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Abstract Epistemic closure has been a central issue in epistemology over the last
forty years. According to versions of the relevant alternatives and subjunctivist
theories of knowledge, epistemic closure can fail: an agent who knows some propo-
sitions can fail to know a logical consequence of those propositions, even if the
agent explicitly believes the consequence (having “competently deduced” it from the
known propositions). In this sense, the claim that epistemic closure can fail must
be distinguished from the fact that agents do not always believe, let alone know,
the consequences of what they know—a fact that raises the “problem of logical
omniscience” that has been central in epistemic logic. This paper, part I of II, is
a study of epistemic closure from the perspective of epistemic logic. First, I intro-
duce models for epistemic logic, based on Lewis’s models for counterfactuals, that
correspond closely to the pictures of the relevant alternatives and subjunctivist the-
ories of knowledge in epistemology. Second, I give an exact characterization of the
closure properties of knowledge according to these theories, as formalized. Finally, I
consider the relation between closure and higher-order knowledge. The philosophical
repercussions of these results and results from part II, which prompt a reassessment
of the issue of closure in epistemology, are discussed further in companion papers.
As a contribution to modal logic, this paper demonstrates an alternative approach to
proving modal completeness theorems, without the standard canonical model con-
struction. By “modal decomposition” I obtain completeness and other results for
two non-normal modal logics with respect to new semantics. One of these logics,
dubbed the logic of ranked relevant alternatives, appears not to have been previously
identified in the modal logic literature. More broadly, the paper presents epistemol-
ogy as a rich area for logical study.
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1 Introduction

The debate over epistemic closure has been called “one of the most significant
disputes in epistemology over the last forty years” [45, 256]. The starting point of the
debate is typically some version of the claim that knowledge is closed under known
implication (see Dretske [22]). At its simplest, it is the claim that if an agent knows
¢ and knows that ¢ implies v, then the agent knows ¥: (Ko A K(¢p — ) — K1,
in the language of epistemic logic.

An obvious objection to the simple version of the claim is that an agent with
bounded rationality may know ¢ and know that ¢ implies ¥, yet not “put two and
two together” and draw a conclusion about 1. Such an agent may not even believe
Y, let alone know it. The challenge of the much-discussed “problem of logical omni-
science” (see, e.g., Stalnaker [69]; Halpern and Pucella [29]) is to develop a good
theoretical model of the knowledge of such agents.

According to a different objection, made famous in epistemology by Dretske [19]
and Nozick [58] (and applicable to more sophisticated closure claims), knowledge
would not be closed under known implication even for “ideally astute logicians”
[19, 1010] who always put two and two together and believe all consequences of
what they believe. This objection (explained in Section 2), rather than the logical
omniscience problem, will be our starting point.!

The closure of knowledge under known implication, henceforth referred to as ‘K’
after the modal axiom given above, is one closure principle among infinitely many.
Although Dretske [19] denied K, he accepted other closure principles, such as closure
under conjunction elimination, K (¢ AY¥) — K ¢, and closure under disjunction intro-
duction, K¢ — K (¢ V ) (1009). By contrast, Nozick [58] was prepared to give up
closure under conjunction elimination (228), although not closure under disjunction
introduction (230n64, 692).

Dretske and Nozick not only provided examples in which they claimed K fails,
but also proposed theories of knowledge that they claimed would explain the failures,
as discussed below. Given such a theory, one may ask: is the theory committed to
the failure of other, weaker closure principles, such as those mentioned above? Is it
committed to closure failures in situations other than those originally envisioned as
counterexamples to K? The concern is that closure failures may spread, and they may
spread to where no one wants them.

Pressing such a problem of containment has an advantage over other approaches to
the debate over K. It appeals to considerations that both sides of the debate are likely

10ther epistemologists who have denied closure under known implication in the relevant sense include
McGinn [55], Goldman [27], Audi [4], Heller [34], Harman and Sherman [31, 65], Lawlor [47], Becker
[7], and Adams et al. [1].
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to accept, rather than merely insisting on the plausibility of K (or of one of its more
sophisticated versions). A clear illustration of this approach is Kripke’s [44] barrage
of arguments to the effect that closure failures are ubiquitous given Nozick’s theory
of knowledge. In a different way, Hawthorne [32, 41] presses the first part of the
containment problem against Dretske and Nozick, as I critically discuss in Holliday
[38, Section 6.1.2].2

In this paper, I formally assess the problem of containment for a family of
prominent “modal” theories of knowledge (see, e.g., Pritchard [61]; Black [9]). In
particular, I introduce formal models of the following: the relevant alternatives (RA)
theories of Lewis [52] and Heller [33, 34]; one way of developing the RA theory
of Dretske [21] (based on Heller); the basic tracking theory of Nozick [58]; and the
basic safety theory of Sosa [67]. A common feature of the theories of Heller, Nozick,
and Sosa, which they share with those of Dretske [20], Goldman [26], and others,
is some subjunctive or counterfactual-like condition(s) on knowledge, relating what
an agent knows to what holds in selected counterfactual possibilities or epistemic
alternatives.

Vogel [76] characterizes subjunctivism as “the doctrine that what is distinctive
about knowledge is essentially modal in character, and thus is captured by certain
subjunctive conditionals” (73), and some versions of the RA theory have a similar
flavor.® I will call this family of theories subjunctivist flavored. Reflecting their com-
monality, my formal framework is based on the formal semantics for subjunctive
conditionals in the style of Lewis [49] and Stalnaker [68]. As a result, the epis-
temic logics studied here behave very differently than traditional epistemic logics in
the style of Hintikka [36]. (For a philosophically-oriented review of basic epistemic
logic, see Holliday [39]).

This paper is part I of II. The main result of part I is an exact characterization
in propositional epistemic logic of the closure properties of knowledge accord-
ing to the RA, tracking, and safety theories, as formalized. Below I preview some
of the epistemological and logical highlights of this and other results from part
I. Part II introduces a unifying framework in which all of the theories of knowl-
edge studied here fit as special cases; I argue that the closure problems with these
theories are symptoms of inherent problems in their framework; and I propose to
solve these problems with a new framework for fallibilist theories of knowledge.
Elsewhere I discuss the philosophical repercussions of the results from parts I and II
in depth [38, 40].

2Lawlor [47, 44] makes the methodological point about the advantage of raising the containment problem.
It is noteworthy that Hawthorne takes a kind of proof-theoretic approach; he argues that a certain set of
closure principles, not including K, suffices to derive the consequences that those who deny K wish to
avoid, in which case they must give up a principle in the set. By contrast, our approach will be model-
theoretic; we will study models of particular theories to identify those structural features that lead to
closure failures.

3The view that knowledge has a modal character and the view that it is captured by subjunctive conditionals
are different views. For example, Lewis [52] adopts the modal view but not the subjunctive view. For more
on subjunctivism, see Comesaiia [15].
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Epistemological Points The extent to which subjunctivist-flavored theories of knowl-
edge preserve closure has recently been a topic of active discussion (see, e.g.,
Alspector-Kelly [3]; Adams et al. [1]). I show (in Section 5) that in contrast to Lewis’s
(non-subjunctive) theory, the other RA, tracking, and safety theories cited suffer from
essentially the same widespread closure failures, far beyond the failure of K, which
few if any proponents of these theories would welcome.* The theories’ structural fea-
tures responsible for these closure failures also lead (in Section 8) to serious problems
of higher-order knowledge, including the possibility of knowing Fitch-paradoxical
propositions [23].

Analysis of these results reveals (in Section 9) that two parameters of a modal
theory of knowledge affect whether it preserves closure. Each parameter has two val-
ues, for four possible parameter settings with respect to which each theory can be
classified (Table 2). Of the theories mentioned, only Lewis’s, with its unique param-
eter setting, fully preserves closure (for a fixed context). (In Section 8 I clarify an
issue, raised by Williamson [79, 80], about whether Lewis’s theory also validates
strong principles of higher-order knowledge).

In the terminology of Dretske [19], the knowledge operator for Lewis’s theory is
fully penetrating. For all of the other theories, the knowledge operator lacks the basic
closure properties that Dretske wanted from a semi-penetrating operator. Contrary to
common assumptions in the literature (perhaps due to neglect of the second theory
parameter in Section 9), serious closure failures are not avoided by modified sub-
junctivist theories, such as DeRose’s [17] modified tracking theory or the modified
safety theory with bases, treated formally in Holliday [38, Sections 2.10.1, 2.D]. For
those seeking a balance of closure properties between full closure and not enough
closure, it appears necessary to abandon essential elements of the standard theories.
I show how to do so in part II.

While I take the results of this paper to be negative for subjunctivist-flavored theo-
ries qua theories of knowledge, we can also take them to be neutral results about other
desirable epistemic properties, viz., the properties of having ruled out the relevant
alternatives to a proposition, of having a belief that tracks the truth of a proposition,
of having a safe belief in a proposition, etc., even if these are neither necessary nor
sufficient for knowledge (see Sections 5 and 7).

Logical Points This paper demonstrates the effectiveness of an alternative approach
to proving modal completeness theorems, illustrated by van Benthem [8, Section 4.3]
for the normal modal logic K, in a case that presents difficulties for a standard
canonical model construction. The key element of the alternative approach is a
“modal decomposition” result. By proving such results (Theorem 5.2), we will obtain

4While closure failures for these subjunctivist-flavored theories go too far in some directions, in other
directions they do not go far enough for the purposes of Dretske and Nozick: all of these theories validate
closure principles (see Section 5) that appear about as dangerous as K in arguments for radical skep-
ticism about knowledge. This fact undermines the force of responding to skepticism by rejecting K on
subjunctivist grounds, as Nozick does.
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completeness (Corollary 7.1) of two non-normal modal logics with respect to new
semantics mixing elements of ordering semantics [50] and relational semantics [43].
One of these logics, dubbed the logic of ranked relevant alternatives, appears not to
have been previously identified in the modal logic literature. Further results on decid-
ability (Corollary 5.9), finite models (Corollary 5.24), and complexity (Corollary
5.25) follow from the proof of the modal decomposition results.

In addition to these technical points, the paper aims to show that for modal
logicians, epistemology represents an area of sophisticated theorizing in which
modal-logical tools can help to clarify and systematize parts of the philosophical
landscape. Doing so also benefits modal logic by broadening its scope, bringing
interesting new structures and systems under its purview.

In Section 2, I begin with our running example, motivating the issue of epis-
temic closure. I then introduce the formal framework for the study of closure in RA
and subjunctivist theories in Sections 3 and 4. With this setup, I state and prove the
main theorems in Sections 5 and 7, with an interlude on relations between RA and
subjunctivist models in Section 6. Finally, I investigate higher-order knowledge in
Section 8 and discuss the relation between theory parameters and closure failures
in Section 9.

Throughout the paper, comments on the faithfulness of the formalization to the
philosophical ideas are often in order. To avoid disrupting the flow of presentation, I
place some of these important comments in footnotes. Readers who wish to focus on
logical ideas should be able to step from definitions to lemmas to theorems, reading
the exposition between steps as necessary.

2 The Question of Closure

Example 2.1 (Medical Diagnosis) Two medical students, A and B, are subjected to a
test. Their professor introduces them to the same patient, who presents various symp-
toms, and the students are to make a diagnosis of the patient’s condition. After some
independent investigation, both students conclude that the patient has a common
condition c. In fact, they are both correct. Yet only student A passes the test. For the
professor wished to see if the students would check for another common condition ¢’
that causes the same visible symptoms as c. While A ran laboratory tests to rule out
¢’ before making the diagnosis of ¢, B made the diagnosis of ¢ after only a physical
exam.

In evaluating the students, the professor concludes that although both gave the
correct diagnosis of ¢, student B did not know that the patient’s condition was c, since
B did not rule out the alternative of ¢’. Had the patient’s condition been ¢/, student B
would (or at least might) still have thought it was ¢, since the physical exam would
not have revealed a difference. Student B was lucky. The condition that B associated
with the patient’s visible symptoms happened to be what the patient had, but if the
professor had chosen a patient with ¢/, student B might have made a misdiagnosis.
By contrast, student A secured against this possibility of error by running the lab
tests. For this reason, the professor judges that student A knew the patient’s condition,
passing the test.
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Of course, A did not secure against every possibility of error. Suppose there is an
extremely rare disease” x such that people with x appear to have ¢ on lab tests given
for ¢ and ¢/, even though people with x are immune to c, and only extensive further
testing can detect x in its early stages. Should we say that A did not know that the
patient had c after all, since A did not rule out x? According to a classic relevant
alternatives style answer (see Goldman [26, 775]; Dretske [21, 365]), the requirement
that one rule out all possibilities of error would make knowledge impossible, since
there are always some possibilities of error—however remote and far-fetched—that
are not eliminated by one’s evidence and experience. Yet if no one had any special
reason to think that the patient may have had x instead of ¢, then it should not have
been necessary to rule out such a remote possibility in order to know that the patient
has the common condition (cf. Austin [5, 156ff]; Stroud [71, 511“1“]).6

If one accepts the foregoing reasoning, then one is close to denying closure under
known implication (K). For suppose that student A knows that if her patient has c,
then he does not have x (because x confers immunity to ¢), (i) K (¢ — —x).” Since
A did not run any of the tests that could detect the presence or absence of x, arguably
she does not know that the patient does not have x, (ii) =K —x. Given the professor’s
judgment that A knows that the patient has condition c, (iii) Kc, together (i)—(iii)
violate the following instance of K: (iv) (K¢ A K (¢ — —x)) — K—x. To retain K,
one must say either that A does not know that the patient has condition c after all
(having not excluded x), or else that A can know that a patient does not have a disease
x without running any of the specialized tests for the disease (having learned instead
that the patient has ¢, but from lab results consistent with x).8 While the second
option threatens to commit us to problematic “easy knowledge” [14], the first option
threatens to commit us to radical skepticism about knowledge, given the inevitability
of uneliminated possibilities of error noted above.

Dretske [19] and Nozick [58] propose to resolve the inconsistency of (i)—(iv), a
version of the now standard “skeptical paradox” [13, 17], by denying the validity of
K and its instance (iv) in particular. This denial has nothing to do with the “putting
two and two together” problem noted in Section 1. The claim is that K would fail
even for Dretske’s [19] “ideally astute logicians” (1010). I will cash out this phrase as
follows: first, such an agent knows all (classically) valid logical principles (validity
omniscience);’ second, such an agent believes all the (classical) logical consequences

SPerhaps it has never been documented, but it is a possibility of medical theory.

6Local skeptics about medical knowledge may substitute one of the standard cases with a similar structure
involving, e.g., disguised mules, trick lighting, etc. (see Dretske [19]).

TFor convenience, I use ‘c’, ‘c”’, and ‘x’ not only as names of medical conditions, but also as symbols
for atomic sentences with the obvious intended meanings—that the patient has condition ¢, ¢/, and x,
respectively. Also for convenience, I will not bother to add quotes when mentioning symbolic expressions.
8This statement of the dilemma ignores the option of contextualism, investigated in Holliday [37, 38].
Stine [70], Lewis [52], and Cohen [13] propose contextualist versions of the RA theory, while DeRose
[17] proposes a contextualist version of Nozick’s tracking theory. See DeRose [18] for a state of the art
treatment of contextualism.

9Note the distinction with a stronger property of consequence omniscience (standardly “logical omni-
science”), that one knows all the logical consequences of what one knows.
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of the set of propositions she believes (full doxastic closure).'” Dretske’s explanation
for why K fails even for such agents is in terms of the RA theory. (We turn to Nozick’s
view in Section 4). For this theory, to know p is (to truly believe p and) to have ruled
out the relevant alternatives to p. In coming to know ¢ and ¢ — —x, the agent rules
out certain relevant alternatives. In order to know —x, the agent must rule out certain
relevant alternatives. But the relevant alternatives in the two cases are not the same.
According to our earlier reasoning, x is not an alternative that must be ruled out in
order for Kc to hold. But x is an alternative that must be ruled out in order for K —x
to hold (cf. Remark 3.9 in Section 3). It is because the relevant alternatives may be
different for what is in the antecedent and the consequent of K that instances like (iv)
can fail.

In an influential objection to Dretske, Stine [70] claimed that to allow for the rele-
vant alternatives to be different for the premises and conclusion of an argument about
knowledge “would be to commit some logical sin akin to equivocation” (256). Yet as
Heller [34] points out in Dretske’s defence, a similar charge of equivocation could be
made (incorrectly) against accepted counterexamples to the principles of transitivity
or antecedent strengthening for counterfactuals. If we take a counterfactual ¢ [J—
to be true iff the “closest” g-worlds are {-worlds, then the inference from ¢ C—
to (¢ A x) = v is invalid because the closest (¢ A x)-worlds may not be among the
closest ¢-worlds. Heller argues that there is no equivocation in such counterexamples
since we use the same, fixed similarity ordering of worlds to evaluate the different
conditionals. Similarly, in the example of closure failure, the most relevant —c-worlds
may differ from the most relevant x-worlds—so one can rule out the former with-
out ruling out the latter—even assuming a fixed relevance ordering of worlds. In this
defense of Dretske, Heller brings the RA theory closer to subjunctivist theories that
place counterfactual conditions on knowledge.

With this background, let us formulate the question of closure to be studied. We
begin with the official definition of our (first) propositional epistemic language. The
framework of Sections 3 and 4 could be extended for quantified epistemic logic, but
there is already plenty to investigate in the propositional case.!!

Definition 2.2 (Epistemic Language) Let At = {p, g, r, ...} be a countably infinite
set of atomic sentences. The epistemic language is defined inductively by

pi=pl-p| (@A) ]| Ko,

10We may add that such an agent has come to believe these logical consequences by “competent deduc-
tion,” rather than (only) by some other means, but we will not explicitly represent methods or bases of
beliefs here (see Remark 2.3). By “all the logical consequences” I mean all of those involving concepts that
the agent grasps. Otherwise one might believe p and yet fail to believe p V ¢ because one does not grasp
g (see Williamson [78, 283]). Assume that the agent grasps all of the atomic p, g, r, ... of Definition 2.2.
U7t is not difficult to extend the framework of Sections 3 and 4 to study closure principles of the form
shown below where the ¢’s and ¥’s may contain first-order quantifiers, provided that no free variables
are allowed within the scope of any K operator. The closure behavior of K with respect to V and 3 can be
anticipated from the closure behavior of K with respect to A and v shown in Theorem 5.2. Of course, inter-
esting complications arise whenever we allow quantification into the scope of a K operator (see Holliday
and Perry [41]).
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8 'W.H. Holliday

where p € At. As usual, expressions containing VvV, —, and < are abbreviations,
and by convention A and Vv bind more strongly than — or <> in the absence of
parentheses; we take T to be an arbitrary tautology (e.g., p V —p), and L to be
—T. The modal depth of a formula ¢ is defined recursively as follows: d(p) = 0,
d(—p) = d(p), d(p AN ) = max(d(p), d()), and d(K¢) = d(¢) + 1. A formula
@ is propositional iff d(¢) = 0 and flat iff d(¢) < 1.

The flat fragment of the epistemic language has a special place in the study of closure,
which need not involve higher-order knowledge. In the most basic case we are inter-
ested in whether for a valid propositional formula ¢; A - - - A @, — V¥, the associated
“closure principle” K¢ A --- A K@, — K1 is valid, according to some semantics
for the K operator. More generally, we will consider closure principles of the form
Kot A~ ANKoy — K1 V-V Ky, allowing each ¢; and v; to be of arbi-
trary modal depth. As above, we ask whether such principles hold for ideally astute
logicians. The question can be understood in several ways, depending on whether we
have in mind what may be called pure, empirical, or deductive closure principles.

