, a, k〉 ∈ T1),

where the second equation is to be understood as being an abbreviation
for the first. Actually e will here be the Gödel number of a formula

Chapter 3: Undecidability 249

ϕ that represents (or at least weakly represents) f in Cn AE . And the
numbers k for which 〈e, a, k〉 ∈ T1 will encode both f (a) and G of a
deduction from AE of ϕ(Sa0, S f (a)0).

DEFINITION. For each positive integer m, let Tm be the (m + 2)-ary
relation to which an (m + 2)-tuple 〈e, a1, . . . , am, k〉 belongs iff

(i) e is the Gödel number of a formula ϕ in which only v1, . . . ,

vm, vm+1 occur free;
(ii) k is a sequence number of length 2, and (k)0 is G of a

deduction from AE of ϕ(Sa1 0, . . . , Sam 0, S(k)1 0).

The idea here is that for any one-place recursive function f we
can first of all take e to be the Gödel number of a formula ϕ weakly
representing f (as a relation). Then we know that for any a and b,

AE $ ϕ(Sa0, Sb0) iff b = f (a).

So any number k meeting clause (ii) of the definition must equal
〈(k)0, f (a)〉, where (k)0 is G of a deduction of ϕ(Sa0, S f (a)0) from
AE . (We have departed from the usual definition of Tm here by not
requiring that k be as small as possible.)

Take for the “upshot” function U the function

U (k) = (k)1.

This U is recursive and in the situation described in the preceding para-
graph we have U (k) = f (a).

LEMMA 36A For each m, the relation Tm is recursive.

PROOF, FOR m = 2. 〈e, a1, a2, k〉 ∈ T2 iff e is the Gödel number of
a formula, "(∀ v1 ∀ v2 ∀ v3) ∗ e is the Gödel number of a sentence,
k is a sequence number of length 2, and (k)0 is G of a deduction
from AE of

Sb(Sb(Sb(e, "v1, g(a1)), "v2, g(a2)), "v3, g((k)1)),

where g(n) = "Sn0. From Section 3.4 we know all this to be
recursive. '

THEOREM 36B (a) For any recursive function f : Nm → N, there is
an e such that for all a1, . . . , am ,

f (a1, . . . , am) = U (µk 〈e, a1, . . . , am, k〉 ∈ Tm).

(In particular, such a number k exists.)
(b) Conversely, for any e such that ∀a1 · · · am∃k 〈e, a1, . . . ,

am, k〉 ∈ Tm , the function whose value at a1, . . . , am is U (µk〈e,
a1, . . . , am, k〉 ∈ Tm) is recursive.

250 A Mathematical Introduction to Logic

PROOF. Part (b) follows immediately from the fact that U and Tm

are recursive. As for part (a), we take for e the Gödel number of
a formula ϕ weakly representing f in Cn AE . Given any 8a, we
know that AE $ ϕ(Sa1 0, . . . , Sam 0, S f (8a)0). If we let d be G of a
deduction from AE of this sentence, then 〈e, 8a, 〈d, f (8a)〉〉 ∈ Tm .
Hence there is some k for which 〈e, 8a, k〉 ∈ Tm . And for any such
k, we know that AE $ ϕ(Sa1 0, . . . , Sam 0, S(k)1 0), since (k)0 is G
of a deduction. Consequently, U (k) = (k)1 = f (8a) by our choice
of ϕ. Thus we have U (µk 〈e, 8a, k〉 ∈ Tm) = f (8a). '

This theorem, due to Kleene in 1936, shows that every recursive
function is representable in the normal form

f (8a) = U (µk 〈e, 8a, k〉 ∈ Tm).

Thus a computing machine able to calculate U and the characteristic
function of T1 is a “universal” computer for one-place recursive func-
tions. The input e corresponds to the program, and it must be chosen
with care if any output is to result (i.e., if there is to be any k such that
〈e, a, k〉 ∈ T1).

Recursive Partial Functions
The theory of recursive functions becomes more natural if we consider
the broader context of partial functions.

DEFINITION. An m-place partial function is a function f with
dom f ⊆ Nm and ran f ⊆ N. If 8a /∈ dom f , then f (8a) is said to
be undefined. If dom f = Nm , then f is said to be total.

The reader is hereby cautioned against reading too much into our
choice of the words “partial” and “total” (or the word “undefined,” for
that matter). A partial function f may or may not be total; the words
“partial” and “total” are not antonyms.

We will begin by looking at those partial functions that are informally
computable.

'DEFINITION. An m-place partial function f is computable iff there
is an effective procedure such that (a) given an m-tuple 8a in dom f ,
the procedure produces f (8a); and (b) given an m-tuple 8a not in
dom f , the procedure produces no output at all.

This definition extends the one previously given for total functions.
At that time we proved a result (Theorem 33H), part of which generalizes
to partial functions.

!THEOREM 36C An m-place partial function f is computable iff f
(as an (m + 1)-ary relation) is effectively enumerable.

Chapter 3: Undecidability 251

PROOF. The proof is reminiscent of the proof of another result,
Theorem 17E. First suppose we have a way of effectively enu-
merating f . Given an m-tuple 8a, we examine the listing of the
relation as the procedure churns it out. If and when an (m + 1)-
tuple beginning with 8a appears, we print out its last component
as f (8a).

Conversely, assume that f is computable, and first suppose
that f is a one-place partial function. We can enumerate f as a
relation by the following procedure:

1. Spend one minute calculating f (0).
2. Spend two minutes calculating f (0), then two minutes cal-

culating f (1).
3. Spend three minutes calculating f (0), three minutes calcu-

lating f (1), and three minutes calculating f (2).

And so forth. Of course, whenever one of these calculations
produces any output, we place the corresponding pair on the list
of members of the relation f .

For a computable m-place partial function, instead of calcu-
lating the value of f at 0, 1, 2, . . . we calculate its value at 〈(0)0,
. . . , (0)m−1〉, 〈(1)0, . . . , (1)m−1〉, 〈(2)0, . . . , (2)m−1〉, etc. '

In the case of a computable total function f , we were also able to
conclude that f was a decidable relation. But this may fail for a nontotal
f . For example, let

f (a) =
{

0 if a ∈ "Cn AE ,

undefined otherwise.

Then f is computable. (We compute f (a) by enumerating "Cn AE

and looking for a.) But f is not a decidable relation, lest "Cn AE be
decidable. On the basis of this example and the foregoing theorem,
we select our definition for the precise counterpart of the concept of
computable partial function.

DEFINITION. A recursive partial function is a partial function that,
as a relation, is recursively enumerable.

The reader should be warned that “recursive partial function” is an
indivisible phrase; a recursive partial function need not be (as relation)
recursive. But at least for a total function our terminology is consistent
with past practice.

THEOREM 36D Let f : Nm → N be a total function. Then f is a
recursive partial function iff f is recursive (as a relation).

PROOF. If f is recursive (as a relation), then a fortiori f is re-
cursively enumerable. Conversely, suppose that f is recursively

252 A Mathematical Introduction to Logic

enumerable. Since f is total,

f (8a) += b ⇐⇒ ∃c[f (8a) = c & b += c].

The form of the right-hand side shows that the complement of
f is also recursively enumerable. Thus by Theorem 35F, f is
recursive. '

In first discussing normal form results, we pictured a two-input de-
vice (Fig. 13). For any computable partial function, there is some pro-
gram that computes it. But now the converse holds: Any program will
produce some computable partial function. Of course many programs
will produce the empty function, but that is a computable partial func-
tion.

Figure 13. Computer with program for f .

For the recursive partial functions the same considerations apply.
Define, for each e ∈ N, the m-place partial function [[e]]m by

[[e]]m(a1, . . . , am) = U (µk 〈e, a1, . . . , am, k〉 ∈ Tm).

The right-hand side is to be understood as undefined if there is no such
k. In other words,

8a ∈ dom[[e]]m iff ∃k 〈e, a1, . . . , am, k〉 ∈ Tm,

in which case the value [[e]]m(8a) is given by the above equation.
The following theorem is an improved version of Theorem 36B:

NORMAL FORM THEOREM (KLEENE, 1943) (a) The (m + 1)-place par-
tial function whose value at 〈e, a1, . . . , am〉 is [[e]]m(a1, . . . , am)

is a recursive partial function.
(b) For each e≥ 0, [[e]]m is an m-place recursive partial

function.
(c) Any m-place recursive partial function equals [[e]]m for

some e.

PROOF. (a) We have

[[e]]m(8a) = b⇔∃k[〈e, 8a, k〉 ∈ Tm & U(k) = b & (∀k ′< k)〈e,8a,k ′〉 /∈ Tm].

