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Preface

This book is an introduction to logic for students of contemporary philosophy.

It covers i) basic approaches to logic, including proof theory and especially

model theory, ii) extensions of standard logic (such as modal logic) that are

important in philosophy, and iii) some elementary philosophy of logic. It pre-

pares students to read the logically sophisticated articles in today’s philosophy

journals, and helps them resist bullying by symbol-mongerers. In short, it

teaches the logic you need to know in order to be a contemporary philosopher.

For better or for worse (I think better), the last century-or-so’s developments

in logic are part of the shared knowledge base of philosophers, and inform nearly

every area of philosophy. Logic is part of our shared language and inheritance.

The standard philosophy curriculum therefore includes a healthy dose of logic.

This is a good thing. But in many cases only a single advanced logic course

is required, which becomes the de facto sole exposure to advanced logic for

many undergraduate philosophy majors and beginning graduate students. And

this one course is often an intensive survey of metalogic (for example, one

based on the excellent Boolos et al. (2007).) I do believe in the value of such a

course, especially for students who take multiple logic courses or specialize in

“technical” areas of philosophy. But for students taking only a single course, that

course should not, I think, be a course in metalogic. The standard metalogic

course is too mathematically demanding for the average philosophy student,

and omits material that the average student ought to know. If there can be only

one, let it be a crash course in logic literacy.

“Logic literacy” includes knowing what metalogic is all about. And you can’t

really learn about anything in logic without getting your hands dirty and doing

it. So this book does contain some metalogic (e.g., soundness and completeness

proofs in propositional logic and propositional modal logic). But it doesn’t

cover the central metalogical results one normally covers in a mathematical

logic course: soundness and completeness in predicate logic, computability,

i



PREFACE ii

Gödel’s incompleteness theorems, and so on.

I have decided to be very sloppy about use and mention. When such issues

matter I draw attention to them; but where they do not I do not.

Solutions to exercises marked with a single asterisk (*) are included in

Appendix A. Exercises marked with a double asterisk (**) tend to be more

dif�cult, and have hints in Appendix A.

I drew heavily from the following sources, which would be good for sup-

plemental reading: Bencivenga (1986) (free logic); Boolos et al. (2007, chapter

18) (metalogic, second-order logic); Cresswell (1990) (two-dimensional modal

logic); Davies and Humberstone (1980) (two-dimensional modal logic); Gamut

(1991a,b) (Descriptions, λ-abstraction, multi-valued, modal, and tense logic);

Hilpinen (2001) (deontic logic); Hughes and Cresswell (1996) (modal logic—I

borrowed particularly heavily here—and tense logic); Kripke (1965) (intuition-

istic logic); Lemmon (1965) (sequents in propositional logic); Lewis (1973a)

(counterfactuals); Mendelson (1987) (propositional and predicate logic, meta-

logic); Meyer (2001) (epistemic logic); Priest (2001) (intuitionistic and paracon-

sistent logic); Stalnaker (1977) (λ-abstraction); Westerståhl (1989) (generalized

quanti�ers).

Another important source, particularly for chapters 6 and 8, was Ed Gettier’s

1988 modal logic class at the University of Massachusetts. The �rst incarnation

of this work grew out of my notes from this course. I am grateful to Ed for his

wonderful class, and for getting me interested in logic.

I am also deeply grateful for feedback from many students, colleagues,

and referees. In particular, Marcello Antosh, Josh Armstrong, Dean Chap-

man, Tony Dardis, Justin Clarke-Doane, Mihailis Diamantis, Mike Fara, Gabe

Greenberg, Angela Harper, John Hawthorne, Paul Hovda, Phil Kremer, Sami

Laine, Gregory Lavers, Brandon Look, Stephen McLeod, Kevin Moore, Alex

Morgan, Tore Fjetland 6Ogaard, Nick Riggle, Jeff Russell, Brock Sides, Ja-

son Turner, Crystal Tychonievich, Jennifer Wang, Brian Weatherson, Evan

Williams, Xing Taotao, Seth Yalcin, Zanja Yudell, Richard Zach, and especially

Agustín Rayo: thank you.
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Chapter 1

What is Logic?

S
ince you are reading this book, you probably know some logic already.

You probably know how to translate English sentences into symbolic

notation, into propositional logic:

English Propositional logic
Either violets are blue or I need glasses V∨N
If snow is white then grass is not green S→∼G

and into predicate logic:

English Predicate logic
If Grant is male then someone is male M g→∃xM x
Any friend of Barry is either insane or

friends with everyone

∀x[F x b→(I x ∨∀yF xy)]

You are probably also familiar with some techniques for evaluating arguments

written out in symbolic notation. You have probably encountered truth tables,

and some form of proof theory (perhaps a “natural deduction” system; perhaps

“truth trees”.) You may have even encountered some elementary model theory.

In short: you have taken an introductory course in symbolic logic.

What you already possess is: literacy in elementary logic. What you will

get out of this book is: literacy in the rest of logic that philosophers tend to

presuppose, plus a deeper grasp of what logic is all about.

So what is logic all about?

1
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1.1 Logical consequence and logical truth
Logic is about many things, but most centrally it is about logical consequence. The

statement “someone is male” is a logical consequence of the statement “Grant is

male”. If Grant is male, then it logically follows that someone is male. Put another

way: the statement “Grant is male” logically implies the statement “someone

is male”. Likewise, the statement “Grant is male” is a logical consequence of

the statements “It’s not the case that Leisel is male” and “Either Leisel is male

or Grant is male” (taken together). The �rst statement follows from the latter

two statements; they logically imply it. Put another way: the argument whose

premises are the latter two statements, and whose conclusion is the former

statement, is a logically correct one.
1

So far we’ve just given synonyms. The following slogan advances us a bit

further: logical consequence is truth-preservation by virtue of form. To unpack a

bit: for φ to be a logical consequence of ψ, it is not enough that we all know

that φ is true if ψ is. We all know that an apple will fall if it is dropped, but

the relationship between falling and dropping does not hold by virtue of logic.

Why not? For one thing, “by virtue of logic” requires the presence of some sort

of necessary connection, a connection that is absent in the case of the dropped

apple (since it would be possible—in some sense—for a dropped apple not to

fall). For another, it requires the relationship to hold by virtue of the forms

of the statements involved, whereas the relationship between “the apple was

dropped” and “the apple fell” holds by virtue of the contents of these statements

and not their form. (By contrast, the inference from ‘It’s not the case that Leisel

is male” and “Either Leisel is male or Grant is male” to “Grant is male” is said

to hold in virtue of form, since any argument of the form “it’s not the case that

φ; either φ or ψ; therefore ψ” is logically correct.) As we’ll see shortly, there

are many open philosophical questions in this vicinity, but perhaps we have

enough of an intuitive �x on the concept of logical consequence to go on with,

at least for the moment.

