
TRUTH-FUNCTORS 2.4. Semantics for these Languages

(b) Outline an argument to show that in this language no formula has an even
number of sentence-letters. (A fully detailed argument for this conclusion would
require the method of Section 2.8. But you should be able to give the idea of an argu-
ment without reading that section.)

2.4. Semantics for these Languages

An interpretation I of a formal language Lfor truth-functors consists of:

(1) an assignment of a truth-value, either T or F, to each sentence-letter
in L. This assignment is arbitrary, i.e. any such assignment is allowed.

(2) an assignment of truth-values to all the remaining formulae in L,
which is not arbitrary, but is calculated from the values assigned to
the sentence-letters in accordance with the truth-tables of the truth-
functors involved. For example, if the truth-functors of L are just
—I,A,v, then the interpretation of the remaining formulae is deter-
mined by the rules

24

Occasionally it will be useful to consider a non-standard interpretation,
which does not obey the stipulations (1) and (2) above. In such a case we
shall distinguish the interpretations obeying (1) and (2) as the standard
interpretations. But 'interpretation' will mean 'standard interpretation'
unless there is some indication to the contrary.

The definitions of entailment, inconsistency, and validity for languages
for truth-functors are as given in the previous chapter (Section 1.3). For
example, a set of formulae F is inconsistent iff there is no (standard) inter-
pretation of any language for truth-functors in which all of those formulae
are interpreted as true. But it is perhaps easier to think of it in a slightly dif-
ferent way. We will say that the language of a set Y of formulae is the language
which has as its vocabulary just the sentence-letters and truth-functors that
occur in F. Then the set F is inconsistent iff in every interpretation of the
language of F some formula in F is interpreted as false. Similarly F entails §

2.3.2. How many different ways are there of restoring brackets to the formula

Why is it reasonable to say that it will not make any difference which way you choose
to do it?

2.4. Semantics for these Languages TRUTH-FUNCTORS

iff, in every interpretation of the language of FU {§}, either some formula in
T is false or the formula <|> is true. Similarly again, <|> is valid iff, in every inter-
pretation of the language of {<)>},<(> is true. The point that we are here relying
on is this: provided that we restrict attention to interpretations which do
interpret every sentence-letter, and every truth-functor, in the formulae we
are concerned with, then we may take it for granted that what is not true in
that interpretation is false, and that what is not false is true. Moreover, we
shall never need to consider interpretations which include more letters, or
more truth-functors, than occur in the formulae under consideration. For
the interpretation of the extra vocabulary cannot in anyway affect the truth-
values of formulae which lack that vocabulary.

The most straightforward test for validity or entailment or inconsistency
is a truth-table test. So long as we may confine our attention to finite sets of
formulae, this test can always be applied and will always yield a definite
result. One begins by listing all the letters in the formula or formulae to be
tested, and then all the different ways of assigning truth-values to those let-
ters. For each assignation we shall construct a separate line of the truth-
table, so when we have 2 letters to consider there will be 4 lines in the table,
when we have 3 letters there will be 8 lines, and in general when we have n
letters there will be 2" lines. Each line thus represents one of the possible
interpretations for the language of the formula or formulae to be tested, and
we simply calculate the resulting truth-value for each whole formula in that
interpretation, using the tables already stipulated for the various functors
involved. The method of calculation is to work up from the shorter subfor-
mulae to the longer ones.

Here is a simple example to show that P—»(—iP->Q) is a valid formula.
The table is

We have just two letters to consider, P and Q, so we begin by writing these on
the left, and underneath them the four possible interpretations. Then on the
right we write the formula we are interested in, and we begin by considering
its shortest subformulae, which are the letters P and Q again. Under the first
occurrence of P, and under the occurrence of Q, we have simply repeated the
value they receive in each assignment. Under the second occurrence of P we
have written nothing, because in this case we have at once put in the values

25

TRUTH-FUNCTORS 2.4. Semantics for these Languages

of the next longer subformula —iP. These values are written under the main
truth-functor of —iP, namely —i. Using the truth-table for —» we can now
calculate the values, in each line, of the next longer subformula—iP—>Q, and
again we write these values under its main truth-functor, namely —>. Finally,
we are now in a position to calculate the values of the whole formula, which
we write under its main truth-functor, namely the first occurrence of —»in
the formula. For ease of reading, this column is sidelined, since it is the goal
of the calculation. It turns out that only the value T occurs in this column,
which is to say that in every interpretation of the language of the formula
that formula is true, i.e. that the formula is valid.

Here is another example, to verify the entailment

In this table we have saved ink by not bothering to repeat the value of a
single letter under that letter, but otherwise the procedure is just the same:
the value of each formula is calculated from the values of its shorter subfor-
mulae. The table shows that whenever the two premiss-formulae are both
true—i.e. in lines 1, 3, 5, 7, 8—the conclusion formula is true too; or equi-
valently (and easier to check) that whenever the conclusion formula is
false—i.e. in lines 2,4, 6—then at least one of the premiss-formulae is also
false. This shows that the proposed entailment is indeed correct.

When setting out truth-tables, it is standard practice always to consider
the various interpretations in the order illustrated in my last two examples.
So, for instance, in a truth-table of 16 lines the column under the first letter
would consist of 8 occurrences of T followed by 8 occurrences of F; the col-
umn under the second letter would have 4 occurrences of T alternating with
4 occurrences of F; the column under the third letter would have pairs of T
alternating with pairs of F; and the column under the last letter would have
T alternating with F. Each column begins with T and ends with F, so that the

26

The relevant table is

2.4. Semantics for these Languages TRUTH-FUNCTORS

first interpretation considered is that in which all the letters are interpreted
as true, and the last considered is that in which they are all interpreted as
false. A sequent which can be shown to be correct by the truth-table test is
called a tautologous sequent, and a single formula which can be shown to be
valid by this test is called a tautology.

It is obvious that the task of writing out a full truth-table can become very
laborious, especially when there are many letters to be considered. So it is
natural to seek for some short cuts. One method which is often handy is this:
seek to construct just one line of the truth-table, which will falsify the sug-
gested entailment. If the construction succeeds, then obviously the entail-
ment is not correct; if the construction fails, then this will be because it runs
up against some obstacle which shows that no such construction could suc-
ceed. In that case, there is no falsifying line, and therefore the entailment is
correct. To apply this method, one works in the opposite direction to that
of the truth-tables, i.e. one calculates the values of subformulae from the
values of the longer formulae that contain them.

Here is an example, testing an entailment which involves four letters, and
which therefore would have 16 lines in its full truth-table. The finished dia-
gram which records the reasoning is this:

(The numbers on the bottom line are put in only to help in the explanation
of the reasoning.) We begin by writing down the entailment to be tested,
which has two premiss-formulae and one conclusion-formula. Then our
first step is to suppose that this suggested entailment is not correct, i.e.
we suppose that there is an interpretation which makes both the premiss-
formulae true, and the conclusion-formula false. We therefore put T under
the main functor of each premiss-formula, and F under the main functor of
the conclusion-formula. These three entries are labelled T on the diagram.
Now there is nothing more that we can do with the premiss-formulae for
the time being, so for our second step we just consider the conclusion. We
observe that if the whole conditional (PvQ) —> (RvS) is to be false, then its
antecedent PvQ must be true and its consequent RvS must be false, so we
write in T under the main functor of the first, and F under the main functor
of the second. These two entries are labelled '2' on the diagram. The third
step then notes that if the disjunction RvS is to be false, then both R and S
must be false, so F is entered twice more at the entries labelled '3'. We have

27

TRUTH-FUNCTORS 2.4. Semantics for these Languages

now discovered that if there is an interpretation which falsifies our entail-
ment, it must be one in which both R and S are interpreted as false. So our
fourth step just writes in this information for the two premiss-formulae,
and allows us to complete the argument. For if the premiss P—»R is to be
true, and the consequent R is now given as false, then the antecedent P must
be false as well. So as a fifth step we can write F under P, and by the same rea-
soning we can also write F under Q. But now we have reached an imposs-
ibility, for if P is false, and Q is false, then the disjunction PvQ must also be
false, and yet we had said at step 2 that it would have to be true. We therefore
underline the conflicting truth-values, and draw our conclusion: the pro-
posed entailment must be correct. For the attempt to find a falsifying inter-
pretation has run into a contradiction.