Chapter 3: Undecidability 253

The part in square brackets is recursive, so the function (as a
relation) is recursively enumerable.

(b) The above proof still applies, e now being held fixed.
(c) Let f be an m-place recursive partial function, so that

{〈8a, b〉 | f (8a) = b} is recursively enumerable. Hence there is a
formula ϕ that weakly represents this relation in Cn AE . We claim
that f = [["ϕ]]m . For if f (8a) = b, then AE $ ϕ(Sa1 0, . . . , Sam 0,

Sb0). Hence there is a k such that 〈"ϕ, 8a, k〉 ∈ Tm . For any such
k, U (k) = b, since AE !ϕ(Sa1 0, . . . , Sam 0, Sc0) for c += b. Sim-
ilarly, if f (8a) is undefined, then AE !ϕ(Sa1 0, . . . , Sam 0, Sc0) for
any c, whence [["ϕ]]m is undefined here also. '

Part (a) of the normal form theorem (in the case m = 1) tells us that
the function 4 defined by the equation

4(e, a) = [[e]]1(a) = U (µk 〈e, a, k〉 ∈ T1)

is a recursive partial function. And part (c) tells us that4 is “universal”
in the sense that we can get any one-place recursive partial function
from 4 by holding the first variable fixed at a suitable value.

The informal counterpart of the universal function4 is the computer
operating system. The operating system takes two inputs, the program
e and the data a. And it runs the program on that data. But the operating
system itself is computable as a two-place partial function.

The proof of normal form theorem gives us a way to compute the
values of our “operating system” 4, albeit in an extremely inefficient
way. The straightforward idea of “looking at the program e and doing
what it says to the data a” has been obscured, to say the least.

The function [[e]]m is said to be the m-place recursive partial function
with index e. Part (c) of the normal form theorem tells us that every
recursive partial function has an index. The proof shows that the Gödel
number of a formula weakly representing a function is always an index
of the function.

We now have a convenient indexing [[0]]1, [[1]]1, . . . of all the one-
place recursive partial functions. Function [[e]]1 is produced by the “in-
structions” encoded by e. Of course, that function will be empty unless
e is the Gödel number of a formula and certain other conditions are met.

All the recursive total functions are included in our enumeration of
recursive partial functions. But we cannot tell effectively by looking at
a number e whether or not it is the index of a total function:

THEOREM 36E {e | [[e]]1 is total} is not recursive.

PROOF. Call this set A. Consider the function defined by

f (a) =
{

[[a]]1(a) + 1 if a ∈ A,

0 if a /∈ A.

254 A Mathematical Introduction to Logic

Then f , by its construction, is total. Is it recursive? We have

f (a) = b ⇐⇒ [(a /∈ A & b = 0) or (a ∈ A & ∃k(〈a, a, k〉 ∈ T1

& b = U (k) + 1 & (∀ j < k)〈a, a, j〉 /∈ T1))].

Thus if A is recursive, then f (as a relation) is recursively enu-
merable. But then f is a total recursive function, and so equals
[[e]]1 for some e ∈ A. But f (e) = [[e]]1(e)+1, so we cannot have
f = [[e]]1. This contradiction shows that A cannot be recursive.

'

It is not hard to show that A is in 22. This classification is the best
possible, as it can be shown that A is not in)2.

THEOREM 36F The set

K = {a | [[a]]1(a) is defined}

is recursively enumerable but not recursive.

PROOF. K is recursively enumerable, since a ∈ K ⇔ ∃ k 〈a, a, k〉
∈ T1. To see that K cannot be recursive, consider the function
defined by

g(a) =
{

[[a]]1(a) + 1 if a ∈ K ,

0 if a /∈ K .

This is a total function. Exactly as in the preceding theorem, we
have that K cannot be recursive. '

COROLLARY 36G (UNSOLVABILITY OF THE HALTING PROBLEM) The re-
lation

{〈e, a〉 | [[e]]1(a) is defined}

is not recursive.

PROOF. We have a ∈ K iff the pair 〈a, a〉 belongs to this relation.
(Thus the problem of membership in K is “reducible” to the halt-
ing problem.) If this relation were recursive, then K would be,
which is not the case. '

This corollary tells us that there is no effective way to tell, given a
program e for a recursive partial function and an input a, whether or not
the function [[e]]1 is defined at a.

We can obtain an indexing of the recursively enumerable relations
by using the following characterization.

THEOREM 36H A relation on N is recursively enumerable iff it is
the domain of some recursive partial function.

PROOF. The domain of any recursively enumerable relation is also
recursively enumerable; cf. part 4 of Theorem 35E. In particular,

Chapter 3: Undecidability 255

the domain of any recursive partial function is recursively enu-
merable.

Conversely, let Q be any recursively enumerable relation,
where

8a = Q ⇔ ∃b 〈8a, b〉 ∈ R

with R recursive. Let

f (8a) = µb 〈8a, b〉 ∈ R;
i.e.,

f (8a) = b ⇐⇒ 〈8a, b〉 ∈ R & (∀c < b)〈8a, c〉 /∈ R.

Then f , as a relation, is recursive. Hence f is a recursive partial
function. Clearly its domain is Q. '

Thus our indexing of the recursive partial functions induces an in-
dexing of the recursively enumerable relations. Define

We = dom[[e]]1.

Then W0, W1, W2, . . . is a list of all recursively enumerable subsets
of N. In Theorem 36E we showed that {e | We = N} is not recursive.
Similarly, Theorem 36F asserts that {e | e ∈ We} is not recursive. Define
a relation Q by

Q = {〈e, a〉 | a ∈ We}.

Then Q is recursively enumerable, since 〈e, a〉 ∈ Q⇔ ∃ k 〈e, a, k〉 ∈ T1.
Furthermore, Q is universal for recursively enumerable sets, in the sense
that for any recursively enumerable A ⊆ N there is some e such that
A = {a | 〈e, a〉 ∈ Q}. The unsolvability of the halting problem can be
stated: Q is not recursive.

We can apply the classical diagonal argument to “diagonalize out”
of the list W0, W1, W2, . . . of recursively enumerable sets. The set
{a | a /∈ Wa} cannot coincide with any Wq . In fact this set is exactly K ,
the complement of the set K in Theorem 36F. Because

q ∈ K ⇐⇒ q /∈ Wq ,

the set K cannot equal any Wq ; the number q witnesses the inequality
of the two sets K and Wq .

And there is more: Whenever Wq is a recursively enumerable subset
of K , that is, Wq ⊆ K , then we can produce a number in K that is not
in Wq . Such a number is q itself. To see this, observe that in the line
displayed in the preceding paragraph we cannot have both sides false
(q ∈ K and q ∈ Wq) because Wq ⊆ K . So both sides are true.

Theorem 36F asserts that K , although recursively enumerable, is
not recursive. To show non-recursiveness, it suffices to show that its
complement K is not recursively enumerable. The preceding paragraph

256 A Mathematical Introduction to Logic

does this in a particularly strong way, thereby giving us a second proof
of Theorem 36F.

At this point, let us reconsider the Gödel incompleteness theorem,
from the computability point of view.

The set K is recursively enumerable (i.e.,)1). It follows (cf. Theo-
rem 35K) that K is arithmetical; that is, K is definable in the structure N.

So there is a formula 7(v1) with just v1 free that defines K in N.
And so the set K is defined in N by the formula ¬ 7(v1). Thus we have

a ∈ K ⇐⇒ (¬ 7(Sa0)) ∈ Th N.

This fact tells how we can “reduce” questions about membership in the
set K to questions about Th N. Imagine that we are given a number a,
and we want to know whether or not a ∈ K . We can compute the number
"(¬ 7(Sa0)). (Informally, it is clear that we can effectively compute this
number. Formally, we apply item 5 from Section 3.4 to make sure we
can recursively compute the number.) If we somehow had an oracle for
"Th N (i.e., a magic device that, given a number, would tell us whether
or not that number was in "Th N), then we could answer the question
“Is a ∈ K ?”

Now let us eliminate the magic. For sets A and B of natural numbers,
we say that A is many-one reducible to B (in symbols, A≤m B) iff there
exists a total recursive function f such that for every number a,

a ∈ A ⇐⇒ f (a) ∈ B.

The earlier example tells us that K ≤m "Th N. More generally, the ar-
gument shows that any arithmetical set is many-one reducible to "Th N.

LEMMA 36I Assume that A and B are sets of natural numbers with
A ≤m B.

