
Introduction

1.1. Truth
1.2. Validity
1.3. The Turnstile

3

5

8

1.1. Truth
The most fundamental notion in classical logic is that of truth. Philo-
sophers, of course, have long debated the question 'what is truth?', but that
is a debate which, for the purposes of the present book, we must leave to one
side. Let us assume that we know what truth is.

We are concerned with truth because we are concerned with the things
that are true, and I shall call these things 'propositions'. Philosophers, again,
hold differing views on what is to count as a proposition. A simple view
is that a proposition is just a (declarative) sentence, but when one thinks
about it for a moment, there are obvious difficulties for this suggestion. For
the same sentence may be used, by different speakers or in different con-
texts, to say different things, some of them true and others false. So one may
prefer to hold that it is not the sentences themselves that are true or false, but
particular utterings of them, i.e. utterings by particular people, at particular
times and places, in this or that particular situation. A more traditional
view, however, is that it is neither the sentences nor the utterings of them
that are true, but a more abstract kind of entity, which one can characterize
as what is said by one who utters a sentence. Yet a further view, with a longer
history, is that what one expresses by uttering a sentence is not an abstract
entity but a mental entity, i.e. a judgement, or more generally a thought.
Again, we must leave this debate on one side. Whatever it is that should

1

3

INTRODUCTION 1.1. Truth

properly be said to be true, or to be false, that is what we shall call a proposi-
tion. At least, that is the official position. But in practice I shall quite often
speak loosely of sentences as being true or false. For whatever propositions
are, they must be closely associated with sentences, since it is by means of
sentences that we express both truths and falsehoods.

We assume, then, that there are these things called propositions, and that
every one of them is either true or not. And if it is not true, we say that it is
false. So there are just two truth-values, truth and falsehood, and each pro-
position has exactly one of them. In fact we assume more strongly that a
given proposition has, in every possible situation, just one of these two truth-
values, so that when we have considered the case in which it is true, and the
case in which it is false, no possibility has been omitted. Since the vast major-
ity of the propositions that we actually express in daily life suffer from
vagueness in one way or another, one must admit that this assumption is
something of an idealization. For with a vague proposition there are some
situations in which it seems natural to say that it is neither true nor false, but
classical logic makes no allowance for this. For the most part this idealiza-
tion seems to do no harm, but there are occasions when it leads to trouble,
i.e. when we apparently get the wrong result by applying the precise rules of
classical logic to the vague propositions of everyday life.J But, once more, for
the purposes of the present book we can only note the problem and pass by
on the other side, with the excuse that our present subject is not the applica-
tion of logical theory but the development of the theory itself. And that the-
ory does depend upon the stated assumption about propositions and truth.
Indeed, that assumption is what distinguishes classical logic from most of its
rivals.

In developing our theory of logic we shall wish to speak generally of all
propositions, and we introduce the schematic letters 'P','Q','R',... to facilitate
this. They are called sentence-letters (or, in some books, prepositional let-
ters) because they are to be understood as standing in for, or taking the place
of, sentences which are or express propositions. We can therefore generalize
by letting such a letter represent any proposition, arbitrarily chosen. But
we shall also speak of'interpreting' a sentence-letter, or assigning an 'inter-
pretation' to it, and it is natural to say that here we are thinking of the letter
as representing some particular and specified proposition. That is just how
one does proceed when applying logical theory, for example to test actual
arguments containing actual propositions. However, for our purposes in

1 The best-known example is the so-called 'Sorites paradox'. See e.g. C. Wright, 'Language-Mastery
and the Sorites Paradox', in G. Evans and J. McDowell (eds.), Truth and Meaning. (Oxford University
Press: Oxford, 1976).

4

1.2. Validity INTRODUCTION

this book, the only feature of the assigned proposition that will ever be rel-
evant is its truth-value. So in fact we shall 'interpret' a sentence-letter just
by assigning to it a truth-value, either T (for truth) or F (for falsehood). We
shall not pause to specify any particular proposition which that letter rep-
resents and which has the truth-value in question.

1.2. Validity

The word 'valid' is used in a variety of ways, even within the orthodox ter-
minology of logic. But its primary application is to arguments, so we may
begin with this.

In an argument some propositions are put forward as premisses, and
another proposition is claimed to follow from them as conclusion. Of
course, an actual case will often involve rather more than this, for the arguer
will not just claim that his conclusion follows from his premisses; he will also
try to show (i.e. to prove) that it does, and this may involve the construction
of long and complicated chains of reasoning. It is only in rather simple cases
that a mere claim is deemed to be enough. Nevertheless, the classical def-
inition of validity ignores this complication, and it counts an argument as
valid if and only if the conclusion does in fact follow from the premisses,
whether or not the argument also contains any demonstration of this fact.
To say that the conclusion does follow from the premisses is the same as to
say that the premisses do entail the conclusion, and on the classical account
that is to be denned as meaning: it is impossible that all the premisses should
be true and the conclusion false. Once more, we must simply leave on one
side the philosophers' debate over the adequacy of this definition, either as a
definition of validity or as a definition of entailment.

