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third conjunct of A either RM(n0, n1) fails or RM(n1, n2) fails or RM(n0, n2) holds, and
since we do not have either of the first two disjuncts, we must have RM(n0, n2). But by the
second conjunct of A, RM(n0, n2) and RM(n2, n0) don’t both hold, nor do both RM(n1, n2)
and RM(n2, n1), so we have neither RM(n2, n0) nor RM(n2, n1). It follows that n2 != n0

and n2 != n1. Continuing in this way, we obtain n3 different from all of n0, n1, n2, then n4

different from all of n0, n1, n2, n3, and so on. But by the time we get to nk we will have
exceeded the number of elements of |M|. This shows that our supposition that |M| is finite
leads to a contradiction. Thus A has a denumerable but no finite models.

When we ask how many different models a sentence or set of sentences may have
of a given size, the answer is disappointing: there are always an unlimited number
(a nonenumerable infinity) of models if there are any at all. To give a completely trivial
example, consider the empty language, with identity but no nonlogical predicates,
for which an interpretation is just a nonempty set to serve as domain. And consider
the sentence ∃x∀y(y = x), which says there is just one thing in the domain. For any
object a you wish, the interpretation whose domain is {a}, the set whose only element
is a, is a model of this sentence. So for each real number, or each point on the line,
we get a model.

Of course, these models all ‘look alike’: each consists of just one thing, sitting
there doing nothing, so to speak. The notion of isomorphism, which we are about
to define, is a technically precise way of saying what is meant by ‘looking alike’ in
the case of nontrivial languages. Two interpretations P and Q of the same language
L are isomorphic if and only if there is a correspondence j between individuals p
in the domain |P| and individuals q in the domain |Q| subject to certain conditions.
(The definition of correspondence, or total, one-to-one, onto function, has been given
in the problems at the end of Chapter 1.) The further conditions are that for every
n-place predicate R and all p1, . . . , pn in |P| we have

RP (p1, . . . , pn) if and only if RQ( j(p1), . . . , j(pn))(I1)

and for every constant c we have

j(cP ) = cQ.(I2)

If function symbols are present, it is further required that for every n-place function
symbol f and all p1, . . . , pn in |P| we have

j( f P (p1, . . . , pn)) = f Q( j(p1), . . . , j(pn)).(I3)

12.3 Example (Inverse order and mirror arithmetic). Consider the language with a single
two-place predicate <, the interpretation with domain the natural numbers {0, 1, 2, 3, . . .}
and with < denoting the usual strict less-than order relation, and by contrast the inter-
pretation with domain the nonpositive integers {0, −1, −2, −3, . . .} and with < denot-
ing the usual strict greater-than relation. The correspondence associating n with −n is an
isomorphism, since m is less than n if and only if −m is greater than −n, as required
by (I1).
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If we also let 0 denote zero, let ′ denote the predecessor function, which takes x to
x − 1, let + denote the addition function, and let · denote the function taking x and y
to the negative of their product, −xy, then we obtain an interpretation isomorphic to the
standard interpretation of the language of arithmetic. For the following equations show (I3)
to be fulfilled:

−x − 1 = −(x + 1)
(−x) + (−y) = −(x + y)
−(−x)(−y) = −xy.

Generalizing our completely trivial example, in the case of the empty language,
where an interpretation is just a domain, two interpretations are isomorphic if and
only if there is a correspondence between their domains (that is, if and only if they
are equinumerous, as defined in the problems at the end of Chapter 1). The analogous
property for nonempty languages is stated in the next result.

12.4 Proposition. Let X and Y be sets, and suppose there is a correspondence j from
X to Y . Then if Y is any interpretation with domain Y , there is an interpretation X with
domain X such that X is isomorphic to Y . In particular, for any interpretation with a
finite domain having n elements, there is an isomorphic interpretation with domain the set
{0, 1, 2, . . . , n − 1}, while for any interpretation with a denumerable domain there is an
isomorphic interpretation with domain the set {0, 1, 2, . . .} of natural numbers.

Proof: For each relation symbol R, let RX be the relation that holds for p1, . . . , pn

in X if and only if RY holds for j(p1), . . . , j(pn). This makes (I1) hold automatically.
For each constant c, let cX be the unique p in X such that j(p) = cY . (There will be
such a p because j is onto, and it will be unique because j is one-to-one.) This makes
(I2) hold automatically. If function symbols are present, for each function symbol f ,
let f X be the function on X whose value for p1, . . . , pn in X is the unique p such
that j(p) = f Y ( j(p1), . . . , j(pn)). This makes (I3) hold automatically.

The next result is a little more work. Together with the preceding, it implies what we
hinted earlier, that a sentence or set of sentences has an unlimited number of models if
it has any models at all: given one model, by the preceding proposition there will be an
unlimited number of interpretations isomorphic to it, one for each set equinumerous
with its domain. By the following result, these isomorphic interpretations will all be
models of the given sentence or set of sentences.

12.5 Proposition (Isomorphism lemma). If there is an isomorphism between two in-
terpretations P and Q of the same language L , then for every sentence A of L we have

P |= A if and only if Q |= A.(1)

Proof: We first consider the case where identity and function symbols are absent,
and proceed by induction on complexity. First, for an atomic sentence involving a
nonlogical predicate R and constants t1, . . . , tn , the atomic clause in the definition of
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truth gives

P |= R(t1, . . . , tn) if and only if RP(
tP1 , . . . , tPn

)

Q |= R(t1, . . . , tn) if and only if RQ(
tQ1 , . . . , tQn

)

while the clause (I1) in the definition of isomorphism gives

RP(
tP1 , . . . , tPn

)
if and only if RQ(

j
(
tP1

)
, . . . , j

(
tPn

))

and the clause (I2) in the definition of isomorphism gives

RQ(
j
(
tP1

)
, . . . , j

(
tPn

))
if and only if RQ(

tQ1 , . . . , tQn
)
.

Together the four displayed equivalences give (1) for R(t1, . . . , tn).
Second, suppose (1) holds for less complex sentences than ∼F, including the

sentence F . Then (1) for ∼F is immediate from this assumption together with the
negation clause in the definition of truth, by which we have

P |= ∼F if and only if not P |= F
Q |= ∼F if and only if not Q |= F.

The case of junctions is similar.
Third, suppose (1) holds for less complex sentences than ∀x F(x), including sen-

tences of the form F(c). For any element p of |P|, if we extend the language by
adding a new constant c and extend the interpretation P so that c denotes p, then
there is one and only one way to extend the interpretation Q so that j remains an
isomorphism of the extended interpretations; namely, we extend the interpretation Q
so that c denotes j(p), and therefore clause (I2) in the definition of isomorphism still
holds for the extended language. By our assumption that (1) holds for F(c) it follows
on the one hand that

P |= F[p] if and only if Q |= F[ j(p)].(2)

By the universal quantifier clause in the definition of truth

P |=∀x F(x) if and only if P |= F[p] for all p in |P|.

Hence

P |=∀x F(x) if and only if Q |= F[ j(p)] for all p in |P|.

On the other hand, again by the universal quantifier clause in the definition of truth
we have

Q |=∀x F(x) if and only if Q |= F[q] for all q in |Q|.

But since j is a correspondence, and therefore is onto, every q in |Q| is of the form
j(p), and (1) follows for ∀x F(x). The existential-quantifier case is similar.

If identity is present, we have to prove (1) also for atomic sentences involving =.
That is, we have to prove

p1 = p2 if and only if j(p1) = j(p2).
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But this is simply the condition that j is one-to-one, which is part of the definition of
being a correspondence, which in turn is part of the definition of being an isomorphism.

