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Preface to the Fourth Edition
My first year out of graduate school I was asked to teach a beginning under­
graduate course in Inductive Logic. The only books available were mono­
graphs that were clearly unsuitable as texts . I struggled through the course as 
best I could. The following summer I wrote Choice and Chance, motivated 
largely by an instinct for survival. My goal was to keep the exposition clear, un­
cluttered, and accessible while, at the same time, getting things right. I also 
wanted a book that imparted logical skills while remaining focused on basic 
philosophical problems. Judging by the gratifying reception that the book has 
been given, many other philosophers have the same basic priorities .  

I have tried to keep these priorities in mind in successive revisions of the 
book, while keeping the material up to date . In preparing the fourth edition of 
Choice and Chance I have reorganized, simplified, and extended the material 
in the third edition. I have also added Answers to Selected Exercises at the end 
of the book to provide the student with quick feedback on his or her under­
standing of the material. 

There is a new first chapter, Basics of Logic, which is a brief introduction to 
the logic of "and," "or," and "not." This material was previously in the chapter 
on Mill's Methods of Experimental Inquiry, but I think it is better for the stu­
dent to see it right away. The old chapter on Coherence is gone. It seemed to 
me to contain material that was too complicated for a book at this level. Some 
essentials of utility theory and Ramsey's treatment of degree of belief from 
that chapter survive in the discussion of degree of belief in the chapter on 
Kinds of Probability . The last chapter, Probability and Scientific Inductive 
Logic, is entirely new. It revisits questions raised earlier in the book, shows 
how probabilistic reasoning ties them together, and provides the beginnings of 
some constructive answers . I hope that students will view it as an invitation to 
further study. 

In preparing this edition, I was helped by suggestions of Professors Jeffrey 
Barrett, University of California, Irvine; Joseph Keim Campbell, Washington 
State University; Brian Domino, Eastern Michigan University; and George 
Rainbolt, Georgia State University. I was able to consult an instructor's guide, 
which Professors Richard Ratliff and Martin Fricke of the University of Otago 
prepared for the third edition, and which they were kind enough to send me. 
Many improvements to the third edition, which are carried over to this edi­
tion, are due to Professors Frans van der Bogert, Appalachian State Univer­
sity; Ellery Eells , University of Wisconsin, Madison; Sidney Luckenbach, Cali­
fornia State University, Northridge; David Seimens, Jr. , Los Angeles Pierce 
College; Frederick Suppe, University of Maryland; and Georg Dom, Univer­
sity of Salzburg. Thanks also to Mindy Newfarmer for seeing the manuscript 
into print. 

Brian Skyrms 
University of California, Irvine 



I
Basics of Logic
I. I .  INTRODUCTION. Deductive logic is the logic of "and," "or," 

and "not." It is useful for classifying, sorting, or searching and can be used for 
searching a library, using an Internet search engine, or searching any sort of 
database. The help section for one Internet search engine explains that search­
ing for "Mary AND NOT lamb" finds documents containing "Mary" but not 
containing "lamb." A library database can also be searched for "Aztec OR 
Toltec" for a history report. The logic of "and," "or," and "not" gives us a taste 
of deductive logic, with which we can compare inductive logic. Deductive 
logic will also be useful in the analysis of Mill's methods of experimental 
inquiry in Chapter V, and in the treatment of probability in Chapter VI. 

I.2. THE STRUCTURE OF SIMPLE STATEMENTS. A state­
ment is a sentence that makes a definite claim. A straightforward way of 
making a claim is to ( 1 )  identify what you are talking about, and (2) make a 
claim about it. Thus, in the simple statement "Socrates is bald," the proper 
name "Socrates" identifies who we are talking about and the predicate "is 
bald" makes our claim about him. In general, expressions that identify what we 
are talking about are called referring expressions and the expressions used to 
make factual claims about the things we are talking about are called character­
izing expressions . Thus, the name "Socrates" refers to a certain individual, and 
the predicate "is bald" characterizes that individual. 

Although proper names are an important type of referring expression, there 
are others . Pronouns such as "I," "you," "he," and "it" are referring expressions 
often used in ordinary speech, where context is relied upon to make clear what 
is being talked about. Sometimes whole phrases are used as referring expres­
sions . In the statement "The first President of the United States had wooden 
false teeth," the phrase "The first President of the United States" is used to 
refer to George Washington. He is then characterized as having wooden false 
teeth (as in fact he did) . 

Although statements are often constructed out of one referring expression, 
as in the examples above, sometimes they are constructed out of more than 
one referring expression, plus an expression that characterizes the relationship 
between the things referred to. For instance, the statement "Mercury is hotter 
than Pluto" contains two referring expressions-"Mercury" and "Pluto"-and 
one characterizing expression-"is hotter than." Characterizing expressions 
that characterize an individual thing are called property expressions or 

1 



2 CHAPTER I 

one-place predicates . "Is bald," "is red," and "conducts electricity" are exam­
ples of property expressions. Characterizing expressions that characterize two 
or more individual things in relation to one another are called relational ex­
pressions or many-place predicates . "Is hotter than," "is a brother of," "is to 
the north of," and "is between" are examples of relational expressions . 

The basic way to construct a simple statement is to combine referring and 
characterizing expressions to make the appropriate factual claim. In the next 
section it will be seen how these simple statements can be combined with logi­
cal connectives to form complex statements . 

Exercises 

Pick out the referring and characterizing expressions in the following statements . 
State whether each characterizing expression is a property expression or a relational ex­
pression. 

I. Tony loves Cleo.

2. Dennis is tall.

3. This book is confusing.

4. Arizona is between New Mexico and California.

5 .  Los Angeles is bigger than Chicago. 

1.3. THE STRUCTURE OF COMPLEX STATEMENTS. Con­
sider the two simple statements "Socrates is bald" and "Socrates is wise ." Each 
of these statements is composed of one referring expression and one charac­
terizing expression. From these statements, together with the words "not," 
"and," and "or," we can construct a variety of complex statements : 

Socrates is not bald. 

Socrates is bald and Socrates is wise. 

Socrates is bald or Socrates is wise. 

Socrates is not bald or Socrates is wise. 
Socrates is bald and Socrates is wise or Socrates is not bald and 
Socrates is not wise. 

The words "not," "and," and "or" are neither referring nor characterizing 
expressions. They are called logical connectives and are used together with 
referring and characterizing expressions to make complex factual claims. 

We can see how the logical connectives are used in the making of complex 
factual claims by investigating how the truth or falsity of a complex statement 
depends on the truth or falsity of its simple constituent statements . A 
simple statement is true just when its characterizing expression correctly 
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characterizes the thing or things it refers to. For instance, the statement 
"Socrates is bald" is true if and only if Socrates is in fact bald; othei:wise it is 
false. Whether a complex statement is true or not depends on the truth or 
falsity of its simple constituent statements and the way that they are put 
together with the logical connectives .  Let us see how this process works for 
each of the connectives .  

Not. We deny or negate a simple statement by placing the word "not" at the 
appropriate place within it. For instance, the denial or negation of the simple 
statement "Socrates is bald" is the complex statement "Socrates is not bald." 
Often we abbreviate a statement by using a single letter; for example, we may 
let the letter "s" to stand for "Socrates is bald." We may deny a statement by 
placing a sign for negation, "� ," in front of the letter that abbreviates that 
statement. Thus, "�s" stands for "Socrates is not bald." Now it is obvious that 
when a statement is true its denial is false, and when a statement is false its de­
nial is true. Using the shorthand introduced above, we can symbolize this in­
formation in the following truth table, where T stands for true and F for false: 

p �p

T F 
F T 

What this table tells us is that if the statement "p" is true, then its denial, "�p ," 
is false . If the statement "p" is false, then its denial, "�p," is true. The truth 
table is a summary of the way in which the truth or falsity of the complex state­
ment depends on the truth or falsity of its constituent statements . 

And. We form the conjunction of two statements by putting the word "and" 
between them. Each of the original statements is then called a conjunct. A con­
junction is true just when both of the conjuncts are true. Using the symbol "&" 
to abbreviate the word "and" we can represent this in the following truth table: 

p 

T 
T 
F 
F 

q 

T 
F 
T 
F 

p&q 

T 
F 
F 
F 

Here we have four possible combinations of truth and falsity that the con­
stituent statements "p" and "q" might have, and corresponding to each combi­
nation we have an entry telling us whether the complex statement "p&q" is 
true or false for that combination. Thus, in the case where "p" is true and "q" 
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is true, "p&q" is also true. Where "p" is true and "q" is false, "p&q" is false. 
Where "p" is false and "q" is true, "p&q" is again false . And where both "p" 
and "q" are false, "p&q" remains false. 

Or. The word "or" has two distinct uses in English. Sometimes "p or q" 
means "either p or q, but not both," as in "I will go to the movies or I will stay 
home and study." This is called the exclusive sense of "or." Sometimes "p or q" 
means "p or q or both," as in "Club members or their spouses may attend." 
This is called the inclusive sense of "or." We are especially interested in the in­
clusive sense of "or," which we shall represent by the symbol "v." "pvq" is 
called a disjunction (or alternation), with "p" and "q" being the disjuncts . The 
truth table for disjunction is : 

p 

T 
T 
F 
F 

q 

T 
F 
T 
F 

pvq 

T 
T 
T 
F 

By reference to the truth tables for "� ," "&," and 'V' we can construct a truth 
table for any complex statement. Consider the complex statement "Socrates is 
not bald or Socrates is wise." This complex statement contains two simple con­
stituent statements : "Socrates is bald" and "Socrates is wise." We may abbrevi­
ate the first statement as "s" and the second as "w ." We can then symbolize the 
complex statement as "�svw." We may use the following procedure to con­
struct a truth table for this complex statement: 

Step 1 :  List all the possible combinations of truth and falsity for the 
simple constituent statements, "s ," "w ." 

Step 2 :  For each of these combinations, find whether "�s" is true or 
false from the truth table for negation. 

Step 3 : For each of the combinations, find whether "�svw" is true or 
false, from step 2 and the truth table for disjunction.

The result is the following truth table for "�svw": 

Step 1 Step 2 Step 3 
s w �s �svw

Case 1 :  T T F T
Case 2 : T F F F
Case 3 : F T T T
Case 4: F F T T
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This truth table tells us exactly what factual claim the complex statement 
makes, for it shows us in which cases that statement is true and in which it is 
false .  

Because a truth table tells us what factual claim is made by a complex state­
ment, it can tell us when two statements make the same factual claim. Let us 
examine the truth table for "(s&w )v( �s&w )" : 

s w �s s&w �s&w (s&w )v( �s&w) 

Case 1 :  T T F T F T 
Case 2: T F F F F F 
Case 3 :  F T T F T T 
Case 4: F F T F F F 

Note that in reading across the truth table we start with the simple constituent 
statements , proceed to the next largest complex statements, until we finally ar­
rive at the complex statement that is the goal. The truth table shows that the 
final complex statement is true in cases 1 and 3 and false in cases 2 and 4. But 
notice that the simple statement "w" is also true in cases 1 and 3 and false in 
cases 2 and 4. This shows that the simple statement "w" and the complex 
statement "(s&w )v( �s&w )" make the same factual claim. To claim that 
Socrates is either bald and wise or not bald and wise is just a complicated way 
of claiming that Socrates is wise . When two statements make the same factual 
claim, they are logically equivalent. 

Truth tables may also be used to show that two complex statements make 
conflicting factual claims. For example, the claim made by the statement 
"�s&�w" obviously conflicts with the claim made by the statement "s&w." 
Socrates cannot both be bald and wise and be not bald and not wise . This con­
flict is reflected in a truth table for both statements : 

s w �s �w s&w �s&�w

Case 1 :  T T F F T F 
Case 2: T F F T F F 
Case 3 :  F T T F F F 
Case 4: F F T T F T 

The statement "s&w" is true only in case 1 ,  while the statement "�s&�w" is 
true only in case 4. There is no case in which both statements are true . Thus, 
the two statements make conflicting factual claims . When two statements 
make conflicting factual claims, they are inconsistent with each other, or 
mutually exclusive. 
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There are some peculiar complex statements that make no factual claim 
whatsoever. If we say "Either Socrates is bald or Socrates is not bald" we have 
really not said anything at all about Socrates. Let us see how this situation is 
reflected in the truth table for "sv�s": 

Case 1 :  
Case 2 :  

s 

T 
F 

�s

F 
T 

T 
T 

The reason why the statement "sv�s" makes no factual claim is that it is true 
no matter what the facts are . This is illustrated in the truth table by the state­
ment being true in all cases . When a complex statement is true, no matter 
what the truth values of its constituent statements are, that statement is called 
a tautology . 

At the opposite end of the scale from a tautology is the type of statement 
that makes an impossible claim. For instance, the statement "Socrates is bald 
and Socrates is not bald" must be false no matter what the state of Socrates' 
head. This is reflected in the truth table by the statement being false in all 
cases : 

Case 1 :  
Case 2 :  

s 

T 
F 

�s

F 
T 

F 
F 

Such a statement is called a self-contradiction . Self-contradictions are false no 
matter what the facts are, in contrast to tautologies, which are true no matter 
what the facts are. Statements that are neither tautologies nor self-contradic­
tions are called contingent statements because whether they are true or not is 
contingent on what the facts are. A contingent statement is true in some cases 
and false in others . 

The purpose of this section has been to convey an understanding of the 
basic ideas behind truth tables and the logical connectives .  We shall apply 
these ideas in our discussion of Mill's methods and the theory of probability. 

The main points of this section are: 

1 .  Complex statements are constructed from simple statements and 
the logical connectives "�," "&," and "v." 
2. The truth tables for"�,""&," and "v" show how the truth or falsity
of complex statements depends on the truth or falsity of their simple 
constituent statements . 
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3 . With the aid of the truth tables for "-," "&," and "v," a truth table
may be constructed for any complex statement. 
4 . The truth table for a complex statement will have a case for each
possible combination of truth or falsity of its simple constituent state­
ments . It will show in each case whether the complex statement is true 
or false. 
5. The factual claim made by a complex statement can be discov­
ered by examining the cases in which it is true and those in which it is 
false. 
6. If two statements are true in exactly the same cases, they make the
same factual claim and are said to be logically equivalent. 
7. If two statements are such that there is no case in which they are
both true, they make conflicting factual claims and are said to be 
inconsistent with each other, or mutually exclusive. 
8 . If a statement is true in all cases, it is a tautology; if it is false in
all cases, it is a self-contradiction; otherwise it is a contingent 
statement. 

Exercises 

1. Using truth tables, find which of the following pairs of statements are logically
equivalent, which are mutually exclusive, and which are neither:

a. p, - -p .

b. -pv-q, p&q .

c. p&-q, - (p&q) .

d. -pvq, p&-q.

e . (pvp)&q, p&(qvq) .

f. - (-pvq) ,  p&-q.

2. Using truth tables,  find which of  the following statements are tautologies,  which
are self-contradictions, and which are contingent statements :

a. - -pv-p.

b. pvqvr.

c. (pvp)&-(pvp) .

d .  (pv-q )v-(pv-q ) . 
e. p&q&r.

f. - - (pv-p) .

g .  -pvpvq. 
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I.4. SIMPLE AND COMPLEX PROPERTIES.  Just as complex 
statements can be constructed out of simple ones using the logical connec­
tives , so complex properties (or property expressions) can be constructed out 
of simple ones using "and," "or," and "not." These complex properties are the 
categories used in "Boolean search" of databases . For example, from "Persian 
Gulf country," "Iraq," and "Iran" you can form the complex property "Persian 
Gulf country AND NOT (Iraq OR Iran) . "  We will use capital letters to abbre­
viate property expressions . 

We can use a method to examine complex properties which is quite similar 
to the method of truth tables used to examine complex statements. Whether a 
complex property is present or absent in a given thing or event depends on 
whether its constituent simple properties are present or absent, just as the 
truth or falsity of a complex statement depends on the truth or falsity of its 
simple constituent statements. When the logical connectives are used to 
construct complex properties, we can refer to the following presence tables, 
where "F' and "G" stand for simple properties and where "P" stands for 
"present" and "A" for "absent": 

Table I Table II Table III 
F -F F G F&G F G FvG 

p A p p p p p p 
A p p A A p A p 

A p A A p p 
A A A A A A 

Note that these tables are exactly the same as the truth tables for the logical 
connectives except that "present" is substituted for "true" and "absent" is 
substituted for "false ." With the aid of these presence tables for the logical 
connectives, we can construct a presence table for any complex property in ex­
actly the same way as we constructed truth tables for complex statements. The 
presence table for a complex property will have a case for each possible com­
bination of presence or absence of its simple constituent properties .  For each 
case, it will tell whether the complex property is present or absent. As an illus­
tration, we may construct a presence table for " -FvG": 

F G -F -FvG 

Case 1: p p A p 
Case 2: p A A A 
Case 3: A p p p 
Case 4: A A p p 
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There are other parallels between the treatment of complex statements and 
the treatment of complex properties .  Two complex properties are logically 
equivalent if they are present in exactly the same cases; two properties are mu­
tually exclusive if there is no case in which they are both present. When a 
property is present in all cases (such as "Fv�F") it is called a universal prop­
erty. A universal property is analogous to a tautology. When a property is ab­
sent in all cases, it is called a null property . A null property is analogous to a 
self-contradiction. The properties in which we are most interested in inductive 
logic are those which are neither universal nor null. These are called contin­
gent properties .  

Exercises 

1 .  Using presence tables, find which of the following pairs of properties are logi­
cally equivalent, which are mutually exclusive, and which are neither: 

a. -FvG, --Gv-F.

b. -Fv-G, -(F&G).

c. -FvG, F&-G.

d. Fv-(F&G), -(F&G)&F.

e. -F&-G, -(FvG).

f. -(FvGvH), FvGvH.

g. F&-G, -(F&G).

2. Using presence tables, find out which of the following properties are universal,
which are null, and which are contingent:

a. -FvGvF.

b. (FvF)&-(FvF).

c. -(Fv-F).

d. (Fv-G)&(Gv-F).

e. FvGvH.

f. -(F&-G)v-(Gv-F).

1.5. VALIDITY. We can use the truth tables of section I .3 to investi­
gate whether one statement (the conclusion) follows logically from some 
others (the premises ) .  If it does, we have a valid argument; otherwise we don't. 
An argument is valid if the conclusion is true in every case in which the 
premises are all true. The argument: 

p 
therefore, p&q 
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is not valid because there is a case in which the premise , "p," is true and the 
conclusion, "p&q ,'' is false . It is case 2 in the following truth table: 

p q p&q 

Case 1 :  T T T 
Case 2: T F F 
Case 3 :  F T F 
Case 4: F F F 

But the argument: 

p 
therefore, pvq 

is valid because every case in which the premise, "p ," is true (cases 1 and 2 in 
the following truth table) is a case in which the conclusion, "pvq," is true. 

p q pvq 

Case 1: T T T 
Case 2: T F T 
Case 3 :  F T T 
Case 4: F F F 

Here is an example of a valid argument with two premises : 

�p 
pvq 

therefore, q 

We can establish its validity by looking at the following truth table : 

p q �p pvq 

Case 1: T T F T 
Case 2: T F F T 
Case 3 :  F T T T 
Case 4: F F T F 

First we find the cases where both premises, "�p" and "pvq,'' are true. Only 
case 3 qualifies .  Then we can check that the conclusion, "q ," is true in case 3. · ·  

Here you have a little taste of deductive logic. In the next chapter we con­
sider a larger picture that includes both inductive and deductive logic. 
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Exercises 

Check the following arguments for validity using truth tables :
1. p 

therefore, pvp 

2. p 
therefore, p&p 

3. �(pvq) 
therefore, �q 

4. �(p&q)  
therefore, �p 

5. �p 
�q 

therefore, �(pvq) 

6. �p 
�q 

pvqvr 
therefore, r 



II 

Probability and Inductive Logic 

II. I .  INTRODUCTION. What is logic as a whole and how do. 
inductive and deductive logic fit into the big picture? How does inductive j 
logic use the concept of probability? What does logic have to do with argu- j 
men ts? In this chapter we give a preliminary discussion of these large ques- l 
tions to provide a perspective from which to approach the rest of the book. 

. 

'% 
11.2. ARGUMENTS. The word "argument" is used to mean several 1 

different things in the English language . We speak of two people having an i 
argument, of one person advancing an argument, and of the value of a mathe- j 
matical function as depending on the values of its arguments . One of these J 
various senses of "argument" is selected and refined by the logician for the 1 
purposes at hand. '. 

When we speak of a person advancing an argument, we have in mind his � 
giving certain reasons designed to persuade us that a certain claim he is j 
making is correct. Let us call that claim which is being argued for the conclu- i 
sion of the argument, and the reasons advanced in support of it the premises . j 
If we now abstract from the concrete situation in which one person is trying to 1 
convince others and consider the bare bones of this conception of an� 
argument, we arrive at the following definition: An argument is a list of� 
sentences, one of which is designated as the conclusion, and the rest of which � 
are designated as premises .  J 

But if we consider the matter closely, we see that this definition will not do.,) 
Questions, commands, and curses can all be expressed by sentences, but theyi 
do not make factual claims nor can they stand as reasons supporting such) 
claims . Suppose someone said, "The Dirty Sox star pitcher has just broken] 
both his arms and legs, their catcher has glaucoma, their entire outfield has l 
come down with bubonic plague, and their shortstop has been deported.,! 
Therefore, they cannot possibly win the pennant." He would clearly be j 
advancing an argument, to the effect that the Dirty Sox cannot win the pen-� 
nant. But if someone said, "How's your sister? Stand up on the table. May you! 
perish in unspeakable slime!" he would, whatever else he was doing, not be� 
advancing an argument. That is, he would not be advancing evidence in I 
support of a factual claim. J 

Let us call a sentence that makes a definite factual claim a statement. "Han-" l 
nibal crossed the Alps," "Socrates was a corruptor of youth," "Every body at- l 
tracts every other body with a force directly proportional to the sum of their I 

\ 

12 
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masses and inversely proportional to the square of their distance," and 'The 
moon is made of avocado paste" are all statements, some true, some false. We 
may now formulate the logician's definition of an argument: 

Definition 1: An argument is a list of statements, one of which is des­
ignated as the conclusion and the rest of which are designated as 
premises. 

In ordinary speech we seldom come right out and say, "A, B, C are my 
premises and D is my conclusion." However, there are several "indicator words" 
that are commonly used in English to point out which statement is the conclu­
sion and which are the premises. The word "therefore" signals that the premises 
have been run through, and that the conclusion is about to be presented (as in 
the Dirty Sox example) .  The words "thus," "consequently," "hence," "so," and 
the phrase "it follows that" function in exactly the same way. 

In ordinary discourse the conclusion is sometimes stated first, followed by 
the premises advanced in support of it. In these cases, different indicator 
words are used. Consider the following argument: "Socrates is basically 
selfish, since after all Socrates is a man, and all men are basically selfish." Here 
the conclusion is stated first and the word "since" signals that reasons in 
support of that conclusion follow. The words "because" and "for" and the 
phrase "by virtue of the fact that" are often used in the same way. There is a 
variation on this mode of presenting an argument, where the word "since" or 
"because" is followed by a list of premises and then the conclusion; for exam­
ple, "Since all men are basically selfish and Socrates is a man, Socrates is 
basically selfish." 

These are the most common ways of stating arguments in English, but 
there are other ways, too numerous to catalog. However, you should have no 
trouble identifying the premises and conclusion of a given argument if you 
remember that: 

The conclusion states the point being argued for and the premises state 
the reasons being advanced in support of the conclusion. 

Since in logic we are interested in clarity rather than in literary style, one 
simple, clear method of stating an argument (and indicating which statements 
are the premises and which the conclusion) is preferred to the rich variety of 
forms available in English. We will put an argument into standard logical form 
simply by listing the premises, drawing a line under them, and writing the 
conclusion under the line. For example, the argument "Diodorus was not an 
Eagle Scout, since Diodorus did not know how to tie a square knot and all 
Eagle Scouts know how to tie square knots" would be put into standard logical 
form as follows : 
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Diodorus did not know how to tie a square knot. 
All Eagle Scouts know how to tie square knots . 
Diodorus was not an Eagle Scout. 

Exercises 

1 .  Which of the following sentences are statements? 

a. Friends, Romans, countrymen, lend me your ears .

CHAPTER I 

b.  The sum of the squares of the sides of a right triangle equals the square of th 
hypotenuse. 

c . Hast thou considered my servant Job, a perfect and an upright man?

d. My name is Faust; in all things thy equal.

e .  E = mc2. 

f. May he be boiled in his own pudding and buried with a stick of holly throug
his heart.

g. Ptolemy maintained that the sun revolved around the Earth.

h. Ouch!

i. Did Sophocles write Electra?

j .  The sun never sets on the British Empire. 

2. Which of the following selections advance arguments? Put all arguments in stan
dard logical form.

a. All professors are absent-minded, and since Dr. Wise is a professor he mus
be absent-minded.

b. Since three o'clock this afternoon I have felt ill, and now I feel worse.

c . Candidate X is certain to win the election because his backers have mor
money than do Candidate Y's, and furthermore Candidate X is more popul
in the urban areas .

d. Iron will not float when put in water because the specific gravity of water i.
less than that of iron.

· 
e .  In the past, every instance of smoke has been accompanied by fire, so the ne 

instance of smoke will also be accompanied by fire.

11.3. LOGIC. When we evaluate an argument, we are interested i 
two things: 

i . Are the premises true?
ii. Supposing that the premises are true, what sort of support do the
give to the conclusion? 
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The first consideration is obviously of great importance. The argument "All 

college students are highly intelligent, since all college students are insane,
and all people who are insane are highly intelligent" is not very compelling,
simply because it is a matter of common knowledge that the premises are
false. But important as consideration (i) may be, it is not the business of a 
logician to judge whether the premises of an argument are true or false.1 After
all, any statements whatsoever can stand as premises to some argument, and 
the logician has no special access to all human knowledge. If the premises of 
an argument make a claim about the internal structure of the nucleus of the 
carbon atom, one is likely to get more reliable judgments as to their truth from 
a physicist than from a logician. If the premises claim that a certain mecha­
nism is responsible for the chameleon's color changes, one would ask a 
biologist, not a logician, whether they are true. 

Consideration (ii ) , however, is the logician's stock in trade. Supposing that 
the premises are true, does it follow that the conclusion must be true? Do the 
premises provide strong but not conclusive evidence for the conclusion? Do 
they provide any evidence at all for it? These are questions which it is the 
business of logic to answer. 

Definition 2: Logic is the study of the strength of the evidential link 
between the premises and conclusions of arguments . 

In some arguments the link between the premises and the conclusion is the 
strongest possible in that the truth of the premises guarantees the truth of the 
conclusion. Consider the following argument: "No Athenian ever drank to 
excess, and Alcibiades was an Athenian. Therefore, Alcibiades never drank to 
excess ." Now if we suppose that the premises "No Athenian ever drank to 
excess" and "Alcibiades was an Athenian" are true, then we must also suppose 
that the conclusion "Alcibiades never drank to excess" is also true, for there is 
no way in which the conclusion could be false while the premises were true. 
Thus, for this argument we say that the truth of the premises guarantees the 
truth of the conclusion, and the evidential link between premises and conclu­
sion is as strong as possible . This is in no way altered by the fact that the first 
premise and the conclusion are false . What is important for evaluating the 
strength of the evidential link is that, if the premises were true, the conclusion 
would also have to be true. 

In other arguments the link between the premises and the conclusion is not 
so strong, but the premises nevertheless provide some evidential support for 
the conclusion. Sometimes the premises provide strong evidence for the 
conclusion, sometimes weak evidence. In the following argument the truth of 

1 Except in certain very special cases which need not concern us here. 



16 CHAPTER II 

the premises does not guarantee the truth of the conclusion, but the evidential 
link between the premises and the conclusion is still quite strong: 

Smith has confessed to killing Jones. Dr. Zed has signed a statement t 
the effect that he saw Smith shoot Jones . A large number of witnesses 
heard Jones gasp with his dying breath, "Smith did it." Therefore 
Smith killed Jones. 

Although the premises are good evidence for the conclusion, we know that the 
truth of the premises does not guarantee the truth of the conclusion, for we 
can imagine circumstances in which the premises would be true and the 
conclusion false. 

Suppose, for instance, that Smith was insane and that he confessed t 
every murder he ever heard of, but that this fact was generally un­
known because he had just moved into the neighborhood. This pecu­
liarity was, however, known to Dr. Zed, who was Jones's psychiatrist 
For his own malevolent reasons, Dr. Zed decided to eliminate Jone 
and frame Smith. He convinced Jones under hypnosis that Smith was 
homocidal maniac bent on killing Jones . Then one day Dr. Zed sho 
Jones from behind a potted plant and fled. 

Let it be granted that these circumstances are highly improbable . If the 
were not, the premises could not provide strong evidential support for th 
conclusion. Nevertheless, the circumstances are not impossible and thus th 
truth of the premises does not guarantee the truth of the conclusion. 

The following is an argument in which the premises provide some evidenc 
for the conclusion, but in which the evidential link between the premises an 
the conclusion is much weaker than in the foregoing example : 

Student 777 arrived at the health center to obtain a medical excus 
from his 6.nal examination. He complained of nausea and a headache 
The nurse reported a temperature of 100 degrees . Therefore, studen 
777 was really ill. 

Given that the premises of this argument are true, it is not as improbable th 
the conclusion is false as it was in the preceding argument. Hence, the arg 
ment is a weaker one, though not entirely without merit. 

Thus we see that arguments may have various degrees of strength. Whe 
the premises present absolutely conclusive evidence for the conclusion-tha 
is, when the truth of the premises guarantees the truth of the conclusion 
then we have the strongest possible type of argument. There are cases rangin 
from this maximum possible strength down to arguments where the premise 
contradict the conclusion. 
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Exercises: 

Arrange the following arguments in the order of the strength of the link between 
premises and conclusion. 

1. No one who is not a member of the club will be admitted to the meeting. 

I am not a member of the club. 

I will not be admitted to the meeting. 

2. The last three cars I have owned have all been sports cars. They have all 
performed beautifully and given me little trouble. Therefore, I am sure that the 
next sports car I own will also perform beautifully and give me little trouble. 

3. My nose itches; therefore I am going to have a fight. 

4. Brutus said that Caesar was ambitious, and Brutus was an honorable man. 
Therefore Caesar must have been ambitious. 

5. The weatherman has said that a low-pressure front is moving into the area. The 
sky is gray and very overcast. On the street I can see several people carrying um­
brellas. The weatherman is usually accurate. Therefore, it will rain. 

11.4. INDUCTIVE VERSUS DEDUCTIVE LOGIC. When an 
argument is such that the truth of the premises guarantees the truth of the 
conclusion, we shall say that it is deductively valid. When an argument is not 
deductively valid but nevertheless the premises provide good evidence for the 
conclusion, the argument is said to be inductively strong. How strong it is 
depends on how much evidential support the premises give to the conclusion. 
In line with the discussion in the last section, we can define these two 
concepts more precisely as follows : 

Definition 3: An argument is deductively valid if and only if it is 
impossible that its conclusion is false while its premises are true. 
Definition 4: An argument is inductively strong if and only if it is 
improbable that its conclusion is false while its premises are true, and it 
is not deductively valid. The degree of inductive strength depends on 
how improbable it is that the conclusion is false while the premises 
are true.2 

The sense of "impossible" intended in Definition 3 requires clarification. In 
a sense, it is impossible for me to fly around the room by flapping my arms; 

2Although the "while" in Definition 3 may be read as "and" with the definition remaining 
correct, the "while" in Definition 4 should be read as "given that" and not "and." The 
reasons for this can be made precise only after some probability theory has been studied. 
However, the sense of Definition 4 will be explained later in this section. 
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this sense of impossibility is called physical impossibility . But it is not physical 
impossibility that we have in mind in Definition 3. Consider the following 
argument: 

George is a man. 
George is 100 years old. 
George has arthritis .  

George will not run a four-minute mile tomorrow. 

Although it is physically impossible for the conclusion of the argument to 
false (that is, that he will indeed run a four-minute mile) while the premises 
are true, the argument, although a pretty good one, is not deductively valid. 

To uncover the sense of impossibility in the definition of deductive validity, 1 
let us look at an example of a deductively valid argument: 

No gourmets enjoy banana-tuna fish souffles with chocolate sauce. 
Antoine enjoys banana-tuna fish souffles with chocolate sauce. 

Antoine is not a gourmet. 

In this example it is impossible in a stronger sense-we shall say logically 1 
impossible-for the conclusion to be false while the premises are true. 
sort of impossibility is this? For the conclusion to be false Antoine would have 
to be a gourmet. For the second premise to be true he would also have 
enjoy banana-tuna fish souffles with chocolate sauce. But for the first premise 
to be true there must be no such person. Thus, to suppose the conclusion 
false is to contradict the factual claim made by the premises. To put the 
a different way, the factual claim made by the conclusion is already implicit 
the premises. This is a feature of all deductively valid arguments . 

If an argument is deductively valid, its conclusion makes no 
claim that is not, at least implicitly, made by its premises . 

Thus, it is logically impossible for the conclusion of a deductively 
argument to be false while its premises are true, because to suppose that 
conclusion is false is to contradict some of the factual claims made by 
premises. 

We can now see why the following argument is not deductively valid: 

George is a man. 
George is 100 years old. 
George has arthritis . 

George will not run a four-minute mile tomorrow. 
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The factual claim made by the conclusion is not implicit in the premises, for 
there is no premise stating that no 100-year-old man with arthritis can run a 
four-minute mile . Of course, we all believe this to be a fact, but there is noth­
ing in the premises that claims this to be a fact; if we added a premise to this 
effect, then we would have a deductively valid argument. 

The conclusion of an inductively strong argument, on the other hand, 
ventures beyond the factual claims made by the premises . The conclusion 
asserts more than the premises, since we can describe situations in which the 
premises would be true and the conclusion false .  

If  an argument i s  inductively strong, its conclusion makes factual claims 
that go beyond the factual information given in the premises . 

Thus, an inductively strong argument risks more than a deductively valid one; 
it risks the possibility of leading from true premises to a false conclusion. But 
this risk is the price that must be paid for the advantage which inductively 
strong arguments have over deductively valid ones: the possibility of discovery 
and prediction of new facts on the basis of old ones. 

Definition 4 stated that an argument is inductively strong if and only if it 
meets two conditions : 

i .  It is improbable that its conclusion is false, while its premises are 
true. 

ii. It is not deductively valid. 

Condition (ii) is required because all deductively valid arguments meet condi­
tion (i) . It is impossible for the conclusion of a deductively valid argument to 
be false while its premises are true, so the probability that the conclusion is 
false while the premises are true is zero. 

Condition (i) , however, requires clarification. The "while" in this condition 
should be read as "given that,'' not as "and," so that the condition can be 
rephrased as : 

i. It is improbable that its conclusion is false, given that its premises 
are true. 

But just what do we mean by "given that?" And why is "It is improbable that 
its conclusion is false and its premises true" an incorrect formulation of condi­
tion (i)? What is the difference, in this context, between "and" and "given 
that"? At this stage these questions are best answered by examining several 
examples of arguments . The following is an inductively strong argument: 

There is intelligent life on Mercury. 
There is intelligent life on Venus . 
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There is intelligent life on Earth. 
There is intelligent life on Jupiter. 
There is intelligent life on Saturn. 
There is intelligent life on Uran us . 
There is intelligent life on Neptune. 
There is intelligent life on Pluto. 

There is intelligent life on Mars . 

CHAPTER II 

Note that the conclusion is not by itself probable. It is, in fact, probable tha 
the conclusion is false. But it is improbable that the conclusion is false given 
that the premises are true. That is, if the premises were true, then on the basis 
of that information it would be probable that the conclusion would be true 
(and thus improbable that it would be false) . This is not affected in the least by 
the fact that some of the premises themselves are quite improbable . Thus, 
although the conclusion taken by itself is improbable, and some of the 
premises taken by themselves are also improbable, the conclusion is probable 
given the premises . This example illustrates an important principle : 

The type of probability that grades the inductive strength of argu­
ments-we shall call it inductive probability-does not depend on the 
premises alone or on the conclusion alone, but on the evidential 
relation between the premises and the conclusion. 

Hopefully we have now gained a certain intuitive understanding of the 
phrase "given that." Let us now see why it is incorrect to replace it with "and" 
and thus incorrect to say that an argument is inductively strong if and only if it 
is improbable that its conclusion is false and its premises are true (and it is not 
deductively valid) . Consider the following argument, which is not inductively 
strong: 

There is a 2000-year-old man in Cleveland. 

There is a 2000-year-old man in Cleveland who has three heads . 

Now it is quite probable that the conclusion is false given that the premise 
is true. Given that there is a 2000-year-old man in Cleveland, it is quite likely 
that he has only one head. Thus, the argument is not inductively strong. But it 
is improbable that the conclusion is false and the premise is true. For the 
conclusion to be false and the premise true, there would have to be a non­
three-headed 2000-year-old man in Cleveland, and it is quite improbable that 
there is any 2000-year-old man in Cleveland. Thus, it is improbable that the 
conclusion is false and the premise is true, simply because it is improbable 
that the premise is true. 
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We now see that the inductive strength of arguments cannot depend on the 
premises alone . Thus, although it is improbable that the conclusion is false 
and the premises true, it is probable that the conclusion is false given that the
premises are true and the argument is not inductively strong. 

An argument might be such that it is improbable that the premises are true 
and the conclusion false, simply because it is improbable that the conclusion is
false; that is, it is probable that the conclusion is true . It is important to note 
that such conditions do not guarantee that the argument is inductively strong. 
Consider the following example of an argument that has a probable conclusion 
and yet is not inductively strong: 

There is a man in Cleveland who is 1999 years and 1 1-months-old and 
in good health. 

No man will live to be 2000 years old. 

Now the conclusion itself is highly probable . Thus, it is improbable that the 
conclusion is false and consequently improbable that the conclusion is false 
and the premise true . But if the premise were true it would be likely that the 
conclusion would be false . By itself the conclusion is probable, but given the 
premise it is not. 

The main points of this discussion of inductive strength can be summed up 
as follows: 

1 .  The inductive probability of an argument is the probability that its 
conclusion is true given that its premises are true . 
2. The inductive probability of an argument is determined by the
evidential relation between its premises and its conclusion, not by the 
likelihood of the truth of its premises alone or the likelihood of the 
truth of its conclusion alone . 
3 . An argument is inductively strong if and only if:

a. Its inductive probability is high.
b. It is not deductively valid.

We defined logic as the study of the strength of the evidential link between 
the premises and conclusions of arguments. We have seen that there are two 
different standards against which to evaluate the strength of this link: deduc­
tive validity and inductive strength. Corresponding to these two standards are 
two branches of logic: deductive logic and inductive logic. Deductive logic is 
concerned with tests for deductive validity-that is , rules for deciding 
whether or not a given argument is deductively valid-and rules for con­
structing deductively valid arguments . Inductive logic is concerned with tests 
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for measuring the inductive probability, and hence the inductive strength, o 
arguments and with rules for constructing inductively strong arguments . 

Some books appear to suggest that there are two different types o 
arguments, deductive and inductive, and that deductive logic is concerne 
with deductive arguments and inductive logic with inductive arguments . Tha 
is , they suggest the following classification, together with the assumption tha 
every argument falls in one and only one category: 

Good 
Bad 

Deductive arguments 

Valid 
Invalid 

Inductive argument 

Strong 
Weak 

Nothing, however, is further from the truth, for, as we have seen, all induc 
tively strong arguments are deductively invalid. 

It is more correct to picture arguments as being arranged on a scale of de 
scending strength, as follows: 

Arguments 

Deductively valid 

Degrees of inductive 
strength 

Worthless 

Deductive and inductive logic are not distinguished by the different types o 
arguments with which they deal, but by the different standards against which 
they evaluate arguments . 

Exercises: 

Decide whether each of the following arguments is deductively valid, inductive! 
strong, or neither: 

1. The meeting place is either the gym or the cafeteria.
The meeting place is not the gym . 
The meeting place is the cafeteria. 
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2. A good meal has always made me feel better.

A good meal today will make me feel better. 

3. Many great leaders have been crazy. 

Everyone who isn't a leader is sane.

4. On all the birthdays I have ever had I have been less than 30 years old.

On my next birthday I will be less than 30 years old.

5. No pigs can fly.
Some horses can fly. 

Some horses aren't pigs.
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II.5. EPISTEMIC PROBABILITY. We have seen that the concept 
of inductive probability applies to arguments . The inductive probability of an 
argument is the probability that its conclusion is true given that its premises 
are true. Thus, the inductive probability of an argument is a measure of the 
strength of the evidence that the premises provide for the conclusion. It is 
correct to speak of the inductive probability of an argument, but incorrect to 
speak of the inductive probability of statements . Since the premises and 
conclusion of any argument are statements, it is incorrect to speak of the 
inductive probability of a premise or of a conclusion. 

There is, however, some sense of probability in which it is intuitively ac­
ceptable to speak of the probability of a premise or conclusion. When we said 
that it is improbable that there is a 2000-year-old man in Cleveland, we were 
relying on some such intuitive sense of probability. There must then be a type 
of probability, other than inductive probability, that applies to statements 
rather than arguments . 