Remark 2.3 (Types of Closure) For example, if we understand the principle K (¢ A
Y) — K as a pure closure principle, then its validity means that an agent cannot
know ¢ A ¢ without knowing y—regardless of whether the agent came to believe
¥ by “competent deduction” from ¢ A .!2 (Perhaps she came to believe ¥ from
perception, ¢ from testimony, and ¢ A ¥ by competent deduction from ¢ and ¥.)
More generally, if we understand K¢y A --- A K¢, — K1 as a pure closure prin-
ciple, its validity means that an agent cannot know ¢y, ..., ¢, without knowing .
Understood as an empirical closure principle, its validity means that an agent who
has done enough empirical investigation to know ¢y, ..., ¢, has done enough to
know . Finally, understood as a deductive closure principle, its validity means that
if the agent came to believe i from ¢y, . .., ¢, by competent deduction, all the while
knowing ¢y, ..., ¢, then she knows . As suggested by Williamson [78, 282f],
it is highly plausible that K (¢ A ¥) — K is a pure (and hence empirical and
deductive) closure principle. By contrast, closure under known implication is typi-
cally understood as only an empirical or deductive closure principle.!? Here we will
not explicitly represent in our language or models the idea of deductive closure. I
do so elsewhere [38, Section 2.D] in formalizing versions of the tracking and safety
theories that take into account methods or bases of beliefs. It is first necessary to

I2Harman and Sherman [31] criticize Williamson’s [78] talk of “deduction” as extending knowledge for
its “presupposition that deduction is a kind of inference, something one does” (495). Our talk of an agent
coming to believe ¥ by “competent deduction” from ¢, ..., @n can be taken as elliptical for the follow-
ing (cf. Harman [31, 496]): the agent constructs a valid deduction from believed premises ¢, ..., ¢, to
conclusion ¥/, recognizes that the construction is a valid deduction, and comes to believe ¥ on that basis.
BDeductive closure principles belong to a more general category of “active” closure principles, which
are conditional on the agent performing some action, of which deduction is one example. As Johan van
Benthem (personal communication) suggests, the active analogue of K has the form K¢ A K(¢ — ) —
[alKyr, where [a] stands for after action a.
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Epistemic Closure and Epistemic Logic I 9

understand the structural reasons for why the basic RA, tracking, and safety condi-
tions are not purely or empirically closed, in order to understand whether the refined
theories solve all the problems of epistemic closure.'*

3 Relevant Alternatives

In this section, I introduce formalizations of two RA theories of knowledge. Before
giving RA semantics for the epistemic language of Definition 2.2, let us observe
several distinctions between different versions of the RA theory.

The first concerns the nature of the “alternatives” that one must rule out to know
p. Are they possibilities (or ways the world could/might be) in which p is false?'> Or
are they propositions incompatible with p? Both views are common in the literature,
sometimes within a single author. Although earlier I wrote in a way suggestive of the
second view, in what follows I adopt the first view, familiar in the epistemic logic
tradition since Hintikka, since it fits the theories I will formalize. For a comparison
of the views, see Holliday [38, Section 4.A].

The second distinction concerns the structure of relevant alternatives. On one
hand, Dretske [21] states the following definition in developing his RA theory: “call
the set of possible alternatives that a person must be in an evidential position to
exclude (when he knows P) the Relevancy Set (RS)” (371). On the other hand, Heller
[34] considers (and rejects) an interpretation of the RA theory in which “there is a
certain set of worlds selected as relevant, and S must be able to rule out the not-p
worlds within that set” (197).

According to Dretske, for every proposition P, there is a relevancy set for that P.
Let us translate this into Heller’s talk of worlds. Where P is the set of all worlds in
which P is false, let r(P) be the relevancy set for P, so r(P) € P. To be more precise,
since objective features of an agent’s situation in world w may affect what alterna-
tives are relevant and therefore what it takes to know P in w (see Dretske [21, 377]
and DeRose [18, 30f] on “subject factors”), let us write ‘r(P, w)’ for the relevancy
set for P in world w, so r(P, w) may differ from r(P, v) for a distinct world v in
which the agent’s situation is different. Finally, if we allow (unlike Dretske) that the
conversational context C of those attributing knowledge to the agent can also affect
what alternatives are relevant in a given situation w and therefore what it takes to
count as knowing P in w relative to C (see [18, 30f] on “attributor factors”), then we
should write ‘r, (P, w)’ to make the relativization to context explicit.

14There are problematic failures of pure and deductive closure for the tracking theory with methods, for the
structural reasons identified here. The safety theory with bases may support deductive closure (although
see Alspector-Kelly [3]), but it also has problems with pure closure for the structural reasons identified
here. See Holliday [38, Section 2.D].

15Tn order to deal with self-locating knowledge, one may take the alternatives to be “centered” worlds or
possible individuals (see Lewis [51, Section 1.4] and references therein). Another question is whether we
should think of what is ruled out by knowledge as including ways the world could not be (metaphysically
“impossible worlds” or even logically impossible worlds), in addition to ways the world could be. See King
[42] on this question and Chalmers [11] on ways the world might be vs. ways the world might have been.
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10 W.H. Holliday

The quote from Dretske suggests the following definition:

According to a RSy3 theory, for every context C, for every world w, and for
every (V) proposition P, there is (3) a set of relevant (in w) not-P worlds,
r.(P,w) € P, such that in order to know P in w (relative to C) one must rule
out the worlds in r, (P, w).

By contrast, the quote from Heller suggests the following definition:

According to a RSay theory, for every context C and for every world w, there is
(3) a set of relevant (in w) worlds, R, (w), such that for every (V) proposition
P, in order to know P in w (relative to C) one must rule out the not-P worlds in
that set, i.e., the worlds in R, (w) N P.

As asimple logical observation, every RSay theory is a RSv3 theory (take r, (P, w) =
R;(w) N P), but not necessarily vice versa. From now on, when I refer to RSys
theories, I have in mind theories that are not also RS3y theories. This distinction is
at the heart of the disagreement about epistemic closure between Dretske and Lewis
[52], as Lewis clearly adopts an RSzy theory.

In a contextualist RSgy theory, such as Lewis’s, the set of relevant worlds may
change as context changes. Still, for any given context C, there is a set R (w) of rel-
evant (at w) worlds, which does not depend on the particular proposition in question.
The RSy3 vs. RSgy distinction is about how theories view the relevant alternatives
with respect to a fixed context. Here we study which closure principles hold for dif-
ferent theories with respect to a fixed context. Elsewhere I extend the framework to
context change [37, 38].

A third distinction between versions of the RA theory concerns different notions
of ruling out or eliminating alternatives (possibilities or propositions). On one hand,
Lewis [52] proposes that “a possibility ... [v] ...is uneliminated iff the subject’s per-
ceptual experience and memory in ... [v] ...exactly match his perceptual experience
and memory in actuality” (553). On the other hand, Heller [34] proposes that “S’s
ability to rule out not-p be understood thus: S does not believe p in any of the relevant
not-p worlds” (98). First, we model the RA theory with a Lewis-style notion of elimi-
nation. By ‘Lewis-style’, I do not mean a notion that involves experience or memorys;
I mean any notion of elimination that allows us to decide whether a possibility v is
eliminated by an agent in w independently of any proposition P under consideration,
as Lewis’s notion does. In Section 4, we turn to Heller’s notion, which is closely
related to Nozick’s [58] tracking theory. We compare the two notions in Section 9.

Below we define our first class of models, following Heller’s RA picture of
“worlds surrounding the actual world ordered according to how realistic they are,
so that those worlds that are more realistic are closer to the actual world than the
less realistic ones” [33, 25] with “those that are too far away from the actual world
being irrelevant” [34, 199]. These models represent the epistemic state of an agent
from a third-person perspective. We should not assume that anything in the model is
something that the agent has in mind. Contextualists should think of the model M
as associated with a fixed context of knowledge attribution, so a change in context
corresponds to a change in models from M to M’ (an idea formalized in Holliday
[37, 38]). Just as the model is not something that the agent has in mind, it is not
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Epistemic Closure and Epistemic Logic I 11

something that particular speakers attributing knowledge to the agent have in mind
either. For possibilities may be relevant and hence should be included in our model,
even if the attributors are not considering them (see DeRose [18, 33]).

Finally, for simplicity (and in line with Lewis [52]) we will not represent in our
RA models an agent’s beliefs separately from her knowledge. Adding the doxastic
machinery of Section 4 (which guarantees doxastic closure) would be easy, but if
the only point were to add believing ¢ as a necessary condition for knowing ¢, this
would not change any of our results about RA knowledge.'®

Definition 3.1 (RA Model) A relevant alternatives model is a tuple M of the form
(W, —, <, V) where:

1. W is a nonempty set;
2. —»is areflexive binary relation on W;
3. < assigns to each w € W a binary relation <, on some W,, C W;

(a) =y isreflexive and transitive;
(b) w e Wy,andforall v e Wy,, w <y v;

4. Vassignstoeach p € Ataset V(p) C W.

For w € W, the pair M, w is a pointed model.

I refer to elements of W as “worlds” or “possibilities” interchangeably.!” As usual,
think of V (p) as the set of worlds where the atomic sentence p holds.

Take w — v to mean that v is an uneliminated possibility for the agent in w.
For generality, I assume only that — is reflexive, reflecting the fact that an agent can
never eliminate her actual world as a possibility. According to Lewis’s [52] notion
of elimination, — is an equivalence relation. However, whether we assume transi-
tivity and symmetry in addition to reflexivity does not affect our main results (see
Remark 5.20). This choice only matters if we make further assumptions about the
< relations, discussed in Section 8.

18

161f one were to also adopt a variant of Lewis’s [52] Rule of Belief according to which any world v
doxastically accessible for the agent in w must be relevant and uneliminated for the agent in w (i.e., using
notation introduced below, wDv implies v € Min<, (W) and w — v), then belief would already follow
from the knowledge condition of Definition 3.4.

7Lewis [52] is neutral on whether the possibilities referred to in his definition of knowledge must be
“maximally specific” (552), as worlds are often thought to be. It should be clear that our examples do not
depend on taking possibilities to be maximally specific either.

18Those who have used standard Kripke models for epistemic modeling should note an important differ-
ence in how we use W and —. We include in W not only possibilities that the agent has not eliminated, but
also possibilities that the agent has eliminated, including possibilities v such that w 4 v for all w distinct
from v. While in standard Kripke semantics for the (single-agent) epistemic language, such a possibility
v can always be deleted from W without changing the truth value of any formula at w (given the invari-
ance of truth under —-generated submodels), this will not be the case for one of our semantics below
(D-semantics). So if we want to indicate that an agent in w has eliminated a possibility v, we do not leave
it out of W; instead, we include it in W and set w /> v.
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12 'W.H. Holliday

Take u <,, v to mean that u is at least as relevant (at w) as v is.! A relation satis-
fying Definition 3.1.3a is a preorder. The family of preorders in an RA model is like
one of Lewis’s (weakly centered) comparative similarity systems [49, Section 2.3] or
standard y-models [48], but without his assumption that each <., is fotal on its field
Wy, (see Def. 3.3.3). Condition 3b, that w is at least as relevant at w as any other
world is, corresponds to Lewis’s [52] Rule of Actuality, that “actuality is always a
relevant alternative” (554).

By allowing <, and <, to be different for distinct worlds w and v, we allow the
world-relativity of comparative relevance (based on differences in “subject factors™)
discussed above. A fixed context may help to determine not only which possibilities
are relevant, given the way things actually are, but also which possibilities would be
relevant were things different. Importantly, we also allow <,, and <, to be differ-
ent when v is an uneliminated possibility for the agent in w, so w — v. In other
words, we do not assume that in w the agent can eliminate any v for which <, # <.
As Lewis [52] put it, “the subject himself may not be able to tell what is prop-
erly ignored” (554). We will return to these points in Section 8 in our discussion of
higher-order knowledge.

Notation 3.2 (Derived Relations, Min) Where w, v, u € Wand S C W,

o u=<yviffu <y, vandnotv <, u;and u >~ viffu <, vand v <, u;
e Min<, (S) ={veSNW,|thereisnou € S such that u <,, v}.

Hence u <, v means that possibility u is more relevant (at w) than possibility v
is, while # ~~,, v means that they are equally relevant. Min<, (S) is the set of most
relevant (at w) possibilities out of those in S that are ordered by <, in the sense that
there are no other possibilities that are more relevant (at w).

Definition 3.3 (Types of Orderings) Consider an RA model M = (W, —, <, V)
with w € W.

<w is well-founded iff for every nonempty S C W,,, Min<, (S) # 0;

<w 18 linear iff for all u, v € Wy, either u <, v, v <y u, Or u = v;
<wistotaliff forall u, v € Wy, u <y vorv <y u;

=<y has a universal field ifft W,, = W;

=<u 1is centered (weakly centered) iff Min<, (W) = {w} (w € Min<, (W)).

Dk e =

If a property holds of <, for all v € W, then we say that M has the property.

Well-foundedness is a (language-independent) version of the “Limit Assump-
tion” discussed by Lewis [49, Section 1.4]. Together well-foundedness and linearity
amount to “Stalnaker’s Assumption” (ibid., Section 3.4). Totality says that any worlds
in the field of <, are comparable in relevance. So a total preorder <y, is a relevance

190One might expect u <, v to mean that v is at least as relevant (at w) as u is, by analogy with x < y in
arithmetic, but Lewis’s [49, Section 2.3] convention is now standard.
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Epistemic Closure and Epistemic Logic I 13

ranking of worlds in W,,. Universality (ibid., Section 5.1) says that all worlds are
assessed for relevance at w. Finally, (with Def. 3.1.3b) centering (ibid., Section 1.3)
says that w is the most relevant world at w, while weak centering (ibid., Section 1.7)
(implied by Def. 3.1.3b) says that w is among the most relevant.

I assume well-foundedness (always satisfied in finite models) in what follows,
since it allows us to state more perspicuous truth definitions. However, this assump-
tion does not affect our results (see Remark 5.13). By contrast, totality does make
a difference in valid closure principles for one of our theories (see Fact 5.7), while
the addition of universality does not (see Prop. 5.23). I comment on linearity and
centering vs. weak centering after Definition 3.6.

We now interpret the epistemic language of Definition 2.2 in RA models,
considering three semantics for the K operator. I call these C-semantics, for
Cartesian, D-semantics, for Dretske, and L-semantics, for Lewis. C-semantics is not
intended to capture Descartes’ view of knowledge. Rather, it is supposed to reflect
a high standard for the truth of knowledge claims—knowledge requires ruling out
all possibilities of error, however remote—in the spirit of Descartes’ worries about
error in the First Meditation; formally, C-semantics is just the standard semantics for
epistemic logic in the tradition of Hintikka [36], but I reserve ‘H-semantics’ for later.
D-semantics is one way (but not the only way) of understanding Dretske’s [21] RSy3
theory, using Heller’s [33, 34] picture of relevance orderings over possibilities.>"
Finally, L-semantics follows Lewis’s [52] RS3y theory (for a fixed context).

Definition 3.4 (Truth in an RA Model) Given a well-founded RA model M =
(W, —, <, V) with w € W and a formula ¢ in the epistemic language, define
M, w E; ¢ (¢ is true at w in M according to X-semantics) as follows:

M,wk; p iff w € V(p);
M, wE, =g iff M, w E, ¢;
M, wE, (o AY) iff M, wkE, ¢ and M, w E, ¥

For the K operator, the C-semantics clause is that of standard modal logic:

M, wE. Kgiff Vv € W: if w — v then M, v F, @,

which states that ¢ is known at w iff ¢ is true in all possibilities uneliminated at w.
I will write this clause in another, equivalent way below, for comparison with the
D- and L-semantics clauses. First, we need two pieces of notation.

Notation 3.5 (Extension and Complement) Where M = (W, —, <, V),

° [[(p]]f/‘ = {ve W | M,vE, ¢} is the set of worlds where ¢ is true in M
according to X-semantics; if M and x are clear from context, I write ‘[¢]’.

201n part 11, T argue that there is a better way of understanding Dretske’s [21] RSy3 theory, without the
familiar world-ordering picture. Hence I take the ‘D’ for D-semantics as loosely as the ‘C’ for C-semantics.
Nonetheless, it is a helpful mnemonic for remembering that D-semantics formalizes an RA theory that
allows closure failure, as Dretske’s does, while L-semantics formalizes an RA theory that does not, like
Lewis’s.
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14 'W.H. Holliday

e ForSCW,S={veW]|v ¢S}isthe complement of S in W. When W may
not be clear from context, [ write ‘W \ S’ instead of “S’.

Definition 3.6 (Truth in an RA Model cont.) For C-, D-, and L-semantics, the

clauses for the K operator are:>!

M, wE: Ko iff Yv € [¢],: w A v;
M, w kg Ko iff Vv € Ming,, ([[(p]]d> Tw A
M, wE; Ko iff Vv € Min<, (W) N [¢];: w A v.

According to C-semantics, in order for an agent to know ¢ in world w, all of the
—@-possibilities must be eliminated by the agent in w. According to D-semantics, for

any ¢ there is a set Min<,, ([[(p]] d) of most relevant (atw) —@-possibilities that the

agent must eliminate in order to know ¢. Finally, according to L-semantics, there is
a set of relevant possibilities, Min<, (W), such that for any ¢, in order to know ¢ the
agent must eliminate the —¢-possibilities within that set. Recall the RSy3 vs. RSay
distinction above.

If ¢ is true at all pointed models according to X-semantics, then ¢ is X-valid,
written ‘F, ¢’. Since the semantics do not differ with respect to propositional formu-
las ¢, I sometimes omit the subscript in ‘F,’ and simply write ‘M, w E ¢’. These
conventions also apply to the semantics in Definition 4.3.

Since for L-semantics we think of Min<, (W) as the set of simply relevant worlds,
ignoring the rest of <,,, we allow Min<, (W) to contain multiple worlds. Hence with
L-semantics we assume neither centering nor linearity, which implies centering by
Definition 3.1.3b. For D-semantics, whether we assume centering/linearity does not
affect our results (as shown in Section 5.2.2).

It is easy to check that according to C/D/L-semantics, whatever is known is true.
For D- and L-semantics, Fact 3.7 reflects Lewis’s [52, 554] observation that the
veridicality of knowledge follows from his Rule of Actuality, given that an agent can
never eliminate her actual world as a possibility. Formally, veridicality follows from
the fact that w is minimal in <, and w — w.

Fact 3.7 (Veridicality) K¢ — ¢ is C/D/L-valid.

Consider the model in Fig. 1, drawn for student A in Example 2.1. An arrow from
w to v indicates that w — v, i.e., v is uneliminated by the agent in w. (Forallv € W,
v — v, but we omit all reflexive loops). The ordering of the worlds by their relevance

2l nstead of thinking in terms of three different satisfaction relations, F., =4, and F;, some readers
may prefer to think in terms of one satisfaction relation, F, and three different operators, K., Kq,
and K;. I choose to subscript the turnstile instead of the operator in order to avoid proliferating sub-
scripts in formulas. One should not read anything more into this practical choice of notation. (However,
note that epistemologists typically take themselves to be proposing different accounts of the conditions
under which an agent has knowledge, rather than proposing different epistemic notions of knowledge,
knowledge, etc.)
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O NORRORNO
w2 w3 wq

w1

Fig.1 An RA model for Example 2.1 (partially drawn, reflexive loops omitted)

at wq, which we take to be the actual world, is indicated between worlds.?? In wy, the
patient has the common condition c, represented by the atomic sentence c true at w
(see footnote 7). Possibility w,, in which the patient has the other common condition
¢’ instead of ¢, is just as relevant as wy. Since the model is for student A, who ran the
lab tests to rule out ¢, A has eliminated w; in w;. A more remote possibility than w,
is w3, in which the patient has the rare disease x. Since A has not run any tests to rule
out x, A has not eliminated w3 in w;. Finally, the most remote possibility of all is wy,
in which the patient has both ¢ and x. We assume that A has learned from textbooks
that x confers immunity to ¢, so A has eliminated w4 in wj.