If function symbols are present, we must first prove as a preliminary that for any
closed term t we have

j(tP ) = tQ.(3)

This is proved by induction on complexity of terms. For constants we have (3) by
clause (I2) in the definition of isomorphism. And supposing (3) holds for t1, . . . , tn ,
then it holds for f (t1, . . . , tn) since by clause (I3) in the definition of isomorphism
we have

j(( f (t1, . . . , tn))P ) = j
(

f P
(
tP1 , . . . , tPn

))

= f Q
(

j
(
tP1

)
, . . . , j

(
tPn

))
= f Q

(
tQ1 , . . . , tQn

)
= ( f (t1, . . . , tn))Q.

The proof given above for the atomic case of (1) now goes through even when the
ti are complex closed terms rather than constants, and no further changes are required
in the proof.

12.6 Corollary (Canonical-domains lemma).

(a) Any set of sentences that has a finite model has a model whose domain is the set
{0, 1, 2, . . . , n} for some natural number n.

(b) Any set of sentences having a denumerable model has a model whose domain is
the set {0, 1, 2, . . .} of natural numbers.

Proof: Immediate from Propositions 12.4 and 12.5.

Two models that are isomorphic are said to be of the same isomorphism type. The
intelligent way to count the models of a given size that a sentence has is to count
not literally the number of models (which is always a nonenumerable infinity if it is
nonzero), but the number of isomorphism types of models. The import of the rather
abstract results of this section should become clearer as they are illustrated concretely
in the next section.

12.2 Equivalence Relations

Throughout this section we will work with a language whose only nonlogical symbol
is a single two-place predicate ≡. We will write x ≡ y for what officially ought to be
≡(x, y). Our interest will be in models—and especially in denumerable models—of
the following sentence Eq of the language:

∀xx ≡ x &

∀x∀y(x ≡ y → y ≡ x) &

∀x∀y∀z((x ≡ y & y ≡ z) → x ≡ z).

Such a modelX will consist of a nonempty set X and a two-place relation ≡X or E on
X . In order to make the three clauses of Eq true, E will have to have three properties.
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elements are isolated, as in Figure 12-1(a) or (b). It could also be the case that there is
one isolated element with all the other elements being equivalent. Or there could be two
isolated elements with all the other elements being equivalent. Or three, and so on, as in
Figure 12-1(d)(i).

There are further possibilities. For, supposing there are infinitely many isolated ele-
ments, the remaining equivalence class, consisting of all nonisolated elements, may contain
two or three or . . . elements, as in Figure 12-1(d)(ii)—or it could contain zero, but that is
Figure 12-1(b) again. Finally there is the possibility (whose picture takes two lines to draw)
of infinitely many isolated elements plus an infinite class of other elements, all equivalent
to each other, as in Figure 12-1(d)(iii).

Any two models corresponding to the same picture (or, what comes to the same thing,
the same signature) are isomorphic. If there are only n isolated elements, renumber so that
these are a1 through an . If there are only n nonisolated elements, renumber so that these
are a1 through an instead. And if there are infinitely many of each, renumber so that a1, a3,
a5, . . . are the isolated ones, and a2, a4, a6, . . . the nonisolated ones. Renumber the bi

similarly, and then, as always, the function f (ai ) = bi can be checked to be an isomorphism.
No two models corresponding to different pictures are isomorphic, for if a is nonisolated,
a satisfies the formula

∃y(y != x & y ≡ x).

So by the isomorphism lemma, if f is an isomorphism, f (a) must also satisfy this formula,
and so must be nonisolated. And for the same reason, applied to the negation of this
formula, if a is isolated, f (a) must be isolated. So an isomorphism must carry nonisolated
to nonisolated and isolated to isolated elements, and the numbers of nonisolated and of
isolated elements must be the same in both models. Here, then, is an example where there
are denumerably many of isomorphism types of denumerable models.

12.13 Example (Nonenumerably many isomorphism types). The sentence Eq all by itself
has nonenumerably many isomorphism types of denumerable models. For any infinite set
of positive integers S there is a model in which there is exactly one equivalence class with
exactly n elements for each n in S, and no equivalence class with exactly n elements for any n
not in S. For instance, if S is the set of even numbers, the model will look like Figure 12-1(e).
We leave it to the reader to show how the isomorphism lemma can be used to show that no
two models corresponding to different sets S are isomorphic. Since there are nonenumerably
many such sets, there are nonenumerably many isomorphism types of models.

12.3 The Löwenheim–Skolem and Compactness Theorems

We have seen that there are sentences that have only infinite models. One might
wonder whether there are sentences that have only nonenumerable models. We have
also seen that there are enumerable sets of sentences that have only infinite models,
though every finite subset has a finite model. One might wonder whether there are
sets of sentences that have no models at all, though every finite subset has a model.
The answer to both these questions is negative, according to the following pair of
theorems. They are basic results in the theory of models, with many implications
about the existence, size, and number of models.
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12.14 Theorem (Löwenheim–Skolem theorem). If a set of sentences has a model, then
it has an enumerable model.

12.15 Theorem (Compactness theorem). If every finite subset of a set of sentences has
a model, then the whole set has a model.

We explore a few of the implications of these theorems in the problems at the end
this chapter. We stop here just to note three immediate implications.

12.16 Corollary (Overspill principle). If a set of sentences has arbitrarily large finite
models, then it has a denumerable model.

Proof: Let ! be a set of sentences having arbitrarily large finite models, and for
each m let Im be the sentence with identity but no nonlogical symbols considered in
Example 12.1, which is true in a model if and only if the model has size ≥ m. Let

!* = ! ∪ {I1, I2, I3, . . . }

be the result of adding all the Im to !. Any finite subset of !* is a subset of ! ∪
{I1, I2, . . . , Im} for some m, and since ! has a model of size ≥ m, such a set has
a model. By the compactness theorem, therefore, !* has a model. Such a model is
of course a model of !, and being also a model of each Im , it has size ≥ m for all
finite m, and so is infinite. By the Löwenheim–Skolem theorem, we could take it to
be enumerable.

A set ! of sentences is (implicationally) complete if for every sentence A in its
language, either A or ∼A is a consequence of !, and denumerably categorical if any
two denumerable models of ! are isomorphic.

12.17 Corollary (Vaught’s test). If ! is a denumerably categorical set of sentences
having no finite models, then ! is complete.

Proof: Suppose ! is not complete, and let A be some sentence in its language such
that neither A nor∼A is a consequence of!. Then both! ∪ {∼A} and! ∪ {A} are satis-
fiable, and by the Löwenheim–Skolem theorem they have enumerable modelsP− and
P+. Since ! has no finite models, P− and P+ must be denumerable. Since ! is denu-
merably categorical, they must be isomorphic. But by the isomorphism lemma, since
A is untrue in one and true in the other, they cannot be isomorphic. So the assumption
that ! is not complete leads to a contradiction, and ! must be complete after all.

Thus if ! is any of the examples of the preceding section in which we found there
was only one isomorphism type of denumerable model, then adding the sentences
I1, I2, I3, . . . to ! (in order to eliminate the possibility of finite models) produces an
example that is complete.

The Löwenheim–Skolem theorem also permits a sharpening of the statement of
the canonical-domains lemma (Lemma 12.6).

