8.2. Functions

Functions were briefly mentioned in Section 2.1. I now give a more formal
treatment, but one that relies upon a convenient simplification.

We said originally that a function would be defined upon a certain
domain of objects, so that if you take any object from that domain as the
input to the function, then the function will yield just one object as its out-
put for that input. In the received terminology, the inputs to a function are
called its arguments, and the output for a given input is called the value
of the function for that argument. So the chief characteristic of a func-
tion, then, is that it has one and only one value for each of its appropriate
arguments. But usually we allow that not everything need be counted as an
appropriate argument for the function, i.e. that the function need not be
defined for all arguments whatever, but only for arguments of a suitable
kind. The simplification to be imposed is that we shall not allow this; on the
contrary, all functions are to be taken as ‘defined everywhere) or in other
words every function is to have one and only one value for any object what-
ever taken as argument, i.e. any object from the whole domain that our
quantifiers range over. (Another way of saying the same thing is that all our
functions are to be total, rather than partial, functions.) It must be admitted
that this assumption is not very realistic, and it introduces a problem which

333

EXISTENCE AND IDENTITY 8.2. Functions

will underlie most of the rest of this chapter. But the reason for imposing it
is that it enables us to extend our formal languages to include functional
expressions in a very simple way.

A function may take any number of arguments. The simplest kind of
function is a one-place function, which takes just one object at a time as
argument, and yields a value for that one argument. An example from arith-
metic would be the function expressed by ‘the square of . . ’; an example
from every day would be the function expressed by ‘the father of .. . But
there are also two-place functions, such as that expressed by ‘the sumof . . .
or ‘the product of .. " in arithmetic, and again there are three-place func-
tions, and so on. (Functions of more than two places are usually complex,
and put together from several simpler functions. For example, the arithmet-
ical expression ‘(x+y)-z’ indicates a three-place function, which we could
express in words as ‘the result of multiplying the sum of x and y by 2. But
there is nothing to stop one introducing simple three-place functions if
there is a need for them.) In the other direction, we can, if we wish, speak of
zero-place functions, but this is just a new-fangled name for a familiar item.
For a zero-place function is something which cannot take any argument, but
just has a single value, and that is to say that it has the same role as a name.
Names, then, can be regarded as expressing zero-place functions if one
wishes, but we already have a perfectly good notation for names, and do not
need a new one. We do, however, need a new notation to represent other
functions.

We shall use the letters

ﬁg)h1f1’g1,h1,f2,

as schematic function-letters. They take the place of particular expres-
sions for functions, just as our schematic name-letters and predicate-letters
take the place of particular names and predicates. For official purposes we
shall regard each function-letter as furnished with a superscripted numeral
(greater than 0) to show how many places that function has. But, as with
predicate-letters, we shall always omit these superscripts in practice, since
the rest of the notation will convey this information. The arguments to
the function will be written in a pair of round brackets to the right of the
function-letter, separated by commas where there is more than one argu-
ment. So our function-letters will appear in contexts such as

fla), glab), g(f(a),b).

The last example should be noted. If we start with the name a, and supply it
as argument to the one-place function £, then the resulting expression f{a) is

334

8.2. Functions EXISTENCE AND IDENTITY

in effect another name, but a complex one. (We can read ‘f(a)’ as ‘the fof)
So it can then be supplied as argument to another function, or to the same
function again, and so on indefinitely. In this way we can now form very
complex names indeed. And by starting with a variable in place of a name-
letter we can also form what might be called ‘complex variables, though that
is not the usual terminology.

For example, consider the arithmetical expression

3x2+2x+ 1.

Suppose that we use

flx,y) for xty
glxy) for x-y.

Then this expression can be analysed as

f(f(g(3,8(x,%)),2(2,x)),1).

If you put in a particular numeral in place of the variable x, then the whole
expression becomes a complex name of some number. But if you leave xasa
variable, then you have an expression that behaves just like a complex name,
except that it contains a free variable within it. So you obtain an open sen-
tence by putting this expression into the gap of a one-place predicate, for
example, the predicate .. = 0’ Then you can form a closed sentence by
adding a quantifier to bind the free variable, as in

Ix[f(f(g(3,8(xx)),8(2,%)),1) = 0].

Returning to the familiar notation, this just says
dx[3x2+ 2x+ 1=0].

Evidently much of school mathematics is concerned with procedures for
discovering the truth-value of sentences such as these.

Of course, in the particular case nothing is gained by using the new letters
f:&--- to re-express what is already expressed perfectly well by the familiar
notation of mathematics. The example does illustrate how in mathematics
one does use functional expressions in quite complex ways, but the main
purpose of the letters f,g,... is not to ‘abbreviate’ particular functional ex-
pressions, but to act as schematic letters standing in for any such expres-
sions. They allow us to frame general logical laws that apply to all functions
without exception. To see how they do this we must see how such schematic
letters can be added to the logical framework that we have already.