Now consider C-semantics. In discussing Example 2.1, we held that student A
knows that the patient’s condition is ¢, despite the fact that A did not rule out the
remote possibility of the patient’s having x. C-semantics issues the opposite verdict.
According to C-semantics, Kc is true at wj iff all —c-worlds, regardless of their
relevance, are ruled out by the agent in w;. However, w3 is not ruled out by A in wy,
so Kc is false at w;. Nonetheless, A has some knowledge in w;. For example, one
can check that K (—x — c¢) is true at w.

Remark 3.8 (Skepticism) A skeptic might argue, however, that we have failed to
include in our model a particular possibility, far-fetched but uneliminated, in which
the patient has neither x nor c, the inclusion of which would make even K (—x — ¢)
false at w; according to C-semantics. In this way, C-semantics plays into the hands of
skeptics. By contrast, L- and D-semantics help to avoid skepticism by not requiring
the elimination of every far-fetched possibility.

Consider the model in Fig. 1 from the perspective of L-semantics. According to
L-semantics, student A does know that the patient has condition c. Kc is true at wy,
because c is true in all of the most relevant and uneliminated (at w) worlds, namely
w itself. Moreover, although A has not ruled out the possibility w3 in which the
patient has disease x, according to L-semantics she nonetheless knows that the patient
does not have x. K —x is true at w, because —x is true in all of the most relevant (at
wi) worlds: w; and w;. Indeed, note that K—x would be true at w; no matter how
we defined the — relation.

22We ignore the relevance orderings for the other worlds. We also ignore which possibilities are ruled out
at worlds other than wj, since we are not concerned here with student A’s higher-order knowledge at wj.
If we were, then we might include other worlds in the model.
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16 W.H. Holliday

Remark 3.9 (Vacuous Knowledge) What this example shows is that according to
L-semantics, in some cases an agent can know some ¢ with no requirement of ruling
out possibilities, i.e., with no requirement on —, simply because none of the acces-
sible —~@-possibilities are relevant at w, i.e., because they are not in Min<,, (W). This
is the position of Stine [70, 257] and Rysiew [64, 265], who hold that one can know
that skeptical hypotheses do not obtain, without any evidence, simply because the
skeptical possibilities are not relevant in the context (also see Lewis [52, 561f]). In
general, on the kind of RS3v view represented by L-semantics, an agent can know a
contingent empirical truth ¢ with no requirement of empirically eliminating any pos-
sibilities. Heller [34, 207] rejects such “vacuous knowledge,” and elsewhere I discuss
this problem of vacuous knowledge at length ([40]; also see Cohen [13, 99]; Vogel
[74, 158f]; and Remark 4.6 below). By contrast, on the kind of RSy3 view represented
by D-semantics, as long as there is an accessible —¢-possibility, there will be some
most relevant (at w) —g-possibility that the agent must rule out in order to know ¢ in
w. Hence D-semantics avoids vacuous knowledge.

D-semantics avoids the skepticism of C-semantics and the vacuous knowledge of
L-semantics, but at a cost for closure. Consider the model in Fig. 1 from the perspec-
tive of D-semantics. First observe that D-semantics issues our original verdict that
student A knows that the patient’s condition is c. Kc is true at w; since the most rel-
evant (at wy) —c-world, wy, is ruled out by A in w;. K (¢ — —x) is also true at wy,
since the most relevant (at wy) —(c — —x)-world, wy, is ruled out by A in w;. Not
only that, but K (c <> —x) is true at w1, since the most relevant (at w;) —(c < —x)-
world, wy, is ruled out by A in w. However, the most relevant (at wy) x-world, w3,
is not ruled out by A in wy, so K—ux is false at w;. Hence A does not know that the
patient does not have disease x. We have just established the second part of the fol-
lowing fact, which matches Dretske’s [19] view. The first part, which follows directly
from the truth definition, matches Lewis’s [52, 563n21] view.

Fact 3.10 (Known Implication) The principles
KoAK(p—>Y)—> Kyand Ko AK (9 < ) > Ky
are C/L-valid, but not D-valid.>3

In Dretske’s [19, 1007] terminology, Fact 3.10 shows that the knowledge operator
in D-semantics is not fully penetrating, since it does not penetrate to all of the logical
consequence of what is known. Yet Dretske claims that the knowledge operator is
semi-penetrating, since it does penetrate to some logical consequences: “it seems to
me fairly obvious that if someone knows that P and Q, he thereby knows that 0 and
“If he knows that P is the case, he knows that P or Q is the case” (1009). This is
supposed to be the “trivial side” of Dretske’s thesis (ibid.). However, if we understand
the RA theory according to D-semantics, then even these monotonicity principles

231t is easy to see that for D-semantics (and H/N/S-semantics in Section 4), knowledge fails to be closed
not only under known material implication, but even under known strict implication: K¢ A KO(¢ —
¥) — K, with the (J in Definition 8.5 (or even the universal modality).

@ Springer



Epistemic Closure and Epistemic Logic I 17

fail (as they famously do for Nozick’s theory, discussed in Section 4, for the same
structural reasons).

Fact 3.11 (Distribution and Addition) The principles
K@AyYy)—> KpAKyand Ko - K (¢ V )

are C/L-valid, but not D-valid.

Proof The proof of C/L-validity is routine. For D-semantics, the pointed model
M, wy in Fig. 1 falsifies K(c A =x) - K—x and K¢ — K(c V —x). These prin-
ciple are of the form Ko — Kp. In both cases, the most relevant (at wy) —«-world
in M is wy, which is eliminated by the agent in w1, so K« is true at w;. However,
in both cases, the most relevant (at w;) —g-world in M is w3, which is uneliminated
by the agent in wy, so K is false at wy.

Fact 3.11 is only the tip of the iceberg, the full extent of which is revealed in
Section 5. But it already points to a dilemma. On the one hand, if we understand
the RA theory according to D-semantics, then the knowledge operator lacks even the
basic closure properties that Dretske wanted from a semi-penetrating operator, con-
trary to the “trivial side” of his thesis; here we have an example of what I called the
problem of containment in Section 1. On the other hand, if we understand the RA
theory according to L-semantics, then the knowledge operator is a fully-penetrating
operator, contrary to the non-trivial side of Dretske’s thesis; and we have the prob-
lem of vacuous knowledge. It is difficult to escape this dilemma while retaining
something like Heller’s [33, 34] world-ordering picture with which we started before
Definition 3.1. However, Dretske’s [21] discussion of relevancy sets leaves open
whether the RA theory should be developed along the lines of this world-ordering
picture. In part I, I will propose a different way of developing the theory so that
the knowledge operator is semi-penetrating in Dretske’s sense, avoiding the dilemma
above.

4 Counterfactuals and Beliefs

In this section, [ introduce the formalizations of Heller’s [33, 34] RA theory, Nozick’s
[58] tracking theory, and Sosa’s [67] safety theory. Let us begin by defining another
class of models, closely related to RA models.

Definition 4.1 (CB Model) A counterfactual belief model is a tuple M of the form
(W, D, <, V) where W, <, and V are defined in the same way as W, <, and V in
Definition 3.1, and D is a serial binary relation on W.

Notation 3.2 and Definition 3.3 apply to CB models as for RA models, but with <,
in place of <,, <4, in place of <,,, and =, in place of ~~,,.

Think of D as a doxastic accessibility relation, so that wDv indicates that every-
thing the agent believes in w is true in v [51, Section 1.4]. For convenience, we
extend the epistemic language of Definition 2.2 to an epistemic-doxastic language
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with a belief operator B for the D relation. We do so in order to state perspicuous truth
definitions for the K operator, which could be equivalently stated in a more direct
(though cumbersome) way in terms of the D relation. Our main result will be given
for the pure epistemic language.

Think of <, either as a relevance relation as before (for Heller) or as a relation
of comparative similarity with respect to world w, used for assessing counterfactu-
als as in Lewis [49].* With the latter interpretation, we can capture the following
well-known counterfactual conditions on an agent’s belief that ¢: if ¢ were false,
the agent would not believe ¢ (sensitivity); if ¢ were true, the agent would believe ¢
(adherence); the agent would believe ¢ only if ¢ were true (safety). Nozick [58]
argued that sensitivity and adherence—the conjunction of which is tracking—are
necessary and sufficient for one’s belief to constitute knowledge,25 while Sosa [67]
argued that safety is necessary. (In Holliday [38, Section 2.D], I consider the revised
tracking and safety theories that take into account methods and bases of belief). Fol-
lowing Nozick and Sosa, we can interpret sensitivity as the counterfactual —¢ [J—
— B, adherence as ¢ [} By, and safety as By [1— ¢, with the caveat in Observa-
tion 4.5 below. I will understand the truth of counterfactuals following Lewis [49, 20],
such that ¢ [~ v is true at a world w iff the closest gp-worlds to w according to <,
are y-worlds, subject to the same caveat.?® The formalization is also compatible with
the view that the conditions above should be understood in terms of “close enough”
rather than closest worlds. 27

2Heller [33] argues that the orderings for relevance and similarity are the same, only the boundary of the
relevant worlds that one must rule out in order to know may extend beyond that of the most similar worlds.
See the remarks in note 26 below.

25 Nozick used the term ‘variation” for what I call ‘sensitivity” and used ‘sensitivity’ to cover both variation
and adherence; but the narrower use of ‘sensitivity’ is now standard.

26Nozick [58, 680n8] tentatively proposes alternative truth conditions for counterfactuals. However, he
also indicates that his theory may be understood in terms of Lewis’s semantics for counterfactuals (but
see Observation 4.5). This has become the standard practice in the literature. For example, see Vogel [73],
Comesana [15], and Alspector-Kelly [3].

27In Definition 4.3, I state the sensitivity, adherence, and safety conditions using the Ming,, operator,
which when applied to a set S of worlds gives the set of “closest” worlds to w out of those in S. This
appears to conflict with the views of Heller [33, 34], who argues for a “close enough worlds” analysis
rather than a “closest worlds” analysis for sensitivity, and of Pritchard [60, 72], who argues for considering
nearby rather than only nearest worlds for safety and sensitivity. However, the conflict is merely apparent.
For if one judges that the closest worlds in a set S, according to <, do not include all of the worlds in
S that are close enough, then we can relax <,, to a coarser preorder <;}, so that the closest worlds in
S according to <, are exactly those worlds in S previously judged to be closest or close enough. To be
precise, given a set Close Enough(w) € Wy, such that Ming, (W) C Close Enough(w) and whenever
y € CloseEnough(w) and x <, y, then x € Close Enough(w), define <, as follows: v </, u iff either
v <y uoru <, vand v € CloseEnough(w)]. Then Ming;ﬂ (8) = Ming, (5) U (CloseEnough(w) N
S), so the close enough S-worlds are included, as desired. For the coarser preorder <;,, Ming/w W) =
Close Enough(w) would be the set of worlds close enough/nearby to w. Here we assume, following Heller
[34, 201f], that whether a world counts as close enough/nearby may be context dependent, but for a fixed
context, whether a world is close enough/nearby is not relative to the ¢ for which we are assessing K¢
(cf. Cross [16] on counterfactual conditionals and antecedent-relative comparative world similarity); as
discussed in Section 2, the fact that (for a given world) there is a single, fixed ordering on the set of worlds
is what Heller [34] uses to reply to Stine’s [70] equivocation charge against Dretske. Finally, note that
while the coarser preorder </, may not be the appropriate relation for assessing counterfactuals, according
to the Heller/Pritchard view, it would be appropriate for assessing knowledge.
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We are now prepared to define three more semantics for the K operator: H-
semantics for Heller, N-semantics for Nozick, and S-semantics for Sosa.

Remark 4.2 (Necessary Conditions) In defining these semantics, I assume that each
theory proposes necessary and sufficient conditions for knowledge. This is true of
Nozick’s [58] theory, as it was of Lewis’s [52], but Sosa [67] and Heller [34] pro-
pose only necessary conditions. Hence one may choose to read K¢ as “the agent
safely believes @/has ruled out the relevant alternatives to ¢ for S/H-semantics.
Our results for S/H-semantics can then be viewed as results about the logic of safe
belief/the logic of relevant alternatives. However, for reasons similar to those given
by Brueckner [10] and Murphy [57], if the subjunctivist or RA conditions are treated
as necessary for knowledge, then closure failures for these conditions threaten clo-
sure for knowledge itself.?® It is up to defenders of these theories to explain why
knowledge is closed in ways that their conditions on knowledge are not.

28Suppose that C is a necessary but insufficient condition for knowledge, and let C¢ mean that the agent
satisfies C with respect to ¢. Hence K¢ — Cg should be valid. Further suppose that (A) Co; A --- A
Cyp, — C1v is not valid. As Vogel [73], Warfield [77], and others point out, it does not follow that (B)
Koi A--- A Kg, — K is not valid. For in the counterexample to (A), K¢ A - - - A K¢, may not hold,
since C is not sufficient for K.

Let C’ be another insufficient condition such that C and C’ are jointly sufficient for K, so Cp A C'¢ —
K ¢ is valid. If (B) is valid, then C'¢; A - - - A C' @, does not hold in the counterexample to (A). Moreover,
it must be that while (A) is not valid, Coy A+ - A C@y AC'@1 A -+ AC'gy — C is valid. For if there is
a counterexample to the latter, then there is a counterexample to (B), since C and C’ are jointly sufficient
and C is necessary for K.

The problem is that proposed conditions for K are typically independent in such a way that assum-
ing one also satisfies C’ with respect to ¢i, ..., ¢, will not guarantee that one satisfies a distinct,
non-redundant condition C with respect to , if satisfying C with respect to ¢y, ..., ¢, is not already
sufficient. For example, if ruling out the relevant alternatives to ¢, ..., ¢, is not sufficient for rul-
ing out the relevant alternatives to ¥, then what other condition is such that also satisfying it with
respect to ¢, ..., ¢, will guarantee that one has ruled out the relevant alternatives to y? The same
question arises for subjunctivist conditions. It is up to subjunctivists to say what they expect to
block closure failures for knowledge, given closure failures for their necessary subjunctivist conditions
on knowledge.

One way to do so is to build in the satisfaction of closure itself as another necessary condition. For
example, Luper-Foy [53, 45n38] gives the “trivial example” of contracking ¢, which is the condition (C")
of satisfying the sensitivity condition (C) for all logical consequences of ¢. However, this idea for building
in closure misses the fact that multi-premise closure principles fail for contracking. For example, one can
contrack p and contract ¢, while being insensitive with respect to (p A gq) V r and therefore failing to
contrack p A q.

Contracking must be distinguished from another idea for combining tracking with closure. Roush [62,
63, Ch. 2, Section 1] proposes a disjunctive account according to which (to a first approximation) an agent
knows v iff either the agent “Nozick-knows” v, i.e., satisfies Nozick’s belief, sensitivity, and adherence
conditions for ¥, or there are some ¢y, ..., ¢, such that the agent knows ¢y, ..., ¢, and knows that
@1 A -+ A @, implies ¥ (cf. Luper-Foy [53, 46] on “distracking”). Importantly, according to this recursive
tracking view of knowledge, the tracking conditions (for which closure fails) are not necessary conditions
for knowledge.
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Definition 4.3 (Truth in a CB Model) Given a well-founded CB model M =
(W,D, <, V) with w € W and ¢ in the epistemic-doxastic language, define
M, w E, ¢ as follows (with propositional cases as in Def. 3.4):
M, wE, By iff Vv € W: if wDv then M, v F; ¢;
M, wFE, Ko iff M, wE, Bp and
(sensitivity) Yv € Ming,, ([[go]]h> : M, v, By;
M, wE, K¢ iff M, wF, B and
(sensitivity) Yv € Ming,, ([[go]]n> : M, vE, By,

(adherence) Yv € Ming,, ([¢]x) : M, v E, Bg;

M, wE; Ko iff M, wFy Be and
(safety) Vv € Ming, ([Be¢]s) : M, v Fs o.

Note that the truth clause for By guarantees doxastic closure (recall Section 2 and
see Fact 5.11).%°

It is easy to check that the belief and subjunctive conditions of H/N/S-semantics
together ensure Fact 4.4 (cf. Heller [35, 126]; Kripke [44, 164]).

Fact 4.4 (Veridicality) K¢ — ¢ is H/N/S-valid.

Observation 4.5 (Adherence and Safety) The adherence condition in the N-
semantics clause may be equivalently replaced by

Yv € Ming, (W): M,vE, ¢ — By;

W

the safety condition in the S-semantics clause may be equivalently replaced by
(W): M,vE; B — ¢.

This observation has two important consequences. The first is that in centered mod-
els (Def. 3.3.5), adherence (¢ [J— Bg) and safety (By [J— ¢) add nothing to belief
and true belief, respectively, given standard Lewisian semantics for counterfactu-
als. DeRose [17, 27n27] takes adherence to be redundant apparently for this reason.
But since we only assume weak centering, adherence as above makes a difference—
obviously for truth in a model, but also for validity (see Fact 8.8). Nozick [58, 680n8]

Vv € Ming

W

21t is not essential here that we model belief with a doxastic accessibility relation. When we show that
a given closure principle is H/N/S-valid, we use the fact that the truth clause for B in Definition 4.3
guarantees some doxastic closure (see Fact 5.11); but when we show that a closure principle is not H/N/S-
valid, we do not use any facts about doxastic closure, as one can verify by inspection of the proofs. For the
purpose of demonstrating closure failures, we could simply associate with each w € W a set X, of formu-
las such that M, w E By iff ¢ € X,,. However, if we were to assume no doxastic closure properties for
X, then there would be no valid epistemic closure principles (except K¢ — K¢), assuming knowledge
requires belief. As a modeling choice, this may be more realistic, but it throws away information about the
reasons for closure failures. For we would no longer be able to tell whether an epistemic closure principle
such as K¢ — K (¢ Vv ¥) is not valid for the (interesting) reason that the special conditions for knowl-
edge posited by a theory are not preserved in the required way, or whether the principle is not valid for the
(uninteresting) reason that there is some agent who knows ¢ but happened not to form a beliefin ¢ V .
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suggests another way of understanding adherence so that it is non-trivial, but here
I will settle on its simple interpretation with weak centering in standard semantics.
Whether or not weak centering is right for counterfactuals, adherence and safety can
be—and safety typically is—understood directly in terms of what holds in a set of
close worlds including the actual world, our Ming,, (W) (see note 26), rather than
as ¢ 0— By and By [~ ¢.30 (Adherence is often ignored). For sensitivity alone,

centering vs. weak centering makes no difference for valid principles.

The second consequence is that safety is a 3V condition as in Section 3, where
Ming,, (W) serves as the set R, (w) that is independent of the particular proposi-
tion in question (cf. Alspector-Kelly [3, 129n6]). By contrast, sensitivity is obviously
a V3 condition, analogous to the D-semantics clause. Viewed this way, in the
“subjunctivist-flavored” family of D/H/N/S-semantics, S-semantics is the odd mem-
ber of the family, since by only looking at the fixed set Ming, (W) in the safety

clause, it never uses the rest of the world-ordering.!