Let us call this type of probability epistemic probability because the Greek 
stem episteme means knowledge, and the epistemic probability of a statement 
depends on just what our stock of relevant knowledge is . Thus, the epistemic 
probability of a statement can vary from person to person and from time to 
time, since different people have different stocks of knowledge at the same 
time and the same person has different stocks of knowledge at different times .  
For me, the epistemic probability that there is a 2000-year-old man now living 
in Cleveland is quite low, since I have certain background knowledge about 
the current normal life span of human beings . I feel safe in using this state­
ment as an example of a statement whose epistemic probability is low because 
I feel safe in assuming that your stock of background knowledge is similar in 
the relevant respects and that for you its epistemic probability is also low. 

It is easy to imagine a situation in which the background knowledge of two 
people would differ in such a way as to generate a difference in the epistemic 
probability of a given statement. For example, the epistemic probability 
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that Pegasus will show in the third race may be different for a fan in th�' 
grandstand than for Pegasus' jockey, owing to the difference in their knowl-,, 
edge of the relevant factors involved. r 

It is also easy to see how the epistemic probability of a given statement cart 
change over time for a particular person. The fund of knowledge that each oft 
us possesses is constantly in a state of flux. We are all constantly learning new," 
things directly through experience and indirectly through information which is 
communicated to us. We are also, unfortunately, continually forgetting thing� 
that we once knew. This holds true for societies and cultures as well as fm 
individuals, and human knowledge is continually in a dynamic process o 
simultaneous growth and decay. 

It is important to see how upon the addition of new knowledge to � 
previous body of knowledge the epistemic probability of a given statemen� 
could either increase or decrease. Suppose we are interested in the epistemic! 
probability of the statement that Mr. X is an Armenian and the only relevant) 
information we have is that Mr. X is an Oriental rug dealer in Allentown, Pa. ,i 
that 90 percent of the Oriental rug dealers in the United States are Armenian,!1 
and that Allentown, Pa. , is in the United States . On the basis of this stock ofi 
relevant knowledge, the epistemic probability of the statement is equal to the'! 
inductive probability of the following argument: 

· 
Mr. X is an Oriental rug dealer in Allentown, Pa. 
Allentown, Pa. , is in the United States. 
Ninety percent of the Oriental rug dealers in the United States are 
Armenian. 

Mr. X is an Armenian. 

The inductive probability of this argument is quite high. If we are now givenl 
the new information that although 90 percent of the Oriental rug dealers in0 
the United States are Armenian, only 2 percent of the Oriental rug dealers in! 
Allentown, Pa. , are Armenian, while 98 percent are Syrian, the epistemic! 
probability that Mr. X is Armenian decreases drastically, for it is now equal to: 
the inductive probability of the following argument: 

· 
Mr. X is an Oriental rug dealer in Allentown, Pa. 
Allentown, Pa. , is in the United States. 
Ninety percent of the Oriential rug dealers in the United States are 
Armenian. 
Ninety-eight percent of the Oriental rug dealers in Allentown, Pa. , are 
Syrian. 
Two percent of the Oriental rug dealers in Allentown, Pa. , are Armenian. 

Mr. X is an Armenian. 
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The inductive probability of this argument is quite low. Note that the decrease 

in the epistemic probability of the statement "Mr. X is an Armenian" results 

not from a change in the inductive probability of a given argument but from 

the fact that, upon the addition of new information, a different argument with
more premises becomes relevant in assessing its epistemic probability. 

Suppose now we are given still more information, to the effect that Mr. X is 
a member of the Armenian Club of Allentown and that 99 percent of the 
members of the Armenian Club are actually Armenians . Upon addition of this 
information the epistemic probability that Mr. X is an Armenian again 
becomes quite high, for it is now equal to the inductive probability of the 
following argument: 

Mr. X is an Oriental rug dealer in Allentown, Pa. 
Allentown, Pa. , is in the United States .  
Ninety percent of the Oriental rug dealers in the United States are 
Armenian. 
Ninety-eight percent of the Oriental rug dealers in Allentown, Pa. , are 
Syrian. 
Two percent of the Oriental rug dealers in Allentown, Pa. , are 
Armenian. 
Mr. X is a member of the Armenian Club of Allentown, Pa. 
Ninety-nine percent of the members of the Armenian Club are 
Armenian. 
Mr. X is an Armenian. 

Notice once more that the epistemic probability of the statement changes 
because, with the addition of new knowledge, it became equal to the inductive 
probability of a new argument with additional premises . 

Epistemic probabilities are important to us . They are the probabilities upon 
which we base our decisions . From a stock of knowledge we will arrive at the 
associated epistemic probability of a statement by the application of inductive 
logic. Exactly how inductive logic gets us epistemic probabilities from a stock 
of knowledge depends on how we characterize a stock of knowledge. Just what 
knowledge is ; how we get it; what it is like once we have it; these are deep 
questions . At this stage, we will work within a simplified model of knowing­
the Certainty Model. 

The Certainty Model: Suppose that our knowledge originates in obser­
vation; that observation makes particular sentences (observation reports) cer­
tain and that the probability of other sentences is attributable to the certainty 
of these. In such a situation we can identify our stock of knowledge with a list 
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of sentences, those observation reports that have been rendered certain by ob., <� 
servational experience. It is then natural to evaluate the probability of a state-�j 
ment by looking at an argument with all our stock of knowledge as premises:� 
and the statement in question as the conclusion. The inductive strength of thati,� 
argument will determine the probability of the statement in question. In the!� 
certainty model, the relation between epistemic probability and inductive,l' 
probability is quite simple: i'�i 

Definition 5: The epistemic probability of a statement is the induc.; ',� 
tive probability of that argument which has the statement in question' �\ 
as its conclusion and whose premises consist of all of the observation'0�l 
reports which comprise our stock of knowledge. 

�i� ,':, ·:;fr 
The Certainty Model lives up to its name by assigning epistemic probabilityl, 

of one to each observation report in our stock of knowledge. �: 
The certainty of observation reports may be something of an idealization. ''i 

But it is a useful idealization, and we will adopt it for the present. Later in the � 
course we will discuss some other models of observation. &; 

;�;, 
Exercise 

1 .  Construct several new examples in which the epistemic probability of a state­
ment is increased or decreased by the addition of new information to a previous 
stock of knowledge. 

11.6. PROBABILITY AND THE PROBLEMS OF INDUCTIVE 
LOGIC. Deductive logic, at least in its basic branches ,  is well-developed. 
The definitions of its basic concepts are precise, its rules are rigorously formu­
lated, and the interrelations between the two are well understood. Such is not 
the case, however, with inductive logic. There are no universally accepted 
rules for constructing inductively strong arguments; no general agreement on 
a way of measuring the inductive strength of arguments; no precise, uncontro­
versial definition of inductive probability. Thus, inductive logic cannot be 
learned in the sense in which one learns algebra or the basic branches of de­
ductive logic. This is not to say that inductive logicians are wallowing in a sea 
of total ignorance; many things are known about inductive logic, but many 
problems still remain to be solved. We shall try to get an idea of just what the 
problems are, as well as what progress has been made toward their solution. 

Some of the main problems of inductive logic can be framed in terms of the 
concept of inductive probability. I said that there is no precise, uncontro­
versial definition of inductive probability. I did give a definition of inductive 
probability. Was it controversial? I think not, but, if you will remember, it 
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was imprecise . I said that the inductive probability of an argument is the 

probability that its conclusion is true, given that its premises are true. But at
that point I could not give an exact definition of "the probability that an 

argumenfs conclusion is true, given that its premises are true." I was, instead,
reduced to giving examples so that you could get an intuitive feeling for the
meaning of this phrase . The logician, however, is not satisfied with an intuitive 
feeling for the meaning of key words and phrases . He wishes to analyze the 
concepts involved and arrive at precise, unambiguous definitions . Thus, one of 
the problems of inductive logic which remains outstanding is, what exactly is 
inductive probability? 

This problem is intimately connected with two other problems : How is the 
inductive probability of an argument measured? And, what are the rules for 
constructing inductively strong arguments? Obviously we cannot develop an 
exact measure of inductive probability if we do not know precisely what it is . 
And before we can devise rules for constructing inductively strong arguments, 
we must have ways of telling which arguments measure up to the required 
degree of inductive strength. Thus, the solution to the problem of providing a 
precise definition of inductive probability determines what solutions are 
available for the problems of determining the inductive probabilities of 
arguments and constructing systematic rules for generating inductively strong 
arguments . 

Let us call a precise definition of inductive probability, together with the as­
sociated method of determining the inductive probability of arguments and 
rules for constructing inductively strong arguments, an inductive logic . Thus, 
different definitions of inductive probability give rise to different inductive 
logics . Now we are not interested in finding just any system of inductive logic. 
We want a system that accords well with common sense and scientific practice. 
We want a system that gives the result that most of the cases that we would 
intuitively classify as inductively strong arguments do indeed have a high 
inductive probability. We want a system that accords with scientific practice 
and common sense, but that is more precise, more clearly formulated, and 
more rigorous than they are; a system that codifies, explains, and refines our 
intuitive judgments . We shall call such a system of inductive logic a scientific 
inductive logic . The problem that we have been discussing can now be 
reformulated as the problem of constructing a scientific inductive logic . 

The second major problem of inductive logic, and the one that has been 
more Widely discussed in the history of philosophy, is the problem of rationally 
justifying the use of a system of scientific inductive logic rather than some 
other system of inductive logic. After all, there are many different possible 
inductive logics . Some might give the result that arguments that we think are 
inductively strong are, in fact, inductively weak, and arguments that we think 
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inductively weak are, in fact, inductively strong. That is, there are possible 
inductive logics which are diametrically opposed to scientific inductive logic, 
which are in total disagreement with scientific practice and common sense. Why ··.· 
should we not employ one of these systems rather than scientific induction? 

Any adequate answer to this question must take into account the uses to 
which we put inductive logic (or, at present, the vague intuitions we use in 
place of a precise system of inductive logic) . One of the most important uses of 
inductive logic is to frame our expectations of the future on the basis of our 
knowledge of the past and present. We must use our knowledge of the past 
and present as a guide to our expectations of the future; it is the only guide we 
have. But it is impossible to have a deductively valid argument whose 
premises contain factual information solely about the past and present and 
whose conclusion makes factual claims about the future. For the conclusion of 
a deductively valid argument makes no factual claim that is not already made 
by the premises . Thus, the gap separating the past and present from the future 
cannot be bridged in this way by deductively valid arguments , and if the argu­
ments we use to bridge that gap are to have any strength whatsoever they 
must be inductively strong. 

Let us look a little more closely, then, at the way in which inductive logic 
would be used to frame our expectations of the future. Suppose our plans 
depend critically on whether it will rain tomorrow. Then the reasonable thing to 
do, before we decide what course of action to take, is to ascertain the epistemic 
probability of the statement. "It will rain tomorrow." This we do by putting all 
the relevant information we now have into the premises of an argument whose 
conclusion is "It will rain tomorrow" and ascertaining the inductive probability 
of that argument. If the probability is high, we will have a strong expectation of 
rain and will make our plans on that basis . If the probability is near zero, we will 
be reasonably sure that it will not rain and act accordingly. 

Now although it is doubtful tl1at anyone carries out the formal process out­
lined above when he plans for the future, it is hard to deny that, if we were to 
make our reasoning explicit, it would fall into this pattern. Thus, the making of 
rational decisions is dependent, via the concept of epistemic probability, on 
our inductive logic. The second main problem of inductive logic, then, leads 
us to the following question: How can we rationally justify the use of scientific 
inductive logic, rather than some other inductive logic, as an instrument for 
shaping our expectations of the future? 

The two main problems of inductive logic are: 

1 .  The construction of a system of scientific inductive logic. 
2 . The rational justification of the use of that system rather than some
other system of inductive logic. 
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!1 It would seem that the first problem must be solved before the second, since
11 we can hardly justify the use of a system of inductive logic before we know 

what it is . Nevertheless, I shall discuss the second problem first. It makes 
sense to do this because we can see why the second problem is such a problem
without having to know all the details of scientific inductive logic. Further­
more, philosophers historically came to appreciate the difficulty of the second 
problem much earlier than they realized the full force of the first problem. 
This second problem, the traditional problem of induction, is discussed in the 
next chapter.



III 

The Traditional Problem 
of Induction 

III. I .  INTRODUCTION. In Chapter II we saw that inductive logi
is used to shape our expectations of that which is as yet unknown on the basi 
of those facts that are already known; for instance, to shape our expectations o 
the future on the basis of our knowledge of the past and present. Our proble 
is the rational justification of the use of a system of scientific inductive logic 
rather than some other system of inductive logic, for this task. 

The Scottish philosopher David Hume first raised this problem, which w 
shall call the traditional problem of induction, in full force . Hume gave th 
problem a cutting edge, for he advanced arguments designed to show that n 
such rational justification of inductive logic is possible, no matter what the 
details of a system of scientific inductive logic tum out to be. The history o 
philosophical discussion of inductive logic since Hume has been in large 
measure occupied with attempts to circumvent the difficulties he raised. 
This chapter examines these difficulties and the various attempts to over­
come them. 

11.2. HUME' S ARGUMENT. Before we can meaningfully discuss 
arguments which purport to show that it is impossible to rationally justify 
scientific induction, we must be clear on what would be required to rationally 
justify a system of inductive logic. Presumably we could rationally justify such 
a system if we could show that it is well-suited for the uses to which it is put. 
One of the most important uses of inductive logic is in setting up our predic­
tions of the future. Inductive logic figures in these predictions by way of 
epistemic probabilities . If a claim about the future has high epistemic 
probability, we predict that it will prove true. And, more generally, we expect 
something more or less strongly as its epistemic probability is higher or lower. 
The epistemic probability of a statement is just the inductive probability of the 
argument which embodies all available information in its premises . Thus, the 
epistemic probability of a statement depends on two things : (i) the stock of 
knowledge, and (ii) the inductive logic used to grade the strength of the 
argument from that stock of knowledge to the conclusion. 

Now obviously what we want is for our predictions to be correct. If we could 
get by with deductively valid arguments we could be assured of true predictions 
all the time. Deductively valid arguments lead from true premises always to 

30 
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troe conclusions and the statements comprising our stock of knowledge are
known to be true. But deductively valid arguments are too conservative to leap 
from the past and present to the future. For this sort of daring behavior we will 
have to rely on inductively strong arguments-and we will have to give up the 
comfortable assurance that we will be right all the time. 

How about most of the time? Let us call the sort of argument used to set up 
an epistemic probability an e-argument. That is, an e-argurnent is an argument 
which has, as its premises, some stock of knowledge. We might hope, then, that 
inductively strong e-arguments will give us true conclusions most of the time. 
Remember that there are degrees of inductive strength and that, on the basis of
our present knowledge, we do not always simply predict or not-predict that an 
event will occur, but anticipate it with various degrees of confidence . We might
hope further that inductively stronger e-arguments have true conclusions more 
often than inductively weaker ones. Finally, since we think that it is useful to
gather evidence to enlarge our stock of knowledge, we might hope that induc­
tively strong e-arguments give us true conclusions more often when the stock of 
knowledge embodied in the premises is great than when it is small. 

The last consideration really has to do with justifying epistemic probabili­
ties as tools for prediction. The epistemic probability is the inductive probabil­
ity of an argument embodying all our stock of knowledge in its premises . The 
requirement that it embody all our knowledge, and not just some part of it, is 
known as the Total Evidence Condition . If we could show that basing our 
predictions on more knowledge gives us better success ratios , we would have 
justified the total evidence condition. 

The other considerations have to do with justifying the other determinant 
of epistemic probability-the inductive logic which assigns inductive proba­
bilities to arguments . 

We are now ready to suggest what is required to rationally justify a system 
of inductive logic: 

Rational Justification 

Suggestion I: A system of inductive logic is rationally justified if and 
only if it is shown that the arguments to which it assigns high inductive 
probability yield true conclusions from true premises most of the time, 
and the e-arguments to which it assigns higher inductive probability 
yield true conclusions from true premises more often than the argu­
ments to which it assigns lower inductive probability. 

It is this sense of rational justification, or something quite close to it, that 
Hume has in mind when he advances his arguments to prove that a rational 
justification of scientific induction is impossible . 
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If scientific induction is to be rationally justified in the sense of Suggestio · 
I , we must establish that the arguments to which it assigns high inducti¥ 
probability yield true conclusions from true premises most of the time. B 
what sort of reasoning, asks Hume, could we establish such a conclusion? 
the argument that we must use is to have any force whatsoever, it must b 
either deductively valid or inductively strong. Hume proceeds to show tha 
neither sort of argument could do the job. 

Suppose we try to rationally justify scientific inductive logic by means of 
deductively valid argument. The only premises we are entitled to use in thi 
argument are those that state things we know. Since we do not know what th 
future will be like (if we did, we would have no need of an inductive logic o 
which to base our predictions) ,  the premises can contain knowledge of onl 
the past and present. But if the argument is deductively valid, then the conclu 
sion can make no factual claims that are not already made by the premises 
Thus, the conclusion of the argument can only refer to the past and present 
not to the future, for the premises made no factual claims about the future. 
Such a conclusion cannot, however, be adequate to rationally justify scientifi 
induction. 

To rationally justify scientific induction we must show that e-arguments t 
which it assigns high inductive probability yield true conclusions from true 
premises most of the time. And "most of the time" does not mean most of the 
time in only the past and present; it means most of the time, past, present, an 
future. It is conceivable that a certain type of argument might have given us 
true conclusions from true premises in the past and might cease to do so in the. 
future. Since our conclusion cannot tell us how successful arguments will be in 
the future, it cannot establish that the e-arguments to which scientific induc­
tion assigns high probability will give us true conclusions from true premises 
rrwst of the time. Thus, we cannot use a deductively valid argument to 
rationally justify induction. 

Suppose we try to rationally justify scientific induction by means of an. 
inductively strong argument. We construct our argument, whatever it may be, 
and present it as an inductively strong argument. 'Why do you think that 
this is an inductively strong argument?" Hume might ask. "Because it has a 
high inductive probability," we would reply. "And what system of inductive 
logic assigns it a high probability?" "Scientific induction, of course ." What 
Hume has pointed out is that if we attempt to rationally justify scientific 
induction by use of an inductively strong argument, we are in the position of 
having to assume that scientific induction is reliable in order to prove that 
scientific induction is reliable; we are reduced to begging the question. Thus, 
we cannot use an inductively strong argument to rationally justify scientific 
induction. 
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A common argument is that scientific induction is justified because it has 
been quite successful in the past. On reflection, however, we see that this

argument is really an attempt to justify induction by means of an inductively

strong argument, and thus begs the question. More explicitly, the argument
reads something like this :

Arguments that are judged by scientific inductive logic to have high 
inductive probability have given us true conclusions from true premises 
most of the time in the past. 

Such arguments will give us true conclusions from true premises most 
of the time, past, present, and future. 

It should be obvious that this argument is not deductively valid. At best it is as­
signed high inductive probability by a system of scientific inductive logic. But 
the point at issue is whether we should put our faith in such a system. 

We can view the traditional problem of induction from a different perspec­
tive by discussing it in terms of the principle of the uniformity of nature. 
Although we do not have the details of a system of scientific induction in hand, 
we do know that it must accord well with common sense and scientific prac­
tice, and we are reasonably familiar with both. A few examples will illustrate a 
general principle which appears to underlie both scientific and common-sense 
judgments of inductive strength. 

If you were to order steak in a restaurant, and a friend were to object that 
steak would corrode your stomach and lead to quick and violent death, it 
would seem quite sufficient to respond that you had often eaten steak without 
any of the dire consequences he predicted. That is , you would intuitively judge 
the following argument to be inductively strong: 

I have eaten steak many times and it has never corroded my stomach. 

Steak will not now corrode my stomach. 

Suppose a scientist is asked whether a rocket would work in reaches of 
space beyond the range of our telescopes . She replies that it would, and to 
back up her answer appeals to certain principles of theoretical physics . When 
asked what evidence she has for these principles, she can refer to a great mass 
of observed phenomena that corroborate them. The scientist is then judging 
the following argument to be inductively strong: 

Principles A, B, and C correctly describe the behavior of material 
bodies in all of the many situations we have observed. 

Principles A, B, and C correctly describe the behavior of material 
bodies in those reaches of space that we have not as yet observed. 
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There appears to be a common assumption underlying the judgments tha� 
these arguments are inductively strong. As a steak eater you assume that th�� 
future will be like the past, that types of food that proved healthful in the pas�� 
will continue to prove so in the future. The scientist assumes that the distantJ 
reaches of space are like the nearer ones, that material bodies obey the sam�� 
general laws in all areas of space. Thus, it seems that underlying ouf\� 
judgments of inductive strength in both common sense and science is the pre'�! 
supposition that nature is uniform or, as it is sometimes put, that like causes� 
produce like effects throughout all regions of space and time. Thus, we can sayJ� 
that a system of scientific induction will base its judgments of inductiv� 
strength on the presupposition that nature is uniform (and in particular tha�� 
the future will resemble the past) . :(� 

We ought to realize at this point that we have only a vague, intuitive under!;�fi 
standing of the principle of the uniformity of nature, gleaned from example��� 
rather than specified by precise definitions . This rough understanding is suffi-�· 
cient for the purposes at hand. But we should bear in mind that the task 0£,�� 
giving an exact definition of the principle, a definition of the sort that would be{� 
presupposed by a system of scientific inductive logic, is as difficult as the con-j,� 
struction of such a system itself. One of the problems is that nature is simply7� 
not uniform in all respects, the future does not resemble the past in all!�\ 
respects . Bertrand Russell once speculated that the chicken on slaughter-daii 
might reason that whenever the humans came it had been fed, so when the;l� 
humans would come today it would also be fed. The chicken thought that the �j 
future would resemble the past, but it was dead wrong. ��j 

The future may resemble the past, but it does not do so in all respects . And;.� 
we do not know beforehand what those respects are nor to what degree thet·� 
future resembles the past. Our ignorance of what these respects are is a deep,�! 
reason behind the total evidence condition. Looking at more and more1li 
evidence helps us reject spurious patterns which we might otherwise project�� 
into the future. Trying to say exactly what about nature we believe is uniform:�� 
thus turns out to be a surprisingly delicate task. �'�: 

But suppose that a subtle and sophisticated version of the principle of the.� 
uniformity of nature can be formulated which adequately explains the judg-J� 
ments of inductive strength rendered by scientific inductive logic. Then in� 
nature is indeed uniform in the required sense (past, present, and future) , �� 
e-arguments judged strong by scientific induction will indeed give us true �· 
conclusions most of the time. Therefore, the problem of rationally justifying·f� 
scientific induction could be reduced to the problem of establishing that1�: 
nature is uniform. }� 

But by what reasoning could we establish such a conclusion? If an fl 
argument is to have any force whatsoever it must be either deductively valid or i�i 
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inductively strong. A deductively valid argument could not be adequate, for if
the information in the premises consists solely of our knowledge of the past
and present, then the conclusion cannot tell us that nature will be uniform in
the future. The conclusion of a deductively valid argument can make no fac­
tual claims that are not already made by the premises, and factual claims about 
the future are not factual claims about the past and present. But if we claim to 
have established the principle of the uniformity of nature by an argument that 
is rated inductively strong by scientific inductive logic, we are open to a 
challenge as to why we should place our faith in such arguments . But we 
cannot reply "Because nature is uniform," for that is precisely what we are 
trying to establish.

Let us summarize the traditional problem of induction. It appears that to 
rationally justify a system of scientific inductive logic we would have to 
establish that the e-arguments it judges to be inductively strong give us true 
conclusions most of the time. If we try to prove that this is the case by means 
of a deductively valid argument whose premises state things we already know, 
then the conclusion must fall short of the desired goal. But to try to rationally 
justify scientific induction by means of an argument that scientific induction 
judges to be inductively strong is to beg the question. The same difficulties 
arise if we attempt to justify scientific inductive logic by establishing that 
nature is uniform. 

III.3. THE INDUCTIVE JUSTIFICATION OF INDUCTION. 
Hume has presented us with a dilemma. If we try to justify scientific inductive 
logic by means of a deductively valid argument with premises known to be 
true, our conclusion will be too weak. If we try to use an inductively strong 
argument, we are reduced to begging the question. The proponent of the 
inductive justification of induction tackles the second horn of the dilemma. He 
maintains that we can justify scientific induction by an inductively strong argu­
ment without begging the question. Although his attempt is not altogether 
successful, there is a great deal to be learned from it. 

The answer to the question "Why should we believe that scientific induc­
tion is a reliable guide for our expectations?" that immediately occurs to every­
one is "Because it has worked well so far." Hume's objection to this answer was 
that it begs the question, that it assumes scientific induction is reliable in order 
to prove that scientific induction is reliable . The proponents of the inductive 
justification of induction, however, claim that the answer only appears to beg 
the question, because of a mistaken conception of scientific induction. They 
claim that if we properly distinguish levels of scientific induction, rather than 
lumping all arguments that scientific induction judges to be strong in one 
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category, we will see that the inductive justification of induction does not beii 
the question. �f�l Just what then are these levels of scientific induction? And what is the�� 
relevance to the inductive justification of induction? We can distinguisp� 
different levels of argument, in terms of the things they talk about. Argument��;;;; 
on level 1 will talk about individual things or events; for instance: �l�. '-";;_';>' 

Many jub-jub birds have been observed, and they have all been purple�� 
The next jub-jub bird to be observed will be purple . ;� 

Level 1 of scientific inductive logic would consist of rules for assigninii 
inductive probabilities to arguments of level 1 .  Presumably the rules of level +!� 
of scientific induction would assign high inductive probability to the precedirr�� 
argument. Arguments on level 2 will talk about arguments on level l ;  for�i! 
instance: ··f� 

Some deductively valid arguments on level 1 have true premises. 
All deductively valid arguments on level 1 which have true premises 
have true conclusions . 
Some deductively valid arguments on level 1 have true conclusions . 

-:;��ti 

-�;-:?g 

This is a deductively valid argument on level 2 which talks about deductivel�I 
valid arguments on level 1 .  The following is also an argument on level 2 whichft 
talks about arguments on level 1 :  i;; 

Some arguments on level 1 which the rules of level 1 of scientific 
inductive logic say are inductively strong have true premises . 
The denial of a true statement is a false statement. --------------------------- �Ti 
Some arguments on level 1 which the rules of level 1 of scientific induc-}�� 
tive logic say are inductively strong have premises whose denial is false . . \�l 

;�£� 
This is a deductively valid argument on level 2 that talks about arguments on I�f 
level 1 ,  which the rules of level 1 of scientific inductive logic classify as induc� �� 
tively strong. .·.··�� There are, of course, arguments on level 2 that are not deductively valid, �b 
and there is a corresponding second level of scientific inductive logic which�l 
consists of rules that assign degrees of inductive strength to these arguments; � 
There are arguments on level 3 that talk about arguments on level 2, argu�,� 
ments on level 4 that talk about arguments on level 3, and so on. For each'� 
level of argument, scientific inductive logic has a corresponding level of rules . �J 

This characterization of the levels of argument, and the corresponding. I� 
levels of scientific induction, is summarized in Table III. I .  �¥ 
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Table III. I 

Levels of argument 
k: Arguments about 

arguments on level 
k - 1 .  

2: Arguments about arguments 
on level 1 .  

l :  Arguments about 
individuals . 

Levels of scientific 
inductive logic 

k :  Rules for assigning inductive 
probabilities to arguments 
on level k. 

2 :  Rules for assigning inductive 
probabilities to arguments 
on level 2. 

1 :  Rules for assigning inductive 
probabilities to arguments 
on level 1 .  
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As the table shows, scientific inductive logic is seen not as a simple, homoge­
neous system but rather as a complex structure composed of an infinite num­
ber of strata of distinct sets of rules .  The sets of rules on different levels are 
not, however, totally unrelated. The rules on each level presuppose, in some 
sense, that nature is uniform and that the future will resemble the past. If this 
were not the case, we would have no reason for calling the whole system of 
levels a system of scientific inductive logic. 

We are now in a position to see how the system of levels of scientific induc­
tion is to be employed in the inductive justification of induction. In answer to 
the question, 'Why should we place our faith in the rules of level 1 of scientific 
inductive logic?" the proponent of the inductive justification of induction will 
advance an argument on level 2: 

Among arguments used to make predictions in the past, e-arguments 
on level 1 (which according to level 1 of scientific inductive logic are 
inductively strong) have given true conclusions most of the time. 

With regard to the next prediction, an e-argument judged inductively 
strong by the rules of scientific inductive logic will yield a true 
conclusion. 

The proponent will maintain that the premise of this argument is true, and if 
we ask why he thinks that this is an inductively strong argument, he will reply 
,that the rules of level 2 of scientific inductive logic assign it a high inductive 
probability. If we now ask why we should put our faith in these rules, he will 
advance a similar argument on level 3, justify that argument by appeal to the 
rules of scientific inductive logic on level 3, justify those rules by an argument 
on level 4, and so on. 
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The inductive justification of induction is summarized in Table III .2 .  Th� 
arrows in the table show the order of justification. Thus, the rules of level 1 are 
justified by an argument on level 2, which is justified by the rules on level 2r 
which are justified by an argument on level 3, and so on. 

Let us now see how it is that the proponent of the inductive justification of 
induction can plead not guilty to Hume's charge of begging the question; thafJ!t 
is, of presupposing exactly what one is trying to prove . In justifying the rules o�: I 
level 1 ,  the proponent of the inductive justification of induction does not pre�'fr 
suppose that these rules will work the next time; in fact, he advances an argl\� !� 
ment (on level 2) to show that they will work next time. Now it is true that th� jf 
use of this argument presupposes that the rules of level 2 will work next time� I 

;;-- {,t{�: 
But there is another argument waiting on level 3 to show that the rules of leveJ.�f 
2 will work. The use of that argument does not presuppose what it is trying tq !� 
establish; it presupposes that the rules on level 3 will work. Thus, none of th�I 
arguments used in the inductive justification of induction presuppose whaf1� 
they are trying to prove, and the inductive justification of induction does nqtl� 
technically beg the question. if ;- . :Ji 

_Ta_h_l_e_I_II_.2 ___________________ _ 
Levels of argument 

Levels of scientific 
inductive logic 

- �<f; 
Y?�' 
I ------------------------------"'' 

3 :  Rules of level 2 of scientific � 3: 
inductive logic have 
worked well in the past. 
They will work well next time.� 

2:  Rules of level 1 of scientific - 2:  
inductive logic have worked 
well in the past. � 
They will work well next time .� 

1 :  1 :  

Rules for assigning 
inductive probabilities to 
arguments on level 3.  

��-
�::�-
I�, � �it I 
:��-'.­;c:y_ 
�� 

Rules for assigning inductive � 
probabilities to arguments J 
on level 2 .  � �J, �� 

�-
Rules for assigning inductive I 
probabilities to arguments � 
on level 1 .  I -----------------------------, 

" The statement "rules of level 1 of scientific inductive logic have worked well in them 
past," is to be taken as shorthand for "arguments on level 1, which according to the rules� 
of level 1 of scientific inductive logic are inductively strong and which have been used to� 
make predictions in the past, have given us true conclusions, when the premises werejt 
true, most of the time." Thus, the argument on level 2 used to justify the rules of level 1 �  
is exactly the same one as put forth in the second paragraph on page 33. � 
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Perhaps how these levels work can be made clearer by looking at a simple 
example. Suppose our only observations of the world have been of 100 jub-jub 
birds and they have all been purple . After observing 99 jub-jub birds, we ad­
vanced argument jj-99: 

We have seen 99 jub-jub birds and they were all purple. 

The next jub-jub bird we see will be purple . 
This argument was given high inductive probability by rules of level 1 of scien­
tific inductive logic. We knew its premises to be true, and we took its conclu­
sion as a prediction. The lOOth jub-jub bird can thus be correctly described as 
purple-or as the color that makes the conclusion of argument jj-99 true-or 
as the color that results in a successful prediction by the rules of level 1 of sci­
entific inductive logic. Let us also suppose that similar arguments had been 
advanced in the past: jj-98, jj-97, etc. Each of these arguments was an e-argu­
ment to which the rules of level 1 assigned high inductive probability. Thus, 
the observations of jub-jub birds 98 and 99, etc . ,  are also observations of 
successful outcomes to predictions based on assignments of probabilities to 
e-arguments by rules of level 1 .  This gives rise to an argument on level 2: 

e-arguments on level 1 ,  which are assigned high inductive probability 
by rules of level 1 ,  have had their conclusions predicted 98 times and 
all those predictions were successful. 

Predicting the conclusion of the next e-argument on level 1 which is as­
signed high inductive probability will also lead to success . 

This argument is assigned high inductive probability by rules of level 2. If the 
next jub-jub bird to be observed is purple, it makes this level 2 argument suc­
cessful in addition to making the appropriate level 1 argument successful. A 
string of such successes gives rise to a similar argument on level 3 and so on, 
up the ladder, as indicated in Table IIl.2. 

If someone were to object that what is wanted is a justification of scientific 
induction as a whole and that this has not been given, the proponent of the in­
ductive justification of induction would reply that for every level of rules of sci­
entific inductive logic he has a justification (on a higher level) , and that cer­
tainly if every level of rules is justified, then the whole system is justified. He 
would maintain that it makes no sense to ask for a justification for the system 
over and above a justification for each of its parts . This position, it must be ad­
mitted, has a good deal of plausibility; a final evaluation of its merits, however, 
must await some further developments . 

The position "held by the proponent of the inductive justification of 
induction contrasts with the position held by Hume in that it sets different 
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requirements for the rational justification of a system of inductive logic. The 
following is implicit in the inductive justification of induction: 

Rational Justification 

Suggestion II: A system of inductive logic is rationally justified if, for 
every level (k ) of rules of that system, there is an e-argument on the 
next highest level (k + 1)  which: 
i. Is judged inductively strong by its own system's rules (these will be
rules of level k + 1 ) .  
ii. Has as its conclusion the statement that the system's rules on the
original level (k) will work well next time. 

It is important to see that whether a system of induction meets these condi­
tions depends not only on the system of induction itself but also on the facts, on 
the way that the world is . We can imagine a situation in which scientific induc­
tion would indeed not meet these conditions .  Imagine a world which has been 
so chaotic that scientific induction on level 1 has not worked well; that is , 
suppose that the e-arguments on level 1 ,  which according to the rules of level 
1 of scientific inductive logic are inductively strong and which have been used 
to make predictions in the past, have given us false conclusions from true 
premises most of the time. In such a situation the inductive justification of 
induction could not be carried through. For although the argument on level 2 
used to justify the rules of level 1 of scientific induction, that is : 

Rules of level 1 of scientific inductive logic have worked well 
in the past. 

They will work well next time. 
would still be judged inductively strong by the rules of level 2 of scientific in­
ductive logic, its premise would not be true. Indeed, in the situation under 
consideration the following argument on level 2 would have a premise that 
was known to be true and would also be judged inductively strong by the rules 
of level 2 of scientific inductive logic: 

Rules of level 1 of scientific inductive logic have not worked well 
in the past. 

They will not work well next time. 
Thus, we can conceive of situations in which level 2 of scientific induction, 
instead of justifying level 1 of scientific induction, would tell us that level 1 is 
unreliable. 
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We are not, in fact, in such a situation. Level 1 of scientific induction has 

served us quite well, and it is upon this fact that the inductive justification 

of induction capitalizes . This is indeed an important fact, but it remains to 
be seen whether it is sufficient to rationally justify a system of scientific 

inductive logic. 
The proponent of the inductive justification of scientific inductive logic has 

done us a service in distinguishing the various levels of induction. He has also 
made an important contribution by pointing out that there are possible 
situations in which the higher levels of scientific induction do not always 
support the lower levels and that we are, in fact, not in such a situation. But as 
a justification of the system of scientific induction his reasoning is not 
totally satisfactory. While he has not technically begged the question, he has 
come very close to it. Although he has an argument to justify every level of 
scientific induction, and although none of his arguments presuppose exactly 
what they are trying to prove, the justification of each level presupposes the 
correctness of the level above it. Lower levels are justified by higher levels , but 
always higher levels of scientific induction. No matter how far we go in the 
justifying process, we are always within the system of scientific induction. 
Now, isn't this loading the dice? Couldn't someone with a completely different 
system of inductive logic execute the same maneuver? Couldn't he justify 
each level of his logic by appeal to higher levels of his logic? Indeed he 
could. Given the same factual situation in which the inductive justification 
of scientific induction is carried out, an entirely different system of inductive 
logic could also meet the conditions laid down under Rational Justification, 
Suggestion II .  Let us take a closer look at such a contrasting system of 
inductive logic. 

We said that scientific induction assumes that, in some sense, nature is 
uniform and the future will be like the past. Some such assumption is to 
be found backing the rules on each level of scientific inductive logic. The 
assumptions are not exactly the same on each level; they must be different 
because we can imagine a situation in which scientific induction on level 2 
would tell us that scientific induction on level 1 will not work well. Thus, 
different principles of the uniformity of nature are presupposed on 
different levels of scientific inductive logic. But although they are not exactly 
the same, they are similar; they are all principles of the uniformity of nature . 
Thus, each level of scientific inductive logic presupposes that, in some 
sense, nature is uniform and the future will be like the past. A system of 
inductive logic that would be diametrically opposed to scientific inductive 
logic would be one which presupposed on all levels that the future will 
not be like the past. We shall call this system a system of counterinductive 
logic . 
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Let us see how counterinductive logic would work on level 1 .  Scientific in­
ductive logic, which assumes that the future will be like the past, would assign 
the following argument a high inductive probability: 

Many jub-jub birds have been observed and they have all been purple. 

The next jub-jub bird to be observed will be purple . 

Counterinductive logic, which assumes that the future will not be like the past, 
would assign it a low inductive probability and would instead assign a high 
inductive probability to the following argument: 

Many jub-jub birds have been observed and they have all been purple. 

The next jub-jub bird to be observed will not be purple . 

In general, counterinductive logic assigns low inductive probabilities to 
arguments that are assigned high inductive probabilities by scientific inductive 
logic, and high inductive probabilities to arguments that are assigned low 
inductive probabilities by scientific inductive logic. 

Now suppose that a counterinductivist decided to give an inductive justifi­
cation of counterinductive logic. The scientific inductivist would justify his 
rules of level 1 by the following level 2 argument: 

Rules of level 1 of scientific induction have worked well in the past. 

They will work well next time. 

The counterinductivist, on the other hand, would justify his rules of level 1 by 
another kind of level 2 argument: 

Rules of level 1 of counterinductive logic have not worked well 
in the past. 

They will work well next time. 

By the counterinductivisf s rules, this is an inductively strong argument, for 
on level 2 he also assumes that the future will be unlike the past. Thus, 
the counterinductivist is not at all bothered by the fact that his level 1
rules have been failures; indeed he takes this as evidence that they will be 
successful in the future. Granted his argument appears absurd to us, for 
we are all at heart scientific inductivists . But if the scientific inductivist is 
allowed to use his own rules on level 2 to justify his rules on level 1 ,  how can 
we deny the same right to the counterinductivist? If asked to justify his rules 
on level 2, the counterinductivist will advance a similar argument on level 
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3, and so on .  If an inductive justification of scientific inductive logic can be 
carried through, then a parallel inductive justification of counterinductive 
logic can be carried through. Table III.3 summarizes how this would be done. 

Table 111.3 

Justifying arguments 
Level of of the scientific 
argument inductivist 

3 : Rules of level 2 of scientific 
inductive logic have worked 
well in the past. 

2: 

They will work well 
next time. 
Rules of level 1 of scientific 
inductive logic worked well 
in the past. 
They will work well 
next time. 

Justifying arguments 
of the counter­

conductivist 

Rules of level 2 of counter­
inductive logic have not 
worked well in the past . 
They will work well 
next time . 
Rules of level 1 of counter­
inductive logic have not 
worked well in the past. 
They will work well 
next time. 

The counterinductivist is , of course, a fictitious character. No one goes 
through life consistently adhering to the canons of counterinductive logic, 
although some of us do occasionally slip into counterinductive reasoning. The 
poor poker player who thinks that his luck is due to change because he has been 
losing so heavily is a prime example . But aside from a description of gamblers' 
rationalizations , counterinductive logic has little practical significance. 

It does, however, have great theoretical significance. For what we have 
shown is that if scientific inductive logic meets the conditions laid down under 
Rational Justification, Suggestion II, so does counterinductive logic. This is 
sufficient to show that Suggestion II is inadequate as a definition for rational 
justification. A rational justification of a system of inductive logic must provide 
reasons for using that system rather than any other. Thus, if two inconsistent 
systems, scientific induction and counterinduction, can meet the conditions of 
Suggestion II, then Suggestion II cannot be an adequate definition of rational 
justification. The arguments examined in this section do show that scientific 
inductive logic meets the conditions of Suggestion II, but these arguments do 
not rationally justify scientific induction. 

This is not to say that what has been pointed out is not both important 
and interesting. Let us say that any system of inductive logic that meets the 
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conditions of Suggestion II is inductively coherent with the facts . It may be 
true that for a system of inductive logic to be rationally justified it must be in­
ductively coherent with the facts; that is , that inductive coherence with the 
facts may be a necessary condition for rational justification. But the example of 
the counterinductivist shows conclusively that inductive coherence with the 
facts is not by itself sufficient to rationally justify a system of inductive logic. 
Consequently, the inductive justification of scientific inductive logic fails . 