Reasoning by this method does not always work out quite so straight-
forwardly. Here is another example, which in this case does work out, but
which begins to show how problems may arise. Let us see whether the entail-
ment we have just tested also holds the other way round. In this case, our
diagram works out like this:

Step 1 enters T for the left formula, and F for the right formula, as before. But
these values in fact do not determine any further values at all, so in order to
get any further we must now make an assumption. There are several assump-
tions that one could make. We shall explore later a method which makes
assumptions about the values of the individual sentence-letters. (This is
Quine's method of truth-value analysis, introduced in Section 2.11.) But it
is more in keeping with the present method to make an assumption about
the value of a longer formula, in fact of a longest subformula that is not yet
assigned a value. So we choose to consider the conclusion-formula (P—>R)
A (Q—»S). Our initial supposition is that this conjunction is false. So it fol-
lows that one or other of the two conjuncts, P—>R and Q—>S, is false, but we
do not know which. We shall assume, then, that it is P—*R that is false, mark-
ing this in on the diagram as step 2, but also labelling it 'A' for 'Assumption'.
Now suppose that in following out the consequences of this assumption we
meet an impossibility, as we did with the last example. Then what we have
to do is to run the test again, this time making the alternative assumption
that Q—>S is false. If both assumptions lead to an impossible distribution of
truth-values, then we know that there cannot be any falsifying interpreta-

28

2.4. Semantics for these Languages TRUTH-FUNCTORS

tion. But that is not what happens with the present example, as we soon see.
The assumption at step 2, that P-*R is false, allows us to mark P as true and
R as false at step 3. Step 4 then carries this information across to the left for-
mula, and step 5 then notes that, since P is true, PvQ must be true too.
Combining this with the initial supposition that the left formula as a whole
is true, we deduce in step 6 that RvS must be true, and hence in step 7 that S
must be true. Step 8 then carries this information across to the other occur-
rence of S, and step 9 infers that the clause Q->S must therefore be true. At
this point we may stop. Admittedly, the value of Q has not yet been deter-
mined, and for completeness we should make some assumption about it.
But it is easily seen that we could make either assumption, and the rest of the
diagram will not be affected. So we have not run up against any impossibil-
ity. On the contrary, we have succeeded in constructing a line of the truth-
table in which the premiss-formula is true and the conclusion-formula is
false, thus showing that the proposed entailment is not correct.

As will be evident from these two examples, using this method requires
more thought than constructing a full truth-table, but it can save a great deal
of time. The method can also become rather complicated, if we are forced to
make several different assumptions, one after the other, in testing the same
entailment. But I shall not say any more about it at this stage, for in fact the
basic idea that we are using here will be developed into an elegant and fool-
proof procedure in Chapter 4, with a simple technique for handling a num-
ber of assumptions.

29

2.4.1. Use truth-tables to determine whether the following sequents are correct.

2.4.2. Without writing out a full truth-table, determine whether the following
sequents are correct. (Indicate your reasoning.)

EXERCISES

(We use as short for and

TRUTH-FUNCTORS 2.5. Some Principles of Entailment

2.5. Some Principles of Entailment

It is useful to be familiar with a number of general principles concerning
entailment (or inconsistency). We may first note three that are often called
'structural' principles, since they apply to formulae of any kind whatever,
and not just to formulae of the languages for truth-functors that we are
presently concerned with. They are called the principles of Assumptions, of
Thinning, and of Cutting.

2.5 A. Assumptions This is the principle that any formula entails itself,
i.e.

(The reason why it is called the principle of assumptions will emerge in
Chapters 6 and 7.) When we bear in mind the definition of entailment in
terms of truth and falsehood in an interpretation, we see that this principle
depends just upon the fact that no interpretation assigns both T and F to the
same formula. It should be obvious enough that this is a fact, at least for
(standard) interpretations of a language of truth-functors. You might like to
reflect upon how it could be proved. (I give a proof in Section 2.8 below.)

2.5.B. Thinning This is the principle that if a set of premisses entails a
conclusion, and we add further premisses to that set, then the enlarged set
still entails the conclusion. We have two versions of this principle to record,
first for the ordinary case where our sequent has a conclusion, and second
for the special case where there is no conclusion

30

(The principle is called 'Thinning' simply because thinning is a way of
weakening, and T, y 1= <j>' makes a weaker claim than does T t= (|)'.) In both
these versions the principle allows us, if we wish, to add an extra formula to
the left of the turnstile, so we may distinguish this as Thinning on the left.

3

Quantifiers

3.1. Names and Extensionality 70

3.2. Predicates, Variables, Quantifiers 74

3.3. Languages for Quantifiers 77

3.4. Semantics for these Languages 81

3.5. Some Lemmas on these Semantics 91

3.6. Some Principles of Entailment 96

3.7. Normal Forms (PNF) 109

3.8. Decision Procedures I: One-Place Predicates 115

3.9. Decision Procedures II: V3-Formulae 126

3.10. The General Situation: Proofs and Counter-
examples 131

3.1. Names and Extensionality

The logic to be studied in this chapter is standardly called 'predicate logic',
as the logic of the last chapter is standardly called 'prepositional logic'. But
a much better name for it is the logic of quantifiers, or, more fully, the logic
of 'elementary' or 'first-order' quantifiers. However, there is a more basic
notion to be considered before we can come to the quantifiers, and that is
the idea of a name, or more generally of a logical subject. For the elementary,
or first-order, quantifiers take the place of names, and sentences containing
these quantifiers are most easily understood in terms of the simpler sen-
tences that result from them, when the quantifiers are dropped and names
restored in their place. However, there is no agreement amongst philo-
sophers on what is to count as a name, or logical subject, and this is not the

70

place to explore the issues involved. I therefore offer only a bare outline of
what are, from the logician's point of view, the crucial assumptions.

The paradigm of a name is an ordinary proper name, written (in English)
with an initial capital, whose role is to make a singular reference to a particu-
lar object of some kind, e.g. the name of a person, a place, a ship, a hurric-
ane, or whatever. What is important about names, for logical purposes, is
this job of singular reference that they perform. So we generalize the idea
and say that any other expression too may be counted as a name, for our
purposes, if it too performs the same job. I think there would be general
agreement that demonstrative expressions, such as 'this book' or 'that chair',
may be so counted, though, of course, they are not ordinarily thought of
as 'names'. But there is no agreement on other examples. In particular there
is a category of expressions called 'definite descriptions' on which philo-
sophers are deadlocked. I shall return to this topic in Chapter 8, but mean-
while I simply leave the question open. The important thing about a name
is that it is an expression used to make a singular reference to a particular
object; just which expressions do play this role must for the time being
remain undetermined.

An expression that is commonly used as a name may nevertheless be
functioning in some different way in a particular context. To take a simple
example, consider the sentence

'Horace' rhymes with 'Doris' and with 'Maurice'.

The three expressions here quoted are standardly used as names that refer
to people, but it is clear that that is not their role here. On the contrary, we
say that in this sentence the name 'Horace' is not being used at all, but only
mentioned, and the different name '"Horace"' is being used to refer to it. In
other words,' "Horace"' is functioning here, as it usually does, as a name of
'Horace', whereas 'Horace' is not functioning as a name at all. The important
point is that for our purposes we do not count an expression as a name
unless it is actually functioning as a name in whatever context is under con-
sideration, i.e. unless it is, in that context, being used to refer to a particular
object. By an extension of the same idea, we do not count anything as a repe-
tition of the same name unless it is, in the context, being used to refer to the
same object. And this implies that an expression is not counted as a name
unless it succeeds in referring to an object, i.e. unless there really is an object
to which it refers.

This is the first assumption that we make about names, i.e. that they
always do refer. (In Chapter 81 shall consider abandoning this assumption,

71

3.1. Names and Bctensionality QUANTIFIERS

but for the time being it is imposed.) There is also a second assumption,
which may naturally be regarded as an extension of the first: for logical pur-
poses, it is only the object referred to that is important, and not the name
that is used to refer to it. To put this more precisely: the truth-value of a pro-
position which contains a name will (usually) depend upon which object
that name refers to, but it will never depend upon which name is being
used to refer to it; consequently, any other name with the same reference
could have been used instead, and the truth-value of the whole would not
be affected. That is, if two names each refer to the same object, then in any
proposition which contains either of them the other may always be substi-
tuted in its place, and the truth-value of the proposition will be unaltered.
This assumption is called the Principle ofExtensionality.

Any natural language will abound with counter-examples to this prin-
ciple. To adapt what must count as the case best known to philosophers (see
Frege 1892/1960), it is true (given a suitable understanding of'Ancient') that

The Ancient Egyptians did not know that the Morning Star and the
Evening Star are the same heavenly body.