A related concept is that of a logical truth. Just as logical consequence is

truth-preservation by virtue of form, logical truth is truth by virtue of form.

Examples might include: “it’s not the case that snow is white and also not

white”, “All �sh are �sh”, and “If Grant is male then someone is male”. As with

logical consequence, logical truth is thought to require some sort of necessity

1
The word ‘valid’ is sometimes used for logically correct arguments, but I will reserve that

word for a different concept: that of a logical truth, under the semantic conception.
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and to hold by virtue of form, not content. It is plausible that logical truth

and logical consequence are related thus: a logical truth is a sentence that is a

logical consequence of the empty set of premises. One can infer a logical truth

by using logic alone, without the help of any premises.

A central goal of logic, then, is to study logical truth and logical consequence.

But the contemporary method for doing so is somewhat indirect. As we will

see in the next section, instead of formulating claims about logical consequence

and logical truth themselves, modern logicians develop formal models of how

those concepts behave.

1.2 Formalization
Modern logic is called “mathematical” or “symbolic” logic, because its method

is the mathematical study of formal languages. Modern logicians use the tools

of mathematics (especially, the tools of very abstract mathematics, such as set

theory) to treat sentences and other parts of language as mathematical objects.

They de�ne up formal languages, de�ne up sentences of the languages, de�ne

up properties of the sentences, and study those properties. Mathematical logic

was originally developed to study mathematical reasoning, but its techniques

are now applied to reasoning of all kinds.

Take propositional logic, the topic of chapter 2. Here our goal is to shed

light on the logical behavior of ‘and’, ‘or’, and so on. But rather than studying

those words directly, we will develop a certain formal language, the language

of propositional logic. The sentences of this language look like this:

P
(Q→R)∨ (Q→∼S)

P ↔ (P∧Q)

Symbols like ∧ and ∨ represent natural language logical words like ‘and’ and

‘or’; and the sentence letters P,Q, . . . represent declarative natural language

sentences. We will then go on to de�ne (as always, in a mathematically rigorous

way) various concepts that apply to the sentences in this formal language. We

will de�ne the notion of a tautology (“all Trues in the truth table”), for example,

and the notion of a provable formula (we will do this using a system of deduction

with rules of inference; but one could use truth trees, or some other method).

These de�ned concepts are “formalized versions” of the concepts of logical

consequence and logical truth.
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Formalized logical consequence and logical truth should be distinguished

from the real things. The formal sentence P→P is a tautology, but since it is

uninterpreted, we probably shouldn’t call it a logical truth. Rather, it represents
logical truths like “If snow is white then snow is white”. A logical truth ought

at least to be true, after all, and P→P isn’t true, since it doesn’t even have

a meaning—what’s the meaning of P? (Caveat: one might give meanings to

formal sentences—by translation into natural language (“let P mean that snow

is white; let ∧ mean and…”), or perhaps by some direct method if no natural

language translation is available. And we may indeed speak of logical truth and

logical consequence for interpreted formal sentences.)

Why are formal languages called “formal”? (They’re also sometimes called

“arti�cial” languages.) Because their properties are mathematically stipulated,

rather than being pre-existent in �esh-and-blood linguistic populations. We

stipulatively de�ne a formal language’s grammar. (Natural languages like En-

glish also have grammars, which can be studied using mathematical techniques.

But these grammars are much more complicated, and are discovered rather than

stipulated.) And we must stipulatively de�ne any properties of the symbolic

sentences that we want to study, for example, the property of being a tautology.

(Sentences of natural languages already have meanings, truth values, and so

on; we don’t get to stipulate these.) Further, formal languages often contain

abstractions, like the sentence letters P,Q, . . . of propositional logic. A given

formal language is designed to represent the logical behavior of a select few

natural language words; when we use it we abstract away from all other features

of natural language sentences. Propositional logic, for example, represents the

logical behavior of ‘and’, ‘or’, and a few other words. When a sentence contains

none of these words of interest, we represent it with one of the sentence letters

P,Q, . . . , indicating that we are ignoring its internal structure.

1.3 Metalogic
There are many reasons to formalize—to clarify meaning, to speak more

concisely, and so on. But one of the most powerful reasons is to do metalogic.
In introductory logic one learns to use certain logical systems—how to

construct truth tables, derivations and truth trees, and the rest. But logicians

do not develop systems only to sit around all day using them. As soon as a

logician develops a new system, she begins to ask questions about that system.

For an analogy, imagine people who make up new games for a living. If they
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invent a new version of chess, they might spend some time actually playing

it. But if they are like logicians, they will quickly tire of this and start asking

questions about the game. “Is the average length of this new game longer than

the average length of a game of standard chess?”. “Is there any strategy that

guarantees victory?” Analogously, logicians ask questions about logical systems.

“What formulas can be proven in such and such a system?” “Can you prove

the same things in this system as in system X?” “Can a computer program be

written to determine whether a given formula is provable in this system?” The

study of such questions about formal systems is called “metalogic”.

The best way to de�nitively answer metalogical questions is to use the

methods of mathematics. And to use the methods of mathematics, we need

to have rigorous de�nitions of the crucial terms that are in play. For example,

in chapter 2 we will mathematically demonstrate that “every formula that is

provable (in a certain formal system) is a tautology”. But doing so requires

carefully de�ning the crucial terms: ‘formula’, ‘provable’, and ‘tautology’; and

the best way to do this is to formalize. We treat the languages of logic as

mathematical objects so that we can mathematically demonstrate facts about

them.

Metalogic is a fascinating and complex subject; and other things being

equal, it’s good to know as much about it as you can. Now, other things are

rarely equal; and the premise of this book is that if push sadly comes to shove,

limited classroom time should be devoted to achieving logic literacy rather

than a full study of metalogic in all its glory. But still, logic literacy does require

understanding metalogic: understanding what it is, what it accomplishes, and

how one goes about doing it. So we will be doing a decent amount of metalogic

in this book. But not too much, and not the harder bits.

Much of metalogic consists of proving things about formal systems. And

sometimes, those formal systems themselves concern proof. For example, as I

said a moment ago, we will prove in chapter 2 that every provable formula is a

tautology. If this seems dizzying, keep in mind that ‘proof’ here is being used

in two different senses. There are metalogic proofs, and there are proofs in formal
systems. Metalogic proofs are phrased in natural language (perhaps augmented

with mathematical vocabulary), and employ informal (though rigorous!) rea-

soning of the sort one would encounter in a mathematics book. The chapter 2

argument that “every provable formula is a tautology” will be a metalogic proof.

Proofs in formal systems, on the other hand, are phrased using sentences of

formal languages, and proceed according to prescribed formal rules. ‘Provable’

in the statement ‘every provable formula is a tautology’ signi�es proof in a
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certain formal system (one that we will introduce in chapter 2), not metalogic

proof.

Logicians often distinguish the “object language” from the “metalanguage”.