Figure 2 displays a CB model for Example 2.1. The dotted arrows represent the
doxastic relation D. That the only arrow from w; goes to itself indicates that in wy,
student A believes that the actual world is wy, where the patient has ¢ and not x. (We
do not require that D be functional, but in Fig. 2 it is.) Hence M, w; F B(c A —x).
That the only arrow from w3 goes to w; indicates that in w3, A believes that w is the
actual world; since w3 is the closest (to w;) x-world, we take this to mean that if the
patient’s condition were x, A would still believe it was ¢ and not x (because A did not
run any of the tests necessary to detect x).32 Hence M, w Fnn K—x, because the

sensitivity condition is violated. However, one can check that M, w; Fj , Kc.
If we were to draw the model for student B, we would replace the arrow from w»

to wy by one from wy to wy, reflecting that if the patient’s condition were ¢’, B would
still believe it was ¢ (because B made the diagnosis of c after only a physical exam,

30 Alternatively, the sphere of worlds for adherence could be independent of the relation <, for sensitivity,
i.e., distinct from Ming, (W) (see Holliday [38, Remark 3.2]), so <, could be centered without trivial-
izing adherence. But this would allow cases in which an agent knows ¢ even though she believes ¢ in a
—¢-world that is “close enough” to w to be in its adherence sphere (provided there is a closer —~¢-world
according to <,, in which she does not believe ¢). Nozick [58, 680n8] suggests interpreting adherence
counterfactuals ¢ [ By with true antecedents in such a way that the sphere over which ¢ — B¢ must
hold may differ for different ¢. By contrast, Observation 4.5 shows that we are interpreting adherence as
a kind of 3V condition, in a sense that generalizes that of Section 3 to cover a requirement that one meet
an epistemic success condition in all P-worlds in R, (w) (see Holliday [38, Section 3.3.2]). A V3 interpre-
tation of adherence that, e.g., allows the adherence sphere for ¢ V v to go beyond that of ¢, would create
another source of closure failure (see Sections 5.5 and 9).

31Note that safety and tracking theorists may draw different models, with different <,, relations and
Ming, (W) sets, to represent the epistemic situation of the same agent.

32What about w4? In Section 3, we assumed that A learned from textbooks that x confers immunity to ¢, so
she had eliminated w4 at wy. In Fig. 2, that the only arrow from w4 goes to wy indicates that if (contrary to
biological law) x did not confer immunity to ¢ and the patient had both ¢ and x, then A would believe that
the patient had both ¢ and x, perhaps because the textbooks and tests would be different in such a world.
However, all we need to assume for the purposes of our example is that if the patient had both ¢ and x, then
it would be compatible with what A believes that the patient had both ¢ and x, as indicated by the reflexive
loop. We can have other outgoing arrows from w4 as well.

@ Springer



22 'W.H. Holliday

Fig.2 A CB model for Example 2.1 (partially drawn)

and ¢ and ¢’ have the same visible symptoms). Hence M’, w; ¥, ,, K¢, where M’ is
the model with wy Dwj instead of wy Dws.

When we consider S-semantics, we get a different verdict on whether A knows that
the patient does not have disease x. Observe that M, w; Fy; K—x, because student
A believes —x in w; and at the closest worlds to wy, namely w; and wj, —x is true.
Therefore, A safely believes —x in wj. Similarly M, w; E; Kc, because A safely
believes ¢ in w;. Yet if we add the arrow from w; to w; for B, one can check that B
does not safely believe ¢ at wy, so M’, wi ¥; Kc.

Remark 4.6 (Vacuous Knowledge Again) The fact that M, w; E; K—x reflects
the idea that the safety theory leads to a neo-Moorean response to skepticism [67],
according to which agents can know that skeptical hypotheses do not obtain. In
general, a point parallel to that of Remark 3.9 holds for the RSzy safety theory: if
the —@-worlds are not among the close worlds, then one’s belief in ¢ is automat-
ically safe, no matter how poorly one’s beliefs match the facts in possible worlds
(cf. Alspector-Kelly’s [3] distinction between near-safe and far-safe beliefs). This
is the version of the problem of vacuous knowledge for the safety theory (see
Holliday [40]). By contrast, on the kind of RSyg theory represented by H/N-
semantics, if —¢ is possible, then knowledge requires that one not falsely believe ¢
in the closest —¢-worlds.

Like D-semantics, H/N-semantics avoid the skepticism of C-semantics and the
vacuous knowledge of L/S-semantics, but at a cost for closure. All of the closure
principles shown in Facts 3.10 and 3.11 to be falsifiable in RA models under D-
semantics are also falsifiable in CB models under H/N-semantics, as one can check
at wy in Fig. 2. After embracing the “nonclosure” of knowledge under known impli-
cation, Nozick [58, 231ff] tried to distinguish successful from unsuccessful cases of
knowledge transmission by whether extra subjunctive conditions hold;*? but doing
so does not eliminate the unsuccessful cases, which go far beyond nonclosure under
known implication, as shown in Section 5.

33Roughly, Nozick [58, 231ff] proposes than an agent knows v via inference from ¢ iff (1) K¢, (2) she
infers the true conclusion ¥ from premise ¢, (3) =y T~ —Bg, and (4) ¥ O— Bg. Whether this proposal
is consistent with the rest of Nozick’s theory depends on whether (1)—(4) ensure that the agent tracks v,
which is still necessary for her to know i (234); and that depends on what kind of modal connection
between By and By is supposed to follow from (2), because (1), (3), and (4) together do not ensure that
she tracks .
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Nozick was well aware that K(¢p A ) — K¢ A K fails on his theory, and
his explanation (beginning “S’s belief that p&q ...” on 228) is similar to a proof in
our framework. He resisted the idea that K¢ — K (¢ V ) fails, but he is clearly
committed to it.3* Vogel’s [76, 76] explanation of why it fails for Nozick is also
similar to a proof in our framework, as are Kripke’s [44] many demonstrations of
closure failure for Nozick’s theory. Partly in response to these problems, Roush [62,
63] proposes a recursive tracking view of knowledge, in a probabilistic framework,
with an additional recursion clause to support closure (see note 26). For discussion of
the relation between probabilistic and subjunctivist versions of tracking, see Holliday
[38, Section 2.E].

All of the closure principles noted fail for S-semantics as well. For example, it is
easy to construct a model in which B(¢ A ¥) and hence By are true at a world w,
all worlds close to w satisfy B(¢p A ) — ¢ A ¢, and yet some worlds close to w
do not satisfy B¢ — ¢, resulting in a failure of K(p A ¥) — K¢ at w. Murphy’s
[56, 57, Section 4.3] intuitive examples of closure failure for safety have exactly this
structure.> We return to this problem for safety in Section 9.

Now it is time to go beyond case-by-case assessment of closure principles. In the
following sections, we will turn to results of a more general nature.

5 The Closure Theorem and Its Consequences

In this section, I state the main result of the paper, Theorem 5.2, which character-
izes the closure properties of knowledge for the theories we have formalized. Despite
the differences between the RA, tracking, and safety theories of knowledge as for-
malized by D/H/N/S-semantics, Theorem 5.2 provides a unifying perspective: the
valid epistemic closure principles are essentially the same for these different theories,
except for a twist with the theory of fotal RA models. For comparison, I also include
C/L-semantics, which fully support closure.

Formally, Theorem 5.2 is the same type of result as the “modal decomposition”
results of van Benthem [8, Section 4.3, 10.4] for the weakest normal modal logic
K and the weakest monotonic modal logic M (see Chellas [12, Section 8.2]). From
Theorem 5.2 we obtain decidability (Corollary 5.9) and completeness (Corollary 7.1)
results as corollaries. From the proof of the theorem, we obtain results on finite
models (Corollary 5.24) and complexity (Corollary 5.25).

34While Nozick [58] admits that such a closure failure “surely carries things too far” (230n64, 692), he
also says that an agent can know p and yet fail to know —=(—p A SK) (228). But the latter is logically
equivalent to p vV — SK, and Nozick accepts closure under (known) logical equivalence (229). Nozick
suggests (236) that closure under deducing a disjunction from a disjunct should hold, provided methods of
belief formation are taken into account. However, Holliday [38, Section 2.D] shows that taking methods
into account does not help here.

35For Murphy’s [57, Section 4.3] “Lying Larry” example, take ¢ to be Larry is married and y to be Larry
is married to Pat. For Murphy’s [56, 333] variation on Kripke’s red barn example, take ¢ to be the structure
is a barn and Y to be the structure is red.
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The following notation will be convenient throughout this section.

Notation 5.1 (Closure Notation) Given (possibly empty) sequences of formu-
las ¢1,...,¢, and ¥y, ..., ¥y, in the epistemic language and a propositional
conjunction ¢g, we use the notation

Xnm =@ ANKoi A ANKpy = Ky VooV K.

Call such a x,,, a closure principle.3°
Hence a closure principle states that if the agent knows each of ¢ through ¢, (and the
world satisfies a non-epistemic ¢g), then the agent knows at least one of | through
Y. Our question is: which closure principles are valid?

Theorem 5.2 is the answer. Its statement refers to a “T-unpacked” closure princi-
ple, a notion not yet introduced. For the first reading of the theorem, think only of flat
formulas yx,_ , without nesting of the K operator (Def. 2.2), which are T-unpacked if

@1 A -+ A @ is a conjunct of ¢g. Or we can ignore T-unpacking for flat x, , and
replace condition (a) of the theorem by

@ @A A, — Lis valid.

Example 5.8 will show the need for T-unpacking, defined in general in Section 5.2.1.

Theorem 5.2 (Closure Theorem) Let

Xnm =90 ANKor Ao ANKgpp —> Ky V-V Ky
be a T-unpacked closure principle.
1. xun.m is C/L-valid over relevant alternatives models iff

(@) @9 — L isvalid or

(b) forsome € (Y1, ..., ¥m},
QLA ANn — Y is valid;
2. xn.m is D-valid over total relevant alternatives models iff (a) or

(¢) forsome ® C {¢1,..., e} and nonempty ¥ C {1, ..., 1,//,,,},37
/\(p <~ /\ vis valid;
ped Yew

3. Xn.m is D-valid over all relevant alternatives models iff (a) or

(d) forsome ® C {¢1,...,op}and ¥ € {Yr1, ..., ¥n},
/\(p < Y isvalid.

ped

36Following standard convention, we take an empty disjunction to be L, so a closure principle Xn,0 With
no K formulas is of the form pg A K¢y A--- A Ko, — L.

37Fo]lowing standard convention, if ® = J, we take /\ ptobe T.
ped
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4. xn.m is H/N/S-valid over counterfactual belief models if (a) or (d);38 and a flat
Xn.m 18 H/N/S-valid over such models only if (a) or (d).

The remarkable fact established by Theorem 5.2 that D/H/N/S-semantics validate
essentially the same closure principles, except for the twist of totality in (c), further
supports talk of their representing a “family” of subjunctivist-flavored theories of
knowledge. Although results in Section 8.2 (Facts 8.8.4, 8.8.5, and 8.10.1) show that
the ‘only if” direction of part 4 does not hold for some principles involving higher-
order knowledge, the agreement between D/H/N/S-semantics on the validity of flat
closure principles is striking.

Remark 5.3 (Independence from Assumptions) Recalling the types of orderings in
Definition 3.3, it is noteworthy that parts 1 and 4 of Theorem 5.2 are independent of
whether we assume totality (or universality), while parts 2 and 3 are independent of
whether we assume centering, linearity (see Section 5.2.2), or universality (see Prop.
5.23). For parts 1-4, we can drop our running assumption of well-foundedness, pro-
vided we modify the truth definitions accordingly (see Remark 5.13). Finally, part 1
for L-semantics (but not C-semantics) and parts 2—3 for D-semantics are independent
of additional properties of — such as transitivity and symmetry (see Remark 5.20
and Example 8.1).

To apply the theorem, observe that Kp A K (p — q) — Kgq is not D/H/N/S-valid,
because p A (p — ¢g) — L is not valid, so (a)’ fails, and none of

PApP—>q)<q, pogq, (p—>q)<q,orT <gq

are valid, so there are no ® and W/ as described. Hence (c¢)/(d) fails.

On the other hand, we now see that Kp A Kg — K(p A q) is D/H/N/S-valid,
because p A g <> p A g is valid, so we can take ® = {p,q} and ¥ = {p A g} or
Y = p A q.Besides K¢ — ¢ (Facts 3.7 and 4.4), this is the first valid principle we
have identified for D/H/N/S-semantics, to which we will return in Section 7.

Fact 5.4 (C Axiom) The principle Ko A K — K (@ A ), known as the C axiom,
is D/H/N/S-valid.

To get a feel for Theorem 5.2, it helps to test a variety of closure principles.
Exercise 5.5 (Testing Closure) Using Theorem 5.2, verify that neither K (p Ag) —
K(pVvg)nor Kp A Kq — K(pV q) are D/H/N/S-valid; verify that K (p A q) —

Kp Vv Kgq is only D-valid over total RA models; verify that K(p vV g) A K(p —
q) > Kgand Kp A K(p — q) = K(p A q) are D/H/N/S-valid.

3 When I refer to (d) from part 4, I mean the condition that /\ ¢ <> ¥ is H/N/S-valid.
ped
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As if the closure failures of Fact 3.11 were not bad enough, the first three of
Exercise 5.5 are also highly counterintuitive. Recall from Section 2 that the Dretske-
Nozick case against full closure under known implication, K, had two parts: examples
in which K purportedly fails, such as Example 2.1, and theories of knowledge that
purportedly explain the failures. For the other principles, we can see why they fail
according to the subjunctivist-flavored theories; but without some intuitive exam-
ples in which, e.g., arguably an ideally astute logician knows two propositions but
not their disjunction, the failure of such weak closure principles according to a the-
ory of knowledge seems to be strong evidence against the theory—even for those
sympathetic to the denial of K.

While the closure failures permitted by subjunctivist-flavored theories go too far,
in another way they do not go far enough for some purposes. Reflection on the last
two principles of Exercise 5.5 suggests they are about as dangerous as K in arguments
for radical skepticism about knowledge. The fact that one’s theory validates these
principles seems to undermine the force of one’s denying K in response to skepticism,
as Nozick [58] uses his subjunctivism to do.

Notwithstanding these negative points against subjunctivist-flavored theories of
knowledge, simply replace the K symbol in our language by a neutral [J and
Theorem 5.2 can be viewed as a neutral result about the logic of relevant alternatives,

of sensitive/truth-tracking belief, and of safe belief (see Section 7).
Parts 3 and 4 of Theorem 5.2 reflect that D-semantics over RA models and H/N/S-
semantics over CB models have the following separation property.

Proposition 5.6 (Separation) For D-semantics (resp. H/N/S-semantics), a closure
principle xu.m (resp. a flat xn m) as in Notation 5.1 with m > 1 is valid iff there is
some j < m such that oo AN Ko1 A --- N K@, — K is valid.

The reason for this separation property comes out clearly in the proofs in Sections 5.3
and 5.4. In essence, if the principles with single disjunct consequents are all invalid,
then we can glue their falsifying models together to obtain a falsifying model for
Xxn.m. However, this is not the case for D-semantics over total RA models. The fol-
lowing fact demonstrates the nonequivalence of D-semantics over total RA models
and D-semantics over all RA models (as well as H/N/S-semantics over total/all CB
models) with an interesting new axiom.

Fact 5.7 (X Axiom) The principle K (p A ) — Ko Vv K, hereafter called the “X
axiom” (see Section 7), is D-valid over total RA models, but not D-valid over all RA
models or H/N/S-valid over (total) CB models.

Proof 1 leave D-validity over total RA models to the reader. Figure 3 displays a
non-total RA model that falsifies K(p A g) — Kp Vv Kgq in D-semantics. Since

Minx,, ([[p A q]]) ={v,x},w A v,and w 4 x, M, w Eg K(p A g). Since u and
x are incomparable according to <,,, as are y and v, we have u € Min<, ([[ pﬂ) and

y € Ming,, ([[q]]), which with w — u and w — y implies M, w 2y Kp v Kq. The
counterexample for H/N/S-semantics is in Fig. 10, discussed in Section 9.
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u

Fig.3 A non-total RA countermodel for K (pAqg) — KpV Kq in D-semantics (partially drawn, reflexive
loops omitted)

In Section 7, we will see the role that the X axiom plays in a complete deductive
system for D-semantics over total RA models, as well as the role that the C axiom
plays in complete deductive systems for D/H/N/S-semantics.

Given the separation property, the proof of the ‘only if” direction of Theorem 5.2.3
for flat closure principles can be explained roughly as follows.

Proof sketch Let us try to falsify a flat oo A K@y A --- A K@, — K1vr;. Construct
a pointed model M, w with a valuation such that the propositional part ¢g is true
at w.3 To make K1; false while keeping all K¢; true at w, we want to add an
uneliminated — j-world v such that (A) there is no —;-world more relevant than v
and (B) for any —¢; true at v, there is a more relevant —@;-world that is eliminated at
w. This is possible if there is a propositional valuation such that —; is true at v and
for all —¢; true at v, v ; A—g; is satisfiable; for then we can add a satisfying world for
each conjunction and make them eliminated and more relevant than v, which gives
(A) and (B). If there is no such valuation, then every valuation that satisfies —;
also satisfies some —¢; for which v/; — ¢; is valid. Then where @ is the set of all
such ¢;, ~¢; — \/ —¢ and ¥; — /\ ¢ are valid, which means /\ ¢ < ; is
ped ped ped
valid.

In Sections 5.2 and 5.3 we give a more precise and general form of the above
argument. We conclude this subsection with an example of why Theorem 5.2 requires
the notion of T-unpacking, which is defined in general in Definition 5.15.

Example 5.8 (T-unpacking) As noted before Theorem 5.2, if we consider only flat
formulas, then we can ignore T-unpacking, provided we replace condition (a) of
Theorem 5.2 by the condition: (a) ¢g A -+ A @, — L is valid. Let us see why
T-unpacking is necessary for non-flat formulas. For example, the formula

KKp A ANKKqg— K(pAng) 5.1

is D/H/N/S-valid. Yet none of the following are valid: Kp A Kg — L, Kp A Kq <
pPAq, Kp < pArg,Kg <> pAg,and T < p Aq.Hence (5.1) does not satisfy (a)’,

1 the following argument, ‘relevant’” means relevant at w (i.e.,, according to =<,) and
‘uneliminated’/‘eliminated’ means uneliminated/eliminated at w (i.e., w — v or w #> v).
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(c), or (d) in Theorem 5.2. However, if we T-unpack (5.1) by repeatedly applying the
T axiom, K¢ — ¢, to the antecedent, we obtain

(pAgANKpANKgANKKpANKKqg) — K(p Aq), 5.2)

which satisfies (b), (c), and (d) with ® = {p,q}and ¥ = {p Ag}lor ¢y = p A gq.
Hence (5.2) is valid according to Theorem 5.2. Given the validity of the T axiom over
RA/CB models (Facts 3.7 and 4.4), (5.1) and (5.2) are equivalent, so (5.1) is valid
as well. This example shows the essential idea of T-unpacking, defined formally in
Section 5.2.1 and demonstrated again in Example 5.17.

As shown by Proposition 5.16 below, any epistemic formula can be effectively
transformed into an equivalent conjunction, each conjunct of which is a T-unpacked
formula x, » asin Notation 5.1. Using Theorem 5.2, the validity of each conjunct can
be reduced to the validity of finitely many formulas of lesser modal depth (Def. 2.2).
By repeating this process, we eventually obtain a finite set of propositional formulas,
whose validity we can decide by truth tables. Thus, Theorem 5.2 yields the following
decidability results.

Corollary 5.9 (Decidability) The problem of checking whether an arbitrary formula
is C/L/D-valid or whether a flat formula is H/N/S-valid over (total or all) RA/CB
models is decidable.

In addition, Theorem 5.2 will yield axiomatization results in Corollary 7.1. As
Corollary 7.1 will show, the ‘if’ direction of each ‘iff’ statement in Theorem 5.2 is
a soundness result, while the ‘only if* direction is a completeness result. We prove
soundness in Section 5.1 and completeness in Sections 5.2-5.4.

5.1 Soundness

In the ‘if” direction, part 1 of Theorem 5.2 is a simple application of the C/L-truth
definitions, which we skip. For parts 2—4, we use the following lemma.