12.18 Corollary (Canonical-domains theorem).

(a) Any set of sentences that has a model, has a model whose domain is either the set
of natural numbers <n for some positive n, or else the set of all natural numbers.
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(b) Any set of sentences not involving function symbols or identity that has a model,
has a model whose domain is the set of all natural numbers.

Proof: (a) is immediate from the Löwenheim–Skolem theorem and Corollary 12.6.
For (b), given a set of sentences ! not involving function symbols or identity, if
! has a model, apply part (a) to get, at worst, a model Y with domain the finite set
{0, 1, . . . , n − 1} for some n. Let f be the function from the set of all natural numbers
to this finite set given by f (m) = min(m, n − 1). Define an interpretation X with
domain the set of all natural numbers by assigning to each k-place relation symbol
R as denotation the relation RX that holds for p1, . . . , pk if and only if RY holds for
f (p1), . . . , f (pk). Then f has all the properties of an isomorphism except for not
being one-to-one. Examining the proof of the isomorphism lemma (Proposition 12.5),
which tells us the same sentences are true in isomorphic interpretations, we see that
the property of being one-to-one was used only in connection with sentences involving
identity. Since the sentences in ! do not involve identity, they will be true inX because
they are true in Y .

The remainder of this section is devoted to an advance description of what will be
done in the following two chapters, which contain proofs of the Löwenheim–Skolem
and compactness theorems and a related result. Our preview is intended to enable
the readers who are familiar with the contents of an introductory textbook to decide
how much of this material they need or want to read. The next chapter, Chapter 13,
is devoted to a proof of the compactness theorem. Actually, the proof shows that if
every finite subset of a set ! has a model, then ! has an enumerable model. This
version of the compactness theorem implies the Löwenheim–Skolem theorem, since
if a set has a model, so does every subset, and in particular every finite subset. An
optional final section 13.5 considers what happens if we admit nonenumerable lan-
guages. (It turns out that the compactness theorem still holds, but the ‘downward’
Löwenheim–Skolem theorem fails, and one gets instead an ‘upward’ theorem to the
effect that any set of sentences having an infinite model has a nonenumerable model.)

Every introductory textbook introduces some notion of a deduction of a sentence
D from a finite set of sentences !. The sentence D is defined to be deducible from
a finite set ! if and only if there is a deduction of the sentence from the set. A
deduction from a subset of a set always counts as a deduction from that set itself,
and a sentence D is defined to be deducible from an infinite set ! if and only if it
is deducible from some finite subset. A sentence D is defined to be demonstrable
if it is deducible from the empty set of sentences ∅, and a set of sentences ! is
defined to be inconsistent if the constant false sentence ⊥ is deducible from it. The
better introductory textbooks include proofs of the soundness theorem, according
to which if D is deducible from !, then D is a consequence of ! (from which it
follows that if D is demonstrable, then D is valid, and that if ! is inconsistent,
then ! is unsatisfiable), and of the Gödel completeness theorem, according to which,
conversely, if D is a consequence of !, then D is deducible from ! (from which it
follows that if D is valid, then D is demonstrable, and that if ! is unsatisfiable, then !

is inconsistent). Since by definition a set is consistent if and only if every finite subset
is, it follows that a set is satisfiable if and only if every finite subset is: the compactness
theorem follows from the soundness and completeness theorems. Actually, the proof
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of completeness shows that if ! is consistent, then ! has an enumerable model,
so the form of the compactness theorem implying the Löwenheim–Skolem theorem
follows.

In Chapter 14 we introduce a notion of deduction of the kind used in advanced,
rather than introductory, works on logic, and prove soundness and completeness for
it. However, rather than derive the compactness theorem (and thence the Löwenheim–
Skolem theorem) from soundness and completeness, we obtain completeness in
Chapter 14 from the main lemma used to obtain compactness in Chapter 13. Thus our
proof of the compactness theorem (and similarly the Löwenheim–Skolem theorem)
does not mention the notion of deduction any more than does the statement of the theo-
rem itself. For the reader who is familiar with a proof of the soundness and complete-
ness theorems, however, Chapter 14 is optional and Chapter 13 (containing the main
lemma) with it, since the compactness theorem (and thence the Löwenheim–Skolem
theorem) does follow. It does not matter if the notion of deduction with which such
a reader is familiar is different from ours, since no reference to the details of any
particular deduction procedure is made outside Chapter 14 (except in one optional
section at the end of the chapter after that, Chapter 15). All that matters for our later
work is that there is some procedure or other of deduction that is sound and complete,
and—for purposes of later application of our work on computability to logic—is
such that one can effectively decide whether or not a given finite object is or is not a
deduction of a given sentence D from a given finite set of sentences !. And this last
feature is shared by all deduction procedures in all works on logic, introductory or
advanced, ours included.

Problems

12.1 By the spectrum of a sentence C (or set of sentences !) is meant the set of all
positive integers n such that C (or !) has a finite model with a domain having
exactly n elements. Consider a language with just two nonlogical symbols,
a one-place predicate P and a one-place function symbol f . Let A be the
following sentence:

∀x1∀x2( f (x1) = f (x2) → x1 = x2) &

∀y∃x( f (x) = y) &

∀x∀y( f (x) = y → (Px ↔ ∼Py)).

Show that the spectrum of A is the set of all even positive integers.
12.2 Give an example of a sentence whose spectrum is the set of all odd positive

integers.
12.3 Give an example of a sentence whose spectrum is the set of all positive integers

that are perfect squares.
12.4 Give an example of a sentence whose spectrum is the set of all positive integers

divisible by three.
12.5 Consider a language with just one nonlogical symbol, a two-place predicate

Q. Let U be the interpretation in which the domain consists of the four sides
of a square, and the denotation of Q is the relation between sides of being
parallel. Let V be the interpretation in which the domain consists of the four
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vertices of a square, and the denotation of Q is the relation between vertices
of being diagonally opposite. Show that U and V are isomorphic.

12.6 Consider a language with just one nonlogical symbol, a two-place predicate<.
Let Q be the interpretation in which the domain is the set of real numbers
strictly greater than zero and strictly less than one and the denotation of <
is the usual order relation. Let R be the interpretation in which the domain is
the set of all real numbers and the denotation of < is the usual order relation.
Show that Q and R are isomorphic.

12.7 Let L be a language whose only nonlogical symbols are a two-place function
symbol § and a two-place predicate <. Let P be the interpretation of this
language in which the domain is the set of positive real numbers, the denotation
of § is the usual multiplication operation, and the denotation of < is the usual
order relation. LetQ be the interpretation of this language in which the domain
is the set of all real numbers, the denotation of § is the usual addition operation,
and the denotation of < is the usual order relation. Show that P and Q are
isomorphic.

12.8 Write A ∼= B to indicate that A is isomorphic to B. Show that for all interpre-
tations A, B, C of the same language the following hold:
(a) A ∼= A;
(b) if A ∼= B, then B ∼= A;
(c) if A ∼= B and B ∼= C, then A ∼= C.

12.9 By true arithmetic we mean the set ! of all sentences of the language of arith-
metic that are true in the standard interpretation. By a nonstandard model of
arithmetic we mean a model of this ! that (unlike the model in Example 12.3)
is not isomorphic to the standard interpretation. Let " be the set of sentences
obtained by adding a constant c to the language and adding the sentences
c != 0, c != 1, c != 2, and so on, to !. Show that any model of " would give us
a nonstandard model of arithmetic.

12.10 Consider the language with just the one nonlogical symbol ≡ and the sentence
Eq whose models are precisely the sets with equivalence relations, as in the
examples in section 12.2.
(a) For each n, indicate how to write down a sentence Bn such that the

models of Eq & Bn will be sets with equivalence relations having at least
n equivalence classes.

