
TRUTH-FUNCTORS 2.5. Some Principles of Entailment

some value, either T or F, to <j). However, by assumption (1) F N <j>, so /+
cannot assign F to <|) (since it assigns T to all in T); and by assumption (2) <(>, A
N= \|/, so /+ cannot assign T to $ (since it assigns T to all in A but F to \|/). This
is a contradiction. It follows, then, that assumptions (1), (2), and (3) cannot
all be true, so that if (1) and (2) are true, then (3) must be false, as desired.

I now proceed to another principle which is not usually called 'struc-
tural', though again it is a principle that continues to apply, whatever kinds
of formula are under consideration.

2.5.D. Uniform substitution for schematic letters In the logic of truth-
functors the only schematic letters that we have are sentence-letters, so
the principle concerns the substitution of arbitrary formulae in place of
sentence-letters. It says that if we have any correct sequent, and if we substi-
tute any formula for a sentence-letter in it—substituting the same formula
for every occurrence of the sentence-letter, all through the sequent—then
the result is again a correct sequent. It is useful to introduce a succinct nota-
tion for substitution. If <|) and \y are formulae, and PI is a sentence-letter, we
shall write (j>(v|//P,) for the result of substituting an occurrence of the for-
mula \|/ for each occurrence of the letter P; in <|). (If there is no occurrence of
P; in (j>, then (|>(x|//Pj) is just <j>.) Similarly, if T is a set of formulae, then we
shall write r(v|//P,-) for the result of substituting an occurrence of \j/ for each
occurrence of P, throughout all the formulae in T. Then we may state our
principle in two versions, corresponding to the two kinds of sequent we are
recognizing:

32

The justification for the principle is obvious at once. If we have a correct
sequent containing a letter P,, then that sequent satisfies the truth-table
test whichever value is assigned to P,. But when we replace P, by a different
formula, still that formula as a whole can only take one of the values that
P, could take, and therefore the truth-table test must still be satisfied. That
means that the sequent is still correct.

Here are some simple illustrations. It is easily checked that the following
is a correct entailment:

We may therefore substitute any other formula for all the occurrences of P in
this entailment, and the result will again be an entailment; for example:

To check the correctness of these last two sequents, it is a good deal easier to
note that they are substitution-instances of a simple sequent already known
to be correct, than it is to apply the truth-table test directly to them.

I now turn to consider principles of entailment that are specific to par-
ticular truth-functors. There is some embarrassment of riches here, for
many correct principles present themselves. But for definiteness I choose
one principle for each of the common truth-functors, which I will call the
basic principle for that functor.

Each of these is easily verified by considering the definition of the turnstile,
and of the truth-functor in question. For illustration I give just the argu-
ment for the basic negation principle.

First we observe that any interpretation that does not interpret the nega-
tion sign can of course be expanded to one that does, just by adding to it the
relevant clause for negation, and leaving everything else unchanged. And an
interpretation that does interpret the negation sign will assign T to —i<j> iff it
assigns F to <)). It follows that there is an interpretation which assigns T to all

33

2.5. Some Principles of Entailment TRUTH-FUNCTORS

These result by substituting for P first J_, then Q, then —iP, which are very
simple substitutions. But we may also substitute more complex formulae,
sayPAQA—iJ?, or (P->—iP)->—iP, to obtain

2.5.E. Negation

2.5.F. Conjunction

2.5.G. Disjunction

2.5.H. The Conditional

2.5. Some Principles of Entailment TRUTH-FUNCTORS

(Applying the basic principle once to the first antecedent, and twice to the
second, these become r,<|>,—1\|/ N and r,—i\|f t= (|>. From these two we may
'cut out' the formula <|>, and the result then follows by one or more applica-
tions of the basic principle.) There are many more useful principles con-
cerning negation. The position will be analysed in more detail in Sections
5.4 and 6.2.

Some deductions from the principles cited as 'basic' principles for con-
junction, disjunction, and the conditional are left as exercises. But I observe
here that the principle cited for disjunction may be regarded as having two
versions, one where there is a formula to the right of the turnstile, and one
where there is not:

Applying to this our basic principle for negation, we at once have version
(a). The converse deduction is left as an exercise. If, then, we can assume
that suitable principles for negation are already present, it does not matter
whether we take version (a) or version (b) of this principle for disjunction,
and I prefer version (b) because it is nicely related to our basic principle for
conjunction (as Section 2.10 will show). But if we are not already given any
other principles which allow us to show that the two versions are equivalent,
then I think that all we could say is that each is equally basic. (For example,
it is version (b) that appears basic from the viewpoint of Chapter 4, but ver-
sion (a) that appears basic from the viewpoint of Chapter 6. Both versions
are special cases of the more general approach pursued in Chapter 7.)