Lemma 5.10 (Min Inclusion)

1. Ifcondition (c) of Theorem 5.2 holds, then for any well-founded and total pointed
RA/CB model M, w,*0 there is some y € W such that

Minz, ([41) € U Minz, (1ol

ped

2. If condition (d) of Theorem 5.2 holds, then for any well-founded pointed RA/CB
model M, w,

Min.,, ([[w]]) c U Ming, ([[wﬂ)-

ped

4OWhen dealing with both RA and CB models, I use <, to stand for <, or <y,.
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Proof For part 1, assume for reductio that (c) holds and there is some well-founded
and total M, w such that for all 1y € W there is some uy, with

iy € Minz, ([[w]}) (5.3)
and
uy ¢ | J Ming, (M)- (5.4)
ped

Given (c), (5.3) implies uy, € [y ] for some ¢y € ®. Since <,, is well-founded,
there is some

ve Ming, [ (el |- (5.5)

ped
Given (c), (5.5) implies v € [y] for some ¥ € W. Hence uy, <, v by (5.3) and the
totality of <,,. Together uy, <y v, uy € [@y], (5.5), and the transitivity of <,, imply

uy € Minz, [ (el | (5.6)
ped
which contradicts (5.4) by basic set theory.

For part 2, assume for reductio that (d) holds and there is some well-founded M, w
and uy such that (5.3) and (5.4) hold for ¢. Given (d), (5.3) implies uy € [y ]
for some ¢y € ®. Hence by the well-foundedness of <,, and (5.4) there is some
v € [py] such that v <y, wuy. Given (d), v € [y ] implies v € [y], which with
v <y Uy contradicts (5.3).

For the H/N/S-semantics cases, we will also use a basic fact of normal modal logic
(see Theorem 3.3(2) of Chellas [12]), namely that the truth clause for B in Definition
4.3 guarantees Fact 5.11 below. Note that we do not require full doxastic closure, but
only as much doxastic closure as needed to support the limited forms of epistemic
closure that are valid for H/N/S-semantics.

Fact 5.11 (Partial Doxastic Closure) For x € {h,n,s}, if Ex /\ ¢ < V¥, then

ped
E. /\ By < BY.
ped

For convenience, we will use the following notation throughout this section.

Notation 5.12 (Relational Image) Given M = (W, —, <, V), the image of {w}
under the relation — is —(w) = {v € W | w — v}.

Hence — (w) is the set of uneliminated possibilities for the agent in w.
We are now ready to prove the ‘if” directions of Theorem 5.2.2—4.

Claim If (a) or (c) holds, then yx; ,, is D-valid over total RA models; if (a) or (d)
holds, then it is D-valid over RA models and H/N/S-valid over CB models.
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Proof 1If (a) holds, then it is immediate that x,, is D/H/N/S-valid, since its
antecedent is always false. For (c) and (d), we consider each of the D/H/N/S-
semantics in turn, assuming for an arbitrary pointed RA/CB model M, w that

Mwk,: )\ Kg. (5.7

ped

To show M, w Ey xu,m, it suffices to show M, w F, Kv; for some j < m.
If (5.7) holds for x := d, then by the truth definition (Def. 3.6),

|JMin, ([[(p]]) N —(w) = 7. (5.8)

ped

If M is a total (resp. any) RA model, then by (c) and Lemma 5.10.1 (resp. by (d) and
Lemma 5.10.2), (5.8) implies that there is some ¢ € W (resp. that the v in (d) is)

such that Min<, ([ )N — (w) = @ whence M, w 4 K.
For the cases of H/N/S-semantics, it follows from (d) and Fact 5.11 that

(B¢l = [By] and | J[Be] = [BY]. (5.9)

ped ped

If (5.7) holds for x := h, then by the truth definition (Def. 4.3),

M, wky /\ Beand | ] Ming, ([[(p]]) < |JByl. (5.10)
ped ped ped
By (5.9), the first conjunct of (5.10) implies M, w F, By. By (d), Lemma 5.10.2,
and (5.9), the second conjunct implies the sensitivity condition that Ming, [[1,[/]}) C
[By]. Hence M, w Ej, K.
If (5.7) holds for x := n, then by the truth definition (Def. 4.3), (5.10) holds with
n in place of 4. So by the same argument as before, sensitivity holds for ¥ at w,
which with M, w F, By and w € Ming, (W) (Def. 3.1.3b) implies M, w F, ¥.
It follows that Ming , ([¥/]) € Ming, (W), which with (d) implies

Xw

Ming,, ([¥]) € [ |Ming, ([¢]). (5.11)

ped
Since the adherence condition must hold for each ¢ € ® at w,
[ Ming, ([e]) < [ [Bel. (5.12)
ped ped

which with (5.11) and (5.9) implies Ming, ([¥]) € [Bv]. Thus, adherence and
sensitivity hold for ¢ at w, so M, w F, K given M, w F, By
If (5.7) holds for x := s, then by the truth definition (Def. 4.3),

M, w /\ By and ﬂ Ming, ([B¢]) € ﬂ [o]- (5.13)

ped ped ped
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By (5.9), the first conjunct of (5.13) implies M, w F; By. Given w € Ming, (W)
(Def. 3.1.3b), it follows that Ming, ([B¥]) € Ming, (W) and therefore

Ming, ([BY]) € ﬂ Ming,, ([Bg]) (5.14)
ped

by (5.9). Finally, from (d) we have
M Ie] < [¥]. (5.15)

ped

which with (5.14) and the second conjunct of (5.13) implies the safety condition that
Ming, ([B¥]) € [¥], so M, w s Ky given M, w g By

Remark 5.13 (Dropping Well-Foundedness) We can drop the assumption of
well-foundedness used in the above proofs, provided we modify the truth definitions
accordingly. For example (cf. Lewis [49, Section 2.3]), we may define

[¢]la = Wy, or

.1
Jv € o]y "Wy Yu € [@] g2 if u <y vthen w £ u, (5.16)

M, wEy Ko iff {
which is equivalent to the clause in Definition 3.6 over (total) well-founded models.*!
I will give the proof for Theorem 5.2.2 that (c) implies the validity of x, » over total
RA models according to (5.16). Assume that (5.7) holds for x := d’. If [¢] = Wy,
for all ¢ € @, then by (c), [¥] = W, and hence M, w E4y K for all € W.
Otherwise, for every ¢ € & for which the second case of (5.16) holds, let v, be
a witness to the existential quantifier. Since {vy | ¢ € @} is finite and nonempty,
Minx,, ({vy | ¢ € ®}) is nonempty. Consider some v € Min<, ({vy, | ¢ € ®}). Given
that <., is a total preorder,

Vu e | ol if u <w v then w /> u. (5.17)
ped

Since v € [¢] for some ¢ € @, by (c) it follows that v € [y] for some ¥ € W. Now
observe that for all u € [¢], u <, v implies w # u. For if u € [{], then by (c),
u € [¢] for some ¢ € @, in which case u =<,, v implies w # u by (5.17). Hence v
is a witness to the existential in (5.16) for K, whence M, w Ey K.

We leave the other cases without well-foundedness to the reader.*?

4 Equation (5.16) assumes totality. Without totality, we replace the right side of (5.16) with:
Vx € Wy if x € [[¢] then Fv € [¢], v <y x, Vu € [¢]: if u <, vthen w 4 u.

For the proof that (d) in Theorem 5.2.3 implies the validity of x,., over all RA models according to this
modified truth clause, see Holliday [38, Section 2.6.1].

42For H-semantics without well-foundedness (but with totality), define a new =, relation as in (5.16) but
with M, u ¥, By in place of w /> u and with the belief condition for knowledge. Then the proof of the
‘if” direction of Theorem 5.2.4 for k=), is similar to the proof above for 4, but replacing (c) by (d) and
replacing w # u in (5.17) by M, u ¥j» By, which follows from M, u ¥, By for any ¢ € ® by (d) and
Fact 5.11. Without totality, we use the truth clause for K from the previous footnote but with M, u ¥ Bg in
place of w # u and with the belief condition (see Holliday [38, Section 2.6.1]). Finally, since Definition
3.1.3b implies that Ming,, (W) # ¢ even if <,, is not well-founded, it follows from Observation 4.5 that
the adherence and safety conditions of N/S-semantics do not require well-foundedness.
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5.2 Completeness for Total RA Models

We turn now to the ‘only if* directions of Theorem 5.2. The proof for part 1 of the
theorem, which we omit, is a much simpler application of the general approach used
for the other parts. In this section, we treat the ‘only if” direction of part 2. This is
the most involved part of the proof and takes us most of the way toward the ‘only
if” direction of part 3, treated in Section 5.3. It may help at times to recall the proof
sketch given after Fact 5.7 above.

In Section 5.2.1, I define what it is for the x, ,, in Theorem 5.2 to be T-unpacked.
In Section 5.2.2, I show that if a T-unpacked x, , does not satisfy (a) or (c) of
Theorem 5.2, then it is falsified by a finite fofal RA model according to D-semantics.
In fact, it is falsified by a finite linear RA model with the universal field prop-
erty (Def. 3.3.4). Finally, in Section 5.2.3 we give upper bounds on the size of and
complexity of finding falsifying models in Corollaries 5.24 and 5.25.

5.2.1 T-unpacking Formulas

Toward defining what it is for x, , (Notation 5.1) to be T-unpacked, let us first define
a normal form for the ¢y, ..., ¢, in x, m. For our purposes, we need only define the
normal form for the top (propositional) level of each ¢;.

Definition 5.14 (DNF) A formula in the epistemic language is in (propositional)
disjunctive normal form (DNF) iff it is of the form

\/(aA/\KﬂA/\—-Ky),

where o is propositional (a conjunction of literals, but it will not matter here), and g
and y are any formulas.

Roughly speaking, we T-unpack a conditional x, ,, by using the T axiom, K ¢; —
@i, to replace K ¢; in the antecedent with the equivalent ¢; A K ¢; and then use propo-
sitional logic to put ¢; in its appropriate place; e.g., if ¢; is =Ky, then we move Ky
to the consequent to become one of the K’s. After the following general definition
and result, we work out a concrete example.

Definition 5.15 (T-unpacked) For any (possibly empty) sequence of formulas
Y1, ..., ¥m, a formula of the form xg ,, is T-unpacked; and for ¢, in DNF, a for-
mula of the form 41, is T-unpacked iff x, , is T-unpacked and there is a disjunct
8 of ¢y such that:

1. the o conjunct in § is a conjunct of ¢g;
2. forall KB conjuncts in §, there is some i < n such that ¢; = B;
3. forall =Ky conjuncts in §, there is some j < m such that y; = y.

The following proposition will be used to prove several later results.
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Proposition 5.16 (T-unpacking) Every formula in the epistemic language is equiv-
alent over RA models in C/D/L-semantics (and over CB models in H/N/S-semantics)
to a conjunction of T-unpacked formulas of the form X, m.

Proof By propositional logic, every formula 6 is equivalent to a conjunction of for-
mulas of the conditional (disjunctive) form x, ,,. Also by propositional logic, every
@; in the antecedent of x, , can be converted into an equivalent (pl.v in DNF; and
since ¢; and (piv are equivalent, so are K¢; and K (piv by the semantics. To obtain
an equivalent of 0 in which each x, , is T-unpacked, we repeatedly use the fol-
lowing equivalences, easily derived using propositional logic and the valid T axiom,
Kv¥ — . Where ¢ and n are any formulas,

tAK (\/(Sk) —n
k<l

S LA <\/3k) ANK (\/5k) =1
k<l k<l

A {A(SkAK(\/(Sk)—)n)

k<l k<l

k<l k<l

s Alenrdf ANKBEAK (\/5k) - nv\/K;/‘),
where each §y is of the form a* A A Kp¥ A A\ =K y*. Compare conditions 1-3 of
Definition 5.15 to the relation of & to the k-th conjunct in the last line.

Example 5.17 (T-unpacking cont.) Let us T-unpack the following formula:

K((K(vaq)ﬁ]] AKﬁKqﬁ%AﬁKKrVQ \/K—|Krﬁ|28> —~ Ky
2

4

31

No matter what we substitute for i, the form of the final result will be the same,
since T-unpacking does nothing to formulas already in the consequent.

As in the proof of Proposition 5.16, we derive a string of equivalences, obtain-
ing formulas in boldface by applications of the T axiom and otherwise using only
propositional logic:

K¢ —> K¢ & o ANKp — K3
then since ¢ is a disjunction, we split into two conjuncts:
& (1AKep—> KYy)A @B ANKe — KY);
then we move the negated K yll in & to the first consequent and rewrite as

& (KBIAKBIAKg - Ky VKy!)A(KBIAKg — KY);
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then we apply the T axiom to the K formulas:

& (BIABIAKBIAKBIANKe — Ky Vv Ky!)A(BEAKBEAKp — KY);
then we move the negated Kq in ,321 and Kr in ,8]2 to the consequents:

& (BIAKBIAKBIANKp — Ky Vv Kyl VK AKBIAKg — Ky VKr);
since 11 is another disjunction, we split the first conjunct into two:

& (KpAKBAKByAKp— Ky Vv Ky!VEKqg)A
(g ANKB] NKB) ANKo — Ky vV Kyl vV Kq)A
(KB} AKo — Ky V Kr);

finally, we apply the T axiom to Kp and rewrite as:

& (p(po AKp, ANK(Kpva) AK=Kq AKg - Ky, VKKr, qu%)
A (qw[,] A K(Kp\/q)(p; /\K—|Kq«)é A K(p(pé — wal, \/KKV% \/Kq‘//é)
A (Kﬁkrwir AKg = KV, Kr %’)'

Observe that the three conjuncts are T-unpacked according to Definition 5.15.
5.2.2 Countermodel Construction

Our approach to proving the ‘only if* direction of Theorem 5.2.2 is to assume that (a)
and (c) fail, from which we infer the existence of models that can be “glued together”
to construct a countermodel for x, . For a clear illustration of this approach
applied to basic modal models with arbitrary accessibility relations, see van Benthem
[8, Section 4.3]. There are two important differences in what we must do here. First,
since we are dealing with reflexive models in which K¢ — ¢ is valid, we must
use T-unpacking. Second, since we are dealing with a hybrid of relational and order-
ing semantics, we cannot simply glue all of the relevant models together at once, as
in the basic modal case; instead, we must put them in the right order, which we do
inductively.

The construction has two main parts. First, we inductively build up a kind of “pre-
model” that falsifies x, . Second, assuming that x, , is T-unpacked, we can then
convert the pre-model into an RA model that falsifies x; .

Definition 5.18 (Pre-model) A pointed pre-model is a pair M, v, with M =
(W, —,=<,V)and v € W, where W, —, <, for w € W \ {v}, and V are as in
Definition 3.1; <, satisfies Definition 3.1.3a, but for all w € W, v &€ W,,.

Hence a pointed pre-model is not a pointed RA model, since Definition
3.1.3b requires that v € W, for an RA model. However, truth at a pointed
pre-model is defined in the same way as truth at a pointed RA model in
Definition 3.6.
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The following lemma shows how we will build up our model in the inductive
construction of Lemma 5.21. It is important to note that Lemmas 5.19 and 5.21 hold
for any x, m as in Notation 5.1, whether or not it is T-unpacked.

Lemma 5.19 (Pre-model Extension) Assume there is a linear pointed pre-model
M, w such that M, w ¥q xn.m.

1. Ifvi Ao Ay — @ut is not D-valid over linear RA models, then there is a
linear pointed pre-model M*, w such that M*, w ¥4 Xn+1.m-

2. If o1 A+ Ay = Yyt is not D-valid over linear RA models, then there is a
linear pointed pre-model M, w such that M", w ¥4 Xn.m+1-

Proof For part 1, let N' = (N, H>N, jN, VN) with v € N be a linear RA model
such that A, v ¥4 Y1 A+ - A¥m — @n11. By assumption, there is a linear pre-model
M= (M, —DM, jM, VM) with point w € M such that M, w ¥4 xn m. Define
ME = (WH, =t <% V) as follows (see Fig. 4):

W% = M UN (we can assume M N N = 0); -t =My H>N;

j?u = j/wvl U{(v,x) | x =vorx € My}, where My, is the field of j;’uvl;
5&:54\4 forallx € M\ {w}; fﬁyzjé\/forally eN;

VE(p) = VM(p) U VN (p).

Observe that M*, w is a linear pointed pre-model.
It is easy to verify that for all formulas & and x € M \ {w},

M x By Eff M, x Eq &;and MP, v Eg Eff N, v Ey E. (5.18)

Given M, w ¥4 xn,m and the truth definition (Def. 3.6),

L Min_m ([[%]]M) N M) = g. (5.19)
1<i<n
5
>
w v
CQ O;) <w
Y1,y Yy Pnt1

Fig. 4 Part of the extended pre-model M" for Lemma 5.19.1
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It follows by the construction of M# and (5.18) that

U Min: ([[(p,']]M:> N —fw) = 0, (5.20)

l<i<n+l

which is equivalent to MiwE; K @1 A -+ A K@,41 by the truth definition. The
construction of MF and (5.18) also guarantee that for all k < m,

Min_ (MHM> N —Mw) < Min_; (Wk]]w) A =2 (w). (5.21)

Given M, w B4 xn.m, for all k < m the left side of (5.21) is nonempty, so the right
side is nonempty. Hence by the truth definition, ML w¥y K Y1V---V Koy Finally,
since ¢ is propositional, M, w E ¢q implies M*, w E ¢q by definition of V. It
follows from the preceding facts that M*, w ¥, Xn+1.m-

Forpart2,1et O = (O, —DO, 50, VO) with u € O be alinear RA model such that
O,ulgor A+ ANy = VYme1. Given M, w as in part 1, define MP = (Wb, -
<", V) from M and O in the same way as we defined M? from M and N for part
1, except that —° = M U =9 U {w,u} (see Fig. 5). Observe that M", w is a
linear pointed pre-model.

It is easy to verify that for all formulas & and x € M \ {w},

MP xEq Eff M, x Fg & and M®, u by Eiff O, u Fy €. (5.22)

As in the proof of part 1, (5.19) holds for M. It follows by the construction of
M and (5.22) that (5.19) also holds for M” and —" in place of M and —M 5o
M, wEs K@i A --- A Ko, by the truth definition. Also as in the proof of part 1,

. M .
Min_ ([[I/fkﬂ ) N —M (w) is nonempty for all k < m. It follows by the con-

Mb
struction of M" and (5.22) that Min_» ([Wk]] ) N —" (w) is nonempty for all

k<m+1,s0 M, wk Ky V-V K{41 by the truth definition. Finally, since

3
>
w u
s Do
Ply---s SO?%_'wm'Fl

Fig. 5 Part of the extended pre-model M” for Lemma 5.19.2
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o is propositional, M, w E ¢g implies M”, w E ¢ by definition of V°. It follows
from the preceding facts that M®, u ¥y xn.m+1-

Remark 5.20 (Properties of —) Lemma 5.19 also holds for the class of RA models/
pre-models in which — is an equivalence relation, so that Theorem 5.2.2-3 will as
well. For part 1, if M and N are in this class, so is MF, since the union of two
disjoint equivalence relations is an equivalence relation. For part 2, suppose M and
O are in the class. Since we have added an arrow from w to u, M" may not be in
the class. In this case, let —* be the minimal extension of —” that is an equivalence
relation. One can check that by construction of M°, for all w € W°,

(=T W)\ =" (w)) N W, = 3.

It follows that M” and M+ = (WP, -+, <" V’) satisfy the same formulas
according to D-semantics.

Using Lemma 5.19, we can now carry out our inductive construction.

Lemma 5.21 (Pre-model Construction) If neither (a) nor (c) of Theorem 5.2 holds
for xn.m, then there is a linear pointed pre-model M, w such that M, w ¥4 xn.m-

Proof The proof is by induction on m with a subsidiary induction on n.

