
TRUTH-FUNCTORS 2.5. Some Principles of Entailment

2.5. Some Principles of Entailment

It is useful to be familiar with a number of general principles concerning
entailment (or inconsistency). We may first note three that are often called
'structural' principles, since they apply to formulae of any kind whatever,
and not just to formulae of the languages for truth-functors that we are
presently concerned with. They are called the principles of Assumptions, of
Thinning, and of Cutting.

2.5 A. Assumptions This is the principle that any formula entails itself,
i.e.

(The reason why it is called the principle of assumptions will emerge in
Chapters 6 and 7.) When we bear in mind the definition of entailment in
terms of truth and falsehood in an interpretation, we see that this principle
depends just upon the fact that no interpretation assigns both T and F to the
same formula. It should be obvious enough that this is a fact, at least for
(standard) interpretations of a language of truth-functors. You might like to
reflect upon how it could be proved. (I give a proof in Section 2.8 below.)

2.5.B. Thinning This is the principle that if a set of premisses entails a
conclusion, and we add further premisses to that set, then the enlarged set
still entails the conclusion. We have two versions of this principle to record,
first for the ordinary case where our sequent has a conclusion, and second
for the special case where there is no conclusion

30

(The principle is called 'Thinning' simply because thinning is a way of
weakening, and T, y 1= <j>' makes a weaker claim than does T t= (|)'.) In both
these versions the principle allows us, if we wish, to add an extra formula to
the left of the turnstile, so we may distinguish this as Thinning on the left.

2.5, Some Principles of Entailment TRUTH-FUNCTORS

Later, when we come to consider sequents with more than one formula on
the right (in Chapter 7), a precisely analogous principle will allow us to add
an extra formula to the right of the turnstile, and this is Thinning on the
right. One special case of this can be stated now, namely where the number
of formulae on the right is increased from zero to one:

31

One has only to consider the definition of the turnstile, in these various
contexts, and it is at once obvious that each of (a), (b), and (c) is a correct
principle.

2.5.C. Cutting This principle is a generalization of the point that entail-
ment is transitive, i.e. that if one formula entails a second, and the second
entails a third, then the first formula entails the third. The generalization
extends this to cover also entailments which have more than one premiss.
Again, we have two versions to record, one where our 'third formula' is in-
deed a formula, and one where it is instead the absence of any formula:

(It is called the principle of Cutting because the intermediate conclusion <|> is
'cut out'.) This principle is not quite so obvious as the preceding two, so I
here give a proof of version (a). (The modification to yield version (b) is
obvious.)

Assume, for reductio ad absurdum, that the principle is not correct, i.e.
that (for some r,A,<|>,\|/) we have1

Then by assumption (3) there is an interpretation /which assigns T to each
formula in T, and to each in A, but assigns F to \|/. We ask: what value does J
assign to <j>? It maybe that /assigns no value to (j), but if so that can only be
because ty contains vocabulary which does not occur in F or A or \|/, and is
not interpreted by /. In that case, we can evidently expand the interpretation
/, by adding to it interpretations of the extra vocabulary of <]>, to form a new
interpretation /+. Since /+ agrees with / on the interpretation of all the
vocabulary in T and A and \|/, it will still be the case that /+ assigns T to all for-
mulae in T, and T to all formulae in A, and F to \j/. But /+ now does assign

1 Recall that V negates '!='. So (3) means: not

TRUTH-FUNCTORS 2.5. Some Principles of Entailment

some value, either T or F, to <j). However, by assumption (1) F N <j>, so /+
cannot assign F to <|) (since it assigns T to all in T); and by assumption (2) <(>, A
N= \|/, so /+ cannot assign T to $ (since it assigns T to all in A but F to \|/). This
is a contradiction. It follows, then, that assumptions (1), (2), and (3) cannot
all be true, so that if (1) and (2) are true, then (3) must be false, as desired.

I now proceed to another principle which is not usually called 'struc-
tural', though again it is a principle that continues to apply, whatever kinds
of formula are under consideration.