The object language is the language that’s being studied. One example is the

language of propositional logic. Its sentences look like this:

P∧Q
∼(P∨Q)↔R

The metalanguage is the language we use to talk about the object language.

In the case of the present book, the metalanguage is English. Here are some

example sentences of the metalanguage:

‘P∧Q’ is a formal sentence with three symbols

Every sentence of propositional logic has the same num-

ber of left parentheses as right parentheses

Every provable formula is a tautology

Thus, we formulate metalogical claims about an object language in the meta-

language, and prove such claims by reasoning in the metalanguage.

Using the metalanguage to make statements about words can sometimes

be tricky to do properly. In an effort to make a statement about the name of

the United States’s most excellent city, suppose I say:

(1) Philadelphia is made up of twelve letters

Sentence (1) does not at all capture my intention. It says that a certain city is

made up of twelve letters. But cities aren’t made up of letters; they’re made up

of things like buildings, streets, and people. The problem with sentence (1) is

that its subject is the word ‘Philadelphia’. The word ‘Philadelphia’ refers to

the city, Philadelphia; thus, sentence (1) says something about that city. But I

intended to say something about the word that names that city, not about the

city itself. What I should have said is this:

(2) ‘Philadelphia’ is made up of twelve letters

The subject of sentence (2) is the following expression:
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‘Philadelphia’

That is, the subject of sentence (2) is the result of enclosing the word ‘Philadel-

phia’ in quotation marks; the subject is not the word ‘Philadelphia’ itself. So (2)

says something about the word ‘Philadelphia’, not the city Philadelphia, which

is what I intended.

The moral is that if we want to talk about a word or other linguistic item,

we need to refer to it correctly. We cannot just use that word (as in (1)), for

then that word refers to its referent (a city, in the case of (1)). We must instead

mention the word—we must instead use some expression that refers to the

word itself, not an expression that refers to the word’s referent. And the most

common device for doing this is to enclose the word in quotation marks (as in

(2)).

However: having made such a big deal about this issue, I propose henceforth

to ignore it. Zealous care about use and mention would result in an ugly

proliferation of quotation marks. So, instead of writing things strictly correctly:

The formula ‘P→P ’ is a tautology

I will mostly write somewhat naughty things instead:

The formula P→P is a tautology

Now that you’re clued into the distinction between use and mention, you’ll be

able to detect where I’ve been sloppy in this way.
2

2
Cartwright (1987, Appendix) has interesting exercises for learning more about use and

mention.
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Exercise 1.1 For each of the following, i) is it a sentence of the

object language or the metalanguage? ii) is it true?

a)* ‘P∨∼P ’ is a logical truth.

b)* (P∨Q)→(Q∨P )

c)* ‘Frank and Joe are brothers’ logically implies ‘Frank and Joe

are siblings’.

Exercise 1.2 Each of the following sentences confuses use and

mention. In each case, �ll in quotation marks to �x the problem.

a)* Attorney and lawyer are synonyms.

b)* If S1 is an English sentence and S2 is another English sen-

tence, then the string S1 and S2 is also an English sentence.

1.4 Application
The modern method for studying logical consequence, then, is to construct

formalized versions of the concepts of logical consequence and logical truth—

concepts applying to sentences in formal languages—and to mathematically

study how those concepts behave. But what does the construction of such

formalized concepts establish? After all, some formalized constructions shed

no light at all on logical consequence. Imagine de�ning up a formal proof

system that includes a rule of inference allowing one to infer ∼P from P .

One could de�ne the rules of such a system in a perfectly precise way and

investigate its mathematical properties, but doing so wouldn’t shed light on the

intuitive notion of logical consequence that was introduced in section 1.1—on

“genuine” logical consequence, as I will call it, to distinguish it from the various

formalized notions we could stipulatively de�ne. It would be ridiculous to

claim, for example, that the existence of this system shows that ‘Snow is not

white’ follows from ‘Snow is white’.

Thus, the mathematical existence and coherence of a formal system must be

distinguished from its value in representing genuine logical consequence and

logical truth. To be sure, logicians use formal systems of various sorts for many
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purposes that have nothing to do with reasoning at all: for studying syntax,

computer programming, electric circuits, and many other phenomena. But

one core, central goal of logic is indeed to study genuine logical consequence.

What, exactly, might it mean to say that a formal system “represents” or

“models” or “sheds light on” genuine logical consequence? How are formal

systems to be applied? Here’s an oversimpli�ed account of one such claim.

Suppose we have developed a certain formal system for constructing proofs

of symbolic sentences of propositional logic. And suppose we have speci�ed

some translation scheme from English into the language of propositional logic.

This translation scheme would translate the English word ‘and’ into the logical

expression ‘∧’, ‘or’ into ‘∨’, and so on. We might then say that the formal

system accurately represents the logical behavior of ‘and’, ‘or’, and the rest in

the following sense: one English sentence is a logical consequence of some

other English sentences in virtue of ‘and’, ‘or’, etc., if and only if one can prove

the translation of the former English sentence from the translations of the

latter English sentences in the formal system.

The question of whether a given formal system represents genuine logical

consequence is a philosophical one, because the question of what is a genuine

logical consequence of what is a philosophical question. This book won’t spend

much time on such questions. My main goal is to introduce the formalisms

that are ubiquitous in philosophy, so that you will have the tools to address the

philosophical questions yourself. Still, we’ll dip into such questions from time

to time, since they affect our choices of which logical systems to study.

1.5 The nature of logical consequence
I have characterized “genuine” logical consequence intuitively, and distin-

guished it from the formal notions we introduce in mathematical logic to

represent it. But what is genuine logical consequence? What is its nature?

The question here is analogous to questions like “what is knowledge?” and

“what is the good life?”. It’s a philosophical question, to be answered using

the methods of philosophy. (This is not to deny that formal results from

mathematical logic bear on the question.) Like any philosophical question, it is

debatable how we should go about answering it. Do we use conceptual analysis

to explore the nuances of our ordinary concept? Do we seek rational insight

into the nature of objective reality behind our ordinary concept? Do we jettison

ambiguous and vague ordinary concepts in favor of shiny new replacements?
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All this is up for grabs.

It’s important to see that there really is an open philosophical question here.

This is sometimes obscured by the fact that terms like ‘logical consequence’ and

‘logical truth’ are often stipulatively de�ned in logic books. The open question

does not concern such stipulated notions, of course; it concerns the notion

of logical consequence that the stipulative de�nitions are trying to represent.

The question is also obscured by the fact that one conception of the nature of

logical consequence—the model-theoretic one—is so dominant that one can

forget that there are alternatives.
3

This is not a book on the philosophy of logic, so after this section we won’t

spend more time on the question of the nature of genuine logical consequence.

But perhaps a quick survey of some competing philosophical answers to the

question, just to convey their �avor, is in order.