(a) If B is recursive, then A is also recursive.
(b) If B is recursively enumerable, the A is also recursively

enumerable.
(c) If B is)n for some n, the A is also)n for that n.

PROOF. Part (a) is already familiar; it was, in different terminology,
catalog item 2 in Section 3.3.

Part (b) is essentially part (a) “plus a quantifier.” That is, be-
cause B is recursively enumerable, we know that for some recur-
sive binary relation Q,

c ∈ B ⇐⇒ ∃b Q(c, b).

If f is the total recursive function that many-one reduces A to
B, then every number a,

a ∈ A ⇐⇒ f (a) ∈ B ⇐⇒ ∃b[Q(f (a), b)].

Chapter 3: Undecidability 257

The part in square brackets is recursive (i.e., {〈a, b〉 | Q(f (a), b)}
is recursive), as in part (a) of the lemma. So we have A in the
required form to be recursively enumerable.

Part (c) is essentially part (a) “plus n quantifiers” and is proved
like part (b). '

Our reason for examining the particular set K is that it gives us the
following consequence:

GÖDEL INCOMPLETENESS THEOREM Th N is not recursively axiomatiz-
able.

PROOF. Th N cannot be recursively enumerable, lest K be recur-
sively enumerable, by the preceding lemma. But any recursively
axiomatizable theory would be recursively enumerable (item 20
of Section 3.4; also Theorem 35I). '

In starkest terms, the situation is this: Any recursively axiomatizable
theory is recursively enumerable. But Th N is not recursively enumer-
able. So any recursively axiomatizable subtheory must be incomplete.

It will be worth while to go over this proof again, but replacing
negative statements (such-and-such a set does not have a particular
property) by positive statements.

Assume that T is any recursively axiomatizable subtheory of Th N.
(So by the above theorem, T is incomplete.) We want to lay our hands
on a sentence demonstrating the incompleteness.

We have made a total recursive function f that many-one reduces K
to "Th N, namely f (a) = "(¬ 7(Sa0)); then for every a,

a ∈ K ⇐⇒ f (a) ∈ "Th N.

And f (a) is (the Gödel number of) the sentence saying “a /∈ K .”
Consider the set J of numbers defined by the condition

a ∈ J ⇐⇒ f (a) ∈ "T .

Thus J is the set of numbers that T “knows” are not in K . There are
two observations to be made concerning J :

First, J is recursively enumerable. It is many-one reduced by f to
the recursively enumerable set "T ; apply Lemma 36I(b).

Secondly, J ⊆ K . We have T ⊆ Th N, so if T knows that a /∈ K ,
then really a /∈ K :

a ∈ J ⇐⇒ f (a) ∈ "T @⇒ f (a) ∈ "Th N ⇐⇒ a ∈ K .

So J is a recursively enumerable subset of K . It is a proper subset,
because K is not recursively enumerable. That is, there is some number
q with q ∈ K and q /∈ J . Consequently, f (q) ∈ "Th N but f (q) /∈ "T .
That is, the sentence (¬ 7(Sq0)) is true (in N) but fails to be in T ,
thereby demonstrating the incompleteness of T .

258 A Mathematical Introduction to Logic

And what does this sentence “say”? For q , we can take any number
for which Wq = J . Then q ∈ K and q /∈ J .

Here then is the situation:

(¬ 7(Sq0)) says q /∈ K
i.e., q /∈ Wq

i.e., q /∈ J since Wq = J
i.e., f (q) /∈ "T by definition of J
i.e., T +$ (¬ 7(Sq0)).

The sentence we made to witness the incompleteness of T asserts its
own unprovability in the axiomatizable theory T !

The computability approach and the self-reference approach to
Gödel’s incompleteness theorem are not so different after all. Moreover,
the computability approach is close to the diagonalization approach
(of Section 3.0), but with the diagonal argument moved to a different
context.

Reduction of Decision Problems1

Suppose we have a two-place recursive partial function f . Then we
claim that, for example, the function g defined by

g(a) = f (3, a)

is also a recursive partial function. On the basis of informal computabil-
ity this is clear; one computes g by plugging in 3 for the first variable
and then following the instructions for f . A proof can be found by for-
malizing this argument. There is some formula ϕ = ϕ(v1, v2, v3) that
weakly represents f (as a relation) in Cn AE . Then g is weakly repre-
sented by ϕ(S30, v1, v2), provided that v1 and v2 are substitutable in ϕ
for v2 and v3. (If not, we can always use an alphabetic variant of ϕ.)

Now all this is not very deep. But by standing back and looking at
what was said, we perceive a more subtle fact. We were able to transform
effectively the instructions for f into instructions for g. So there should
be a recursive function that, given an index for f and the number 3,
will produce an index for g. The following formulation of this fact is
sometimes known by the cryptic name of “the S-m-n theorem.”

PARAMETER THEOREM For each m ≥ 1 and n ≥ 1 there is a recursive
function ρ such that for any e, 8a, 8b,

[[e]]m+n(a1, . . . , am, b1, . . . , bn) = [[ρ(e, a1, . . . , am)]]n(b1, . . . , bn).

(Equality here means of course that if one side is defined, then so also
is the other side, and the values coincide. Sometimes a special symbol
“A” is used for this role.)

1 The remainder of this section can be skipped on a first reading.

Chapter 3: Undecidability 259

On the left side of the equation 8a consists of arguments for the func-
tion [[e]]m+n; on the right side 8a consists of parameters upon which
the function [[ρ(e, 8a)]]n depends. In the example we had m = n = 1
and a1 = 3. Since ρ depends on m and n, the notation “ρm

n ” would be
logically preferable. But, in fact, we will use simply “ρ.”

PROOF, FOR m = n = 1. It is possible to give a proof along the lines
indicated by the discussion that preceded the theorem. But to avoid
having to cope with alphabetic variants, we will adopt a slightly
different strategy.

We know from the normal form theorem that the three-place
partial function h defined by

h(e, a, b) = [[e]]2(a, b)

is a recursive partial function. Hence there is a formula ψ that
weakly represents h (as a relation). We may suppose that inψ the
variables v1 and v2 are not quantified. We can then take

ρ(e, a) = "ψ(Se0, Sa0, v1, v2)

= Sb(Sb(Sb(Sb("ψ,"v1,"Se0),"v2,"Sa0),"v3,"v1),"v4,"v2).

Then ρ(e, a) is the Gödel number of a formula weakly represent-
ing the function g(b) = [[e]]2(a, b). Hence it is an index of g.

'

We will utilize the parameter theorem to show that certain sets are
not recursive. We already know that K = {a | [[a]]1(a) is defined} is
not recursive. For a given nonrecursive set A we can sometimes find a
(total) recursive function g such that

a ∈ K⇔ g(a) ∈ A

or a (total) recursive function g′ such that

a /∈ K⇔ g′(a) ∈ A.

In either case it then follows at once that A cannot be recursive lest K be.
In the former case we have K ≤m A and A is not21 (by Lemma 36I); in
the latter case K ≤m A and A is not)1. In either case, A is not recursive.
The function g or g′ can often be obtained from the parameter theorem.

EXAMPLE. {a | Wa = ∅} is not recursive.

PROOF. Call this set A. First, note that A ∈ 21, since Wa = ∅

iff ∀b∀k 〈a, b, k〉 /∈ T1. Consequently, K cannot be many-one
reducible to A, but it is reasonable to hope that K might be. That
is, we want a total recursive function g such that

[[a]]1(a) is undefined ⇔ dom[[g(a)]]1 = ∅.

260 A Mathematical Introduction to Logic

This will hold if for all b, [[g(a)]]1(b) = [[a]]1(a). So start with
the recursive partial function

f (a, b) = [[a]]1(a)

and let g(a) = ρ(f̂ , a), where f̂ is an index for f . Then

[[g(a)]]1(b) = [[ρ(f̂ , a)]]1(b) = f (a, b) = [[a]]1(a).

Thus this g shows that K is many-one reducible to A. '

THEOREM 36J (RICE, 1953) LetC be a set of one-place recursive par-
tial functions. Then the set {e | [[e]]1 ∈ C} of indices of members
of C is recursive iff either C is empty or C contains all one-place
recursive partial functions.

PROOF. Only one direction requires proof. Let IC = {e | [[e]]1 ∈ C}
be the set of indices of members of C.

Case I: The empty function ∅ is not in C. If nothing at all is
in C we are done, but suppose some function ψ is in C. We can
show that K is many-one reducible to IC if we have a recursive
total function g such that

[[g(a)]]1 =
{
ψ if a ∈ K ,

∅ if a /∈ K .