The question of what to count as 'basic' principles for the truth-functors
will be taken up in more detail in Chapters 6 and 7. For the present, I set it
aside, in order to come to an important principle which is naturally associ-
ated with the biconditional, though it is not at all the same in character as the
principles proposed for the other truth-functors. In fact there are versions of
it which do not rely on the biconditional at all, as we shall see.

2.5.1. Interchange of equivalent formulae The gist of this principle is
that if two formulae are equivalent then either may be substituted for the

35

Given suitable principles for negation, either of these versions can be ob-
tained from the other. For example if, as I have proposed, we start with ver-
sion (b), then we may take the case in which F includes a negated formula
—1% to deduce

TRUTH-FUNCTORS 2.5. Some Principles of Entailment

other. In the strongest version of the principle, which I take first, formulae
are taken to be equivalent if (in a given interpretation) they have the same
truth-value. To state this more exactly, let (j) and \|/ be any two formulae; let
8(<)>) be any formula which contains within itself one or more occurrences of
the formula <|> as a subformula; let 8(\|/) be the result of substituting the for-
mula V|/ in place of the formula (j), at one or more occurrences in 8((|>). Then
the principle in question is

The proof is straightforward. The principle claims that any interpretation
which verifies <j><->\|/, and which also interprets 6(<)>), will verify 8((|)) <-> 8(\|/).
An interpretation which verifies §<->\\f is one that assigns the same truth-
value to both formulae. But then it must follow that that interpretation also
assigns the same truth-value to S((j)) and 8(v|/). For 8(<j)) and 8(\|/) are exactly
alike, except that the one has <j) in some places where the other has \j/. But if <j>
and \|/ have the same value, then this difference will not affect the calculation
of the values of 8(<j>) and 8(\|/).

This is the basic form of the principle of interchange of equivalent for-
mulae. In practice, the principle is often used in a weaker form, which con-
fines attention to formulae which are logically equivalent, i.e. which have the
same truth-value in all interpretations. In this form the principle is

36

It is clear that this follows (by the principle of Cutting) from the first version.
We may rephrase this derived form in a way which eliminates the truth-
functor <-». For as a special case of our basic principle for the conditional we
have

and hence also

Abbreviating the right-hand side of this to '<]> =11= \|/', we may therefore write
the derived form of the principle in this way:

There will be several applications of this form of the principle in what
follows.

3.6. Some Principles of Entailment

Applying our basic principle for the conditional, this may also be written in
the form

By an entirely similar argument we also have

And we have only to put these two together to obtain our desired conclu-
sion. I leave it to you as an exercise to find a similar argument to justify this
similar entailment:

We are now in a position to move on to the two remaining principles to be
introduced in this section, namely the principle of uniform substitution for
schematic letters, and the principle of interchange of equivalent formulae.
These principles hold for our languages with quantifiers just as they did for
our languages for truth-functors, but they are now very much more com-
plicated to state and to justify. I begin with the interchange of equivalent
formulae.

In the languages for truth-functors of the last chapter, there was no distinc-
tion to be made between open and closed formulae, for all formulae were
closed. Consequently, the principle allowing for interchange of equivalent
formulae was there confined to closed formulae, which makes it very simple
to state and to prove. But now we have open formulae to consider as well,
for they too can be equivalent to one another, and if so then they too can
be interchanged while preserving the equivalence of the whole. If <|> and \|/
are open formulae, then they are interpreted as equivalent iff the universal
closure of the biconditional formed from them is interpreted as true. Thus
if the free variables in <j) are just x and y, and the same holds for V|/, then to
say that <j> and \\i are equivalent in an interpretation / is just to say that
VxVy(<l><->V) is true in / (and to say that <j> and \\? are logically equivalent is to
say VxVy(<|K-»\|f) is true in all interpretations, i.e. is valid). More generally,
where (j) and X|/ are any formulae, with any number of free variables ^i-..^n, I
shall write

to signify the closure of their biconditional. (If 0 and \|/ are both closed for-
mulae, then n=0.)