Now logic is often characterized as the study of validity in argument,
though in fact its scope is very much narrower than this suggests. In what is
called elementary logic we study just two ways in which an argument may
be valid, namely (1) when its validity is wholly due to the truth-functional
structure of the propositions involved, and (2) when it is due to both truth-
functional and quantificational structure working together.2 In other areas
of logic, not usually called elementary, one studies the contribution to valid-
ity of various other features of propositions, for example their tense or
modality. But there is no end to the list of prepositional features that can

2 If the words 'truth-functional' and 'quantificational' are not familiar, then please be patient.
Detailed explanations will come in the next two chapters.

5

INTRODUCTION 1.2. Validity

contribute to validity, since any necessary connection between premisses
and conclusion will satisfy the definition, and it would be foolish to suppose
that some one subject called 'logic' should study them all. In response to this
point it used to be said that logic is concerned with 'form' rather than with
'content', and accordingly that its topic can be circumscribed as 'validity in
virtue of form'. My impression is that that suggestion is not looked upon
with much favour these days, because of the difficulty of making any suit-
able sense of the notion of'form' being invoked. In any case, I mention the
point only to set it aside, along with the many other interesting problems
that affect the very foundations of our subject. So far as this book is con-
cerned, we will confine attention just to the way that truth-functional and
quantificational complexity can affect validity. (But later we shall add a brief
consideration of identity.)

Because our subject is so confined, we can usefully proceed by introdu-
cing what are called 'formal languages', in which the particular kind of com-
plexity that we are studying is the only complexity that is allowed to occur
at all. For example, to study the effects of truth-functional complexity we
shall introduce a 'language' in which there are symbols for certain specified
truth-functions—and these, of course, are assigned a definite meaning—
but all the other symbols are merely schematic. Indeed, in this case the other
symbols will be just the schematic sentence-letters already mentioned. They
will occupy positions where one might write a genuine sentence, expressing
a genuine proposition, but they do not themselves express any propositions.
Accordingly, this so-called 'formal language' is not really a language at all,
for the whole point of a language is that you can use it to say things, whereas
in this 'formal language' nothing whatever can be said. So it is better re-
garded, not as a language, but as a schema for a language—something that
would become a language if one were to replace its schematic letters by genu-
ine expressions of the appropriate type (in this case, sentences). Let us say,
then, that we shall introduce language-schemas, in which the particular
kinds of complexity that we are interested in will be represented, but every-
thing else will be left schematic.

The 'sentences' of such a language-schema are similarly not really sen-
tences, but sentence-schemas, picking out particular patterns of sentence-
construction. We shall call them 'formulae'. By taking several such formulae
as our premiss-formulae, and another as a conclusion-formula, we can rep-
resent an argument-schema, which again is a pattern of argument which
many particular arguments will exemplify. Then, in a new use of the word
'valid', we may say that an argument-schema is to be counted as a valid
schema if and only if every actual argument that exemplifies it is a valid

6

1.2. Validity INTRODUCTION

argument, in the sense defined earlier (i.e. it is impossible that all its pre-
misses should be true and its conclusion false). It is the validity of these
argument-schemas that we shall actually be concerned with. At least, that
is the basic idea, though in practice we shall set up our definitions a little
differently.

When any formal language is introduced, we shall specify what is to
count as an 'interpretation' of it. At the moment, we have introduced just
one such language, namely the language which has as its vocabulary just
the sentence-letters 'P\'Q\'R\..., and nothing else. In this very simple lan-
guage, each sentence-letter is a formula, and there are no other formulae.
Moreover, we have explained what is to count as interpreting a sentence-
letter, namely assigning to it either T or F as its value. So this tells us how
to interpret every formula of the language. We therefore know what it
would be to consider all interpretations of some specified set of formulae.
Suppose, then, that we take an argument-schema in this language. It will
consist of some set of sentence-letters, each of which is to be counted as a
premiss-formula, together with a single sentence-letter to be counted as
the conclusion-formula. Then we shall say that such an argument-schema
counts as a valid schema if and only if there is no interpretation in which each
of the premiss-formulae comes out true and the conclusion-formula comes
out false. (With the present very simple language, it is clear that this will
be the case if and only if the conclusion-formula is itself one of the premiss-
formulae.)

When the argument-schema is valid in this sense, then it will also be valid
in the sense first suggested, i.e. every actual argument that exemplifies the
schema will be a valid argument. Why so? Because when we consider 'every
interpretation' of the schema, we are thereby considering 'every possibility'
for the arguments that exemplify the schema, and this in turn is because—
as I stressed in Section 1.1—we are assuming that a proposition must always
be either true or false, and there is no third possibility for it.