We may summarize our discussion of the inductive justification of induction 
as follows: 

1 .  The proponent of the inductive justification of scientific induction 
points out that scientific inductive logic is inductively coherent with the 
facts . 
2 . He claims that this is sufficient to rationally justify scientific induc­
tive logic. 
3. But it is not sufficient since counterinductive logic is also inductively
coherent with the facts . 
4. Nevertheless it is important and informative since we can imagine
circumstances in which scientific inductive logic would not be induc­
tively coherent with the facts . 
5 . The proponent of the inductive justification of scientific induction
has also succeeded in calling to our attention the fact that there are 
various levels of induction. 

Suggested readings 

John Stuart Mill, "The Ground of Induction," reprinted in A Modem Introduc­
tion to Philosophy, Paul Edwards and Arthur Pap, Eds. (New York: The Free 
Press, 1973) ,  pp. 133 -41 .  

F. L .  Will, 'Will the Future Be  Like the Past?" reprinted in A Modem Introduc­
tion to Philosophy (rev. ed. ), Paul Edwards and Arthur Pap, Eds. (New York: 
The Free Press, 1973) ,  pp. 148-58 .  

Max Black, "Inductive Support of  Inductive Rules," Problems of Analysis 
(Ithaca, New York: Cornell University Press, 1954) , pp. 191 -208. 

All of these authors are arguing for some type of inductive justification of induc­
tion, although none of them holds the exact position outlined in this section, 
which is a synthesis of several viewpoints . 

III.4. THE PRAGMATIC JUSTIFICATION OF INDUCTION. 
Remember that the traditional problem of induction can be formulated as a 
dilemma: If the reasoning we use to rationally justify scientific inductive logic 
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is to have any strength at all it must be either deductively valid or inductively 
strong. But if we try to justify scientific inductive logic by means of a 
deductively valid argument with premises that are known to be true, our 
conclusion will be too weak. And if we try to use an inductively strong 
argument, we are reduced to begging the question. Whereas the proponent of 
the inductive justification of scientific induction attempts to go over the sec­
ond horn of the dilemma, the proponent of the pragmatic justification of in­
duction attacks the first horn; he attempts to justify scientific inductive logic by 
means of a deductively valid argument. 

The pragmatic justification of induction was proposed by Herbert Feigl and 
elaborated by Hans Reichenbach, both founders of the logical empiricist 
movement. Reichenbach's pragmatic justification of induction is quite compli­
cated, for it depends on what he believes are the details (at least the basic de­
tails ) of scientific inductive logic. Thus, no one can fully understand Reichen­
bach's arguments until he has studied Reichenbach's definition of probability 
and the method he prescribes for discovering probabilities . We shall return to 
these questions later; at this point we will discuss a simplified version of the 
pragmatic justification of induction. This version is correct as far as it goes. 
Only bear in mind that there is more to be learned. 

Reichenbach wishes to justify scientific inductive logic by a deductively 
valid argument. Yet he agrees with Hume that no deductive valid argument 
with premises that are known to be true can give us the conclusion that scien­
tific induction will give us true conclusions most of the time. He agrees with 
Hurne that the conditions of Rational Justification, Suggestion I , cannot be 
met. Since he fully intends to rationally justify scientific inductive logic, the 
only path open to him is to argue that the conditions of Rational Justification, 
Suggestion I, need not be met in order to justify a system of inductive logic. 
He proceeds to advance his own suggestion as to what is required for rational 
justification and to attempt to justify scientific inductive logic in these terms. 

If Hume's arguments are correct, there is no way of showing that scientific 
induction will give us true conclusions from true premises most of the time. 
But since Hume's arguments apply equally well to any system of inductive 
logic there is no way of showing that any competing system of inductive logic 
will give us true conclusions from true premises most of the time either. Thus, 
scientific inductive logic has the same status as all other systems of inductive 
logic in this matter. No other system of inductive logic can be demonstrated to 
be superior to scientific inductive logic in the sense of showing that it gives 
true conclusions from true premises more often than scientific inductive logic. 

Reichenbach claims that although it is impossible to show that any induc­
tive method will be successful, it can be shown that scientific induction will be 
successful, if any method of induction will be successful. In other words, it is 
possible that no inductive logic will guide us to e-arguments that give us true 
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conclusions most of the time, but if any method will then scientific inductive 
logic will also. If this can be shown, then it would seem fair to say that scien­
tific induction has been rationally justified. After all, we must make some sort 
of judgments, conscious or unconscious, as to the inductive strength of argu­
ments if we are to live at all. We must base our decisions on our expectations 
of the future, and we base our expectations of the future on our knowledge of . 
the past and present. We are all gamblers, with the stakes being the success or 
failure of our plans of action. Life is an exploration of the unknown, and every 
human action presumes a wager with nature . 

But if our decisions are a gamble and if no method is guaranteed to be 
successful, then it would seem rational to bet on that method which will be 
successful, if any method will. Suppose that you were forcibly taken into a 
locked room and told that whether or not you will be allowed to live depends on 
whether you win or lose a wager. The object of the wager is a box with red, blue, 
yellow, and orange lights on it. You know nothing about the construction of the 
box but are told that either all of the lights, some of them, or none of them will 
come on. You are to bet on one of the colors . If the colored light you choose · 
comes on, you live; if not, you die. But before you make your choice you are also 
told that neither the blue, nor the yellow, nor the orange light can come on 
without the red light also coming on. If this is the only information you have, 
then you will surely bet on red. For although you have no guarantee that 
your bet on red will be successful (after all, all the lights might remain dark) 
you know that if any bet will be successful, a bet on red will be successful. 
Reichenbach claims that scientific inductive logic is in the same privileged posi­
tion vis-a-vis other systems of inductive logic as is the red light vis-a-vis the 
other lights . 

This leads us to a new proposal as to what is required to rationally justify a 
system of inductive logic: 

Rational Justification 

Suggestion III: A system of inductive logic is rationally justified if we 
can show that the e-arguments that it judges inductively strong will 
give us true conclusions most of the time, if e-arguments judged induc­
tively strong by any method will. 
Reichenbach attempts to show that scientific inductive logic meets the 
conditions of Rational Justification, Suggestion III, by a deductively 
valid argument. The argument goes roughly like this : 
Either nature is uniform or it is not. 
If nature is uniform, scientific induction will be successful. 
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If nature is not uniform, then no method will be successful. 

If any method of induction will be successful, then scientific induction 
will be successful. 

There is no question that this argument is deductively valid, and the first and 
second premises are surely known to be true. But how do we know that the 
third premise is true? Couldn't there be some strange inductive method that 
would be successful even if nature were not uniform? How do we know that 
for any method to be successful nature must be uniform? 

Reichenbach has a response ready for this challenge. Suppose that in a 
completely chaotic universe, some method, call it method X, were successful. 
Then there is still at least one outstanding uniformity in nature: the uniformity 
of method X's success . And scientific induction would discover that uniformity. 
That is , if method X is successful on the whole, if it gives us true predictions 
most of the time, then sooner or later the statement "Method X has been 
reliable in the past" will be true, and the following argument would be judged 
inductively strong by scientific inductive logic: 

Method X has been reliable in the past. 

Method X will be reliable in the future. 
Thus, if method X is successful, scientific induction will also be successful in 
that it will discover method X's reliability, and, so to speak, license method X as 
a subsidiary method of prediction. This completes the proof that scientific in­
duction will be successful if any method will. 

The job may appear to be done, but in fact there is a great deal more to be 
said. In order to analyze just what has been proved and what has not, we shall 
use the idea of levels of inductive logic, which was developed in the last 
section. When we talk about a method, we are really talking about a system of 
inductive logic, while glossing over the fact that a system of inductive logic is 
composed of distinct levels of rules .  Let us now pay attention to this fact. 
Since a system of inductive logic is composed of distinct levels of rules , in 
order to justify that system we would have to justify each level of its rules .  
Thus, to justify scientific inductive logic we would have to justify level 1 rules 
of scientific inductive logic, level 2 rules of scientific inductive logic, level 3 
rules of scientific inductive logic, and so on. If each of these levels of rules is to 
be justified in accordance with the principle "It is rational to rely on a method 
that is successful if any method is successful,'' then the pragmatic justification 

' of induction must establish the following: 
1 :  Level 1 rules of scientific induction will be successful if level 1 rules 

of any system of inductive logic will be successful. 
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2: Level 2 rules of scientific induction will be successful if level 2 rules 
of any system of inductive logic will be successful. 

k: Level k rules of scientific induction will be successful if level k rules 
of any system of inductive logic will be successful. 

But if we look closely at the pragmatic justification of induction, we see that it 
does not establish this but rather something quite different. 

Suppose that system X of inductive logic is successful on level 1 .  That is, 
the arguments that it judges to be inductively strong give us true conclusions 
from true premises most of the time. Then sooner or later an argument on 
level 2 which is judged inductively strong by scientific inductive logic, that is : 

Rules of level 1 of system X have been reliable in the past. 

Rules of level 1 of system X will be reliable in the future. 
will come to have a premise that is known to be true. If the rules on level 1 of. 
system X give true predictions most of the time, then sooner or later it will be 
true that they have given us true predictions most of the time in the past. And 
once we have this premise, scientific induction on level 2 leads us to the 
conclusion that they will be reliable in the future. 

Thus, what has been shown is that if any system of inductive logic has suc­
cessful rules on level 1 ,  then scientific induction provides a justifying argument 
for these rules on level 2. Indeed, we can generalize this principle and say that 
if a system of inductive logic has successful rules on a given level, then scien­
tific induction provides a justifying argument on the next highest level. More 
precisely, the pragmatist has demonstrated the following: If system X of induc­
tive logic has rules on level k which pick out, as inductively strong arguments 
of level k, those which give true predictions most of the time, then there is an 
argument on level k + 1 ,  which is judged inductively strong by the rules of 
level k + 1 of scientific inductive logic, which has as its conclusion the state­
ment that the rules of system X on level k are reliable , and which has a 

premise that will sooner or later be known to be true. 
Now this is quite different from showing that if any method works on any 

level then scientific induction will also work on that level, or even from show­
ing that if any method works on level 1 then scientific induction will work on 
level 1 .  Instead what has been shown is that if any other method is generally 
successful on level 1 then scientific induction will have at least one notable 
success on level 2 :  it will eventually predict the continued success of that other 
method on level 1 .

Although this is an interesting and important conclusion, it is not sufficient 
for the task at hand. Suppose we wish to choose a set of rules for level 1 .  In or­
der to be in a position analogous to the wager about the box with the colored 
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lights, we would have to know that scientific induction would be successful on 
level 1 if any method were successful on level 1 .  But we do not know this . For 
all we know, scientific induction might fail on level 1 and another method 
might be quite successful. If this were the case, scientific induction on level 2
would eventually tell us so, but this is quite a different matter. 

In summary, the attempt at a pragmatic justification of induction has made 
us realize that a deductively valid justification of scientific induction would be 
acceptable if it could establish that: if any system of inductive logic has 
successful rules on a given level, then scientific inductive logic will have 
successful rules on that level. But the arguments advanced in the pragmatic jus­
tification fail to establish this conclusion. Instead, they show that if any system 
of inductive logic has successful rules on a given level, then scientific inductive 
logic will license a justifying argument for those rules on the next higher level. 

Both the attempt at a pragmatic justification and the attempt at an induc­
tive justification have failed to provide an absolute justification of scientific 
induction. Nevertheless, both of them have brought forth useful facts . For 
instance, the pragmatic justification of induction shows one clear advantage of 
scientific induction over counterinduction. The counterinductivist cannot 
prove that if any method is successful on level 1 ,  counterinduction on level 2
will eventually predict its continued success . In fact some care is required 
to even give a logically consistent formulation of counterinduction as a 
general policy. 

It seems, then, that there is still room for constructive thought on the prob­
lem, and that we can learn much from previous attempts to solve it. 

Suggested reading 
Hans Reichenbach, Experience and Prediction: An Analysis of the Foundations 
and the Structure of Knowledge. (Chicago: University of Chicago Press, 1938) .  

111.5. SUMMARY. We have developed the traditional problem of 
induction and discussed several answers to it . We found that each position we 
discussed had a different set of standards for rational justification of a system 
of inductive logic. 
I. Position : The original presentation of the traditional problem of induction. 

Standard for Rational Justification : A system of inductive logic is ratio­
nally justified if and only if it is shown that the e-arguments that it 
judges inductively strong yield true conclusions most of the time. 

II . Position : The inductive justification of induction.
Standard for Rational justification : A system of inductive logic is 
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rationally justified if for every level (k ) of rules of that system there is 
an e-argument on the next highest level (k + 1 )  which: 

i. Is judged inductively strong by its own system's rules .
ii. Has as its conclusion the statement that the system's rules on the
original level (k) will work well next time. 

III. Position : The pragmatic justification of induction.
Standard for Rational justification : A system of inductive logic is ratio­
nally justified if it is shown that the e-arguments that it judges induc­
tively strong yield true conclusions most of the time, if e-arguments · 
judged inductively strong by any method will. 

The attempt at an inductive justification of scientific inductive logic taught 
us to recognize different levels of arguments and corresponding levels of 
inductive rules .  It also showed that scientific inductive logic meets the 
standards for Rational Justification, Suggestion II. However, we saw that Sug­
gestion II is really not a sense of rational justification at all, for both scientific 
inductive logic and counterinductive logic can meet its conditions . Thus, it 
cannot justify the choice of one over the other. 

The attempt at a pragmatic justification of scientific inductive logic showed · 
us that Suggestion III, properly interpreted in terms of levels of induction, 
would be an acceptable sense of rational justification, although it would be a 

weaker sense than that proposed in Suggestion I .  However, the pragmatic jus­
tification fails to demonstrate that scientific induction meets the conditions of 
Suggestion III. 

It seems that we cannot make more progress in justifying inductive logic 
until we make some progress in saying exactly what scientific inductive logic is . 
The puzzles to be discussed in the next chapter show that we have to be care­
ful in specifying the nature of scientific inductive logic. 



IV 

The Goodman Paradox and 
The New Riddle of Induction 

IV. I .  INTRODUCTION. In Chapter III we presented some

general specifications for a system of scientific inductive logic. We said it
should be a system of rules for assigning inductive probabilities to arguments, 
with different levels of rules corresponding to the different levels of argu­
ments . This system must accord fairly well with common sense and scientific 
practice. It must on each level presuppose, in some sense, that nature is uni­
form and that the future will resemble the past. These general specifications 
were sufficient to give us a foundation for surveying the traditional problem of 
induction and the major attempts to solve or dissolve it. 

However, to be able to apply scientific inductive logic, as a rigorous disci­
pline, we must know precisely what its rules are . Unfortunately no one has yet 
produced an adequate formulation of the rules of scientific inductive logic. In 
fact, inductive logic is in much the same state as deductive logic was before 
Aristotle . This unhappy state of affairs is not due to a scarcity of brainpower in 
the field of inductive logic. Some of the great minds of history have attacked 
its problems . The distance by which they have fallen short of their goals is a 
measure of the difficulty of the subject. Formulating the rules of inductive 
logic, in fact, appears to be a more difficult enterprise than doing the same for 
deductive logic. Deductive logic is a "yes or no" affair; an argument is either 
deductively valid or it is not. But inductive strength is a matter of degree. 
Thus, while deductive logic must classify arguments as valid or not, inductive 
logic must measure the inductive strength of arguments . 

Setting up such rules of measurement is not an easy task. It is in fact beset 
with so many problems that some philosophers have been convinced it is im­
possible . They maintain that a system of scientific induction cannot be con­
structed; that prediction of the future is an art, not a science; and that we must 
rely on the intuitions of experts , rather than on scientific inductive logic, to 
predict the future. We can only hope that this gloomy doctrine is as mistaken 
as the view of those early Greeks who believed deductive logic could never be 
reduced to a precise system of rules and must forever remain the domain of 
professional experts on reasoning. 

If constructing a system of scientific inductive logic were totally impossible, 
we would be left with an intellectual vacuum, which could not be filled by ap­
peal to "experts . "  For, to decide whether someone is an expert predictor or a 
charlatan, we must assess the evidence that his predictions will be correct. 
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And to assess this evidence, we must appeal to the second level of scientific 
inductive logic. 

Fortunately there are grounds for hope. Those who have tried to "" "' i i u u 
a system of scientific inductive logic have made some solid advances. Although 
the intellectual jigsaw puzzle has not been put together, we at least know what 
some of the pieces look like . Later we shall examine some of these "building 
blocks" of inductive logic, but first we shall try to put the problem of 
structing a system of scientific induction in perspective by examining one 
the main obstacles to this goal. 

IV.2. REGULARITIES AND PROJECTION. At this point you 
may be puzzled as to why the construction of a system of scientific inductive 
logic is so difficult. After all, we know that scientific induction assumes 
nature is uniform and that the future will be like the past, so if, for example, 
observed emeralds have been green, the premise embodying this information 
confers high probability on the conclusion that the next emerald to be 
observed will be green. We say that scientific inductive logic projects 
observed regularity into the future because it assigns high inductive probabil­
ity to the argument: 

All observed emeralds have been green. 

The next emerald to be observed will be green. 
In contrast, counterinduction would assume that the observed regular 
connection between being an emerald and being green would not hold in the 
future, and thus would assign high inductive probability to the argument: 

All observed emeralds have been green. 

The next emerald to be observed will not be green. 
So it seems that scientific induction, in a quite straightforward manner, takes 
observed patterns or regularities in nature and assumes that they will hold in 
the future. Along these same lines, the premise that 99 percent of the ob� 
served emeralds have been green would confer a slightly lower probability on 
the conclusion that the next emerald to be observed would be green. Why can 
we not simply say, then, that arguments of the form 

All observed X's have been Y's . 
The next observed X will be a Y. 

have an inductive probability of 1, and that all arguments of the form 
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Ninety-nine percent of the observed X's have been Y's . 

The next observed X will be a Y. 

have an inductive probability of 99/100? 
That is , why can we not simply construct a system of scientific induction by 

giving the following rule on each level?

Rule S: An argument of the form 

N percent of the observed X's have been rs . 

The next observed X will be a Y. 

is to be assigned the inductive probability N/100. 

Rule S does project observed regularities into the future, but there are several 
reasons why it cannot constitute a system of scientific inductive logic. 

The most obvious inadequacy of Rule S is that it only applies to arguments 
of a specific form, and we are interested in assessing the inductive strength of 
arguments of different forms. Consider arguments which, in addition to a 
premise stating the percentage of observed X's that have been rs , have 
another premise stating how many X's have been observed. Here the rule does 
not apply, for the arguments are not of the required form. For example, Rule 
S does not tell us how to assign inductive probabilities to the following 
arguments :  

I 

Ten emeralds have been observed. 

Ninety percent of the observed 
emeralds have been green. 

The next emerald to be observed 
will be green. 

II 

One million emeralds have been 
observed. 

Ninety percent of the observed 
emeralds have been green. 

The next emerald to be observed 
will be green. 

Obviously scientific inductive logic should tell us how to assign inductive 
probabilities to these arguments, and in assigning these probabilities it should 
take into account that the premises of Argument II bring a much greater 
amount of evidence to bear than the premises of Argument I .  

Another type of argument that Rule S does not tell us how to evaluate is 
one that includes a premise stating in what variety of circumstances the regu­
larity has been found to hold. That is, Rule S does not tell us how to assign in­
ductive probabilities to the following arguments : 
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III 

Every person who has taken drug X 
has exhibited no adverse side reac­
tions . 

Drug X has only been administered 
to persons between 20 and 25 years 
of age who are in good health. 

The next person to take drug X will 
have no adverse side reactions . 

IV 

Every person who has taken drug X 
has exhibited no adverse side reac.,. · 
tions . 

Drug X has been administered to 
persons of all ages and varying 
degrees of health. 

The next person to take drug X will 
have no adverse side reactions . 

Again, scientific inductive logic should tell us how to assign inductive 
probabilities to these arguments , and in doing so it should take into 
the fact that the premises of Argument IV tell us that the regularity has been 
found to hold in a great variety of circumstances ,  whereas the premises 

. 

Argument III inform us that the regularity has been found to . hold in only a 

limited area. 
There are many other types of argument that Rule S does not tell us how to 

evaluate, including most of the arguments advanced as examples in Chapter I. 
We can now appreciate why an adequate system of rules for scientific induc� 
tive logic must be a fairly complex structure . But there is another shortcoming 
of Rule S which has to do with arguments to which it does apply, that is, 
arguments of the form: 

N percent of the observed X's have been Y's . 

The next observed X will be a Y. 

The following two arguments are of that form, so we can apply Rule S to 
evaluate them: 

v 

One hundred percent of the ob­
served samples of pure water have 
had a freezing point of +32 degrees 
Fahrenheit. 

The next observed sample of pure 
water will have a freezing point of 
+ 32 degrees Fahrenheit. 

VI 

One hundred percent of the 
recorded economic depressions 
have occurred at the same time as 

large sunspots . 

The next economic depression will 
occur at the same time as a large 
sunspot. 
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If we apply Rule S we find that it assigns an inductive probability of 1 to each 
of these arguments . But surely Argument V has a much higher degree of 

inductive strength than Argument VI ! We feel perfectly justified in projecting 

into the future the observed regular connection between a certain type of 
chemical compound and its freezing point. But we feel that the observed regu­
lar connection between economic cycles and sunspots is a coincidence, an 
accidental regularity or spurious correlation, which should not be projected 
into the future. We shall say that the observed regularity reported in the 
premise of Argument V is projectible, while the regularity reported in the
premise of Argument VI is not. We must now sophisticate our conception of 
scientific inductive logic still further. Scientific inductive logic does project 
observed regularities into the future, but only projectible regularities .  It does 
assume that nature is uniform and that the future will resemble the past, but 
only in certain respects . It does assume that observed patterns in nature will 
be repeated, but only certain types of patterns . Thus, Rule S is not adequate 
for scientific inductive logic because it is incapable of taking into account 
differences in projectibility of regularities . 

Exercises 

1 .  Construct five inductively strong arguments to which Rule S does not apply. 

2. Give two new examples of projectible regularities and two new examples of un­
projectible regularities .

3 . For each of the following arguments, state whether Rule S is  applicable . If it is
applicable, what inductive probability does it assign to the argument?

a. One hundred percent of the crows observed have been black.

The next crow to be observed will be black.

b. One hundred percent of the crows observed have been black.

All crows are black.

c. Every time I have looked at a calendar, the date has been before January 1 ,
2010. 

The next time I look at a calendar the date will be before January 1, 
2010. 

d. Every time fire has been observed, it has continued to burn according to the
laws of nature until extinguished.

All unobserved fires continue to burn according to the laws of nature
until extinguished.
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e.  Eighty-five percent of the time when I have dropped a piece of silverware, 
company has subsequently arrived. 

The next time I drop a piece of silverware company will subsequently arrive. 

IV.3. THE GOODMAN PARADOX. If one tries to 
various examples of projectible and unprojectible regularities ,  he will 
come to the conclusion that projectibility is not simply a "yes or no" affair, 
rather a matter of degree . Some regularities are highly projectible, some 
a middling degree of projectibility, and some are quite unprojectible . Just 
unprojectible a regularity can be has been demonstrated by Nelson '-' �· � ..... uu•u 

in his famous "grue-bleen" paradox. 
Goodman invites us to consider a new color word, "grue ." It is to have 

general logical features of our old color words such as "green," "blue," 
"red." That is ,  we can speak of things being a certain color at a certain time 
for example, "John's face is red now"-and we can speak of things 
remaining the same color or changing colors . The new color word "grue" 
defined in terms of the familiar color words "green" and "blue" as follows : 

Definition 6: A certain thing, X, is said to be grue at a certain time t 
and only if: 

X is green at t and t is before the year 2100 
or 

X is blue at t and t is during or after the year 2100. 

Let us see how this definition works . If you see a green grasshopper today, 
can correctly maintain that you have seen a grue grasshopper today. Today is be­
fore the year 2100, and before the year 2100 something is grue just when it 
green. But if you or one of your descendants sees a green grasshopper during 
after the year 2100, it would then be incorrect to maintain that a grue grasshop­
per had been seen. During and after the year 2100, something is grue just when 
it is blue. Thus, after the year 2100, a blue sky would also be a grue sky. 

Suppose now that a chameleon were kept on a green cloth until the begin­
ning of the year 2100 and then transferred to a blue cloth. In terms of green 
and blue we would say that the chameleon changed color from green to blue. 
But in terms of the new color word "grue" we would say that it remained the 
same color: "grue."  The other side of the coin is that when something remains 
the same color in terms of the old color words, it will change color in terms of 
the new one. Suppose we have a piece of glass that is green now and that will 
remain green during and after the year 2100. Then we would have to say that 
it was grue before the year 2100 but was not grue during and after the year 
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2100. At the beginning of the year 2100 it changed color from grue to some 
other color. To name the color that it changed to we introduce the new color 
word "bleen. "  "Bleen" is defined in terms of "green" and "blue" as follows: 

Definition 7: A certain thing, X, is said to be bleen at a certain time t 
if and only if: 

X is blue at t and t is before the year 2100 
or 

X is green at t and t is during or after the year 2100. 

Thus, before the year 2100 something is grue just when it is green and bleen 
just when it is blue. In or after the year 2100 something is grue just when it is 
blue and bleen just when it is green. In terms of the old color words the piece 
of glass remains the same color (green) ,  but in terms of the new color words 
the piece of glass changes color (from grue to bleen) .  

Imagine a tribe of people speaking a language that had "grue" and "bleen" 
as basic color words rather than the more familiar ones that we use. Suppose 
we describe a situation in our language-for example, the piece of glass being 
green before the year 2100 and remaining green afterward-in which we 
would say that there is no change in color. But if they correctly describe the 
same situation in their language, then, in their terms, there is a change. This 
leads to the important and rather startling conclusion that whether a certain 
situation involves change or not may depend on the descriptive machinery of 
the language used to discuss that situation. 

One might object that "grue" and "bleen" are not acceptable color words 
because they have reference to a specific date in their definitions .  It is quite 
true that in our language, in which blue and green are the basic color words, 
grue and bleen must be defined not only in terms of blue and green but also in 
terms of the date "2100 A . D . " But a speaker of the grue-bleen language could
maintain that definitions of our color words in his language must also have ref­
erence to a specific date. In the grue-bleen language, "grue" and "bleen" are 
basic, and "blue" and "green" are defined as follows: 

Definition 8: A ce1tain thing, X, is said to be green at a certain time t 
if and only if: 

X is grue at t and t is before the year 2100 
or 

X is bleen at t and t is during or after the year 2100. 

Definition 9: A certain thing X is said to be blue at a certain time t if 
and only if: 
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X is bleen at t and t is before the year 2100 
or 

X is grue at t and t is during or after the year 2100. 

CHAPTER IV 

Defining the old color words in terms of the new requires reference to a spe­
cific date as much as defining the new words in terms of the old. So the formal 
structure of their definitions gives no reason to believe that "grue" and "bleen" 
are not legitimate, although unfamiliar, color words . 

Let us see what can be learned about regularities and projectibility from 
these new color words . We have already shown that whether there is change in 
a given situation may depend on what linguistic machinery is used to describe 
that situation. We shall now show that what regularities we find in a given situ­
ation also may depend on our descriptive machinery. Suppose that at one 
minute to midnight on December 31 ,  2099, a gem expert is asked to predict 
what the color of a certain emerald will be after midnight. He knows that all 
observed emeralds have been green. He projects this regularity into the future 
and predicts that the emerald will remain green. Notice that this is in 
accordance with Rule S ,  which assigns an inductive probability of 1 to the 
argument: 

One hundred percent of the times that emeralds have been observed 
they have been green. 

The next time that an emerald is observed it will be green. 

But if the gem expert were a speaker of the grue-bleen language, he would 
find a different regularity in the color of observed emeralds . He would notice 
that every time an emerald had been observed it had been grue. (Remember 
that before the year 2100 everything that is green is also grue. )  Now if he 
followed Rule S he would project this regularity into the future, for Rule S 
also assigns an inductive probability of 1 to the argument: 

One hundred percent of the times emeralds have been observed they 
have been "grue. "  

The next time an emerald is observed it will be  "grue. "  

And if he projected the regularity that all observed emeralds have been grue 
into the future, he would predict that the emerald will remain grue. But during 
the year 2100 a thing is "grue" only if it is blue. So by projecting this regularity 
he is in effect predicting that the emerald will change from green to blue. 

Now, we will all agree that this is a ridiculous prediction to make on the ba­
sis of the evidence. And no one is really claiming that it should be made. But it 
cannot be denied that this prediction results from the projection into the 
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future of an observed regularity in accordance with Rule S .  The point is that 
the regularity of every observed emerald having been grue is a totally 
unprojectible regularity. And the prediction of our hypothetical grue-bleen­
speaking gem expert is an extreme case of the trouble we get into when we 
try to project, via some rule such as Rule S ,  regularities that are in fact 
unprojectible .  

The trouble we get into is indeed deep, for the prediction so arrived at will 
conflict with the prediction arrived at by projecting a projectible regularity. If 
we project the projectible regularity that every time an emerald has been 
observed it has been green, then we arrive at the prediction that the emerald 
will remain green. If we project the unprojectible regularity that every time an 
emerald has been observed, it has been grue, then we arrive at the prediction 
that the emerald will change from green to blue. These two predictions clearly 
are in conflict. 1 

Thus, the mistake of projecting an unprojectible regularity may not 
only lead to a ridiculous prediction. It may, furthermore, lead to a prediction 
that conflicts with a legitimate prediction which results from projecting a 
projectible regularity discovered in the same set of data. An acceptable 
system of scientific inductive logic must provide some means to escape this 
conflict. It must incorporate rules that tell us which regularities are pro­
jectible. From the discussion of accidental regularities and the sunspot theory 
of economic cycles ,  we already know that scientific inductive logic must have 
rules for determining projectibility. But the Goodman paradox gives this point 
new urgency by demonstrating how unprojectible a regularity can be 
and how serious are the consequences of projecting a totally unprojectible 
regularity. 

Let us summarize what is to be learned from the discussion of "grue" and 
"bl " een : 

1 .  Whether we find change or not in a certain situation may depend on 
the linguistic machinery we use to describe that situation. 
2. What regularities we find in a sequence of occurrences may depend
on the linguistic machinery used to describe that sequence. 
3. We may find two regularities in a sequence of occurrences, one pro­
jectible and one unprojectible, such that the predictions that arise from 
projecting them both are in conflict. 

1 Actually they are inconsistent only under the assumption that the emerald will not be 
destroyed before 2100 A.D. , but presumably we will have independent inductive 
evidence for this assumption. 
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Exercise: 

Define "grue" in terms of "blue," "green," and "bleen" without mentioning the year 
2100. You can use "and," "or," and "not. "

IVA. THE GOODMAN PARADOX, REGULARITY, AND THE 
PRINCIPLE OF THE UNIFORMITY OF NATURE. We saw, in the last 
section, that projecting observed regularities into the future is not as simple as 
it first appears . The regularities found in a certain sequence of events may 
depend on the language used to describe that sequence of events . The Good­
man paradox showed that if we try to project all regularities that can be found 
by using any language, our predictions may conflict with one another. This is a 
startling result, and it dramatizes the need for rules for determining pro­
jectibility in scientific induction. (This might be accomplished through the 
specification of the most fruitful language for scientific description of events . )  

This need is further dramatized by the following, even more startling result: 
For any prediction whatsoever, we can find a regularity whose projection li­
censes that prediction. Of course, most of these regularities will be unpro­
jectible. The point is that we need rules to eliminate those predictions based 
on unprojectible regularities .  I shall illustrate this principle in three ways : ( 1 )  
in an example that closely resembles Goodman's "grue-bleen" paradox, (2) 
with reference to the extrapolation of curves on graphs, (3) with reference to 
the problem, often encountered on intelligence tests , of continuing a 
sequence of numbers . The knowledge gained from this discussion will then be 
applied to a reexamination of the principle of the uniformity of nature . 

Example 1 

Suppose you are presented with four boxes, each labeled "Excelsior! "  In 
the first box you discover a green insect; in the second, a yellow ball of wax; in 
the third, a purple feather. You are now told that the fourth box contains a 
mask and are asked to predict its color. You must look for a regularity in this 
sequence of discoveries ,  whose projection will license a prediction as to the 
color of the mask. Although on the face of it, this seems impossible, with a lit­
tle ingenuity a regularity can be found. What is more, for any prediction you 
wish to make, there is a regularity whose projection will license that predic­
tion. Suppose you want to predict that the mask will be red. The regularity is 
found in the following manner. 

Let us define a new word, "snarf." A snarf is something presented to you in 
a box labeled "Excelsior! " and is either an insect, a ball of wax, a feather, or a 
mask. Now you have observed three snarfs and are about to observe a fourth. 
This is a step toward regularity, but there is still the problem that the three 
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observed snarfs have been different colors . One more definition is required in 
order to find regularity in apparent chaos . A thing X is said to be "murkle" just
when: 

X is an insect and X is green

or 
X is a ball of wax and X is yellow

or 
X is a feather and X is purple

or 
X is some other type of thing and X is red.

Now we have found the regularity: all observed snarfs have been murkle. If we 
project this regularity into the future, assuming that the next snarf to be ob­
served will be murkle, we obtain the required prediction.2 The next snarf to be 
observed will be a mask, and for a mask to be murkle it must be red. Needless 
to say, this regularity is quite unprojectible . But it is important to see that we 
could discover an unprojectible regularity that, if it were projected, would lead 
to the prediction that the mask is red. And it is easy to see that, if we wanted 
to discover a regularity that would lead to a prediction that the mask will be a 
different color, a few alterations to the definition of "murkle" would accom­
plish this aim. This sort of thing can always be done and, as we shall see, in 
some areas we need not even resort to such exotic words as "snarf," "murkle," 
"grue," and "bleen."  

Example 2 

When basing predictions on statistical data we often make use of graphs, 
which help summarize the evidence and guide us in making our predictions . 
To illustrate, suppose a certain small country takes a census every 10 years, 
and has taken three so far. The population was 11  million at the time of the 
first census, 12 million at the second census , and 13 million at the third. This 
information is represented on a graph in Figure IV. I .  Each dot represents the
information as to population size gained from one census . For example, the 
middle dot represents the second census , taken in the year 10, and showing a 
population of 12 million. Thus, it is placed at the intersection of the vertical 

2This projection is in accordance with Rule S, which assigns an inductive probability of 1 
to the argument: 

All observed snarfs have been murkle. 

The next snarf to be observed will be murkle. 
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line drawn from the year 10 and the horizontal line drawn from the population 
of 12 million. 

Suppose now you are asked to predict the population of this country at the 
time of the fourth census, that is, in the year 30. You would have to look for a 
regularity that could be projected into the future. In the absence of any 
further information, you would probably proceed as follows: First you would 
notice that the points representing the first three census all fall on the straight 
line labeled A in Figure IV.2, and would then project this regularity into the 
future . This is in accordance with Rule S, which assigns an inductive probabil­
ity of 1 to the following argument: 

All points representing census so far taken have fallen on line A. 

The point representing the next census to be taken will fall on line A. 

This projection would lead you to the prediction that the population at the 
time of the fourth census will be 14 million, as shown by the dotted lines in 
Figure IV.2. The process by which you would arrive at your prediction is called 
extrapolation. If you had used similar reasoning to estimate the population 
during the year 15 at 12.5 million, the process would be called interpolation. 
Interpolation is estimating the position of a point that lies between the points 
representing the data. Extrapolation is estimating the position of a point that 
lies outside the points representing the data. So your prediction would be 
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obtained by extrapolation, and your extrapolation would be a projection of the 
regularity that all the points plotted so far fell on line A. 

But it is  obvious that there are quite a few other regularities to be found in 
the data which you did not choose to project. As shown in Figure IV3 there is 
the regularity that all the points plotted so far fall on curve B, and the regular­
ity that all the points plotted so far fall on curve C. The projection of one of 
these regularities will lead to a different prediction. 

If you extrapolate along curve B, you can predict that the population in the 
year 30 will be back to 11  million. If you extrapolate along curve C, you can 
predict that the population will leap to 1 7 million. There are indeed an infinite 
number of curves that pass through all the points and thus an infinite number 
of regularities in the data. Whatever prediction you wish to make, a regularity 
can be found whose projection will license that prediction. 

Example 3 

Often intelligence and aptitude tests contain problems where one is given a 
sequence of numbers and asked to continue the sequence; for example: 

i .  1, 2, 3, 4, 5, . . . ; 

ii. 2, 4, 6, 8, 10, . . . ; 

iii . 1 ,  3, 5 ,  7, 9, . . . . 
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The natural way in which to continue sequence (i) is to add 6 to the end, for 
sequence (ii) to add 12, and for sequence (iii) to add 1 1 .  These problems are 
really problems of inductive logic on the intuitive level; one is asked to 
discover a regularity in the segment of the series given and to project that reg­
ularity in order to find the next number of the series .  

Let us make this reasoning explicit for the three series given. In example (i) 
the first member of the series is 1 , the second member is 2, the third member 
is 3, and, in general, for all the members given, the kth member is k. If we 
project this regularity to find the next member of the series, we will reason 
that the sixth member is 6, which is the answer intuitively arrived at before . In 
example (ii) the first member is twice 1, the second is twice 2, and, in general, 
for all the members given, the kth member is twice k .  If we project this regu­
larity, we will reason that the sixth member is twice 6, or 12, which is the an­
swer intuitively arrived at before. In example (iii) the first member is twice 1 
less 1 ,  the second member is twice 2 less 1 ,  and the third member is twice 3 
less 1 .  In general, for all the members given, the kth member is twice k less 1 .  
I f  we project this regularity, we will reason that the sixth member of the series 
is twice 6 less 1, or 11 ,  which is the result intuitively arrived at. We say that k is 
a generating function for the first series, 2k a generating function for the 
second series, and 2k - 1 a generating function for the third series . Although 
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"generating function" may sound like a very technical term, its meaning is 

quite simple. It is a formula with k in it, such that if 1 is substituted for k it

gives the first member of the series, if 2 is substituted for k it gives the second 
member, and so on. 

Thus, the regularity we found in each of these series is that a certain gener­
ating function yielded all the given members of the series. This regularity was 
projected by assuming that the same generating function would yield the next 
member of the series ,  and so we were able to fill in the ends of the series .  For 
example, the prediction that the sixth member of series (iii) is 1 1  implicitly 
rests on the following argument: 

For every given member of series (iii) the kth member of that series 
was 2k - 1 .  

For the next member of series (iii) the kth member will be  2k - 1 .  

But, as you may expect, there is a fly in the ointment. I f  we look more 
closely at these examples ,  we can find other regularities in the given members
of the various series . And the projection of these other regularities conflicts 
with the projection of the regularities we have already noted. The generating 
function (k - 1 )  (k - 2) (k - 3) (k - 4) (k - 5) + k also yields the five given 
members of series (i) . (This can be checked by substituting 1 for k, which gives 
l ;  2 for k, which gives 2; and so on, up through 5 . )  But if we project this regu­
larity, the result is that the sixth member of the series is 126! 

Indeed, whatever number we wish to predict for the sixth member of the 
series, there is a generating function that will fit the given members of the se­
ries and that will yield the prediction we want. It is a mathematical fact that in 
general this is true. For any finite string of numbers which begins a series, 
there are generating functions that fit that string of given numbers and yield 
whatever next member is desired. Whatever prediction we wish to make, we 
can find a regularity whose projection will license that prediction .  

Thus,  if  the intelligence tests were simply looking for the projection of a 
regularity, any number at the end of the series would be correct. What they 
are looking for is not simply the projection of a regularity but the projection of 
an intuitively projectible regularity. 

If we have perhaps belabored the point in Examples ( 1 ) ,  (2) ,  and (3) we have 
done so because the principle they illustrate is so hard to accept. Any predic­
tion whatsoever can be obtained by projecting regularities . As Goodman puts it, 
"To say that valid predictions are those based on past regularities ,  without being 
able to say which regularities, is thus quite pointless . Regularities are where 
you find them, and you can find them anywhere ." An acceptable scientific in­
ductive logic must have rules for determining the projectibility of regularities . 
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It remains to be shown how this discussion of regularities and projectibility 
bears on the principle of the uniformity of nature. Just as we saw that the 
naive characterization of scientific inductive logic as a system that projects 
observed regularities into the future was pointless unless we can say which 
regularities it projects, so we shall see that the statement that scientific induc­
tive logic presupposes the uniformity of nature is equally pointless unless we 
are able to say in what respects nature is presupposed to be uniform. For it is 
self-contradictory to say that nature is uniform in all respects , and trivial to say 
it is uniform in some respects . 

In the original statement of the Goodman paradox, the gem expert, who 
spoke our ordinary language, assumed nature to be uniform with respect to 
the blueness or greenness of emeralds . Since observed emeralds had 
always been green, and since he was assuming that nature is uniform and that 
the future would resemble the past in this respect, he predicted that the 
emerald would remain green. But the hypothetical gem expert who spoke the 
grue-bleen language assumed nature to be uniform with respect to the 
grueness or bleenness of emeralds. Since observed emeralds had always been 
grue and since he was assuming that nature is uniform and that the future 
would resemble the past in this respect, he predicted that the emerald would 
remain grue. But we saw that these two predictions were in conflict. The .· 
future cannot resemble the past in both these ways . As we have seen, such 
conflicts can be multiplied ad infinitum. The future cannot resemble the past 
in all respects . It is self-contradictory to say that nature is uniform in all 
respects . 