100

QUANTIFIERS

Now, equivalent formulae may be substituted for one another, preserving
truth-value. To state this succinctly, let <|> and \j/ be any formulae, whether
closed or open, and let 8(<|>) be any closed formula containing (|> as a subfor-
mula, and 5(i|/) be the result of interchanging <|) and Y at one or more places
in 8((j)). Then the basic principle that we require can be stated in this way:

If we had adopted the semantics on pp. 86-9 based on the notion of sat-
isfaction, then it would at once be obvious that this entailment is correct.
For if two formulae are equivalent in a certain interpretation, then it is
easy to see that they must be satisfied by all the same assignments in that
interpretation. Consequently, they must make the same contribution to the
values of any longer formula that contains them. (That is the analogue of
the justification given on p. 32, for the simple version of this principle that
applies in quantifier-free languages.) But as things are, the semantics that we
have adopted assigns no values to open formulae, so our justification must
be more roundabout. For the sake of later developments (Exercise 6.2.2) I
shall here give an argument by induction, namely an induction on the num-
ber of occurrences of truth-functors and quantifiers that are in 8((|>) but not
in<|).

In fact, it turns out to be convenient to prove slightly more than 3.6.H
as just formulated. Let <j)' be any formula resulting from § by substituting
name-letters for zero or more of the variables free in § (substituting the
same name-letter for each occurrence of the same variable), and let \\r' result
from \\f by the same substitutions. Then what we shall prove is

The hypothesis of induction is

If Q(<Sf') is shorter than 8 (<(>') then

We shall again suppose that the language we are concerned with contains
only — i,A,V as its logical vocabulary, so that we have four cases to consider.

Case (1): 8((j>') is no longer than ()>', i.e. 8(()>') is <]>'. Then since 8((|>') is
closed (by hypothesis), $' is closed, and therefore it must result from ty
by substituting name letters for the variables (if any) that are free in (|).
So the entailment to be established in this case is

But this is obviously a correct entailment, as may be shown by re-
peated use of the principle of V-elimination.

101

3.6. Some Principles of Entailment
QUANTIFIERS

Case (2): 8(<)>') is —i6((j>'). Then by inductive hypothesis we have

From these two the result evidently follows, by CUT.

Case (3): 8(<j>') is Gj (<(>') A 02(<|>')» where <)>' may perhaps be missing from
one of the conjuncts. (This will not affect the argument.) Then by in-
ductive hypothesis we have

From this the result follows by a simple truth-functional inference, as
in case (2).

Case (4): 8(4>') is V^9(<j>'). Let P be a new name, not occurring in 6(<j)')
or 9(\|/). (Note that it follows that p does not occur in <)) or in \y.) Then
by inductive hypothesis we have

That is

Since P does not occur in the premiss, we may apply V-introduction to
this to obtain

So the desired result now follows by CUT.

This completes the induction.
I remark that in the statement of this principle we have required 5 (<j)') and

8(\|O to be closed, as this simplifies the argument above. But we could allow
them to be open formulae, with free variables Ci-Cm> and in this case the
correct statement of the principle will be

It is easy to see how this version can be established from what we have
already. For if in (8(<|)') <-» 5(\|/)) we write new name-letters in place of the

102

QUANTIFIERS 3.6. Some Principles of Entailment

and by a simple truth-functional inference we have

But since p does not occur in (Q(§') 4-> 9(\|/)), this is just

And we have already proved as a lemma (pp. 99-100)

free variables, then we have an entailment that is an instance of 3.6.H, as
already established. But then by repeated applications of V-introduction
these name-letters can be restored to variables, and universally quantified,
as the new version requires.

As before, there is a weaker version of this principle, stating that logically
equivalent formulae maybe interchanged, i.e.

From this weaker version (which in practice is mo : often useful) we can
again eliminate the functor <-> if we wish, but I leave hat as an exercise.

It is worth mentioning one simple corollary of bus principle of inter-
change, namely that we may always introduce a alphabetic change of
bound variable. Consider first any formula that b< ;ins with a quantifier,
say Q^<|)(^), where Q is either V or 3. Let <(>(£) be tl : result of substituting
occurrences of the different variable £ for all free o> :urrences of ^ in §(£,),
assuming that the substituted occurrences are free in <|>(Q, and that <]>(!;)
does not already contain any free occurrences of £. T us <|)(^) contains ̂ free
wherever and only where §(Q contains £ free. In tl at case it is easy to see
that

for the truth-conditions for each formula are exact! the same. By the prin-
ciple of interchange, then, we have

for any added matter 8. And, as we have seen, the re: dt can also be general-
ized to cover the case where Q£<|>(J;), and hence Q£(f £), are open formulae,
containing other variables free. So we may say tha , in any context what-
ever, one bound variable may always be exchanged f r another (by 'reletter-
ing'), so long as the same bondage links are press red. This operation of
relettering is quite often useful, as we shall see in the icxt section.