Now in fact the expressions 'the Morning Star' and 'the Evening Star' are
names of the same heavenly body, to wit the planet Venus. So, according
to the principle of extensionality, it should always be possible to substitute
either for the other without affecting truth-value. Accordingly, it should be
equally true that

The Ancient Egyptians did not know that the Morning Star and the
Morning Star are the same heavenly body.

But this conclusion is manifestly absurd. Nor can one say that this apparent
counter-example arises only because we have taken as names the expres-
sions 'the Morning Star' and 'the Evening Star', whereas these expressions
are not really names (but, say, disguised descriptions). For with any two
names V and 'b', which are in fact names of the same object, it will surely be
possible to know that a = a without knowing that a = b. What is causing the
trouble in this example is not the particular names involved, but the kind of
claim that is being made by the sentence as a whole.

There are many other examples of this phenomenon in an ordinary lan-
guage. They are cases where we have a name which is apparently being used
to refer to something, but where it makes a difference if we substitute some
other name with the same reference. In such a case, the function that the

72

QUANTIFIERS 3.1. Names and Extensionality

name is performing cannot just be to refer to that object; it must be play-
ing some other role as well, which a different name might fail to play, even
though it too referred to the same object. So the name is not being used
purely to refer. We shall say, in such a case, that the name does not occur
extensionally. Where, however, the substitution of any other name with the
same reference must preserve the same truth-value, there the name does
occur extensionally. For logical purposes, it is only the extensional occur-
rences of names that we shall count as being occurrences of names. (I
observe in parenthesis that it is common to find names occurring non-
extensionally where they occur in a clause which specifies what is going on
in someone's mind—e.g. what he knows, believes, fears, doubts, is thinking
of, and so on. The same phenomenon also occurs when we are concerned
with what is necessary, or possible, or probable; or with the question of how
some fact is to be explained, or some conduct justified; and in other cases
too.)

EXERCISES

3.1.1. The names in italics in the following sentences do not occur there as names,
from a logical point of view. Explain why not.

(a) Many people have painted pictures of Pegasus.
(b) It is not likely that King Arthur existed.
(c) The Pope is usually an Italian.
(d) Trieste is no Vienna.
(e) Giorgione was so-called because of his size.

3.1.2. Discuss whether the names in italics in the following sentences do occur
there as names, from a logical point of view. (Be prepared to find that some ex-
amples are ambiguous, and that we can accept them as using names when taken in
one way, but not when taken in another.)

(a) George Eliotwas Mary Ann Evans.
(b) At the time, no one knew that George Eliot was Mary Ann Evans.
(c) There are some who believe that Shakespeare was Bacon.
(d) Oedipus did not know that Lains was his father.
(e) NooneisafraidofDrJekyll.
(/) It is most improbable that Dr Jekyll is a murderer.
(g) The Morning Star and the Evening Star might have turned out to be different

planets.
(h) The police took no action because it was Prince Charles who was driving.

73

3.1. Names and Extensionality QUANTIFIERS

A simple way of approaching the modern1 notion of a predicate is this: given
any sentence which contains a name, the result of dropping that name and
leaving only a gap in its place is a predicate. Given a suitable context, the sen-
tence as a whole will express some proposition, true or false, about some
object. The name refers to the object, and the rest of the sentence, i.e. the
predicate, says something about it, something that will be either true o/the
object, or false o/the object, as the case may be. (And as we commonly say,
for short, that sentences themselves are true or false, so we shall similarly
speak of predicates themselves being true of certain objects and false of
others.) It should be noted that this way of speaking already presupposes
that the name we began with occurred extensionally, for we do not allow for
the idea that a predicate maybe 'true of an object under one name, but 'false
of it under another. On the contrary, the predicate is either true or false of
the object itself, without room for any further qualification. So, if we remove
from a sentence a non-extensional occurrence of a name, then what is left is
not to be counted as a predicate, for our purposes.

In fact it will not quite do to say, as I have just done, that a predicate is just
a sentence with a gap in it. Some simple one-place predicates may be re-
garded in this way, without creating any problem, but more will need to be
said as soon as we move on to consider sentences with several gaps in them.
These can arise either because we began with a sentence containing several
names, and dropped more than one of them; or because we began with a
sentence containing the same name several times over, and dropped that
name at more than one of its occurrences; or, of course, from any mixture of
these two reasons. To avoid the ambiguity that can result, we shall never in
fact write a simple gap, but will always mark that gap by writing in it a letter
that is called a variable. As variables we introduce the following alphabet

u,v,w,x,y,z,uly...

The point of marking a gap in this way is that two gaps which are each
marked with the same variable must each be filled by the same name, if we
are to form a sentence containing the predicate in question; whereas gaps
which are marked by different variables may be filled by different names.

A sentence which contains some variables in place of names is called an
open sentence, so in practice we shall use open sentences to represent our

1 Note that the use of the words 'subject' and 'predicate' from Aristotle to Kant was very different from
that introduced here.

74

3.2. Predicates, Variables, Quantifiers

QUANTIFIERS 3.2. Predicates, Variables, Quantifiers

predicates. An open sentence which contains just one variable, occurring
one or more times, represents a one-place (or monadic) predicate, true or
false of single objects; one obtains a genuine sentence from it and a single
name, upon substituting that name for all occurrences of its variable. An
open sentence which contains just two variables replacing names repres-
ents a two-place (or dyadic) predicate—also called a dyadic relation—true
or false of ordered pairs of objects; one obtains a genuine sentence from it
and a pair of names, by substituting the first name of the pair for all occur-
rences of the first variable, and the second name for all occurrences of the
second variable. (Note that, as a special case, the first name of the pair might
happen to be the same name as the second.) The generalization is obvious:
an open sentence containing just n distinct variables replacing names2 rep-
resents an «-place predicate, true or false of ordered n-tuples of objects. Two
special notes may be added to this statement. (1) It is convenient to count
the generalization as covering zero-place predicates; these are represented by
'open' sentences with no variables replacing names, i.e. they are just ordin-
ary sentences. (2) There is no need to distinguish between the 'one-tuple' of
an object and the object itself, so we shall not bother to do so.

As schematic letters to take the place of names we shall use the alphabet

a,b,c,d,e,di,...

As schematic letters for predicates we shall use

F,G,H,P,Q,R,S,r,Fi,...

A predicate-letter will be followed by one or more name-letters, as in 'Fa'
or 'Gab\ to stand in for a sentence containing those names; or by one or
more variables, as in 'Fx' or 'Gxy\ to stand in for the corresponding open
sentences; or by a mixture of the two, as in 'GxV. For official purposes each
predicate-letter is regarded as having some definite numeral superscripted,
so that F" represents only the n-place predicates, needing to be followed by
n-tuples of name-letters or variables.3 But in practice we shall always omit
these superscripts, for since a predicate-letter is always followed by some
definite number of name-letters and variables, this itself allows us to recon-
struct its superscript. There is, however, one point arising from the omission
to which it is worth drawing attention. Both 'Fa' and 'Fab' will be counted as
formulae, and therefore so also is 'Fa A Fab'. But, despite appearances, this
formula does not contain the same predicate-letter twice over. For the first

2 The qualification 'replacing names' is essential. It restricts attention to free occurrences of variables.
(See further pp. 79-80).

3 An n-tuple is a series of Hitems, not necessarily distinct (cf. p. 16 above). E.g. (a,b,a,c,a) is a 5-tuple.

75

3.2. Predicates, Variables, Quantifiers QUANTIFIERS

occurrence of 'F is short for 'F1', and the second is short for 'F2', and these
are different predicate-letters.

We have now introduced names, variables, and predicates, which form
the auxiliary vocabulary needed to express quantification, so we can pro-
ceed to the quantifiers themselves. For the time being4 we shall recognize
only two quantifiers, namely the universal quantifier 'V, which does the
work of the English 'all' or 'every' or 'any', and the existential quantifier '3',
which does the work of the English 'some' or 'a'. (The inverted 'A' is in-
tended to suggest 'All'; the reversed '£' is intended to suggest the Existence
expressed by 'there is a' or 'there are some'.) But from a grammatical point of
view our quantifiers V and 3 do not work in the same way as their English
counterparts.