For then a ∈ K⇔ [[g(a)]]1 ∈ C ⇔ g(a) ∈ IC .
We can obtain g from the parameter theorem by defining

g(a) = ρ(e, a),

where

[[e]]2(a, b) =
{
ψ(b) if a ∈ K ,

undefined if a /∈ K .

The above is a recursive partial function, since

[[e]]2(a, b) = c⇔ a ∈ K & ψ(b) = c

and the right-hand side is recursively enumerable.
Case II: ∅ ∈ C. Then apply case I to the complementC of C. We

can then conclude that IC is not recursive. But IC is the complement
of IC , so IC cannot be recursive.

Thus in either case, IC is not recursive. '

EXAMPLES. For any fixed e, the set {a | Wa = We} is not recursive, as
a consequence of Rice’s theorem. In particular, {a | Wa = ∅} is
not recursive, a result proved in an earlier example. For two other
applications of Rice’s theorem, we can say that {a | Wa is infinite}
and {a | Wa is recursive} are not recursive.

Chapter 3: Undecidability 261

Register Machines
There are many equivalent definitions of the class of recursive func-
tions. Several of these definitions employ idealized computing devices.
These computing devices are like digital computers but are free of any
limitation on memory space. The first definition of this type was pub-
lished by Alan Turing in 1936; similar work was done by Emil Post at
roughly the same time. We will give here a variation on this theme, due
to Shepherdson and Sturgis (1963).

A register machine will have a finite number of registers, numbered
1, 2, . . . , K . Each register is capable of storing a natural number of
any magnitude. The operation of the machine will be determined by a
program. A program is a finite sequence of instructions, drawn from the
following list:

I r (where 1 ≤ r ≤ K). “Increment r .” The effect of this instruction
is to increase the contents of register r by 1. The machine then proceeds
to the next instruction in the program.

D r (where 1 ≤ r ≤ K). “Decrement r .” The effect of this instruction
depends on the contents of register r . If that number is nonzero, it is
decreased by 1 and the machine then proceeds, not to the next instruc-
tion, but to the following one. But if the number in register r is zero, the
machine just proceeds to the next instruction. In summary: The machine
tries to decrement register r and skips an instruction if it is successful.

T q (where q is an integer–positive, negative, or zero). “Transfer q .”
All registers are left unchanged. The machine takes as its next instruc-
tion the qth instruction following this one in the program (if q ≥ 0), or
the |q|th instruction preceding this one (if q < 0). The machine halts if
there is no such instruction in the program. An instruction of T 0 results
in a loop, with the machine executing this one instruction over and over
again.

EXAMPLES

1. Program to clear register 7.

Try to decrement 7.

Go back and repeat.
Halt.

2. Program to move a number from register r to register s.

Clear register s (Use the program of the first example.)
Take 1 from r .
Halt when zero.
Add 1 to s.
Repeat.

262 A Mathematical Introduction to Logic

This program has seven instructions altogether. It leaves a zero
in register r .

3. Program to add register 1 to registers 2 and 3.

4. (Addition) Say that a and b are in registers 1 and 2. We want
a + b in register 3, and we want to leave a and b still in registers 1
and 2 at the end.

Register contents
Clear register 3. a b 0
Move number from register 1 to register 4. 0 b 0 a
Add register 4 to registers 1 and 3. a b a 0
Move number from register 2 to register 4. a 0 a b
Add register 4 to registers 2 and 3. a b a + b 0

This program has 27 instructions as it is written, but three of
them are unnecessary. (In the fourth line we begin by clearing
register 4, which is already clear.) At the end we have the number
a back in register 1. But during the program register 1 must be
cleared; this is the only way of determining the number a.

5. (Subtraction) Let a −. b = max(a − b, 0). We leave this
program to the reader (Exercise 11).

Now suppose f is an n-place partial function on N. Possibly there
will be a program P such that if we start a register machine (having all
the registers to which P refers) with a1, . . . , an in registers 1, . . . , n and
apply program P , then the following conditions hold:

(i) If f (a1, . . . , an) is defined, then the calculation eventually termi-
nates with f (a1, . . . , an) in register n + 1. Furthermore, the calculation
terminates by seeking a (p+1)st instruction, where p is the length of P .

(ii) If f (a1, . . . , an) is undefined, then the calculation never termi-
nates.

If there is such a program P , we say that P calculates f .

THEOREM 36K Let f be a partial function. Then there is a program
that calculates f iff f is a recursive partial function.

Thus by using register machines we arrive at exactly the class of
recursive partial functions, a class we originally defined in terms of
representability in consistent finitely axiomatizable theories. The fact

Chapter 3: Undecidability 263

that such different approaches produce the same class of partial functions
is evidence that this is a significant class.

OUTLINE OF PROOF. To show that the functions calculable by reg-
ister machines are recursive partial functions, one “arithmetizes
calculations” in the same spirit as we arithmetized deductions in
Section 3.4. That is, one assigns Gödel numbers to programs and
to sequences of memory configurations. One then verifies that the
relevant concepts, translated into numerical relations by the Gödel
numbering, are all recursive. (After going through this, one per-
ceives that, from a sufficiently general point of view, deductions
and calculations are really about the same sort of thing.)

Conversely, to show that the recursive partial functions are cal-
culable by register machines, one can work through Sections 3.3
and 3.4 again, but where functions were previously shown to be
representable in Cn AE , they must now be shown to be calculable
by register machines. This is not as hard as it might sound, since
after the first few pages, the proofs are all the same as the ones
used before. There is a reason for this similarity. It can be shown
that the class of all recursive functions is generated from a certain
handful of recursive functions by the operation of composition (in
the sense of Theorem 33L) and the “least-zero” operator (Theo-
rem 33M). Much of the work in Sections 3.3 and 3.4 amounts
to a verification of this fact. Thus once one has shown that each
function in this initial handful is calculable by a register machine
and that the class of functions calculable by register machines
is closed under composition and the least-zero operator, then the
earlier work can be carried over, yielding the calculability of all
recursive functions. '

Exercises
1. Define functions f and g by

f (n) =
{

0 if Goldbach’s conjecture is true,
1 otherwise;

g(n) =

0 if in the decimal expansion of π there
is a run of at least n consecutive 7’s,

1 otherwise.

Is f recursive? Is g recursive? (Goldbach’s conjecture says that
every even integer greater than 2 is the sum of two primes. The first
edition of this book used Fermat’s last theorem here.)

264 A Mathematical Introduction to Logic

2. Define the “diagonal” function d(a) = [[a]]1(a) + 1.
(a) Show that d is a recursive partial function.
(b) By part (a), we have d = [[e]]1 for a certain number e. So on

the one hand, d(e) = [[e]]1(e) and on the other hand d(e) =
[[e]]1(e)+1. Can we cancel, to conclude that 0 = 1? Suggestion:
Use the special symbol “A” to mean that either both sides of
the equation are undefined, or both sides are defined and equal.
Restate the argument in this notation.

3. (a) Show that the range of any recursive partial function is recur-
sively enumerable.

(b) Show that the range of a strictly increasing (i.e., f (n) <

f (n + 1)) total recursive function f is recursive.
(c) Show that the range of a nondecreasing (i.e., f (n) ≤ f (n +1))

total recursive function f is recursive.

4. (a) Let A be a nonempty recursively enumerable subset of N. Show
that A is the range of some total recursive function.

(b) Show that any infinite recursively enumerable subset of N

includes an infinite recursive subset.

5. Show that every recursive partial function has infinitely many
indices.

6. Give an example of a function f and a number e such that for
all a,

f (a) = U (µk 〈e, a, k〉 ∈ T1)

but e is not the Gödel number of a formula weakly representing in
Cn AE .

7. Show that the parameter theorem can be strengthened by requiring
ρ to be one-to-one.

8. Recall that the union of two recursively enumerable sets is recur-
sively enumerable (Exercise 7 of Section 3.5). Show that there is a
total recursive function g such that Wg(a,b) = Wa ∪Wb.

9. Show that {a | Wa has two or more members} is in)1 but not in21.

10. Show that there is no recursively enumerable set A such that {[[a]]1 |
a ∈ A} equals the class of total recursive functions on N.

11. Give register machine programs that calculate the following func-
tions:
(a) Subtraction, a −. b = max(a − b, 0).
(b) Multiplication, a · b.
(c) max(a, b).