2.5.D. Uniform substitution for schematic letters In the logic of truth-
functors the only schematic letters that we have are sentence-letters, so
the principle concerns the substitution of arbitrary formulae in place of
sentence-letters. It says that if we have any correct sequent, and if we substi-
tute any formula for a sentence-letter in it—substituting the same formula
for every occurrence of the sentence-letter, all through the sequent—then
the result is again a correct sequent. It is useful to introduce a succinct nota-
tion for substitution. If <|) and \y are formulae, and PI is a sentence-letter, we
shall write (j>(v|//P,) for the result of substituting an occurrence of the for-
mula \|/ for each occurrence of the letter P; in <|). (If there is no occurrence of
P; in (j>, then (|>(x|//Pj) is just <j>.) Similarly, if T is a set of formulae, then we
shall write r(v|//P,-) for the result of substituting an occurrence of \j/ for each
occurrence of P, throughout all the formulae in T. Then we may state our
principle in two versions, corresponding to the two kinds of sequent we are
recognizing:

32

The justification for the principle is obvious at once. If we have a correct
sequent containing a letter P,, then that sequent satisfies the truth-table
test whichever value is assigned to P,. But when we replace P, by a different
formula, still that formula as a whole can only take one of the values that
P, could take, and therefore the truth-table test must still be satisfied. That
means that the sequent is still correct.

Here are some simple illustrations. It is easily checked that the following
is a correct entailment:

We may therefore substitute any other formula for all the occurrences of P in
this entailment, and the result will again be an entailment; for example:

Finally, let Ia be an interpretation exactly the same as /pa, except that it
assigns to (3 whatever denotation (if any) it was assigned in /. Then since P is
not in ()), it is not in (|)(a/^) either, so Ia and 7pa agree on all the symbols in

Hence by the lemma on interpretations we have

Moreover, Ia is by construction an a-variant of /. So putting (a)-(d) to-
gether, Ia is an a-variant of/ such that

EXERCISES

3.5.1. Extend the argument for 3.5.A, by adding new clauses to the induction, so
that the result is proved also for languages containing v and 3.

3.5.2. The argument for clause (4) of the induction proving 3.5.B establishes that

Use the equivalence noted below as 3.6.E to show how that argument also estab-
lishes the result for 3 in place of V.

3.5.3. In a similar way, extend the argument given for 3.5.C to cover 3 as well as V.

3.6. Some Principles of Entailment

It is easy to see that the so-called 'structural' principles of pp. 30-2 apply
to our languages for quantifiers just as well as to our languages for truth-
functors. These were

3.6.A. The principle of Assumptions (ASS)
3.6.B. The principle of Thinning (THIN)
3.6.C. The principle of Cutting (CUT).

96

QUANTIFIERS 3.6. Some Principles of Entailment

This completes the proof.
We are now ready to move on to some principles of entailment for our

languages with quantifiers which extend those given in Section 2.5 for lan-
guages with truth-functors.

Nothing more needs to be said about the proofs of the first two, which are
the same as before in each case, but it is useful to add something here about
the third.

If you look back to the proof of CUT given on pp. 31-2, you will see that
it relies on this assumption:

An interpretation / which interprets a set of formulae T, but does not
interpret a formula <|>, can always be expanded to an interpretation /+
which assigns the same values to the formulae in T and assigns some
value to <|> as well.

The assumption would not have been correct if we had allowed an inter-
pretation to have an empty domain of discourse. For, as I have noted
(p. 85), if the formulae in F contain no name-letters, then they can all be
interpreted on an empty domain, whereas if <j> does contain a name-letter,
then it cannot be. But changing the domain from an empty one to a non-
empty one may well disturb the values assigned to the formulae in T. (For
example, the two formulae 3xFx and 3x—\Fx can both be false only if the
domain is empty.) As things are, however, we are not permitting a domain
to be empty, so every formula can be interpreted on every domain, and this
obstacle is avoided. It then follows from our lemma 3.5.A on interpretations
that the assumption just cited is satisfied by our semantics for quantifiers,
and CUT can therefore be proved in the same way as before.

I now move on to four principles for the quantifiers, though each has
two versions, one for V and one for 3. Since entailment is defined only for
closed formulae, it must of course be assumed that all the formulae here
mentioned are closed. The first principle states that vacuous quantification
achieves nothing:

The second shows how each quantifier maybe defined in terms of the other:

The third is usually called the elimination rule for V, paired with the intro-
duction rule for 3, and the final one is the introduction rule for V, paired
with the elimination rule for 3:

97

3.6. Some Principles of Entailment QUANTIFIERS