If we begin with an open sentence, containing (say) just the one variable
x and no other, then in English one could form an ordinary sentence from it
in two main ways: either one could replace the variable x by a name, or one
could replace it by a quantifying expression such as 'everything' or 'some-
thing' or 'all men' or 'some girls'. But in logic we never write a quantifier in
the same position as one could write a name. On the contrary, we do not
replace the variable x by a quantifier, but we prefix a quantifier which, as we
say, binds that variable. (The point of this departure from natural languages
is that it makes clear what the scope of the quantifier is.) We show which vari-
able a quantifier is binding by writing that variable itself immediately after
the quantifying expression V or 3. Thus one writes 'Vx' for the universal
quantifier binding the occurrences of V in what follows, or '3/ for the
existential quantifier binding the variable y in what follows; and so on. The
closest analogue to this in English is to prefix a phrase such as 'Everything is
such that' or 'Something is such that', and then to replace the subsequent
occurrences of the relevant variable by occurrences of the pronoun 'it', all
governed by the opening prefix. So it comes about that English sentences
such as

All men are mortal
Some girls wear blue stockings

are rephrased in our logical notation as

Vx(if x is a man then x is mortal)
3x(x is a girl and x wears blue stockings)

and are represented in our schematic language by formulae such as

4 The situation will alter in Section 8.1.

76

QUANTIFIERS 3.2. Predicates, Variables, Quantifiers

3.3. Languages for Quantifiers

As in the case of the truth-functors, there is plenty of room for debate over
the relation between the quantifiers of logic and their analogues in ordinary
languages, but that is not a topic for the present book.

EXERCISE

3.2.1. Briefly explore the topic that is not for this book. Let us label the four state-
ments thus:

(1) All men are mortal.
(2) Some girls wear blue stockings.
(3) Vx(x is a man —> x is mortal).
(4) 3x(x is a girl A x wears blue stockings).

Consider the following arguments for saying that (1) does not mean the same as (3),
and that (2) does not mean the same as (4):

(a) (2) implies that more than one girl wears blue stockings; (4) does not.
(b) (2) implies that there are also girls who do not wear blue stockings; (4) does

not.
(c) (1) implies (or presupposes) that there are men; (3) does not.
(d) Indeed, (3) is true if there are no men; (1) is not.
(e) (1) is about men and nothing else; (3) is apparently about all objects. So the

two have different subject-matters.
(/) In fact there is no saying what (3) is about, since its domain is just left

unspecified. (And the specification 'all objects' is no help, for 'object' is so
vague a word that we do not know what is to count as an object for this pur-
pose.) Thus (3) has no clear domain of quantification, whereas (1) does; for
(1) quantifies just over men.

How good are these arguments? Would it be possible to meet them by adopting
more complex versions of (3) and (4)?

3.3. Languages for Quantifiers

In order to study the effect of quantifiers upon entailment we shall again
concentrate on so-called 'formal' languages—i.e. schematic languages—
in which definite quantifiers occur, but no definite names or predicates.
We shall allow definite truth-functors to occur too, so that the languages in

77

QUANTIFIERS

question are really schematic languages for truth-functors and quantifiers,
and the languages of the previous chapter will be a special case of those to be
introduced now. The vocabulary from which the languages are built there-
fore consists of

name-letters: a,b,c,d,e,ai,...
variables: M,v>w)x,y,z,M1,...
«-place predicate-letters: F",G^H",P«,Q")£«,S",T>',.F]/>,... (for n^O).

(The zero-place predicate-letters are the sentence-letters of the previous
chapter.) It is convenient to add here a further definition:

The terms of a language are its name-letters and its variables together.

In addition to this vocabulary the languages may contain any desired truth-
functors (which will add brackets to the notation) and either none, or one,
or both of the quantifiers V and 3.

For definiteness, let us suppose that we wish to include both quantifiers in
our language, but of truth-functors only —I,A,V. Then the formation rules
are:

(1) An n-place predicate-letter, followed by n terms, is a formula.
(2) If <|> is a formula, so is —4.
(3) If <|> and \)/ are formulae, so are (<|>A\|/) and (<|>vv|/).
(4) If <|) is a formula, and ^ a variable, VE,^ and 3£,§ are formulae.
(5) There are no other formulae.

Apart from variations in the truth-functors and quantifiers that may be
included in the language, we also permit variations in the name-letters, vari-
ables, and predicate-letters: the language may contain only some, or per-
haps none, of those listed. For example, we may consider a language which
has no name-letters (as several authors do), or one which has only the one-
place predicate-letters, and so on.

The formation rules just given have some rather unnatural consequences.
One might, indeed, look askance even at rule (1), which provides for the
atomic formulae. For this rule allows as a formula not only schematic expres-
sions such as 'Fa', which take the place of sentences containing names, but
also expressions such as 'Fx', which take the place of open sentences. An open
sentence, however, is not a proper sentence; it cannot express any definite
proposition, and it makes no sense to assign it a truth-value. Do we want
such a thing to be counted as a formula? But a far more serious difficulty
arises with rule (4), which says that if <|> is any formula whatever then we can
always form another formula by adding a prefix such as' Vx' or '3/, whether

78

QUANTIFIERS 3.3. Languages for Quantifiers

or not there are any further occurrences of V or '/ in the formula, to be
bound by this prefix. So, for example, the following count as formulae:
'VxP', '3yFxx\ 'VxBxVxFfl', and so on. But these are expressions which cor-
respond to no English sentences or open sentences; it is natural to say that
they make no sense at all.

To consider this point more accurately, we need some further definitions:

(6) The scope of an occurrence of a quantifier (or a truth-functor) is the
shortest formula in which it occurs.

(7) An occurrence of a quantifier V or 3, immediately followed by an
occurrence of the variable %, as in VJ; or 3 ,̂ is said to be ^-binding.5

(8) An occurrence of a variable ̂ in a formula § is free in $ iff it is not in
the scope of any ̂ -binding quantifier in 0; otherwise it is bound in (|).

(9) A dosed formula is one in which no variable occurs free; a formula
which is not closed is open.

(10) An occurrence of a quantifier V^ or 3^ is vacuous iff its scope is V^x|/
or 3^v(/, and the variable ̂ does not occur free in \|/.

A vacuous quantifier, then, is one which is ̂ -binding but which fails to bind
any occurrence of %, except for the occurrence which forms part of the quan-
tifying prefix itself. All the examples of quantifiers in the apparently 'sense-
less' formulae just noted are vacuous.

In some books the formation rules are so arranged that formulae with
free variables, and formulae with vacuous quantifiers, are not counted as
formulae at all. It is easy to see how to achieve this. We restrict formation
rule (1) to

(1') An n-place predicate-letter, followed by n name-letters, is a formula,

and we allow the introduction of variables only with rule (4), at the same
time as we provide for the quantifiers that bind them. Further, to ensure that
these quantifiers should not be vacuous, we now phrase rule (4) in this way:

(4') If <|> is a formula containing a name a, and if (|>(^/a) is what results
upon substituting the variable ^ for all occurrences of a in <j), then
V£<j)(4/a) and 3^<j)(^/a) are formulae, provided that <j>(£/a) is not
itself a. formula.6

5 I use the small Greek letters 'J;' and '£' ('xi' and 'zeta', with long V and long V) as metalogical sym-
bols to stand in for any variables.

6 I use the small Greek letters 'a','P>Y ('alpha', 'beta', 'gamma', with a long V in 'beta') as metalogical
symbols to stand in for any name-letters.

79

3.3. Languages for Quantifiers
QUANTIFIERS

Notice that the proviso ensures that at least one occurrence of ̂ in <()(^/a) is
a free occurrence, not already bound by any ̂ -binding quantifier in (j)(^/a),
so that the newly prefixed quantifier cannot be vacuous.7 So on these re-
vised rules no formula is allowed to contain a free variable or a vacuous
quantifier.

But there is a price to pay. From one point of view it is convenient not to
count open formulae as formulae, namely because they cannot be assigned
truth-values. But on the other hand we cannot just ignore open formulae,
since one frequently needs to say things about them, and they must be given
some name or other. Since in fact the name 'open formula' (corresponding
to 'open sentence') is now well established, it seems perverse not to use it.
But then one might as well go along with what the name implies, and accept
that open formulae are indeed formulae. When necessary, one can always
explicitly restrict attention to such formulae as are not open, but closed.
There is no similar motivation for accepting formulae with vacuous quan-
tifiers. Apart from one or two very recherche purposes,8 these are for the
most part just a nuisance, for one has to keep remembering that sensible-
looking rules which apply to all normal quantifiers may not apply to them.
But in order to rule them out, while still accepting open formulae as formu-
lae, it turns out that the rules of formation must be given in a much more
complicated form, which it is not worth stating here.9 I therefore return
to rules (l)-(5) as first stated, which do permit vacuous quantifiers, but I
adopt a ruling about them which renders them harmless. The ruling is that
a vacuous quantifier alters nothing, i.e. if £, does not occur free in (]), then V^(|>
and Bcjij) are each logically equivalent to (j).