Our final principle in this section is that which perm; s uniform substitution
for schematic letters throughout a sequent. In the lo ic of truth-functors we
had only one kind of schematic letter to consider namely the sentence-
letters, and so again the principle was simple to stat and to prove. We now
have two kinds of schematic letters, i.e. name-letter and predicate-letters,
and the principle of substitution holds for both of tt ;se. So we must take it

103

3.6. Some Principles of Entailment QUANTIFIERS

in two parts. I consider first substitution for name-letters, since this is very
straightforward. For the only expression that we have, that is of the same
syntactical category as a name-letter, is another name-letter; and thus the
principle simply permits us to substitute one name-letter for another. (The
position will become a little more interesting in Chapter 8, where complex
name-symbols will be introduced.) But substitution for a predicate-letter is
a more complex operation, as we shall see.

I write F(p/a) for the result of substituting the name-letter p for all occur-
rences of the name-letter a throughout all the formulae in F, and (|>(P/a) for
the result of making the same substitution in the formula 0. We can now
state the principle required in two versions, according to the two kinds of
sequent that we are recognizing.

3.6.I.(a) Uniform substitution for name-letters.

I sketch a proof just for the second case.
Assume that F(P/a) b4. That is, there exists an interpretation / such that,

for all formulae \j/ in F, |\|/(p/cc)|/ = T. Let Ia be an a-variant of /, agreeing
with /in all respects, except that /a interprets a as having the same denota-
tion as does P in /. Now a does not occur in \|/(P/ce), and hence by the lemma
on interpretations we have |v(P/a)l/H~ lv(P/a)|/- Moreover, |a|/a= |P|/a,
and the formulae \\i and \j/(P/cc) result from one another by interchanging a
and P at suitable places. Hence by the lemma on extensionality |\|/(P/oc) |/a =
|\|/|/a. Putting these equations together, |\|/|/a = T. That is to say: there is an
interpretation, namely /a, such that, for all formulae \y in F, \\y\In = T. In
other words,

This argument shows: if
result.

104

QUANTIFIERS 3.6. Some Principles of Entailment

,then Contraposing, we have our

Turning to substitution for predicate-letters, we must first pause to explain
what the relevant operation is. An n-place predicate-letter is immediately
followed by a series of «terms (either name-letters or variables), but it may
be followed by different terms at different occurrences in the same formula.
When we substitute for the predicate-letter, we are not at the same time sub-
stituting for the terms that follow it, so they must be preserved (in the right
order) even though the predicate-letter is replaced by something else. Of
course, this presents no problem if the predicate-letter is simply replaced
by another predicate-letter, but in fact we have more interesting substitu-
tions to consider. We said earlier (pp. 74-5) that an open sentence, with n

free variables, represents an «-place predicate. Similarly, an open formula,
with n-free variables, is a complex schematic expression for complex n-place
predicates of a certain structure. For example, the open formula

represents such complex predicates as can be obtained by substituting genu-
ine open sentences in place of its atomic parts, as in

105

For the schematic letter F in this sequent we then substitute the open
sentence

3.6. Some Principles of Entailment QUANTIFIERS

Clearly, what holds for all two-place predicates also holds for all two-place
predicates of this particular structure. That is to say that if we have a cor-
rect sequent, which holds no matter what two-place predicate a letter G is
taken to be, and if we substitute for that letter G the open formula Fxy A
—\Fyx, then the result must again be a correct sequent. In a word, the substi-
tutions to be considered are these: for a zero-place predicate-letter (i.e. a
sentence-letter), we may substitute any formula with zero free variables (i.e.
any closed formula); and for an n-place predicate-letter (n>0), we may sub-
stitute any open formula with n free variables. In the course of substituting
an open formula for a predicate-letter, the free variables of that formula will
disappear, to be replaced by the terms immediately following the predicate-
letter on that occurrence. More precisely, the free variables of the open for-
mula must be ordered in some way, say alphabetically, and we shall let this
ordering correspond to the natural ordering of the terms immediately fol-
lowing an occurrence of the predicate-letter, namely from left to right.
Then, each occurrence of the predicate-letter is replaced by the open sen-
tence in question, and the alphabetically first free variable of the open sen-
tence is replaced by the first from the left of the terms following the predicate
letter at that occurrence, the second by the second, and so on. Here is an
example. Suppose we begin with a sequent which claims (correctly) that an
asymmetrical relation must be irreflexive:

Since the original sequent was in fact a correct sequent, so too is this one
obtained from it by substitution.