12. Assume that there is a register machine program that calculates the
n-place partial function f . Show that given any positive

Chapter 3: Undecidability 265

integers r1, . . . , rn (all distinct), p, and k, we can find a program
Q such that whenever we start a register machine (having all the
registers to which Q refers) with a1, . . . , an in registers r1, . . . , rn

and apply program Q, then (i) if f (a1, . . . , an) is defined, then the
calculation eventually terminates with f (a1, . . . , an) in register p,
with the contents of registers 1, 2, . . . , k (except for register p) the
same as their initial contents, and furthermore the calculation ter-
minates by seeking a (q + 1)st instruction, where q is the length
of Q; (ii) if f (a1, . . . , an) is undefined, then the calculation never
terminates.

13. Let g : Nn+1 → N be a (total) function that is calculated by some
register machine program. Let f (a1, . . . , an) = µb[g(a1, . . . ,

an, b) = 0], where the right-hand side is undefined if no such b
exists. Show that the partial function f can be calculated by some
register machine program.

14. Show that the following sets have the given location in the arithmeti-
cal hierarchy. (In each case, the given location is the best possible,
but we will not prove that fact.)
(a) {e | [[e]]1 is total} is 22.
(b) {e | We is finite} is)2.
(c) {e | We is cofinite} is)3.
(d) {e | We is recursive} is)3.

15. Let Tot = {e | [[e]]1 is total}. Clearly Tot ⊂ K . Show that there is
no recursive set A with

Tot ⊆ A ⊆ K .

Remark: This result includes Theorems 36E and 36F; the proofs
used there can be adapted here.

16. (a) Show that each 22 set of natural numbers is, for some number
e, the set

{a | ∀b∃c T2(e, a, b, c)}.

(b) Show that the set {a | not ∀b∃c T2(a, a, b, c)} is)2 but
not 22.

∗(c) Generalize parts (a) and (b) to show that for each n, there is a
set that is)n but not 2n .

17. Assume that A is a set of natural numbers that is arithmetical but
is not 2m . Use the argument of page 256 to show that "Th N
is not)m .

Remark: Exercises 16 and 17 give a proof of Tarski’s theorem
(that "Th N is not arithmetical) from computability theory.

266 A Mathematical Introduction to Logic

SECTION 3.7
Second Incompleteness Theorem

Let us return once again to item 20 in Section 3.4. Suppose that we
have a recursively axiomatizable theory T given by a recursive set A of
axioms (i.e., "A is recursive). Then as in item 20

a ∈ "T ⇐⇒ ∃d [d is the number of a deduction from A
and the last component of d is a and a
is the Gödel number of a sentence].

The set of pairs 〈a, d〉meeting the condition in brackets is recursive; let
π(v1, v2) be a formula — chosen in some natural way — that numeral-
wise represents that binary relation in AE .

For any sentence σ , we can express “T $ σ” by the sentence
∃ v2 π(S"σ0, v2). Let us give that sentence a name; define

PrbT σ = ∃ v2π(S"σ0, v2).

(Here Prb abbreviates “provable.” The subscript should perhaps be “A”
instead of “T ”; in constructing the sentence we utilize the recursiveness
of the set A of axioms.)

LEMMA 37A Let T be a recursively axiomatizable theory as above.

(a) Whenever T $ σ then AE $ PrbT σ .
(b) If in addition T includes AE , then T has the “reflection”

property:

T $ σ @⇒ T $ PrbT σ .

PROOF. If T $ σ then we can let d be the number of a deduction
of σ from the axioms A for T . We have AE $ π(S"σ0, Sd0),
and hence AE $ PrbT σ . This gives part (a), from which part (b)
follows immediately. '

Thus under modest assumptions, whenever T proves a sentence, it
knows that it proves the sentence. Note that part (b) does not say that
T $ (σ → PrbT σ). For example, if σ is true (in N) but unprovable
from AE , then the sentence (σ → PrbAE σ) is not provable from AE ,
and in fact is false in N.

Returning now to the proof of the Gödel incompleteness theorem
(in the self-reference approach), we can apply the fixed-point lemma to
obtain a sentence σ asserting its own unprovability in T :

AE $ (σ ↔ ¬ PrbT σ).

The following lemma provides part of the incompleteness theorem (the
other part being Exercise 2 in Section 3.5):

Chapter 3: Undecidability 267

LEMMA 37B Let T be a recursively axiomatizable theory including
AE and let σ be obtained from the fixed-point lemma as above. If
T is consistent, then T +$ σ .

PROOF

T $ σ ⇒ T $ PrbT σ by reflection
⇒ T $ ¬ σ by choice of σ

whence T is inconsistent. '

So far, this lemma merely reflects ideas employed in Section 3.5, and
the proof of Lemma 37B was not very complex. And that is exactly the
point: The proof is not very complex, so perhaps it can be carried out
within the theory T , if T is “sufficiently strong.” That, we can hope that
the steps

PrbT σ → PrbT PrbT σ

→ PrbT ¬ σ

→ PrbT 0 = S0
can be carried out in a sufficiently strong extension T of AE .

If so, we get a remarkable conclusion. Let Cons T be the sentence
¬ PrbT 0 = S0, which we think of as saying “T is consistent.” (Here
0 = S0 is chosen simply as a convenient sentence refutable from AE .)
If T lets us carry out the steps in the preceding paragraph, then we can
conclude:

T +$ Cons T, unless T is inconsistent

(Of course, an inconsistent theory contains every sentence, including
sentences asserting — falsely — the theory’s consistency. The situation
we are finding here is that, under suitable assumptions, this is the only
way that a theory can prove its own consistency.) Let’s check the details:
Suppose T $ Cons T . Then by the preceding paragraph, T $ ¬ PrbT σ .
By choice of σ , we then get T $ σ . Lemma 37B then applies.

To make matters less vague, call the theory T sufficiently strong if it
meets the following three “derivability” conditions.

1. AE ⊆ T . This implies by Lemma 37A that T has the reflection
property, T $ σ ⇒ T $ PrbT σ .

2. For any sentence σ , T $ (PrbT σ → PrbT PrbT σ). This is the
reflection property, formalized within T .

3. For any sentences ρ and σ , T $ (PrbT (ρ → σ) → (PrbT ρ →
PrbT σ)). This is modus ponens, formalized within T .

FORMALIZED LEMMA 37B Assume that T is a sufficiently strong re-
cursively axiomatizable theory, and let σ be a sentence such that

AE $ (σ ↔ ¬ PrbT σ).

Then T $ (Cons T → ¬ PrbT σ).

268 A Mathematical Introduction to Logic

PROOF. We put the pieces together carefully. By the choice of σ
we get

T $ (σ → (PrbT σ → 0 = S0)).

Applying first reflection and then formalized modus ponens to
this formula yields

T $ (PrbT σ → PrbT (PrbT σ → 0 = S0))

after which another application of formalized modus ponens
yields

T $ (PrbT σ → (PrbT PrbT σ → ¬ Cons T)).

The formula displayed above (to the right of the turnstile), to-
gether with PrbT σ → PrbT PrbT σ (formalized reflection) imply
by sentential logic PrbT σ → ¬ Cons T . '

GÖDEL’S SECOND INCOMPLETENESS THEOREM (1931) Assume that T is
a sufficiently strong recursively axiomatizable theory. Then
T $ Cons T if and only if T is inconsistent.

PROOF. If T $ Cons T then by Formalized Lemma 37B we have
T $ ¬ PrbT σ whence by our choice of σ , we have T $ σ . We
conclude from the (unformalized) Lemma 37B that T is incon-
sistent. '

We can squeeze a bit more out of these ideas. Lemma 37B can be
regarded as a special case (where τ is 0 = S0) of the following:

LEMMA 37C Let T be a recursively axiomatizable theory including
AE , let τ be a sentence, and let σ be obtained from the fixed-point
lemma so that

AE $ (σ ↔ (PrbT σ → τ)).

If T $ σ , then T $ τ .

PROOF. We can think of σ as saying, “If I am provable, then τ .” If
T $ σ then by reflection T $ PrbT σ . By the choice of σ , we
have T $ τ . '

Actually we are not interested in this lemma, but in its formalization:

FORMALIZED LEMMA 37C Assume that T is a sufficiently strong re-
cursively axiomatizable theory. Let τ be a sentence, and let σ be
a sentence such that

AE $ (σ ↔ (PrbT σ → τ)).

Then T $ (PrbT σ → PrbT τ).

Chapter 3: Undecidability 269

PROOF. We proceed as before. By the choice of σ we get

T $ (σ → (PrbT σ → τ)).