We might try to retreat to the claim that scientific induction presupposes 
that nature is uniform in some respects . But this claim is so weak as to be no 
claim at all . To say that nature is uniform in some respects is to say that it ex­
hibits some patterns , that there are some regularities in nature taken as a 

whole (in both the observed and unobserved parts of nature) .  But as we have 
seen in this section, in any sequence of observations, no matter how chaotic 
the data may seem, there are always regularities .  This holds not only for se­
quences of observations but also for nature as a whole. No matter how chaotic 
nature might be, it would always exhibit some patterns; it would always be uni­
form in some respects . These uniformities might seem highly artificial, such as 
a uniformity in terms of "grue" and "bleen" or "snarf" and "murkle."  They 
might be fiendishly complex. But no matter how nature might behave, there 
would always be some uniformity, "natural" or "artificial," simple or complex. 
It is therefore trivial to say that nature is uniform in some respects . Thus, if 
the statement that scientific induction presupposes that nature is uniform is to 
convey any information at all, it must specify in what respects scientific induc­
tion presupposes that nature is uniform. 
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The points about regularities and projectibility and the uniformity of nature 
are really two sides of the same coin. There are so many regularities in any se­

quence of observations and so many ways for nature to be uniform that the 
statements "Scientific induction projects observed regularities into the future" 
and "Scientific induction presupposes the uniformity of nature" lose all mean­
ing. They can, however, be reinvested with meaning if we can formulate rules 
of projectibility for scientific inductive logic. Then we could say that scientific 
inductive logic projects regularities that meet these standards . And that would 
be saying something informative. We could reformulate the principle of the 
uniformity of nature to mean: Nature is such that projecting regularities that 
meet these standards will lead to correct predictions most of the time. Thus, 
the whole concept of scientific inductive logic rests on the idea of projectibil­
ity. The problem of formulating precise rules for determining projectibility is 
the new riddle of induction. 

Exercise: 

In the example of the four boxes labeled "Excelsior!"  find a regularity in the obser­
vations whose projection would lead to the prediction that the mask will be blue. 

IV.5.  SUMMARY. This chapter described the scope of the problem 
of constructing a system of scientific inductive logic. We began with the sup­
position that scientific inductive logic could be simply characterized as the 
projection of observed regularities into the future in accordance with some 
rule, such as Rule S .  We saw that this characterization of scientific inductive 
logic is inadequate for several reasons, the most important being that too many 
regularities are to be found in any given set of data. In one set of data we can 
find regularities whose projection leads to conflicting predictions .  In fact, for 
any prediction we choose, there will be a regularity whose projection licenses 
that prediction. 

Scientific inductive logic must select from the multitude of regularities 
present in any sequence of observations, for indiscriminate projection leads to 
paradox. Thus, in order to characterize scientific inductive logic we must spec­
ify the rules used to determine which regularities it considers to be pro­
jectible. The problem of formulating these rules is called the new riddle of in­
duction. 

Essentially the same problem reappears if we try to characterize scientific 
inductive logic as a system that presupposes that nature is uniform. To say that 
nature is uniform in some respects is trivial. To say that nature is uniform in all 
respects is not only false but self-contradictory. Thus, if we are to characterize 
scientific inductive logic in terms of some principle of the uniformity of nature 
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which it presupposes, we must say in what respects nature is presupposed to 
be uniform, which in turn determines what regularities scientific inductive 
logic takes to be projectible . So the problem about the uniformity of nature is 
just a different facet of the new riddle of induction. 

The problem of constructing a system of scientific inductive logic will not 
be solved until the new riddle of induction and other problems have been 
solved. Although these solutions have not yet been found, there have been de­
velopments in the history of inductive logic which constitute progress towards 
a system. 

In the next chapter we shall pursue an analysis of causality which casts 
some light on well-known features of the experimental method. Then we will 
discuss the major achievement of the field, the probability calculus . 

Suggested reading 
Nelson Goodman, Fact, Fiction and Forecast (Cambridge, MA: Harvard Univer­
sity Press, 1983). 



v 
Mill's Methods of Experimental 
Inquiry and the Nature of 
Causality 

V. l .  INTRODUCTION. One of the purposes of scientific inductive 
logic is to assess the evidential warrant for statements of cause and effect. But 
what exactly do statements claiming causal connection mean, and what is their 
relation to statements describing de facto regularities? These are old and .deep 
questions and we can give only partial answers here . 

In his System of Logic, published in 1843, John Stuart Mill discussed five 
"methods of experimental inquiry" that he found used in the work of contem­
porary scientists . When we make some simple distinctions between different 
senses of "cause," we will find that we can use the basics of logic introduced in 
Chapter I to give a logical analysis of Mill's methods . 

V.2. CAUSALITY AND NECESSARY AND SUFFICIENT CON­
DITIONS. Many of the inquiries of both scientific research and practical 
affairs may be characterized as the search for the causes of certain effects . The 
practical application of knowledge of causes consists either in producing the 
cause in order to produce the effect or in removing the cause in order to prevent 
the effect. Knowledge of causes is the key to control of effects . Thus, physicians 
search for the cause of certain diseases so that they may remove the cause and 
prevent the effect. On the other hand, advertising men engage in motivational 
research into the causes of consumer demand so that they can produce the 
cause and thus produce the effect of consumer demand for their products . 

However, the word "cause" is used in English to mean several different 
things . For this reason, it is more useful to talk about necessary conditions and 
sufficient conditions rather than about causes. 

Definition 10: A property F is a sufficient condition for a property G if 
and only if whenever F is present, G is present. 
Definition 1 1 : A property H is a necessary condition for a property I if 
and only if whenever I is present, H is present. 

Being run over by a steamroller is a sufficient condition for death, but it 
is not a necessary condition. Whenever someone has been run over by a 
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steamroller, he is dead. But it is not the case that anyone who is dead has been 
run over by a steamroller. On the other hand, the presence of oxygen is a 
necessary condition, but not a sufficient condition for combustion. Whenever 
combustion takes place, oxygen is present. But happily it is not true that when­
ever oxygen is present, combustion takes place. When we say that A causes B 
we sometimes mean that A is a sufficient condition for B, sometimes that A is .. 
a necessary condition for B, sometimes that A is both necessary and sufficient 
for B,  and sometimes none of these things . 

If we are looking for causes in order to produce an effect, it is reasonable to 
look for sufficient conditions for that effect. If we can manipulate circum­
stances so that the sufficient condition is present, the effect will also be 
present. If we are looking for causes in order to prevent an effect, it is reason­
able to look for necessary conditions for that effect. If we prevent a necessary 
condition from materializing, we can prevent the effect. The eradication of . 
yellow fever is a striking illustration of this strategy. Doctors discovered that 
being bitten by a certain type of mosquito was a necessary condition for 
contracting yellow fever. It was not a sufficient condition, for some people who 
were bitten by these mosquitos did not contract yellow fever. Consequently, a 
campaign was instituted to destroy these mosquitos through the widespread 
use of insecticide and thus to prevent yellow fever. 

From the definitions of necessary and sufficient conditions, we can prove 
several important principles .  It follows immediately from the definitions that: 

1 .  If A is a sufficient condition for B,  then B is a necessary condition 
for A.  
2 .  If C i s  a necessary condition for D, then D is a sufficient condition 
for e. 

To say that A is a sufficient condition for B is ,  by definition, to say that when­
ever A is present, B is present. But to say that B is a necessary condition for A 
is, by definition, to say the same thing. 

Let us look at some illustrations of these principles. Since the presence of 
oxygen is a necessary condition for combustion, then by principle 2 combus­
tion is sufficient to ensure the presence of oxygen. Thus, suppose someone 
lowers a burning candle into a deep mine shaft he proposes to explore. If the 
candle continues to bum, he will know that the shaft contains sufficient oxygen 
to breathe. To illustrate principle 1 ,  let us suppose that a professor has con­
structed a test such that a high grade on the test is sufficient to guarantee that 
the student has studied the material. Then studying the material is a necessary 
condition for doing well on the test. 

Two additional principles require a little more thought: 
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3 .  If A is a sufficient condition for B, then ---B is a sufficient condition 
for ---A.  
4. If C i s  a necessary condition for D, then ---D is  a necessary condition 
for ---C. 

Using the definition of sufficient condition, principle 3 becomes: 

3 ' .  If whenever A is present B is present, then whenever ---B is present 
�A is present. 

Now remember from the presence table for negation that ---B is present just 
when B is absent and ---A is present just when A is absent. So principle 3 can 
be rewritten again as : 

3". If whenever A is present B is present, then whenever B is absent A 
is absent. 

We can now see why this principle is correct. Suppose that whenever A is pres­
ent, B is present. Suppose further that B is absent in a certain case. Then A 
must also be absent, for if A were present, B would be present, and it is not. 
Let us see how this works in a concrete case. Suppose that a certain infection 
is a sufficient condition for a high fever; that is , everyone who suffers from this 
infection runs a high fever. Then the absence of a high fever is sufficient to 
guarantee that a person is not suffering from this infection. 

That principle 4 is correct can be demonstrated in the same way. Using the 
definition of necessary condition, we can rewrite principle 4 as : 

4 ' . If whenever D is present C is present, then whenever ---C is pres­
ent ---D is present. 

And using the presence table for negation, we can rewrite it again as : 

4" . If whenever D is present C is present, then whenever C is absent D 
is absent. 

And this is simply a restatement of principle 3" using different letters . 
We can use the same example to illustrate principle 4. Since suffering from 

the infection is a sufficient condition for running a high fever, running the 
fever is a necessary condition for having the infection (principle 1 ) .  By princi­
ple 4, since running the fever is a necessary condition for having the infection, 
not having the infection is a necessary condition for not running a fever. (It is 
not a sufficient condition since other diseases might result in a fever. ) 

Two more principles will complete this survey of the basic principles 
governing necessary and sufficient conditions : 
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5 .  If A is a sufficient condition for B, then �A is a necessary condition 
for �B.  

6 .  If  C i s  a necessary condition for D, then �c is  a sufficient condition 
for �D. 

Using the definitions and the presence table for negation we can rewrite 
ciple 5 as : 

5 ' .  If whenever A is present B is present, then whenever B is absent 
is absent. 

But this is exactly what we established in 3". In the same manner, we can 
rewrite principle 6 as : 

6 ' .  If whenever D is present C is present, then whenever C is absent, · . .  
D is absent. 

But this is exactly what we established in principle 4". A concrete illustration 
of principle 5 is that, since being run over by a steamroller is a sufficient con- ·· 
dition for death, not being run over by a steamroller is a necessary condition : 
for staying alive. And principle 6 can be illustrated by the observation that, if 0 

studying is a necessary condition for passing a test, not studying is a sufficient 
condition for failing it. 

When we speak of the cause of an effect in ordinary language, we some­
times mean a sufficient condition, as when we say that the infection was the 
cause of the fever or that being run over by a steamroller was the cause of 
death. Sometimes we mean a necessary condition, as when we say that yellow 
fever was caused by the bite of the mosquito or a high score on the test was 
due to diligent study. On the other hand, necessary and sufficient conditions) 
are sometimes not causes at all but rather symptoms or signs . The continued 
burning of the candle was a sign of the presence of oxygen. The high fever was 
a symptom of the infection. When we analyze Mill's methods , it will be seen . 
that the precise language of necessary and sufficient conditions is much more>0 
useful than the vague language of cause and effect, sign and symptom. 

Exercises 

Show that the following principles are correct and give a concrete illustration of 
each: 

1 .  If -B is a sufficient condition for -A, then A is a sufficient condition for B .  

2.  I f  -D is a necessa:ry condition for - C ,  then C i s  a necessa:ry condition for D .  
3 .  I f  -A is a necessa:ry condition for -B, then A is a sufficient condition for B .  
4 .  I f  -C is a sufficient condition for -D, then C is a necessa:ry condition fo r  D. 
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5. If A is a necessary condition for E and B is a necessary condition for E, then 
A&B is a necessary condition for E.  

6.  If A&B is  a necessary condition for E, then A is  a necessary condition for E and 
B is a necessary condition for E. 

7. If A is a sufficient condition for E and B is a sufficient condition for E, then 
Av  B is a sufficient condition for E .  

8. I f  Av B i s  a sufficient condition for  E ,  then A i s  a sufficient condition for E and 
B is a sufficient condition for E.  

9. If  A is  a necessary condition for E, then whatever the property F,  Av F is  a 
necessary condition for E.  

10. If A is  a sufficient condition for E, then whatever the property F,  A&F is  a suffi­
cient condition for E. 

V.3.  MILL'S METHODS. Mill presented five methods designed to 
guide the experimenter in his search for causes . They are the method of agree­
rnent, the method of difference, the joint method, the method of concomitant 
variation, and the method of residues . However, Mill did not actually originate 
these methods, nor did he fully understand them. 

The theoretical basis of Mill's methods has only recently been fully explored 
by the philosopher G. H.  von Wright. Following von Wright, we will present 
Mill's methods a little differently than Mill did. We will be able to uncover the 
theoretical basis of Mill's methods in a discussion of the metl1od of agreement, 
the method of difference, and the joint method. Since there is nothing essen­
tially new in the method of concomitant variation and the method of residues ,  
we shall not discuss them. However, we shall still be left with five methods, for 
there are two variations of the method of agreement and two variations of the 
joint method. 

These methods are to be viewed as methods of finding the necessary or 
sufficient conditions of a given property. The property whose necessary or 
sufficient conditions are being sought is called the conditioned property . 
A conditioned property may have more than one sufficient condition. If 
the conditioned property is death, being run over by a steamroller is one 
sufficient condition for it, but there are many others . A conditioned property 
may also have more than one necessary condition. If the conditioned property 
is the occurrence of combustion, the presence of oxygen is a necessary 
condition for it, but so is the presence of an oxidizable substance. Those prop­
erties suspected of being necessary or sufficient conditions for a given 
conditioned property are called possible conditioning properties . The general 
problem is, "How is the information gained from observing various 
occurrences used to pick out the necessary and sufficient conditions from the 
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possible conditioning properties?" The following methods are attempts to 
answer this question. 

VA. THE DIRECT METHOD OF AGREEMENT. Suppose that 
one of the possible conditioning propeities A, B, C, or D is suspected of being 
a necessary condition for the conditioned property E, but which one is not 
known. Suppose further that, either by experimental manipulation or simply 
by studious observation, a wide variety of occurrences are observed in which E 
is present, and that the only possible conditioning property that is present on 
all these occasions is C.  The set of observations shown in Example 1 corre-

Example I 

Possible conditioning Conditioned 
properties property 

A B c D E 

Occurrence 1 :  p p p A p 
Occurrence 2: p A p p p 
Occurrence 3 :  A p p A p 

sponds to this description. Occurrence 1 shows that D cannot be a necessary 
condition for E. The definition of necessary condition tells us that a necessary 
condition for E must be present whenever E is present. But in 1 ,  E is present 
while D is absent. Thus, occurrence 1 eliminates D from the list of possible 
necessary conditions . In the same manner, occurrence 2 shows that B cannot 
be a necessary condition for E, since E is present while B is absent. Occur­
rence 3 eliminates A and eliminates D once more . The only candidate left for · 
the office of necessary condition for E is C.  The observations show that if one 
of the possible conditioning properties is in fact a necessary condition for E, . 
then C must be that necessary condition. 

In Example 1 three occurrences were required before A, B, and D could be 
eliminated as possible necessary conditions for E. Actually, we might have 
done without occurrence 1 since occurrence 3 also eliminated D. However, in 
the occurrence shown in Example 2 all could be eliminated at one stroke . The 
principle of elimination is the same: Any property that is absent when E is 
present cannot be a necessary condition for E. 

Suppose someone were to object that the absence of D might be necessary 
for the presence of E; that is , that �D might be a necessary condition for E, 
and that the data in Example 2 have not eliminated that possibility. This is cor­
rect, but it shows no defect in the argument. Only the simple properties A, B, 
C, and D were included in the possible conditioning properties ;  the complex 
property � D was not. And all that was claimed was that if one of the possible 
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Example 2 

Occurrence 1 :  

Example 3 

A 

Occurrence 1 :  A 

A 

A 

Possible conditioning 
properties 

B C 

A p 

D 

A 

Possible conditioning properties 

Simple Complex 

B c D �A �B �c 

A p A p p A 

�D 

p 

75 

Conditioned 
property 

E 

p 

Conditioned 
property 

E 

p 

conditioning properties is a necessary condition for E, then C is that necessary 
condition. But if we were to add the negations of A, B ,  C, and D to our list 
of possible conditioning properties ,  then occurrence 1 of Example 2 would 
not suffice to eliminate all the alternatives but C. This is readily shown in 
Example 3 .  

We can tell whether a complex property is present or absent in a given oc­
currence from the information as to whether its constituent simple proper­
ties are present or absent. This information will be found in the presence 
table for that complex property. Here it need only be remembered, from 
the presence table for negation, that the negation of a property is absent 
when that property is present, and present when that property is absent. 
Now in Example 3, occurrence 1 shows that A, B ,  D, and �c cannot be 
necessary conditions for E. This leaves C, �A, �B, and �D as likely cand­
idates .  If the field is to be narrowed down, some more occurrences must be 
observed. These might give the results shown in Example 4. Again occur­
rence 1 eliminates A, B ,  D, and �c. Occurrence 2 further eliminates �A, oc­
currence 3 eliminates �B, and occurrence 4 eliminates �D. Thus, the only 
possible conditioning property left is C.  If any one of the possible conditioning 
properties is a necessary condition for E, then C is that necessary condition. 

In Example 4 it took four occurrences to eliminate all the possible 
conditioning properties but one . However, the two occurrences observed in 
Example 5 would have done the job.  Occurrence 1 shows that A, �B, �C, 
and � D cannot be necessary conditions for E since they are absent when E is 
present. Occurrence 2 further eliminates B, D, �A, and �c, leaving only C.  
Thus, in this example i f  one of the possible conditioning properties is a 
necessary condition for E, then C is that necessary condition. It is true, in gen-
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Example 4 

Possible conditioning properties Conditioned 
Simple Complex property 

A B c D �A �B � c �v E 

Occurrence 1 :  A A p A p p A p p 
Occurrence 2 :  p A p A A p A p p 
Occurrence 3 :  A p p A p A A p p 
Occurrence 4: A A p p p p A A p 

Example 5 

Possible conditioning properties 
Conditioned 

Simple Complex property 

A B c D �A � B � c �D E 

Occurrence 1 :  A p p p p A A A p 
Occurrence 2 :  p A p A A p A p p 

eral, that if we admit both simple properties and their negation as possible 
conditioning properties ,  then the minimum number of occurrences that can 
eliminate all but one of the possible conditioning properties is 2 .  As we saw . · · · 
before, when only simple properties are admitted as possible conditioning · ·  
properties, the minimum number of occurrences that can eliminate all but · 
one of them is 1 .  But the basic principle of elimination remains the same in 
both cases : A property that is absent when E is present cannot be a necessary 
condition for E. 

We were able to extend Mill's method of agreement to cover negative possi­
ble conditioning properties, and this makes sense, for negative properties are 
quite often necessary conditions . Not being run over by a steamroller is a 

necessary condition for remaining alive and not letting one's grade average fall 
below a certain point may be a necessary condition for remaining in college. 
We are interested in negative necessaiy conditions because they tell us 
what we must avoid in order to attain our goals . But negations of simple prop­
erties are not the only complex properties that may be important necessary 
conditions . 

Let us consider disjunctions of simple properties as necessary conditions . 
Either having high grades in high school or scoring well on the entrance exam­
ination might be a necessary condition for getting into college . It might not be · 
a sufficient condition since someone who meets this qualification might still be 
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rejected on the grounds that he is criminally insane. To take another example, 
in football either making a touchdown or a field goal or a conversion or a 

Example 6 

Occurrence 1 :  
Occurrence 2 :  

Possible conditioning properties 

Simple Complex 

A B C D BvC 

A 
A 

p 
A 

A 
p 

A 
A 

p 
p 

Conditioned 
property 

E 

p 
p 

safety is a necessary condition for scoring. In this case the necessary condition 
is also a sufficient condition. We are interested in disjunctive necessary condi­
tions because they lay out a field of alternatives,  one of which must be realized 
if we are to achieve certain ends . 

The question of what happens when disjunctions (alternations) of simple 
properties are allowed into a set of possible conditioning properties is too in­
volved to be treated fully here. But the principle of elimination remains the 
same. We can see how this principle operates in two simplified examples that 
allow only simple properties and one disjunction as possible conditioning 
properties .  In Example 6 the complex property BvC is the only property that 
is always present when E is present. Occurrences 1 and 2 eliminate all the sim­
ple properties as necessary conditions .  Thus, if one of the possible condition­
ing properties is a necessary condition for E, BvC is that necessary condition. 

In Example 6 the disjunction was the property left after all the others had 
been eliminated. Let us now look at Example 7, where the disjunction itself is 
eliminated. Occurrence 1 eliminates A and C as necessary conditions ,  and 

Example 7 

Occurrence 1 :  
Occurrence 2 :  

Possible conditioning properties 

Simple Complex 

A B C D BvC 

A 
p 

p 
A 

A 
A 

p 
p 

p 
A 

Conditioned 
property 

E 

p 
p 

occurrence 2 shows that neither B nor C nor BvC can be a necessary condition 
for E. This leaves only D, so if one of the possible conditioning properties is a 
necessary condition for E, then D is that necessary condition. vVe shall not 
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explore further the treatment of complex possible conditioning properties 
by the direct method of agreement. 1  But you cannot go wrong if you remem­
ber that the principle of elimination in the direct method of agreement is : 
A property that is absent when E is present cannot be a necessary condition 
for E.  

Use of  the direct method of  agreement requires looking for occurrences of 
the conditioned property in circumstances as varied as possible. If these cir­
cumstances are so varied that only one of the possible conditioning properties 
is present whenever the conditioned property is present, it may be suspected 
that that property is a necessary condition for the conditioned property. It has 
been shown that the logic behind this method is the same as the logic behind 
the method of the master detective who eliminates suspects one by one in or­
der to find the murderer. If only one of the possible conditioning properties is 
present whenever the conditioned property is present, then all the other possi­
ble conditioning properties are eliminated as necessary conditions since they 
are each absent in at least one occurrence in which the conditioned property is 
present. 

But the method of agreement resembles the method of the master detec­
tive in two further ways . When starting on a murder case, the detective cannot 
be sure that he will be able to eliminate all the suspects but one. After all, the 
murder might have been done by two people working together. The same is 
true of the method of agreement, for a conditioned property can have more 
than one necessary condition. Moreover, the master detective may not have 
the murderer or murderers in his initial list of suspects and may end up elimi­
nating all the possibilities .  In this case he will have to go back and look for 
more suspects to include in a more comprehensive list. In a similar manner 
the scientist may not have included the necessary condition or conditions for a 
conditioned property in his initial list of possible conditioning properties .  
Thus, his observations might eliminate all his possible conditioning properties .  

Exercises 

1 .  In Example 1 which of the following complex properties are eliminated as neces­
sary conditions for E by occurrences 1 ,  2, and 3? 

1 The direct method of agreement can be expanded to include simple properties, 
negations of simple properties, and disjunctions of simple properties and their negations 
as possible conditioning properties. There is no need to worry about conjunctions since a 
conjunction, that is, F&G, is a necessary condition for E if and only if F is a necessary 
condition for E and G is a necessary condition for E. Thus, if we can discover all the 
individual necessary conditions, we automatically have all the conjunctive necessary 
conditions. 
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a. -A d. -D. 
b.  -B .  e .  AvD. 
c. -c.  f. BvC. 

2. In the following example, for each occurrence find whether the complex proper­
ties are present or absent and which of the possible conditioning properties are 
eliminated as necessary conditions for E:  

Possible conditioning properties 
Conditioned 

Simple Complex property 

A B c -A -B -c Ave -BvC E 

Occurrence 1 :  p p p p 
Occurrence 2: p p A p 
Occurrence 3:  p A p p 
Occurrence 4: p p A p 
Occurrence 5 :  A A p p 
Occurrence 6: A A p p 

3. In Exercise 2 one of the possible conditioning properties was not eliminated. 
Describe an occurrence which would eliminate it. 

V.5. THE INVERSE METHOD OF AGREEMENT. The inverse 
method of agreement is a method for finding sufficient conditions .  To find a 
sufficient condition for a given property, E,  we look for a property that is 
absent whenever E is absent. This is illustrated in Example 8 .  D is the only 
possible conditioning property that is absent whenever the conditioned prop-

Example 8 

Possible conditioning Conditioned 
properties property 

A B c D E 

Occurrence 1 :  p A A A A 
Occurrence 2 :  A p A A A 
Occurrence 3 :  p A p A A 

erty is absent. Thus, by the inverse method of agreement, if one of the possi­
ble conditioning properties is a sufficient condition for E, then D is that suffi­
cient condition. 
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The inverse method of agreement operates in the following manner: We 
know from the definition of sufficient condition that a sufficient condition for E 
cannot be present when E is absent. To say that a certain property is a sufficient 
condition for E means that whenever that property is present, E is also present. 
Thus, in Example 8 occurrence 1 shows that A cannot be a sufficient condition 
for E since it is present when E is absent. Occurrence 2 shows that B cannot be 
a sufficient condition for E for the same reason, and occurrence 3 does the 
same for C and A once again. D is therefore the only property left that can be a 

sufficient condition for E .  In this way the inverse method of agreement, like the 
direct method, works by eliminating possible candidates one by one. 

Example 9 

Possible 
sufficient Possible necessary 

conditions for E conditions for � E 

A B c D �A �B � c �D E �E 

Occurrence 1 :  A A A A p p p p A p 
Occurrence 2 :  A p p A p A A p A p 
Occurrence 3 :  p A p A A p A p A p 

The inverse method of agreement may be viewed as an application of the di­
rect method to negative properties .  This is possible in light of the principle : if 
�A is a necessary condition for �E , then A is a sufficient condition E .  Example 
9 illustrates this method in action. The only possible necessary condition for 
�E that is present whenever �E is present is �D. Notice that this comes to 
the same thing as saying that the only one of the possible sufficient conditions 
for E that is absent whenever E is absent is D. Thus, by the direct method of 
agreement, if one of the possible necessary conditions for � E is actually a nec­
essary condition for � E, then � D is that necessary condition. But by the prin­
ciple connecting negative necessary conditions for � E and positive sufficient 
conditions for E, this is the same as saying if one of the possible sufficient con­
ditions for E is actually a sufficient condition for E, then D is that sufficient 
condition. Thus, we arrive at the inverse method of agreement. 

At this point it may be useful to compare the direct and inverse methods of 
agreement. The direct method is a method of finding necessary conditions . To 
find a necessary condition for E, we look for a property that is present when­
ever E is present. The direct method depends on the following principle of 
elimination: A property that is absent when E is present cannot be a necessary 
condition for E.  The inverse method is a method for finding sufficient condi­
tions . To find a sufficient condition for E,  we look for a property that is absent 
whenever E is absent. The inverse method depends on the following principle 
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of elimination: A property that is  present when E is absent cannot be a suffi­
cient condition for E .  

In  Example 8 i t  required three occurrences to narrow down the field to D. 
However, the occurrence shown in Example 10 would alone eliminate A, B, 
and C. In the inverse method of agreement, as in the direct method, if we only 
admit simple properties as possible conditioning properties ,  then the least 
number of occurrences that can eliminate all but one of the possible condi­
tioning properties is 1 .  

Example 10 
Possible conditioning Conditioned 

properties property 

A B c D E 

Occurrence 1 :  p p p A A 

Suppose, however, we wish to admit negative properties as possible 
conditioning properties .  This is a reasonable step to take, for negative suffi­
cient conditions can be quite important. Not staying awake while driving may 
be a sufficient condition for having an accident. Not being able to see may be a 
sufficient condition for not being called for military service . ( By the principle 
that if �F is sufficient for �G, then F is necessary for G, this would mean that 
being able to see would be a necessary condition for being called for military 
service . )  We will introduce negative possible conditioning properties as in the 
section on the direct method of agreement. But this time we will rely on the 
principle of elimination of the inverse method of agreement: A property that is 
present when E is absent cannot be a sufficient condition for E. In Example 1 1  
the only possible conditioning property that is not eliminated is a negative one. 

Example 1 1  
Possible conditioning properties 

Conditioned 
Simple Complex property 

A B c D �A �B �c �D E 

Occurrence 1 :  A p A p p A p A A 
Occurrence 2 :  A p A A p A p p A 
Occurrence 3: p p A A A A p p A 
Occurrence 4: A p p A p A A p A 

� B is the only possible conditioning property that is absent in every occur­
rence in which E is absent, so if one of the possible conditioning properties is 
a sufficient condition for E, then � B is that sufficient condition. 
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It need not take as many occurrences as in Example 1 1  to eliminate all the 
possible conditioning properties but one. Two occurrences of the right kind 
could do the job, as shown in Example 12. In this example, if one of the possi-

Example 12 
Possible conditioning properties 

Conditioned 
Simple Complex property 

A B c D �A �B �c �D E 

Occurrence 1 :  p p p A A A A p A 
Occurrence 2 :  A p A p p A p A A 

ble conditioning properties is a sufficient condition for E, then � B is that suf­
ficient condition. In the inverse method of agreement, as in the direct method, 
if only simple properties and their negations are admitted as possible condi­
tioning properties,  then the least number of occurrences that can eliminate all 
but one of the possible conditioning properties is 2 .  

We may further extend the inverse method of  agreement to  allow conjunc­
tions of simple properties as possible conditioning properties .  For example, 
suppose we are told that eating good food and getting plenty of rest and get­
ting a moderate amount of exercise is a sufficient condition for good health. 
The inverse method of agreement would support this contention if we found 
that whenever good health was absent, this complex condition was also absent 
(that is , if everyone who was in poor health had not eaten good food or had not 
gotten enough rest or had not exercised) . The inverse method of agreement 
would disprove this contention if an occurrence was found where good health 
was absent and the complex condition was present (that is , if someone was 
found in poor health who had eaten good food, and gotten plenty of rest, and 
gotten a moderate amount of exercise ) .  

Let us look at two examples of  the inverse method of  agreement where a 

conjunction is admitted as a possible conditioning property. In Example 13 
all the possible conditioning properties except the conjunction are eliminated. 
The only possible conditioning property that is absent whenever E is 

Example 13 
Possible conditioning properties 

Conditioned 
Simple Complex property 

A B c D C&D E 

Occurrence 1 :  p p A p A A 
Occurrence 2: p A p A A A 
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absent is the complex property C&D.  If one of the possible conditioning 
properties is a sufficient condition for E, C&D is that sufficient condition. 

In Example 14 the conjunction itself is eliminated. If one of the possible 
conditioning properties is a sufficient condition for E, then D is that sufficient 
condition. We shall not explore further the treatment of complex possible con­
ditioning properties by the inverse method of agreement.2 But you cannot go 
wrong if you remember that the principle of elimination in the inverse method 

Example 14 

Possible conditioning properties Conditioned 
Simple Complex property 

A B c D B &C E 

Occurrence 1 :  p p A A A A 
Occurrence 2: A p p A p A 

of agreement is : A property that is present when E is absent cannot be a suffi­
cient condition for E .  

The parallels drawn between the method of  the master detective and the 
direct method of agreement hold also for the inverse method of agreement. It 
should not be thought that the field of possible sufficient conditions can always 
be narrowed down to one, for a property can have several sufficient 
conditions . We should also be prepared for the eventuality that the observed 
occurrences will eliminate all possible conditioning properties in the list. After 
all, a sufficient condition may not have been included in the list of possible 
conditioning properties .  In such a case we would have to construct a more 
comprehensive list of possible conditioning properties .  In some cases this 
more comprehensive list might be constructed by considering complex prop­
erties that were not included in the original list .  

In Example 15 the five occurrences show that none of the possible condi­
tioning properties can be a sufficient condition for E. But they suggest that the 
complex property B&C might be added to the list of possible conditioning 
properties .  This property is always absent when E is absent. 

2 The inverse method of agreement can be expanded to include simple properties, nega­
tions of simple properties,  and conjunctions of simple properties and their negations as 
possible conditioning properties .  There is no need to worry about disjunctions , since a 
disjunction, FvG, is a sufficient condition for E if and only if F is a sufficient condition 
for E and G is a sufficient condition for E. For this reason if one can discover all the suf­
ficient conditions that are not disjunctions, he or she will automatically have all the 
sufficient conditions that are disjunctions. 
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Example 15 

Possible conditioning Conditioned 
properties property 

A B c D E 

Occurrence 1 :  A p A p A 
Occurrence 2 :  p A p p A 
Occurrence 3 :  p A A p A 
Occurrence 4: A A A p A 
Occurrence 5 :  p p A A A 

The situation, however, might be more problematic. The observed occur­
rences might not only eliminate all the simple properties in the list but also 
all the (contingent) complex properties that can be constructed out of them. 
Such is the case in Example 16. It is impossible to discover in this list any 

Example 16 

Possible conditioning Conditioned 
properties property 

A B c E 

Occurrence 1 :  p p p A 
Occurrence 2: p p A A 
Occurrence 3 :  p A p A 
Occurrence 4: p A A A 
Occurrence 5: A p p A 
Occurrence 6: A p A A 
Occurrence 7: A A p A 
Occurrence 8 : A A A A 

(contingent) complex property constructed out of A, B ,  and C which is not 
eliminated as a sufficient condition for E by these eight occurrences .  In such a 
case some new simple properties would have to be added to the list of possible 
conditioning properties .  

Exercises 

1 .  In Example 9 which of the following properties are eliminated as sufficient con­
ditions for E by occurrences 1, 2, and 3? 
a. A. c. C.  
b .  B.  d. D. 

e. A&B .  g. A&D. 
f. E &C .  
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2. In Example 10 which of the following properties are eliminated by occurrence l? 

a .  A. e .  A&C.  
b. B .  f. B&C. 
c. C. g. A&B .  
d. D .  h. A&D. 

3. In Example 1 1  which of the following properties are eliminated by the four 
occurrences? 

a. A&B .  d .  A&D. 
b. B&C. e .  A&C.  
c. B&D. f. C&D. 

4. In Example 13 are there any conjunctions of the simple properties listed other 
than C&D which are not eliminated by occurrences l and 2? 

V.6. THE METHOD OF DIFFERENCE. The direct method of 
agreement was a method for finding the necessary conditions of a given prop­
erty. The inverse method of agreement was a method for finding the sufficient 
conditions of a given property. Suppose, however, that our inquiry had a more 
restricted goal. Suppose that we wanted to find out which of the properties 
present in a certain occurrence of the conditioned property are sufficient con­
ditions for it. To illustrate, let us suppose we find a dead man with no marks of 
violence on his body. In trying to determine the cause of death, we are looking 
for a sufficient condition for death. But we are not looking for any sufficient 
condition for death. Being run over by a steamroller is a sufficient condition 
for death, but that fact is irrelevant to our inquiry since this particular man was 
not run over by a steamroller. The conditioning property "being run over by a 
steamroller" is absent in this particular occurrence. What we are looking for is 
a sufficient condition for death among the properties that are present in this 
particular occurrence in which death is present. It is this sort of inquiry for 
which the method of difference is designed. 

It is important to note why no analogous question can be raised for neces­
sary conditions . It follows from the definition of necessary condition that all 
the necessary conditions for a given property must be present whenever that 
property is present. If loss of consciousness is a necessary condition for death, 
it will be present in every case of death. The questions "What properties are 
necessary conditions for E?" and "Which of the properties that are present in 
this particular occurrence of E are necessary conditions for E?" have exactly 
the same answer. In contrast, when a given property is present, some of its suf­
ficient conditions may be absent. Many people who die have not been run 
over by a steamroller nor been decapitated on the guillotine . The question 
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'Which of the properties that are present in this particular occurrence of E 
are sufficient conditions for E?" will, in general, have a shorter list of proper­
ties as its answer than the question 'Which properties are sufficient conditions 
r E?" 1or . 

In Example 17 occurrence � does not eliminate any of the possible condi­
tioning properties as sufficient conditions for E .  But if the question of interest 
is 'Which of the properties that are present in occurrence � are sufficient 

Example 17  

Possible conditioning Conditioned 
properties property 

A B c D E 

Occurrence � :  p A p p p 

conditions for E?" then the candidates are limited to A, C, and D. Let us now 
look for other occurrences that will narrow down the field. The principle of · 
elimination is the same as that employed in the inverse method of agreement: A 
property that is present when E is absent cannot be a sufficient condition for E. 
Therefore, let us look for additional occurrences when E is absent. Suppose that 
the results of our investigation are as shown in Example 18.  In this example, oc­
currences 1 and 2  eliminate A and D as sufficient conditions for E. Of the possi­
ble conditioning properties that were present in occurrence �, only C is left. 
Thus, if one of the possible conditioning properties that was present in occur­
rence � is a sufficient condition for E, then C is that sufficient condition. Note 
that B might also be a sufficient condition for E, but it is not one we would be 

Example 18 

Possible conditioning Conditioned 
properties property 

A B c D E 

Occurrence � :  p A p p p 
Occurrence 1 :  p A A A A 
Occurrence 2 :  A A A p A 

interested in, since we are looking for a sufficient condition which was present 
in occurrence � .  Occurrences 1 and 2 eliminate candidates in exactly the same 
way as in the inverse method of agreement. In the inverse method of agree­
ment, however, we started with all the possible conditioning properties as 
candidates ,  while in the method of difference, we start with the possible 
conditioning properties that are present in a particular occurrence in which 
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the conditioned property is present. (We shall always call the occurrence that 
defines the candidates "occurrence �,, and will number as before the occur­
rences that eliminate some of the candidates . )  

If only simple properties are admitted as possible conditioning properties ,  
then occurrence � might only leave one candidate, as  shown in Example 19. In 
this example the only possible conditioning property present is D. Thus, with-

Example 19 

Occurrence � :  

Possible conditioning 
properties 

A B C D 

A A A p 

Conditioned 
property 

E 

p 

out looking for eliminating occurrences it may be concluded that if one of the 
possible conditioning properties that is present in occurrence � is a sufficient 
condition for E, then D is that sufficient condition. In fact, if only simple prop­
erties are admitted as possible conditioning properties,  then occurrence � 
might leave no candidates whatsoever. 

But there is no reason why negations of the simple properties cannot be ad­
mitted as possible conditioning properties ,  as was done in the treatment of the 
direct and inverse methods of agreement. If both simple properties and their 
negations are allowed as possible conditioning properties ,  then in an occur­
rence � ,  exactly half of the possible conditioning properties will be left as 
candidates, since exactly half of them must be present in any occurrence . Fur­
ther occurrences must be sought then in order to eliminate some of these 
properties,  as in the inverse method of agreement. 

Let us determine which of the properties present in occurrence � are suffi­
cient conditions for E. In Example 20, D, �A , �B , and �c are the possible 

Example 20 
Possible conditioning properties 

Conditioned 
Simple Complex property 

A B c D �A �B �c �D E 

Occurrence � :  A A A p p p p A p 
Occurrence 1 :  p p p p A A A A A 
Occurrence 2: p A A A p A p p A 

conditioning properties present in occurrence � and are the candidates .  Oc­
currences 1 and 2 eliminate D, �A , and �c . The only one of the candidates 
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which remains is �B, leading to the conclusion that if one of the possible con­
ditioning properties that is present in occurrence � is a sufficient condition for 
E, then � B is that sufficient condition. 

As has been shown, if simple properties and their negations are allowed as 
possible conditioning properties,  then occurrence � will leave exactly half of 
the possible conditioning properties as candidates .  The least number of addi­
tional occurrences needed to eliminate all these candidates but one is one, if 
that one occurrence is of the right kind, as shown in Example 21 .  The possible 
conditioning properties that are present in occurrence � constitute the candi­
dates, and they are B, C, �A, and � D. Occurrence 1 eliminates B, �A, and 
� D since they are present when E is absent.  Thus,  if one of the possible con-

Example 21  

Possible conditioning properties Conditioned 
Simple Complex property 

A B c D �A �B �c �D E 

Occurrence � :  A p p A p A A p p 
Occurrence 1 :  A p A A p A p p A 

ditioning properties that is present in occurrence � is a sufficient condition for 
E, then C is that sufficient condition. 

If you look closely at Example 21 ,  you will notice that the reason all candi­
dates but C were eliminated is that C is the only possible conditioning 
property that was both present in occurrence � (where E was present) and 
absent in occurrence 1 (where E was absent) .  All other possible conditioning 
properties present in occurrence � were also present in occurrence 1, where E 
was absent, and thus were eliminated. It follows that all the possible condition­
ing properties that were absent in occurrence � were also absent in occurrence 
1 (except for �C ) . In other words, there was only one change in the presence 
or absence of the possible conditioning properties from occurrence � to occur­
rence 1 :  the change from C being present and �c being absent in occur­
rence � to C being absent and �C being present in occurrence 1 .  This one 
change in the possible conditioning properties corresponds to the change in 
the conditioned property: E is present in occurrence � and absent in occur­
rence 1 .  When both simple properties and their negations are allowed to be 
possible conditioning properties in the method of difference, this is the only 
way in which one eliminating occurrence can eliminate all but one of the pos­
sible conditioning properties .  This rather special case of the method of differ­
ence is what Mill describes as "the method of difference. "  However, Mill's 
view of the method of difference was too narrow, for, as has been shown, the 
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method has application when several eliminating occurrences ,  rather than just 
one, narrow down the field. 