The formal languages that we shall actually be concerned with in the
remainder of this book are, of course, rather more complicated than the very
simple example just given, but the same general principles will continue to
apply. When the language is introduced, we shall specify what is to count as
an interpretation of it, and the aim will be to ensure that the permitted inter-
pretations cover all the possibilities. Provided that this is achieved, the res-
ults that we obtain for our formal or schematic languages by looking at all
interpretations of them will carry with them results about what is and is
not possible in the genuine languages that exemplify them. For example, if
we have a formula that is not true under any interpretation, then all the

7

INTRODUCTION 1.3. The Turnstile

propositions exemplifying that formula will be propositions that cannot
possibly be true. This is the relationship required if the study of formal
languages is to be a significant contribution to the study of validity in argu-
ments, as classically conceived. But, for most of what follows, this relation-
ship will simply be assumed; it will be the formal languages themselves that
directly engage our attention.

1.3. The Turnstile

Just as an argument is valid (according to the classical definition) if and only
if its premisses entail its conclusion, so we may also say that an argument-
schema is a valid schema if and only if its premiss-formulae entail its conclu-
sion-formula. This uses the word 'entails' in a new way, to signify a relation
between formulae, and that is how the word will be used from now on. In
fact it proves more convenient to work with this notion of entailment, rather
than the notion of an argument-schema being valid, so I now introduce the
sign '(=' to abbreviate 'entails' in this sense. The sign is pronounced 'turn-
stile'. But before I proceed to a formal definition it will be helpful to intro-
duce some further vocabulary, of the kind called 'metalogical'.

At the moment, our only formulae are the sentence-letters. Let us now
specify these a little more precisely as the letters in the infinite series

P,Q,«,P1,Q1,J?1,P2,...

These are schematic letters, taking the place of sentences which are or ex-
press propositions, and used to speak generally about all propositions. More
kinds of formulae will be introduced shortly. But whatever kind of formulae
is under consideration at any stage, we shall wish to speak generally about all
formulae of that kind, and for this purpose it will be useful to have some fur-
ther schematic letters which take the place of formulae. I therefore introduce
the small Greek letters

in this role.3 Their function is like that of the sentence-letters, but at one
level up. For they take the place of formulae, while formulae take the place
of genuine sentences expressing propositions. I also introduce the capital
Greek letters

3 'ip', Vj'jc' are spelled 'phi', 'psi', 'chi' respectively, and pronounced with a long 'i' in each case. The V
in 'chi' is hard (as in Scottish 'loch').

8

1.3. The Turnstile INTRODUCTION

whose role is to generalize, in an analogous way, not over single formulae
but over sets of formulae.4 Using this vocabulary we can say that the basic
notion to be defined is

where <p is any formula and F is any set of formulae. And the definition is

There is no interpretation in which every formula in F is true and the
formula (p is false.

Any sentence that exemplifies the schema T (= 9', with actual formulae in
place of the metalogical schematic letters T' and '(p', will be called a sequent.
A sequent, then, makes a definite claim, that certain formulae are related in
a particular way, and it is either true or false.

My introduction of the capital Greek letters T'.'A',... was a little curt, and
indeed some further explanation is needed of how all our metalogical letters
are actually used in practice. As I have said, the turnstile '(=' is to be under-
stood as an abbreviation for 'entails'. Grammar therefore requires that what
occurs to the right of this sign is an expression that refers to a formula, and
what occurs to the left of it is an expression—or a sequence of expressions—
referring to several formulae, or to a set of formulae, or a sequence of for-
mulae, or something similar. But in standard practice the letter 'q>' is used to
take the grammatical place, not of an expression which refers to a formula,
but of an expression which is a formula. Similarly the letter T' is used to take
the grammatical place, not of an expression that refers to one or more for-
mulae, but of one or more expressions that are formulae. To illustrate this,
suppose that we wish to say that if you take any set of formulae F, and if you
form from it a (possibly) new set by adding the particular formula 'P' to its
members, then the result is a set of formulae that entails the formula 'P'.
Apparently the correct way of writing this would be

(where 'U' indicates the union of two sets, and the curly brackets round 'P'
mean 'the set whose only member is "P"'). But in practice we never do use
the notation in this way. Instead, we write just

4 T','A','0' are spelled 'gamma', 'delta', 'theta' respectively, and the 'e' in 'theta' is long. (The corres-
ponding lower-case Greek letters are Y.'S'.'O'.)

9

INTRODUCTION 1.3. The Turnstile

Similarly, if we wish to generalize and say that the same holds for any other
formula in place of 'P\ then we write

Supposing, then, that '!=' really does abbreviate the verb 'entails', the
notation that we actually use must be regarded as the result of the following
further conventions:

(1) where an expression to the left of' (=' specifies a set by using the sign
'U' of set union, this sign is always to be replaced by a comma;

(2) where an expression to the left of' t=' specifies a set by listing its mem-
bers, and enclosing the list in curly brackets, the curly brackets are
always to be omitted;

(3) quotation marks, needed in English to form from a formula an
expression which refers to that formula, are always to be omitted.