(b) For each n, indicate how to write down a formula Fn(x) such that in a
model of Eq, an element a of the domain will satisfy Fn(x) if and only if
there are at least n elements in the equivalence class of a.

(c) For each n, indicate how to write down a sentence Cn that is true in a
model of Eq if and only if there are exactly n equivalence classes.

(d) For each n, indicate how to write down a formula Gn(x) that is satisfied
by an element of the domain if and only if its equivalence class has
exactly n elements.

12.11 For each m and n indicate how to write down a sentence Dmn that is true in a
model of Eq if and only if there are at least m equivalence classes with exactly
n elements.
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12.12 Show that if two models of Eq are isomorphic, then the equivalence relations
of the models have the same signature.

12.13 Suppose E1 and E2 are equivalence relations on denumerable sets X1 and
X2 both having the signature σ (n) = 0 for n ≥ 1 and σ (0) = ∞, that is, both
having infinitely many equivalence classes, all infinite. Show that the models
involved are isomorphic.

12.14 Show that two denumerable models of Eq are isomorphic if and only if they
have the same signature.
In the remaining problems you may, when relevant, use the Löwenheim–Skolem
and compactness theorems, even though the proofs have been deferred to the
next chapter.

12.15 Show that:
(a) ! is unsatisfiable if and only if ∼C1 ∨ · · · ∨ ∼Cm is valid for some

C1, . . . , Cm in !.
(b) D is a consequence of ! if and only if D is a consequence of some finite

subset of !.
(c) D is a consequence of ! if and only if ∼C1 ∨ · · · ∨ ∼Cm ∨ D is valid

for some C1, . . . , Cm in !.
12.16 For any prime p = 2, 3, 5, . . . , let Dp(x) be the formula ∃y p · y = x of the

language of arithmetic, so that for any natural number n, Dp(n) is true if
and only if p divides n without remainder. Let S be any set of primes. Say
that a nonstandard model M of arithmetic encrypts S if there is an indi-
vidual m in the domain |M| such that M |= Dp[m] for all p belonging
to S, and M |=∼Dp[m] for all p not belonging to S. Show that for any
set S of primes there is a denumerable nonstandard model of arithmetic that
encrypts S.

12.17 Show that there are nonenumerably many isomorphism types of denumerable
nonstandard models of arithmetic.

12.18 Show that if two sentences have the same enumerable models, then they are
logically equivalent.

12.19 Work with a language whose only nonlogical symbol is a single two-place
predicate <. Consider the set of sentences of this language that are true in the
interpretation where the domain is the set of real numbers and the denotation of
the predicate is the usual order on real numbers. According to the Löwenheim–
Skolem theorem, there must be an enumerable model of this set of sentences.
Can you guess what one is?
The next several problems provide a significant example of a denumerably
categorical set of sentences.

12.20 Work with a language whose only nonlogical symbol is a single two-place
predicate <. The models of the following sentence LO of the language are
called linear orders:

∀x ∼ x < x &

∀x∀y∀z((x < y & y < z) → x < z) &

∀x∀y(x < y ∨ x = y ∨ y < x).
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Such a model A will consist of a nonempty set |A| or A and a two-place
relation <A or <A on it. Show that the above sentence implies

∀x∀y ∼ (x < y & y < x).

12.21 Continuing the preceding problem, a finite partial isomorphism between linear
orders (A, <A) and (B, <B) is a function j from a finite subset of A onto a
finite subset of B such that for all a1 and a2 in the domain of j , a1 <A a2 if
and only if j(a1) <A j(a1). Show that if j is a finite partial isomorphism from
a linear order (A, <A) to the rational numbers with their usual order, and a is
any element of A not in the domain of j , then j can be extended to a finite
partial isomorphism whose domain is the domain of j together with a. (Here
extended means that the new isomorphism assigns the same rational numbers
as the old to elements of A there were already in the domain of the old.)

12.22 Continuing the preceding problem, if j0, j1, j2, . . . are finite partial isomor-
phisms from an enumerable linear order to the rational numbers with their
usual order, and if each ji+1 is an extension of the preceding ji , and if every
element of A is in the domain of one of the ji (and hence of all jk for k ≥ i),
then (A, <A) is isomorphic to some suborder of the rational numbers with their
usual order. (Here suborder means a linear order (B, <B) where B is some
subset of the rational numbers, and <B the usual order on rational numbers as
it applies to elements of this subset.)

12.23 Continuing the preceding problem, show that every enumerable linear order
(A, <A) is isomorphic to a suborder of the rational numbers with their usual
order.

12.24 Continuing the preceding problem, a linear order is said to be dense if it is a
model of

∀x∀y(x < y → ∃z(x < z & z < y)).

It is said to have no endpoints if it is a model of

∼∃x∀y(x < y ∨ x = y) & ∼∃x∀y(x = y ∨ y < x).

Which of the following is dense: the natural numbers, the integers, the rational
numbers, the real numbers, in each case with their usual order? Which have
no endpoints?

12.25 Continuing the preceding problem, show that the set of sentences whose mod-
els are the dense linear orders without endpoints is denumerably categorical.

12.26 A linear order is said to have endpoints if it is a model of

∃x∀y(x < y ∨ x = y) & ∃x∀y(x = y ∨ y < x).

Show that the set of sentences whose models are the dense linear orders with
endpoints is denumerably categorical.

12.27 How many isomorphism types of denumerable dense linear orders are there?
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13

The Existence of Models

This chapter is entirely devoted to the proof of the compactness theorem. Section 13.1
outlines the proof, which reduces to establishing two main lemmas. These are then taken
up in sections 13.2 through 13.4 to complete the proof, from which the Löwenheim–
Skolem theorem also emerges as a corollary. The optional section 13.5 discusses what
happens if nonenumerable languages are admitted: compactness still holds, but the
Löwenheim–Skolem theorem in its usual ‘downward’ form fails, while an alternative
‘upward’ theorem holds.

13.1 Outline of the Proof

Our goal is to prove the compactness theorem, which has already been stated in the
preceding chapter (in section 12.3). For convenience, we work with a version of first-
order logic in which the only logical operators are ∼, ∨, and ∃, that is, in which &
and ∀ are treated as unofficial abbreviations. The hypothesis of the theorem, it will
be recalled, is that every finite subset of a given set of sentences is satisfiable, and
the conclusion we want to prove is that the set itself is satisfiable, or, as we more
elaborately put it, belongs to the set S of all satisfiable sets of sentences. As a first
step towards the proof, we set down some properties enjoyed by this target set S.
The reason for not including & and ∀ officially in the language is simply that in this
and subsequent lemmas we would need four more clauses, two for & and two for ∀.
These would not be difficult to prove, but they would be tedious.

13.1 Lemma (Satisfaction properties lemma). Let S be the set of all sets ! of sentences
of a given language such that ! is satisfiable. Then S has the following properties:

(S0) If ! is in S and !0 is a subset of !, then !0 is in S.
(S1) If ! is in S, then for no sentence A are both A and ∼A in !.
(S2) If ! is in S and ∼∼B is in !, then ! ∪ {B} is in S.
(S3) If ! is in S and (B ∨ C) is in !, then either ! ∪ {B} is in S or ! ∪ {C} is in S.
(S4) If ! is in S and ∼(B ∨ C) is in !, then ! ∪ {∼B} is in S and ! ∪ {∼C} is in S.
(S5) If ! is in S and {∃x B(x)} is in !, and the constant c does not occur in ! or

∃xB(x), then ! ∪ {B(c)} is in S.
(S6) If ! is in S and ∼∃x B(x) is in !, then for every closed term t , ! ∪ {∼B(t)} is in S.