Having decided what a language for quantifiers is to be, our next task is to
say what counts as an interpretation for such a language. This is the task of
the next section. Before we come to that I pause here to introduce a notation
for substitution that will be convenient in what follows. If (j) is any formula,
a any name, and ^ any variable, then <|>(a/2;) is to be the formula that results
from (]) upon substituting occurrences of the name a for every occurrence of
the variable £ in (j> that is free in <j). If ^ has no free occurrence in <|>, then <)>(«/£)
is just <|> itself. Similarly, (|>(^/a) is to be the formula that results from (j) upon
substituting for each occurrence of a in <j) an occurrence of ̂ that is free in <j).
If either there are no occurrences of a in <)>, or there is one such that, when an

7 Observe that we cannot explicitly use the notion of a 'free occurrence' when framing rule (4'), for at
this stage that notion has not been defined.

8 For example, vacuous quantifiers in the logic of one-place predicates are a useful model for 'vacu-
ous' modal operators in the modal logic S5.

9 One must simultaneously define both what counts as a formula and what counts as a free occurrence
in that formula.

80

QUANTIFIERS 3.3. Languages for Quantifiers

occurrence of £ is substituted for it, that occurrence is bound in ()>, then in
either case <|>(£/a) is just <)> itself. The point is that this notation concerns the
substitution of names for free variables, and vice versa; if we wish to con-
sider substitution of or for bound variables (as on p. 103), then we must say
so explicitly.

EXERCISES

3.3.1. Let us call a formula 'sensible' iff it contains no vacuous quantifiers. Allowing
reasonable conventions for omitting brackets, which of the following expressions
are (a) formulae, (b) closed formulae, (c) sensible formulae? Give reasons.

3.4. Semantics for these Languages

What is to count as an interpretation of a language which contains names,
predicates, and quantifiers, as well as truth-functors, is very much more

81

3.4. Semantics for these Languages
QUANTIFIERS

3.3.2. Argue in detail that any expression which is counted as a formula on the
revised rules (1') and (4') of p. 79 is also counted as a formula which is both closed
and sensible on the rules originally given on p. 78. [Method: use induction on the
length of the expression, noting that length is now to be measured by the number of
occurrences of truth-functors and quantifiers.]

3.3.3. Compare rule (4') with this rule:
(4") If <j> is a formula containing a name-letter a, and if <|>(^/a) is what results
upon substituting the variable J; for all occurrences of a in (|>, then V£<t>(J;/a)
and 3£<|>(J;/a) are formulae, provided thatt, does not already occur in ty.

(Several books adopt (!') and (4"), in place of (!') and (4').) Show that there are
expressions which are permitted as formulae by (4') but not by (4"), and discuss
whether they should be permitted.

3.3.4. The main logical symbol in a formula is that symbol in it, either truth-
functor or quantifier, which has the whole formula as its scope. Prove that in any
formula, apart from atomic formulae, there is always one and only one such sym-
bol. [Method: adapt Exercise 2.8.2.]

complicated than it was when only the truth-functors needed to be con-
sidered. There are also, as we shall see, two rather different methods of
providing such interpretations. The method that I give first is I think the
simpler: it concentrates just on truth-values, as in the previous chapter, and
consequently it ignores open formulae altogether. It is this method that I
shall use in subsequent discussions. But since most books these days use a
different method, I shall give a brief outline of this too.

We may start with what is common to both methods. An interpretation
for a language of the kind that we are now interested in will always begin
with the selection of a domain, to be what is called 'the domain of the inter-
pretation'. (We abbreviate this to D.) It is also called 'the domain of dis-
course', since it is thought of as containing all the things that the language in
question can speak about. What we choose as the domain is arbitrary; it can
be any set of things whatever, finite or infinite, with this one proviso: it can-
not be empty. I comment briefly on some consequences of this proviso in
this section and the next, but I shall not examine its merits until Chapter 8.
For the present it is simply a stipulation on what is to count as a (standard)
interpretation.

The next step is to provide an interpretation, on that domain, of the name-
letters and predicate-letters in our language. This means that for each name-
letter in the language we must specify some object of the domain for it to be
the name of. Since one of our central assumptions about names was that a
name must succeed in naming something, we are not permitted to interpret
any name-letter as lacking in denotation, but otherwise there are no restric-
tions. For example, we may, if we wish, interpret all the names as naming the
same object in the domain, or we may interpret them as all naming differ-
ent objects, and so on. Similarly, we interpret the predicate-letters on the
domain by saying which objects in the domain they count as true of. More
accurately, we interpret a zero-place predicate-letter, i.e. a sentence-letter,
just by assigning it a truth-value, T or F. We interpret a one-place predicate-
letter by assigning it some set of objects from the domain which it is true
of. (It is then also specified as false of all other objects in the domain.) Any
set of objects from the domain is permitted; in particular we may include
all the objects in the domain, which interprets the predicate-letter as true
of everything; or we may interpret it as true of nothing, or anything in
between. We interpret a two-place predicate-letter by assigning to it some
set of the ordered pairs that can be formed from members of the domain;
and so on.

In order to have a brief notation, for any symbol o let us write |o| for the
'semantic value' assigned to the symbol a by whatever interpretation is in

82

QUANTIFIERS 3.4. Semantics for these Languages

question. (If we need to distinguish different interpretations, say /and J7, we
shall add suitable subscripts as in |o|j and |o|j.) Also, where Dis the domain
of the interpretation, let us write T>" (for n>0) for the set of all n-tuples that
can be formed from the objects of that domain. Then we can say: an inter-
pretation /for a language Lfor quantifiers, will always specify

(1) A non-empty domain D.
(2) For each name-letter a in £ some object in 2) as its denotation (i.e.

what it names). Thus |a| G 2).
(3) For each zero-place predicate-letter <1>0 in L a truth-value.10 Thus

(4) For each n-place predicate-letter <&" in L (n>0), a set of n-tuples
formed from the objects in Das its extension (i.e. what it is true of).
Thus |<E»"| C <D".

These clauses (1)-(4) concern the interpretation of the non-logical vocabu-
lary of £, which will be different from one interpretation to another. We now
need to consider the interpretation of the logical vocabulary of L, and this is
not chosen arbitrarily, but is designed to conform to the intended meaning
of the logical signs. It is therefore the same for all interpretations of the same
language.

Let us suppose, again, that we are dealing with a language which contains
just —I,A,V as truth-functors, and V and 3 as quantifiers. There is also an-
other piece of 'logical vocabulary' that needs explanation, and that is the
significance of writing name-letters immediately after a predicate-letter in
an atomic formula. So we also need a clause which tells us how atomic for-
mulae are to be evaluated. In the first method that I give, we confine atten-
tion throughout to dosed formulae, so that the atomic formulae that are
relevant are just those that contain name-letters but no variables. The obvi-
ous clause is this:

83

3.4. Semantics for these Languages QUANTIFIERS

10 I use the capital Greek letter '*' ('phi') as a metalogical symbol to stand in for any predicate-letter.
(I add that '&' abbreviates 'is a member of and 'C' abbreviates 'is a subset of.)

1' We could avoid a special clause for zero-place predicates in this way. We may suppose that 1ft is the
set of 0-tuples that can be formed from members of Z>, and that there is just one such 0-tuple, namely 'the
empty tuple' (i.e. the empty sequence) which is represented by < >. Then ®°={<)}, and if |<&0| C If> then
either |<J>°| = {{ }) or |4>°| = { } (i.e. the empty set). For a continuation of this approach, see n. 12.

12 If this clause is intended to include zero-place predicate-letters (cf. n. 11), then in their case it is
interpreted as meaning

Thus a sentence-letter is true if its value is {{ }(, and false if its value is { }. (1 am indebted to Dana Scott
for this ingenious suggestion.)

In words, this says: an atomic formula consisting of an n-place predicate-
letter followed by n names counts as true (in the interpretation in question)
iff the H-tuple formed by taking the objects which are the denotations of the
names (in that interpretation), in the order in which the names occur in
the formula, is a member of the set of «-tuples which is the extension of the
predicate-letter (in that interpretation). It is long-winded to say it, but the
thought is surely very simple. We may add to this the expected clauses for
the truth-functors, namely (in the present case)

84

QUANTIFIERS 3.4. Semantics for these Languages

This brings us, then, to the problem of what we are to say about the
quantifiers.