First we add function-letters to the vocabulary of our language. Using

335

EXISTENCE AND IDENTITY 8.2. Functions

these letters, we now add to the formation rules (p. 78) a recursive charac-
terization of what is to count as a term, which goes like this:

(1) A name-letteris a term.

(2) Avariableisaterm.

(3) IfOnis an n-place function-letter (n>0), and if 1,...,T,, is a series of n
terms (not necessarily distinct), then 6 (1,,...,,,) is a term.

(4) There are no other terms.

The other formation rules remain as before, except that when complex
terms become available it increases clarity if the predicate-letters are sup-
plied with brackets and commas, as the function-letters are. This means that
the clause for atomic formulae should now be rephrased in this way:

If @ is an n-place predicate-letter (or is the two-place identity predic-
ate I2), and if 1,,...,T,, is a series of n terms, not necessarily distinct, then
dn (1,,...,7,) is a formula.

(Of course, we can for simplicity omit these extra brackets and commas
when there is no need for them.) It is to be observed that formulae given by
this rule are still called atomic formulae, since they do not have any proper
subformulae, but nevertheless they may now be very complicated, if the
terms that they contain are complicated.

The intended interpretation for a function-letter is, of course, that it be
interpreted as a function defined on the domain 2 of the interpretation, i.e.
a function yielding an object in that domain as value for each object, or
series of objects, from the domain as argument(s). Where 67 is a function-
letter, we use |87|, for the value that the interpretation I assigns to 6. Then
what we have just said is that |07], is to be a function from D} into D;. The
relevant clause for evaluating expressions containing function-letters is
simply

167(T 15T)| 1= 107] (|1 15eeos| Tl 1)

This merely spells out the original intention in an obvious way.

It turns out, then, that the result of admitting function letters is that the
language becomes very much more complicated, but the rules of inference
are scarcely affected. There is one small liberalization, but that is all. How-
ever, the reason why we have been able to keep these rules so simple is that
we have been relying on the assumption noted at the beginning of this
section, namely the assumption that every function is always defined for
every argument. So far as concerns our ordinary and everyday use of func-
tional expressions, this assumption is wholly unrealistic. For example, ‘the
father of . . . is very naturally viewed as a functional expression, but we cer-
tainly do not suppose that absolutely everything has a father. Rather, we say
that this function is defined only for certain kinds of argument (e.g. per-
sons) but not for others (e.g. stones). The case is the same in mathematics
too, where functions have a very important role to play, as we have seen.
Naturally, in arithmetic we are only concerned with whether such functions
as addition, subtraction, multiplication, and so on, are defined for numbers;
we do not bother about whether they happen to be defined for other things
too. This is compatible with the proposed logic, provided that our intended
domain of quantification contains only the numbers, as in arithmetic it will
do. However, not all arithmetical functions are defined even for all numbers
as arguments. As every schoolboy knows, an exception is ‘x divided by y}
since division by zero is not defined, and all kinds of fallacies result from
ignoring this point.

Where we have a function that is not defined for certain arguments, it is
always possible to introduce a surrogate function that is defined for all argu-
ments, by stipulating arbitrarily what value the function is to have in the
cases hitherto undefined. For example, suppose that f(x,y) abbreviates ‘the
number which results upon dividing x by y. Then, as we have said, f(x,y) is
not defined for y=0, and it is equally not defined if x or y is not a number at
all. But we could introduce the surrogate function f” by setting

338

8.2. Functions EXISTENCE AND IDENTITY

flx,y), if x and y are both numbers, and y # 0
flay)= {

0 otherwise.
Then we have
114,2)=f(6,3)=2.
And in addition
f14,0) =f"(the moon,3) = f(the moon, the sun) =0.

But one has no sympathy with such surrogate functions. It is very much
more natural to say that there is no number which can be obtained upon
dividing 4 by 0, and nothing which counts as the result of dividing the moon
by the sun. And it is surely perverse to suppose that the ‘nothing’ which
comes from the latter division is ‘the same thing’ as the perfectly good num-
ber which results upon dividing 0 by 4.

The assumption that all functions are everywhere defined is, then, some-
thing that one would much rather do without. Yet we cannot easily abandon
it, for if we do, then the simple rules of inference for function-letters must be
abandoned too. This is because the rules of inference for name-letters are
based upon the assumption that a name does always stand for something, as
we noted way back in Section 3.1. And our present rules of inference treat
functional expressions such as f(a) as complex name-symbols, not differ-
ing in any important way from a simple name-letter. Consequently, these
rules just assume that f{a) does always stand for something, and without this
assumption they would not be correct. Now you might say that the initial
assumption about names is unrealistic, and we should seriously consider
whether we can do without it. I shall take up this question from Section 4
onwards. But you might instead say that the present trouble arises only be-
cause functional expressions have been treated as if they were names, and
that this is the point that needs revision. I take up this suggestion in the next
section.