So it comes about that in actual practice we avoid both the use of quotation
marks, and the explicitly set-theoretical notation, that the explanation of
'!=' as 'entails' appears to demand.

It may seem more natural, then, to adopt a different explanation of '!=',
not as abbreviating the verb 'entails', but simply as representing the word
'therefore'. What grammar requires of an ordinary use of the word 'there-
fore' is that it be preceded by one or more whole sentences, stating the pre-
misses of the argument, and followed by another whole sentence, stating
its conclusion. Of course it would be quite wrong to enclose each of these
sentences in its own quotation marks. So when we abstract from this an
argument-schema, which many different arguments may exemplify, we
shall naturally do this just by writing formulae in place of the original sen-
tences, again without adding any quotation marks. And similarly when we
wish to generalize about our argument-schemas, we shall do this by using
'9' to take the place of any formula, and T' to take the place of any sequence
of formulae. So the grammar that is actually used with the turnstile, not only
in this book but (so far as I am aware) in every other, is very much more nat-
ural if we take it to mean 'therefore' rather than 'entails'.

There is of course a difference between the two interpretations. On the
first approach, whereby 'H=' means 'entails', the schema T1= cp' is a schema
whose instances are sentences which make a definite claim, true or false. On
the second, whereby ')=' means 'therefore', the schema T 1= cp' is a schema
whose instances are argument- schemas, such as 'P; not both P and Q; there-
fore not Q'. An argument-schema does not itself make any claim at all;

10

1.3. The Turnstile INTRODUCTION

rather, we may make claims about that schema, e.g. the claim that it is valid.
So, on this second approach, if one wishes to claim that the formulae F entail
the formula (p one writes not

but

In practice, it makes very little difference which interpretation is adopted.
Some books use the one, others use the other, and in several cases the sign
appears to be being used in both ways at once. But no serious confusion
results.

In this book I shall adopt the first interpretation, and what is written to
the left of't=' will be taken as indicating a set of formulae, even though that
may not be what the notation naturally suggests.

One reason for this—not a very important one—is that the order in
which the premiss-formulae are listed, and the number of times that any
formula occurs in the list, evidently make no difference to the correctness of
an entailment claim. This is automatically catered for if we say that what is
in question is the set of all the premiss-formulae, since it will still be the same
set whichever way we choose to list its members, so long as it is the same
members that are listed. (But of course we could obtain this result in other
ways too, as we shall do in Chapter 7.) The more significant reason is that
the notion of a set of premiss-formulae very naturally includes two cases
which we shall want to include, but which would be unnatural as cases of
arguments or argument-schemas. These are the case when we have infin-
itely many premisses, and the case when we have none at all. The idea of an
argument with no premisses—an 'argument' which begins with the word
'therefore' (i.e. 'for that reason') referring back to no statement previously
given as a reason—is certainly strange; so too is the idea of an argument with
so many premisses that one could never finish stating them, and so could
never reach the stage of drawing the conclusion. But if we are speaking
simply of what is entailed by this or that set of propositions (or formulae),
then these two cases are less strange. In any case I stipulate that they are to
be included: the set of formulae T maybe infinite, and it maybe empty. Both
cases are automatically covered by the definition already given.

It may be noted that, in accordance with our convention for omitting
curly brackets to the left of the turnstile, we shall write simply

11

INTRODUCTION 1.3. The Turnstile

to say that the formula (p is entailed by the empty set of formulae, and its
definition can of course be simplified to

There is no interpretation in which (p is false.

At a later stage in the book (Chapter 7) I shall generalize the definition of
the turnstile so that what is to the right of it may also be a set of formulae,
and not just a single formula. I do not introduce that generalization now,
since in the earlier chapters there would be no use for it. But it is convenient
to introduce now what is, in effect, one special case of the generalization to
come later: we shall allow that what is to the right of the turnstile may be
either a single formula or no formula, and consequently a new definition is
needed now for the case where there is no formula to the right. It is easy to
see what this definition should be, namely

is to mean

There is no interpretation in which every formula in T is true.

Any instance of the schema T (=', with actual formulae in place of T", will
also be called a sequent.

It is worth noting at once that our definition includes the special case in
which F is empty, so that in the notation we actually use there are no formu-
lae either to the right or to the left of the turnstile, and we are faced with just
this claim:

This is a false claim. It says that there is no interpretation in which every for-
mula in the empty set is true. But there is such an interpretation, indeed any
interpretation whatever will suffice, including the interpretation in which
every sentence-letter is assigned F. For since there are no formulae in the
empty set anyway, it follows that there are none which are not true, in this
interpretation and in any other. (As always in logic, we understand 'Every A
is B' to mean the same as 'There is no A which is not B\ and so it is true if
there is no A at all.) Here we have reached our first result about '(=', namely
that when it stands by itself to make a claim about the empty set of formulae,
it is false. It is convenient to write V in place of'N=' to express the negation
of what ')=' expresses. Using this convention, we can set down our result in
this way:

12

1.3. The Turnstile INTRODUCTION

But perhaps it is less confusing to express the point more long-windedly in
English: the empty sequent is false.