Let us suppose that \/x§(x) and 3x^(x~) are closed and sensible formulae,
so that x, but only x, occurs free in §(x). Then the basic idea is evidently this:
Vx(|>(x) is to count as true iff the predicate represented by the open sentence
§(x) is true o/all the objects in the domain; and similarly 3x$(x) is to count
as true iff that predicate is true of some object in the domain. But this way of
putting things evidently introduces a difficulty. In clauses (5)-(7) we have
been working towards a definition of true for our language, but have not said
anything about being true of. Either, then, we must think of some way of ex-
plaining the truth-values of quantified sentences in terms of the truth of
their simpler instances, or we must go back and revise clauses (5)-(7) so that
they are concerned, not—or not only—with truth, but also with being true
of. My first method takes the first course, and my second method takes the
second.

The first method starts from the thought that if Vx$(x) is true, then so is
every simpler formula <j)(oc) obtained from it by substituting some name a
for the occurrences of x that are free in (j>(x). Provided that the interpretation
we are concerned with has assigned a name to each object in the domain,
then we can also say conversely that if every formula <|>(a) is true, then so is
Vx$(x). But this proviso is not something that we can take for granted. In
many cases it is not fulfilled, and in some cases it could not be, since there
may be more objects in the domain than there are name-letters.13 The solu-
tion to this problem is not to try to ensure an adequate supply of names, but
just to think of the many ways of interpreting a single name-letter. The idea

13 There are as many name-letters as there are natural numbers; Cantor proved that there are more
real numbers than there are natural numbers.

is, roughly speaking, that Vx(|>(x) is true iff <j>(<x) is true/or every way of inter-
preting the name-letter a. Let us try to put this more precisely.

We are trying to settle the truth-values of quantified sentences in an in-
terpretation I. To do this we need also to consider other interpretations
which are variants of /. In particular, for any name a, let us say that /a is an
a-variant of / iff 7a does interpret the name a, and it differs from / either
not at all or just on the interpretation that it assigns to a and in no other way.
This may be because I does not assign any interpretation to a whereas 7a

does, or because the two assign different interpretations. In all other ways,
however, the two interpretations are to be the same. It should be noted here
that, for any name a, and any interpretation /, there always is at least one oc-
variant interpretation /a. This would not be true if we had permitted the
domain of an interpretation to be empty. For if we have a language which
contains no name-letters, then it can be interpreted on an empty domain;
truth-values maybe assigned arbitrarily to its sentence-letters, and all other
predicate-letters are assigned the empty set as their extension. But this is an
interpretation which has no a-variant interpretation for any name a. For
an oc-variant interpretation does assign a denotation to the name a, which
cannot be done if at the same time the domain has to be kept empty. As
things are, however, we are debarring the empty domain, so this problem
does not arise.

The idea, then, is to specify the truth-value of a quantified formula V^(|)
in terms of the truth-values of its singular instances <j>(a/%), not only in
the interpretation / that we began with, but also in variant interpretations
which treat the substituted name differently.14 We must, then, specify that
the substituted name should be one that does not already occur in Vc^. For
we want to hold all the symbols in Vc^ to their existing interpretation while
nevertheless considering other interpretations for the name that is intro-
duced in place of the quantified variable. There is no problem about this,
for no single formula can already contain all the name-letters that there are.
This leads us, then, to adopt the following clauses for the quantifiers:

(8) (a) | V£(j>| j = T iff for every name a not in <(>, and every oc-variant

(b) (B^l/ = T iff for some name ot not in <|>, and some cc-variant

An alternative formulation, which is quite easily seen to yield the same
results, is this:

14 This method is used in Mates (1972:60 ff.).

85

3.4. Semantics for these Languages QUANTIFIERS

(8') Let P be the alphabetically earliest name that is not in (|>. Then

For the fact is that for any two names a and p, neither of which occur in (j>,
the a-variant interpretations of <)>(a/^) exactly match the p-variant inter-
pretations of <|>(P/£)> and all of the first will be true (or false) iff all of the sec-
ond are also. (I give a proof of this claim in the next section, as 3.5.C.)

This completes the account of an interpretation, according to the first
method. Clauses (l)-(8) have specified what an interpretation is in a way
that ensures that the interpretation assigns a definite truth-value, T or F,
to every closed formula of the language being interpreted. In this method,
open formulae are simply ignored. They cannot significantly be assigned
truth-values, and no other kinds of values have been considered for them.
(Because it concentrates entirely on truth-values, the method is said to give
a recursion on truth.15) I now pass on to the second method, which does
assign values of a kind to open formulae.

As I explained the problem initially it was this. A simple quantification cre-
ates a closed formula from an open formula. So apparently the truth-value
of the quantification should be determined by the 'value' of the open for-
mula that is quantified. But an open formula simply does not have a truth-
value. What kind of value, then, does it have?

Well, the suggestion that we shall pursue is basically this: an open formula
can be regarded as having a truth-value if at the same time we artificially
treat its free variables as if they were names. Of course there will be many
ways of so treating the variables, i.e. of assigning them denotations. But if we
can specify what value the formula has for each possible way of assigning
denotations to its free variables, then this can be regarded as assigning a
non-arbitrary value to the formula itself. In effect, it assigns to the formula
an extension, for to speak of those ways of assigning objects to the variables
that make the formula true is much the same as to speak of those w-tuples of
objects that the formula counts as true of. But it is not quite the same. For
our technique will specify extensions in a way which also allows us to calcu-
late the extensions of complex formulae from the extensions of their simpler
components. A simple illustration will make clear how this works.

15 It is called a recursion because—very roughly—it determines the truth-values of complex formu-
lae by going back to the truth-values of their simpler components (or instances).

86

3.4. Semantics for these LanguagesQUANTIFIERS

Let us take a simple two-place predicate-letter F. The interpretation will
specify an extension for this letter; let us suppose it is just the pair of objects
(a,b) and nothing else. Then it is natural to say that this pair (a,b) can equal-
ly well be regarded as the extension, in this interpretation, of the open for-
mula 'Fxy'. But it is then equally natural to say that the same pair is the
extension of the open formula 'Pyx'. Considered as open formulae, which
maybe true of, or satisfied by, pairs of objects, there is surely no significant
difference between 'Fxy' and 'Fyx'. For it does not matter which variables we
use to mark the gaps in an open sentence; all that is significant is whether the
various gaps are filled by the same variables or different variables. But then,
if we are to say that the extensions of 'Fxy and 'Fyx' are the same, we cannot
suppose that the extensions of the two conjuncts of a conjunction determine
the extension of the conjunction itself. For clearly the conjunctions 'Fxy A
Fxy' and 'Fxy A Fyx' need not have the same extensions as one another. On
the contrary, in the interpretation given, the first has the extension (a,V)
again, while the second has a null extension (assuming that a * V). To keep
track of this kind of thing, our ways of assigning objects to variables will not
lose sight of which variables are involved where. So we shall have one assign-
ment which assigns a to V and b to'/, and this assignment satisfies 'Fxy' but
not 'Fyx'. There will also be another assignment which assigns b to 'x' and
a to '/, and this assignment satisfies 'Fyx' but not 'Fxy'. But there will be
no assignment of objects to variables that satisfies both 'Fxy' and 'Fyx', and
hence no assignment that satisfies the conjunction 'Fxy A Fyx'. Let us now
put this idea more precisely.

We suppose given an interpretation 7, which specifies a domain, and the
interpretation on that domain of the name-letters and predicate-letters
in our language L. In fact, let us begin with the simplifying assumption
that L contains no name-letters, so that all formulae are built up just from
predicate-letters and variables. We now introduce the idea of an assignment
s of denotations to the variables of L, i.e. a function which, for each variable
£ of L as input, yields as output some object s(£) of the domain T> of the
interpretation /. We shall speak of such an assignment s in /as satisfying a.
formula, meaning by this that the formula comes out true (in the interpre-
tation 7) when each variable ^ that occurs free in that formula is taken as
denoting s(£).16 We give a recursive definition of satisfaction (abbreviating
'satisfies' to 'sats') which starts in the expected way:

16 An alternative method, adopted in Tarski's pioneering work of 1931, and still employed in many
books, is this. We take the infinitely many variables of L to be alphabetically ordered, and we consider
the infinite sequences (allowing repetitions) of objects from the domain. We then stipulate that the nth
variable of the alphabet is always to be taken as denoting the nth member of any sequence, and with this

87

3.4. Semantics for these Languages QUANTIFIERS

To state the clause for the quantifiers we now introduce the idea of one
assignment being a variant on another. In particular, given an assignment s,
and a particular variable i;, an assignment s^ will be a ̂ -variant on s iff either
it is s or it differs from s just in the denotation it assigns to £ and in no other
way. Then the quantifier clauses are

(4) ssats V^<() iff for every ̂ -variant s^ on s, s^sats<j)
s sats 3%(j) iff for some ̂ -variant s^ on s, s^ sats ((>.

