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8.1. Identity

We shall use 'a=b' as short for 'a is the same thing as b'. The sign '=' thus
expresses a particular two-place predicate, and since we generally write a
predicate-symbol in front of the name-letters that fill its gaps, you might
have expected the same here. Very occasionally this can be convenient (Exer-
cise 8.1.2), but it is confusing to have the same sign '=' appearing in these
two roles. So let us say that officially the letter T is the identity predicate,
and it is to have just the same grammar as the familiar two-place predicate-
letters. For example, 'lab' is a formula. But almost always we shall 'abbrevi-
ate' this formula to 'a=b\ Similarly, we shall abbreviate the formula '—ilab' to
'«#&'.

It is easy to see how to incorporate the new symbol into our formal
languages. First, the formation rules are extended, so that they include a
clause stating that, if il and T2 are any terms (i.e. names or variables) then
h^2 (or l\ = T2) is a formula. Second, the intended meaning of this symbol
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EXISTENCE AND IDENTITY 8.1. Identity

is reflected in a suitable rule for interpretations of the language. An inter-
pretation I is said to be a normal interpretation iff it satisfies the condition
that, for any name-letters a. and p,

Alternatively, if our interpretations are specified by a recursion on satisfac-
tion rather than truth, then the relevant condition is

Given this intended interpretation, it is clear that we have as correct theses
for identity

(Recall that the consequent of the second thesis means: if you start with a
formula containing occurrences of a, and substitute P for some, but not
necessarily all, of those occurrences, then the two formulae have the same
truth-value.) These two together are usually taken as the basic principles for
identity. With scant regard for history, the second of them is often called
Leibniz's law, but the first has no special name (except that once upon a time
it was called 'the' law of identity).

It is easy to see how these two theses may be used to furnish rules of proof
for identity. For example, in an axiomatic system we could adopt the two
axiom-schemas

In a tableau system we could adopt the rules

(Here the left rule means that, for any name a, you may introduce the for-
mula oc=ot at any point on any branch.) Similarly, in a natural deduction sys-
tem we could adopt the rules
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this type. But a fully (or totally) ordering relation, arranging things in a lin-
ear order, is one in which the relation ~ defined above is in fact identity.

To secure this result we replace clause (3) above by the stronger clause (3')
stating that R is connected, namely

A relation R which satisfies (1) -(3'), must also satisfy the original (1) -(3), as
I now show. I give what is called an 'informal' proof. This is not a proof in
any particular proof system. The general idea is that one may use any rule of
proof that is 'sufficiently obvious', and there is quite a lot of ordinary English
in the proof, explaining what is going on at each step. Here it is:

If 1? satisfies (1) and (3'), then R satisfies (3).

Proof. Assume R satisfies (1) and (3'), and suppose for reductio ad absur-
dum that R does not satisfy (3). This means that there are objects a,b,c such
that
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Considering the second clause, —\Rac, and observing that by (3') R is con-
nected, we have

Bringing in the first clause of (a), and applying distribution, we then have

Applying Leibniz's law to the first disjunct, this yields

Observing that by (1) R is transitive, and applying this to the second dis-
junct, we infer

i.e.

But this contradicts the third clause of our premiss (a). So we have our
reductio, and the result is proved.

There is much more that could be said about ordering relations—a little
of it will emerge from Exercise 8.1.2—but I do not pursue this topic further.
Instead I mention another important way in which identity is used in the
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classification of relations, namely in the definition of what is called a one-
one relation. This is the amalgamation of two simpler conditions. We say
that a relation R is one-many iff

and it is many-one iff

(You will see that 'one-many' means, in effect 'for anything on the right
there is at most one on the left', whereas 'many-one' means 'for anything on
the left there is at most one on the right'.) A one-one relation is one that
satisfies both of these conditions, i.e. it is both one-many and many-one. A
neat way of amalgamating the two conditions is

These ideas will recur in what follows, so I do not develop them any further
now. Let us turn instead to our other topic involving identity, namely the
'numerical quantifiers'.