Base Case for m Assume that neither (a) nor (c) holds for )(,,,0.43 Let M = (W, —,
=<, V) be such that W = {w}, - = {(w, w)}, <y, = ¥, and V is any valuation such
that M, w F ¢p, which exists since (a) does not hold for y, ¢o. Then M, w is a linear
pointed pre-model such that M, w #4 x,.0.

Inductive Step for m Assume for induction on m that for any B, ..., B, and any n,
if neither (a) nor (c) holds for x := o AKp1 A---AK@, — KB V- -V KB, then
there is a linear pointed pre-model M, w with M, w ¥; x. Assume that for some
Y1, ..., Ym+1, neither (a) nor (c) holds for x, ,+1. We prove by induction on » that
there a linear M’, w with M', w B4 xu.m+1-

Base Case for n Assume neither (a) nor (c) holds for xo ;+1. Since (c) does not hold,
forall j <m+1,F; T < v; and hence ¥y T — ;. Starting with M, w defined
as in the base case for m such that M, w ¥ x,0, apply Lemma 5.19.2 m + 1 times to
obtain an M’, w with M', w ¥ %0 m+1-

Inductive Step for n Assume for induction on » that for any «y, . .., oy, if neither
(a) nor (c) holds for y := a9 A Koy A -+ A Koy > Ky VvV --- VvV K1, then
there is a linear pointed pre-model M, w with M, w ¥; x. Assume that for some
@0, - - ., Pn+1, Neither (a) nor (c) holds for x,+1 m+1-

43Recall that Xn.,0 is of the form o A K1 A-+- A Ko, — L.
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Casel Fg o1 A+ A@pt1 = Y1 A+ A V¥pme1. Then since (c) does not hold for

Xn+lm+1Ed WA AYmpr = @A A@ny1, inwhich case Fg YiA- - AYpq1 —
@; for some i < n + 1. Without loss of generality, assume

Favi A Al = @yl (5.23)

Since neither (a) nor (c) holds for x,41,m+1, neither holds for x, ,,+1. Hence by
the inductive hypothesis for n there is a linear pointed pre-model M, w such that
M, w ¥4 xn.m+1, which with (5.23) and Lemma 5.19.1 implies that there is a linear
pointed pre-model M, w such that M*, w Xn+1.m+1-

Case 2 By o1 A=+ A@yr1 — W1 A+ A Ypyy1. Then for some j < m + 1,
E o1 A A@uy1 — Y. Without loss of generality, assume

Fa @u A App1 = Yyt (5.24)

Since neither (a) nor (c) holds for x,41 m+1, neither holds for x,1 .. Hence by
the inductive hypothesis for m there is a linear pointed pre-model M, w such that
M, w ¥4 xu+t1.m, which with (5.24) and Lemma 5.19.2 implies that there is a linear
pointed pre-model M", w such that M", w ¥4 Xn+1.m+1-

Finally, if x, » is T-unpacked (Def. 5.15), then we can convert the falsifying pre-
model obtained from Lemma 5.21 into a falsifying RA model.

Lemma 5.22 (Pre-model to Model Conversion) Given a linear pointed pre-model
M, w and a T-unpacked xy, , such that M, w ¥4 Xn.m, there is a linear pointed RA
model M€, w such that M€, w Bq xn.m-

Proof Where M = (W, —, <X, V), define M¢ = (W, —, <°, V) such that for all
v e W\ {w}, xf==x,,and <{, ==, U{{w,v) | v € {w} UW,}, where W,, is
the field of <,,. Since w is strictly minimal in <¢, M€ is a linear RA model. (Note,
however, that w is still not in the field of <¢ for any v € W \ {w}.) By construction
of M€, together M, w ¥y K1 V-V K, and w — w imply

ME wkEy Ky V-V K. (5.25)

We prove by induction that for all k < n,
MEwEs o AKor A+ A K. (5.26)
The base case of k = 0 is immediate since ¢g is propositional, M, w F ¢,

and M and M€ have the same valuations. Assuming (5.26) holds for k < n,
we must show M w F; Kegy1. Since x, ., is T-unpacked, together Defini-
tion 5.15, (5.25), and (5.26) imply M, w Fg @g+1. Since M, w F; K@piq,

we have Min<, (Jox+1] )N — (w) = @ by the truth definition (Def. 3.6). It
follows, given the construction of M€ and the fact that M¢, w F; @11, that

MC
Min<e ([ox 1] )N —(w) = @, which gives M, w Fs K@y 1, as desired.

The proof of the ‘only if’ direction of Theorem 5.2.2 is complete. By Lemmas
5.21 and 5.22, if a T-unpacked x, » does not satisfy (a) or (c) of Theorem 5.2, then
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it is falsified by a linear—and hence total—RA model according to D-semantics.
Indeed, as the next proposition and Corollary 5.24 together show, it is falsified by an
RA model with the universal field property (Def. 3.3.4).

Proposition 5.23 (Universalization) Where M = (W, —, <, V) is a finite RA
model, there is a finite RA model M* = (W%, =" <" V") with the universal field
property, such that W € W* and for all w € W and all ¢,

M, w kg @iff M*, wEy .

If M is total, M" is also total. If M is linear, M*" is also linear.

Proof Given M = (W, —, <, V), suppose that for some w,v € W, v & Wy, so
v # w. Define M’ = (W', =/, </, V') such that W = W; = =— \{{w, v)};
<l ==w U{{x,v) | x € Wy, U{v}}; jg,zjy fory € W\ {w}; and V' =

In other words, v becomes the least relevant world at w and eliminated at w in M’.
Given v € Wy, one can show by induction on ¢ that for all x € W, M, x E; ¢ iff
M, x £y ¢. Applying the transformation M > M’ successively no more than |W|?
times with other pairs of worlds like w and v yields a model M" with the universal
field property. If M is total/linear, so is M*.

If we require that — be an equivalence relation, then the transformation above will
not work in general, since we may lose transitivity or symmetry by setting w /4’ v.
To solve this problem, we first make an isomorphic copy of M, labeled M* = (W*,
—*, <* V*). For every w € W, let w* be its isomorphic copy in W*. Defme/\f =
(WN N <N VN) as follows: WN = W U w*; N = U —*; vV (p) =
V(p)UV* (p) forallw € W, =N =<, U{(v u)y | ve WN andu € W*}; for
all w* € W™, QC_<w*U{( )|veW and u € W}. In other words, N is
the result of first taking the disjoint umon of M and M* (so there arenov € W
and u € W* such that v = u or u — v) and then making all worlds in W* the
least relevant worlds from the perspective of all worlds in W, and vice versa.** Given
this construction, it is easy to prove by induction that for all w € W and formulas
o, M,w Eyg ¢ iff N, w Eq ¢ iff N, w* F4 ¢. Moreover, —Nis an equivalence
relation if — is.

Next we turn A into a model with universal fields, without changing N, Sup-
pose that for w, v € W, v is not in the field of <N which is the case iff v* is not in
the field of <N (Remember that for all w € W and u € W*, uis in the field of <N
and vice versa). Let NV = (W', =/, <’, V') be such that: W' = WN, — _—>N,

“1f we want to stay within the class of /inear models, then we must change the definition of jﬁ)\f so that it
extends the linear order <, with an arbitrary linear order on W* that makes all worlds in W* less relevant
than all worlds in W, and similarly for jﬁ)\c
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V' = VN forallu € W\{w, w*}, </, ==<N: < = <N U{x,v) | x e WV U
and </, ==<N, Uf{(x,v*) | x € WN U {v*}}. It follows that for all x € W\,
x <), v* <! viandforallx € Wu/}(, x <!, v <, v*. Since w A’ v* and w* A v,
one can prove by induction that for all p and u € W, N, u g ¢ iff N, u =4 @ iff
N, u* =4 @. The key is that although we put v in the field of <!,, this cannot make
any K formula that is true at A/, w false at N7, w, for if N7, v ¥, 1, then by the
inductive hypothesis N/, v* ¥4 v, and v* is more relevant than v and eliminated at
w; similarly, although we put v* in the field of <! ., this cannot make any K for-
mula that is true at A/, w* false at A, w*. Applying the transformation A" — N’
successively no more than |WN | times with other worlds like w and v yields a
universalized M“.

5.2.3 Finite Models and Complexity

From the proofs of Section 5.2.2, we obtain results on finite models and the
complexity of satisfiability for D-semantics over total (linear, universal) RA models.

Corollary 5.24 (Effective Finite Model Property) For any formula ¢ of the
epistemic language, if ¢ is satisfiable in a total RA model according to D-semantics,
then ¢ is satisfiable in a total RA model M with |M| < |@|¢®).

Proof By strong induction on d(¢). Since ¢ is satisfiable iff —¢ is falsifiable,
consider the latter. By Proposition 5.16, —¢ is equivalent to a conjunction of
T-unpacked formulas of the form yx,_ ,,, which is falsifiable iff one of its conjuncts
Xn.m 18 falsifiable. By Lemmas 5.19-5.22, if x, ,, is falsifiable, then it is falsifiable
in a model M that combines at most k other models (and one root world), where k
is the number of top-level K operators in x, ,,, which is bounded by |¢|. Each of the
these models is selected as a model of a formula of lesser modal depth than x, ,,
so by the inductive hypothesis we can assume that each is of size at most ||¢(®) =1,
Hence M| < [g] x [p|?@~! = |¢|9@).

Corollary 5.25 (Complexity of Satisfiability)

1. The problem of deciding whether an epistemic formula is satisfiable in the class
of total RA models according to D-semantics is in PSPACE;

2. For any k, the problem of deciding whether an epistemic formula ¢ with d(¢) <
k is satisfiable in the class of total RA models according to D-semantics is
NP-complete.

Proof (Sketch) For part 1, given PSPACE = NPSPACE (see Papadimitriou
[59, Section 7.3]), it suffices to give a non-deterministic algorithm using polyno-
mial space. By the previous results (including Prop. 5.16), if ¢ is satisfiable, then
it is satisfiable in a model that can be inductively constructed as in the proofs of
Lemmas 5.19, 5.21, and 5.22. We want an algorithm to non-deterministically guess
such a model. However, since the size of the model may be exponential in |¢|,
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we cannot necessarily store the entire model in memory using only polynomial
space. Instead, we non-deterministically guess the submodels that are combined in
the inductive construction, taking advantage of the following fact from the proof of
Lemma 5.19. Once we have computed the truth values at N/, v (or O, u) of all sub-
formulas of ¢ (up to some modal depth, depending on the stage of the construction),
we can label v with the true subformulas and then erase the rest of N from mem-
ory (and similarly for O, u). The other worlds in A" will not be in the field of <,
for any world x at which we need to compute truth values at any later stage of the
construction, so it is not necessary to access those worlds in order to compute later
truth values. Given this space-saving method, we only need to use polynomial space
at any given stage of the algorithm. I leave the details of the algorithm to the reader.*>

For part 2, NP-hardness is immediate, since for k = 0 we have all formulas of
propositional logic. For membership in NP, if ¢ is satisfiable and d(¢) < k, then
by Corollary 5.24, ¢ satisfiable in a model M with |[M| < |¢|*. We can non-
deterministically guess such a model, and it is easy to check that evaluating ¢ in M
is in polynomial time given that M is polynomial-sized.

As explained in Remark 7.2, Corollary 5.25.1 accords with results of Vardi [72].
Corollary 5.25.2 accords with results of Halpern [28] on the effect of bounding modal
depth on the complexity of satisfiability for modal logics.

5.3 Completeness for All RA Models

Next we prove the ‘only if” direction of Theorem 5.2.3. In the process we prove the
separation property for D-semantics over all RA models noted in Proposition 5.6.
Interestingly, dropping totality makes things simpler.

Claim If neither (a) nor (d) holds for a T-unpacked ., then there is a pointed RA
model M, w such that M, w ¥4 xu.m-

Proof If m < 1, (d) is the same as (c), covered in Section 5.2.2. So suppose m > 1.
By Lemma 5.22 and the m = 1 case of the inductive proof of Lemma 5.21, if neither
(a) nor (d) holds for y; m, then for all 1 < j < m, there is a linear RA model
M =(W;, —;, <J, V;) with point w; € W; such that

Mj,wj#d(po/\K(pl/\'”/\K(pn—)K}[Ij. (5.27)

Recall that M is constructed in such a way that for all v € W, =W, \{w;}, w;

is not in the field of 55. Without loss of generality, assume that for all j, k < m,
W; N Wy = §. Construct M = (W, —, <, V) as follows, by first taking the disjoint
union of all of the M ;, then “merging” all of the w; into a single new world w (with

45Cf. Theorem 4.2 of Friedman and Halpern [24] for a proof that the complexity of satisfiability for
formulas of conditional logic in similar preorder structures is in PSPACE.
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the same valuation as some wy), so that the linear models M ; are linked to w like
spokes to the hub of a wheel (recall Fig. 3):

={w}u U Wj_;forallj <mandv € W;,jvzji;

Jj<m
<w=1{(w,v) [v=wordj <m:w; <4, v}U U (2, N(W; x W;);
j<m
—={(w,v) [v=wordj<m:w; —; v}U |J (—; NW; x W)
Jj<m
U Vi(p) n W) Ufw)  ifw € Vi(p);
Vip) =1/ ,
U Vi(p)nw;) if wy & Vi(p).
j<m

It is easy to verify that for all formulas &, j <m,and v € WI,
MovEgEff M, vk & (5.28)

It follows from the construction of M and (5.28) that for all j < m,
. M
Min_; ([[w ] ) N - (w) € Min, ([[wj]] ) N - (w). (5.29)

For all j < m, given M, w; ¥; Kv; by assumption, the left side of (5.29) is
nonempty, so the right side is nonempty. Hence by the truth definition,

M,wkEs Ky V-V Ky, (5.30)

By our initial assumption, for all j < m,
| Min_, ([[(p, ) N —J (w) = @, (5.31)
t<n u

We prove by induction that for 1 <i < n,

Min, ([[(piﬂM) N —(w) = 7. (5.32)

Base Case Given M, w| E ¢g and the fact that w has the same valuation under V as
w1 under Vi, we have M, w F ¢. Together with (5.30), this implies M, w ¥y x0,m-
Since x1,m is T-unpacked, it follows by Definition 5.15 that M, w F4 ¢1, in which

case w ¢ Ming, ([[¢1]]M> By construction of M, together (5.31), (5.28), and

w ¢ Minx, ([[(pl]]M) imply (5.32) for i = 1.

Inductive Step Assume (5.32) forallk <i (i <n),so M, wFE; Koy A--- A Ko,
which with (5.30) gives M, w ¥4 xi.m. Then since x;11 , is T-unpacked, M, w E4
@i+1, S0 by reasoning as in the base case, (5.32) holds for i + 1.

@ Springer



Epistemic Closure and Epistemic Logic I 43

Since (5.32) holds for 1 < i < n, by the truth definition we have M, w F4
Kop A -+ A Koy, which with M, w FE ¢ and (5.30) implies M, w B4 xn.m.

A remark analogous to Remark 5.20 applies to the above construction: if each
—> 18 an equivalence relation and we extend — to the minimal equivalence relation
—+ D> — then the resulting model will still falsify x, . Hence Theorem 5.2.3 holds
for the class of RA models with equivalence relations (and with the universal field
property by Prop. 5.23). Finally, arguments similar to those of Corollaries 5.24-5.25
show the finite model property and PSPACE satisfiability without the assumption of
totality (see Remark 7.2).

5.4 Completeness for CB Models

Finally, for the ‘only if” direction of Theorem 5.2.4, there are two ways to try to falsify
some xy.». For H/N-semantics, we can first construct an RA countermodel for x, m
under D-semantics, as in Section 5.2, and then transform it into a CB countermodel
for x,,, under H/N-semantics, as shown in Section 6 below. Alternatively, we can
first construct a CB countermodel under S/H-semantics and then transform it into a
CB countermodel under H/N-semantics as in Section 6. Here we will take the latter
route. By Proposition 6.2 below, for the ‘only if* direction of Theorem 5.2.4 it suffices
to prove the following.

Claim If neither (a) nor (d) holds for a flat, T-unpacked x, m, then there is a pointed
CB model M, w such that M, w #p, s xn.m-
We begin with some notation used in the proof and in later sections.

Notation 5.26 (Relational Image) Given a CB model M = (W, D, <, V), the
image of {w} under the relation D is D(w) = {v € W | wDv}.

Hence D(w) is the set of doxastically accessible worlds for the agent in w.
Let us now prove the claim.

Proof For any positive integer z, let P, = {1,...,z}. Forallk € P,,let Sy = {i €
P, |EYr — ¢i},and T = {t € Py, | S; = P,}. Since (d) does not hold for x, s, it
follows that

¥ N\ei — . (5.33)

€Sk
Construct M = (W, D, <, V) as follows (see Fig. 6):
W= {w)U{x [t e€T)U{v.ul |k eP,\TandjeP,\ S}

D is the union of {{w, w)}, {{w, x;), (x;, x;) | t € T}, and

|<vk,u§>, (Wh, uk) |k € Py \Tand j € P, \ Sk};
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s PL A Apn Yy “Ya, Pk “Pb, Yk TPes Y —pd, Y
Qe v =0 Qe 4 40 Qut 40
PEAN , S0 FRAN , S0 PRAN , S0
N/ N 7z N/ \/ \ 7’ \ \/ N 7z \/

N 1 ’ N I s N ! ’

N 1 7 N 1 ’ N 1 7

\' ‘/ \v Y \v ./

SOw = O == Ok

%0 N @i N =g A pi A=y

1€S) 1€S]

Fig. 6 Countermodel for ¥, , in H/S-semantics

<w = {(w, w)}U {(w, vg), (v, w), (v, vi) | k € Py} *
For y e W\ {w}, <, is any relation as in Definition 3.1.3;
V is any valuation function on W such that M, w F ¢y and

o forallt e T, M,x; E N @i A —r;

ieP,
o forallke Py \T, M,vr E N\ @i A —Vi;
€Sk
e forallke P,\Tandj € Pn\Sk,M,u/; F—p; Ay

Such a valuation V exists by the assumption that (a) does not hold for ¥, ,,, together
with (5.33) and the definitions of T and Sk.

Since xy . is flat and T-unpacked, M, w F ¢o implies M, w E @1 A -+ A @p.
Then since D(w) = {w}U{x; [t e T}and M, x; F o1 A--- A, forallt € T,

MwE N (Boi A ). (5.34)

iepP,
Forall k € P, \ T, we have

M \/ Bg; (5.35)
JEP\Sk

given kau]; and M, u]]‘ ¥ gj,and

Mk N\ (5.36)
€Sy
by definition of V. It follows from (5.35) and (5.36) that forall k € P, \ T,
M.u = N\ By — ¢0). (5.37)
ieP,
By construction of M, (5.34) and (5.37) together imply that for all y € Wy,
M, yE )\ Boi — ¢i). (5.38)
ieP,

40The x; and u* worlds are not in the field of <y . For a universal field (and total relation), the proof works
with minor additions if we take the union of <, as defined above with

{w, x0), (w, ), (e, ), (e, ), (s x), Casub), b oub) 11 € Tk e Pu\ T, j € Pu\ i)
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Together (5.34) and (5.38) imply M, w =5, ¢ K¢; for alli € P, by the truth defini-
tions (Def. 4.3). Now let us check that M, w ¥, ¢ K; forall i € P,. On the one
hand, for all r € T, given wDx; and M, x; ¥ i, we have M, w ¥ By, and hence
M, w Fp s K. On the other hand, for all k € P, \ T, given D(vr) = {u,]C | j e
Py \ Sx} and M, u’j E Yk, we have M, v F Byy; but then since M, vy ¥ Y, and
vr € Ming, (W), it follows that M, w ¥, ¢ K. Together with M, w F ¢, the
previous facts imply M, w ¥y s xn.m-

We leave the extension of the ‘only if* direction of Theorem 5.2.4 to the full
epistemic language for other work (see Problem 8.12). Facts 8.8.4, 8.8.5, and 8.10.1
show that for the full language, this direction must be modified. Yet for our pur-
poses here, the above proof already helps to reveal the sources of closure failure in
H/S-semantics and in N-semantics by Proposition 6.2 below.