The most popular answer is the semantic, or model-theoretic one. What’s most

familiar here is its implementation for formal languages. Under this approach,

one chooses a formal language, de�nes a notion of model (or interpretation)

for the chosen language, de�nes a notion of truth-in-a-model for sentences of

the language, and then �nally represents logical consequence for the chosen

language as truth-preservation in models (φ is represented as being a logical

consequence of ψ1,ψ2, . . . if and only if φ is true in any model in which each of

ψ1,ψ2, . . . is true.)

Now, as stated, this isn’t a theory of genuine logical consequence. It’s only a

way of representing logical consequence using formal languages. What theory

of genuine logical consequence lies behind it? Perhaps one like this: “φ is

a logical consequence of ψ1,ψ2 . . . if and only if the meanings of the logical

expressions in φ and ψ1,ψ2 . . . guarantee that φ is true whenever ψ1,ψ2 . . .
are all true.” (Nonlogical expressions are expressions other than ‘and’, ‘or’,

‘not’, ‘some’, and so on; more on this below.) To its credit, this theory of

genuine consequence seems to mesh with the model-theoretic formal method

for representing consequence; for since (as we’ll see in section 2.2) everything

other than the meanings of the logical expressions is allowed to vary between

models, truth-preservation in all models seems to indicate that the meanings

of the logical expressions “guarantee” truth-preservation. But on the other

hand, what does that mean exactly? What does it mean to say that meanings

“guarantee” a certain outcome? The “theory” is unclear. Perhaps, instead,

there isn’t really a semantic/model-theoretic theory of the nature of logical

3
See Etchemendy (1990, chapter 1).
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consequence at all, but rather a preference for a certain approach to formalizing

or representing logical consequence.

A second answer to the question about the nature of logical consequence is

a proof-theoretic one, according to which logical consequence is more a matter

of provability than of truth-preservation. As with the semantic account, there is

a question of whether we have here a proper theory about the nature of logical

consequence (in which case we must ask: what is provability? by which rules?

and in which language?) or whether we have merely a preference for a certain

approach to formalizing logical consequence. In the latter case, the approach

to formalization is one in which we de�ne up a relation of provability between

sentences of formal languages. We do this, roughly speaking, by de�ning

certain acceptable “transitions” between sentences of formal languages, and

then saying that a sentence φ is provable from sentences ψ1,ψ2, . . . if and only

if there is some way of moving by acceptable transitions from ψ1,ψ2, . . . to φ.

The semantic and proof-theoretic approaches are the main two sources

of inspiration for formal logic, and certainly for the systems we will discuss

in this book. But there are alternate philosophical conceptions of logical

consequence that are worth brie�y mentioning. There is the view of W. V. O.

Quine: φ is a logical consequence of ψ1,ψ2 . . . iff there is no way to (uniformly)

substitute expressions for nonlogical expressions in φ and ψ1,ψ2 . . . so that

ψ1,ψ2 . . . all become true but φ does not.
4

There is a modal account: φ is a

logical consequence of ψ1,ψ2 . . . iff it is not possible for ψ1,ψ2 . . . to all be true

without φ being true (under some suitable notion of possibility).
5

And there

is a primitivist account, according to which logical consequence is a primitive

notion.

Exercise 1.3* Let sentence S1 be ‘There exists an x such that x
and x are identical’, and let S2 be ‘There exists an x such that there

exists a y such that x and y are not identical’. Does S1 logically

imply S2 according to the modal criterion? According to Quine’s

criterion?

4
Quine (1960); p. 103 in Quine (1966).

5
Perhaps semantic/model-theoretic formalisms can be regarded as being inspired by the

modal account.
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1.6 Logical constants
It’s natural to think of logic as having something to do with “form”. (Recall

the slogans of section 1.1.) The idea can be illustrated by seeing how it clashes

with the modal conception of logical consequence from the previous section.

Since it is impossible to be a bachelor without being unmarried, the modal

account says that ‘Grant is a bachelor’ logically implies ‘Grant is unmarried’.

But this seems wrong. Perhaps the �rst sentence “analytically” or “conceptually”

implies the second sentence, but the implication doesn’t seem logical. And it’s

natural to put this by saying that, whatever exactly logical implication amounts

to, logical implications must at least hold by virtue of form.
6

But what does that mean? Consider an implication that, one is inclined to

say, does hold by virtue of form; the implication from ‘Leisel is a swimmer and

Leisel is famous’ to ‘Leisel is a swimmer’. This holds by virtue of form, one

might think, because i) it has the form “φ and ψ; so, φ”; and ii) for any pair of

sentences of this form, the �rst logically implies the second. But the defender

of the modal conception of logical consequence could say the following:

The inference from ‘Grant is a bachelor’ to ‘Grant is unmarried’

also holds in virtue of form. For: i) it has the form “α is a bachelor;

so, α is unmarried”; and ii) for any pair of sentences of this form,

the �rst sentence logically implies the second (since it’s impossible

for the �rst to be true while the second is false.)

What’s wrong with saying this? We normally think of the “forms” of inferences

as being things like “φ and ψ; so, φ”, and not things like “α is a bachelor; so, α
is unmarried”, but why not?

When we assign a form to an inference, we focus on some phrases while

ignoring others. The phrases we ignore disappear into the schematic letters

(φ, ψ, and α in the previous paragraph); the phrases on which we focus remain

(‘and’, ‘bachelor’, ‘unmarried’). Now, logicians do not focus on just any old

phrases. They focus on ‘and’, ‘or’, ‘not’, ‘if…then’, and so on, in propositional

logic; on ‘all’ and ‘some’ in addition in predicate logic; and on a few others.

But they do not focus on ‘bachelor’ and ‘unmarried’. Call the words on which

logicians focus—the words they leave intact when constructing forms, and the

6
A hybrid of the modal and Quinean accounts of logical consequence respects this: φ is a

logical consequence of ψ1,ψ2 . . . iff it’s impossible for ψ′1,ψ′2 . . . to be true while φ′ is false, for

any φ′ and ψ′1,ψ′2 . . . that result from φ and ψ1,ψ2 . . . by uniform substitution for nonlogical

expressions.
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words for which they introduce special symbolic correlates, such as ∧, ∨, and

∀—the logical constants. (These are what I was calling “logical expressions” in

the previous section.)

We can speak of natural language logical constants (‘and’, ‘or’, ‘all’, ‘some’…)

as well as symbolic logical constants (∧, ∨, ∀, ∃…). The symbolic logical

constants get special treatment in formal systems. For example, in proof

systems for propositional logic there are special rules governing ∧; and these

rules differ from the rules governing ∨. This re�ects the fact that ∧ and ∨ have

�xed interpretations in propositional logic. Unlike P , Q, and so on, which

are not symbolic logical constants, and which do not �xedly represent any

particular natural language sentences, ∧ and ∨ �xedly represent ‘and’ and ‘or’.