The method of difference may be expanded, in exactly the same way as in 
the inverse method of agreement, by allowing conjunctions of simple proper­
ties as possible conditioning properties .  Simply remember that we start with a 
particular occurrence, occurrence "' ,  in which E is present. The candidates will 
then be all the possible conditioning properties that are present in occur­
rence "' .  We then look for occurrences where E is absent, so that some of the 
candidates can be eliminated. A candidate is eliminated if it is present in an 
occurrence where E is absent, since a sufficient condition for E cannot be 
present when E is absent. If all candidates but one are eliminated, we can con­
clude that, if one of the possible conditioning properties present in occur­
rence "' is a sufficient condition for E, then the remaining candidate is that suf­
ficient condition. But, as in the direct and inverse methods of agreement, it is 
not always possible to narrow down the field to one candidate . More than one 
sufficient condition for E may be present in occurrence "' . When a man is si­
multaneously beheaded, shot through the heart, and exposed to a lethal dose 
of nerve gas, several sufficient conditions for death are present. On the other 
hand, the eliminating occurrences might eliminate all the candidates .  This 
would show that the list of possible conditioning properties did not include a 
property that was both present in occurrence "' and a sufficient condition 
for E. In such a case other factors that were present in occurrence "' must be 
sought and included in a new, expanded list of possible conditioning 
properties .  

Exercises 

Consider the following example: 

Possible conditioning properties 

A 

Simple 

B C 

Occurrence "' :  P A A 

1 .  What are the candidates? 

Complex 

D -A -B -C 

p A p p 
-D 
A 

Conditioned 
property 

E 

p 

2. Describe an eliminating occurrence that would eliminate all the candidates but 
one. 

3 .  Describe an eliminating occurrence that would eliminate all the candidates .  

4 .  Describe three eliminating occurrences, each of  which would eliminate exactly 
one of the candidates .  

5. What would you conclude if you observed the occurrence that you described in 
Exercise 2? 
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6. What would you conclude if you observed the occurrence you described in 
Exercise 3? 

7. What would you conclude if you observed the three occurrences you described 
in Exercise 4? 

8.  What would you conclude if you observed all the occurrences that you described 
in Exercises 2 and 4? There are several correct answers to Exercises 2 and 4, and 
the answer to this question will depend on which ones you chose .  

V.7. THE COMBINED METHODS .  Sometimes a property is 
both a necessary and sufficient condition for another property. It has already 
been pointed out that in football the complex property "making a touchdown 
or making a field goal or making a conversion or making a safety" is both a 
necessary and sufficient condition for scoring. Medical authorities thought un­
til recently that stoppage of the heart for more than a few minutes was both a 
necessary and sufficient condition for death. In elementary physics being 
acted on by a net force is both a necessary and sufficient condition for a 

change in a body's velocity. Since there is a method for finding necessary 
conditions - the direct method of agreement- and two methods for finding 
sufficient conditions - the inverse method of agreement and the method of 
difference -they may be combined in order to find conditions that are both 
necessary and sufficient. 

In Example 22 the direct and inverse methods of agreement are combined 

Example 22 
Possible conditioning properties Conditioned 

Simple Complex property 

A B c D �A �B � c  � D  E 

Occurrence 1 :  p A p A A p A p p 
Occurrence 2: A p p p p A A A p 
Occurrence 3 :  A p A p p A p A A 
Occurrence 4: p A A A A p p p A 

into what is called the double method of agreement. Occurrence 1 eliminates 
B ,  D, �A, and �c and occurrence 2 eliminates A, �B,  �c,  and �D as neces­
sary conditions for E in accordance with the direct method of agreement, for 
they are absent when E is present. We can conclude then from occurrences 1 
and 2, by the direct method of agreement, that if one of the possible condi­
tioning properties is a necessary condition for E, then C is that necessary con­
dition. In accordance with the inverse method of agreement, occurrence 3 
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eliminates B, D, �A, and �c and occurrence 4 eliminates A, �B, �c, and 
� D as sufficient conditions for E, since they are present when E is absent. 
This again leaves only C. We can conclude from occurrences 3 and 4, by the 
inverse method of agreement, that if one of the possible conditioning proper­
ties is a sufficient condition for E, then C is that sufficient condition. Putting 
these results together leads to the conclusion that if one of the possible condi­
tioning properties is both a necessary and a sufficient condition for E, then C 
is that property. However, a stronger conclusion may be drawn: If one of the 
possible conditioning properties is a necessary condition for E, and one of the 
possible conditioning properties is a sufficient condition for E, then one and 
the same possible conditioning property is both a necessary and sufficient 
condition for E, and that property is C. 

The joint method of agreement and difference, which i s  illustrated in Exam­
ple 23, combines the direct method of agreement and the method of differ­
ence. The first step is to apply the method of difference to Example 23. 
Occurrence ¢ sets up as candidates for the sufficient condition for E those 
properties that are present in occurrence ¢, namely, A, C, � B , and � D. But 
occurrence I shows that neither A nor � B nor � D can be a sufficient condi­
tion for E, since they are all present when E is absent. This leaves only C .  

Example 23 

Possible conditioning prope1ties Conditioned 
Simple Complex property 

A B c D �A �B �c �D E 

Occurrence ¢ :  p A p A A p A p p 
Occurrence I :  p A A A A p p p A 
Occurrence 2 :  A p p p p A A A p 

Thus, we can conclude from occurrence ¢ and occurrence I that if one of the 
possible conditioning properties present in occurrence ¢ is a sufficient condi­
tion for E, then C is that sufficient condition. 

Now let us apply the direct method of agreement to Example 23. Occur­
rence ¢ may be used again since, in accordance with the direct method of 
agreement, it eliminates B, D, �A, and �C as necessary conditions for E.  Oc­
currence 2 further eliminates A, � B , and � D as necessary conditions for E 
since they also are absent in an occurrence where E is present. This leaves 
only C.  So from occurrence ¢ and occurrence 2, by the direct method of 
agreement, we can conclude that if one of the possible conditioning properties 
is a necessary condition for E, then C is that necessary condition. Putting the 
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results of the method of difference and the direct method of agreement 
together leads to the conclusion that: If one of the possible conditioning prop­
erties present in occurrence ;:i is a sufficient condition for E and if one of the 
possible conditioning properties is a necessary condition for E, then one and 
the same possible conditioning property that is present in occurrence ;:i is both 
a necessary and sufficient condition for E, and that property is C. 

I n  comparing the example o f  the joint method o f  agreement and difference 
with the previous example of the double method of agreement, note that oc­
currences ;:i '  1, and 2 of Example 23 are the same, respectively, as occurrences 
1 ,  4, and 2 of Example 22. Notice also that Example 22, using the double 
method of agreement, takes four occurrences to narrow down the field to C, 
while Example 23, using the joint method of agreement and difference, takes 
only three occurrences .  Does this mean that the joint method of agreement 
and difference is, in some way, a more efficient method than the double 
method of agreement? Not at all . Less occurrences are needed in Example 23 
than in Example 22 because the conclusion drawn from Example 23 is weaker 
than that drawn from Example 22 . From Example 23 we may conclude that if 
one of the possible conditioning properties which is present in occurrence ;:i is 
a sufficient condition for E and one of the possible conditioning properties is a 
necessary condition for E, then C is both the necessary and the sufficient con­
dition. If we want to remove the restriction "which is present in occurrence <:i "  

then the extra occurrence that appears in Example 22 is needed, and the dou­
ble method of agreement must be used. Consequently, from Example 22 the 
stronger conclusion may be drawn that if one of the possible conditioning 
properties is a sufficient condition for E and one of the possible conditioning 
properties is a necessary condition for E, then C is both the necessary and the 
sufficient condition. 

Whether the joint method of agreement and difference or the double 
method of agreement is chosen depends on what previous knowledge we 
have. Suppose we have observed an occurrence and have good reason to 
believe that one of the possible conditioning properties which is present in 
that occurrence is a sufficient condition for E. We would then designate that 
occurrence as occurrence ;:i and proceed with the joint method of agreement 
and difference. If, however, we had good reason to believe only that one or 
another of the possible conditioning properties is a sufficient condition for E, 
we would have to rely on the double method of agreement. The combined 
methods are equally efficient, but they are appropriate in different circum­
stances .  

The combined methods may be  expanded to include other complex proper­
ties (disjunctions and conjunctions of simple properties and the negations 
of simple properties ) ,  but a discussion of these more involved forms of 
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Mill's methods belongs in more advanced texts . Remember, however, that 
everything that has been said about Mill's methods, and everything that can 
be said about their more involved forms, rests on two simple principles of 
elimination: 

i. A necessary condition for E cannot be absent when E is present. 

ii . A sufficient condition for E cannot be present when E is absent. 

These two principles are more important to remember than Mill's methods 
themselves, and they should always be borne in mind when a mass of data is 
being analyzed. 

Exercises 

Suppose you have observed the following occurrences :  

Possible conditioning properties 
Conditioned 

Simple Complex property 

A B c D -A -B -c -D E 

Occurrence 1 :  p p A A A A p p p 
Occurrence 2 :  p A A A A p p p A 
Occurrence 3: A p p p p A A A p 

1 .  Suppose you know that one of the possible conditioning properties is a necessary 
condition for E. Which one is it? What occurrences did you use and which of 
Mill's methods did you apply? 

2. Suppose you know that one of the possible conditioning properties which is pres­
ent in occurrence 1 is a sufficient condition for E. Which one is it? What occur­
rences did you use and which one of Mill's methods did you apply? 

3. Suppose you know that one of the possible conditioning properties is a necessary 
condition for E and that one of the possible conditioning properties which is 
present in occurrence 1 is a sufficient condition for E. Do you know whether one 
possible conditioning property is both a necessary and sufficient condition for E? 
If  so ,  which one is  it and which one of Mill's methods did you use? 

4 .  Suppose you know that one of the possible conditioning properties is a necessary 
condition for E.  You also know that one of the possible conditioning properties is a 
sufficient condition for E, but you do not know whether it is a property that is pres­
ent in occurrence 1. Furthermore, you have observed an additional occurrence: 

Occurrence 4:  

A B C D 

A A P P 

-A -B -C -D 

p p A A 
E 

A 
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Do you know whether one possible conditioning property is both a necessary and 
a sufficient condition for E? If so, which one is it and which one of Mill's meth­
ods did you use? 

5 .  Suppose you had only observed occurrences 1 and 2 but you knew that one of 
the possible conditioning properties was both a necessary and a sufficient condi­
tion for E .  Using the two principles of elimination, can you tell which one it is? 

V.8. THE APPLICATION OF MILL'S METHODS. The conclu­
sions we drew from various applications of Mill's methods always began with 
phrases such as "If one of the possible conditioning properties is a necessary 
condition for E . . . , "  or "If one of the possible conditioning properties 
which is present in occurrence � is a sufficient condition for E . . . ," and so 
on. It would seem that our confidence that Mill's methods have found a neces­
sary condition, or a sufficient condition, or a necessary and sufficient condition 
depends on our confidence that the list of possible conditioning properties 
contains the requisite kind of condition. But how can we be sure that this list 
does contain the type of condition being sought? 

One suggestion might be to include all properties as possible 'conditioning 
properties and to rely on some principle of the uniformity of nature to guaran­
tee that each conditioned property has some necessary and some sufficient 
conditions . There are many things wrong with this suggestion, but the most 
practical objection is that there are simply too many properties to take into ac­
count. Even if we are interested only in the properties that are present in a 

given occurrence, as in the method of difference, not all properties that are 
present can be considered. In any occurrence there are countless properties 
present. When you sneeze, there are hundreds of chemical reactions going on 
within your body: various electrical currents are circulating in your nerve 
fibers; you are being bombarded by various types of electromagnetic radiation; 
diverse happenings, great and small, surround you. It would be an impossible 
task to measure and catalog all these things and eliminate them, one by one, 
by Mill's methods in order to find a sufficient condition for sneezing. 

For Mill's methods to be of any use, there must be some way of ascertain­
ing what factors are likely to be relevant to the conditioned property in which 
we are interested; there must be some way of setting up a list of reasonable 
length of possible conditioning properties which probably contains the neces­
sary or sufficient conditions being sought. The only way to do this is to apply 
inductive logic to a previously acquired body of evidence . Mill's methods are 
of no use unless we already have some inductive knowledge to guide us in set-' 
ting up the list of possible conditioning properties .  

Mill's methods are useful in science, but their usefulness depends on 
inductively based judgments as to what factors are likely to be relevant to a 
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given conditioned property. Of course, inductively based judgments are not 
infallible . We may be mistaken in believing that the list of possible condition­
ing properties contains a necessary or a sufficient condition. The occurrences 
observed may eliminate all of the possible conditioning properties .  If this 
happens, all the evidence at our disposal must be reexamined, and perhaps 
new evidence must be sought, in order to find new properties that are proba­
bly relevant to the conditioned property under investigation. Once the induc­
tive judgment has been made as to which additional properties must be 
considered, Mill's methods may then be reapplied. In the search for necessary 
and sufficient conditions , Mill's methods are part of the picture, but they are 
not the whole picture . The most basic, and least understood, part of the 
process is the setting up of lists of possible conditioning properties .  

Imagine the following scientific experimental situation in which Mill's 
methods might be applied. Suppose we have three new drugs that hold 
promise for the cure of a hitherto incurable disease: drug A, drug B, and drug 
C.  We administer various combinations of these drugs and note whether the 
patient is cured or not. The results are tabulated in Example 24, where "A" 
means drug A has been administered, "B" means drug B has been adminis­
tered, and "C" means drug C has been administered. "E" means the patient 

Example 24 

Possible conditioning Conditioned 
properties property 

A B c E 

Occurrence 1 :  p p A p 
Occurrence 2 :  p A p p 
Occurrence 3 :  A p A A 
Occurrence 4: A A p A 
Occurrence 5 :  A A A A 

has been cured. Occurrence 5 represents the cases of all the previous patients 
who had not taken any of these drugs and who had not been cured. The cases 
of patients to whom various combinations of the new drugs have been admin­
istered are tabulated under occurrences 1 through 4. Example 24 constitutes 
a case of the double method of agreement and it warrants the conclusion that 
if one of the possible conditioning properties is a necessary condition for 
E, and one of the possible conditioning properties is a sufficient condition 
for E, then A is both the necessary and the sufficient condition for E. Thus, 
these results lead to the conclusion that, to the best of our knowledge, the ad­
ministration of drug A is both a necessary and a sufficient condition for a cure 
of the disease. 
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But suppose that someone tries other combinations of the drugs and gets 
the results shown in Example 25. Occurrence 7 shows that A is not a sufficient 
condition for E. Therefore, if we wished to find a sufficient condition for E, we 
would have to expand our list of possible conditioning properties .  Suppose 
now that biochemical theory suggests that there may be a chemical interaction 

Example 25 

Possible conditioning Conditioned 
properties property 

A B c E 

Occurrence 6 :  p A A p 
Occurrence 7: p p p A 
Occurrence 8 :  A p p A 

if the three drugs are administered simultaneously, and that such a chemical 
interaction might cancel out their effectiveness against the disease. The sum of 
our observations would then suggest that what may be happening in occur- �1;,;� 
rence 7 is that drugs B and C are interacting and preventing drug A from\��� 
curing the disease. (We could imagine different occurrences that would sug-j��i 

r.:!"!:� :':e� :n:���:.�:[e �)���:�::�::il::�
A ;�:�����te� ii 

(occurrence 1 ) ,  or when taken with C but without B (occurrence 2) .  This sug- ;,�i 
gests that the complex property, A&--- (B&C) , that is, taking drug A but not in ;�i 
conjunction with both drug B and drug C, is really the sufficient condition for :;� 
E. If we were to add this complex property to our list of possible conditioning i�} 
properties ,  and use all eight occurrences, we would find that it is then the only ;�' 
possible conditioning property that is present whenever E is present and :·;J 
absent whenever E is absent. In this way we can reapply the double method ofJ� 
agreement to an enlarged set of possible conditioning properties ,  in the face of2i 
additional occurrences, in order to revise our conclusion and make it more ::: 

sophisticated. 
But we might not be finished even at this point. Suppose that another 

researcher were to point out that all our tests have been made on patients in 
whom the disease was at an early stage, and that many diseases are more easily . 
cured in their early stages than in their advanced stages.  This would suggest 
that our complex property only appears to be a sufficient condition for E, 
because we have not tested our drugs on advanced cases of the disease.  What 
we would now have to do is to take this additional factor into account in our 
list of possible conditioning properties .  We could introduce a new property, D, 
which is said to be present when the disease is in its advanced stages and · 
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absent otherwise. In all the occurrences where drugs have been administered 
so far, D has been absent. Now we would have to find various occurrences 
where D was present.  That is , we should administer various combinations of 
drugs to patients in advanced stages of the disease and note the results . If the 
treatment that effected a cure before were to still effect a cure, then we would 
not have to revise our belief that A&� (B&C) is a sufficient condition for E .  
But if our treatment failed in advanced cases, then we might have to say that 
the sufficient condition for being cured is having the disease in an early stage 
and receiving the correct combination of drugs . That is,  we would have to say 
that A&� (B&C) is not a sufficient condition for E, but that �D&A&� (B&C) 
is a sufficient condition fo r  E. 

We could imagine an endless stream of developments which might force us 
to add more and more complex and simple properties to our list of possible 
conditioning properties and to continually reevaluate our results . Someone 
might develop a new drug that effects a cure in the absence of drug A and 
thus show that A is not a necessary condition for E. Additional research might 
suggest other factors that might be relevant and whose relationship to E we 
might wish to examine. It is by such a process that Mill's methods , in conjunc­
tion with a continual search for new occurrences,  and new relevant possible 
conditioning properties ,  contribute to the growth of scientific knowledge . 

Suggested reading 

Georg Henrik von Wright, A Treatise on Induction and Probability (Patterson, 
NJ: Littlefield, Adams & Co. ,  1960) .  

V.9. SUFFICIENT CONDITIONS AND FUNCTIONAL RELA­
TIONSHIPS.  The preceding treatment of Mill's methods in terms of neces­
sary and sufficient conditions proceeded entirely in qualitative terms . One may 
wonder what relevance, if any, that discussion has for sciences which have 
moved from qualitative to quantitative language . Here, ascriptions of cause or 
statements of necessary and sufficient conditions have been replaced by 
functional relationships expressed by mathematical equations . The basic logic 
of the situation, however, is not as different as it may seem. An equation 
expressing a functional relationship between physical quantities is tantamount 
to not one but an infinite number of statements to the effect that one physical 
property is a sufficient condition for another. 

To understand this , we must look first at the relation between properties 
and physical quantities .  Consider a physical quantity, for example, tempera­
ture, as measured on a given scale (e .g. , degrees Kelvin) .  We make a factual 
claim about a state of a physical system when we say that its temperature 
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(in degrees Kelvin) has a certain value.  Temperature (so measured) is thus a 
relation between states of physical systems and (non-negative real) numbers . 
This is to say no more than: 

For every non-negative real number, x, there is associated a unique 
physical property, having the temperature x in degrees Kelvin. 

A physical quantity can thus be seen as not one but rather an infinite family of 
physical properties .  The properties in such a family are mutually exclusive (a 
physical system cannot have two different temperatures at the same time) and 
jointly exhaustive (a physical system in a given state must have some tempera-
ture or other) over the states of the appropriate type of physical system (the 
concept of temperature has no meaning when applied, for instance, to the 
nucleus of an atom) .  An appropriate set of real numbers serves as a fruitful 
filing system for the physical properties in such a family. We can thus say that: 

A physical quantity is a family of physical qualities ,  mutually exclusive 
and jointly exhaustive over the states of the intended class of physical 
systems, indexed by some set of real numbers. 

We said that the indexing of the physical quantities by the index set of real 
numbers forms a fruitful filing system. It is fruitful just in that it, together with 
the filing systems of other physical quantities, enables us to formulate physical 
laws in terms of mathematical equations . To see how this works, let us con­
sider a few simple equations . First the equation x = 2y . This equation gives 
concise expression to an infinite number of statements, of which a few are: 

If y is 0, x is 0 . 

If y is  1 ,  x is 2. 
If  y i s  3 � , x is 7. 

In general, for each value of y,  the equation correlates a unique value of x . We 
give expression to this fact by saying that here x is a function of y .  This equa­
tion also makes y a function of x, since for every value of x it correlates a 

unique value for y (i .e . ,  �x ) .  It does not always follow, however, that if x is a 

function of y, y is a function of x. Consider the equation x = y2• Here, each 
value of y determines a unique value of x, but the converse is not true. If x is 
+4, y may be either +2  or -2. Thus, x is a function of y,  but y is not a func­
tion of x .  

What does this mean in physical terms when the variables of the equation 
represent physical quantities?  If the variables represent physical quantities 
measured on fixed scales (e .g. , temperature Kelvin) then, as we have seen, 
each numerical value of a variable represents a physical quality (e .g. , having a 
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temperature of 10 degrees Kelvin) .  If a physical quantity, Q2, is a function of 
another, Qi, then for every value vi of Qi there is a uniquely determined 
value vi of Q2 such that whenever a physical system has vi of Qi it has vi of Q2. 
That is , having vi of Qi is a sufficient condition for having vi of Q2• Thus, in 
terms of our view of physical quantities as families of physical qualities , we 
may say that: 

If Q2 is a function of Qi, then for every member of the family Qi. there 
is some member of the family Q2 for which it is a sufficient condition . 

This generalizes in a straightforward way to functions of several variables.  
For example, consider the ideal gas law: 

V =  k.I_ 
p 

where V is volume, T is temperature, and P is pressure . k is called a system­
dependent constant since it varies from system to system (e .g. , different bal­
loons filled with gas ) but remains constant over different states of the same 
system (e.g . ,  heating a balloon, or submerging it to 200 fathoms ) .  The equation 
establishes V as a function of k , T, and P in that each triple of values for k , T, 
and P uniquely determines a value for V. Thus, in conjunction: 

k = 1 and T = 100 and P = 50 
is a sufficient condition for V = · 2. 

In general, we can say that if  a quantity, Q0, is a function of several others , 
Qi . . . Qm then for every conjunctive physical property which contains as 
conjuncts just one member from each of the families Qi . . .  Qm there is a 
member of the family Q0 for which it is a sufficient condition. Mathematical 
equations establishing functional relations between physical quantities thus al­
low succinct expression of extremely rich claims about sufficient conditions .  

Since we are still, at basis , dealing with sufficient conditions, the fundamen­
tal principles that we used to analyze Mill's methods must still apply, although 
in a slightly more complicated way. Instead of one conditioned property, we 
have the family of properties comprising a physical quantity (the dependent 
variable) .  We must find a way for establishing, for each member of this family, 
a list of possible conditioning properties .  This is a two-stage process . The first 
stage is to construct a list of physical quantities whose values are likely to be 
relevant in determining the value of the dependent variable. We can call this 
our list of independent variables . The second stage is to construct a list of 
likely looking functions which make the dependent variable a function of our 
independent variables . For each conditioned property (value of the dependent 
variable) ,  each of these functions determines one or more complex properties 
which are possible sufficient conditions for it. For example, consider the two 
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functions :  

Function (i) would make the following, among others, sufficient conditions for 
V =  1 :  

k = 1 and T = 1 and P = 1 
k = 1 and T = 2 and P = 2 

Function (ii) also makes 

k = 1 and T = 1 and P = 1 

a sufficient condition for V = 1 ,  but disagrees with function (i) in making 

k = 1 and T = 2 and P = 2 

a sufficient condition for V = 2 rather than for V = 1 .  Since V = 1 and V = 2 
are mutually exclusive physical properties, in any occurrence at least one of > 
them must be absent. We have, then, only to look for an occurrence where 
k = 1 and T = 2 and P = 2 in order to eliminate either the hypothesis that 
function (i) gives the correct sufficient conditions or the hypothesis that condi­
tion (ii) does. The method operative here is thus a straightforward application 
of the inverse method of agreement. The only new twist is that we have a fam­
ily of conditioned properties which are mutually exclusive, so that if one is pres­
ent, the rest must be absent. 

Although the mechanism for the elimination of the proposed functions is 
quite clear here, the process for setting up the list of possible functions is, as 
before, quite murky. Such is to be expected, since the first process is really de� 
ductive whereas the latter is genuinely inductive . Nevertheless, the analysis 
given so far enables us to shed some light on the process of isolating relevant 
independent variables .  

Remember that if P is a sufficient condition for C, then so is P and Q (and, of 
course, P and not-Q) .  There are, then, some very cumbersome sufficient condi­
tions around, but obviously the most knowledge is gained by finding the shortest 
ones . In terms of functions, this means that if a quantity, Q0, is a function of an­
other, Qi, it is also a function of Q1 and Q2 for any quantity Q2. Again, the most 
interesting functions are stated in terms of the minimum number of variables 
needed to do the job . Suppose we start with a list of likely conditioning quanti­
ties Qi, Q2, . . . , Qm vary them independently and find that one of them, say 
Qi, doesn't make any difference in the conditioned quantity. That is, for differ­
ent fixed combinations of values for Q2 • . .  Qm the value of the conditioned 
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quantity remains the same when the value of Qi is varied. Then we have good 
reason to believe that values of Qi would be excess fat in statements of sufficient 
conditions for the conditioned quantity. In other words, we have good (induc­
tive) reason for believing that Qi is not a relevant variable. This process of reduc­
ing our list of conditioning quantities is called isolating the relevant variables. 

The second stage in setting up the conditioning properties was to select a 
likely list of functions which make the dependent variable a function of the 
remaining independent variables . It is difficult to say anything very informa­
tive about the selection process . Sometimes we are guided by the sorts of 
functional relationships which have already been found to hold in similar phys­
ical situations, but it is difficult to say what "similar" means here. Sometimes 
we seem to be guided by considerations of simplicity of the expressions which 
designate the function. But, except in certain special cases, simplicity is a 
highly elusive concept. 

To the question, 'Why do we have this two-stage method of formulating 
statements of sufficient conditions?" we have already seen a relatively superfi­
cial (though correct) answer. That is, this method allows the succinct formula­
tion of statements of such power and scope that they would otherwise exceed 
the resources of our language. But there is another, more profound, reason: 
that the two stages are not inductively independent. To see what I mean, con­
sider a new physical quantity, r�, which is just like temperature Kelvin except 
that when temperature in degrees Kelvin equals 10, r� = 90 and when tem­
perature in degrees Kelvin equals 90, r� = 10. r� comprehends exactly the 
same physical qualities as temperature, and uses the same set of numbers to 
index them, but the filing system is different. Imagine now, formulating the 
ideal gas law in terms of T.;, rather than temperature. Suddenly, the simple be­
comes more complex (and by the same token, the complex can become more 
simple) .  Our basic physical magnitudes come to us, then, not simply as artless 
vehicles for the expression of factual claims, but rather as bearers of inductive 
wisdom. It is they, rather than other families of physical qualities ,  which have 
found expression in our language precisely because they have been found to 
enter into simply expressible functional relationships in a wide variety of phys­
ical contexts . Language comes to us with inductive commitments-commit­
ments so deeply ingrained that it is easy to overlook them. But, as we learned 
from Goodman in the last chapter, overlooking them leads to an excessively 
simple-minded view of the nature of the inductive process . 

V. 10. LAWLlKE AND ACCIDENTAL CONDITIONS. In Sec­
tion V.5 we defined a sufficient condition as follows : 

A property, F, is a sufficient condition for a property, G, if and only if 
whenever F is present, G is present. 
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Hence, the following are all legitimate statements of sufficient conditions :  

1 .  Being a brother is a sufficient condition for being male. 
2. Being over six feet tall is a sufficient condition for being over five feet 
tall. 
3. Being pure water at a pressure of one atnwsphere and a tempera­
ture of 1 00 degrees centigrade is a sufficient condition for boiling. 
4. Having an inertial mass of one kilogram is a sufficient condition for 
having a gravitational mass of one kilogram. 
5 .  Eating dinner at my house on January 12, 1 999, is a sufficient con­
dition for being under seven feet tall. 
6 .  Nelson Goodman had only dimes,  quarters, and half-dollars in his 
pocket on VE day, so being a coin in Nelson Goodman's pocket on VE 
day is a sufficient condition for being made of silver. 

It is obvious from these examples that there are strikingly different grades of 
sufficiency. The sufficiency of the condition in Example 1 is due, in a most 
transparent way, to the meanings of the terms involved. We may call it an ana­
lytic sufficient condition. Example 2 also depends on the concepts involved, 
rather than the way we find the world to be, so we shall also call it an analytic 
sufficient condition. However, Example 2 should remind us that an account of 
analyticity is not always so easy to give as in the case of Example 1 .  It is not 
clear whether Example 3 is analytic or not. Is having a certain boiling point part 
of what we mean by being pure water? Is the boiling point of pure water in­
volved in the definition of the centigrade scale? If the answer is yes to either of 
these questions, then we may have an analytic sufficient condition. If we have 
independent definitions of pure water and temperature centigrade then Exam­
ple 3 states a sufficient condition which is informative about the way the world 
operates .  Actual practice tends to shift from one set of meanings to another de­
pending on what is most convenient to the occasion. Thus, actual practice does 
not provide an unambiguous answer as to whether Example 3 is an analytic suf­
ficient condition or not. Such a semantically muddled state of affairs is common 
in human language, ordinary and scientific, and in such cases an unambiguous 
answer is only to be had by making a decision as to how the words are to be 
used on a particular occasion. Examples 4, 5, and 6 are all synthetic, but 4 is 
clearly different in kind from 5 and 6. Example 4 states a condition which is 
sufficient by virtue of physical law. In this respect it resembles Example 3, 
when Example 3 is interpreted as a synthetic statement. Examples 5 and 6, 
however, state conditions which are sufficient simply by happenstance. It sim­
ply happened that no one over six feet tall came to my house to eat dinner that 
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day. It just happened that Nelson Goodman had no pennies in his pocket on VE 
day. We say that these truths are accidental rather than lawlike. 

Although each of the distinctions between grades of sufficiency raises 
important and interesting questions ,  we shall focus here on the last one: the 
distinction between accidental and lawlike sufficient conditions. This is an 
important distinction for inductive logic. The establishment of either sort of 
sufficient condition may be an inductive affair, but the roles they play are so 
different that one would suspect that inductive logic should treat them differ­
ently. It is lawlike sufficient conditions which make up the body of science. 
Statements of accidental sufficient conditions like 5 and 6 may, like any other 
factual statement, set up the application of a scientific theory, but they never 
form part of such a theory itself. The examples that we used to illustrate Mill's 
methods were, accordingly, all examples of lawlike sufficient conditions 
(or necessary conditions - all the distinctions being made here obviously apply 
to necessary conditions also) . 

Now, does this imperil our analysis of Mill's methods? Not at all . Our analy­
sis depended only on the principle that a sufficient condition cannot be present 
when the conditioned property is absent. This principle of elimination follows 
from the definition of sufficient condition and thus holds for all sufficient 
conditions; accidental, lawlike, or analytic (likewise for necessary conditions) .  
The story that we have told about Mill's methods is nothing but the truth. It is, 
however, far from the whole truth. 

Mill's methods apply to analytic sufficient conditions, but eliminating other 
conditioning properties is surely not the most efficient way to arrive at being a 
brother as a sufficient condition for being male . It would be a hopelessly 
incompetent mathematician or logician who relied on the experimental 
method for his theorems. A scientist, on the other hand, would not even want 
an analytic sufficient condition in his list of conditioning properties ,  for know­
ing an analytic sufficient condition gives us no information about the way the 
world behaves .  Neither would a scientist want a property like being a coin in 
Nelson Goodmans pocket on VE day on his list of possible sufficient condi­
tions for being composed of silver. He knows that the overwhelming likelihood 
is that if this turns out to be a sufficient condition, it will tum out to be an 
accidental sufficient condition. 

This raises two questions : 

(A) How do we distinguish lawlike from accidental sufficient condi­
tions? 
(B)  Why is it that lawlike conditions find a place in the body of science 
whereas accidental ones do not? 

The answer to the second question, if it is to have any philosophical impor­
tance, must flow from considerations of the function of scientific law. And 
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anything better than an ad hoc answer to the first question must flow from a 

satisfactory answer to the second. 
Looking at Examples 1 through 6 it is easy to conjecture that the difference 

between accident and law is the difference between part and whole; that laws 
are truths about the whole universe, throughout space and time, whereas 
truths which are about restricted parts of it (e .g. ,  Nelson Goodman's pocket for 
the specified period of time) may be accidental. 

Such a view has its attractions . Surely the most striking examples of acci­
dental conditions stem from generalizations of spatio-temporally limited 
scope . The preoccupation of science with lawlike sufficient conditions is neatly 
explained by the universality of science. Science is concerned with patterns 
which recur throughout the universe, rather than with gossip about a particu­
lar spatio-temporal region. This concern flows from the essential pursuits of 
science: explanation and prediction . Science always explains an event by show­
ing it, in some way, to be an instance of a general pattern, rather than just a 
freak occurrence. As for prediction, our generalizations about Nelson Good­
man's pocket are obviously not very powerful predictive instruments , because 
they don't cover much territory and typically we don't know about the suffi­
cient conditions until we have already covered the territory! The contents of 
Goodman's pocket at the time in question had to be completely surveyed be­
fore confidence could be placed in our statements of sufficient conditions . 
Given such a complete survey, there is nothing left for them to predict. Since 
no complete survey of the universe is possible, generalizations about it must 
be known, if at all, while there is still predictive life left in them. 

Suppose we accordingly try to define a law as a true generalization which 
does not name specific times, places ,  or individuals . Isn't it possible that even 
the general descriptive machinery we have left may pick out a small finite class 
of objects? For instance, isn't it possible that a description of Nelson Good­
man's pocket on VE day down to the finest detail, down to the trajectories of 
subatomic particles, could be so specific without containing names for times, 
places, or individuals , that the only thing in the whole universe which would 
answer to it would be Nelson Goodman's pocket on VE day? Then, according 
to our definition, being a coin enclosed in such a structure would have to be a 

lawlike sufficient condition for being composed of silver. But it is clearly acci­
dental. In fact, it is doubly accidental, for it would be something of an accident 
that Goodman's pocket would be the only structure in the universe answering 
the description in question. 

What has gone wrong? One natural line of thought is to conjecture that the 
trouble lies in defining spatio-temporal limitation of scope via the terms in 
which the generalization is couched, rather than by the objects to which it 
refers . Why not say that a law is a true generalization which does not refer to 
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any spatio-temporally limited (or alternatively, to any finite) class of objects? 
Then 

All coins enclosed in a structure of type I are composed of silver. 

would fail to be a law, even if true, if Nelson Goodman's pocket on VE day 
constituted the only structure of type I .  

But wait! Why do we assume that this generalization is only about coins en­
closed in structures of type I? To be sure, if we know that a certain object is 
such a coin, we know that it is crucial to the generalization. It is crucial in that, 
if it turns out not to be silver, it falsifies the generalization. But if we know of 
another object that it is not silver, then similarly we know it to be crucial to the 
generalization. It is crucial in that if it turns out to be a coin enclosed in a 
structure of type I, it will falsify the generalization. In all fairness, then, we 
ought to allow that our generalization is also about objects not composed of 
silver. Another way to put the same point is to note that being a coin enclosed 
in a structure of type I is a sufficient condition for being composed of silver 
just in case not being composed of silver is a sufficient condition for not being a 
coin enclosed in a structure of type I. Thus, our generalization refers both to 
coins enclosed in a structure of type I and to objects not made of silver. A little 
further discussion might convince us that it refers to everything else as well. 
But we have already gone far enough to see that we are on the wrong track. 
The class of objects referred to by our generalization is no longer spatio-tem­
porally limited or finite . 

The attempt to locate the dividing line between accidental and lawlike suf­
ficient conditions in considerations of spatio-temporal limitation of scope 
seems to have come to a dead end. And if the problems so far raised for this 
approach are not enough, consider the following example (due to Professor 
Carl Hempel) :  

7. It seems likely that there is  no body of pure gold in the universe 
whose mass equals or exceeds 100,000 kilograms .  If so, being a body 
composed of pure gold is a sufficient condition for having a mass of less 
than 1 00,000 kilograms. 

Note that our belief in the foregoing is quite compatible with the belief in an 
infinite universe strewn with an infinite number of bodies composed of pure 
gold and an infinite number of bodies having a mass of more than 100,000 
kilograms .  

Yet, for all that, we would consider such a sufficient condition not a matter 
of law but rather an accident-a "global accident," if you please. A world 
might obey the same physical laws as ours , and yet contain huge masses of 
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gold just as a world with the same laws might have particles moving with dif­
ferent velocities .  What then is the difference between such global accidents 
and true laws? 

A major difference seems to be that laws are crucial to the structure of our 
whole view of the world in a way that accidental generalizations are not. If as­
tronomers announced the discovery of a large interstellar body of pure gold, 
we would find it surprising, but not disturbing. It would arouse our curiosity 
and our desire for an explanation. The falsification of a physical law, on the 
other hand, would call for revision throughout a whole system of beliefs and 
would destroy a whole tissue of explanations .  Tranquility is restored only when 
a new law reorders the chaos. 

One way of viewing this difference is to regard laws not merely as beliefs 
about the world but, in addition, as contingent rules for changing our beliefs 
under the pressure of new evidence . I now believe my harpsichord to be safely 
at rest in Goleta, California. If I would learn that a huge net force were being 
applied to it, say by a hurricane, I would revise that belief in accordance with 
the laws of physics and fear for its safety. It is not surprising that our system of 
beliefs should suffer a greater disturbance when rules normally used for 
changing beliefs must themselves be revised in comparison to situations in 
which they remain intact. 

It is of course true that an accidental generalization, or indeed any state­
ment we believe to be true, plays a role in determining how we change our 
beliefs under the pressure of new evidence . But the role appears to be differ­
ent from that played by laws. Let us compare . If I am told on good authority 
that a new heavenly body of mass greater than 100,000 kilograms has been 
discovered, I will assume that this is not a mass of pure gold. But if later inves­
tigations convince me that it is, in fact, pure gold I will not (as in the case of 
the harpsichord) revise my previous belief and conclude that it must really 
weigh less than 100,000 kilograms .  Rather, I will give up my belief that all bod­
ies composed of pure gold have a mass of less than 100,000 kilograms. 

But consider the coins in Goodman's pocket on VE day. You may have ex­
tremely strong grounds for believing that all these coins are silver; say you 
were present at the time, observed Goodman turning his pockets inside out 
yielding just three coins, that you tested them chemically and found them to 
be silver, and so on. Now if someone convinces you that he has one of the 
coins in Goodman's pocket on VE day you will assume that it is silver. If he 
then fishes out a copper cent, exclaiming "This is it! "  you will revise your opin­
ions both as to the origin of the coin and the veracity of its possessor. Thus,  the 
fact that a belief is held with extreme tenacity does not guarantee that it is 
functioning as a law, even though laws are typically more stable and central 
pieces of our intellectual equipment than mere factual judgments . 
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Perhaps the matter can be clarified if we consider the farfetched sort of cir­
cumstances under which being a coin in Goodman's pocket on VE day would 
be considered a lawlike sufficient condition for being made of silver. Suppose 
that our grounds for believing that all these coins are silver is that we know 
Goodman's pockets had a certain physical structure; that this structure sets up 
a force field which allows only silver articles to enter (or, more fancifully, one 
which transmutes all other elements to silver) . If the suggestion that laws have 
a special place as rules for changing beliefs has any currency then we should 
be able to find differences between such application of this sufficient condi­
tion in the lawlike and accidental cases. 

Human observation is fallible, and there is some likelihood, however small, 
that we missed a coin when examining Goodman's pockets . (Perhaps it stuck in 
that little comer of the pocket that doesn't tum inside out; perhaps this pair of 
pants had two watch pockets; etc . )  Suppose that there is such a coin. If we are 
suddenly informed of its existence, what are we to think of its composition? In 
the accidental case we have no clue what to think and if it turns out to be cop­
per we will not find this disturbing over and above our initial disturbance at 
having missed it. In the lawlike case, the inference rule still applies and we will 
be quite confident that it is silver. If it turns out to be copper, we will hasten to 
reexamine the structure of Goodman's pocket and if we find no fault in our 
previous beliefs about it, we will be forced to seek for some revised physical 
theory to account for these facts . 