Further results about' (=' are best postponed until we have introduced the
formulae to which it will relate. Meanwhile, let us summarize what has been
said so far. In logic we study sequents, which have the turnstile '!=' as their
main verb. In the standard case, a sequent

will have several formulae to the left of the turnstile, and one formula to the
right, and in this case the turnstile abbreviates 'entails'. But we also allow for
a sequent of the form

with no formula on the right. In this case the turnstile can be read as 'is
inconsistent'. And we allow too for a sequent of the form

with no formula on the left. In this case we shall say that the sequent claims
that the formula (p is valid. Note that this is yet a third use of the word 'valid',
in which it is applied not to an argument, nor to an argument-schema, but
to a single formula. This is the only way in which the word will be used
henceforth. Despite these different ways of reading the turnstile in English,
depending on whether one or other side of the sequent is empty, neverthe-
less it is recognizably the same notion in each case. For every sequent claims:

There is no interpretation in which everything on the left is true and
everything on the right is false.

13

Truth-Functors

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.

Truth-Functions
Truth-Functors
Languages for Truth-Functors
Semantics for these Languages
Some Principles of Entailment
Normal Forms (DNF, CNF)
Expressive Adequacy I
Argument by Induction
Expressive Adequacy II
Duality
Truth-value Analysis

14

17

21

24

30

37

45

48

56

62

65

The most elementary part of logic is often called 'prepositional logic' (or
'sentential logic'), but a better title for it is 'the logic of truth-functors'.
Roughly speaking, a truth-functor is a sign that expresses a truth-function,
so it is the idea of a truth-function that first needs attention.

2.1. Truth-Functions
A truth-function is a special kind of function, namely a function from truth-
values to truth-values.

Functions in general may be regarded as rules correlating one item with
another. A function will be 'defined on' items of some definite kind (e.g.
numbers), and these items are the possible inputs to the function. To each

14

2

2.1. Truth-Functions TRUTH-FUNCTORS

such item as input, the function assigns another item (or possibly the same
item) as its output for that input. The outputs may be items of the same kind
as the inputs, or they may be items of a different kind. For example, the
expression 'the square of..." expresses a function defined on numbers;
given any number x as input to the function, the function yields another
number, namely x2, as its output for that input. Similarly, the expression 'the
father of.. ." expresses a function defined on people; given any person x as
input, the function yields another person, namely the father of x, as its out-
put for that input. So the first is a function from numbers to numbers, and
the second a function from people to people. In each of these cases the out-
puts are items of the same kind as the inputs, but a function does not have to
be like this. For example, 'the number of . . .'s children' expresses a function
from people to numbers. The important thing about a function is just that
it does always have one and only one output for each input of the specified
kind. We call the input to the function an 'argument' to the function, and its
output for that input is called its Value' for that argument. Thus the func-
tion expressed by 'the square of..." has the value 4 for the argument 2, the
value 9 for the argument 3, the value 16 for the argument 4, and so on.

A truth-function is a function which takes truth-values as arguments and
which yields truth-values as values; that is to say, it is a function from truth-
values to truth-values. A nice simple truth-function is the one which yields
F as value for T as argument and T as value for F as argument. It is briefly
specified by this truth-table:

This is an example of a one-place truth-function (also called a unary, or
monadic, truth-function). There are not many one-place truth-functions.
(In fact there are only three others. Write down their truth-tables.) But there
are also two-place truth-functions (also called binary, or dyadic), and three-
place truth-functions (also called ternary, or triadic), and so on indefinitely.
It is natural to think of a two-place function as taking two arguments simul-
taneously, and this is perfectly all right, so long as one distinguishes them
as the first argument and the second. Alternatively, one can think of a two-
place function as taking just one argument, where that one argument is an
ordered pair of items. In that case, the truth-functions should be described
as functions which take as arguments either single truth-values, or ordered
pairs of truth-values, or ordered trios of truth-values, and so on. (To express

15

TRUTH-FUNCTORS 2.1. Truth-Functions

the point generally, it is usual to speak of ordered n-tuples.) But if we speak
in the first way, which is perhaps more natural, then the truth-functions are
functions which take as arguments one or more truth-values, in a specified
order. The values of a truth-function are always single truth-values.