5.5 The Sources of Closure Failure

The results of Sections 5.2-5.4 allow us to clearly identify the sources of closure
failure in D/H/N/S-semantics. In D-semantics, the source of closure failure is the
orderings—if we collapse the orderings, then D- is equivalent to L-semantics (see
Observation 8.3) and closure failures disappear. By Proposition 6.1 below, the order-
ings are also a source of closure failure in H/N-semantics. However, the proof in
Section 5.4 shows that there is another source of closure failure in H/N/S-semantics:
the interpretation of ruling out in terms belief, as in the quote from Heller in
Section 3. This is the sole source of closure failure in S-semantics, the odd mem-
ber of the D/H/N/S-family that does not use the orderings beyond Ming,, (W) (recall
Observation 4.5). Given this source of closure failure, even if we collapse the order-
ings, in which case H- is equivalent to S-semantics (see Prop. 6.3), closure failure
persists. We will return to this point in Section 9.

6 Relating RA and CB Models

The discussion in Sections 5.4 and 5.5 appealed to claims about the relations between
D/H/N/S-semantics. In this short section, we prove these claims. Readers eager to
see how the results of Section 5 lead to complete deductive systems for the RA and
subjunctivist theories should skip ahead to Section 7 and return here later.

One way to see how the RA and subjunctivist theories are related is by transform-
ing models viewed from the perspective of one theory into models that are equivalent,
with respect to what can be expressed in our language, when viewed from the per-
spective of another theory. This also shows that any closure principle that fails for the
first theory also fails for the second.

We first see how to transform any RA model viewed from the perspective of
D-semantics into a CB model that is equivalent, with respect to the flat fragment
of the epistemic language, when viewed from the perspective of H-semantics. The
transformation is intuitive: if, in the RA model, a possibility v is eliminated by the
agent in w, then we construct the CB model such that if the agent were in situation v
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instead of w, the agent would notice, i.e., would correctly believe that the true situa-
tion is v rather than w;*’ but if, in the RA model, v is uneliminated by the agent in
w, then we construct the CB model such that if the agent were in situation v instead
of w, the agent would not notice, i.e., would incorrectly believe that the true situation
is w rather than v. (The CB model in Fig. 2 is obtained from the RA model in Fig. 1
in this way). Then the agent has eliminated the relevant alternatives to a flat ¢ at w
in the RA model iff the agent sensitively believes ¢ at w in the CB model.

Proposition 6.1 (D-to-H Transform) For any RA model M = (W, —, <, V) with
w € W, there is a CB model N = (W, D, <, V) such that for all flat epistemic
formulas ¢,

M, wkEy @iff N, w By @.

Proof Construct N/ from M as follows. Let W and V in A/ be the same as in M; let
< in NV be the same as < in M; construct D in N from — in M as follows, where
w is the fixed world in the lemma (recall Notation 5.26):
{w}ifw — v;
{v} ifw 4 v.
To prove the ‘iff” by induction on ¢, the base case is immediate and the boolean
cases routine. Suppose ¢ is of the form K. Since ¢ is flat, i is propositional.
Given that V is the same in A as in M, forallv € W, M, v kg ¢ iff N, v By .
Hence if M, w ¥4 ¥, then M, w ¥4 Ky and N, w ¥, K+ by Facts 3.7 and 4.4.
Suppose M, w E4 ¥. Since w — w, we have D(w) = {w} by construction of NV, so
N, w E, By given N, w Ej, . It only remains to show that M, w =y K iff the
sensitivity condition (Def. 4.3) for K/ is satisfied at AV, w. This is easily seen to be
a consequence of the following, given by the construction of A

Min., ([Wf]]ﬁw ) = Ming, ([[wl]ﬁ; 6.2)

M
Vu € Min,, (Md ): w — u iff N, u Ey By 6.3)
The left-to-right direction of the biconditional in (6.3) follows from the fact that if
w — u, then D(u) = {w}, and N, w Ep, . For the right-to-left direction, if w /4 u,
then D(u) = {u}, in which case N, u ¥, By given N, u ¥, .

Yve W: D) = { 6.1)

The transformation above does not always preserve all non-flat epistemic formulas,
and by Fact 8.8.4, no transformation does so. However, since the flat fragment of the
language suffices to express all principles of closure with respect to propositional
logic, Proposition 6.1 has the notable corollary that all such closure principles that
fail in D-semantics also fail in H-semantics.

Next we transform CB models viewed from the perspective of H-semantics into
CB models that are equivalent, with respect to the epistemic-doxastic language, when

4T1n fact, we only need something weaker, namely, that it would be compatible with what the agent believes
that the true situation is v, i.e., vDv. In the w /> v case of the definition of D in the proof of Proposition
6.1, we only need that v € D(v) for the proof to work.
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viewed from the perspective of N-semantics. (Fact 8.8 in Section 8 shows that there is
no such general transformation in the N-to-H direction.) To do so, we make the mod-
els centered, which (as noted in Observation 4.5) trivializes the adherence condition
that separates N- from H-semantics.

Proposition 6.2 (H-to-N Transform) For any CB model N = (W, D, <, V), there
is a CB model N/ = (W, D, <, V> such that for all w € W and all epistemic-
doxastic formulas ¢,

N, wky iff N/, wkE, ¢.

Proof Construct N from N as follows. Let W, D, and V in N be the same as in
N. For all w € W, construct <, from <,, by making w strictly minimal in <), but
changing nothing else:

v#wandu <y v, or
U=w.

u<,v iff{ (6.4)
To prove the proposition by induction on ¢, the base case is immediate and the
boolean and belief cases routine. Suppose ¢ is K and [[WML\/ = [[1/;]]{,\[ JEN, w By
Y, then N, w ¥, K¢ and N', w ¥, Ky by Fact 44. If N/, w F; v and hence
N, w E, ¥, then by construction of </, and the inductive hypothesis,

Ming, ([[Ilf]]flv) = Ming, ([Wfﬂivl> : (6.5)

Since D is the same in N as in A7, (6.5) implies that the belief and sensitivity con-
ditions for Kv are satisfied at A/, w iff they are satisfied at A/, w. If the belief
condition is satisfied, then Ming, ([[Bw]]{,v /) = {w} by construction of <), so the
adherence condition (Def. 4.3) is automatically satisfied at A/, w. Hence the belief
and sensitivity conditions for K are satisfied at A/, w iff the belief, sensitivity, and
adherence conditions are satisfied for K at N7, w.*3

Our last transformation takes us from models viewed from the perspective of
S-semantics to equivalent models viewed from the perspective of H-semantics—and
hence N-semantics by Proposition 6.2. (Fact 8.10 in Section 8 shows that there can
be no such general transformation in the H-to-S direction.) The idea of the transfor-
mation is that safety is the 3V condition (as in Section 3) obtained by restricting the
scope of sensitivity to a fixed set of worlds, Ming,, (W).

Proposition 6.3 (S-to-H Transform) For any CB model N = (W, D, <, V), there
is a CB model N/ = (W, D, <, V> such that for all w € W and all epistemic-
doxastic formulas ¢,

N, wks @iff N/, w F, ¢.

481t is easy to see that even if we forbid centered models, Proposition 6.2 will still hold. For we can allow
any number of worlds in Ming; (W), provided they do not witness a violation of the adherence condition
at w for any ¢ for which we want A/, w &, K.
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Table 1 Axiom schemas and rules

PL. all tautologies MP. ¢ ﬁ];/// ¢
TKg—¢ NKT Re. YTV
Ko & Ky
Ao Ay —
M. K@ AY) = Ko AKY RK. “ =V

Koy AN ANKpy, > KV

PIANANpp <> YILA APy

X. K(gAy) = KoV Ky RAT.
Koy Ao ANKoy —> K1 VooV Ky

(n=0,m=>1)

C.KoAKY — K(p AY) RA, NN AoV
Re ¢ " KoiA---AKg, — K (®20)

Proof Construct N from A as follows. Let W, D, and V in A be the same as in V.
For all w € W, construct <), from <,, by taking Ming,, (W) to be the field of </,
and setting u <), v for all u and v in the field. It is straightforward to check that N/
and N’ are equivalent with respect to the safety condition and that in A/’ the safety
and sensitivity conditions become equivalent.*’

Although I have introduced the propositions above for the purpose of relating
the (in)valid closure principles of one theory to those of another, by transforming
countermodels of one kind into countermodels of another, the interest of this style of
analysis is not just in transferring principles for reasoning about knowledge between
theories; the interest is also in highlighting the structural relations between differ-
ent pictures of what knowledge is. In part II, we will continue our model-theoretic
analysis to illuminate these pictures.

7 Deductive Systems

From Theorem 5.2 we obtain complete deductive systems for reasoning about knowl-
edge according to the RA, tracking, and safety theories. Table 1 lists all of the needed
schemas and rules, using the nomenclature of Chellas [12] (except for X, RAT, and
RA, which are new). E is the weakest of the classical modal systems with PL, MP,
and RE. ES; .. .S, is the extension of E with every instance of schemas Sy... S,.
EMCN is familiar as the weakest normal modal system K, equivalently character-
ized in terms of PL, MP, the K schema, and the necessitation rule for K (even more
simply, by PL, MP, and RK).

1t is easy to see that even if we require Wy, \ Ming (W) # @, Proposition 6.2 will still hold. For we
can allow any number of worlds in W, \ Ming, (W), provided they do not witness a violation of the
sensitivity condition at w for any ¢ for which we want N, w Fj, K¢.
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Corollary 7.1 (Soundness and Completeness)

1. The system KT (equivalently, ET plus the RK rule) is sound and complete for
C/L-semantics over RA models.

2. (The Logic of Ranked Relevant Alternatives) The system ECNTX (equivalently,
ET plus the RAT rule) is sound and complete for D-semantics over total RA
models.

3. The system ECNT (equivalently, ET plus the RA rule) is sound and complete for
D-semantics over RA models.

4. ECNT is sound (with respect to the full epistemic language) and complete (with
respect to the flat fragment) for H/N/S-semantics over CB models.”°

The proof of Corollary 7.1 is similar to the alternative completeness proof
discussed by van Benthem [8, Section 4.3] for the system K.3!

Proof We only give the proof for part 2, since the proofs for the others are similar.
Soundness follows from Theorem 5.2.2. For completeness, we first prove by strong
induction on the modal depth d(¢) of ¢ (Def. 2.2) that if ¢ is D-valid over total RA
models, then ¢ is provable in the system combining ET and the RAT rule. If d(¢) =
0, then the claim is immediate, since our deductive system includes propositional
logic. Suppose d(¢) = n + 1. By the proof of Proposition 5.16, using PL, MP, T,
and RE (which is a derived rule given RAT, PL, and MP), we can prove that ¢ is
equivalent to a conjunction ¢’, each of whose conjuncts is a T-unpacked formula
(Def. 5.15) of the form

QAKopr AN~ ANKpy — KY1 V-V Ky, (7.1)

The conjunction ¢’ is valid iff each conjunct of the form of (7.1) is valid. By Theorem
5.2.2, (7.1) is valid iff either condition (a) or condition (c) of Theorem 5.2.2 holds.
Case I: (a) holds, so ¢9 — _L is valid. By the inductive hypothesis, we can derive
@o — L, from which we derive (7.1) using PL and MP. Case 2: (c) holds, so for
some ® C {¢1, ..., ¢,} and nonempty ¥ < {1, ..., ¥},

Ne < N\v (7.2)

ped vew

is valid. Since (7.2) is of modal depth less than n + 1, by the inductive hypothesis it
is provable. From (7.2), we can derive

NEKe— \/ Ky (7.3)

ped Yev

S0Corollary 7.1.4 gives an answer, for the flat fragment, to the question posed by van Benthem [8, 153] of
what is the epistemic logic of Nozick’s notion of knowledge.

51 The usual canonical model approach used for K and other normal modal logics seems more difficult to
apply to RA and CB models, since we must use maximally consistent sets of formulas in the epistemic
language only (cf. note 61) to guide the construction of both the orderings <,, (resp. <,,) and relation —
(resp. D), which must be appropriately related to one another for the truth lemma to hold. In this situation,
our alternative approach performs well.
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using the RAT rule, from which we can derive (7.1) using PL and MP. Having derived
each conjunct of ¢’ in one of these ways, we can use PL and MP to derive the
conjunction itself, which by assumption is provably equivalent to ¢.

Next we show by induction on the length of proofs that any proof in the system
combining ET and RAT can be transformed into an ECNTX proof of the same theo-
rem. Suppose that in the first proof, o1 A--- A, < Y1 A--- Ay, has been derived,
to which the RAT rule is applied. In the second proof, if n > 0, we first derive
Koin---ANKgp, > K(p1A---Agy) using C repeatedly (with PL and MP); next, we
derive K (g1 A- - -Agy) < K(Y1A- - -AYy,) by applying the RE rule to g A- - -Ag, <>
Y1 A« Ay; we then derive K (Y1 A- - - Atry) — K V- -V Ky, using X repeat-
edly (with PL and MP); finally, we derive K1 A -+ A K@, — K1 V-V Ky
using PL, MP, and earlier steps. If n = 0,52 we first derive K T using N, then derive
KT <& K@y A -+ A Yy) by applying the RErule to T < ¥p A --+ A ¥y, then
derive the conclusion of the RAT application using X, PL, and MP.

For reasons suggested in Section 5.2, I do not consider the systems of Corollary
7.1.2—.4 to be plausible as epistemic logics, and therefore I do not consider the basic
theories they are based on to be satisfactory theories of knowledge. Nonetheless, we
may wish to reason directly about whether one has ruled out the relevant alternatives,
whether one’s beliefs are sensitive to the truth, etc., and Corollary 7.1 gives princi-
ples for these notions. Simply replace the K symbol by a neutral [ and the newly
identified logic ECNTX, which I dub the logic of ranked relevant alternatives, is of
significant independent interest.

With these qualifications in mind, I will make another negative point concerning
knowledge. It is easy to derive the K axiom, the star of the epistemic closure debate
with its leading role in skeptical arguments, from M, C, RE, and propositional logic.
Hence in order to avoid K one must give up one of the latter principles. (For RE,
recall that we are considering ideally astute logicians as in Section 2). What is so
strange about subjunctivist-flavored theories is that they validate C but not M, which
seems to get things backwards. Hawthorne [32, Sections 1.6, 4.6] discusses some
of the problems and puzzles, related to the Lottery and Preface Paradoxes (Kyburg
[46]; Makinson [54]), to which C leads (also see Goldman [25]). M seems rather
harmless by comparison (cf. Williamson [78, Section 12.2]). Interestingly, C also
leads to computational difficulties.

Remark 7.2 (NP vs. PSPACE) Vardi [72] proved a PSPACE upper bound for the
complexity of the system ECNT,>3 in agreement with our conclusion in Section 5.3.
(Together Corollaries 5.25 and 7.1.2 give a PSPACE upper bound for ECNTX.) Vardi
also conjectured a PSPACE lower bound for ECNT. By contrast, he showed that
for any subset of {T, N, M} added to E, complexity drops to NP-complete. Hence

521f n = 0, we can take the left side of the premise/conclusion of RAT to be T, or we can simply take the
premise to be Y1 A - -+ A ¥y, and the conclusion tobe Ky V -+ -V K,

S3Here I mean either the problem of checking provability/validity or that of checking consis-
tency/satisfiability, given that PSPACE is closed under complementation. When I refer to NP-
completeness, I have in mind the consistency/satisfiability problem.
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Vardi conjectured that the C axiom is the culprit behind the jump in complexity of
epistemic logics from NP to PSPACE.> It appears that not only is C more problem-
atic than M epistemologically, but also it makes reasoning about knowledge more
computationally costly.>

8 Higher-Order Knowledge

In this section, we briefly explore how the theories formalized in Sections 3 and 4 dif-
fer with respect to knowledge about one’s own knowledge and beliefs. The result is a
hierarchical picture (Corollary 8.12) and an open problem for future research. First,
we discuss a subtlety concerning higher-order RA knowledge. Second, we relate
properties of higher-order subjunctivist knowledge to closure failures.

8.1 Higher-Order Knowledge and Relevant Alternatives

Theorem 5.2 and Corollary 7.1 show that no non-trivial principles of higher order
knowledge, such as the controversial 4 axiom K¢ — K K¢ and 5 axiom —K¢ —
K—K ¢, are valid over RA models according to either L- or D-semantics. This is so
even if we assume that the relation — in our RA models is an equivalence relation
(see Remark 5.20), following Lewis [52].

Example 8.1 (Failure of 4 Axiom) For the model M in Fig. 7, in which — is an
equivalence relation, observe that M, w; ¥; 4 Kp — KKp. Since MinfwI Wwyn

[p] = {wy} and w; # w; we have M, w; E;4 Kp. By contrast, since
w4 € Minfw3 (W) N [p] and ws — wy, we have M, w3 ¥; 4 Kp. It follows that
w3 € Miniwl (W) N [Kp], in which case M, w; ¥; 4 KKp given w; — w3.

According to Williamson [79, 80], “It is not always appreciated that...since
Lewis’s accessibility relation is an equivalence relation, his account validates not only
logical omniscience but the very strong epistemic logic S5 [80, 23n16]. However,
Example 8.1 shows that this is not the case if we allow that comparative relevance,
like comparative similarity, is possibility-relative, as seems reasonable for a Lewisian

541n fact, Allen [2] shows that adding any degree of conjunctive closure, however weak, to the classical
modal logic EMN results in a jump from NP- to PSPACE-completeness. Adding the full strength of C
is sufficient, but not necessary. As far as I know, lower bounds for the complexity of systems with C but
without M have not yet been established.

SSWhether such complexity facts have any philosophical significance seems to be an open question. As
a cautionary example, one would not want to argue that it counts in favor of the plausibility of the 5
axiom, = K¢ — K—Kg, that while the complexity of K is PSPACE-complete, for any extension of K5,
complexity drops to NP-complete [30]. That being said, if we are forced to give up C for epistemological
reasons, then its computational costliness in reasoning about knowledge may make us miss it less.
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N—'ll)] N—’LU] ~ 1
w1 w2
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Fig.7 An RA countermodel for Kp — K Kp in L/D-semantics (partially drawn, reflexive loops omitted)

theory.’® Other RA theorists are explicit that relevance depends on similarity of
worlds (see, e.g., Heller [33, 35]), in which case the former should be world-relative
since the latter is. For Williamson’s point to hold, we would have to block the likes
of Example 8.1 with an additional constraint on our models, such as the following.

Definition 8.2 (Absoluteness) For an RA model M = (W, —, <, V), < is locally
(resp. globally) absolute iff for all w € W and v € W,, (resp. for all w,v € W),
<w = =<y [49, Section 6.1].

It is noteworthy that absoluteness leads to a collapse of comparative relevance.

Observation 8.3 (Absoluteness and Collapse) Given condition 3b of Definition
3.1, if < is locally absolute, then for all w € W and v € W,,,,

Min<, (W) = W,, = Min<, (W) = W,,.
If < is globally absolute, then for all w € W, Min<, (W) = W.

Lewis [49, 99] rejected absoluteness for comparative similarity because it leads
to such a collapse. We note that with the collapse of comparative relevance, the
distinction between L- and D-semantics also collapses.

Observation 8.4 (Absoluteness and Collapse cont.) Over locally absolute RA
models, L- and D-semantics are equivalent.

The proof of Proposition 8.5, which clarifies the issue raised by Williamson, is
essentially the same as that of completeness over standard partition models.

Proposition 8.5 (Completeness of S5) S5 is sound and complete with respect
to L/D-semantics over locally absolute RA models in which — is an equivalence
relation.