In terms of the notion of a logical constant, then, we can say why the

inference from ‘Grant is a bachelor’ to ‘Grant is unmarried’ is not a logical

one. When we say that logical implications hold by virtue of form, we mean

that they hold by virtue of logical form; and the form “α is a bachelor; so, α
is unmarried” is not a logical form. A logical form must consist exclusively of

logical constants (plus punctuation and schematic variables); and the fact is that

logicians do not treat ‘bachelor’ and ‘unmarried’ as logical constants.

But this just pushes the question back: why don’t they? What’s so special

about ‘and’, ‘or’, ‘all’, and ‘some’? Just as the meaning of ‘and’ guarantees that

whenever ‘Leisel is a swimmer and Leisel is famous’ is true, ‘Leisel is a swimmer’

is true as well, so, the meanings of ‘bachelor’ and ‘unmarried’ guarantee that

whenever ‘Grant is a bachelor’ is true, ‘Grant is unmarried’ is true as well. Why

not expand logic beyond propositional and predicate logic to include the logic

of bachelorhood and unmarriage?

On the one hand there’s no formal obstacle to doing just that. We could

develop mathematical models of the inferential behavior of ‘bachelor’ and

‘unmarried’, by analogy to our models of the behavior of the usual logical

constants. To our predicate logic containing the special symbols ∧, ∨, ∀, ∃,
and the rest, we could add the special predicates B (for ‘bachelor’) and U (for

‘unmarried’). To our derivation systems, in addition to rules like ∧-elimination

(which lets us infer φ (and also ψ) from φ∧ψ) we could add a rule that lets

us infer Uα from Bα. But on the other hand, there are, intuitively, signi�cant

differences between the expressions usually regarded as logical constants and

words like ‘bachelor’ and ‘unmarried’. The question of what, exactly, these

differences amount to is a philosophical question in its own right.
7

7
See MacFarlane (2005) for a survey of the issues here.
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1.7 Extensions, deviations, variations
“Standard logic” is what is usually studied in introductory logic courses. It

includes propositional logic (logical constants: ∧,∨,∼,→,↔), and predicate

logic (logical constants: ∀,∃, variables). In this book we’ll consider various

modi�cations of standard logic. Following Gamut (1991a, pp. 156-158), it is

helpful to distinguish three sorts: extensions, deviations, and variations.

In an extension we add to standard logic. We add new symbolic logical con-

stants (for example, the 2 of modal logic), and new cases of logical consequence

and logical truth that we can model using the new logical constants. We do

this in order to represent more facets of the notion of logical consequence.

We extend propositional logic, after all, to get predicate logic. Propositional

logic is great as far as it goes, but it cannot represent the logical implication of

‘someone is male’ by ‘Grant is male’. That is why we add quanti�ers, variables,

predicates, and so on, to propositional logic (new symbols), and add means

to deal with these new symbols in semantics and proof theory (new cases of

logical consequence and logical truth we model), to obtain predicate logic.

As we saw in the previous section, logicians don’t treat just any old words as

logical constants. They never treat ‘bachelor’ as a logical constant, for example.

But many logicians do allow some expansion of the usual list familiar from

propositional and predicate logic. Many consider modal logic, for example,

in which one treats ‘necessarily’ as a logical constant (symbolized by the new

symbol 2) to be part of logic.

In a deviation we retain the usual set of logical constants, but change what

we say about them. We keep standard logic’s symbols, but alter its proof theory

and semantics, thereby offering a different model of logical consequence and

logical truth.

Why do this? Perhaps because we think that standard logic is wrong. For

example, the standard semantics for propositional logic counts the sentence

P∨∼P as a tautology. But some philosophers resist the idea that natural lan-

guage sentences like the following are logically true:

Either I am tall or I am not tall

Either there will be a sea battle tomorrow or there will

not be a sea battle tomorrow

If these philosophers are right, then the standard notion of a tautology is an

imperfect model of genuine logical truth, and we need a better model.
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Variations also change standard logic, but here the changes are, roughly

speaking, merely notational; they leave the content of standard logic unal-

tered. For example, in Polish notation, instead of writing P→(Q∧R), we write

→P∧QR; binary connectives go in front of the sentences they connect rather

than between them.

1.8 Set theory
I said earlier that modern logic uses “mathematical techniques” to study formal

languages. The mathematical techniques in question are those of set theory.

Only the most elementary set-theoretic concepts and assumptions will be

needed, and you may already be familiar with them; but nevertheless, here is a

brief overview.

Sets have members. Consider the set, A, of even integers between 2 and 6. 2
is a member of A, 4 is a member of A, 6 is a member of A; and nothing else is a

member of A. We use the expression “∈” for membership; thus, we can say:

2 ∈A, 4 ∈A, and 6 ∈A. We often name a set by putting names of its members

between braces: “{2,4,6}” is another name of A.

We can also speak of sets with in�nitely many members. Consider N, the set

of natural numbers. Each natural number is a member of N; thus, 0 ∈N, 1 ∈N,

and so on. We can informally name this set with the brace notation as well:

“{0,1,2,3, . . .}”, so long as it is clear which continued series the ellipsis signi�es.

The members of a set need not be mathematical entities; anything can be a

member of a set.
8

Sets can contain people, or cities, or—to draw nearer to our

intended purpose—sentences and other linguistic entities.

There is also the empty set, ∅. This is the one set with no members. That

is, for each object u, u is not a member of ∅ (i.e.: for each u, u /∈∅.)

Though the notion of a set is an intuitive one, the Russell Paradox (discov-

ered by Bertrand Russell) shows that it must be employed with care. Let R be

the set of all and only those sets that are not members of themselves. That is,

R is the set of non-self-members. Russell asks the following question: is R a

member of itself? There are two possibilities:

· R /∈ R. Thus, R is a non-self-member. But R was said to be the set of all

non-self-members, and so we’d have R ∈ R. Contradiction.

8
Well, some axiomatic set theories bar certain “very large collections” from being members

of sets. This issue won’t be relevant here.
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· R ∈ R. So R is not a non-self-member. R, by de�nition, contains only
non-self-members. So R /∈ R. Contradiction.

Thus, each possibility leads to a contradiction. But there are no remaining

possibilities—either R is a member of itself or it isn’t! So it looks like the very

idea of sets is paradoxical.

Since Russell’s time, set theorists have developed theories of sets that avoid

Russell’s paradox (as well as other related paradoxes). They do this chie�y by

imposing rigid restrictions on when sets exist. So far we have been blithely

assuming that there exist various sets: the set N, sets containing people, cities,

and sentences, Russell’s set R. That got us into trouble. So what we want is

a theory of when sets exist that blocks the Russell paradox by saying that set

R simply doesn’t exist (for then Russell’s argument falls apart), but which says

that the sets we need to do mathematics and metalogic do exist. The details of

set theory are beyond the scope of this book. Here, we will help ourselves to

intuitively “safe” sets, sets that aren’t anything like the Russell set. We’ll leave

the task of what “safe” amounts to, exactly, to the set theorists.