These clauses specify what it is for any assignment s to satisfy any formula <j)
of L, whether § is closed or open. In fact they ensure that a closed formula is
either satisfied by all assignments or by none, so we can now complete our
account of the interpretation /by adding: for any closed formula <j)

|<j)|j=T iff for every s in /, s sats <j).

Now let us go back to remove the simplification imposed earlier, that
the language should contain no name-letters. If we do have name-letters to
take into consideration, it turns out that the simplest way of doing so is to
enlarge our assignments of denotations to variables so that they also include
assignments of denotations to names. But, of course, there will be this very
clear difference: within a given interpretation /, every assignment s of de-
notations will assign the same denotation to each name-letter a interpreted
by /, namely |a|; but they will differ from one another by assigning different
denotations s(£) to the variables £. Each assignment s, then, is to be a func-
tion from the terms of the language (i.e. its name-letters and its variables) to
the objects in the domain of the interpretation. To each term T it assigns a
denotation S(T) but in such a way that18

for a name-letter a, always s(oc) = |a|;
for a variable £, s(^) is an arbitrary member of <D.

convention we can speak directly of a formula being satisfied by a sequence of objects. (But the sequences
in question are infinitely long.) See Tarski (1956, ch. 8), which contains an English translation including
corrections.

17 For the case of zero-place predicate-letters, see nn. 1 1 and 12 earlier. We have

ssatsO" iff <)e|<t>°|.
18 I use the small Greek letter 'T' ('tau') as a metalogical symbol to stand in for any term.

88

QUANTIFIERS 3.4. Semantics for these Languages

To accommodate this ruling into the overall scheme, we therefore generalize
clause (1) above so that it deals with all atomic formulae, both those con-
taining names and those containing variables:

89

3.4. Semantics for these Languages
QUANTIFIERS

The other clauses (and the definition of truth in terms of satisfaction) re-
main unchanged.

I bring this section to a close with a brief remark on entailment and incon-
sistency. Now that we have defined what an interpretation is, and what truth
in an interpretation is, there is no problem over defining these notions. A set
of formulae F is inconsistent, i.e. Fh=, iff (a) all the formulae in the set are
closed (so that there are interpretations in which they have truth-values),
and (b) there is no interpretation in which they are all true. A set of for-
mulae F entails a formula <|>, i.e. Fl=(j), iff (a) § and all the formulae in F are
closed, and (b) there is no interpretation in which all the formulae in F are
true and the formula (j) is false. As a special case of this, a formula <)) is valid,
i.e. h=<j), iff (a) <)) is closed, and (b) there is no interpretation in which § is false.
This is equivalent to saying: in every interpretation of the language of §, § is
true. For if (j) is closed, then in every interpretation of its language it must
receive one, and only one, of the two truth-values.

On our second method of explaining what an interpretation is, it may
seem reasonable to say that it is not only closed formulae that can be true.
For truth was defined as satisfaction by all assignments, and this is a notion
that applies to open formulae too. In fact this suggestion treats an open for-
mula, standing alone, as identical with what is called its universal closure, i.e.
the result of prefixing to it (in any order19) enough universal quantifiers to
bind all its free variables. For the one will count as true (in a given inter-
pretation) iff the other does. Now there would be no harm in extending the
notion of truth in this way, so long as we take validity as our basic semantic
notion, and either we do not talk of entailment and inconsistency at all, or
we define them in terms of validity (as on p. 123). That is, it does no harm to
count certain open formulae as valid, namely those whose universal clos-
ures are valid. But it can lead to a breakdown in expected relationships if we
apply this idea to entailment or to inconsistency as these notions are ordin-
arily understood. For example, if the open formula Fx is true when and only

19 Since we speak of the universal closure of a formula, we should strictly speaking specify some
definite order, say alphabetical. But the order will make no difference to the truth-conditions of the
formula.

when its universal closure Vxfic is true, then according to the usual defini-
tion of entailment it must hold that

These seem to me to be very paradoxical results. Some authors avoid
them by revising the usual definitions of entailment and inconsistency so
that these are now defined in terms of satisfaction rather than truth (e.g.
Newton-Smith 1985:193), but it is surely more straightforward to prevent
the problem arising in the first place by insisting that it is only closed for-
mulae that have truth-values. At any rate, that is the course that I shall take,
and I shall not count 1= as defined in application to open formulae.

EXERCISES

Throughout these exercises suppose that we are given some interpretation / which
is specified in the second way, with a recursion on satisfaction, as on pp. 86-9. (This
set of exercises is the only part of the book that will work with interpretations
specified in this way.) To abbreviate labour, assume that the only logical symbols in
the language of / are —i,A,V.

3.4.1. Let <(>(TI) and <j>(T2) be any formulae which result from one another upon
replacing some free occurrences of TI by free occurrences of T2, or vice versa. (If T, is
a name-letter, every occurrence counts vacuously as 'free'.) Let s be an assignment in
/ of denotations to terms in which s(ti) = S(TT). Prove

90

QUANTIFIERS 3.4. Semantics for these Languages

but not

On the other hand it does not hold that

For the universal closure of this formula is \/x(Fx —» VxFx), which is cer-
tainly not valid. Similarly with inconsistency. It will hold that

[Method: use induction on the length of <J>(TI). The inductive hypothesis should be
that the result holds for all formulae \|/(TI) shorter than (^(TJ) and all assignments s
in /. It may help to compare the analogous result for a semantics specified in the first

way, by a recursion on truth, which is proved in the next section as 3.5.B, but you
will find that the present proof is much simpler than that one.]

3.4.2. Prove that, if ()> is a closed formula, then <|> is satisfied either by all assignments
in /or by none. [Method: induction on the length of (j). In the clause for V you will
need to introduce a new name in place of the quantified variable, so that the induct-
ive hypothesis can be brought to bear, and to use Exercise 3.4.1.]

3.4.3. Let /* be an interpretation specified in the first way, with a recursion on
truth rather than satisfaction, as on pp. 84-6. Suppose that / and /* have the same
domain, and the same interpretation on that domain of all name-letters and pre-
dicate-letters in <|>. Using the result of Exercise 3.4.2 prove that

If <j> is closed, then

3.5. Some Lemmas on these Semantics

From now on I shall assume that our semantics is specified in the first way,
by a recursion on truth rather than on satisfaction. This seems to me to be
the more natural and direct approach. But even so it is quite tricky to work
with, so I here insert a short section which illustrates in some detail how this
is done. I prove three lemmas which will be put to use in the next section.
You will see that the claims to be argued for are very straightforward, but in
the second case the argument is quite complex.

The first two arguments will proceed by induction on the length of a
formula, and as you will know (unless you have skipped the exercises) the
length of a formula is now defined as the number of occurrences of truth-
functors and quantifiers that it contains. To save labour, I shall therefore
assume that we are dealing with a language that contains only —i,A,V as its
logical symbols. You will find that further cases can easily be argued in the
same way as these. (Or you may rely upon the fact that other truth-functors
and quantifiers maybe defined in terms of these.)

My first lemma is something which was obvious enough to go without
saying in languages for truth-functors, but now deserves a proper treatment:

3.5.A. Lemma on interpretations. If two interpretations / and J have
the same domain, and the same interpretations (on that domain) of all
the name-letters and predicate-letters in a (closed) formula ((>, then they
also assign the same value to <|>.

The proof, as I have said, is by induction on the length of the formula <j>,
which we assume to be a closed formula. So assume also that / and 3 are

91

3.5. Some Lemmas on these Semantics QUANTIFIERS

interpretations with the same domain, which assign the same values to all
the letters in ty. We must show that they assign the same value to (j>, i.e. that

The hypothesis of induction is

For all closed formulae \|/ shorter than $, and all interpretations ̂ and
3C2 with the same domain, which assign the same values to all the let-
ters in

We have four cases to consider.

Case (1): (j> is atomic, i.e. it consists of an «-place predicate-letter fol-
lowed by n name-letters. Since / and J assign the same values to all
these letters, the result follows at once from the clause for evaluating
atomic formulae (i.e. clause (5) on p. 83).

Case (2): (j) is —1\|/. Since / and J7 assign the same values to all the letters
in <)>, they also assign the same values to all the letters in \|/, which is
shorter than (j). Hence by the inductive hypothesis we have
So the result follows by the clause for evaluating negations (i.e. clause
(6) on p. 84).