61t follows from Lewis’s [52, 556f] Rule of Resemblance that if some — p-possibility w; “saliently resem-
bles” wy, which is relevant at w; by the Rule of Actuality, then wy is relevant at wy, so you must rule
out wy in order to know p in wj. Lewis is explicit (555) that by ‘actuality’ he means the actuality of
the subject of knowledge attribution. Hence if we consider your counterpart in some w3, and some —p-
possibility wy saliently resembles w3, then your counterpart must rule out w4 in order to know p in w3.
However, if salient resemblance is possibility-relative, as comparative similarity is for Lewis, then w4 may
not saliently resemble wy, in which case you may not need to rule out w4 in order to know p in wy. (By
Lewis’s Rule of Attention (559), our attending to wy in this way may shift the context C to a context C’ in
which wy is relevant, but the foregoing points still apply to C.) This is all that is required for Example 8.1
to be consistent with Lewis’s theory.
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In general, for locally absolute RA models, the correspondence between properties
of — and modal axioms is exactly as in basic modal logic.

8.2 Higher-Order Knowledge and Subjunctivism

The study of higher-order knowledge becomes more interesting with the subjunctivist
theories, especially in connection with our primary concern of closure. According
to Nozick [58], the failures of epistemic closure implied by his tracking theory are
something that “we must adjust to” (228). This would be easier if problems ended
with the closure failures themselves. However, as we will see, the structural features
of the subjunctivist theories that lead to these closure failures also lead to problems
of higher-order knowledge.
We begin with a definition necessary for stating Fact 8.7 below.

Definition 8.6 (Outer Necessity) Let us temporarily extend our language with an
outer necessity operator [ [49, Section 1.5] with the truth clause:

M, wE, Oy iff Vv € Wy,: M, v E; ¢.

We call the language with K, B, and U the epistemic-doxastic-alethic language.
Define the possibility operator by Q¢ := =[J—¢, and let K¢ := =K —¢p.

Fact 8.7 below shows that if sensitivity (Def. 4.3) is necessary for knowledge, and
if there is any counterfactually accessible world in which an agent believes ¢ but ¢
is false, then the agent cannot know that her belief that ¢ is not false—even if she
knows that ¢ is true.>” The proof appears in many places [17, 44, 66, 67, 73, 75].

Fact 8.7 (Possibility and Sensitivity) O(Bgp A —~¢) — K (Be A =) is H/N-valid,
but not S-valid.

Since Kp A O(Bp A —p) is satisfiable, Kp — K—(Bp A —p) is not H/N-valid
by Fact 8.7, so Kp — K(—Bp Vv p) is not H/N-valid. Hence Fact 8.7 is related to
the failure of closure under disjunctive addition. Clearly 0y — K+ is not H/N-
valid for all ¢r. Related to Fact 8.7, Fact 8.8 (used for Corollary 8.12) shows that
limited forms of closure, including closure under disjunctive addition, hold when
higher-order knowledge of By — ¢ or K ¢ — @ is involved.

Fact 8.8 (Higher-Order Closure)

K(Byp — ¢) > K((Bp — @) V V) is H/S-valid, but not N-valid;
Bo A K(Bp — ¢) — Ko is H/S-valid, but not N-valid;
By A K(I%(p — @) — Ko is H/S-valid, but not N-valid;
K(p AY) A K(I%(p — @) — Ko is H/S-valid, but not D/N-valid;

bl N

STMore precisely, she cannot know that she does not have a false belief that ¢ [6]. As Becker [6] in effect
proves, BBop A K¢ — K(Bg A ¢) is H-valid (and hence S-valid).

@ Springer



54 'W.H. Holliday

- ~a
PN — - < - =
§ =w
- - 1 Xwi < -

w1 w2 ws

Fig.8 A CB model satisfying K (p A =K p) in H/N/S-semantics (partially drawn)

5. Ko AKYy AKK@@Vy) = (o V) = KoV ¥) is H/N/S-valid, but not
D-valid (over total RA models).

While some consider Fact 8.7 to be a serious problem for sensitivity theories, Fact
8.9 seems even worse for subjunctivist-flavored theories in general: according to the
ones we have studied, it is possible for an agent to know the classic example of an
unknowable sentence, p A =K p [23]. Williamson [78, 279] observes that p A =K p
is knowable according to the sensitivity theory. We observe that it is also knowable
according to the safety theory.”®

Fact 8.9 (Moore-Fitch Sentences) K (p A —Kp) is satisfiable in RA models under
D-semantics and in CB models under H/N/S-semantics.

Proof 1t is immediate from Theorem 5.2 that =K (p A =K p) is not D-valid.>®

We give a simple satisfying CB model M for H/N/S-semantics in Fig. 8. Assume
that <y, is any appropriate preorder such that M, w3 Fp ;s Kp. It will not matter
whether wi =y, Wy =y, W3 OFr Wi =y, W2 <y W3.

Given wy € Mingw] (W) and M, wy E —p A Bp, the safety condition for Kp
fails at wy, so M, w; Ey; p A =Kp. Then since D(w;) = {w;} (recall Notation
5.26), M, w; Es B(p A —=Kp), so the belief condition for K (p A =K p) holds at
wy. Fori > 2, given M, w; E BKp, we have M, w; ¥ B(p A =Kp). It follows
that for all v € Mingwl W), M,v E; B(p A —Kp) — p A —=Kp. Hence the
safety condition for K(p A —=Kp) holds at wy, so M, w; Fy; K(p A =Kp). One
can check that M, w; Fp, K(p A —=Kp) as well. For H/N-semantics, the model
N in Fig. 9, which has the same basic structure as Williamson’s [78, 279] example,
also satisfies K (p A =K p) at wi. Assume <y, is any appropriate preorder such that
N, wy Epp Kp.60 (Whether wy =, wa or wy <y, wy does not matter).

It is not difficult to tell a story with the structure of Fig. 8§, illustrating that the
safety theory allows K (p A =K p), just as Williamson tells a story with the structure
of Fig. 9, illustrating that the tracking theory allows K (p A =Kp).

38 One difference between Fact 8.7 and Fact 8.9 is that the former applies to any theory for which sensitivity
is a necessary condition for knowledge, whereas the latter could in principle be blocked by theories that
propose other necessary conditions for knowledge in addition to sensitivity or safety. What Fact 8.9 shows
is that sensitivity and safety theorists have some explaining to do about what they expect to block such a
counterintuitive result.

Rewrite =K (p A—Kp) as K(p A—Kp) — L. T-unpacking gives p A=Kp A K(p A—Kp) — L and
then p A K(p A =K p) — Kp, which fails (a), (c), and (d) of Theorem 5.2.

%00ne can of course add more worlds to Wy, than are shown in Fig. 9.
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w1 w2 w3

Fig.9 A CB model satisfying K (p A =K p) in H/N-semantics (partially drawn)

Fact 8.9 is related to the fact that closure under conjunction elimination is not
valid. Otherwise K (p A —Kp) would be unsatisfiable; for by veridicality, K (p A
—Kp) — —Kp is valid, and given closure under conjunction elimination, K (p A
—Kp) — Kp would also be valid. However, Fact 8.10 shows that K does partially
distribute over conjunctions of special forms in S-semantics.

Fact 8.10 (Higher-Order Closure cont.)

1. K(p A—=K¢@) — K—Kg is S-valid, but not D/H/N-valid.
2. K{(¢Vvy)A(Bp — @) — K(Bp — ¢) is S-valid, but not H/N-valid.

What Facts 8.9 and 8.7 show is that in order to fully calculate the costs of closure
failures, one must take into account their ramifications in the realm of higher-order
knowledge. Combining Facts 8.7, 8.8, and 8.10 with results from earlier sections, we
arrive at a picture of the relations between the sets of valid principles according to
D-, H-, N-, and S-semantics, respectively, given by Corollary 8.12 below.%! First we
need the following definition.

Definition 8.11 (Theories and Model Classes) For a class S of models, let ThZ ©)
be the set of formulas in the language £ that are valid over S according to X-
semantics. Let RAT be the class of all total RA models, RA the class of all RA models,
and CB the class of all CB models.

Corollary 8.12 (Hierarchies)
1. For the flat fragment L 7 of the epistemic language,

Thy (CB) = Th’if(CB) = Thy, (CB) = Th‘éf(RA) - Th%f(RAT).
2. For the epistemic language L.,

Th%e(RA) C Th}. (CB) & Th’ée (CB) ¢ Thi, (CB);

Th%e(RA) C Th%e(RAT) Z Th. (CB); Thl (CB) & Th‘ée(RAT).

S1If we require more properties of the D relation, then more principles will be valid in H/N/S-semantics—
obviously for the B operator, but also for the interaction between K and B. For example, if require that D
be dense, so BB — By is valid, then BBy — K By is H/S-valid. If we also require that D be transitive,
so B¢ — BBy is valid, then B9 — K B¢ is H/N/S-valid. As Kripke [44, 183] in effect observes, if
By < BBy is valid, then (for propositional ¢) M, w F, K¢ implies M, w F, K (¢ A Bg), so whenever
M, w E, Ko but M, w ¥, K¢ (because adherence is not satisfied), K (¢ A Bp) — K fails according
to N-semantics, an extreme closure failure.
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3. For the epistemic-doxastic language L,
Thl, (CB) C Th’gd (CB) ¢ Thi (CB).

4. For the epistemic-doxastic-alethic language L,

Th (CB) G Th!. (CB); Th%. (CB) £ Th, (CB) £ Th (CB).

Proof Part 1 follows from Corollary 7.1 and Fact 5.7. Part 2 follows from
Corollary 7.1, Propositions 6.2-6.3, and Facts 8.8.5, 8.8.4, 8.10.1, and 5.7. Part 3
follows from Propositions 6.2—-6.3 and Facts 8.8 and 8.10. Part 4 follows from
Proposition 6.2 (which clearly extends to £,) and Facts 8.8, 8.7, and 8.10.

In this section we have focused on the implications of D/H/N/S-semantics for
higher-order knowledge, especially in connection with epistemic closure. However,
if we take the point of view suggested earlier (Sections 1, 5 and 7), according to
which our results can be interpreted as results about desirable epistemic properties
other than knowledge, then exploring higher-order phenomena in D/H/N/S-semantics
is part of understanding these other properties. Along these lines, we conclude this
section with an open problem for future research.

Problem 8.13 (Axiomatization) Axiomatize the theory of counterfactual belief
models according to H-, N-, or S-semantics for the full epistemic, epistemic-doxastic,
or epistemic-doxastic-alethic language.%?

621f we extend the language of Definition 2.2 so that we can describe different parts of our CB models inde-
pendently, e.g., by adding the belief operator B for the doxastic relation D or a counterfactual conditional
[ for the similarity relations <, then the problem of axiomatization becomes easier. For S-semantics,
which does not use the structure of any <, relation beyond Ming, (W), just adding B to the language

makes the axiomatization problem easy. As one can prove by a standard canonical model construction, for
completeness it suffices to combine the logic KD for B with the axiom K¢ — By and the rule

SA (Bor = 1) A== A (B = @) = (BY — )
: (n=0)-

Koy A---NKgy — (BY — KY)
For H/N-semantics, adding not only B but also a counterfactual [} (with the Lewisian semantics outlined
in Section 4) makes the axiomatization problem easy. For example, for N-semantics we can combine KD
for B with a complete system for counterfactuals (no interaction axioms between B and [J— are needed),
plus K¢ — By and K¢ < By A (—p O— —=Bg) A (B O— ¢). The problem with obtaining easy
axiomatizations by extending the language in this way is that the resulting systems give us little additional
insight. The interesting properties of knowledge are hidden in the axioms that combine several operators,
each with different properties. Although in a complete system for the extended language we can of course
derive all principles that could appear in any sound system for a restricted language, this fact does not
tell us what those principle are or which set of them is complete with respect to the restricted language.
Corollary 7.1 and Facts 8.7, 8.8, and 8.10 suggest that more illuminating principles may appear as axioms
if we axiomatize the S-theory of CB models in the epistemic language or the H/N-theory of CB models in
the epistemic-doxastic(-alethic) language.
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Fig. 10 A CB countermodel for K (p A g) — Kp V Kg in H/N/S-semantics (partially drawn)

9 Theory Parameters and Closure

In this section, we return to the issue raised in Section 5.5 about the sources of closure
failure. Analysis of Theorem 5.2 shows that two parameters of a modal theory of
knowledge affect whether closure holds. In Section 3, we identified one: the V3 vs.
3V choice of the relevancy set. Both L- and S-semantics have an 3V setting of this
parameter (recall Observation 4.5). However, closure holds in L-semantics but fails
in S-semantics. The reason for this is the second theory parameter: the notion of
ruling out. With the Lewis-style notion of ruling out in L/D-semantics, a world v is
either ruled out at w or not. By contrast, with the notions of ruling out implicit in
S/H/N-semantics, we cannot say independently of a proposition in question whether
v is ruled out at w.

For example, in the CB model in Fig. 10, v is among the closest worlds to
the actual world w. We may say that v is ruled out as an alternative for p A q,
in the sense that while p A g is false at v, the agent does not believe p A g at v (but
rather p A —¢q). However, v is not ruled out as an alternative for p, for p is false at v
and yet the agent believes p at v. This explains the consequence of Theorem 5.2 that
K(pAg) — Kpisnotvalid in S-semantics, because one may safely believe p A g at
a world w even though one does not safely believe p at w. Note that the example also
applies to sensitivity theories, for which we can again only say whether v is ruled out
as an alternative for a given ¢.

The distinction between the two notions of ruling out (RO) is again that of V3 vs.
3V, as in the case of RSy3 vs. RSgy in Section 3. Let us state the distinction in terms
of possibilities that are not ruled out, possibilities that are uneliminated:

According to an ROv3 theory, for every context C, world w, and (V) proposition
P, there is (3) a set of worlds u, (P, w) € P uneliminated at w as alternatives
for P, such that if any world in u, (P, w) is relevant (i.e., in r, (P, w)), then the
agent does not know P in w (relative to C).

According to an ROgy theory, for every context C and world w, there is (3) a set
of worlds U, (w) uneliminated at w, such that for every (V) proposition P, if any
world in U, (w) N P is relevant (i.e., in r, (P, w)), then the agent does not know
P in w (relative to C).

Every ROgy theory is a ROv3 theory (with u. (P, w) = U, (w) N P), but when I refer
to ROv3 theories I have in mind those that are not ROgy. As noted, L/D-semantics
formalize RO3zv theories, with —(w) (Notation 5.12) in the role of U(w), while
S/H/N-semantics formalize ROvy3 theories, given the role of belief in their notions of
ruling out, noted above (see [38, Section 3.3.2]).
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Table 2 Parameter settings and closure failures

Theory Formalization Relevancy set Ruling out Closure failures
RA L-semantics v v None

RA D-semantics v3 v Theorem 5.2
Safety S-semantics v v3 Theorem 5.2
Tracking H/N-semantics V3 V3 Theorem 5.2

Consider the parallel between ROvy3 and RSy3 parameter settings: given a V3 set-
ting of the RO (resp. RS) parameter, a (—¢ A —y)-world that is ruled out as an
alternative for ¢ (resp. that must be ruled out in order to know ¢) may not be ruled
out as an alternative for ¢ (resp. may not be such that it must be ruled out in order to
know ), because whether the world is ruled out or not (resp. relevant or not) depends
on the proposition in question, as indicated by the V propositions 3 set of unelimi-
nated (resp. relevant) worlds quantifier order. As the example of Fig. 10 shows, the
ROv3 setting for safety explains why closure fails in S-semantics, despite its RSzy
setting.

Table 2 summarizes the relation between the two theory parameters and closure
failures. Not all theories with RSyz or ROy3 settings must have the same closure
failures as described by Theorem 5.2. Elsewhere I show that as a result of their
particular ROv3 character, variants of subjunctivism, such as DeRose [17] modified
tracking theory and the safety theory with bases, do not avoid serious closure failures
[38, Sections 2.10.1, 2.D]. However, in part I we will see how a kind of generalized
RSv3 theory can avoid the worst of the subjunctivist-flavored theories, while still
stopping short of full closure. This theory will solve the Dretskean closure dilemma
raised at the end of Section 3.

10 Conclusion of Part I

In this paper, we have investigated an area where epistemology and epistemic logic
naturally meet: the debate over epistemic closure, involving two of the most influen-
tial views in contemporary epistemology—relevant alternatives and subjunctivism.
Our model-theoretic approach helped to illuminate the structural features of RA and
subjunctivist theories that lead to closure failure, as well as the precise extent of their
closure failures in Theorem 5.2.

When understood as theories of knowledge, the basic subjunctivist-flavored the-
ories formalized by D/H/N/S-semantics have a bad balance of closure properties.
Not only do they invalidate very plausible closure principles (recall Section 5), illus-
trating the problem of containment (recall Section 1), but also they validate some
questionable ones (recall Section 7). The theories formalized by C- and L-semantics
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also have their problems. On the one hand, the idea that knowledge requires rul-
ing out all possibilities of error, reflected in C-semantics, makes knowing too hard,
giving us the problem of skepticism (recall Sections 2 and 3). On the other hand,
the idea that knowledge of contingent empirical truths can be acquired with no
requirement of eliminating possibilities, reflected in L-semantics (and S-semantics),
seems to make knowing too easy, giving us the problem of vacuous knowledge
(recall Sections 3 and 4). An attraction of D/H/N-semantics is that they avoid these
problems. But they do so at a high cost when it comes to closure.

In Part II, I will propose a new picture of knowledge that avoids the prob-
lems of skepticism and vacuous knowledge, without the high-cost closure fail-
ures of the subjunctivist-flavored theories. As we shall see, the model-theoretic
epistemic-logical approach followed here can help us not only to better understand
epistemological problems, but also to discover possible solutions.

The results of this paper motivate some methodological reflections on our
approach. In epistemology, a key method of theory assessment involves consider-
ing the verdicts issued by different theories about which knowledge claims are true
in a particular scenario. This is akin to considering the verdicts issued by different
semantics about which epistemic formulas are true in a particular model. All of the
semantics we studied can issue different verdicts for the same model. Moreover, the-
orists who favor different theories/semantics may represent a scenario with different
models in the first place. Despite these differences, there are systematic relations
between the RA, tracking, and safety perspectives represented by our semantics. In
several cases, we have seen that any model viewed from one perspective can be
transformed into a model that has an equivalent epistemic description from a differ-
ent perspective (Propositions 6.1-6.3). As we have also seen, when we rise to the
level of truth in all models, of validity, differences may wash away, revealing unity
on a higher level. Theorem 5.2 provided such a view, showing that four different
epistemological pictures validate essentially the same epistemic closure principles.
Against this background of similarity, subtle differences within the RA/subjunctivist
family appear more clearly. The picture offered by total relevant alternatives models
lead to a logic of ranked relevant alternatives, interestingly different from the others
(Corollary 7.1). In the realm of higher-order knowledge, there emerged hierarchies
in the strength of different theories (Corollary 8.12).

For some philosophers, a source of hesitation about epistemic logic is the degree
of idealization. In basic systems of epistemic logic, agents know all the logical con-
sequences of what they know, raising the “problem of logical omniscience” noted
in Section 1. However, in our setting, logical omniscience is a feature, not a bug.
Although in our formalizations of the RA and subjunctivist theories, agents do not
know all the logical consequences of what they know, due to failures of epistemic
closure, they are still logically omniscient in another sense. For as “ideally astute
logicians” (recall Section 2), they know all logically valid principles, and they believe
all the logical consequences of what they believe. These assumptions allow us to dis-
tinguish failures of epistemic closure that are due to fact that finite agents do not
always “put two and two together” from failures of epistemic closure that are due to
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the special conditions on knowledge posited by the RA and subjunctivist theories.®>

This shows the positive role that idealization can play in epistemology, as it does in
science.
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