Various other useful set-theoretic notions can be de�ned in terms of the

notion of membership. Set A is a subset of set B (“A⊆ B”) when every member

of A is a member of B . The intersection of A and B (“A∩ B”) is the set that

contains all and only those things that are members of both A and B ; the union
of A and B (“A∪ B”) is the set containing all and only those things that are

members of either A or B (or both
9
).

Suppose we want to refer to the set of the so-and-sos—that is, the set

containing all and only objects, u, that satisfy the condition “so-and-so”. We’ll

do this with the term “{u: u is a so-and-so}”. Thus, we could write: “N= {u :
u is a natural number}”. And we could restate the de�nitions of ∩ and ∪ from

the previous paragraph as follows:

A∩B = {u : u ∈A and u ∈ B}
A∪B = {u : u ∈A or u ∈ B}

Sets have members, but they don’t contain them in any particular order.

For example, the set containing me and Barack Obama doesn’t have a “�rst”

member. “{Ted, Obama}” and “{Obama, Ted}” are two different names for

the same set—the set containing just Obama and me. (This follows from

9
In this book I always use ‘or’ in its inclusive sense.
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the “criterion of identity” for sets: sets are identical if and only if they have

exactly the same members.) But sometimes we need to talk about set-like things

containing objects in a particular order. For this purpose we use ordered sets.10

Two-membered ordered sets are called ordered pairs. To name the ordered

pair of Obama and Ted, we use: “〈Obama, Ted〉”. Here, the order is signi�cant;

〈Obama, Ted〉 and 〈Ted, Obama〉 are not the same ordered pair. The three-

membered ordered set of u, v, and w (in that order) is written: 〈u, v, w〉; and

similarly for ordered sets of any �nite size. A n-membered ordered set is called

an n-tuple. (For the sake of convenience, let’s de�ne the 1-tuple 〈u〉 to be just

the object u itself.)

A further concept we’ll need is that of a relation. A relation is just a feature

of multiple objects taken together. The taller-than relation is one example:

when one person is taller than another, that’s a feature of those two objects

taken together. Another example is the less-than relation for numbers. When

one number is less than another, that’s a feature of those two numbers taken

together.

“Binary” relations apply to two objects at a time. The taller-than and less-

than relations are binary relations, or “two-place” relations as we might say.

We can also speak of three-place relations, four-place relations, and so on. An

example of a three-place relation would be the betweenness relation for numbers:

the relation that holds among 2, 5, and 23 (in that order), for example.

We can use ordered sets to give an of�cial de�nition of what a relation is.

Definition of relation: An n-place relation is a set of n-tuples.

So a binary (two-place) relation is a set of ordered pairs. For example, the

taller-than relation may be taken to be the set of ordered pairs 〈u, v〉 such that

u is a taller person than v . The less-than relation for positive integers is the set

of ordered pairs 〈m, n〉 such that m is a positive integer less than n, another

positive integer. That is, it is the following set:

{〈1,2〉, 〈1,3〉, 〈1,4〉 . . . 〈2,3〉, 〈2,4〉 . . .}
10

There’s a trick for de�ning ordered sets in terms of sets. First, de�ne the ordered pair

〈u, v〉 as the set {{u},{u, v}}. (We can recover the information that u is intended to be the �rst
member because u “appears twice”.) Then de�ne the n-tuple 〈u1 . . . un〉 as the ordered pair

〈u1, 〈u2 . . . un〉〉, for each n ≥ 3. But henceforth I’ll ignore this trick and just speak of ordered

sets without worrying about how they’re de�ned.
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When 〈u, v〉 is a member of relation R, we say, equivalently, that u and v “stand

in” R, or R “holds between” u and v, or that u “bears” R to v. Most simply,

we write “Ruv”.
11

Some more de�nitions:

Definition of domain, range, over: Let R be any binary relation and A be

any set.

· The domain of R (“dom(R)”) is the set {u: for some v, Ruv}
· The range of R (“ran(R)”) is the set {u: for some v, Rv u}
· R is over A iff dom(R)⊆A and ran(R)⊆A

In other words, the domain of R is the set of all things that bear R to something;

the range is the set of all things that something bears R to; and R is over A iff

the members of the ’tuples in R are all drawn from A.

Binary relations come in different kinds, depending on the patterns in which

they hold:

Definition of kinds of binary relations: Let R be any binary relation over

some set A.

· R is serial (in A) iff for every u ∈A, there is some v ∈A such that Ruv.

· R is re�exive (in A) iff for every u ∈A, Ru u

· R is symmetric iff for all u, v, if Ruv then Rv u

· R is transitive iff for any u, v, w, if Ruv and Rvw then Ruw

· R is an equivalence relation (in A) iff R is symmetric, transitive, and

re�exive (in A)

· R is total (in A) iff for every u, v ∈A, Ruv

Notice that we relativize some of these relation types to a given set A. We do

this in the case of re�exivity, for example, because the alternative would be

to say that a relation is re�exive simpliciter if everything bears R to itself; but

that would require the domain and range of any re�exive relation to be the set

of absolutely all objects. It’s better to introduce the notion of being re�exive

relative to a set, which is applicable to relations with smaller domains. (I will

11
This notation is like that of predicate logic; but here I’m speaking the metalanguage, not

displaying sentences of a formalized language.



CHAPTER 1. WHAT IS LOGIC? 19

sometimes omit the quali�er ‘in A’ when it is clear which set that is.) Why

don’t symmetry and transitivity have to be relativized to a set?—because they

only say what must happen if R holds among certain things. Symmetry, for

example, says merely that if R holds between u and v, then it must also hold

between v and u, and so we can say that a relation is symmetric absolutely,

without implying that everything is in its domain.

We’ll also need the concept of a function. A function “takes in” an object or

objects (in a certain order), and “spits out” a further object. For example, the

addition function takes in two numbers, and spits out their sum. As with sets,

ordered sets, and relations, functions are not limited to mathematical entities:

they can take in and spit out any objects whatsoever. We can speak of the

father-of function, for example, which takes in a person, and spits out the father

of that person. (The more common way of putting this is: the function “maps”

the person to his or her father.) And later in this book we will be considering

functions that take in and spit out linguistic entities.

Some functions must take in more than one object before they are ready to

spit out something. For example, you need to give the addition function two

numbers in order to get it to spit out something; for this reason it is called a

two-place function. The father-of function, on the other hand, needs to be given

only one object, so it is a one-place function. Let’s simplify this by thinking

of an n-place function as simply being a one-place function that takes in only

n-tuples. Thus, if you give the addition function the ordered pair 〈2,5〉, it spits

out 7.