153
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(S7) If ! is in S, then ! ∪ {t = t} is in S for any closed term t of the language of !.
(S8) If ! is in S and B(s) and s = t are in !, then ! ∪ {B(t)} is in S.

Proof: These have been established in Chapter 10. (S0) and (S1) were men-
tioned just before Example 10.4. (S2) appeared as Example 10.4(g), where it was
derived from Example10.3(a). (S4), (S6), and (S8) can be derived in exactly the
same way from Example 10.3(c), 10.3(e), and 10.3(f), as remarked after the proof of
Example 10.4. (S3), (S5), and (S7) were established in Example 10.5.

We call (S0)–(S8) the satisfaction properties. Of course, at the outset we do not
know that the set we are interested in belongs to S. Rather, what we are given is that
it belongs to the set S* of all sets of sentences whose every finite subset belongs to S.
(Of course, once we succeed in proving the compactness theorem, S and S* will turn
out to be the same set.) It will be useful to note that S* shares the above properties of S.

13.2 Lemma (Finite character lemma). If S is a set of sets of sentences having the
satisfaction properties, then the set S* of all sets of formulas whose every finite subset is in
S also has properties (S0)–(S8).

Proof: To prove (S0) for S*, note that if every finite subset of ! is in S, and !0 is
subset of !, then every finite subset of !0 is in S, since any finite subset of !0 is a
finite subset of !. To prove (S1) for S*, note that if every finite subset of ! is in S,
then ! cannot contain both A and ∼A, else {A, ∼A} would be a finite subset of !,
though {A, ∼A} is not in S by property (S1) of S. To prove (S2) for S*, note that if
every finite subset of ! ∪ {∼∼B} is in S, then any finite subset of ! ∪ {B} is either
a finite subset of ! and hence of ! ∪ {∼∼B} and therefore is in S, or else is of form
!0 ∪ {B} where !0 is a finite subset of !. In the latter case, !0 ∪ {∼∼B} is a finite
subset of ! ∪ {∼∼B} and therefore in S, so ! ∪ {B} is in S by property (S2) of S.
Thus the finite subset !0 ∪ {B} is in S*. (S4)–(S8) for S* follow from (S4)–(S8) for
S exactly as in the case of (S2). It remains only to prove (S3) for S*.

So suppose every finite subset of ! ∪ {(B ∨ C)} is in S, but that it is not the case
that every finite subset of ! ∪ {B} is in S, or in other words that there is some finite
subset of ! ∪ {B} that is not in S. This cannot just be a subset of !, since then it
would be a finite subset of ! ∪ {(B ∨ C)} and would be in S. So it must be of the
form !0 ∪ {B} for some finite subset !0 of !. We now claim that every finite subset of
! ∪ {C} is in S. For any such set is either a finite subset of ! and therefore in S, or is of
form !1 ∪ {C} for some finite subset !1 of !. In the latter case, !0 ∪ !1 ∪ {(B ∨ C)}
is a finite subset of ! ∪ {(B ∨ C)} and so is in S. It follows that either !0 ∪ !1 ∪ {B}
or !0 ∪ !1 ∪ {C} is in S by property (S3) of S. But if !0 ∪ !1 ∪ {B} were in S, then
by property (S1) of S, !0 ∪ {B} would be in S, which it is not. So it must be that
!0 ∪ !1 ∪ {C} is in S and hence !1 ∪ {C} is in S by property (S0) of S.

By these preliminary manoeuvres, we have reduced proving the compactness the-
orem to proving the following lemma, which is a kind of converse to Lemma 13.1. In
stating it we suppose we have available an infinite set of constants not occurring in
the set of sentences we are interested in.
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13.3 Lemma (Model existence lemma). Let L be a language, and L+ a language ob-
tained by adding infinitely many new constants to L . If S* is a set of sets of sentences of
L+ having the satisfaction properties, then every set of sentences of L in S* has a model in
which each element of the domain is the denotation of some closed term of L+.

Note that the condition that every element of the domain is the denotation of some
closed term guarantees that, since we are working in an enumerable language, the do-
main will be enumerable, which means that we get not only the compactness but also
the Löwenheim–Skolem theorem, as remarked in the preceding chapter (following
the statement of the two theorems in section 12.3).

So it ‘only’ remains to prove Lemma 13.3. The conclusion of Lemma 13.3 asserts
the existence of an interpretation in which every element of the domain is the deno-
tation of some closed term of the relevant language, and we begin by listing some
properties that the set of all sentences true in such an interpretation would have to
have.

13.4 Proposition (Closure properties lemma). Let L+ be a language and M an inter-
pretation thereof in which every element of the domain is the denotation of some closed
term. Then the set !* of sentences true in M has the following properties:

(C1) For no sentence A are both A and ∼A in !*.
(C2) If ∼∼B is in !*, then B is in !*.
(C3) If B ∨ C is in !*, then either B is in !* or C is in !*.
(C4) If ∼(B ∨ C) is in !*, then both ∼B and ∼C are in !*.
(C5) If ∃xB(x) is in !*, then for some closed term t of L+, B(t) is in !*.
(C6) If ∼∃x B(x) is in !*, then for every closed term t of L+, ∼B(t) is in !*.
(C7) For every closed term t of L+, t = t is in !*.
(C8) If B(s) and s = t are in !*, then B(t) is in !*.

Proof: For (C1), for no A are both A and ∼A true in the same interpretation. For
(C2), anything implied by anything true in a given interpretation is itself true in that
interpretation, and B is implied by ∼∼B. Similarly for (C4) and (C6)–(C8).

For (C3), any interpretation that makes a disjunct true must make at least one of
its disjuncts true.

For (C5), if ∃x B(x) is true in a given interpretation, then B(x) is satisfied by some
element m of the domain, and if that element m is the denotation of some closed term t ,
then B(t) is true.

We call the properties (C1)–(C8) the closure properties. Actually, it is not
Proposition 13.4 itself that will be useful to us here, but the following converse.

13.5 Lemma (Term models lemma). Let !* be a set of sentences with the closure
properties. Then there is an interpretation M in which every element of the domain is the
denotation of some closed term, such that every sentence in !* is true in M.

To prove Lemma 13.3, it would suffice to prove the foregoing lemma plus the
following one.
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13.6 Lemma (Closure lemma). Let L be a language, and L+ a language obtained by
adding infinitely many new constants to L . If S* is a set of sets of sentences of L+ having
the satisfaction properties, then every set ! of sentences of L in S* can be extended to a set
!* of sentences of L+ having the closure properties.

Sections 13.2 and 13.3 will be devoted to the proof of the term models lemma,
Lemma 13.5. As in so many other proofs, we consider first, in section 13.2, the
case where identity and function symbols are absent, so that (C7) and (C8) may be
ignored, and the only closed terms are constants, and then, in section 13.3, consider the
additional complications that arise when identity is present, as well as those created by
the presence of function symbols. The proof of the closure lemma, Lemma 13.6, will
be given in section 13.4, with an alternative proof, avoiding any dependence on the
assumption that the language is enumerable, to be outlined in the optional section 13.5.