Case (3): (|) is \)/AX. As in case (2), the inductive hypothesis implies
so the result follows by the clause for conjunc-

tions (i.e. clause (7) on p. 84).

Case (4): § is V^\)/. Assume first that | V^\|/| r = F. By the clause for quan-
tifications (i.e. clause (8) on p. 85), this means that for some name a
not in \|f, and some a-variant interpretation /„ of /, we have
= F. Now let 3C be an interpretation which agrees in all respects with J,
except that it interprets the name a as /„ does. Since / and J agree on
all letters in \|/(o/£), except possibly on a, it follows that /„ and yc agree
on all letters in \|/(oc/J;), and so by the inductive hypothesis we have

= F. But also, SC is an a-variant on J, and so by the clause for
quantifications we also have

Thus if \ty\j = F then \ty\y - F. By an exactly similar argument, if
F then |<j)|j = F. This establishes the desired result

This completes the induction.
My second lemma shows that our semantics does obey the principle of

extensionality discussed earlier, in Section 3.1. That is, if a and {} are name-
letters which are assigned the same denotation in some interpretation 7,
then either may be substituted for the other, at one or more places in a for-
mula, without changing the value of that formula in /. To state this more
concisely, let <j>(a) be any closed formula containing the name a, and let

92

QUANTIFIERS 3.5. Some Lemmas on these Semantics

result from it upon replacing some occurrences of a in (j>(a) by occurrences
of p.20 Then the lemma is

3.5.B. Lemma on extensionality. If

The proof is by induction on the length of the formula (|>(a). The inductive
hypothesis is

For all formulae \|/(oc) shorter than <j>(a), for all name-letters a and p,
and for all interpretations J7: if |a|

We have four cases to consider, but the argument for the last case has to be
somewhat roundabout. We assume |a|/ = |P|/.

Case (1): (|>(a) is atomic; it might be for example <J>3apy. Then <|>(P) is
<E>3PPy. Since we are given that |a|/ = |Pli> it evidently follows that

Case (3): <|>(a) is \|/(a) A %(a), where a may perhaps be present in only
one of the conjuncts. Then by inductive hypothesis we have |\|/(a)|7 =
|\j/(P)|j and |x(oO|/ = |x(P)|/> where again P may perhaps be present in
only one of these formulae. This makes no difference to the argument,
for in either case the result follows by the clause for conjunctions.

Case (4): <t>(oc) is V£\)/(a). Assume |V£\|/(a)jj = E That is to say: there
is some name y, which is not in V|/(a), and some y-variant interpreta-
tion Iy of /, such that |X(/(CX)(Y/^)|/Y = R We have two cases to consider,
according as the name y is or is not in \|/(P). Suppose first that it is. In
that case y can only be P itself (since it is in \|/(p) but not in \|/(a)). It
follows that P is not in \|/(oc), and what we are given is that there is a
p-variant interpretation /p of I such that

20 Thus (|>(a) is $'(a/i;) and <|>(|3) is (|>'(P/i;) for some formula <()' which contains free occurrences of ̂
just where a and p are to be interchanged.

93

then

then

3.5. Some Lemmas on these Semantics
QUANTIFIERS

Applying the clause for atomic formulae, it at once follows that
|<E>3apy|/ = |3>3ppy|/. The same reasoning evidently applies to any
atomic formula, so we may conclude that |<|>(a) | / = |<|>(P) | / as desired.

Case (2): <|)(o:) is —i\|/(oc). By inductive hypothesis we have |\|f(a)|7 =
|\|/(P)|7, and so the result follows by the clause for negations.

We shall show that in that case there is also a suitable y-variant, using a
new name y other than p, so that this case reduces to the other case first
distinguished.

Consider a new name y, not in X|/(oc) or \|/(P), and a new interpreta-
tion 7pv which agrees with 7p on the interpretation of all the symbols in
the language of 7p, but which also interprets the name y so that |y| ̂ =
|P|/p, and hence |y|/pY= |P|/pr Now 7pyand 7p agree on the interpreta-
tion of all the symbols in \)/(oc)(P/£). Hence by lemma 3.5.A on inter-
pretations we have

Putting (e) and (/) together we have: there is a name y not occurring in
<b(B), and a y-variant interpretation 7Yof 7, such that

But in view of the clause for the universal quantifier, that is to say

Conditionalizing this whole argument so far, what we have shown is

94

And by the inductive hypothesis we have

Further, let /Y be an interpretation which is just like /pY except that in /Y
the name P is interpreted as in /and not as in /p. Now we are given that
P does not occur in x|/(a), nor therefore in vj/(a)(y/4)- Hence /Y and /PY
agree on all the symbols in that formula, and so by the lemma on inter-
nretatinns we have

Thus I7 is the required interpretation. For by construction it is a
y-variant on /, and if we put together the four equations (a)-(d), we at
once have

It is now easy to complete the proof. In either of the cases first dis-
tinguished, equation (e) holds for some name y not in <|)(P). And since
Iy agrees with 7on the denotations of a and P we have |a|/7 = |p|/y) and
so by inductive hypothesis

QUANTIFIERS 3,5. Some Lemmas on these Semantics

Interchanging a and P throughout the argument, we equally have

And therefore finally

This completes the induction.
The awkward part of this last argument was to show that if we are given

some result with one new name in place of a quantified variable, then we
can always obtain the same result with any other new name instead. It is
worth recording this point explicitly. Perhaps the most useful way of doing
so is by noting that it allows us to give an alternative statement of the truth-
conditions for quantified formulae, in terms of their singular instances:21

3.5.C. Lemma on alternative semantics for the quantifiers.
= T iff, for some name-letter a not in <j>, for all a-variants Ia of /,

= T.
- T iff, for every name-letter a not in §, for some a-variant 7a of I,

= T.

I shall show that these semantics for V are equivalent to those first given (in
clause (8) on p. 85), leaving the application to 3 as an exercise. Now it is
obvious that if V^<|) is true according to the original semantics, then it is also
true according to these alternative semantics, since it is obvious that what
holds for all name-letters not in <j) must also hold for some. (This depends
upon the point that there must be some name-letters that are not in <)>, what-
ever formula <j> maybe.) Suppose, then, that Vc^ is false in some interpreta-
tion / according to the original semantics. That is to say: suppose that there
is some name-letter, say p, not occurring in <|), and some p-variant inter-
pretation /p of /, such that

We have to show that V£(|) is also false according to the alternative semantics,
i.e. that for any name-letter a not in (j> there is an a-variant interpretation Ia

such that |4>(o/£)|/a = F.
Let a be any name not in 0 other than p. Let /pa be an interpretation

exactly the same as 7p, except that it assigns to a the same denotation as /p
assigns to p. Now since a is not in <|>, it is not in (|>(P/£) either, so /p and /pa

agree on all the symbols in <)>(p/£). Hence by lemma 3.5.A on interpretations
we have

Further, since a and p are assigned the same denotation in 7pa, by lemma
3.5.B. on extensionality we have

21 Compare the further alternative given on p. 86. (It is clear that the present argument also establishes
the correctness of that alternative.)

95

3.5, Some Lemmas on these Semantics
QUANTIFIERS

Finally, let Ia be an interpretation exactly the same as /pa, except that it
assigns to (3 whatever denotation (if any) it was assigned in /. Then since P is
not in ()), it is not in (|)(a/^) either, so Ia and 7pa agree on all the symbols in

Hence by the lemma on interpretations we have

Moreover, Ia is by construction an a-variant of /. So putting (a)-(d) to-
gether, Ia is an a-variant of/ such that

EXERCISES

3.5.1. Extend the argument for 3.5.A, by adding new clauses to the induction, so
that the result is proved also for languages containing v and 3.

3.5.2. The argument for clause (4) of the induction proving 3.5.B establishes that

Use the equivalence noted below as 3.6.E to show how that argument also estab-
lishes the result for 3 in place of V.

3.5.3. In a similar way, extend the argument given for 3.5.C to cover 3 as well as V.

3.6. Some Principles of Entailment

It is easy to see that the so-called 'structural' principles of pp. 30-2 apply
to our languages for quantifiers just as well as to our languages for truth-
functors. These were

3.6.A. The principle of Assumptions (ASS)
3.6.B. The principle of Thinning (THIN)
3.6.C. The principle of Cutting (CUT).

96

QUANTIFIERS 3.6. Some Principles of Entailment

This completes the proof.
We are now ready to move on to some principles of entailment for our

languages with quantifiers which extend those given in Section 2.5 for lan-
guages with truth-functors.