There is one caveat that needs to be entered. Variables immediately fol-
lowing a predicate-letter are, of course, free in the atomic formula so
formed. When an open sentence is substituted for the predicate-letter, and
the variables following the predicate-letter are substituted into that open
sentence at appropriate positions, they must remain free in the open sentence
so formed. If the result of a substitution would be that some previously free
variables become bound by quantifiers in the open sentence, then the sub-
stitution cannot be performed. For example, in the sequent

one cannot substitute for the schematic letter the open formula

The result could only be

But in this first formula the two atomic subformulae Fyy each contain an
occurrence of y that should be bound by the initial quantifier Vy, if the over-
all structure of the formula is to be preserved, whereas it has instead got cap-
tured by the nearer occurrence of the quantifier 3y. This is illegitimate, and
there is no way of substituting just that open formula for the schematic let-
ter in that particular context. (Instead, one must first 'reletter' the bound
variables of the open formula.)

To have a succinct notation, let us write O" for an «-place predicate-
letter, 0" for a formula with n variables free, and v|/(<))"/4>") for the result of
substituting the formula for the letter, according to the method just given,
throughout the formula \|/. We assume that the substitution is a legitimate
one. Similarly, we may write r((j>"/O") for the result of making such a substi-
tution in every formula in F. Then our principle may again be stated in two
versions:

3.6.1. (&) Uniform substitution for predicate-letters.

I give a proof just for the second version.
The proof will make the simplifying assumption that the letter O" does

106

The result is

QUANTIFIERS 3.6. Some Principles of Entailment

not occur in the formula <|>" that is substituted for it. This restricted form of
the principle in fact implies its unrestricted form, as we may see in this way.
Let *F" be a new n-place predicate-letter, different from <J>" and not occur-
ring in <t>» or in any formula in F. Then by the restricted principle we may first
substitute T" for On throughout all the formulae in T, and next substitute <j>"
for *F". The result of these two steps of substitution is just the same as the
result of substituting <|)« for O" directly. Let us come now to the proof.

Assume that T(tynl®n) &*, i.e. that there is an interpretation / such that,
for all formulae \|/ in T, |\|/(<|>"/O") | / = T. Now the interpretation / must assign
some extension to the open formula <)>", i.e. a set of «-tuples from the domain
which <j)" may be counted as true of. Let us suppose that the free variables
of <))", in alphabetical order, are xly...,xn. Then in our second method of
defining an interpretation (pp. 86-9) the relevant n-tuples are just the n-tuples
(s(xl,...,&(xn)) for those assignments s that satisfy <j>" in I, Alternatively, if we
retain our first way of defining interpretations, we must first substitute new
names %,...,an, not already occurring in <))", for its free variables Xi,...,xn,
thus forming the closed formula <(>*. Then the n-tuples that we require are
just those n-tuples (|fli|,...,|aH|) formed from the denotations of these names
in all interpretations which (1) agree with 7 on all symbols other than the
names «!,...,«„, and (2) make $* true. We can therefore introduce a new
interpretation J, which agrees with /in all respects except that it assigns this
set of n-tuples to the predicate-letter <D" as its extension. Since we are assum-
ing that O" does not occur in <|)", this leaves unchanged the interpretation of
all symbols in r(<j>"/«I>"), so that we have |\|/(<)>«/<I>«)^ = T, for all y in T. But
also, we have constructed J so that <j>" and O" have the same extension in it,
i.e. they are equivalent formulae. That is, we have as true in 3

Moreover, \y differs from \)/((|)"/O") just by having 3>" at some places where
the other has <)>". So, by our principle for interchanging equivalent formulae,
it follows that \\f and \j/((|>"/<I>«) are equivalent in J. Hence |\|/|̂ = T for all \|/ in
F, and therefore F b4, as desired. This completes the proof.

EXERCISES

3.6.1. Establish the principles 3.6.D(fe)-G(fr) left unproved in the text.
3.6.2. The following diagram shows what entailments hold between formulae con-
structed from the quantifiers, and otherwise just one occurrence of Fx, one occur-
rence of Gx, and one occurrence of A.

107

3.6. Some Principles of Entailment
QUANTIFIERS