13.2 The First Stage of the Proof

In this section we are going to prove the term models lemma, Lemma 13.5, in the case
where identity and function symbols are absent. So let there be given a set !* with
the closure properties (C1)–(C6), as in the hypothesis of the lemma to be proved. We
want to show that, as in the conclusion of that lemma, there is an interpretation in
which every element of the domain is the denotation of some constant of the language
of !*, in which every sentence in !* will be true.

To specify an interpretation M in this case, we need to do a number of things. To
begin with, we must specify the domain |M|. Also, we must specify for each constant
c of the language which element cM of the domain is to serve as its denotation.
Moreover, we must do all this in such a way that every element of the domain is the
denotation of some constant. This much is easily accomplished: simply pick for each
constant c some object cM, picking a distinct object for each distinct constant, and
let the domain consist of these objects.

To complete the specification of the interpretation, we must specify for each pred-
icate R of the language what relation RM on elements of the domain is to serve as
its denotation. Moreover, we must do so in such a way that it will turn out that for
every sentence B in the language we have

if B is in !* then M |= B.(1)

What we do is to specify RM in such a way that (1) automatically becomes true for
atomic B. We define RM by the following condition:

RM(
cM1 , . . . , cMn

)
if and only if R(c1, . . . , cn) is in !*.

Now the definition of truth for atomic sentences reads as follows:

M |= R(c1, . . . , cn) if and only if RM(
cM1 , . . . , cMn

)
.

We therefore have the following:

M |= R(c1, . . . , cn) if and only if R(c1, . . . , cn) is in !*(2)

and this implies (1) for atomic B.
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We also have (1) for negated atomic sentences. For if ∼R(c1, . . . , cn) is in !*, then
by property (C1) of !*, R(c1, . . . , cn) is not in !*, and therefore by (2), R(c1, . . . , cn)
is not true in M, and so ∼R(c1, . . . , cn) is true in M, as required.

To prove (1) for other formulas, we proceed by induction on complexity. There are
three cases, according as A is a negation, a disjunction, or an existential quantification.
However, we divide the negation case into subcases. Apart from the subcase of the
negation of an atomic sentence, which we have already handled, there are three of
these: the negation of a negation, the negation of a disjunction, and the negation of
an existential quantification. So there are five cases in all:

to prove (1) for ∼∼B assuming (1) for B
to prove (1) for B1 ∨ B2 assuming (1) for each Bi

to prove (1) for ∼(B1 ∨ B2) assuming (1) for each ∼Bi

to prove (1) for ∃x B(x) assuming (1) for each B(c)
to prove (1) for ∼∃x B(x) assuming (1) for each ∼B(c).

The five cases correspond to the five properties (C2)–(C6), which are just what is
needed to prove them.

If ∼∼B is in !*, then B is in !* by property (C2). Assuming that (1) holds for B,
it follows that B is true in M. But then ∼B is untrue, and ∼∼B is true as required.
If B1 ∨ B2 is in !*, then Bi is in !* for at least one of i = 1 or 2 by property (C3) of
!*. Assuming (1) holds for this Bi , it follows that Bi is true in M. But then B1 ∨ B2
is true as required. If ∼(B1 ∨ B2) is in !*, then each ∼Bi is in !* for i = 1 or 2 by
property (C4) of !*. Assuming (1) holds for the ∼Bi , it follows that each ∼Bi is
true in M. But then each Bi is untrue, so B1 ∨ B2 is untrue, so ∼(B1 ∨ B2) is true as
required.

In connection with existential quantification, note that since every individual in the
domain is the denotation of some constant, ∃ x B(x) will be true if and only if B(c) is
true for some constant c. If ∃ x B(x) is in !*, then B(c) is in !* for some constant c
by property (C5) of !*. Assuming (1) holds for this B(c), it follows that B(c) is true
in M. But then ∃x B(x) is true as required. If ∼∃ x B(x) is in !*, then ∼B(c) is in !*
for every constant c by property (C6) of !*. Assuming (1) holds for each ∼B(c), it
follows that ∼B(c) is true in M. But then B(c) is untrue for each c, and so ∃ x B(x) is
untrue, and ∼∃ x B(x) is true as required. We are done with the case without identity
or function symbols.

13.3 The Second Stage of the Proof

In this section we want to extend the result of the preceding section to the case where
identity is present, and then to the case where function symbols are also present.
Before describing the modifications of the construction of the preceding section
needed to accomplish this, we pause for a lemma.

13.7 Lemma. Let !* be a set of sentences with properties (C1)–(C8). For closed terms
t and s write t ≡ s to mean that the sentence t = s is in !*. Then the following hold:

(E1) t ≡ t .
(E2) If s ≡ t , then t ≡ s.
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(E3) If t ≡ s and s ≡ r , then t ≡ r .
(E4) If t1 ≡ s1, . . . , tn ≡ sn , then for any predicate R, R(t1, . . . , tn) is in !* if and only

if R(s1, . . . , sn) is in !*.
(E5) If t1 ≡ s1, . . . , tn ≡ sn , then for any function symbol f, f (t1, . . . , tn) = f (s1, . . . ,

sn) is in !*.

Proof: (E1) is simply a restatement of (C7). For (E2), let B(x) be the formula
x = s. We now know that the sentence B(s), which is to say the sentence s = s, is in
!*, so if s = t is in !*, it follows by (C8) that the sentence B(t), which is to say the
sentence t = s, is in !*. For (E3), let B(x) be the formula x = r . If t = s is in !*, then
we now know s = t is in !*, and if B(s), which is s = r , is in !*, it follows by (C8)
that B(t), which is t = r , is in !*. For (E4), if all ti = si are in !* and R(s1, . . . , sn) is
in !*, then repeated application of (C8) tells us that R(t1, s2, s3, . . . , sn) is in !*, that
R(t1, t2, s3, . . . , sn) is in !*, and so on, and finally that R(t1, . . . , tn) is in !*. This
gives the ‘only if’ direction of (E4). For the ‘if’ direction, if all ti = si are in !*, then
so are all si = ti , so if R(t1, . . . , tn) is in !*, then by the direction we have already
proved, R(s1, . . . , sn) is in !*. For (E5), the proof just given for (E4) applies not only
to atomic formulas R(x1, . . . , xn) but to arbitrary formulas F(x1, . . . , xn). Applying
this fact where F is the formula f (t1, . . . , tn) = f (x1, . . . , xn) gives (E5).

Note that (E1)–(E3) say that ≡ is an equivalence relation. If we write [t] for the
equivalence class of t , then (E4) and (E5) may be rewritten as follows:

(E4′) If [t1] = [s1] , . . . , [tn] = [sn], then for any predicate R, R(t1, . . . , tn) is in !* if
and only if R(s1, . . . , sn) is in !*

(E5′) If [t1] = [s1], . . . , [tn] = [sn], then for any function symbol f, [ f (t1, . . . , tn)] =
[ f (s1, . . . , sn)].

We now return to the proof of the term models lemma, taking up the case where
identity is present but function symbols are absent, so the only closed terms are con-
stants. To specify the domain for our interpretation, instead of picking a distinct object
for each distinct constant, we pick a distinct object C* for each distinct equivalence
class C of constants. We let the domain of the interpretation consist of these objects,
and for the denotations of constants we specify the following:

cM = [c]*.(3)

Since [c] = [d] if and only if c = d is in !*, we then have:

cM = dM if and only if c = d is in !*.

This is (the analogue of) (2) of the preceding section for atomic sentences involving
the logical predicate =, and gives us (1) of the preceding section for such sentences
and their negations.