Laws then, do seem to have a special status as rules for revising our beliefs .  
This special status is perhaps most easily seen in our reasoning about what 
might have been. We will say, of a glass of pure, cold water (at a pressure of 
one atmosphere) :  

(A) I f  this water had been heated to 100 degrees centigrade it would 
have boiled. 

because we believe that: 

(B )  All pure water at a pressure of one atmosphere and a temperature 
of 100 degrees centigrade boils . 

is a law . (A) is said to be a counteifactual conditional since, as the water has 
not been heated, its if-clause is contrary to fact. The law (B)  is said to support 
the counterfactual condition (A) . If we review our examples, we will find that 
laws support counterfactuals in a way that accidental generalizations do not. 
Suppose I have a box with an inertial mass of 3/5 of a kilogram. I say without 
trepidation that if this box had had an inertial mass of 1 kilogram, it would 
have had a gravitational mass of 1 kilogram. But if a certain man is seven and a 
half feet tall I will certainly not say that if he had eaten dinner at my house on 
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January 12, 1999, he would have been under seven feet tall. I will say that if a 
net force had been applied to my harpsichord, it would have moved. But I will 
not say that if this penny had been in Goodman's pocket on VE day it would 
have been silver nor will I say that if Jupiter were made of pure gold it would 
have a mass of less than 100,000 kilograms .  

Some metaphysicians have held that statements of what might have been 
are objective statements about parallel worlds or branches of time. Other 
thinkers hold that correct counterfactuals are fables constructed according to 
our contingent rules for changing beliefs .  Reasoning about what might have 
been has value for them only as practice for reasoning about what might be. 

It should be now clear that lawlike and accidental conditions are different, 
and you have some general indication of how they are different, but the speci­
fication of differences has not been precise. How exactly do laws function as 
contingent rules of inference? What are the rules for changing our beliefs 
about laws? Just what is needed for a law to support a given counterfactual? 
Despite an enormous amount of work there is, as yet, no generally satisfactory 
solution to these and related problems. They remain a major area of concern 
for the philosophy of science. 

Suggested readings 

Nelson Goodman, Fact, Fiction and Forecast (4th. ed. ) .  (Cambridge, MA: Har­
vard University Press, 1983) .  
Douglas Stalker (ed. ) ,  Gruel the new riddle of induction (Chicago Open Court, 
1994) .  



VI 

The Probability Calculus 

VI. I.  INTRODUCTION. The theoiy of probability resulted from 
the cooperation of two eminent seventeenth-century mathematicians and a 
gambler. The gambler, Chevalier de Mere, had some theoretical problems 
with practical consequences at the dice tables . He took his problems to Blaise 
Pascal who in turn entered into correspondence with Pierre de Fermat, in 
order to discuss them. The mathematical theoiy of probability was born in the 
Pascal-Fermat correspondence. 

We have used the word "probability" rather freely in the discussion so far, 
with only a rough, intuitive grasp of its meaning. In this chapter we will learn 
the mathematical rules that a quantity must satisfy in order to qualify as a 
probability. 

VI.2. PROBABILITY, ARGUMENTS, STATEMENTS, AND 
PROPERTIES .  The word "probability" i s  used for a number of  distinct 
concepts . Earlier I pointed out the difference between inductive probability, 
which applies to arguments, and epistemic probability, which applies to state­
ments . There is yet another type of probability, which applies to properties .  
When we speak of  the probability of throwing a "natural" in dice, or  the 
probability of living to age 65, we are ascribing probabilities to properties .  
When we speak of  the probability that John Q. Jones will live to age 65, or the 
probability that the next throw of the dice will come up a natural, we are as­
cribing probabilities to statements . Thus, there are at least three different 
types of probability which apply to three different types of things : arguments , 
statements, and properties .  

Luckily, there i s  a common core to these various concepts of probability: 
Each of these various types of probability obeys the rules of the mathematical 
theoiy of probability. Furthermore, the different types of probability are inter­
related in other ways, some of which were brought out in the discussion of in­
ductive and epistemic probability. In Chapter VI it will be shown how these 
different concepts of probability put flesh on the skeleton of the mathematical 
theoiy of probability. Here, however, we shall restrict ourselves to developing 
the mathematical theoiy. 

The mathematical theoiy is often called the probability calculus . In order 
to facilitate the framing of examples we shall develop the probability calculus 
as it applies to statements . But we shall see later how it can also accommodate 
arguments and properties .  

109 
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Remember that the truth tables for "� ," "&," and "v" enable us to find out 
whether a complex statement is true or false if we know whether its simple 
constituent statements are true or false. However, truth tables tell us nothing 
about the truth or falsity of the simple constituent statements . In a similar 
manner, the rules of the probability calculus tell us how the probability of a 
complex statement is related to the probability of its simple constituent state­
ments, but they do not tell us how to determine the probabilities of simple 
statements . The problem of determining the probability of simple statements 
(or properties or arguments) is a problem of inductive logic, but it is a problem 
that is not solved by the probability calculus . 

Probability values assigned to complex statements range from 0 to 1 . 
Although the probability calculus does not tell us how to determine the proba­
bilities of simple statements, it does assign the extreme values of 0 and 1 to 
special kinds of complex statements . Previously we discussed complex state­
ments that are true no matter what the facts are . These statements were called 
tautologies .  Since a tautology is guaranteed to be true, no matter what the 
facts are, it is assigned the highest possible probability value. 

Rule 1: If a statement is a tautology, then its probability is equal to 1 . 

Thus, just as the complex statement sv�s is true no matter whether its simple 
constituent statement, s, is true or false, so its probability is 1 regardless of the 
probability of the simple constituent statement. 

We also discussed another type of statement that is false no matter what the 
facts are . This type of statement, called the self-contradiction, is assigned the 
lowest possible probability value. 

Rule 2: If a statement is a self-contradiction, then its probability is 
equal to 0. 

Thus, just as the complex statement s&�s is false no matter whether its simple 
constituent statement, s, is true or false, so its probability is 0 regardless of the 
simple constituent statement. 

When two statements make the same factual claim, that is, when they are 
true in exactly the same circumstances , they are logically equivalent. Now if a 
statement that makes a factual claim has a certain probability, another state­
ment that makes exactly the same claim in different words should be equally 
probable . The statement "My next throw of the dice will come up a natural" 
should have the same probability as "It is not the case that my next throw of 
the dice will not come up a natural." This fact is reflected in the following rule : 

Rule 3: If two statements are logically equivalent, then they have the 
same probability. 
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By the truth table method it is easy to show that the simple statement p is logi­
cally equivalent to the complex statement that is its double negation, ��p, 
since they are true in exactly the same cases . 

Case 1 :  
Case 2 :  

p 

T 
F 

F 
T 

T 
F 

Thus , the simple statement "My next throw of the dice will come up a natural" 
has, according to Rule 3, the same probability as its double negation, "It is not 
the case that my next throw of the dice will not come up a natural."  

The first two rules cover certain special cases . They tell us the probability of 
a complex statement if it is either a tautology or a contradiction. The third rule 
tells us how to find the probability of a complex contingent statement from its 
simple constituent statements, if that complex statement is logically equivalent 
to one of its simple constituent statements . But there are many complex 
contingent statements that are not logically equivalent to any of their simple 
constituent statements , and more rules shall be introduced to cover them. The 
next two sections present rules for each of the logical connectives .  

Exercises 

Instead of writing "The probability of p is � ," we shall write, for short "Pr(p) = � ." 
Now suppose that Pr(p) = � and Pr(q) = i ·  Find the probabilities of the following 
complex statements, using Rules 1 through 3 and the method of truth tables :  

1 .  pvp. 5 .  - (pv-p ) .  
2. q&q.  6 .  - - (pv-p) .  
3. q&-q. 7. pv(q&-q) .  
4. -(q&-q) . 8. q&(pv-p) .  

VI.3. DISJUNCTION AND NEGATION RULES. The probabil­
ity of a disjunction pvq is most easily calculated when its disjuncts, p and q, are 
mutually exclusive or inconsistent with each other. In such a case the probabil­
ity of the disjunction can be calculated from the probabilities of the disjuncts 
by means of the special disjunction rule. We shall use the notation introducing 
the exercises at the end of the previous section writing "The probability of p is 
x" as: "Pr(p ) = x." 

Rule 4: If p and q are mutually exclusive, then Pr(pvq) = Pr(p ) + 
Pr(q ) .  
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For example, the statements "Socrates is both bald and wise" and "Socrates is 
neither bald nor wise" are mutually exclusive. Thus, if the probability that 
Socrates is both bald and wise is � and the probability that Socrates is neither 
bald nor wise is � ,  then the probability that Socrates is either both bald and 

. " h  b ld 
. · 1

+
1 3 wise or neit er a nor wise is 2 4 ,  or 4 .  

We can do a little more with the special alternation rule in the following 
case: Suppose you are about to throw a single six-sided die and that each of 
the six outcomes is equally probable; that is : 

Pr( the die will come up a 1 )  = � 
Pr( the die will come up a 2)  = � 
Pr( the die will come up a 3) = � 
Pr( the die will come up a 4) = � 
Pr( the die will come up a 5) = � 
Pr( the die will come up a 6)  = � 

Since the die can show only one face at a time, these six statements may be 
treated as being mutually exclusive. 1 Thus, the probability of getting a 1 or a 6 
may be calculated by the special disjunction rule as follows : 

Pr( lv6) = Pr( l )  + Pr(6) = � + � = � 
The probability of getting an even number may be calculated as 

Pr(even) = Pr(2v4v6) = Pr(2) + Pr(4) + Pr(6)  = � + � + � = � 
The probability of getting an even number that is greater than 3 may be calcu­
lated as 

Pr( even and greater than 3) = Pr(4v6) = Pr(4) + Pr(6)  = � + � = � 
The probability of getting an even number or a 3 may be calculated as 

Pr( even or 3) = Pr(2v4v6v3) = g = � 
Finally, calculating the probability of getting either a 1 ,  2, 3, 4, 5, or 6 (that is, 
the probability that the die will show one face or another) gives � ' or 1 .  

1Actually the statements are not mutually exclusive in the logical sense. We cannot show 
that they are inconsistent with each other by the method of truth tables, and it is logically 
possible that the die might change shape upon being thrown so as to display two faces si­
multaneously. To treat this case rigorously, we would have to use the general disjunction 
rule, along with a battery of assumptions : Pr( l&2) = 0, Pr(2&3) = 0, Pr( l&3) = 0, etc. 
However, we shall see that the result is the same as when we use the special disjunction 
rule, and treat these statements as if they were mutually exclusive. 
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We will now apply the special disjunction rule to a case of more general 
interest. It can be shown, by the method of truth tables ,  that any statement p 
is inconsistent with its negation, �p . Since p and �p are therefore mutually 
exclusive, the special disjunction rule permits the conclusion that 

Pr(pv�p) = Pr(p ) + Pr( �p) 

But the statement pv�p is a tautology, so by Rule 1 ,  

Pr(pv�p ) = 1 

Putting these two conclusions together gives 

Pr(p) + Pr( ---p ) = 1 

If the quantity Pr(p ) is subtracted from both sides of the equation, the sides 
will remain equal, so we may conclude that 

Pr( �p) = l - Pr(p ) 

This conclusion holds good for any statement, since any statement is inconsis­
tent with its negation, and for any statement p its disjunction with its negation, 
pv�p, is a tautology. This therefore establishes a general negation rule, which 
allows us to calculate the probability of a negation from the probability of its 
constituent statement: 

Rule 5: Pr( �p) = 1 - Pr(p) .  

Suppose in the example using the die we wanted to know the probability of 
not getting a 3 :  

Pr( �3) = 1 - Pr( 3) = 1 - � = � 
Note that we get the same answer as we would if we took the long road to 
solving the problem and confined ourselves to using the special disjunction 
rule: 

Pr( �3) = Pr( lv2v4v5v6) 
= Pr( l )  + Pr(2) + Pr(4) + Pr(5) + Pr(6) 
= _! + .! + .! + .! + .! = �  6 6 6 6 6 6 

We shall apply the special disjunction rule one more time in order to estab­
lish another generally useful rule . For any two statements, p ,  q, we can show 
by the truth table method that the complex statements p&q, p&�q, and 
�p&q are inconsistent with each other. As shown in the following table, there 
is no case in which two of them are true : 



1 14 CHAPTER VI 

p q -p -q p&q p&-q -p&q 

Case 1 :  T T F F T F F 
Case 2 :  T F F T F T F 
Case 3: F T T F F F T 
Case 4: F F T T F F F 

Since they are mutually exclusive, we can apply the special disjunction rule 
and conclude : 

a. Pr[ (p&q)v(p&�q)]  = Pr(p&q) + Pr(p&�q) 

b .  Pr[ (p&q)v( �p&q) ] = Pr(p&q)  + Pr( -p&q) 

c .  Pr[ (p&q)v(p &�q)v(�p&q)] = Pr(p&q)  + Pr(p&-q)  + 
Pr( �p&q)  

But the complex statement (p&q )v(p&�q) i s  logically equivalent to the simple 
statement p ,  as is shown by the following truth table : 

p q -q p&q p&-q (p&q )v(p&�q) 

Case 1 :  T T F T F T 
Case 2 :  T F T F T T 
Case 3 :  F T F F F F 
Case 4: F F T F F F 

Since, according to Rule 3, logically equivalent statements have the same 
probability, equation (a) may be rewritten as 

a' . Pr(p ) = Pr(p&q) + Pr(p&�q) 

A similar truth table will show that the complex statement (p&q )v( -p&q)  is 
logically equivalent to the simple statement q .  Therefore, equation (b) may be 
rewritten as 

b ' .  Pr(q ) = Pr(p&q) + Pr(-p&q)  

Finally, a truth table will show that the complex statement (p&q )v(p&-q) 
v( �p&q )  is logically equivalent to the complex statement pvq, which enables 
us to rewrite equation (c) as 

c ' .  Pr(pvq) = Pr(p&q) + Pr(p&�q) + Pr( -p&q) 

Now let us add equations (a ' ) and (b ' )  together to get 

d. Pr(p ) + Pr(q) = 2 Pr(p&q) + Pr(p&�q) + Pr( -p&q) 
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If we subtract the quantity Pr(p&q) from both sides of the preceding 
equation, we get 

d' . Pr(p ) + Pr(q) - Pr(p&q) = Pr(p&q) + Pr(p&�q) + Pr( �p&q)  

If  equation (d' ) i s  compared with equation (c ' ) we see that Pr(pvq )  i s  equal to 
the same thing as Pr(p ) + Pr( q )  - Pr(p&q) .  This establishes a general dis­
junction rule that is good for all disjunctions, whether the disjuncts are mutu­
ally exclusive or not: 

Rule 6: Pr(pvq)  = Pr(p ) + Pr(q) - Pr(p&q) .  

I f  some of the algebra used to establish the general disjunction rule has left 

you behind, the following diagram may help to make the reasoning clear: 

Pr(p ) 
Pr(p&q) Pr(pvq) 

Pr(q) 

When Pr(p ) is added to Pr(q ) ,  then Pr(p&q) is counted twice. But to get 
Pr(pvq) ,  it should be counted only once. Thus, to get Pr(pvq) ,  we add Pr(p ) 
and Pr(q) and then subtract Pr(p&q) to make up for having counted it twice . 
In the case in which p and q are mutually exclusive, this makes no difference, 
because when p and q are mutually exclusive, Pr(p&q) = 0. No matter how 
many times 0 is counted, we will always get the same result. For example, by 
the general disjunction rule, Pr(pv�p) = Pr(p ) + Pr( �p) - Pr(p&�p) .  But 
the statement p&�p is a self-contradiction, so its probability is zero . Thus , we 
get the same result as if we had used the special disjunction rule . Counting 
Pr(p&q) twice does make a difference when p and q are not mutually exclu­
sive . Suppose we use the general disjunction rule to calculate the probability 
of the complex statement pvp : 

Pr(pvp )  = Pr(p ) + Pr(p ) - Pr(p&p)  

But since the complex statement p&p is logically equivalent to the simple 
statement p ,  Pr(p&p) = Pr(p ) ,  we get 

Pr(pvp)  = Pr(p ) + Pr(p ) - Pr(p ) = Pr(p) 

We know this is the correct answer, because the complex statement pvp is also 
logically equivalent to the simple statement p .  
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The example with the die shall be used to give one more illustration of th� ' 
use of the general disjunction rule . Suppose that we want to know the proba4 >•; 
bility that the die will come up an even number or a number less than 3. 
There is a way to calculate this probability using only the special disjunction 
rule: 

Pr(even v less than 3) = Pr( lv2v4v6) 
= Pr( l )  + Pr(2) + Pr(4) + Pr(6) = � = � 

We may use the special disjunction rule because the outcomes 1 ,  2, 4, and 6 ·• 

are mutually exclusive. However, the outcomes "even" and "less than 3" are 
not mutually exclusive, since the die might come up 2 .  Thus, we may apply the 
general disjunction rule as follows: 

· 
Pr( even v less than 3) 

= Pr( even) + Pr(less than 3) - Pr(even&less than 3) 

Now we mar calculate Pr( even) as  Pr(2v4v6) by the special disjuncti,on rule; it 
is equal to 2 .  We may calculate Pr(less than 3) as Pr( lv2) by the special dis­
junction rule; it is equal to � .  And we may calculate Pr( even&less than 3) as 
Pr(2) ,  which is equal to � · So, by this method, 

Pr(even v less than 3) = ! + ! - ! = g 2 3 6 3 

The role of the subtraction terin can be seen clearly in this example . What we 

have done is to calculate Pr( even v less than 3) as 

Pr(2v4v6) + Pr( lv2) - Pr(2) 

so the subtraction term compensates for adding in Pr(2) twice when we add 
Pr(even) and Pr(less than 3) .  In this example use of the general disjunction 
rule was the long way of solving the problem. But in some cases it is necessary 
to use the general disjunction rule . Suppose you are told that 

Pr(p ) = � 
Pr(q) = � 

Pr(p&q) = � 
You are asked to calculate Pr(pvq ) .  Now you cannot use the special disjunction 
rule since you know that p and q are not mutually exclusive . If they were, 
Pr(p&q) would be 0, and you are told that it is � .  Therefore, you must use the 
general disjunction rule in the following way: 

Pr(pvq) = Pr(p ) + Pr(q ) - Pr(p&q) 

= ! + ! - ! = l 
2 3 4 12 
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In Section VI .2, we compared the rules o f  the probability calculus to the 
way in which the truth tables for the logical connectives relate the truth or 
falsity of a complex statement to the truth or falsity of its simple constituent 
statements . We are now at the point where we must qualify this comparison. 
We can always determine the truth or falsity of a complex statement if we 
know whether its simple constituent statements are true or false .  But we can­
not always calculate the probability of a complex statement from the probabili­
ties of its simple constituent statements . Sometimes ,  as in the example above, 
in order to calculate the probability of the complex statement pvq,  we need 
not only know the probabilities of its simple constituent statements, p and q ,  
we also need to  know the probability of  another complex statement, p&q .  We 
shall discuss the rules that govern the probabilities of such conjunctions in the 
next section. However, we shall find that it is not always possible to calculate 
the probability of a conjunction simply from the probabilities of its constituent 
statements .  

Exercises 

1 .  Suppose you have an ordinary deck of 52 playing cards. You are to draw one 
card. Assume that each card has a probability of 1152 of being drawn. What is the 
probability that you will draw: 

a. The ace of spades? 
b .  The queen of hearts? 
c. The ace of spades or the queen of hearts? 
d. An ace? 
e .  A heart? 
f. A face card (king, queen, or jack)? 
g. A card that is not a face card? 
h. An ace or a spade? 
i. A queen or a heart? 
j .  A queen or  a non-spade? 

2. Pr(p ) = � ' Pr(q) = � , Pr(p&q) = � · What is Pr(pvq)? 

3 .  Pr(r) = ! ,  Pr(s) = � ,  Pr(rvs)  = � · What is  Pr(r&s)?  

4. Pr(u) = � ' Pr(t) = � , Pr(u&�t) = � · What i s  Pr(uv�t)?  

VI.4. CONJUNCTION RULES AND CONDITIONAL PROBA­
BILITY. Before the rules that govern the probability of conjunctions are 
discussed, it is necessary to introduce the notion of conditional probability . 
We may write Pr(q given p) as the probability of q on the condition that p . 
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This probability may or may not be different from Pr(q) .  We shall deal with,,'.��l� ' 
the concept of conditional probability on the intuitive level before a precise1\,�, 
definition for it is introduced. , ;, :<  

In the example with the die, we found that the probability of throwing ���, ; 
even number was � . However, the probability of getting an even number givett�'

, 

that a 2 or a 4 is thrown is not � but 1 .  And the probability of casting an eve��:;'. ; , 
number given that a 1 or a 3 is thrown is 0 .  To take a little more complicated�,�, 
example, suppose that the die remains unchanged and you are to bet on�' ' 
whether it will come up even, with a special agreement that if it comes up 5 ailt'. '; .  
bets will be off and it will be thrown again. In such a situation you would b�, , 1 '.  
interested in the probability that it will come up even given that it will her' ' 
either a 1 ,  2, 3, 4, or 6 .  This probability should be greater than � since the con'.! / 
dition excludes one of the ways in which the die could come up odd. It is, irn' 1 

fact, � · Thus, the probabilities of "even," given three different conditions, are 
each different from the probability of "even" by itself: 

a. Pr( even) = � 
b .  Pr( even given 2v4) = 1 

c. Pr( even given 1 v3) = 0

d. Pr( even given 1 v2v3v4v6) = � 
Conditional probabilities allow for the fact that if a certain statement, p, is 

known to be true, this may affect the probability to be assigned to another 
statement, q .  The most striking cases occur when there is a deductively valid 
argument from p to q :  

p = The next throw of the die will come up 2 
v 
the next throw of the die will come up 4 .  

q = The next throw of the die will come up even. 

In this case, Pr(q given p ) = 1 :2

Pr( even given 2v4) = 1 

Suppose there is a deductively valid argument from p to �q:  

2 We must make one qualification to this statement. When p i s  a self-contradiction, then 
for any statement q there is a deductively valid argument from p to q and a deductively 
valid argument from p to -q. In such a case, Pr(q given p)  has no value. 
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p = The next throw of the die will come up 1 
v 

the next throw of the die will come up 3 .  

�q = The next throw of the die will not come up even. 

In this case, Pr(q given p) = 0: 

Pr( even given lv3) = 0.3 

1 19 

There are, however, important cases where neither the argument from p to 
q nor the argument from p to �q is deductively valid and yet Pr(q given p )  dif­
fers from Pr(q) ,  as in the previous example with the die : 

Pr( even given lv2v3v4v6) = � 
Pr(even) = � 

There are other cases where the knowledge that p is true may be com­
pletely irrelevant to the probability to be assigned to q. For example, it was 
said that the probability that the next throw of the die will come up even is � . 
We could say that the probability that the next throw of the die will come up 
even, given that the President of the United States sneezes simultaneously 
with our throw, is still � . The President's sneeze is irrelevant to the probability 
assigned to "even." Thus, the two statements "The next throw of the die will 
come up even" and "The President of the United States will sneeze simultane­
ously with the next throw of the die" are independent. 4 

We can now give substance to the intuitive notions of conditional probabil­
ity and independence by defining them in terms of pure statement probabili­
ties . First we will define conditional probability: 

Definition 12: Conditional probability :5 

. Pr(p&q) 
Pr(q given p )  = 

Pr(p ) 

Let us see how this definition works out in the example of the die: 

3 We must make one qualification to this statement. VVhen p is a self-contradiction, then 
for any statement q there is a deductively valid argument from p to q and a deductively 
valid argument from p to -q. In such a case, Pr(q given p)  has no value. 
4 This type of independence is called probabilistic or stochastic independence. It should 
not be confused with the mutual logical independence discussed in deductive logic. Sto­
chastic independence of two statements is neither a necessary nor a sufficient condition 
for their mutual logical independence. 

· 
5 When Pr(p ) = 0 the quotient is not defined. In this case there is no Pr(q given p) .  
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a. Pr( even given 2v4) = 
Pr[ even&(2v4)]  Pr(2v4) 

Pr(2v4) Pr(2v4) 

b .  Pr(even given lv3) = 
Pr[ even&( 1 v3) ]  0 

Pr( lv3) 1 0 
3 

Pr[ even&( 1 v2v3v4v6) ] 
c .  Pr(even given lv2v3v4v6) = --------­

Pr( lv2v3v4v6) 

Pr(2v4v6) 
Pr( 1 v2v3v4v6) 

3 
6 
5 
6 

1 

3 
5 

CHAPTER VI 

Notice that the conditional probabilities computed by using the definition ac­
cord with the intuitive judgments as to conditional probabilities in the die ex­
ample. We may test the definition in another way. Consider the special case of 
Pr(q given p ) ,  where p is a tautology and q is a contingent statement. Since a 
tautology makes no factual claim, we would not expect knowledge of its truth 
to influence the probability that we would assign to the contingent statement, 
q .  The probability that the die will come up even given that it will come up ei­
ther even or odd should be simply the probability that it will come up even. In 
general, if we let T stand for an arbitrary tautology, we should expect Pr(q 
given T) to be equal to Pr(q ) .  Let us work out Pr(q given T) , using the defini­
tion of conditional probability: 

. Pr (T&q) 
Pr( q given T) = 

Pr ( T) 

But the probability of a tautology is always equal to 1 .  This gives 

Pr(q given T) = Pr(T&q) 

When T is a tautology and q is any statement whatsoever, the complex state­
ment T&q is logically equivalent to the simple statement q .  This can always be 
shown by truth tables .  Since logically equivalent statements have the same 
probability, Pr(q given T) = Pr(q ) .6 Again, the definition of conditional proba­
bility gives the expected result. 

Now that conditional probability has been defined, that concept can be 
used to define independence: 

6We could have constructed the probability calculus by taking conditional probabilities as 
basic, and then defining pure statement probabilities as follows: The probability of a 
statement is defined as its probability given a tautology. Instead we have taken statement 
probabilities as basic, and defined conditional probabilities. The choice of starting point 
makes no difference to the system as a whole. The systems are equivalent. 
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Definition 13:  Independence : Two statements p and q are indepen­
dent if and only if Pr(q given p ) = Pr(q ) .  

We talk of two statements p and q being independent, rather than p being 
independent of q and q being independent of p . We can do this because we 
can prove that Pr( q given p ) = Pr( q) if and only if Pr(p given q)  = Pr(p ) .  If 
Pr(q given p ) = Pr(q ) ,  then, by the definition of conditional probability, 

Pr (p&q) 
( ) 

= Pr (q ) 
Pr p 

Multiplying both sides of the equation by Pr(p ) and dividing both sides by 
Pr(q ) ,  we have 

Pr (p&q) 
( ) 

= Pr (p ) 
Pr q 

But by the definition of conditional probability, this means Pr(p given q)  
= Pr(p ) .  

This proof only works if neither of the two statements has 0 probability. 
Otherwise, one of the relevant quotients would not be defined. To take care of 
this eventuality, we may add an additional clause to the definition and say that 
two statements are also independent if at least one of them has probability 0.  
It is  important to realize the difference between independence and mutual 
exclusiveness . The statement about the outcome of the throw of the die and 
the statement about the President's sneeze are independent, but they are not 
mutually exclusive. They can veiy well be true together. On the other hand, 
the statements "The next throw of the die will come up an even number" and 
"The next throw of the die will come up a 5" are mutually exclusive, but they 
are not independent. Pr(even) = � ' but Pr(even given 5) = 0. Pr(5) = � '  but 
Pr(5 given even) = 0. In general, if p and q are mutually exclusive they are not 
independent, and if they are independent they are not mutually exclusive.7 

Having specified the definitions of conditional probability and indepen­
dence, the rules for conjunctions can now be introduced. The general conjunc­
tion rule follows directly from the definition of conditional probability: 

Rule 7: Pr(p&q) = Pr(p ) X Pr(q given p ) .  

The proof i s  simple . Take the definition of conditional probability: 

Pr (p&q)  
Pr(q given p )  = 

Pr (p ) 

7 The exception is when at least one of the statements is a self-contradiction and thus has 
probability 0. 
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Multiply both sides of the equation by Pr(p ) to get 

Pr(p ) X Pr(q given p ) = Pr(p&q) 

which is the general conjunction rule. When p and q are independent, Pr(q 
given p ) = Pr(q ) ,  and we may substitute Pr(q) for Pr(q given p ) in the general 
conjunction rule, thus obtaining 

Pr(p ) X Pr(q ) = Pr(p&q) 

Of course, the substitution may only be made in the special case when p and q 
are independent. This result constitutes the special conjunction rule: 

Rule 8: If p and q are independent, then Pr(p&q)  = Pr(p ) X Pr(q) .  

The general conjunction rule i s  more basic than the special conjunction rule. 
But since the special conjunction rule is simpler, its application will be illus­
trated first. Suppose that two dice are thrown simultaneously. The basic proba­
bilities are as follows : 

Die A 

Pr( l )  = � 
Pr(2) = � 
Pr(3) = � 
Pr(4) = � 
Pr(5) = � 
Pr(6) = � 

Die B 

Pr( l )  = � 
Pr(2) = � 
Pr(3) = � 
Pr(4) = � 
Pr(5) = � 
Pr(6) = � 

Since the face shown by die A presumably does not influence the face shown 
by die B ,  or vice versa, it shall be assumed that all statements claiming various 
outcomes for die A are independent of all the statements claiming various out­
comes for die B .  That is , the statements «Die A will come up a 3" and «Die B 
will come up a 5" are independent, as are the statements «Die A will come up 
a 6" and «Die B will come up a 6." The statements «Die A will come up a 5" 
and «Die A will come up a 3" are not independent; they are mutually exclusive 
(when made in regard to the same throw) . 

Now suppose we wish to calculate the probability of throwing a 1 on die A 
and a 6 on die B .  The special conjunction rule can now be used: 

Pr( l on A & 6 on B) = Pr( l on A) X Pr(6 on B )  
= .! x .! = l... 6 6 36 

In the same way, the probability of each of the 36 possible combinations of re­
sults of die A and die B may be calculated as 3� , as shown in Table VI. l .  Note 
that each of the cases in the table is mutually exclusive of each other case. 
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Thus, by the special alternation rule, the probability of case 1 v case 3 is equal 
to the probability of case 1 plus the probability of case 3 .  

Table VI.I  

Possible results when throwing two dice 

Case Die A Die B Case Die A Die B 

1 1 1 19 4 1 
2 1 2 20 4 2 
3 1 3 21 4 3 
4 1 4 22 4 4 
5 1 5 23 4 5 
6 1 6 24 4 6 
7 2 1 25 5 1 
8 2 2 26 5 2 
9 2 3 27 5 3 

10 2 4 28 5 4 
1 1  2 5 29 5 5 
12 2 6 30 5 6 
13 3 1 31 6 1 
14 3 2 32 6 2 
15 3 3 33 6 3 
16 3 4 34 6 4 
17 3 5 35 6 5 
18 3 6 36 6 6 

Suppose now that we wish to calculate the probability that the dice will 
come up showing a 1 and a 6. There are two ways this can happen: a 1 on die 
A and a 6 on die B (case 31 ) .  The probability of this combination appearing 
may be calculated as follows : 

Pr( l & 6) = Pr[ (l  on A & 6 on B )  v ( 1  on B & 6 on A)]  

Since the cases are mutually exclusive, the special disjunction rule may be 
used to get 

Pr[ ( l  on A & 6 on B )  v ( 1  on B & 6 on A)]  
= Pr( l on A & 6 on B )  + Pr( l on B & 6 on A)

But it has already been shown, by the special conjunction rule, that 

Pr( 1 on A & 6 on B )  = J6 

Pr( l on B & 6 on A) = J6 

h . 1 + l 1 
so t e answer is 36 36 , or 18 .  
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The same sort of reasoning can be used to solve more complicated prob­
lems. Suppose we want to know the probability that the sum of spots showing 
on both dice will equal 7 .  This happens only in cases 6 ,  11 , 1 6 , 21 , 26 , and 31 .  
Therefore 

Pr( total of 7 )  = Pr[ ( 1 on A & 6 on B) 

v (2 on A & 5 on B) 

v ( 3 on A & 4 on B) 

v ( 4 on A & 3 on B) 

v (5 on A & 2 on B) 

v ( 6 on A & 1 on B)] 

Using the sy ecial disjunction rule and the special conjunction rule Pr( total of
7 )  = 3

6
6' or 6·

In solving a particular problem, there are of ten several ways to apply the 
rules. Suppose we wanted to calculate the probability that both dice will come 
up even. We could determine in which cases both dice are showing even num­
bers, and proceed as before, but this is the long way to solve the problem. 
Instead, we can calculate the probability of getting an even number on die A 
as � by the special disjunction rule: 

Pr( even on A) = Pr(2 on Av 4 on Av 6 on A) 
= Pr(2 on A)+ Pr(4 on A)+ Pr(6 on A) 
- 3 - 1 -

5
-

2 

and calculate the probability of getting an even number on die B as � by the 
same method. Then, by the special conjunction rule,8 

Pr( even on A & even on B) = Pr( even on A) X Pr( even on B) 

= !x! = ! 
2 2 4 

We apply the general conjunction rule when two statements are not 
independent. Such is the case in the following example. Suppose you are pre­
sented with a bag containing ten gumdrops, five red and five black. You are to 
shake the bag, close your eyes and draw out a gumdrop, look at it, eat it, and 
then repeat the process once more. We shall assume that, at the time of each 
draw, each gumdrop in the bag has an equal probability of being drawn. The 
problem is to find the probability of drawing two red gumdrops. 

8It can be shown that the statements "Die A will come up even" and "Die B will come up 
even" are independent, on the basis of the independence assumptions made in setting up 
this example. 
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To solve this problem we must find the probability of the conjunction 
Pr(red on 1 & red on 2) . We will first find Pr(red on 1) . We will designate each 
of the gumdrops by a letter: A, B, C, D, E, F, G, H, I, ]. We know that we will 
draw one of these on the first draw, so 

Pr( A on 1 v B on 1 v C on 1 v . . .  v J on 1) = 1 

Now, by the special disjunction rule, 

Pr(A on 1) + Pr(B on 1) + Pr(C on 1) + .. . + (Pr(J on 1) = 1 

Since each of the gumdrops has an equal chance of being drawn, and there are 
10 gumdrops, therefore 

Pr(A on 1) = 1� 
Pr(B on 1) = 1

1
0 

Pr(] on 1) = 1
1
0 

We said that there were five red ones. We will use the letters A, B, C, D, and E 
to designate the red gumdrops and the remaining letters to designate the 
black ones. By the special disjunction rule, the probability of getting a red 
gumdrop on draw 1 is 

Pr( A on 1 v B on 1 v C on 1 v D on 1 v E on 1) 
= Pr(A on 1) + Pr( B on 1) + Pr(C on 1) + Pr( D on 1) + Pr(E on 1) 
- 1- - .! 

10 2 

We shall have to use the general conjunction rule to find Pr( red on 1 & red on 
2) , since the statements "A red gumdrop will be drawn the first time" and "A
red gumdrop will be drawn the second time" are not independent. If a red 
gumdrop is drawn the first time, this will leave four red and five black gum­
drops in the bag with equal chances of being drawn on the second draw. But if 
a black gumdrop is drawn the first time, this will leave five red and four black 
gumdrops awaiting the second draw. Thus, the knowledge that a red one is 
drawn the first time will influence the probability we assign to a red one being 
drawn the second time, and the two statements are not independent. Applying 
the general conjunction rule, we get 

Pr(red on 1 & red on 2) = Pr(red on 1) X Pr(red on 2 given red on 1) 

We have already found Pr(red on 1) . Now we must calculate Pr( red on 2 given 
red on 1) . Given that we draw a red gumdrop on the first draw, there will be 
nine gumdrops remaining: four red and five black. We must draw one of them, 
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and they each have an equal chance of being drawn. By reasoning similar to 
that used above, each has a probability of � of being drawn, and the probabil� 
ity of drawing a red one is �. Therefore 

. 4 Pr(red on 2 given red on 1) = 9

We can now complete our calculations: 

Pr(red on 1 & red on 2) = � X � = � 
We can calculate Pr(black on 1 & red on 2) in the same way: 

Pr(black on 1) = � 

Pr(red on 2 given black on 1) = � 

Therefore, by the general conjunction rule, 

Pr(black on 1 & red on2) = � X � = :8 

At this point the question arises as to what the Pr(red on 2) is. We know 
Pr(red on 2 given red on 1) =�·We know Pr(red on 2 given black on 1) = �· 
But what we want to know now is the probability of getting a red gumdrop on 
the second draw before we have made the first draw. We can get the answer if 
we realize that red on 2 is logically equivalent to 

(red on 1 & red on 2) v (not-red on 1 & red on 2) 

Remember that the simple statement q is logically equivalent to the complex 
statement (p& q) v(�p& q) . Therefore 

Pr(red on 2) = Pr[(red on 1 & red on 2) v (not-red on 1 & red on 2) ] 

By the special disjunction rule, 

Pr(red on 2) = Pr(red on 1 & red on 2) + 
Pr(not-red on 1 & red on 2) 

We have calculated Pr( red on 1 & red on 2) as �. We have also calculated

Pr(not-red on 1 & red on 2) = Pr(black on 1 & red on 2) = :8 

Therefore 

P (red On 2) -2 + 5 + 4 + 5 -9 -1 r -9 18 18 18-18-2

The same sort of applications of conditional probability and the general 
conjunction rule would apply to card games where the cards that have 
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been played are placed in a discard pile rather than being returned to the 
deck. Such considerations are treated very carefully in manuals on poker and 
blackjack. In fact, some gambling houses have resorted to using a new deck for 
each hand of blackjack in order to keep astute students of probability from 
gaining an advantage over the house. 

Exercises 

1. Pr(p) = �' Pr(q) = �' p and q are independent.
a. What is Pr(p&q)?
b. Are p and q mutually exclusive?
c. What is Pr(pvq)?

2. Suppose two dice are rolled, as in the example above.
a. What is the probability of both dice showing a 1?
b. What is the probability of both dice showing a 6?
c. What is the probability that the total number of spots showing on both dice

will be either 7 or 11?
3. A coin is flipped three times. Assume that on each toss Pr(heads) = � and

Pr( tails) = �·Assume that the tosses are independent.
a. What is Pr(3 heads)?
b. What is Pr(2 heads and 1 tail)?
c. What is Pr(l head and 2 tails)?
d. What is Pr(head on toss l & tail on toss 2 & head on toss 3)?
e. What is Pr( at least 1 tail)?
f. What is Pr(no heads)?
g. What is Pr( either 3 heads or 3 tails)?

4. Suppose you have an ordinary deck of 52 cards. A card is drawn and is not
replaced, then another card is drawn. Assume that on each draw each of the
cards then in the deck has an equal chance of being drawn.
a. What is Pr( ace on draw 1)?
b. What is Pr( 10 on draw 2 given ace on draw 1)?
c. What is Pr( ace on draw 1 & 10 on draw 2)?
d. What is Pr(lO on draw 1 & ace on draw 2)?
e. What is Pr( an ace and a 10)?
f. What is Pr(2 aces)?

5. The probability that George will study for the test is g. The probability that he
will pass the test given that he studies is �· The probability that he will pass the
test given that he does not study is fo· What is the probability that George will
pass the test? Hint: The simple statement "George will pass the test" is logically
equivalent to the complex statement "Either George will study and pass the test
or George will not study and pass the test."
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VI.5. EXPECTED VALUE OF A GAMBLE. The attractiveness 
of a wager depends not only on the probabilities involved, but also on the odds 
given. The probability of getting a head and a tail on two independent tosses 
of a f air coin is �, while the probability of getting two heads is only �. But if
someone were to offer either to bet me even money that I will not get a head 
and a tail or give 100 to 1 odds against my getting two heads, I would be well 
advised to take the second wager. The probability that I will win the second 
wager is less, but this is more than compensated for by the fact that if I win, I 
will win a great deal, and if I lose, I will lose much less. The attractiveness of a 
wager can be measured by calculating its expected value. To calculate the ex­
pected value of a gamble, first list all the possible outcomes, along with their 
probabilities and the amount won in each case. A loss is listed as a negative 
amount. Then for each outcome multiply the probability by the amount won 
or lost. Finally, add these products to obtain the expected value. To illustrate, 
suppose someone bets me 10 dollars that I will not get a head and a tail on two 
tosses of a f air coin. The expected value of this wager for me can be calculated 
as follows: 

Possible outcomes 

Toss 1 Toss 2 Probability Gain Probability X Gain 

H H 1 -$10 -$2 .50 4 

H T 1 10 2 .50 4 

T H 1 10 2 .50 4 

T T 1 -10 -2 .50 4 

Expected value: $0 .00 

Thus, the expected value of the wager for me is $0 , and since my opponent 
wins what I lose and loses what I win, the expected value for him is also $0 . 
Such a wager is called a fair bet. Now let us calculate the expected value for 
me of a wager where my opponent will give me 100 dollars if I get two heads, 
and I will give him one dollar if I do not. 

Possible outcomes 

Toss 1 Toss 2 Probability Gain Probability X Gain 

H H l $100 $25 .00 4 

H T 1 -1 -0 .25 4 

T H l -1 -0 .25 4 

T T 1 -1 -0 .25 4 
Expected value: $24 .25 
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The expected value of this wager for me is $24.25 . Since my opponent loses 
what I win, the expected value for him is -$24.25 . This is not a fair bet, since 
it is favorable to me and unfavorable to him. 

The procedure for calculating expected value and the rationale behind it 
are clear, but let us try to attach some meaning to the numerical answer. This 
can be done in the following way. Suppose that I make the foregoing wager 
many times. And suppose that over these many times the distribution of 
results corresponds to the probabilities; that is, I get two heads one-fourth of 
the time; a head and then a tail one-fourth of the time; a tail and then a head 
one-fourth of the time; and two tails one-fourth of the time. Then the 
expected value will be equal to my average winnings on a wager (that is, my 
total winnings divided by the number of wagers I have made). 