EXERCISES

(These exercises are exercises in applied logic, using function symbols.)

8.2.1. The theory of groups can be presented as having in its vocabulary just iden-
tity and a single two-place function f(x,y) which we write as ‘x5 The usual laws for
identity apply, and in addition these three axioms:

339

EXISTENCE AND IDENTITY 8.2. Functions

(A1) Vxyz(x:(y-z) = (x-y)-2)
(A2) Vxydz(x=zy)
(A3) Vxydz(x=y=z).

In this theory, prove

(1) a=ac b c=cc [Usedz(c =z-a).]

(2) c=cc,d=dd = c=d. [Usedz(c= d-z), Iw(d = w-).]

(3) a=ac t b=bc [Use(1),(2),and Fz(b = b-2).]

(4) = 1xVy(y = y-x). [Recall that ‘1x” means ‘there is exactly one x such that’ It is
easily shown from (3) that there is at least one, and from (2) that there is at
most one.]

Given the result (4) we are evidently entitled to introduce a name for the unique
entity x such that Vy(y = y-x). We shall call it ‘1’. Thus we have

(4) = Yy(y=yp-1).
Continue to prove

(5) a=ca + c=c¢ [Similarto (1).]

(6) b a-1=1-a.[Use(2),(4),(5).]

(7) a-b=1 + b-a=1.[Theproofgoesvia (b-a)-(b-a) = b-a, and the result follows
from this by (2) and (4").]

(8) ab=1,ac=1F b=c [Use(6)and (7).]

(9) b Vxly(x-y =1). [Use (8) and (A3).].

Given this result, we are evidently entitled to introduce a one-place function f(x),

to represent the fact that for each x there is one and only one item f(x) such that
xf(x) = 1. We shall write f(x) as x-1, so we have

(9) = Vx(x-x-1=1).

I remark incidentally that the constant 1 is called the identity of the group, and the
function x-1 the inverse function of the group.

8.2.2. (continuing 8.2.1). Suppose that the axioms for a group are given as

Vaxyz(x:(y-2) = (xy)-2)

Vx(x = x1)

Vx(xx-1 =1},
(These axioms simply assume the existence of the constant 1 and the inverse func-
tion x-1 just proved.) Prove from these axioms the original axioms (A1)—(A3) of
Exercise 8.2.1. [You will need to establish a couple of lemmas on the way, but I leave
you to find them.]

8.2.3. Consider a theory which is supposed to axiomatize elementary arithmetic. It
has in its vocabulary a constant 0, a one-place function f(x) which we write as x/,
meaning the number after x, and two two-place predicates, namely = and <. We
assume the usual laws for identity and in addition these eight axioms:

340

8.3. Descriptions EXISTENCE AND IDENt11 Y

(A1) Vx(x'0).

(A2) Vxp(x'=y — x=y).

(A3) Vx{x=0— Jy(x=y)).
(A4) Vaxyz{x<y A y<z — x<2).
(A5) Vxy—(x<y A y<x).

(A6) Yx—(x<0).

(A7) Vaxy(x<y — x'<y’).

(A8) Vxy(x<y’ & (x=y v x<p)).

(a) Prove, informally if you wish, that the axioms imply
(9) Vady(x<y AVz(x<z—> y=z v y<2)).
(b) Show by an interpretation that the axioms do not imply
(10) Vaxy (x#y = x<y v y<x).

[Hint: an interpretation that verifies (A1)~(A8) must contain a set of elemei ts cor-
responding to the natural numbers, i.e. with a first member (to interpret 0) a 'd for
each member a next (to interpret x), and the relation < must be connected on “his
set. But consider how to add further elements to the interpretation, still satisfyin,
axioms (A1)—(A8), but not connected with the elements that correspond to the natural
numbers.1]}

(c) Suppose that we add (10) to the axioms (A1)—(A8) as a further axiom. Show
that in that case the axiom (A2) becomes superfluous.

(d) Show that, even if (10) is added to the axioms, still there is an interpretation in
which all the axioms are true and yet this domain does not have the intended struc-
ture of the natural numbers. [Hint: your answer to part (b) will also answer this.]

I remark as an aside that no set of axioms which we can formulate in elementary
logic will constrain an interpretation to have just the structure of the natural num-
bers. (That is a consequence of the compactness theorem; the discussion on pp.
183—4 may give a suggestion as to how it might be proved.)