For example, among the two-place truth-functions there is one specified
by the following truth-table:

Among the three-place truth-functions there is one specified by the follow-
ing truth-table:

It is clear that with the two-place function just specified the order of the
arguments does make a difference, for the function takes the value F only
when the first argument takes the value T, and the second takes the value F.
But, as it happens, the order of the arguments is irrelevant to the three-place
function just specified: it takes the value T when and only when all its three
arguments take the same value, and this does not depend upon which order
they are taken in.

In general, the number of «-place truth-functions is 22". Thus, as already
mentioned, there are 4 one-place functions. We can add that there are 16
two-place functions, 256 three-place functions, and so on. In the other dir-
ection there are 2 zero-place functions. Admittedly it is stretching the notion
of a function somewhat to suppose that there could be such a thing as a zero-
place function. Such a 'function' is not in any natural sense a 'correlation',

16

2.2. Truth-Functors TRUTH-FUNCTORS

but it can be regarded as something that has an 'output' for a 'zero input'. For
example, among functions from numbers to numbers one might regard a
particular numeral, say '2', as expressing a zero-place function; it requires no
number as input, and it yields the number 2 as output. Similarly among
functions from truth-values to truth-values one may regard as a sign for a
zero-place function any symbol that always takes the value T as its value,
without requiring any argument to enable it to do so, and similarly any sym-
bol that always takes the value F as its value. I shall shortly introduce signs
that work just like this.

EXERCISES

2.1.1. Write out the truth-tables of the following truth-functions:
(a) The three-place function which takes the value T if and only if just one of its

arguments takes the value T.
(b) The three-place function which takes the value T if and only if at least two of

its arguments take the value T.
(c) The three-place function that takes the value T if and only if its first argu-

ment takes the value F.

2.1.2. Describe the relation between the three-place function in 2.1.l(c) and the
two-place function that takes the value T if and only if its first argument takes the
value F. Can a two-place function be the same function as a three-place function?

2.1.3. Write out the truth-tables of all the two-place truth-functions. Estimate how
long it would take you to do the same for all the three-place truth-functions.

2.2. Truth-Functors

Given any proposition 'P' one can form from it another proposition which
is its negation. In English this is usually done by inserting the word 'not' in
some appropriate place in the sentence expressing it, though ambiguity is
better avoided by tediously writing out 'It is not the case that' at the front of
the sentence. In this book we shall use'•—i' as our negation sign, written in
front of what it negates, as in'—iP'. (Some other books use'-' or'-' instead.)
Similarly, given any propositions 'P' and 'Q' one can form from them
another proposition which is their conjunction. In English this is usually
done by writing the word 'and' between the two sentences in question,

17

TRUTH-FUNCTORS 2.2. Truth-Functors

though again one can prevent some possible misunderstanding by using
instead the long-winded construction 'It is the case both that. .. and that
...'. In this book we shall use 'A' as our conjunction sign, written between
what it conjoins, as in 'P A Q'. (Some other books use '&' or'.' instead.)

A word such as 'not' or 'and', when used in this way, may be regarded as
expressing a function from sentences to sentences; for you supply it with
a sentence, or a pair of sentences, as input, and it forms from them a new
sentence as its output for that input. So we may call it a sentence-functor.
Clearly there is no end to the different ways of forming new sentences from
given sentences, but we shall at once confine our attention to those, such as
inserting 'not' or 'and', that are truth-functional. This means simply that the
sentence-functor which gives a sentence as output for one or more sentences
as input corresponds to a truth-function, namely the truth-function which
yields the truth-value of the output sentence as its output when it is given
the truth-value(s) of the input sentence(s) as its input. A sentence-functor
which corresponds in this way to a truth-function will be called, simply, a
truth-functor.

Just as a truth-function is given by a truth-table, so too a corresponding
truth-functor is also characterized by the same truth-table. For example, the
negation sign'—' has this truth-table:

And the conjunction sign 'A' has this truth-table.

This tells us that the negation'—iP' is false when 'P' is true and true when 'P'
is false; and that the conjunction 'P A Q' is true if both of its conjuncts are
true, and false otherwise. To put this kind of information succinctly, let us
write '|P|' as an abbreviation for 'the truth-value of "P"', and similarly for
any other letter in place of'P'. Let us also abbreviate 'if and only if simply to
'iff. Then the information contained in these tables can also be put briefly
like this:

18

2.2. Truth-Functors TRUTH-FUNCTORS

(In some other books one finds 'D' in place of'—>', and '=' in place of '<-»'.)
When two sentences are joined by V we call the whole a disjunction and the
two sentences are its disjuncts; when they are joined by'—»' we call the whole
a conditional, the first sentence being its antecedent and the second its con-
sequent; when they are joined by '<->' we call the whole a biconditional (and
there is no special name for its parts).

We shall also use'T' and '_L' as 'zero-place truth-functors', i.e. as sentences
which take a constant truth-value, the first being true in every possible situ-
ation and the second false. So their 'truth-tables' amount just to this:

19

Notice that it is enough if we just spell out the conditions under which a
proposition is true, for it then follows that in all other conditions it will be
false, in view of our assumption that a proposition always is either true or
false.