I said that expected value was a measure of the attractiveness of a wager. 
Generally, it seems reasonable to accept a wager with a positive expected gain 
and reject a wager with a negative expected gain. Furthermore, if you are of­
fered a choice of wagers, it seems reasonable to choose the wager with the 
highest expected value. These conclusions, however, are oversimplifications. 
They assume that there is no positive or negative value associated with risk it­
self, and that gains or losses of equal amounts of money represent gains or 
losses of equal amounts of money represent gains or losses of equal amount of 
value to the individual involved. Let us examine the first assumption. 

Suppose that you are compelled to choose an even-money wager either 
for 1 dollar or for 100 dollars. The expected value of both wagers is 0. But if 
you wish to avoid risks as much as possible, you would choose the smaller 
wager. You would, then, assign a negative value to risk itself. However, if you 
enjoy taking larger risks for their own sake, you would choose the larger wa­
ger. Thus, although expected value is a major factor in determining the at­
tractiveness of wagers, it is not the only factor. The positive or negative val­
ues assigned to the magnitude of the risk itself must also be taken into 
account. 

We make a second assumption when we calculate expected value in terms of 
money. We assume that gains or losses of equal amounts of money represent 
gains or losses of equal amounts of value to the individual involved. In the lan­
guage of the economist this is said to be the assumption that money has a con­
stant marginal utility. This assumption is quite often false. For a poor man, the 
loss of 1000 dollars might mean he would starve, while the gain of 1000 dollars 
might mean he would merely live somewhat more comfortably. In this situa­
tion, the real loss accompanying a monetary loss of 1000 dollars is much greater 
than the real gain accompanying a monetary gain of 1000 dollars. A man in 
these circumstances would be foolish to accept an even money bet of 1000 dol­
lars on the flip of a coin. In terms of money, the wager has an expected value of 
0. But in terms of real value, the wager has a negative expected value.
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Suppose you are in a part of the city far from home. You have lost your 
wallet and only have a quarter in change. Since the bus fare home is 35 cents, 
it looks as though you will have to walk. Now someone offers to flip you for a 
dime. If you win, you can ride home. If you lose, you are hardly any worse off 
than before. Thus, although the expected value of the wager in monetary 
terms is 0, in terms of real value, the wager has a positive expected value. In 
assessing the attractiveness of wagers by calculating their expected value, we 
must always be careful to see whether the monetary gains and losses 
accurately mirror the real gains and losses to the individual involved. 

Exercises 

1. What is the expected value of the following gamble? You are to roll a pair of dice.
If the dice come up a natural, 7 or 11, you \Vin 10 dollars. If the dice come up
snake-eyes, 2, or boxcars, 12, you lose 20 dollars. Otherwise the bet is off.

2. What is the expected value of the following gamble? You are to flip a fair coin. If
it comes up heads you win 1 dollar, and the wager is over. If it comes up tails you
lose 1 dollar, but you flip again for 2 dollars. If the coin comes up heads this time
you win 2 dollars. If it comes up tails you lose 2 dollars, but flip again for 4 dol­
lars. If it comes up heads you win 4 dollars. If it comes up tails you lose 4 dollars.
But in either case the wager is over.

Hint: The possible outcomes are:

Toss 1 Toss 2 Toss 3 

H None None 
T H None 
T T H 
T T T 

3. Suppose you extended the doubling strategy of Exercise 2 to four tosses. Would
this change the expected value?

4. Suppose that you tripled your stakes instead of doubling them. Would this
change the expected value?

VI.6. BAYES' THEOREM. You may wonder what the relation is 
between a conditional probability Pr(q given p) and its converse Pr(p given q). 
They need not be equal. The probability that Ezekial is an ape, given that he is 
a gorilla, is 1. But the probability that Ezekial is a gorilla, given that he is an 
ape, is less than 1 .  The value of a conditional probability is not determined by 
the value of its converse alone. But the value of a conditional probability can 
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Table VI.2 

Step 

Pr(p&q) 
1 . Pr( q given p) = 

Pr(p) 

Pr(p&q) 
2 . Pr(q given p) = 

Pr(p&q )v(p&�q) 

Pr(p&q) 
3 . Pr(q given p) = 

Pr(p&q) + Pr(p&�q) 

4 .  Pr(q given p) = General conjunction rule 

Pr( q) X Pr(p given q) 
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Justification 

Definition of conditional 
probability 

p is logically equivalent to 
(p&q )v(p&�q) 

Special disjunction rule 

[Pr(q) X Pr(p given q)] + [Pr( �q) X Pr(p given �q)] 

be calculated from the value of its converse, together with certain other 
probability values. The basis of this calculation is set forth in Bayes' theorem. A 
simplified version of a proof of Bayes' theorem is presented in Table VI.2. Step 4 
of this table states the simplified version of Bayes' theorem.9 Note that it allows 
us to compute conditional probabilities going in one direction-that is, Pr(q 
given p)-from conditional probabilities going in the opposite direction-that 
is, Pr(p given q) and Pr(p given �q)-together with certain statement proba­
bilities-that is, Pr(q) and Pr( �q). Let us see how this theorem is applied in a 
concrete example. 

Suppose we have two urns. Um 1 contains eight red balls and two black 
balls. Um 2 contains two red balls and eight black balls. Someone has selected 
an urn by flipping a fair coin. He then has drawn a ball from the urn he 

9 The general form of Bayes' theorem arises as follows: Suppose that instead of simply 
the two statements q and �q we consider a set of n mutually exclusive statements, qi, q2, 
... qm which is exhaustive. That is, the complex statement, q1vq2v ... vqn, is a tautology.
Then it can be proven that the simple statement p is logically equivalent to the complex 
statement (p&q1)v(p&q2)v ... v(p&qn). This substitution is made in step 2, and the rest 
of the proof follows the model of the proof given. The result is 

Pr(q1) X Pr(p given q1) 
Pr(q1 givenp) = ----------------­

[(Pr(q1) X Pr(p given q1)] + [Pr(q2) X Pr(p given q2)] 
+ · · · + [Pr(qn) X Pr(p given qn)] 
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selected. Assume that each ball in the um he selected had an equal chance of 
being drawn. What is the probability that he selected um 1 ,  given that he drew 
a red ball? Bayes' theorem tells us the Pr( um 1 given red) is equal to 

Pr(um 1) X Pr(red given um 1) 

[Pr( um 1) X Pr(red given um l)] + [Pr( -um 1) X Pr(red given -um l)] 

The probabilities needed may be calculated from the information given in the 
problem: 

Pr(um 1) = � 
Pr(-um 1) = Pr(um 2) = � 
Pr( red given um 1) = 1

8
0

Pr(red given -um 1) = Pr(red given um 2) = {0 
If these values are substituted into the formula, they give 

A similar calculation will show that Pr( um 2 given red) = �. Thus, the applica­
tion of Bayes' theorem confirms our intuition that a red ball is more likely to 
have come from um 1 than um 2 ,  and it tells us how much more likely. 

It is important to emphasize the importance of the pure statement proba­
bilities Pr(q) and Pr( -q) in Bayes' theorem. If we had not known that the urn 
to be drawn from had been selected by flipping a fair coin, if we had just been 
told that it was selected some way or other, we could not have computed 
Pr(um 1 given red). Indeed if Pr(um 1) and Pr(-urn 1) had been different, 
then our answer would have been different. Suppose that the um had been se­
lected by throwing a pair of dice. If the dice came up "snake-eyes" (a 1 on 
each die), um 1 would be selected; otherwise um 2 would be selected. If this 
were the case, then Pr(urn 1) = 3

1
6 and Pr(-um 1) = Pr(um 2) = ��·Keeping

the rest of the example the same, Bayes' theorem gives 
8 
360 _8_4 

8 70 - 78 - 39
360 + 360 

This is quite a different answer from the one we got when urns 1 and 2 had 
an equal chance of being selected. In each case Pr( um 1 given red) is higher 
than Pr(um 1) . This can be interpreted as saying that in both cases the 
additional information that a red ball was drawn would raise confidence that 
um 1 was selected. But the initial level of confidence that urn 1 was selected is 
different in the two cases, and consequently the final level is also. 
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Exercises 

1. The probability that George will study for the test is -fo. The probability that he
will pass, given that he studies, is {o- The probability that he passes, given that he
does not study, is fo. What is the probability that he has studied, given that he
passes?

2. Suppose there are three urns. Um 1 contains six red balls and four black balls.
Um two contains nine red balls and one black ball. Um 3 contains five red balls
and five black balls. A ball is drawn at random from um 1. If it is black a second
ball is drawn at random from um 2, but if it is red the second ball is drawn at
random from um 3.

a. What is the probability of the second ball being drawn from um 2?
b. What is the probability of the second ball being drawn from um 3?
c. What is the probability that the second ball drawn is black, given that it is

drawn from um 2?
d. What is the probability that the second ball drawn is black, given that it is

drawn from um 3?
e. What is the probability that the second ball is black?
f. What is the probability that the second ball was drawn from um 2, given that

it is black?
g. What is the probability that the second ball was drawn from um 3, given that

it is black?
h. What is the probability that the second ball drawn was drawn from um 2,

given that it is red?
i. What is the probability that the second ball drawn was drawn from um 3,

given that it is red?
j. What is the probability that the first ball drawn was red, given that the second

ball drawn is black?
k. What is the probability that the first ball is black, given that the second ball is

black?
1. What is the probability that both balls drawn are black?

3. A fair coin is flipped twice. The two tosses are independent. What is the proba­
bility of a heads on the first toss given a heads on the second toss?

4. Their captors have decided that two of three prisoners-Smith, Jones, and
Fitch-will be executed tomorrow. The choice has been made at random, but the
identity of the unfortunate selectees is to be kept from the prisoners until the final
hour. The prisoners, who are held in separate cells, unable to communicate with
each other, know this. Fitch asks a guard to tell the name of one of the other pris­
oners who will be executed. Regardless of whether Fitch was chosen or not, one
of the others will be executed, so the guard reasons that he is not giving Fitch any
illicit information by answering truthfully. He says: "Jones will be executed." Fitch
is heartened by the news for he reasons that his probability of being the one who
escapes execution has risen from � to �. Has Fitch made a mistake? Has the
guard? Use Bayes' theorem to analyze the reasoning involved. (Hint: Calculate
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the probability that Fitch will not be executed given that the guard tells him that 
Jones will be executed, not the probability that Fitch will not be executed given 
that Jones will be. What assumptions are possible about the probability that the 
guard tells Fitch that Jones will be executed given that Fitch escapes execution?) 

VI.7. PROBABILITY AND CAUSALITY. What is meant when it 
is said that smoking causes lung cancer? Not that smoking is a sufficient condi­
tion for contraction of lung cancer, for many people smoke and never contract 
the disease. Not that smoking is a necessary condition for lung cancer, for 
some who never smoke nevertheless develop lung cancer. What is meant is 
something probabilistic: that smoking increases one's chances of getting lung 
cancer. 

We might say that smoking has a tendency in the direction of sufficientness 
if Pr( cancer given smoking) is greater than Pr( cancer given �smoking)-that 
is, if smoking is positively statistically relevant to cancer. We might say that 
smoking has a tendency in the direction of necessaryness for lung cancer if 
Pr(having smoked given cancer) is greater than Pr(having smoked given no 
cancer)-that is, if cancer is positively statistically relevant to smoking. But we 
can show from the probability calculus that for any two statements, P,Q,10P is 
positively statistically relevant to Q if and only if Q is positively statistically rel­
evant to P. By Bayes' theorem: 

Pr(P given Q) Pr( Q) 
Pr(Q given P) = 

Pr(P) 

Pr(Q given P) 
So: 

Pr(Q) 

Pr(P given Q) 

Pr(P) 

P is positively relevant to Q just in case the left-hand side of the equation is 
greater than one; Q is positively relevant to P just in case the right-hand 
side of the equation is greater than one. So the probabilistic notions of 
being a tendency toward a sufficient condition, and having a tendency toward 
being a necessary condition come to the same thing! Considerations appear to 
be simpler in this way in a probabilistic setting than in a deterministic one. 

But there is a complication that we must now discuss. Suppose that smok­
ing itself did not cause the cancer, but that desire to smoke and cancer were 
both effects of some underlying genetically determined biological condition. 
Then smoking would still be positively statistically relevant to cancer, but as a 
symptom of having the bad gene rather than as a cause of cancer. If this hy-

10 With positive probability. 
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pothesis were correct, we would not say that smoking raised one's chances of 
getting lung cancer. If someone, say you, had the bad genes, then your 
chances of contracting cancer would be already high and smoking would not 
make them worse; if you didn't have the bad genes, your chances of contract­
ing cancer would be lower and smoking wouldn't make them worse. That is, 
the positive statistical relevance of smoking to cancer would disappear if we 
looked at probabilities conditional on having the bad genes; likewise if we 
looked at probabilities conditional on not having the bad genes: 

Pr( cancer given smoking and bad genes) = Pr( cancer given bad 
genes) 

Pr( cancer given smoking and good genes) = Pr( cancer given good 
genes) 

To support the claim that smoking is a probabilistic cause of lung cancer, 
the foregoing hypothesis (and others like it) must be ruled out. Perhaps identi­
cal twins can be found such that one of each pair is a long-time smoker, and 
more of the smokers develop cancer. Perhaps subjects who don't want to 
smoke but are forced to inhale smoke anyway (certain laboratory mice, cock­
tail waitresses, and so on) have a higher incidence of lung cancer. 

If we believe that a certain constellation of factors determines the chance of 
getting lung cancer, then we consider smoking a probabilistic cause of lung 
cancer if, when we hold all the other preexisting factors fixed, smoking 
increases the chance of lung cancer. That is, if: 

Pr( cancer given background factors and smoking) is greater than 

Pr( cancer given background factors and no smoking) 

Whether X is a probabilistic cause of Y for individual a may depend on just 
what constellation of background factors is present for a. Some lucky people 
have a biochemistry such that for them, contact with poison oak is not a proba­
bilistic cause of skin eruptions and intense itching, but for most of us it unfor­
tunately is. 

Exercises 

1. Discuss the following argument: Most heroin users have previously smoked mar­
ijuana. Therefore, marijuana use causes heroin use.

2. How would you go about finding out whether for you exposure to ragweed
pollen is a cause of a stuffed-up nose, runny eyes, and so on?

3. Some studies have found that, on average, convicted criminals exhibit vitamin
deficiencies. This suggests to some researchers that vitamin deficiencies might
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affect personality and lead to criminal behavior. An alternative hypothesis might 
be that, in many cases, there is a common cause-heroin addiction-that leads 
to both criminal behavior and malnutrition with its attendant vitamin deficien­
cies. Can you think of any other possible hypotheses? What sort of data would 
you gather to decide which is correct? 



VII 

Kinds of Probability 

VII.I. INTRODUCTION. Historically, a number of distinct but
related concepts have been associated with the word probability. These fall 
into three families: rational degree of belief, relative frequency, and chance. 
Each of the probability concepts can be thought of as conforming to the math­
ematical rules of probability calculus, but each carries a different meaning. We 
have, in one way or another, met each of these probability concepts already in 
this book A biased coin has a certain objective chance of coming up heads. If 
we are uncertain as to how the coin is biased and what the objective chance 
really is, we may have a rational degree of belief that the coin will come up 
heads that is unequal to the true chance. If we flip the coin a number of times, 
a certain percentage of the tosses will come up heads; that is, the relative fre­
quency of heads in the class of tosses will be a number in the interval from 0 to 
1. The relative frequency of heads may well differ from both our degree of
belief that the coin will come up heads and the objective chance that the coin 
comes up heads. The concepts are distinct, but they are closely related. 
Observed relative frequencies are important evidence that influences our 
rational degrees of belief about objective chances. If, initially, we are unsure 
whether the coin is biased 2 to 1 in favor of heads or 2 to 1 in favor of tails 
(degree of belief�), and then we flip the coin 1000 times and get 670 heads, 
we will have gotten strong evidence indeed that the coin is biased toward 
heads. This chapter is devoted to a review of these conceptions of probability 
and a sketch of their interrelation. 

VII.2. RATIONAL DEGREE OF BELIEF. Belief is not really 
an all or nothing affair; it admits of degrees. You might be reasonably sure that 
the president was guilty without being absolutely certain. You might be ex­
tremely dubious about the plaintiff's supposed whiplash injury without being 
certain that he is malingering. You might think of it as only slightly more likely 
than not that the cause of a sore throat is a virus. Degrees of belief can be rep­
resented numerically, with larger numbers corresponding to stronger beliefs. 
What should the mathematics of these numbers be for a rational agent? 

Rational degrees of belief are used to make rational decisions on the basis 
of expected values. If probabilities are to be used to calculate expected value 
of gambles, there are elementary practical reasons for the mathematical rules 
of the probability calculus. Let us assume for simplicity that money has con­
stant marginal utility and that there is no value, positive or negative, attached 
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to risk itself. Then the expected value that you attach to a wager that pays you 
1 dollar if p and such that you lose nothing if �p, is just $Pr(p ). 

$1 X Pr(p) + $0 X Pr(�p) = $Pr(p) 

Then a tautology should have probability 1 because the wager: "You get 1 
dollar if a tautology is true, nothing otherwise" should have a value of 1 dollar­
a payoff that you are certain to get because tautologies are true in all cases. Like­
wise, a contradiction should get probability 0 because the wager "You get 1 
dollar if a contradiction is true, nothing otherwise" is obviously worth nothing. 

Nothing should get a probability greater than 1 or less than 0. If a state­
ment p got a probability greater than 1, the wager 'Tou get 1 dollar if p, noth­
ing otherwise" would get an expected value greater than 1 dollar, an expected 
value greater than anything you could possibly win. If a statement p got a 

probability less than 0, then the wager "You get 1 dollar if p, nothing other­
wise," which you can win but not lose, would get negative expected value; and 
the wager "You get -1 dollar (that is, you lose 1 dollar) if p, nothing other­
wise," which you can lose but not win, would get positive expected value. 

We can also give a gambling rationale for the special disjunction rule. Sup­
pose that p;q are mutually exclusive. Then a bet "l dollar if p, nothing other­
wise," taken together with a bet "l dollar if q, nothing otherwise" gives a total 
payoff of 1 dollar if p is tiue or if q is true, nothing if both are false (they can't 
both be true because they are incompatible). That is, the bet on p and on q, 
taken together, is tantamount to the bet: "l dollar if p or q, nothing otheiwise." 
If I'm willing to pay $Pr(p) for the first bet and then $Pr(q) for the second 
one, I will have paid $Pr(p) + Pr(q) for the lot. If my evaluations are consis­
tent, I should then give that same value to the bet "l dollar if p or q, nothing 
otherwise." But the expected value of this bet is Pr(pvq), so I have the special 
disjunction rule: 

Pr(pvq) = Pr(p) + Pr( q) 
(when p;q are mutually exclusive) 

All the rules of the probability calculus can be shown to follow from those 
justified here. 

VII.3. UTILITY. We have been operating so far within a set of 
assumptions that often approximate the truth for monetary gambles at 
small stakes. It is time to take a more global viewpoint and question these 
assumptions. 

An extra 100 dollars means less to a millionaire than to an ordinary person. 
But if I win a million, I'm a millionaire. So the difference between winning a 
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million + 100 dollars and winning a million means less to me than the 
difference between winning 100 dollars and winning nothing. In the terminol­
ogy of economics, money has decreasing rather than constant marginal utility 
for me. 

The idea of utility was introduced into the literature on gambling in this 
connection by Daniel Bernoulli in 1738. Bernoulli was concerned with the St. 
Petersburg game. In this game, you flip a fair coin until it comes up heads. If it 
comes up heads on the first toss, you get 2 dollars; if on the second toss, 4 dol­
lars; if on the third toss, 8 dollars; if on the nth toss, 2n dollars. The expected 
dollar value of this game is infinite. (Exercise: check this!) How much would 
you pay to get into this game? Bernoulli's idea was that if the marginal utility of 
money decreased in the right way, the St. Petersburg game could have a rea­
sonable finite expected utility even though the monetary expectation is infinite. 

When we consider decisions whose payoffs are in real goods rather than 
money, there is another complication we must take into account. That is, the 
value of having two goods together may not be equal to the sum of their indi­
vidual values because of interactions between the goods. If a man wants to start 
a pig farm, and getting a sow has value b for him and getting a boar has value c, 
then getting both a sow and a boar may have value greater than b + c. The sow 
and the boar are, for him, complementary goods. Interaction between goods 
can also be negative, as in the case of the prospective chicken farmer who wins 
two roosters in two lotteries. The presence of an active market reduces, but 
does not eliminate the effect of complementarities. The second rooster is still 
of more value to a prospective chicken farmer in Kansas than to Robinson Cru­
soe. The farmer can, for example, swap it for a hen; or at least sell it and put the 
money toward a hen. Because of complementarities, we cannot in general as­
sume that if a bettor makes a series of bets each of which he considers to be 
fair, he will judge the result of making them all together as fair. Where payoffs 
interact, the right hand may need to know what the left is doing. 

The preceding points about how utility works are intuitively easy to grasp. 
But it is harder to say just what utility is. We know how to count money, pigs, 
and chickens; but how do we measure utility? Von Neumann and Morgenstern 
showed how to use the expected utility principle to measure utility if we have 
some chance device (such as a wheel of fortune, a fair coin, a lottery) for which 
we know the chances. We pick the best payoff in our decision problem and 
give it (by convention) utility l; likewise, we give the worst payoff utility 0. 
Then we measure the utility of a payoff, P, in between by judging what sort of 
a gamble with the worst and the best payoffs as possible outcomes has value 
equal to P. For instance, farmer Jones wants a horse, a pig, a chicken, and a 
husband. Her current decision situation is structured so that she will get 
exactly one of these. She ranks the payoffs: 
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1 .  Horse 

2. Husband

3. Pig

4. Chicken

She is indifferent between ( 1 )  a lottery that gives � chance of a horse and � 
chance of a chicken, and one that gives a husband for sure; and (2) a lottery 
that gives � chance of a horse and � chance of a chicken, and one that gives a
pig for sure. Thus, her utility scale looks like this : 

Horse 
Husband 
Pig 
Chicken 

Utility 
1 
.8 
.5  
0 

If her decision situation were structured so that she might end up with all 
these goods, and if they didn't interfere with one another, then her utility scale 
might have a different top: Horse and Husband and Pig and Chicken. If it 
were structured so that she might end up getting none of these goods, after 
going to some expense, there might be a different bottom, which would have 
utility 0 .  

Utility, as  measured by the von Neumann- Morgenstern method, i s  subjec­
tive utility, determined by the decision maker's own preferences .  There are, no 
doubt, various senses in which a decision maker can be wrong about what is 
good for him. However, such questions are not addressed by this theory. 

From a decision maker's utilities we can infer his degrees of belief. Farmer 
Smith has bought two tickets to win for a race at the county fair, one on Stew­
ball and one on Molly. If he holds a ticket on a winning horse, he wins a pig; 
otherwise he gets nothing. We assume that he does not care about the out­
come of the horse race per se; it is important to him only insofar as it does or 
does not win him a pig. He is indifferent to keeping his ticket on Stewball or 
exchanging it for an objective lottery ticket with a known 10 percent chance of 
winning; likewise for Molly or an objective lottery ticket with a 15 percent 
chance of winning. 

Farmer Smith's utility scale looks like this : 

Pig 
Ticket on Molly 
Ticket on Stewball 
Nothing 

Utility 
1 

. 15 

. 10 
0 
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If he maximizes expected utility, his expected utility for his bet (ticket) on 
Molly is : 

Degree of Belief (Molly Wins )  Utility (Pig) + 
Degree of Belief (Molly Loses) Utility (Nothing) 

This is just equal to his degree of belief that Molly wins . Then his degree of be­
lief that Molly wins is . 15; in the same way, his degree of belief that Stewball 
wins is . 10 .  Subjective degrees of belief are here recovered from subjective 
utilities in an obvious and simple way. (Things would be more complicated if 
farmer Smith cared about the outcome of the race over and above the 
question of the pig, but as we shall see in the next section, his subjective 
degrees of belief could still be found. )  

Exercises 

1 .  A decision maker with declining marginal utility of money is risk averse in mone­
tary terms . He will prefer 50 dollars for sure to a wager that gives a chance of � of
winning 100 dollars and a chance of � of winning nothing, because the initial 50 
dollars has more utility for him than the second 50 dollars . Suppose that winning 
100 dollars is the best thing that can happen to him and winning nothing is the 
worst. 

a. What is his utility for winning 100 dollars?
b .  What is his utility for winning nothing? 
c. What is his utility for a wager that gives a known objective chance of � of win­

ning 100 dollars and � of winning nothing?
d. What can we say about his utility for getting 50 dollars?
e. Draw a graph of utility as against money for a decision maker who is generally

risk averse.

2 . Suppose farmer Smith has one ticket on each horse running at the county fair,
and thus will win a pig no matter which horse wins . Let U(pig) = 1 and
U(nothing) = 0. Suppose farmer Smith's preferences go by expected utility.

a. Farmer Smith believes that all his tickets taken together are worth one pig for
sure. What does this tell you about his degrees of belief about the race?

b. Suppose that farmer Smith also believes that each of his tickets has equal util­
ity. What does this tell you about his degrees of belief about the race?

VIl.4. RAMSEY. The von Neumann- Morgenstern theory of utility 
is really a rediscovery of ideas contained in a remarkable essay, "Truth and 
Probability," written by F. P. Ramsey in 1926. In the essay, Ramsey goes 
even deeper into the foundations of utility and probability. The von 
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Neumann- Morgenstern method requires that the decision maker know some 
objective chances, which are then used to scale his subjective utilities .  From 
his subjective utilities and preferences, information about his subjective prob­
abilities can be recovered. Ramsey starts without the assumption of knowledge 
of some chances, and with only the decision maker's preferences . 

Ramsey starts by identifying propositions that, like the coin flips, lotteries, 
and horse races of the previous section, have no value to the decision maker in 
and of themselves, but only insofar as certain payoffs hang on them. He calls 
such propositions "ethically neutral. "  A proposition, p ,  is ethically neutral for a 
collection of payoffs, B, if it makes no difference to the agent's preferences, 
that is, if he is indifferent between B with p true and B with p false . A proposi­
tion, p ,  is ethically neutral if p is ethically neutral for maximal collections of 
payoffs relevant to the decision problem. The nice thing about ethically neu­
tral propositions is that the expected utility of gambles on them depends only 
on their probability and the utility of their outcomes. Their own utility is not a 
complicating factor. 

Now we can identify an ethically neutral proposition, H, as having probabil­
ity � for the decision maker if there are two payoffs, A;B, such that he prefers
A to B but is indifferent between the two gambles :  ( 1 )  Get A if H is true, B if 
H is false; (2) get B if H is true, A if H is false. (If he thought H was more likely 
than � H, he would prefer gamble l ;  if he thought � H was more likely than H, 
he would prefer gamble 2 . )  For the purpose of scaling the decision maker's 
utilities, such a proposition is just as good as the proposition that a fair coin 
comes up heads . 

The same procedure works in general to identify surrogates for fair lotter­
ies . Suppose there are 100 ethically neutral propositions , H1;H2; . . .  ;H100, 
which are pairwise incompatible and jointly exhaustive. Suppose there are 100 
payoffs, G1;G2; . . . ;G100, such that G1 is preferred to G2, G2 is preferred to 
G3, and so forth up to G100• Suppose the decision maker is indifferent between 
the complex gamble : 

If H1 get G1 & 
If H2 get G2 & 
If Hi get Gi & 
If H100 get G100

and every other complex gamble you can get from it by moving the Gis around. 
Then each of the His gets probability .001 ,  and together they are just as good as 
a fair lottery with 100 tickets for scaling the decision maker's utilities . 

A rich enough preference ordering has enough ethically neutral proposi­
tions forming equiprobable partitions of the kind just discussed to carry out 
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the von Neumann - Morgenstern type of scaling of utilities described in the 
last section to any desired degree of precision. Once the utilities have been 
determined, the degree of belief probabilities of the remaining ethically neu­
tral propositions can be determined in the simple way we have seen before . 
The decision maker's degree of belief in the ethically neutral proposition, p ,  is 
just the utility he attaches to the gamble : Get G if p, B otherwise, where G has 
utility 1 and B has utility 0. 

With utilities in hand, we can also solve for the decision maker's degrees of 
belief in non-ethically neutral propositions, although things are not quite so 
simple here. Suppose that farmer Smith owned Stewball and wanted his horse 
to win, as well as wanting to win a pig. Then "Stewball wins" and "Molly wins" 
are not ethically neutral for him. Now suppose we want to determine his de­
gree of belief in the proposition that Molly wins . Given our conventions, we 
can't set up a gamble that gives utility 1 if Molly wins because what farmer 
Smith desires most and gives utility 1 is : "Get a pig and Stewball wins . "  But we 
know that the expected utility of the wager "Pig if Molly wins, no prize if she 
loses" is equal to: 

Pr( Molly wins) U(get pig and Molly wins) + 
1 -Pr(Molly wins)  U(no prize and Molly loses) 

If we know the utility of the wager, of "Get pig and Molly wins,'' and of "No 
prize and Molly loses," we can solve for Pr( Molly wins) .  

For a rich and coherent preference ordering over gambles, Ramsey has 
conjured up both a subjective utility assignment and a degree of belief proba­
bility assignment such that preference goes by expected utility. This sort of 
representation theorem shows how deeply the probability concept is rooted in 
practical reasoning. 

Exercises 

1 .  Suppose that the four propositions, HH;HT;TH;TT, are pairwise incompatible (at
most one of them can be true) and jointly exhaustive (at least one must be true) .  
Describe the preferences you would need to find to conclude that they are ethi­
cally neutral and equiprobable. 

2 .  Suppose that farmer Smith owns Stewball and that "Molly wins" is not ethically 
neutral. His most preferred outcome is "Get pig and Stewball wins;" his least 
preferred is "No pig and Stewball loses;" therefore, these get utility 1 and 0, re­
spectively. Propositions, HH;HT;TH;TT are as in Exercise 1 .  Farmer Smith is in­
different between "Get pig and Molly wins" and a hypothetical gamble that 
would ensure that he would get the pig and Stewball would win if HH or HT or
TH and that he would get no pig and Stewball would lose if TT. (What does this
tell you about his utility for "Get pig and Molly wins?") He is indifferent between 
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"No pig and Molly loses" and the hypothetical gamble that would ensure that he 
would get the pig and Stewball would win if HH and that he would get no pig
and Stewball would lose if HT or TH or HH. He is indifferent between the gam­
ble "Pig if Molly wins; no pig if she loses" and the gamble "Get pig and Stewball 
wins if HH or HT, but no pig and Stewball loses if TH or TT." 
a. What are his utilities for "Get pig and Molly wins;" "No pig and Molly loses;"

the gamble "Pig if Molly wins; no pig if Molly loses?"
b. What is his degree of belief probability that Molly will win?

VII.5. RELATIVE FREQUENCY. If I flip a coin ten times and it 
comes up heads six of those times, the observed relative frequency of heads is 
.6; six heads out of ten trials . If our language contains the means of reporting 
the outcomes of single trials and contains standard propositional logic, it 
already contains the means for reporting the relative frequencies in finite 
numbers of trials . For example, ( supposing that Hl means "heads on trial l," 
etc. ) we can render "relative frequency of heads equals . l" as the disjunction 
of those sequences of outcomes with exactly one head and nine tails : 

Hl&T2&T3&T4&T5&T6&T7&T8&T9&Tl0 or 
Tl&H2&T3&T4&T5&T6&T7&T8&T9&Tl0 or 
Tl&T2&H3&T4&T5&T6&T7&T8&T9&Tl0 or 
Tl&T2&T3&H4&T5&T6&T7&T8&T9&Tl0 or 
Tl&T2&T3&T4&H5&T6&T7&T8&T9&Tl0 or 
Tl&T2&T3&T4&T5&H6&T7&T8&T9&Tl0 or 
Tl&T2&T3&T4&T5&T6&H7&T8&T9&Tl0 or 
Tl&T2&T3&T4&T5&T6&T7&H8&T9&Tl0 or 
Tl&T2&T3&T4&T5&T6&T7&T8&H9&Tl0 or 
Tl&T2&T3&T4&T5&T6&T7&T8&T9&Hl0 

(Exercise :  Write out the comparable description for "relative frequency of 
heads equals .2 in ten trials. )  Relative frequencies of outcome types obey the 
laws of the probability calculus: They are always numbers in the interval from 
0 to 1 .  The relative frequency of a tautological outcome type (for example, 
either heads or not) is 1 and that of a contradictory outcome type (for exam­
ple, both heads and not) is 0 .  The relative frequency of two mutually exclusive 
outcome types is the sum of their individual relative frequencies .  

Statements of  observed relative frequencies constitute an especially impor­
tant kind of evidence for statements about chance. In certain familiar cases 
they summarize everything that is relevant to the chances in a series of 
observed trials . Consider again the example of the coin with unknown bias . 
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Suppose that the coin is flipped ten times with the outcome being: 

Hl&T2&H3&H4&T5&H6&T7&H8&H9&Hl0 

The relative frequency of heads is . 7. Now suppose that we want to find the 
probability conditional on the outcome that the chance of heads is � · We use
Bayes' theorem: 

Pr[ chance H = � /outcome]
Pr[ outcome/chance H = �] Pr[ chance H = �]

Sumi Pr[outcome/chance H = i] Pr[chance H = i] 

The outcome evidence figures in Bayes' theory solely through the conditional 
probabilities of the outcome given the chance hypotheses . But for a given 
chance hypothesis , every outcome sequence with seven heads out of ten tosses 
has the same probability conditional on the chance hypothesis . (This is be­
cause the trials are independent, conditional on the chance hypotheses . )  Any 
other outcome sequence of ten trials with the same relative frequency of 
heads would lead to the same calculation (order is not important) . With regard 
to our inferences about chances here, all the relevant information in the 
outcome sequence is captured by a report of relative frequency. Relative 
frequency is said here to be a sufficient statistic. ( It is a sufficient statistic when 
we are considering outcome sequences of fixed length. The pair consisting 
of the length of the outcome sequence together with the relative frequency 
constitutes a sufficient statistic in general for all outcome sequences . )  
Whenever the trials are independent, conditional on the chance hypotheses, 
relative frequency is a sufficient statistic. In this typical situation, reports 
of relative frequency capture all the salient information in the experimental 
results . 

Reports of relative frequency become more compelling as the number of 
observed trials becomes large. Seven out of ten heads might incline us to be­
lieve that the coin is biased toward heads, but our inclination would tum into 
something stronger on the evidence of 70 out of 100 heads, let alone on 700 
out of 1000. These gambler's intuitions are mathematically well founded. Sup­
pose that you are in the coin tossing case, with a finite number of chance hy­
potheses, each of which has positive prior (degree of belief) probability and 
that the trials are independent, conditional on the chance hypotheses . Then as 
the number of trials becomes larger and larger, your probability that the 
relative frequency approximates the true chances to any tiny preassigned error 
tolerance approaches 1 .  This is a consequence of a theorem of the probability 
calculus known as the weak law of large numbers .  Here, you must believe 
strongly that the relative frequencies will approximate the chances in the long 
run if your degrees of belief are coherent. 
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We expect a large number of independent flips of a coin to produce an 
outcome sequence whose relative frequency of heads approximates the true 
chance of heads given the true bias of the coin. We also expect that the 
outcome sequence will be disordered or random without any consistent 
pattern. An outcome sequence with a simple pattern, such as : 

HHTHHTHHTHHTHHTHHTHHTHHTHHTHHTHHTHH . . . 

would strain our belief that the trials really are independent. This intuition 
also has a mathematical foundation in the probability calculus . Using a suitable 
definition of randomness, it can be shown that a large number of independent 
trials is likely to produce a highly random outcome sequence. 

Situations in which we are confronted with a large number of trials that we 
think are independent (or approximately independent) ,  conditional on the 
chance hypotheses, are all around us . They are of interest not only in the the­
ory of classical games of chance, but also in statistical physics ,  social sciences, 
and medicine. In such situations we expect (with high degree of belief) to en­
counter relatively random data whose relative frequency approximates the 
chances . Some writers focus on this sort of case to the extent of defining prob­
ability (that is , chance) as the limiting relative frequency of random outcome 
sequences .  But without going that far, we can still see the importance of rela­
tive frequencies for anyone who has coherent degrees of belief about chances. 

Exercise 

A fair coin is flipped four times, with the flips being independent. What is the prob­
ability that the relative frequency of heads is : 

a. 0

b . �
1 c. 2

d. �
e .  1 

VII.6. CHANCE. We have already discussed some aspects of 
chance in connection with degree of belief and relative frequency. The biased 
coin is held to have some true chance of coming up heads, determined by its 
physical composition (in conjunction with the nature of the flipping appara­
tus) .  In the long run we approach certainty that the relative frequency of 
heads will approximate the chance of heads, but in the short run chance and 
relative frequency may well diverge. We may be uncertain about the chances, 
in which case we have various degrees of belief for the chance hypotheses. 
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Here, observed relative frequencies can serve as evidence-evidence that 
becomes more and more conclusive as the number of trials approaches infin­
ity- about the chances via Bayes' theorem. 

Let us look at the use of Bayes' theorem a little more closely. The quantities 
that are crucial to the way in which the observed frequencies cut for and 
against the chance hypotheses are the conditional probabilities of outcomes 
conditional on the chance hypotheses. Now I am going to ask a question that 
may seem trivial. What is the probability of getting heads conditional on the 
chance of heads being �?  The natural answer is � ' and it may sound tautologi­
cal. But remember, the conditional probability in question is a degree of 
belief. What we have is a principle connecting degree of belief and chance 
that is so obvious that it is constantly used but rarely stated. If our evidence for 
an outcome comes only from knowledge of the chances involved, then: 

Degree of belief [ 0 given chance( 0) = x] = x

It is this principle that allows us to use Bayes' theorem in inductive reasoning 
about chances. 

It also allows us to determine in a natural way degrees of belief about out­
comes from degrees of belief about chances .  Suppose that you are certain that
the chance of heads is either � or � and that you regard those chance hypothe­
ses as equally likely (that is, you give them each degree of belief � ) .  Then what
should your degree of belief be that the next coin flip comes up heads? A nat­
ural answer is to average the possible chances 50/50, getting (�)(�) + (�) (�) = � .
The answer is a consequence of the foregoing principle and the probability 
calculus : 

Pr(H) = Pr[Ch(H) = � & H] + Pr[Ch(H) = � & H]
= Pr[Ch(H) = � ] Pr[H/Ch(H) = � ] + Pr[Ch(H) = � ] Pr[H/Ch(H) = � ]
= Pr[Ch(H) = � ] (� ) + Pr[Ch(H) = � ] (� )

The proper degree of belief that the next flip comes up heads is an average of 
the possible chances, with the weights of the average being the degrees of be­
lief in the proper chance hypotheses. We have met such weighted averages be­
fore when we discussed rational decision. They are called expectations . In con­
nection with rational decision, we were interested in expected utility. The 
principle we have here is that rational degree of belief is the expectation of 
chance. 

The preceding two paragraphs round out our quick survey of the connec­
tions between chance and the other conceptions of probability (although they 
may leave lingering questions about the credentials of the "natural" principles 
invoked) . But, what is chance in and of itself? This question is highly 
controversial. I will attempt a rough and ready sketch of the main positions , 
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but the reader should be warned that I will not be able to do justice here to 
the subtle and sophisticated variations on these positions to be found in the 
literature . Basically, metaphysical views of chance fall into three main cate­
gories :  (I) chance as primitive and irreducible, (II) chance as reducible in 
some way to relative frequency, (III) chance as reducible in some way to 
degree of belief. 

Those who think of chance as an irreducible notion of physical tendency or 
propensity usually think of it as a theoretical concept on a par with the concept 
of force in physics . Physical theories stated in terms of chance permit predic­
tions about the chances .  But all that we can observe are the relative frequen­
cies in sequences of outcomes . These are inductively rather than deductively 
linked to statements about chance. That is, our rational degrees of belief about 
the chances are influenced by observed relative frequencies .  Conversely, our 
beliefs about the chances influence our anticipations about relative frequen­
cies . In short, all that we know about chance in general is its connections with 
rational degree of belief and relative frequency. The main shortcoming of this 
view is that it has so little to say; its main strength is the shortcomings of 
competing views . 

Frequentists think of chance as relative frequency in the long run -more 
precisely, as the limiting relative frequency in an infinite sequence of trials . 
Some versions of the theory (such as that of von Mises) add the proviso that 
the sequence of trials be random; some versions (such as that of Reichenbach) 
do not. Frequency views derive a certain motivation from limit theorems of 
the probability calculus, such as the law of large numbers . If we consider infi­
nite sequences of independent trials, 1 the law of large numbers can be stated 
in a strong way: The probability that the chance equals the relative frequency 
is 1 .  Why not just say that chance is limiting relative frequency. 