Applying first reflection and then formalized modus ponens to
this formula yields

T $ (PrbT σ → PrbT (PrbT σ → τ))

after which another application of formalized modus ponens yields

T $ (PrbT σ → (PrbT PrbT σ → PrbT τ)).

The formula displayed above (to the right of the turnstile), to-
gether with PrbT σ → PrbT PrbT σ (formalized reflection) imply
by sentential logic PrbT σ → PrbT τ . '

LÖB’S THEOREM (1955) Assume that T is a sufficiently strong re-
cursively axiomatizable theory. If τ is any sentence for which
T $ (PrbT τ → τ), then T $ τ .

Clearly if T $ τ , then T $ (ρ → τ) for any sentence ρ. So the
conclusion to Löb’s theorem can be stated

T $ (PrbT τ → τ) ⇐⇒ T $ τ.

PROOF. Given the sentence τ , we construct σ to say, “If I am prov-
able then τ ,” as above. Suppose that T $ (PrbT τ → τ). By
Formalized Lemma 37C we have T $ (PrbT σ → PrbT τ). By
our choice ofσ , we conclude that T $ σ . So by the (unformalized)
Lemma 37C, we have T $ τ . '

Löb’s theorem was originally devised in order to solve the problem
given in Exercise 1. But it implies (and in a sense is equivalent to)
Gödel’s second incompleteness theorem. Assume that T is a sufficiently
strong axiomatizable theory. Applying Löb’s theorem and taking τ to
be 0 = S0, we have

T $ (PrbT (0 = S0) → 0 = S0) ⇒ T $ 0 = S0,

that is,

T $ Cons T ⇒ T is inconsistent.

Thus we obtain a proof of the second incompleteness theorem.
But there is an issue not yet examined: What theories are sufficiently

strong? Are there any at all (apart from the trivial case of the inconsistent
theory)?

Yes, and here are two. The first is called “Peano arithmetic” (PA).
Its axioms consist of the AE axioms, plus all the “induction axioms.”
These are the universal closures of formulas having the form

ϕ(0) ∧ ∀ x(ϕ(x) → ϕ(Sx)) → ∀ x ϕ(x)

270 A Mathematical Introduction to Logic

for a wffϕ. The induction axioms — which state the ordinary principle of
mathematical induction — enable us to carry out many arguments about
the natural numbers (e.g., the commutative law of addition) within Peano
arithmetic. But to be sure that formalized reflection and formalized
modus ponens can be derived with Peano arithmetic, one must carry out
the details, which we will not go through here.

We know that Peano arithmetic is consistent, because it is true in N.
But by the second incompleteness theorem, PA cannot prove its own
consistency. We “know” that PA is consistent by means of an argument
we carry out either in informal mathematics, or — if we want — in set
theory. So set theory has a higher “consistency strength” than PA: It
proves the consistency of PA and PA does not.

A second sufficiently strong theory is axiomatic set theory. Or to be
more careful, it is the set of sentences in the language of number theory
that are provable in axiomatic set theory. The next subsection deals with
this situation. This theory has the advantage that it is quite believable —
on an informal level — that formalized reflection and formalized modus
ponens are derivable. But what are our grounds for thinking that set
theory is consistent? We know that PA is consistent because it is true in
the “standard model” N of number theory. It is not at all clear that we
can meaningfully speak of a “standard model of set theory”!

Applications to Set Theory
We know that in the language of number theory, Cn AE is incomplete
and nonrecursive, as is any compatible recursively axiomatizable theory
in the language.

But now suppose we leave arithmetic for a while and look at set the-
ory. Here we have a language (with the parameters ∀ and ∈) and a set
of axioms. In all presently accepted cases the set of axioms is recursive.
Or more precisely, the set of Gödel numbers of the axioms is recursive.
And so the theory (set theory) obtained is recursively enumerable. We
claim that this theory, if consistent, is not recursive and hence not com-
plete. We can already sketch the argument in rough form. We can, in a
very real sense, embed the language of number theory in set theory. We
can then look at that fragment of set theory which deals with the natu-
ral numbers and their arithmetic (the shaded area in Fig. 14). That is a
theory compatible with AE . And so it is nonrecursive. Now if set theory
were recursive, then its arithmetical part would also be recursive, which
it is not. As a bonus, we will come across the second incompleteness
theorem for the case of set theory.

Henceforth by set theory (ST) we mean that theory (in the language
with equality having the two parameters ∀ and∈) which is the set of con-
sequences of the reader’s favorite set-theoretic axioms. (The standard
Zermelo–Fraenkel axioms will do nicely, if the reader has no favorite.

Chapter 3: Undecidability 271

A recursively
enumerable
theory which
includes AE

Sentences in the
language of num-
ber theory
(recursive)

Set theory
(recursively
enumerable)

(a)

(b)

Sentences in the language of
number theory (recursive)

Set theory
(recursively
enumerable)

 Image of the above
 set under an
interpretation

Figure 14. Set theory and number theory. (a) Flat picture. (b) A more accurate
picture.

We ask only that the set of axioms be recursive, and that it be strong
enough to yield certain everyday facts about sets.) We need an inter-
pretation π of Cn AE into ST. (The remainder of this section assumes a
familiarity with Section 2.7.) But the existence of such a π is a standard
result of set theory, although it is not usually stated in these words. We
need formulas of the language of ST that adequately express the concept
of being a natural number, being the sum of two given numbers, and so
forth. To find these formulas, we turn to the way in which the arithmetic
of natural numbers can be “embedded” in set theory. That is, on the one
hand, natural numbers such as 2 or 7 do not appear to be sets. On the
other hand, we can, when we choose, select sets to represent numbers.
The standard approach is to take 0 to be the set ∅ and n + 1 to be the
set n; n. This has the fringe benefit that each number is the set of all
smaller numbers (e.g., 3 ∈ 7). Let ω be the collection of all these sets

272 A Mathematical Introduction to Logic

(these “number-sets”); thus ω is the set representing N.
The formula π∀ is the result of eliminating the defined symbol ω

from the formula v1 ∈ ω. The formula π0 is similarly obtained from
the set-theoretic formula v1 = ∅, and the formula πS is obtained from
v2 = v1 ∪ {v1}. The formula π< is simply v1 ∈ v2. For π+ we use the
translation into the language of ST of

For any f, if f : ω × ω→ ω and for all a and b
in ω we have f (a, ∅) = a
and f (a, b ∪ {b}) = f (a, b) ∪ { f (a, b)},
then f (v1, v2) = v3.

(The manner of translation is partially indicated in Chapter 0.) The
formulas π. and πE are obtained in much the same fashion.

The claim that this π is an interpretation of Cn AE into ST makes a
number (and the number is 17) of demands on ST.

(i) ∃ v1π∀ must be in ST. It is, since we can prove in set theory that
ω is nonempty.

(ii) For each of the five function symbols f in the language of
AE , ST must contain a sentence asserting, roughly, that π f defines a
function on the set defined by π∀. (The exact sentence is set forth in
the definition of interpretation in Section 2.7.) In the case of 0, we have
in ST the result that there is a unique empty set and that it belongs to
ω. The case for S is simple, since πS defines a unary operation on the
universe of all sets, and ω is closed under this operation. For + we
must use the recursion theorem on ω. That is, we can prove in ST (as
sketched in Section 1.4) that there is a unique f : ω×ω→ ω such that
f (a, ∅) = a and f (a, b ∪ {b}) = f (a, b) ∪ { f (a, b)} for a, b in ω.
The required property of π+ then follows. Similar arguments apply to ·
and E.

(iii) For each of the 11 sentences σ in AE , the sentence σπ must be
in ST. For example, in the case of L3, we have in ST the fact that for
any m and n in ω, either m ∈ n, m = n, or n ∈ m.

Since these demands are finite in number, there is a finite 4 ⊆ ST
such that π is also an interpretation of Cn AE into Cn4.

THEOREM 37D (STRONG UNDECIDABILITY OF SET THEORY) Let T be a
theory in the language of set theory such that T ∪ ST (or at least
T ∪4) is consistent. Then "T is not recursive.

PROOF. Let 6 be the consistent theory Cn(T ∪ 4). Let 60 be the
corresponding theory π−1[6] in the language of number theory.
From Section 2.7 we know that 60 is a consistent theory (since
6 is). Also AE ⊆ 60, since if σ ∈ AE , then σπ ∈ Cn4 ⊆ 6.