To say that there is at least one thing x such that Fx we need only use an
existential quantifier.

To say that there are least two such things we need identity as well, as in

Similarly, to say that there are at least three we need a formula such as

It is clear that there is a pattern in these formulae. Using '3nx' to mean 'there
are at least n things x such that', and using V for 'the number after «' we can
sum up the pattern in this way:

One can use this pattern to define any specific numeral in place of V.
Interestingly, we find the same pattern when we look into 'exactly n' rather
than 'at least n\ If we represent 'there are exactly n things x such that' by the
simple 'nx\ we have
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Using these definitions, one can represent in 'purely logical' vocabulary
such apparently 'arithmetical' theses as

One can prove such theses too, by 'purely logical' means, assuming that our
rules for identity are counted as a part of 'pure logic'. But we shall leave it to
the philosophers to dispute about the relationship between this thesis and
the genuinely arithmetical thesis

2 + 3 = 5.

As my final topic in this section I consider what is called the 'pure theory of
identity'. In this theory the language is restricted to one that contains truth-
functors and quantifiers as usual, the identity predicate, but no other spe-
cified predicates nor any schematic predicate-letters. Thus every atomic
formula in the language is built from the identity predicate and two terms.
This theory is decidable. That is, there is a decision procedure which we can
apply to determine whether any given sequent in the language of the theory
is or is not a correct sequent. The crucial point is that there is a procedure for
driving the quantifiers in, until no quantifier is in the scope of any other,
except that for this purpose we count a numerical quantifier as a single quan-
tifier. (Of course, when the numerical quantifier is analysed in terms of the
familiar quantifiers and identity, then it will turn out to contain one quan-
tifier within the scope of another.)

Here is a recipe for driving the quantifiers in. In practice there will be
many short cuts that one can exploit, as we observed when considering
a similar recipe for a language containing only one-place predicate-letters
(Section 3.7). But here I pay no attention to short cuts, and just give the basic
recipe. We may assume for simplicity that we start with a formula in which
all quantifiers are existential. We begin with an innermost quantifier, i.e. one
which has no further quantifiers in its scope, and we express the quantifier-
free formula that is the scope of that quantifier in DNE Using the law

we distribute the existential quantifier through the disjunction. Then, using
the law

provided x is not free in (p,

we confine each resulting quantifier to that part of the conjunction that
contains the variable bound by it. The result is that each quantifier, say 3x,
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the associated relation =s can also be said to be, in its different way, an ordering rela-
tion. It satisfies the analogous conditions

R is antisymmetrical
R is strongly connected

Let us say that these conditions define a ̂ -ordering.
(a) Prove, informally if you wish,

(1) R is a <-ordering iff R isa^ -ordering.
(2) ROTisa<-orderingiffflU/isa ^-ordering.

(b) Refute
(1) R is a <-ordering iff R\JIis a *£-ordering.
(2) R is a ^-ordering iff R(~\ T is a ^-ordering.

[Hint: for part (a) the example of an informal proof given in the text will be useful. ]

8.1.3.(a) What would be wrong with the following scheme for defining the numer-
ical quantifier 'there are at least«'?

(fc) Suppose that new numerical quantifiers Vtt are defined by the scheme

What is the right interpretation of these quantifiers?

8.1.4. Fill in two details omitted from the decision procedure outlined for the pure
theory of identity, namely
(a) How should one replace the formula

by a formula in which/ is not in the scope of any quantifier?
(b) Give a decision procedure for sequents in which every formula is a truth-
function of numerically quantified formulae 3nx(x=x). [Hint: If you use the argu-
ment on pp. 122-3 as a model, notice that iin^m then

If you prefer, you may use the argument on p. 185 as a model].

8.1.5.(a) Show how the decision procedure for the pure theory of identity can be
extended so that it becomes a decision procedure for the theory of identity and one-
place predicates together.
(b) The theory of dense order without first or last elements is given by the follow-
ing axioms (cf. Exercise 3.10.2):
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RR is transitive