This view has its difficulties .  The most obvious is that the appropriate infi­
nite sequences may not exist. Suppose, with some plausibility, that my biased 
coin does not last for an infinite number of flips. Still, we want to say that on 
each flip there was a definite chance of that flip coming up heads . There is an­
other problem as well in finding the appropriate infinite sequences. The physi­
cal factors determining chance may change. The coin may wear in such a way 
as to change the bias after a few million flips. Or, to vary the example, the 
chance of a newborn baby living to age 50 may change from decade to decade 
and country to country, and so on. For these reasons, sophisticated relative 
frequency views from the time of John Venn ( 1866) onward have had to talk 
about hypothetical relative frequencies: what the limiting relative frequency 

1And strengthen the additivity rule of the probability calculus to allow infinite additivity. 
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would have been if the experiment had been repeated (independently?) an in.fi­
nite number of times such that the factors determining the chances did not 
change. Notice that this definition of chance, as it stands, is circular. It uses 
both the notion of the factors determining the chances, and, apparently, the 
notion of independent trials . A noncircular hypothetical relative frequency 
definition of chance would require some way of eliminating these references 
to chance. 

Even if this were accomplished, there would be some question as to the 
grounding of the hypothetical. Improbability, even probability 0, is not impos­
sibility. There is nothing in probability theory that says that it is impossible for 
a fair coin to come up heads every time in an infinite sequence of independent 
trials . What, then, does the frequentist take as grounding the truth of 
hypotheticals about what the limiting relative frequency would have been, in 
such a way that they capture the concept of chance? The idea of a relative 
frequency interpretation of chance offers to bring the concept of chance down 
to earth, but as the relative frequency interpretation becomes more sophisti­
cated, it becomes more remote from the real events that constitute sequences 
of actual trials . 

Personalists want to do without the concept of chance. The primary con­
ception of probability for them is rational degree of belief. But they need to 
provide some explanation of what appears to be rational degrees of belief 
about chance, as in the case of the biased coin. They do this by showing how 
ordinary degrees of belief about the experimental setup and the outcome 
sequence can look like degrees of belief about chance. 

Presumably there are certain overt physical facts that you take as determin­
ing the chances ,  for example, the shape and distribution of density of the coin. 
Let us say that your personal chance ("p-chance," for short) of heads is your 
degree of belief in heads conditional on the specification of these physical 
facts . For example, let LUMPH describe a coin with a lump on the heads side 
such that your degree of belief that the coin will come up heads conditional on 
that physical asymmetry of the coin is � .  Then we will say that your p-chance 
of heads is � in any situation in which LUMPH is a true description of the 
coin. Now the personalist can show that p-chances work just the way that 
chances are supposed to, and that this is a consequence of the probability 
calculus . Thus : 

Pr[heads/p-chance(heads) = � ] = � 

from the definition of p-chance, and rational degree of belief is the expecta­
tion of p-chance. 

Now, p-chances are personal; they come from one's degrees of belief. 
Different rational agents can assign different p-chances to the same possible 
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circumstances .  This subjective character of p-chances ,  however, gives way to 
an objective determination in certain special circumstances. One sort of overt 
fact about the world that one might appeal to in constructing p-chances 
consists of the relative frequency of an outcome type (for example, heads) in 
an outcome sequence. If two rational agents have degrees of belief such that 
their p-chances constructed in this way give independent trials, then their 
p-chances must agree in the limiting case of infinite trials as a consequence of 
the law of large numbers . Here objective agreement is a consequence of a 
theorem of the probability calculus . 

The analysis of the condition under which a degree of belief has the sort of 
structure such that conditioning on statements of relative frequency gives in­
dependence in the limit is due to de Finetti. It is that the degree of belief 
probability makes the trials exchangeable, which is to say that for any finite 
length subsequence, relative frequency is a sufficient statistic. In this case, 
personalism comes surprisingly close to frequentism: Degree of belief is the ex­
pectation of limiting relative frequency . This version of personalism inherits 
some of the strengths of frequentism, such as the objective character of laws 
of large numbers; but it also inherits some of the problems of frequentism, 
such as questions about the idealized character of infinite sequences of trials . 

The question of the nature of chance is a difficult and controversial meta­
physical topic. Propensity, frequency, and personalist views of chance seem 
initially to be quite distinct. But sophisticated versions of each of these views 
make contact with the central concepts and methods of the others, and there 
is considerable common ground between them. 

Exercise 

We both believe that a coin is either (A) biased 2 to 1 in favor of heads, or (B)
biased 2 to 1 in favor of tails, but we differ as to how our initial degrees of belief are
distributed between (A) and (B ) .  You believe (A) to degree .8  and (B )  to degree .2. I 
believe (A) to degree .3 and (B)  to degree .7 .  We flip the coin five times and get one
head and four tails . If we both conditionalize on this evidence, what are our final 
degrees of belief in (A) and (B)?  (Use Bayes' theorem. )  



VIII
Probability and Scientific 
Inductive Logic 

VIII. I .  INTRODUCTION. In Chapter II we discussed in general
terms the relationship between probability and scientific inductive logic. Now 
that we have studied a bit of the mathematical theory of probability in Chapter 
VI and the interaction of various kinds of probability in Chapter VII ,  we can 
do a little more. In this chapter we revisit some of the topics discussed earlier 
to see what light our knowledge of probability can throw on them. 

VIII.2.  HYPOTHESIS AND DEDUCTION. Suppose we formu­
late a scientific hypothesis , deduce an observational prediction from it, test the 
prediction, and observe that it is false . Then the hypothesis is false. A deduc­
tively valid argument cannot lead from a true premise to a false conclusion, so 
if the argument from the hypothesis to the prediction is valid and the predic­
tion is false, the hypothesis must also be false . We have investigated one kind 
of this sort of elimination of hypotheses when we discussed Mill's methods of 
experimental inquiry in Chapter V In that chapter, the hypotheses were of 
some special form: "C is a necessary condition for E," "C is a sufficient condi­
tion for E," and so forth. The prediction obtained from the hypothesis said 
that a certain kind of event could not occur, for example "E cannot be present 
if C is absent." An observation of an occurrence that violates this prediction 
shows that the hypothesis is false .  

Some philosophers , notably Sir Karl Popper, have held that this sort of 
deductive testing of hypotheses is all that there is to the logic of science. A 
hypothesis that passes such a test is said to be corroborated. Passing many 
observational tests is better than passing just one, and some tests are more 
telling than others . For instance, successful prediction of something that is 
unexpected is better that one of something that would be expected even if the 
hypothesis weren't true. 

This account of the continual testing of hypotheses in science carries useful 
insights into scientific method, but it also leaves unanswered some important 
questions . Why are more stringent tests better than less stringent ones? Why 
is it better to pass more tests? How much better? More importantly, what are 
we to say about scientific hypotheses from which we cannot, strictly speaking, 
deduce predictions that can be conclusively refuted by observation? As an im­
portant example, consider probabilistic hypotheses that do not tell you what 
occurrences are impossible, but only which are more or less probable. Note 
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that a physical theory as basic as quantum mechanics generates just this kind 
of hypothesis . 

Fortunately, we can show that probabilistic reasoning preserves the insights 
of deductive testing without such a drastic restriction of the range of inductive 
reasoning. Suppose that we have a hypothesis , H, that we wish to test. Our 
degree of belief in H is neither equal to zero (in which case we would consider 
it a non-starter) nor equal to one (in which case we would consider it conclu­
sively established) ,  but rather somewhere in between. Now we deduce a pre­
diction, E,  from H. Because of this deduction the conditional probability, Pr(E 
given H) is equal to one and Pr(� E given H) is equal to zero . We assume that 
our prior degree of belief in E is also neither zero nor one, but rather some­
thing in between. Now we look to see whether E is true. This may involve 
performing an experiment, or it may involve pure observation. 

Suppose our observation shows that E is false .  Then our new degree of 
belief in the hypothesis, H, is our old conditional probability, Pr(H given �E). 
By Bayes' theorem this is : 

Pr(H given �E) = Pr(�E given H) Pr(H) /Pr(�E) . 

But Pr( � E given H) is zero because we deduced E from H. So the new proba­
bility of the hypothesis is zero. The hypothesis is refuted. 

On the other hand, suppose that the hypothesis passes the test; E is shown 
to be true. Then the new probability of the hypothesis should be equal to Pr(H 
given E) .  Let's say that the hypothesis is corroborated by the evidence if the 
new probability of the hypothesis is greater than its old probability, that is to 
say if the ratio: 

Pr(H given E)/Pr(H) 

is greater than one. But probability theory tells us that: 

Pr(H given E) /Pr(H) = Pr(E given H)/Pr(E)  

Since we deduced E from H,  Pr(E given H) i s  equal to one, so: 

Pr(H given E)/Pr(H) = l/Pr(E) 

Since Pr(E) is less than one, the hypothesis is corroborated by passing the 
test, just as the deductivist believes that it should be. Furthermore, we get, as 
a little probabilistic bonus, an explanation of additional deductivist intuitions. 
The more surprising the corroborating phenomenon [that is, the smaller 
Pr(E) ]  the greater the corroboration of the hypothesis [the greater Pr(H given 
E)/Pr(H)] .  

Popper's deductive story of observational test of scientific theory is 
preserved as a special case by probabilistic reasoning, but notice that the 
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same sort of stmy now has been shown to apply much more generally. 
Suppose that the prediction, E,  cannot strictly be deduced from the hypothe­
sis, but can only be shown to have high probability given the hypothesis . For 
example, suppose that Pr(E given H) = .999. In this case, when we test for 
corroboration, we get: 

Pr(H given E)!Pr(H) = .999/Pr(E) 

Now E corroborates H if our prior degree of belief in E was not already .999 
or more. The more improbable E was initially thought to be, the more power­
fully it corroborates the hypothesis . 

VIII.3. QUANTITY AND VARIETY OF EVIDENCE. Suppose 
that a new drug is being tested for serious side effects . It would be laughable if 
a pharmaceutical company applied to the Food and Drug Administration for 
approval to market the drug on the basis of experience with only one patient. 
Extensive testing is required to provide a reasonable assurance of public safety. 
Passing more tests is better than passing less .  Why is this so? Deductive reason­
ing alone does not really provide an answer. Probabilistic reasoning does . 

Let us simplify and suppose that the hypothesis, H, is No liver damage 
when this drug is administered and that evidence El is There was no liver 
damage when this drug was administered to patient 1 and evidence El 000 is 
There was no liver damage when this drug was administered to patients 1 
through 1 000. We would like to know why ElOOO is better evidence for H than 
El . Assuming as background knowledge that the drug was administered, we 
have, as in the last section: 

Pr(H given El )!Pr(H) = l/Pr(El ) and 
Pr(H given ElOOO) !Pr(H) = l!Pr(ElOOO) 

Prior to the test, when the safety of the drug is in serious doubt, the probabil­
ity that one patient escapes liver damage is higher than the probability 1000 
do. That is to say, Pr(El ) is greater than Pr(ElOOO) . It follows that H is better 
corroborated by 1000 trials than by just one. Pr(H given ElOOO) is greater than 
Pr(H given El ) .  

The same sort of reasoning explains the importance of variety of evidence. 
Compare two sorts of evidence: One, EH, reports no liver damage from 1000 
trials in a homogeneous population of patients who are all between 20 and 15 
years of age and in general good health. Another, EV, reports no liver damage 
in a sample of 1000 trials in a heterogeneous population of people of all ages 
and various degrees of health. With the safety of the drug unknown, the prob­
ability that liver damage would not show up in the homogeneous population is 
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higher that the probability that it would not show up in the varied population. 
That is to say, Pr(EH) is greater than Pr(EV) . So, as before, Pr(H given EV) is 
greater than Pr(H given EH) . 

These examples explain the force of quantity and variety of evidence in a 
deductive setting where the hypothesis entails the evidence. The same general 
considerations apply when the connection between the hypothesis and the 
evidence is probabilistic. 

Exercises 

1 .  Suppose that an urn either has 99 red balls and 1 white ball (Hypothesis 1 )  or has
99 white balls and 1 red ball (Hypothesis 2) .  Suppose both hypotheses have
initial probability of � . Consider two samples drawn with replacement. Sample 1
consists of 1 red ball. Sample 2 consists of 10 red balls . Find the Pr(Hypothesis 1 
given Sample 1 )  and Pr(Hypothesis 1 given Sample 2) .  

2 . Suppose that there are two urns, each of which has either 99 red balls and 1
white ball or 99 white balls and 1 red ball. For each urn both hypotheses have ini­
tial probability of � , and composition of the urns are independent of one another.
(You could think of it this way: For each urn, a fair coin has been flipped to see
whether it has mostly red balls or mostly white balls . The coin flips are indepen­
dent. Consider the hypothesis, H, that both urns have 99 red balls and 1 white
ball. Consider two possible samples. Sample 1 consists of 20 red balls from urn 1 .
Sample 2 consists of 10 red balls from urn 1 and 10 red balls from urn 2 .
Compute Pr(H)/Pr(H given Sample 1 )  and Pr(H)/Pr(H given Sample 2) .

VIII.4. TOTAL EVIDENCE. Why should you use your total 
evidence in updating your degrees of belief? It doesn't cost you anything to 
use the evidence that you already have, and it is plausible to do so, but what is 
the reason that this is the rational thing to do? It can be shown that we should 
always expect better results from making decisions based on more knowledge 
rather than less . 

Suppose you are bitten by a dog that was foaming at the mouth. You sus­
pect that it may have had rabies .  You now have to choose between taking the 
Pasteur treatment or not. The Pasteur treatment is inconvenient and painful; 
but if the dog did have rabies the treatment can save your life. Given your cur­
rent estimate about how likely it is that the dog had rabies and your current 
utilities, you maximize expected utility by playing it safe and opting for the 
treatment. 

But now the dog is captured, and you can have it tested for rabies before 
you make your decision whether to have the Pasteur treatment or not. The 
test will be quick and will not cost you anything. Will you decide now, or get 
the new evidence from the test results and then decide? It is obvious that the 
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Figure VIII. I (Source: From The Dynamics of Rational Deliberation by Brian Skyrms. Copy­
right © 1990 by the President and Fellows of Harvard College. Reprinted by permission of Har­
vard University Press . )  

best thing to do is to get the test results before deciding. The reason is equally 
obvious .  If it turns out that the dog is not rabid you will be better off making a 
different decision than you would on the basis of your current information; 
you will be better off not taking the treatment. You maximize expected value 
by choosing to make your decision on probabilities that incorporate more 
information rather than less .  

You can see this reasoning graphically in Figure VIII . I .  The expected 
utilities of treatment and of no treatment are graphed as a function of the 
probability that the dog is rabid. The expected utility of each act is graphed as 
a straight line. At the right edge of the graph, the probability that the dog had 
rabies is equal to one, and the utility of treatment is higher than that of non­
treatment. At the left edge of the graph, the probability that the dog has rabies 
is zero, and the expected utility of treatment is lower than that of non-treat­
ment. The lines are straight because expected utility is an average . 

For instance, if the probability that the dog is rabid is one-half, then the ex­
pected utility of treatment is midway between its value when the dog is surely 
rabid and its · value when the dog is surely not rabid. The bold parts of the lines 
show which act is best at that probability. The upper horizontal dotted line 
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connecting treatment on the right and none on the left gives us the expected 
utility of getting the information as to whether the dog is rabid and then decid­
ing. The upper horizontal line is higher than the boldfaced line 
(except at the edges) and this shows that the expected utility of getting informa­
tion and then deciding is higher than the expected utility of making a decision 
without getting new information. This is an illustration of a general principle . If 
new information may change your optimal act, the expected utility of making 
an informed act is always greater than that of making an uninformed act. 

Why then, should you use your total evidence to update your degrees of be­
lief? Because you expect that this is the best way to get degrees of belief that 
are to be used for making rational decisions . 

VIII.5. CONVERGENCE TO THE TRUTH. What about the 
problem of induction? Probability theory is not going to solve Hume's problem 
in Hume's terms. Probability theory isn't magic! But it can help us understand 
some aspects of the problem. 

Suppose you are flipping a coin with unknown bias . You think that the coin is 
either biased 2 to 1 in favor of heads [ Chance(heads = � )] or 2 to 1 in favor of 
tails [Chance(tails) = � ] . You think that the tosses are objectively independent. 
That is to say that they are independent in the chance probabilities . You are un­
certain as to whether the coin is biased toward heads or tails . For a definite ex­
ample we can suppose that your degree of belief that the coin is biased toward
heads is � as is your degree of belief that it is biased toward tails , but what I am
about to say would hold good for other non-extreme values of degree of belief. 

You are going to flip the coin over and over, and you will update your 
degrees of belief in the chance hypotheses using Bayes' theorem. Now, given 
all this , how skeptical can you be, concerning your learning from experience? 
There are limits . Given your degrees of belief you must believe that if the coin 
is biased 2 to 1 in favor of heads, then in the long run the observed relative fre­
quency of heads will get closer and closer to � , as discussed in Chapter VIL 
Then if you update your degrees of belief using Bayes' theorem, your degree of 
belief that Chance(heads) = � will get closer and closer to 1 .  Likewise, you 
must believe that if the coin is biased 2 to 1 in favor of tails , then in the long 
run the relative frequency of heads will get closer and closer to � ,  and your de­
gree of belief that Chance(heads) = � will get closer and closer to 1 .  You must 
believe that you will learn the true chances ! Knowing the true chances does not 
tell you for sure whether that coin will come up on the next toss or not. It only 
gives you the chances .  But we can't expect any more. That's as good as it gets . 

You might legitimately worry about use of "the long run" in this discussion. 
Must you be prepared to wait forever? Not really. I won't work out the details 
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here, but I can say this: Given that your degrees of belief are as stated in the 
example, you must be very sure that you will assign very high probability to the 
true chances after about 100 flips of the coin. 

So far, so good. But what if rou are wrong about the coin either being bi­
ased so that Chance(heads) = 3 or being biased so that Chance(heads) = �?
Suppose that the coin is fair and Chance(heads) = � ·  Then no matter how
many coin flips you observe, you will never learn the true chances ! How can 
you be certain that you will learn the true chances? You are certain that you 
will learn the true chances because you are certain that either Chance(heads) 
= � or chance(heads) = � ·  But I have a strong belief that the coin is fair, and I 
will have a strong belief that you will not learn the true chances. You cannot be 
skeptical about whether you will learn the true chances ,  but someone else can 
be skeptical about whether you will learn the true chances .  

Can you do better than this? You can. The reason that you cannot learn that 
the coin is fair if it is, is that you have closed your mind to the possibility that 
the true chances might be anything other than � or � .  How can you open your 
mind to other possibilities? You need to have some piior degrees of belief such 
that they give probability greater than zero to the true chances being in every 
little interval around every point from zero to one. This is not so restiictive .
You could do this and still be �uite sure (for example, with probability
.999999) that the chances are � or 3 ,  with just a little uncertainty spread over 
the other possibilities .  Then both you and I would be sure that you would 
eventually learn the true bias of the coin, no matter what it is . All that was 
required was a little open-mindedness. 

Have we solved the problem of induction? Not quite . We assumed some 
structure in order to get our nice results . We assumed that the true chances 
made the coin flips independent, and that the chance of heads did not change 
from flip to Hip . If this is the true chance structure and what is unknown is just 
the bias of the coin then we are fine. But we had to assume something to get 
some positive results . 

We could be more open-minded, starting with some degree of belief in 
the foregoing coin flipping structure and some degree of belief in alterna­
tive structures ;  for example, a structure where the outcome of a flip influ­
ences the chances on the next flip . We could have open-minded degrees of 
belief that assure eventually learning the true chances if any of these struc­
tures is the true chance structure, but with no assumptions at all, we get no 
results . Probability theory is not magic, and in its strongest pure form, the 
skepticism of David Hume is unanswerable . Still , I hope that the small 
sample served up in this chapter convinces the reader that probabilistic 
analysis has a lot to offer in the way of insight into the problems of scientific 
induction.  



Answers to Selected Exercises 

CHAPTER I 

Section 1.2 

2 .  "Dennis" is the referring expression. "Is tall" is the characterizing 
expression. It is a property expression. 

4 .  "Arizona," "New Mexico," and "California" are all referring expres­
sions . " . . .  is between . . .  and . . .  " is the characterizing expres­
sion. It is a relational expression used to relate three things . 

Section 1.3 

l .b .  Mutually Exclusive

p q �p �q �pv�q p&q 
Case 1 :  T T F F F T 
Case 2 :  T F F T T F 
Case 3: F T T F T F 
Case 4: F F T T T F 

l .d. Mutually Exclusive 

p q �p �q �pvq p&�q 
Case 1 :  T T F F T F 
Case 2: T F F T F T 
Case 3 :  F T T F T F 
Case 4: F F T T T F 

l .f. Logically Equivalent 

p q �p �q �pvq �(  �pvq) p&�q 
Case 1 :  T T F F T F F 
Case 2 :  T F F T F T T 
Case 3 :  F T T F T F F 
Case 4: F F T T T F F 
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2.b. Contingent 

p q p pvqvr 

Case 1 :  T T T T 
Case 2: T T F T 
Case 3 :  T F T T 
Case 4: T F F T 
Case 5 :  F T T T 
Case 6: F T F T 
Case 7: F F T T 
Case 8: F F F F 

2.d. Tautology 

p q �p �q pv�q � (pv�q) (pv�q )v� (pv�q) 

Case 1 :  T T F F T F T 
Case 2: T F F T T F T 
Case 3: F T T F F T T 
Case 4:  F F T T T F T 

2.f. Tautology 

p �p pv�p � (pv�p) � � (pv�p) 

Case 1 :  T F T F T 
Case 2:  F T T F T 

Section 1.4 

l .b . Logically Equivalent 
F G �F �G F&G � (F&G) �Fv�G 

Case 1 :  p p A A p A A 
Case 2 :  p A A p A p p 
Case 3: A p p A A p p 
Case 4: A A p p A p p 

l .d. Neither 
F G F&G � (F&G) Fv�(F&G) � (F&G)&F 

Case 1 :  p p p A p A 
Case 2:  p A A p p p 
Case 3: A p A p p A 
Case 4:  A A A p p A 
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Case 1 :  
Case 2: 
Case 3: 
Case 4: 

l .f. Mutually Exclusive 

Case 1 :  
Case 2: 
Case 3: 
Case 4: 
Case 5: 
Case 6 :  
Case 7: 
Case 8: 

2.b.  Null 

Case 1 :  
Case 2: 

F 

p 
p 
p 
p 
A 
A 
A 
A 

F 

p 
A 

2 .d. Contingent 

F 

Case 1 :  p 
Case 2: p 
Case 3: A 
Case 4: A 

2.f. Universal 

G 

p 
A 
p 
A 

G 

p 
p 
A 
A 
p 
p 
A 
A 

FvF 

p 
A 

-F 

A 
A 
p 
p 

F G -F �G F&-G 

p p A A A 
p A A p p 
A p p A A 
A A p p A 
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H FvGvH -(FvGvH) 

p p A 
A p A 
p p A 
A p A 
p p A 
A p A 
p p A 
A A p 

-(FvF) (FvF)&-(FvF) 

A 
p 

A 
A 

-G Fv-G Gv-F (Fv- G)&(Gv-F) 

A p p p 
p p A A 
A A p A 
p p p p 

-(F&-G)v 
- (F&-G) Gv-F -(Gv-F) - (Gv-F) 

p p A p 
A A p p 
p p A p 
p p A p 
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Section 1.5 

2. Valid

Case 1 :  
Case 2 :  

p p&p 

T 
F 

T 
F 
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4. Invalid, as shown by case 2 in which the premise is true and the
conclusion false 

p q �p p&q � (p&q)  

Case 1 :  T T F T F 
Case 2 :  T F F F T 
Case 3 :  F T T F T 
Case 4 :  F F T F T 

6. Valid. The premises are all true only in case 7, where the conclusion
is also true. 

p 

Case 1 :  T 
Case 2: T 
Case 3 :  T 
Case 4: T 
Case 5 :  F 
Case 6: F 
Case 7: F 
Case 8 :  F 

CHAPTER II 

Section 11.2 

l .b . statement 
d. statement
f. not a statement
h. not a statement
j .  statement 

q 

T 
T 
F 
F 
T 
T 
F 
F 

r �p �q pvqvr 

T F F T 
F F F T 
T F T T 
F F T T 
T T F T 
F T F T 
T T T T 
F T T F 
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2.b. not an argument 
d. argument 

ANSWERS TO SELECTED EXERCISES 

The specific gravity of water is less than that of iron. 

Iron will not float when put in water. 

Section II.4 

2. Inductively strong 

4. Neither 

CHAPTER IV 

Section IV.2 

2. Projectible: Sugar dissolves in hot coffee. Conservation of momen­
tum. 
Unprojectible: Smoking hasn't killed me. After 1980 the stock market 
goes up every year. 

Section IV.3 

1 .  X is grue at t ifX is blue or green but not bleen at t. [ (Blue v Green) 
&�Bleen] 

Section IV.4 

X is an insect and X is green 
or 
X is a ball of wax and X is yellow 
or 
X is a feather and X is purple 
or 
X is some other type of thing and X is blue 

CHAPTER V 

Section V.2 

In solving these problems use the definition of necessary and sufficient 
conditions and the logic of simple and complex properties developed in 
Chapter I .  You can use presence tables to verify the logic steps. 
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2. If � D is a necessary condition for �c, then 
whenever �c is present � D is present 
whenever D is present C is present 
C is a necessary condition for D 

Presence Table Supporting the Logic: 

c D �c �D 

Case 1 :  p p A A 
Case 2: p A A p 
Case 3: A p p A 
Case 4: A A p p 

(definition) 
(logic) 
(definition) 
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To say that "whenever �C is present �D is present" is to say that case 
3 doesn't happen. But if case 3 is ruled out, whenever D is present 
(case 1) C is present. 

Example: 

If motor not running is a necessary condition for no fuel, then fuel is a 
necessary condition for motor running. 

4. If �c is a sufficient condition for �D, then 
whenever �C is present � D is present 
whenever D is present C is present 
C is a necessary condition for D 

6. If A&B is a necessary condition for E, then 
whenever E is present A&B is present 
whenever E is present A is present 
A is a necessary condition for E 
whenever E is present B is present 
B is a necessary condition for E 

8. If AvB is a sufficient condition for E, then 
whenever AvB is present E is present 
whenever A is present E is present 
whenever B is present E is present 
A is a sufficient condition for E 
B is a sufficient condition for E 

(definition) 
(logic) 
(definition) 

(definition) 
(logic) 
(definition) 
(logic) 
(definition) 

(definition) 
(logic) 
(logic) 
(definition) 
(definition) 
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10. If A is a sufficient condition for E, then 
whenever A is present E is present (definition) 
whenever A&F is present E is present (logic) 
A&F is a sufficient condition for E (definition) 

Section V.4 

2 .  

A B c �A �B �c AvC �BvC 

Occ. l :  p p p A A A p p 
Occ.2: p p A A A p p A 
Occ.3 :  p A p A p A p p 
Occ.4: p p A A A p p A 
Occ.5 :  A A p p p A p p 
Occ.6 :  A A p p p A p p 

All but AvC are eliminated because they are absent in some occurrence 
where E is present. 

Section V.5 

2. A, B, C, A&C, B&C, A&B are eliminated. The others are not. 

4 .  B&C is not eliminated. 

Section V.6 

2. A B c D �A �B �c �D E 

A A A p p p p A A 

would eliminate all the candidates except A.  

4 .  A B c D �A �B �c �D E 

p A A A A p p p A (eliminates A) 

A A p p p p A A A (eliminates � B )  

A p A A p A p p A (eliminates �C)  

6 .  The list of  possible conditioning properties did not contain a 
sufficient condition for E present in occurrence i:t .  
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8 .  Either your answers to 2 and 4 taken together eliminate all of the 
candidates or they eliminate all but one. If they eliminate all, you could 
conclude that the list of possible conditioning properties did not 
contain a sufficient condition for E that was present in occurrence (; .  If 
they eliminate all but one, then that one is a sufficient condition for E 
provided that the initial list contained a sufficient condition for E that 
was present in occurrence (; .  

Section V.7 

2 .  I t  is B .  The other properties present in occurrence 1 ,  A, �C ,  �D, 
are all present in occurrence 2 in which the conditioned property, E,  
is  absent, so they cannot be sufficient conditions for E .  This is  the 
joint method of agreement and difference (taking occurrence 1 as 
occurrence (; ) .  

4 .  B is both necessa:ry and sufficient. Occurrences 1 and 3 eliminate all 
but B as a necessa:ry condition for E .  This is the method of agreement. 
Occurrences 2 and 4 eliminate all but B as a sufficient condition for E.  
This i s  the inverse method of agreement. Altogether, it i s  the double 
method of agreement. 

CHAPTER 6 

Section VI.2 

2 .  q&q is logically equivalent to q ,  as can be shown by a truth table, so 
by rule 3, Pr(q&q )  = Pr(q ) = � · 

4.  � (q&�q) is a tautology, as can be shown by a truth table, so by rule 
1 ,  Pr( � (q&�q) )  = 1 .  

q 

T 
F 

�q 

F 
T 

F 
F 

T 
T 

6 .  pv�p is a tautology, � (pv�p) is a contradiction, � � (pv�p) is a 
tautology, so by rule 1 ,  Pr(�� (pv�p) )  = 1 .  

8 .  q&(pv�p ) is logically equivalent to q ,  as can be shown by a truth 
table: 
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p q -p pv-p q&(pv-p) 

T T F T T 
T F F T F 
F T T T T 
F F T T F 

Thus, by rule 3, Pr(q&(pv-p) )  = Pr(q ) = � · 

Section VI.3 

1 .j . Queen and non-spade are not mutually exclusive, so we must use 
rule 6: 

Pr(Q v-S) = Pr(Q) + Pr(-S) - Pr(Q&-S) 

By rule 5, Pr(- S )  = 1 - Pr(S )  = 1 - �� = ��· 
There are three queens that are not the queen of spades ,  so 
Pr(Q&-S) = ;2 . 
Pr(Q v- S) = 5� + �� - 5� = �� = i�· 

3. We do not know if r,s are mutually exclusive, so we use rule 6: 

Pr(rvs )  = Pr(r) + Pr(s) - Pr(r&s) 

� = .! + .! - Pr(r&s) 4 2 4 

So Pr(r&s) = 0 .  

Section VI.4 

l .b .  They are not mutually exclusive, because Pr(p&q) > 0. If they 
were mutually exclusive, p&q would be a contradiction and would have 
probability = 0 .  

2 .b .  Because of independence, Pr(6 on die A & 6 on die B )  = Pr(6 on 
A) · Pr(6 on B )  = � · � = 316 by rule 8. 

3.b. Two heads and one tail on three tosses can come about in one 
of three mutually exclusive ways : HHT, HTH, THH. Each way has 
probability � = � · � · � by rule 8. Then Pr(HHTvHTHvTHH) 
= � + � + � = � by rule 4 .  

d .  Pr(HTH) = � · � · � = � by rule 8.  
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f. No tails is the same as all heads . Pr(HHH) = fr · fr · fr = � by rule 8. 

4.b. If an ace is drawn on draw 1 and not replaced, there are 51 cards 
remaining, including 4 tens . So Pr( lO on 2 given ace on 1 )  = 54}_ . 
d. Pr( lO on 1 and ace on 2) = Pr( lO on l ) ·  Pr( lO on 2 given ace on 
1 )  - 4 4 - 52 • 51 " 
f. Pr( two aces ) = Pr( ace on 1 )  · Pr( ace on 2 given ace on 1 )  = 5� • ;1 . 
5.  Pr(pass) = Pr(pass & study) v (pass & �study) (/) 

= Pr(pass & study) + Pr(pass & �study) 
= Pr(study) · Pr(pass given study) 

+ Pr( � study) · Pr(pass given �study) 
= Pr( study) · Pr( pass given study) 

+ ( 1-Pr(study)) · Pr(pass given �study) 
4 3 1 1 = - · - + - · -5 5 5 10 1 2 

Section VI.5 

2. Outcome Probability NetGain Probability · Gain 

H 1 $1  $ .50 2 
TH 1 $1 $ .25 4 
TTH 1 $1  $ . 125 8 
TTT 1 $ - 7 $ - .875 8 

Expected Value = $0 

4 .  No. Try it! 

Section VI.6 

2.b. Pr(second ball from um 3) = Pr(red from um 1) = 1
6
0 • 

d. Pr(black given um 3) = f0 . 
f. Pr(second ball from um 2 given second ball black) 

Pr( um 2) Pr(black given um 2) (�) · ( 1�) ___ _ 2 
Pr(black) 

- (�) - 17 
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h. Pr(second ball from um 2 given second ball red) 

Pr( um 2) · Pr(red given um 2) (�) · ({0 ) ------------ ---- - 36 - 6 
Pr(red) 1 - ( 1

3
0�) 

-
66 - 1 1  

j .  Pr(red on draw 1 given second ball black) 

= Pr(second ball from um 3 given second ball black) 

Pr( um 3) · Pr(black given um 3) ({o) · (-fu) _ 15 
Pr(black) 

-
( 34 ) 

-
17 

100 

4. F = "Fitch will not be executed" 

J = "Jones will not be executed" 
S = "Smith will not be executed" 
G = "Guard tells Fitch that Jones will be executed" 

According to the problem, Pr(F) = Pr(]) = Pr(S)  = � · We need to cal­
culate Pr(F given G) . Using Bayes' theorem: 

Pr(F) · Pr( G given F) 
Pr(F given G) = --------------­

Pr(F) · Pr( G given F) + Pr(]) · Pr( G given J) 
+ Pr(S)  · Pr(G given S) 

The guard is said to be truthful, so Pr( G given J) = 0. What is Pr( G 
given S)?  If Smith will not be executed, then Fitch and Jones will both 
be executed. But the guard cannot tell Fitch that he will be executed, 
so in this case he must tell him that Jones will be executed. So Pr(G 
given S)  = 1 .  So far: 

(�) · Pr( G given F) 
Pr(F given G) = -------­

(�) · Pr(G given F) + (�) 

Everything turns on Pr( G given F) . If Fitch will not be executed, Jones 
and Smith will be. Will the guard, in this case, say "Jones" or Smith?" 
The problem gives no reason why he should prefer one rather than an­
other, so he might flip a fair coin, in which case Pr( G given F) = � . 
Then Pr(F given G) = (�)/(�) = �' and Fitch has no better prospects 
than before . 

On the other hand, you might imagine that the guard has special 
reasons to say "Jones" in this case, so that Pr(F given G) = 1 .  If so, 
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Fitch has good news, for then: Pr(F given G) = (�)/(�) = �· But you 
might just as well imagine that the guard has special reasons to say 
"Smith" in this case, so that Pr(F given G) = 0. If so, Fitch has bad 
news, for then Pr(F given G) = O! 

Section VII.3 

I .a. U($100) = I 
b .  U(nothing) = 0 
c. (�) · U($100) + (�) · U(nothing) = �· 
d. It is greater than �, since he is risk averse. 
e. 

u = 1 .0 

. . · · . · · .· · . · . ·· 
. ·· . · 

.. . ··· 
. · .· .· · 

. . ··· 
. · 

. . ···· 
. · 

. . . . ·· · 
.. · ·· 

. · 

. . ·· 
. · · 

. . · · 
. · . · 

. · · 
. ·· . ·· 

u = 0 . . . . . . . . . • ������������������� 
$0 $100 

2.b. He believes that each horse in the race has an equal chance of 
winning. 

Section VIl.4 

2.a. The hypothetical gamble "Get Pig and Stewball wins if HH or HT 
or TH and get no pig and Stewball loses if TT," has expected value of 
G) · I + (i) · 0 = (�) . Farmer Smith is indifferent between this gamble 
and "Get pig and Molly wins" then his utility for "Get pig and Molly 
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wins" must also be �. By similar reasoning, his utility for "No pig and 
Molly loses" is �· His utility for the gamble "Get pig and Stewball 
wins if HH or HT, no pig and Stewball loses if TH or TT" is 
(� ) · I + (�) · 0 = � · Since he is indifferent between this gamble and the 
gamble "Pig if Molly wins, no pig if she loses," that gamble must also 
have utility = � . 
So we have: 

U(Get pig and Stewball wins) = I 
U (Get Pig and Molly wins) = � 
U (Get Pig if Molly wins, no pig if she loses) = � 
U(No Pig and Molly loses )  = � 
U(No Pig and Stewball loses )  = 0 

b. U(Get Pig if Molly wins, no pig if she loses) = 

Pr( Molly wins) · U (Get Pig and Molly wins) + 
( I  - Pr(Molly wins) )  U(No Pig and Molly loses) 

Substituting in numerical values from part (a) we get: 

� = Pr( Molly wins) · (�) + ( I  - Pr(Molly wins) · (�) 
Pr( Molly wins) = � 

Section VII.5 

a. Relative fre�uencr of heads is zero if there are all tails . Pr(TTTT) = 

(�) .  (�) . (�) . (2) = 16 ' 

c. Relative frequency of heads is � if there are two heads and two tails . 
Pr(HHTT or HTHT or HTTH or THHT or THTH or TTHH) = 
6 - 3 
16 - 8·  

e.  Pr(HHHH) = 1� . 
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A 
Accidental conditions, 101 - 108 
Agreement 

direct method of, 74- 79 
double method of, 90-91 
inverse method of, 79- 85 
joint method of difference and, 91 - 92 

Analytic sufficient condition, 102 
"And" as logical connective, 2-3  
Argument(s ) ,  12- 14 

B 

conclusion of, 12 
deductively valid, 17, 18 
degrees of strength of, 16 
e-, 31 
inductive strength of, 19-21 

measuring, 5 1 - 68 
inductively strong, 17, 19 
levels of, 36- 37 
logician's definition of, 13 
premises of, 12 
valid, 9 - 10 

Bayes' theorem, 130- 132 
relative frequency and, 145 

Belief, degree of 
in frequentism, 150 
rational, 137 - 138 

Bet, fair, 128- 129 

c 
Calculus, probability, 109- 136 
Causality 

necessary and sufficient conditions and, 
69 - 73 

probability and, 134 - 135 
Certainty model of lmowing, 25 -26 
Chance 

frequentist view of, 148 - 149 
personalist view of, 149- 150 
probability and, 146- 150 

Characterizing expressions, 1 
Complementary goods, 139 
Complex contingent statement, probability 

and, 1 1 1  
Complex properties, 8 - 9  
Complex statements, structure of, 2- 7 
Conclusion of argument, 12 

degrees of confidence in, 31  
Conditional probability, 117  - 121 

Conditioned property, 73 
Conditions 

accidental, 101 - 108 
counterfactual, 107 - 108 
lawlike, 101 - 108 
necessary. See Necessary conditions 
sufficient. See Sufficient conditions 

Confidence in conclusions, degrees of, 31  
Conjunct, 3 
Conjunction, 3-4 

in  inverse method of  agreement, 82- 83 
Conjunction rule 

general, 121 - 122, 124- 127 
special, 122 - 124 

Connectives, logical, 2-5  
Constant, system-dependent, 99 
Contingent properties, 9 
Contingent statements, 6 
Contradiction, probability of, 138 
Convergence to truth, 156- 157 
Corroborated hypothesis, 151 
Counterfactual condition, 107 - 108 
Counterinductive logic, 41 -43 

D 
Deduction, hypothesis and, 151 - 153 
Deductive logic 

definition of, 21 
inductive logic versus, 17 -23 

Degree of belief 
in frequentism, 150 
rational, 137 - 138 

Dependent variables, 99 
Difference 

joint method of agreement and, 91 -92 
method of, 85- 90 

Disjunction, 4 
Disjunction rule 

general, 1 15 - 1 16 
special, 1 1 1 - 1 13 

gambling rationale for, 138 
Disjunctive necessary conditions, 76 - 78 
Disjuncts, 4 

E 
E-argument, 31  
Elimination, principles of, 93 

in direct method of agreement, 76, 77 
in inverse method of agreement, 83 

Epistemic probability, 23-26, 30 
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Evidence 
quantity of, 153- 154 
total, 154- 156 
variety of, 153 - 154 

Evidential links, strength of, 15- 16 
Exchangeable trials, 150 
Expectation of chance, rational degree of belief 

and, 147 
Expected value of gamble, 128- 130 
Explanation, science and, 104 
Expressions 

characterizing, 1 
property, 1 -2, 8 - 9  
referring, 1 

Extrapolation, 62- 63 

F 
Factual claim, 12 
Fair bet, 128- 129 
Feigel, Herbert, on pragmatic justification of 

induction, 45 
Frequency, relative, 138, 144 - 146 

chance and, 150 
Frequentists, chance and, 148 - 149 
Functional relationships ,  sufficient conditions 

and, 97- 101 
Functions, 99 - 100 

G 
Gamble, expected value of, 128- 130 
General conjunction rule, 121 - 122, 124- 127 
General disjunction mle, 1 15 - 116 
General negation rule, 1 13 
Goodman, Nelson, "grue-bleen" paradox of, 

56- 60 
uniformity of nature and, 66 -67 

Goods, complementary, 139 

H 
Hume, David, on traditional problem of induc­

tion, 30- 35 
Hypothesis, deduction and, 151 - 153 

I 
Impossibility 

logical, 18 
physical, 18 

Inclusive sense of "or," 4 
Inconsistent statements, 5 
Independence, definition of, 120- 121 
Independent variables, 99 
Indicator words in argument, 13 
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