In addition to the truth-functors'—i' and 'A' we shall also use V,'-»', and
'«->' as truth-functors which correspond, in a rough and ready way, to the
English words 'or', ' if.. . then ...', and 'if and only if'. Their truth-tables are

In view of the correspondence with English just noted, the same informa-
tion can also be given in this way:

If you wish, you may think of'T' and '-L' as abbreviating some entirely famil-
iar propositions, the first necessarily true and the second necessarily false,
for example '0 = 0' and '0=1'. That is an approach which will give entirely
the right results for the purposes of this book. But from a more philosoph-
ical perspective one might well wish to quarrel with it. For it is very often
held that our other truth-functors are defined by their truth-tables, and so
have no other meaning than the truth-table gives to them. If that is so, then

TRUTH-FUNCTORS 2.2. Truth-Functors

presumably'T' and 'J.' should equally be regarded as denned by their truth-
tables, so that 'A.' is a sentence with no other meaning than that what it says
is, in all possible situations, false. In that case,'_!_' is a wholly unfamiliar sen-
tence. (And so is'T'.)

Setting aside the rather odd case of T' and '.L', the other truth-functors
just listed are chosen partly because it proves convenient to have a short way
of expressing the truth-functions in question, and partly because they have
a rough correspondence (as noted) with familiar English expressions. No
doubt these two reasons are connected with one another, though one may
well debate just how this connection should be understood. (Does one of
the reasons given explain the other? If so, which way round does the ex-
planation go?) One may also debate upon how close the correspondence
is between these truth-functors and their English counterparts, and why it
is not perfect. But, as usual, we shall forgo the pleasures of such a debate,
since our concern is with the logical theory itself and not with its application
to English. From this perspective, there is certainly some arbitrariness in
choosing to introduce simple signs for just these truth-functions but not
others. In Sections 2.7 and 2.9 we shall explore some consequences that
would flow from selecting one set of truth-functors rather than another, but
although these introduce some constraints, they still leave a great deal of
freedom. So I do not in fact specify any definite list of truth-functors as the
ones to be employed. Instead, the treatment will be general enough to allow
for any choice of truth-functors, though the ones just listed will be the ones
most commonly employed in illustrations.

EXERCISES

2.2.1. Determine whether the following sentence-functors are truth-functors.
(Method: see whether it is possible to construct a complete truth-table for them.)

(a) P because Q.
(b) Even if P, still Q.
(c) John believes that P.
(d) Either John believes that P or he does not.

2.2.2. Discuss the following proposals:
(a) that'—r and 'not' mean the same.
(b) that V and 'or' mean the same.
(c) that '->' and 'only if' mean the same.

20

2.3. Languages for Truth-Functors TRUTH-FUNCTORS

2.3. Languages for Truth-Functors

We shall now introduce suitable formal languages for studying the effects
that truth-functors have on entailment. As already noted (p. 6), these are not
really languages, in the ordinary sense of the word, but rather language-
schemas. For they will be built from a vocabulary which includes some
truth-functors—it does not matter which—and otherwise only schematic
sentence-letters, together with brackets to show punctuation. The full list of
sentence-letters is the infinite list

A formal language for truth-functors may contain all of these letters in its
vocabulary, or it may contain only some. If we take as an example the lan-
guage which contains them all, and which contains all the truth-functors of
the previous section, and nothing else, then this language is specified by the
following/ormflft'oM rules:

(1) Each sentence-letter is a formula.
(2) T'and Tare formulae.
(3) If (pis a formula, so is
(4) If q> and \\r are formulae, scare
(5) Nothing else is a formula.

It is easy to see how the rules are to be varied to accommodate different
choices of the initial vocabulary. For example, our rule (1) might just say:
'The letters "P", "Q", and "R" are formulae', and then in view of clause (5)
no other letters would be included in the language. Any or all of rules (2)-
(4) might be omitted, and some other truth-functor might be added. For
example, one might wish to consider a language with just the one truth-
functor 't' (to be introduced later, p. 58), so that in place of all of rules
(2)-(4) we should just have

If (p and \|/ are formulae, so is

But so long as at least one expression is given outright as a formula by rule
(1) (or rule (2)), and so long as at least one truth-functor is introduced by a
rule with the form of rules (3) or (4), saying that that truth-functor maybe
applied to any formulae to yield new formulae, then we shall have a language
with infinitely many formulae in it. For there is no upper bound on the
length of a formula, and indeed the rules will not allow of there being any
such bound.

The only limit on the length of a formula is that every formula must be of

21

P.Q.K.P^Q!,]?! ,̂...