Chapter 3: Undecidability 273

Hence by the strong undecidability of Cn AE (Theorem 35C), "60

is not recursive.
Now we must derive the nonrecursiveness of T from that of

60. We have

σ ∈ 60 iff σπ ∈ 6

and by the lemma below, "σπ depends recursively on "σ . That is,
"60 ≤m "6. Hence "6 cannot be recursive, lest "60 be. Similarly,
we have

τ ∈ 6 iff (ϕ → τ) ∈ T,

where ϕ is the conjunction of the members of 4. Since "(ϕ→ τ)
depends recursively on "τ , we have "6 ≤m "T so that "T cannot
be recursive lest "6 be. '

LEMMA 37E There is a recursive function p such that for any formula
α of the language of number theory, p("α) = "(απ).

PROOF. In Section 2.7 we gave explicit instructions for construct-
ing απ . The construction in some cases utilized formulas βπ for
formulas β simpler than α. The methods of Sections 3.3 and 3.4
can be applied to the Gödel numbers of these formulas to show
that p is recursive. But the details are not particularly attractive,
and we omit them here. '

COROLLARY 37F If set theory is consistent, then it is not complete.

PROOF. Set theory has a recursive set of axioms. If complete, the
theory is then recursive (by item 21 of Section 3.4). By the fore-
going theorem, this cannot happen if ST is consistent. '

COROLLARY 37G In the language with equality and a two-place
predicate symbol, the set of (Gödel numbers of) valid sentences
is not recursive.

PARTIAL PROOF. In the foregoing theorem take T = Cn∅, the set of
valid sentences. The theorem then assures us that "T is nonrecur-
sive, provided that 4 is consistent. We have not given the finite
set4 explicitly. But we assure the reader that4 can be chosen in
such a way as to be provably consistent. '

It should be noted that π is not an interpretation of Th N into ST
(unless ST is inconsistent). For π−1[ST] is a recursively enumerable
theory in the language of N, as a consequence of Lemma 37E. Hence
it cannot coincide with Th N, and it can include the complete theory
Th N only if it is inconsistent.

274 A Mathematical Introduction to Logic

Gödel’s Second Incompleteness Theorem
for Set Theory
We can employ our usual tricks to find a sentence a of number theory
which indirectly asserts that its own interpretation σπ is not a theorem
of set theory. For let D be the ternary relation on N such that

〈a, b, c〉 ∈ D iff a is the Gödel number of a formula α of number
theory and c is the Gödel number of a deduction
from the axioms of ST of α(Sb0)π .

The relation D is recursive (by the usual arguments); let δ(v1, v2, v3)

represent D in Cn AE . Let r be the Gödel number of

∀ v3 ¬ δ(v1, v1, v3)

and let σ be

∀ v3 ¬ δ(Sr 0, Sr 0, v3).

Observe that σ does indirectly assert that σπ /∈ ST. We will now prove
that the assertion is correct:

LEMMA 37H If ST is consistent, then σπ /∈ ST.

PROOF. Suppose to the contrary that σπ is deducible from the ax-
ioms of ST; let k be G of such a deduction. Then 〈r, r, k〉 ∈ D.

∴ AE $ δ(Sr 0, Sr 0, Sk0);
∴ AE $ ∃ v3δ(Sr 0, Sr 0, v3);

i.e.,
AE $ ¬ σ.

Applying our interpretation π , we conclude that ¬ σπ is in ST,
whence ST is inconsistent. Thus

ST is consistent⇒ σπ /∈ ST. '

Now the above proof, like all those in this book, is carried out in
informal mathematics. But all of our work in the book could have been
carried out within ST. Indeed it is common knowledge that essentially
all work in mathematics can be carried out in ST. Imagine actually doing
so. Then instead of a proof of an English sentence, “ST is consistent
⇒ σπ /∈ ST,” we have a deduction from the axioms of ST of a certain
sentence in the formal language of set theory:

(Cons(ST) → ").

Here Cons(ST) is the result of translating (in a nice way) “ST is
consistent” into the language of set theory. Similarly, " is the result of
translating “σπ /∈ ST.” But we already have a sentence in the language

Chapter 3: Undecidability 275

of set theory asserting that σπ /∈ ST. It is σπ . This strongly suggests
that " is (or is provably equivalent in ST to) σπ , from which we get

(Cons(ST) → σπ)

as a theorem of ST.
Now this can actually be carried out in such a way as to have " be

σπ . We have given above an argument, which we hope will convince
the reader that this is at least probable. And from it we now have the
result:

GÖDEL’S SECOND INCOMPLETENESS THEOREM FOR SET THEORY The sen-
tence Cons(ST) is not a theorem of ST, unless ST is inconsistent.

PROOF. By the above (plausibility) argument

(Cons(ST) → σπ)

is a theorem of ST. So if Cons(ST) is also a theorem of ST, then σπ

is, too. But by Lemma 37H, if σπ ∈ ST, then ST is inconsistent.
'

Of course if ST is inconsistent, then every sentence is a theorem,
including Cons(ST). Because of this, a proof of Cons(ST) within ST
would not convince people that ST was consistent. (And by Gödel’s
second theorem, it would convince them of the opposite.) But prior to
Gödel’s work it was possible to hope that Cons(ST) might be provable
from assumptions weaker than the axioms of set theory, ideally assump-
tions already known to be consistent. But we now see that Cons(ST) is
not in any subtheory of ST, unless of course ST is inconsistent.

We are left with the conclusion that any recursively axiomatizable
theory of sets (provided it meets the desirable conditions of being
consistent and strong enough to prove everyday facts) is an incom-
plete theory. This raises a challenge: to find additional axioms to add
to the theory. On the one hand, we want the additional axioms to
strengthen the theory in useful ways. On the other hand, we want the
additional axioms to reflect accurately our informal ideas about what
sets really are and how they really behave.

Exercises
1. Let σ be a sentence such that

AE $ (σ ↔ PrbAEσ).

(Thus σ says “I am provable,” in contrast to the sentence “I am
unprovable” that has been found to have such interesting properties.)
Does AE $ σ?

276 A Mathematical Introduction to Logic

2. Let T be a theory in a recursively numbered language, and assume
that there is an interpretation of Cn AE into T . Show that T is strongly
undecidable; i.e., whenever T ′ is a theory in the language for which
T ∪ T ′ is consistent, then "T ′ is not recursive.

SECTION 3.8
Representing Exponentiation1

In Sections 3.1 and 3.2 we studied the theory of certain reducts of N
and found them to be decidable. Then in Section 3.3 we added both
multiplication and exponentiation. The resulting theory was found (in
Section 3.5) to be undecidable. Actually it would have been enough
to add only multiplication (and forego exponentiation); we would still
have undecidability.

Let NM be the reduct of N obtained by dropping exponentiation:

NM = (N; 0, S, <, +, ·).

Thus the symbol E does not appear in the language of NM . Let AM be
the set obtained from AE by dropping E1 and E2. The purpose of this
section is to show that all the theorems of Sections 3.3–3.5 continue to
hold when “AE ” and “N” are replaced by “AM ” and “NM .” The key fact
needed to establish this claim is that exponentiation is representable in
Cn AM . That is, there is a formula ε in the language of NM such that
for any a and b,

AM $ ∀ z[ε(Sa0, Sb0, z)↔ z = S(ab)0].

Thus ε(x, y, z) can be used to simulate the formula xEy = z without
actual use of the symbol E.

If we look to see what relations and functions are representable in
Cn AM , we find at first that everything (except for exponentiation itself)
that was shown to be representable in Cn AE is (by the same proof)
representable in Cn AM . Until, that is, we reach item 7 in the catalog
listing of Section 3.3. To go further, we must show that exponentiation
itself is representable in Cn AM .

We know that exponentiation can be characterized by the recursion
equations

a0 = 1,

ab+1 = ab · a.

1 This section may be omitted without loss of continuity.

Chapter 3: Undecidability 277

From what we know about primitive recursion (catalog item 13 in
Section 3.3 plus Exercise 8 there), we might think of defining

E∗(a, b) = the least s such that [(s)0 = 1 and
for all i < b, (s)i+1 = (s)i · a].

For then ab = (E∗(a, b))b. This fails to yield a proof of representabil-
ity, because we do not yet know that the decomposition function (a)b

is representable in Cn AM . But we do not really need that particular
decomposition function (which corresponded to a particular way of
encoding sequences). All we need is some function δ that acts like a
decomposition function; the properties we need are summarized in the
following lemma.

LEMMA 38A There is a function δ representable in Cn AM such that
for every n, a0, . . . , an , there is an s for which δ(s, i) = ai for
all i ≤ n.

Once the lemma has been established, we can define

E∗∗(a, b) = the least s such that [δ(s, 0) = 1 and
for all i < b, δ(s, i + 1) = δ(s, i) · a].