The objects that a function takes in are called its arguments, and the objects

it spits out are called its values. If u is an argument of f we write “ f (u)” for

the value of function f as applied to the argument u. f (u) is the object that

f spits out, if you feed it u. For example, where f is the father-of function,

since Ron is my father we can write: f (Ted) = Ron. When f is an n-place

function—i.e., its arguments are n-tuples—instead of writing f (〈u1, . . . , un〉)
we write simply f (u1, . . . , un). So where a is the addition function, we can write:

a(2,3) = 5. The domain of a function is the set of its arguments, and its range is

the set of its values. If u is not in function f ’s domain (i.e., u is not one of f ’s

arguments), then f is unde�ned for u. The father-of function, for example, is

unde�ned for numbers (since numbers have no fathers). These concepts may

be pictured for (a part of) the father-of function thus:
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Jenna Bush

George W. BushBarbara Bush

George W. Bush George H. W. Bush

Chelsea Clinton Bill Clinton

17 Chelsea Clinton

Massachusetts Cygnus X-1







range



















domain

The number 17 and the state of Massachusetts are excluded from the domain

because, being a number and a political entity, they don’t have fathers. Chelsea

Clinton and Cygnus X-1 are excluded from the range because, being a woman

and a black hole, they aren’t fathers of anyone. 17 and Massachusetts aren’t in

the range either; and Cygnus X-1 isn’t in the domain. But Chelsea Clinton is

in the domain, since she has a father.

It’s part of the de�nition of a function that a function can never map an

argument to two distinct values. That is, f (u) cannot be equal both to v and

also to v ′ when v and v ′ are two different objects. That is, a function always

has a unique value, given any argument for which the function is de�ned. (So

there is no such function as the parent-of function; people typically have more

than one parent.) Functions are allowed to map two distinct arguments to the

same value. (The father-of function is an example; two people can have the

same father.) But if a given function happens never to do this, then it is called

one-to-one. That is, a (one-place) function f is one-to-one iff for any u and v
in its domain, if u 6= v then f (u) 6= f (v). (The function of natural numbers f
de�ned by the equation f (n) = n+ 1 is an example.) This all may be pictured

as follows:

Not a function

• // •

• //

��@
@@

@@
@ •

•

One-to-one function

• // •

• // •

• // •

Function that’s not one-to-one

• // •

•

��@
@@

@@
@

• // •

As with the notion of a relation, we can use ordered sets to give of�cial

de�nitions of function and related notions:
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Definition of function-theoretic notions:

· A function is a set of ordered pairs, f , obeying the condition that if 〈u, v〉
and 〈u, w〉 are both members of f , then v = w

· When 〈u, v〉 ∈ f , we say that u is an argument of f , v is a value of f , and

that f maps u to v; and we write: “ f (u) = v”

· The domain of a function is the set of its arguments; its range is the set

of its values

· A function is n-place when every member of its domain is an n-tuple

Thus, a function is just a certain kind of binary relation—one that never relates

a single thing u to two distinct objects v and w. (Notice that the de�nition

of “domain” and “range” for functions yields the same results as the de�nition

given earlier for relations.)

The topic of in�nity is perhaps set theory’s most fascinating part. And one

of the most fascinating things about in�nity is the matter of sizes of in�nity.

Compare the set N of natural numbers and the set E of even natural numbers

({0,2,4,6, . . .}). Which set is bigger—which has more members? You might

think that N has got to be bigger, since it contains all the members of E and

then the odd natural numbers in addition. But in fact these sets have the same

size. For we can line up their members as follows:

N : 0 1 2 3 4 5 . . .
E : 0 2 4 6 8 10 . . .

If two sets can be “lined up” in this way, then they have the same size. Indeed,

this is how set theorists de�ne ‘same size’. Or rather, they give a precise

de�nition of sameness of size (they call it “equinumerosity”, or sameness of

“cardinality”) which captures this intuitive idea:

Definition of Equinumerosity: Sets A and B are equinumerous iff there

exists some one-to-one function whose domain is A and whose range is B

Intuitively: sets are equinumerous when each member of either set can be

associated with a unique member of the other set. You can line their members

up.

The picture in which the members of N and the members of E were lined

up is actually a picture of a function: the function that maps each member of N
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to the member of E immediately below it in the picture. Mathematically, this

function, f , may be de�ned thus:

f (n) = 2n (for any n ∈N)

This function is one-to-one (since if two natural numbers are distinct then

doubling each results in two distinct numbers). So N and E are equinumerous.

It’s quite surprising that a set can be equinumerous with a mere subset of itself.

But that’s how it goes with in�nity.

Even more surprising is the fact that the rational numbers are equinumerous

with the natural numbers. A (nonnegative) rational number is a number that

can be written as a fraction
n
m where n and m are natural numbers and m 6= 0.

To show that N is equinumerous with the set Q of rational numbers, we must

�nd a one-to-one function whose domain is N and whose range is Q. At �rst this

seems impossible, since the rationals are “dense” (between every two fractions

there is another fraction) whereas the naturals are not. But we must simply be

clever in our search for an appropriate one-to-one function.

Each rational number is represented in the following grid:

numerators

denominators

1 2 3 4 5 . . .

0 0
1

0
2

0
3

0
4

0
5 . . .

1 1
1

1
2

1
3

1
4

1
5 . . .

2 2
1

2
2

�
�

�
�2

3
2
4

2
5 . . .

3 3
1

3
2

3
3

3
4

3
5 . . .

4 4
1

4
2

4
3

4
4

4
5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Any rational number
n
m can be found in the row for n and the column for

m. For example,
2
3 (circled above) is in the row for 2 (the third row, since

the �rst row is for 0) and the column for 3 (the third column). In fact, every

rational number appears multiple times in the grid (in�nitely many times, in

fact). For example, the rational number
1
2 , which occurs in the second row,
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second column, is the same as the rational number
2
4 , which occurs in the third

row, fourth column. (It’s also the same as
3
6 , 4

8 , 5
10 . . . .)

Our goal is to �nd a way to line up the naturals with the rationals—to �nd

a one-to-one function, f , with domain N and range Q. Since each rational

number appears in the grid, all we need to do is go through all of the (in�nitely

many!) points on the grid, one by one, and count off a corresponding natural

number for each; we’ll then let our function f map the natural numbers we

count off to the rational numbers that appear at the corresponding points on

the grid. Let’s start at the top left of the grid, and count off the �rst natural

number, 0. So we’ll have f map 0 to the rational number at the top left of the

grid, namely,
0
1 . That is, f (0) = 0

1 . We can depict this by labeling
0
1 with the

natural number we counted off, 0:

numerators

denominators

1 2 3 4 5 . . .

0 0
1(0)

0
2

0
3

0
4

0
5 . . .

1 1
1

1
2

1
3

1
4

1
5 . . .

2 2
1

2
2

2
3

2
4

2
5 . . .