What remains to be done is to define the denotation RM for a nonlogical predicate
R, in such a way that (2) of the preceding section will hold for atomic sentences
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involving nonlogical predicates. From that point, the rest of the proof will be exactly
the same as where identity was not present. Towards framing the definition of RM,
note that (E4′) allows us to give the following definition:

RM(C1*, . . . , Cn*) if and only if R(c1, . . . , cn) is in !*
for some or equivalently any
ci with Ci = [ci ].

Thus

RM([c1], . . . , [cn]) if and only if R(c1, . . . , cn) is in !*.

Together with (3), this gives (2) of the preceding section. Since as already indicated
the proof is the same from this point on, we are done with the case with identity but
without function symbols.

For the case with function symbols, we pick a distinct object T * for each equiva-
lence class of closed terms, and let the domain of the interpretation consist of these
objects. Note that (3) above still holds for constants. We must now specify for each
function symbol f what function f M on this domain is to serve as its denotation,
and in such a way that (3) will hold for all closed terms. From that point, the rest of
the proof will be exactly the same as in the preceding case where function symbols
were not present.

(E5′) allows us to give the following definition:

f M(T1*, . . . , Tn*) = T * where T = [ f (t1, . . . , tn)]
for some or equivalently any
ti with Ti = [ti ].

Thus

f M([t1]*, . . . , [tn]*) = [ f (t1, . . . , tn)]*.(4)

We can now prove by induction on complexity that (3) above, which holds by
definition for constants, in fact holds for any closed term t . For suppose (3) holds for
t1, . . . , tn , and consider f (t1, . . . , tn). By the general definition of the denotation of
a term we have

( f (t1, . . . , tn))M = f M
(
tM1 , . . . , tMn

)
.

By our induction hypothesis about the ti we have

tMi = [ti ]*.

Putting these together, we get

( f (t1, . . . , tn))M = f M([t1]*, . . . , [tn]*).

And this together with the definition (4) above gives

( f (t1, . . . , tn))M = [ f (t1, . . . , tn)]*.
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which is precisely (3) above for the closed term f (t1, . . . , tn). Since, as already
indicated, the proof is the same from this point on, we are done.

13.4 The Third Stage of the Proof

What remains to be proved is the closure lemma, Lemma 13.6. So let there be given
a language L , a language L+ obtained by adding infinitely many new constants to
L , a set S* of sets of sentences of L+ having the satisfaction properties (S0)–(S8),
and a set ! of sentences of L in S*, as in the hypotheses of the lemma to be proved.
We want to show that, as in the conclusion of that lemma, ! can be extended to a set
!* of sentences of L+ with closure properties (C1)–(C8).

The idea of the proof will be to obtain !* as the union of a sequence of sets
!0, !1, !2, . . . , where each !n belongs to S* and each contains all earlier sets !m for
m < n, and where !0 is just !. (C1) will easily follow, because if A and ∼A were
both in !*, A would be in some !m and ∼A would be in some !n , and then both
would be in !k , where k is whichever of m and n is the larger. But since !k is in S*,
this is impossible, since (S0) says precisely that no element of S* contains both A
and ∼A for any A.

What need to be worried about are (C2)–(C8). We have said that each !k+1 will
be a set in S* containing !k . In fact, each !k+1 be obtained by adding to !k a single
sentence Bk , so that !k+1 = !k ∪ {Bk}. (It follows that each !n will be obtained by
adding only finitely many sentences to !, and therefore will involve only finitely
many of the constants of L+ that are not in the language L of !, leaving at each
stage infinitely many as yet unused constants.) At each stage, having !k in S*, we
are free to choose as Bk any sentence such that !k ∪ {Bk} is still in S*. But we must
make the choices in such a way that in the end (C2)–(C8) hold.

Now how can we arrange that !* fulfills condition (C2), for example? Well, if
∼∼B is in !*, it is in some !m . If we can so arrange matters that whenever m and
B are such that ∼∼B is in !m , then B is in !k+1 for some k ≥ m, then it will follow
that B is in !*, as required by (C2). To achieve this, it will be more than enough if
we can so arrange matters that the following holds:

If ∼∼B is in !m, then for some k ≥ m, !k+1 = !k ∪ {B}.

But can we so arrange matters that this holds? Well, what does (S2) tell us? If ∼∼B
is in !m , then ∼∼B will still be in !k for any k ≥ m, since the sets get larger. Since
each !k is to be in S*, (S2) promises that !k ∪ {B} will be in S*. That is:

If ∼∼B is in !m, then for any k ≥ m, !k ∪ {B} is in S*.

So we could take !k+1 = !k ∪ {B} if we chose to do so.
To understand better what is going on here, let us introduce some suggestive

terminology. If ∼∼B is in !m , let us say that the demand for admission of B is raised
at stage m; and if !k+1 = !k ∪ {B}, let us say that the demand is granted at stage k.
What is required by (C2) is that any demand that is raised at any stage m should be
granted at some later stage k. And what is promised by (S2) is that at any stage k, any
one demand raised at any one earlier stage m could be granted. There is a gap here
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between what is demanded and what is promised, since it may well be that there are
infinitely many demands raised at stage m, which is to say, infinitely many sentences
of form ∼∼B in !m , and in any case, there are infinitely many stages m at which new
demands may arise—and all this only considering demands of the type associated
with condition (C2), whereas there are several other conditions, also raising demands,
that we also wish to fulfill.

Let us look at these. The relationship between (C3)–(C8) and (S3)–(S8) is exactly
the same as between (C2) and (S2). Each of (C2)–(C8) corresponds to a demand of
a certain type:

(C2) If ∼∼B is in !m , then for some k ≥ m, !k+1 = !k ∪ {B}.
(C3) If B ∨ C is in !m , then for some k ≥ m, !k+1 = !k ∪ {B} or !k ∪ {C}.
(C4) If ∼(B ∨ C) or ∼(C ∨ B) is in !m , then for some k ≥ m, !k+1 = !k ∪ {∼B}.
(C5) If ∃x B(x) is in !m , then for some k ≥ m, for some constant c,

!k+1 = !k ∪ {B(c)}.
(C6) If ∼∃x B(x) is in !m and t is a closed term in the language of !m , then for some

k ≥ m, !k+1 = !k ∪ {∼B(t)}.
(C7) If t is a closed term in the language of !m , then for some

k ≥ m, !k+1 = !k ∪ {t = t}.
(C8) If B(s) and s = t are in !m , where s and t are closed terms B(x) a formula, then

for some k ≥ m, !k+1 = !k ∪ {B(t)}.

Each of (S2)–(S8) promises that any one demand of the relevant type can be granted:

(S2) If ∼∼B is in !m , then for any k ≥ m, !k ∪ {B} is in S*.
(S3) If B ∨ C is in !m , then for any k ≥ m, !k ∪ {B} or !k ∪ {C} is in S*.
(S4) If ∼(B ∨ C) or ∼(C ∨ B) is in !m , then for any k ≥ m, !k ∪ {∼B} is in S*.
(S5) If ∃x B(x) is in !m , then for any k ≥ m, for any as yet unused constant c,

!k ∪ {B(c)} is in S*.
(S6) If ∼∃x B(x) is in !m and t is a closed term in the language of !m , then for any

k ≥ m, !k ∪ {∼B(t)} is in S*.
(S7) If t is a closed term in the language of !m , then for any k ≥ m, !k ∪ {t = t} is in

S*.
(S8) If B(s) and s = t are in !m , where s and t are closed terms B(x) a formula, then

for any k ≥ m, !k ∪ {B(t)} is in S*.