The lemma assures us that such an s exists. E∗∗ is then representable in
Cn AM , as is exponentiation, since

ab = δ(E∗∗(a, b), b).

A function δ that establishes the lemma will be provided by some facts
of number theory.

A Pairing Function
As a first step toward proving the foregoing lemma, we will construct
functions for encoding and decoding pairs of numbers. It is well known
that there exist functions mapping N×N one-to-one onto N. In partic-
ular, the function J does this, where in the diagram shown, J (a, b) has
been written at the point with coordinates 〈a, b〉.

278 A Mathematical Introduction to Logic

For example, J (2, 1) = 8 and J (0, 2) = 3. To obtain an equation
for J (a, b), we note that along the line x + y = n there are n + 1 points
(with coordinates in N). Thus

J (a, b) = the number of points in the plane to which J assigns smaller
values

= [the number of points on lines x + y = n for
n = 0, 1, . . . , (a + b − 1)] + [the number of points on the
line x + y = a + b for which x < a]

= [1 + 2 + · · · + (a + b)] + a

= 1
2 (a + b)(a + b + 1) + a

= 1
2 [(a + b)2 + 3a + b].

Let K and L be the corresponding projection functions onto the axes,
i.e., the unique functions such that

K (J (a, b)) = a, L(J (a, b)) = b.

For example, K (7) = 1, the x-coordinate of the point 〈1, 2〉 in the plane
to which J assigned the number 7. Similarly, L(7) = 2, the y-coordinate
of that point.

We claim that J, K , and L are representable in Cn AM . The function

H(a) = the least b such that a ≤ 2b

has the property that H(a) = 1
2 a for even a. Then we can write

J (a, b) = H((a + b) · (a + b + 1)) + a,

K (p) = the least a such that [for some b ≤ p, J (a, b) = p],
L(p) = the least b such that [for some a ≤ p, J (a, b) = p].

From the form of the four preceding equations we conclude that H , J ,
K , and L are representable in Cn AM .

The Gödel β-function
Let β be the function defined as follows:

β(c, d, i) = the remainder in c ÷ [1 + (i + 1) · d]
= the least r such that for some q ≤ c,

c = q · [1 + (i + 1) · d] + r.

This unlikely-looking function produces a satisfactory decomposition
function for Lemma 38A. Let

δ(s, i) = β(K (s), L(s), i).

It is clear that δ is representable in Cn AM . What is not so obvious is
that it meets the conditions of Lemma 38A. We want to show:

For any n and any a0, . . . , an , there are numbers
c and d such that β(c, d, i) = ai for all i ≤ n. (∗)

For then it follows that δ(J (c, d), i) = β(c, d, i) = ai for i ≤ n.

Chapter 3: Undecidability 279

Now (∗) is a statement of number theory, not logic. The proof of (∗)
is based on the Chinese remainder theorem. Numbers d0, . . . , dn are
said to be relatively prime in pairs iff no prime divides both di and d j

for i += j .

CHINESE REMAINDER THEOREM Let d0, . . . , dn , be relatively prime in
pairs; let a0, . . . , an be natural numbers with each ai < di . Then
we can find a number c such that for all i ≤ n,

ai = the remainder in c ÷ di .

PROOF. Let p = 2i≤ndi , and for any c let F(c) be the (n +1)-tuple
of remainders when c is divided by d0, . . . , dn . Notice that there
are p possible values for this (n + 1)-tuple.

We claim that F is one-to-one on {k | 0 ≤ k < p}. For suppose
that F(c1) = F(c2). Then each di divides |c1− c2|. Since the di ’s
are relatively prime, p must divide |c1 − c2|. For c1, c2 less than
p, this implies that c1 = c2.

Hence the restriction of F to {k | 0 ≤ k < p} takes on all p
possible values. In particular, it assumes (at some point c) the
value 〈a0, . . . , an〉. And that is the c we want. '

LEMMA 38B For any s ≥ 0, the s + 1 numbers

1 + 1 · s!, 1 + 2 · s!, . . . , 1 + (s + 1) · s!

are relatively prime in pairs.

PROOF. All these numbers have the property that any prime factor
q cannot divide s!, whence q > s. If the prime q divides both
1+ j · s! and 1+ k · s!, then it divides their difference, | j − k| · s!.
Since q does not divide s!, it divides | j−k|. But | j−k| ≤ s < q .
This is possible only if | j − k| = 0. '

PROOF OF (∗). Assume we are given a0, . . . , an; we need numbers
c and d such that the remainder when c is divided by 1+(i +1) ·d
is ai , for i ≤ n.

Let s be the largest of {n, a0, . . . , an} and let d = s!. Then by
Lemma 38B, the numbers 1 + (i + 1) · d are relatively prime in
pairs for i ≤ n. So by the Chinese remainder theorem there is a c
such that the remainder in c ÷ [1 + (i + 1) · d] is ai for i ≤ n.

'

This completes the proof of Lemma 38A. And by the argument that
followed that lemma, we can conclude:

THEOREM 38C Exponentiation is representable in Cn AM .

Armed with this theorem, we can now return to catalog item 7 of
Section 3.3. The proof given there now establishes that the function in
question (whose value at n is pn) is representable in Cn AM . For it was

TABLE X

Structure Theory Models of the theory Definable sets Comments

(N) Decidable. Not finitely Any infinite set. ∅ and N.
axiomatizable. Admits {0} is not definable.
elimination of quantifiers.

(N; 0) As above. Any infinite set with ∅, {0}, N− {0}, N.
distinguished element.

(N; 0, S) As above. Standard part plus any Finite and cofinite sets. {0} is definable in (N; S).
number of Z-chains. < is not definable.

(N; 0, S, <) Decidable. Finitely As above, with any Finite and cofinite sets. {0} and S are definable
axiomatizable. ordering of the Z-chains. + is not definable. in (N; <).
Admits elimination of
quantifiers.

(N; 0, S, <, +) Decidable (Presburger). The Z-chains are densely Eventually periodic sets. {0}, S, and < are
ordered without · is not definable. definable in (N; +).
endpoints.
Also there is a suitable
addition operation.

(N; 0, S, <, +, ·) Not arithmetical. As above, but with a All arithmetical relations The arithmetical relations
∴ not recursively suitable multiplication are definable. are definable in
axiomatizable. operation. (N; S, ·), (N; +, ·),

and (N; <, D), where
D(x, y) = (x)y .

S is not definable.

280

Chapter 3: Undecidability 281

formed by allowable methods from relations and functions (including
exponentiation) known to be representable in Cn AM .

The same phenomenon persists throughout Sections 3.3 and 3.4.
The representability proofs given there now establish representability
in Cn AM . Thus any recursive relation is representable in Cn AM , and if
the relation happens to be a function, then it is functionally representable.
The proofs given in Section 3.5 then apply to NM and AM as well as to
N and AE . In particular, we have the strong undecidability of Cn AM :
Any theory T in the language of NM for which T ∪ AM is consistent
cannot be recursive.

Notice that any relation definable in N (i.e., any arithmetical relation)
is also definable in NM . For exponentiation, being representable in a
subtheory of Th NM , is a fortiori definable in NM . By the new version
of Tarski’s theorem, "ThNM is not definable in NM , and consequently
"ThNM cannot be arithmetical.

In the terminology of Section 2.7, we can say that there is a faithful
interpretation of Th N into Th NM . It equals the identity interpretation
on all parameters except E, and to E it assigns a formula defining ex-
ponentiation in NM .

In Table X we summarize some of the results of Chapter 3 on number
theory and its reducts.

Exercises
1. Let D(a, b) = (a)b. Show that any arithmetical relation is definable

in the structure (N; <, D). Remark: One may well ask why Th NA,
arithmetic with addition, is decidable (as shown in Section 3.2), while
Th NM , the theory of arithmetic with addition and multiplication, is
undecidable. One answer is that, as this section shows, multiplication
lets us do a certain amount of sequence coding and decoding. The
point of this exercise is to show that once we have the decoding
function D and ordering, we have the full complexity of arithmetic
with addition, multiplication, and exponentiation.

2. Show that the addition relation {〈a, b, c〉 | a + b = c} is definable in
the structure (N; S, ·). Suggestion: Under what conditions does the
equation S(ac) · S(bc) = S(c · c · S(ab)) hold?

3. (a) Show that Th(Z; +, ·) is strongly undecidable. (See Exercise 2
of Section 3.7.)

(b) (This part assumes a background in algebra.) Show that the the-
ory of rings is undecidable and that the theory of commutative
rings is undecidable.