TRUTH-FUNCTORS 2.3. Languages for Truth-Functors

finite length, and rule (5) is intended to be so understood that it has this con-
sequence. One should think of this rule as saying that there are no formulae
other than the ones that there have to be in order to satisfy the other rules. It
comes to the same thing to say that the set of formulae is the smallest set that
satisfies the other rules, because it is a subset of every set that satisfies them.
So, since we do not need formulae of infinite length in order to satisfy those
rules, there are none. On the contrary, every formula is built up by starting
with some atomic formulae, given by rules (1) and (2), and then applying
rules (3) and (4) to bind these together into successively longer and longer
formulae, until, after some finite number of applications, the last truth-
functor is added and the whole formula is completed.

The formulae that are formed along the way are called the subformulae of
the whole formula (and the whole formula is trivially counted as a subfor-
rnula of itself). The subformulae of a given formula are just those parts of it
that are themselves formulae, except that for this purpose we do not count a
sentence-letter as having any parts smaller than itself. (For example, 'P' is
not a subformula of 'P2\ and CP2' is not a subformula of'P22'.) We may add
that for each occurrence of a truth-functor in our whole formula there will
be a definite stage in the process of building up the whole at which it was first
incorporated, and that will be the stage when the shortest subformula con-
taining that occurrence was formed. This shortest subformula is called the
scope of the given occurrence, and the truth-functor concerned is said to be
the main functor of that subformula. It is easily seen that the punctuation
supplied by the brackets that figure in rule (4) ensures that each formula
does have a unique decomposition into subformulae, so that there is never
any ambiguity over the scope of an occurrence of a truth-functor.

Nevertheless, all these brackets are rather tedious in practice, and it is
convenient to have some conventions for omitting them. Without any am-
biguity we may always omit the outer pair of brackets in any formula that
begins and ends with a bracket. Where we have a continued conjunction,
as in

22

we may also omit the inner pair of brackets and write simply

This increases readability, and should not be misleading, since it will make
no difference which way the inner brackets are restored. The same conven-
tion applies to a continued disjunction

2.3. Languages for Truth-Functors TRUTH-FUNCTORS

Finally we may regard the functors —> and «-» as 'outranking' A and v in the
sense that, where brackets are not shown, they should be restored in a way
that gives a larger scope to —> or <->, and a smaller scope to A and v, rather
than vice versa. Thus

and not for any of the many other ways in which brackets might be restored.
It would be possible to avoid brackets altogether by a change in the nota-

tion for two-place truth-functors, i.e. by writing the functor before its two
arguments, rather than between them. That is, one writes V (p \|/' rather
than 'q> v \|/', and similarly for any other two-place functor. In this notation
(which is known as Polish notation), the potential ambiguity in

cannot be reproduced. For on one way of construing it (i.e. the correct way),
it is written as

and on the other way it is written as

But most people find this notation difficult to read, and in any case it will not
be used in this book.

EXERCISES

2.3.1.(a) Write formation rules for a language which contains all the sentence-
letters, but just one truth-functor, namely the three-place truth-functor <->((p,\|/,%),
which takes the value T when and only when (p, V|/, and % each have the same value.

23

is to be understood as an abbreviation for

and not for

Similarly,

is short for

TRUTH-FUNCTORS 2.4. Semantics for these Languages

(b) Outline an argument to show that in this language no formula has an even
number of sentence-letters. (A fully detailed argument for this conclusion would
require the method of Section 2.8. But you should be able to give the idea of an argu-
ment without reading that section.)

2.4. Semantics for these Languages

An interpretation I of a formal language Lfor truth-functors consists of:

(1) an assignment of a truth-value, either T or F, to each sentence-letter
in L. This assignment is arbitrary, i.e. any such assignment is allowed.

(2) an assignment of truth-values to all the remaining formulae in L,
which is not arbitrary, but is calculated from the values assigned to
the sentence-letters in accordance with the truth-tables of the truth-
functors involved. For example, if the truth-functors of L are just
—I,A,v, then the interpretation of the remaining formulae is deter-
mined by the rules

24

Occasionally it will be useful to consider a non-standard interpretation,
which does not obey the stipulations (1) and (2) above. In such a case we
shall distinguish the interpretations obeying (1) and (2) as the standard
interpretations. But 'interpretation' will mean 'standard interpretation'
unless there is some indication to the contrary.

The definitions of entailment, inconsistency, and validity for languages
for truth-functors are as given in the previous chapter (Section 1.3). For
example, a set of formulae F is inconsistent iff there is no (standard) inter-
pretation of any language for truth-functors in which all of those formulae
are interpreted as true. But it is perhaps easier to think of it in a slightly dif-
ferent way. We will say that the language of a set Y of formulae is the language
which has as its vocabulary just the sentence-letters and truth-functors that
occur in F. Then the set F is inconsistent iff in every interpretation of the
language of F some formula in F is interpreted as false. Similarly F entails §

2.3.2. How many different ways are there of restoring brackets to the formula

Why is it reasonable to say that it will not make any difference which way you choose
to do it?