At any stage k of the construction, we can grant any one demand we choose
from among those that have been raised at earlier stages, but for the construction
to succeed, we must make our successive choices so that in the end any demand
that is ever raised at any stage is granted at some later stage. Our difficulty is that
at each stage many different demands may be raised. Our situation is like that of
Herakles fighting the hydra: every time we chop off one head (grant one demand),
multiple new heads appear (multiple new demands are raised). At least in one re-
spect, however, we have made progress: we have succeeded in redescribing our prob-
lem in abstract terms, eliminating all details about which particular formulas are of
concern.
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And indeed, with this redescription of the problem we are now not far from a
solution. We need only recall two facts. First, our languages are enumerable, so that at
each stage, though an infinity of demands may be raised, it is still only an enumerable
infinity. Each demand may be worded ‘admit such-and-such a sentence’ (or ‘admit one
or the other of two such-and-such sentences’), and an enumeration of the sentences
of our language therefore gives rise to an enumeration of all the demands raised at
any given stage. Thus each demand that is ever raised may be described as the i th
demand raised at stage m, for some numbers i and m, and so may be described by a
pair of numbers (i , m). Second, we have seen in Chapter 1 that there is a way—in fact,
there are many ways—of coding any pair of numbers by a single number j(i, m), and
if one looks closely at this coding, one easily sees that j(i, m) is greater than m (and
greater than i). We can solve our problem, then, by proceeding as follows. At stage k,
see what pair (i , m) is coded by k, and grant the i th demand that was raised at stage
m < k. In this way, though we grant only one demand at a time, all the demands that
are ever raised will eventually be granted.

The proof of the compactness theorem is now complete.

13.5* Nonenumerable Languages

In Chapter 12 we mentioned in passing the possibility of allowing nonenumerable
languages. The Löwenheim–Skolem theorem would then fail.

13.8 Example (The failure of the downward Löwenheim–Skolem theorem for a non-
enumerable language). Take one constant cξ for each real number ξ , and let ! be the
set of all sentences cξ )= cη for ξ )= η. Clearly ! has a model with domain the real numbers,
in which cξ denotes ξ . Equally clearly, any model of ! will be nondenumerable.

However, it can be shown that the compactness theorem still holds. The proof
we have given does not work for a nonenumerable language: no essential use of the
enumerability of the language was made in the proof of the term models lemma, but
the proof given in the preceding section for the closure lemma did make heavy use at
the end of the enumerability assumption. In this section we outline a different proof
of the closure lemma, which can be generalized to cover nonenumerable languages,
and note one consequence of the generalized version of the compactness theorem.
Many verifications are relegated to the problems.

It is not hard to show that if ! is a satisfiable set of sentences, ∃ x F(x) a sentence
of the language of !, and c a constant not in the language of !, then ! ∪ {∃ x F(x) →
F(c)} is satisfiable [imitating the proof of Example 10.5(b), which gave us (S5) in
Lemma 13.1]. Now let L be a language. Let L0 = L , and given Ln , let Ln+1 be the
result of adding to Ln a new constant cF for each formula ∃x F(x) of Ln . Let L+

be the union of all the Ln . The set of Henkin axioms is the set H of all sentences
∃x F(x) → F(cF ) of L+. It is not hard to show that if ! is a set of sentences of L and
every finite subset of ! has a model then every finite subset of ! ∪ H has a model
(using the observation with which we began this paragraph). Let S* be the set of all
sets of sentences ! of L+ such that every finite subset of ! ∪ H has a model. What
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Problems

The first several problems pertain to the optional section 13.5.
13.1 Prove the maximal principle for the case where I is enumerable.
13.2 Show that if ! is a satisfiable set of sentences, ∃x F(x) a sentence of the lan-

guage of!, and c a constant not in the language of!, then! ∪ {∃x F(x)→F(c)}
is satisfiable.

13.3 Let L be a language, and construct the language L+ and the set H of Henkin
axioms as in section 13.5. Let S* be the set of all sets of sentences ! of L+

such that every finite subset of ! ∪ H has a model. Show that:
(a) Any set ! of sentences of L whose every finite subset is satisfiable is

in S*.
(b) S* has satisfiability properties (S1)–(S4) and (S6)–(S8).

13.4 Continuing the notation of the preceding problem, show that:
(a) S* is of finite character.
(b) Any maximal set !* in S* contains H .

13.5 Continuing the notation of the preceding problem, let !* be a maximal set in
S*. Show that !* has closure properties (C1)–(C4) and (C6)–(C8).

13.6 Continuing the notation of the preceding problem, let !* be a set of sentences
of L+ containing H and having closure properties (C1)–(C4) and (C6)–(C8).
Show that !* also has property (C5).

13.7 Use the compactness theorem for nonenumerable languages to prove the up-
ward Löwenheim–Skolem theorem, Theorem 13.9.
In the remaining problems, for simplicity assume that function symbols are
absent, though the results indicated extend to the case where they are
present.

13.8 An embedding of one interpretation P in another interpretation Q is a function
j fulfilling all the conditions in the definition of isomorphism in section 13.1,
except that j need not be onto. Given an interpretation P , let LP be the result
of adding to the language a constant cp for each element p of the domain
|P|, and and let P* be the extension of P to an interpretation of LP in which
each cp denotes the corresponding p. The set $(P) of all atomic and negated
atomic sentences of LP , whether involving a nonlogical predicate R or the
logical predicate =, that are true in P*, is called the diagram of P . Show that
if Q is any interpretation of the language of P that can be extended to a model
Q∗ of $(P), then there is an embedding of P into Q.

13.9 A sentence is called existential if and only if it is of the form ∃ x1 . . . ∃ xn F
where F contains no further quantifiers (universal or existential). A sentence
is said to be preserved upwards if and only if, whenever it is true in an
interpretation P , and there is an embedding of P in another interpretation
Q, then it is true in Q. Show that every existential sentence is preserved
upwards.

13.10 Let A be a sentence that is preserved upwards, P a model of A, and $(P)
the diagram of P . Show that $ ∪ {∼A} is unsatisfiable, and that some finite
subset of $ ∪ {∼A} is unsatisfiable.



P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

PROBLEMS 165

13.11 Let A be a sentence of a language L that is preserved upwards. Show that:
(a) P is a model of A if and only if there is a quantifier-free sentence B of

the language LP such that B implies A and P∗ is a model of B.
(b) P is a model of A if and only if there is an existential sentence B of the

language L such that B implies A and P is a model of B.
13.12 Let A be a sentence that is preserved upwards, and ! the set of existential

sentences of the language of A that imply A. Writing ∼! for the set of negations
of elements of !, show that:
(a) {A} ∪ ∼! is unsatisfiable.
(b) {A} ∪ ∼!0 is unsatisfiable for some finite subset !0 of !.
(c) {A} ∪ {∼B} is unsatisfiable for some single element of !.

13.13 Let A be a sentence that is preserved upwards. Show that A is logically equiva-
lent to an existential sentence (in the same language).

13.14 A sentence is called universal if and only if it is of the form ∀x1 . . .∀xn F
where F contains no further quantifiers (universal or existential). A sentence
is said to be preserved downwards if and only if, whenever it is true in an
interpretation Q, and there is an embedding of P in another interpretation Q,
then it is true in P . Prove that a sentence is preserved downwards if and only
if it is logically equivalent to a universal sentence (in the same language).

13.15 The proof in the preceding several problems involves (at the step of Problem
13.10) applying the compactness theorem to a language that may be nonenu-
merable. How could this feature be avoided?