3 3
1

3
2

3
3

3
4

3
5 . . .

4 4
1

4
2

4
3

4
4

4
5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Next, ignoring a certain wrinkle which I’ll get to in a moment, let’s count off

natural numbers for the rationals in the uppermost “ring” around the top left

of the grid, in counterclockwise order, beginning at the left:



CHAPTER 1. WHAT IS LOGIC? 24

numerators

denominators

1 2 3 4 5 . . .

0 0
1(0)

0
2(3)

0
3

0
4

0
5 . . .

1 1
1(1)

1
2 (2)

1
3

1
4

1
5 . . .

2 2
1

2
2

2
3

2
4

2
5 . . .

3 3
1

3
2

3
3

3
4

3
5 . . .

4 4
1

4
2

4
3

4
4

4
5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Then (continuing to ignore the wrinkle) let’s count off the next ring of numbers,

again in counterclockwise order beginning at the left:

numerators

denominators

1 2 3 4 5 . . .

0 0
1(0)

0
2(3)

0
3(8)

0
4

0
5 . . .

1 1
1(1)

1
2 (2)

1
3 (7)

1
4

1
5 . . .

2 2
1(4)

2
2(5)

2
3(6)

2
4

2
5 . . .

3 3
1

3
2

3
3

3
4

3
5 . . .

4 4
1

4
2

4
3

4
4

4
5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

And so on in�nitely. For each new ring, we begin at the left, and move through

the ring counterclockwise, continuing to count off natural numbers.

Every point on the grid will eventually be reached by one of these increas-

ingly large (but always �nite) rings. Since every rational number appears on

the grid, every rational number eventually gets labeled with a natural number.

So the range of our function f is the entirety of Q! There are two tricks that

make this work. First, even though the rational numbers are dense, they can
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be laid out in a discrete grid. Second, even though the grid is two dimensional

and the natural numbers are only one-dimensional, there is a way to cover the

whole grid with naturals since there is a “one-dimensional” path that covers

the entire grid: the path along the expanding rings.

The wrinkle is that this procedure, as we’ve laid it out so far, doesn’t deliver

a one-to-one function, because rational numbers appear multiple times in the

grid. For example, given our de�nition, f maps 0 to
0
1 and 3 to

0
2 . But

0
2 is the

same rational number as
0
1—namely, 0—so f isn’t one-to-one. ( f also maps 8

to 0; and it maps both 1 and 5 to 1, etc.) But it’s easy to modify the procedure

to �x this problem. In our trek through the rings, whenever we hit a rational

number that we’ve already encountered, let’s now simply skip it, and go on to

the next rational number on the trek. Thus, the new diagram looks as follows

(the skipped rational numbers are struck out):

numerators

denominators

1 2 3 4 5 . . .

0 0
1(0) �

�0
2 �

�0
3 �

�0
4 �

�0
5 . . .

1 1
1(1)

1
2 (2)

1
3 (5)

1
4(9)

1
5 (15) . . .

2 2
1(3) �

�2
2

2
3(4) �

�2
4

2
5(14) . . .

3 3
1(6)

3
2(7) �

�3
3

3
4(8)

3
5(13) . . .

4 4
1(10)

�
�4
2

4
3 (11)

�
�4
4

4
5 (12) . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

We’ve now got our desired function f : it is the function that maps each natural

number to the rational number in the grid labelled by that natural number.

(Notice, incidentally, that f could be displayed in this way instead:

n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
f (n) : 0 1 1

2 2 2
3

1
3 3 3

2
3
4

1
4 4 4

3
4
5

3
5

2
5

1
5 . . .

This is just a different picture of the same function.) Since each rational number

is labeled by some natural number, f ’s range is Q. f ’s domain is clearly N. And

f is clearly one-to-one (since our procedure skips previously encountered

rational numbers). So f is our desired function; N and Q are the same size.
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If even a dense set like Q is no bigger than N, are all in�nite sets the same

size? The answer is in fact no. Some in�nite sets are bigger than N; there are

different sizes of in�nity.

One such set is the set of real numbers. Real numbers are numbers that can

be represented by decimals. All rational numbers are real numbers; and their

decimal representations either terminate or eventually repeat in some in�nitely

recurring pattern. (For example,
1
3 has the repeating decimal representation

0.3333 . . . ; 7
4 has the terminating decimal representation 1.75.) But some real

numbers are not rational numbers. These are the real numbers with decimal

representations that never repeat. One example is the real number π, whose

decimal representation begins: 3.14159 . . . .
We’ll prove that there are more real than natural numbers by proving that

there are more real numbers between 0 and 1 than there are natural numbers.

Let R be the set of real numbers in this interval. Now, consider the function

f which maps each natural number n to
1

n+2 . This is a one-to-one function

whose domain is N and whose range is { 1
2 , 1

3 , 1
4 , . . .}. But this latter set is a subset

of R. So R is at least as big as N. So all we need to do is show that R is not the

same size as N. And we can do this by showing that the assumption that N and

R are the same size would lead to a contradiction.

So, suppose that N and R are equinumerous. Given the de�nition of equinu-

merosity, there must exist some one-to-one function, f , whose domain is N
and whose range is R. We can represent f on a grid as follows:

f (0) = 0 . a0,0 a0,1 a0,2 . . .
f (1) = 0 . a1,0 a1,1 a1,2 . . .
f (2) = 0 . a2,0 a2,1 a2,2 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

The grid represents the real numbers in the range of f by their decimal repre-

sentations.
12

The a’s are the digits in these decimal representations. For any

natural number i , f (i) is represented as the decimal 0.ai ,0ai ,1ai ,2 . . . . Thus ai , j

is the ( j + 1)st digit in the decimal representation of f (i). Consider f (2), for

example. If f (2) happens to be the real number 0.2562894 . . . , then a2,0 = 2,

a2,1 = 5, a2,2 = 6, a2,3 = 2, and so on.

12
If a decimal representation terminates, we can think of it as nevertheless being in�nite:

there are in�nitely many zeros after the termination point.
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The right hand part of the grid (everything except the column beginning

with “ f (0) =”) is a list of real numbers. The �rst real number on this list is

0.a0,0a1,1a0,2 . . . , the second is 0.a1,0a1,1a1,2 . . . , the third is 0.a2,0a2,1a2,2 . . . , and so

on. The real numbers in this list, in fact, comprise the range of f . But we

have supposed, remember, that the range of f is the entirety of R. Thus, we

have an important consequence of our supposition: this list is a complete list of

R. That is, every member of R occurs somewhere on the list, as the decimal

0.ai ,0ai ,1ai ,2 . . . , for some natural number i .

But in fact, we can show that this can’t be a complete list of R, by showing

that there is at least one real number between 0 and 1 that does not appear on

the list. We’re going to do this in a crafty way: we’ll look at the grid above,

and construct our real number as a function of the grid in such a way that it’s

guaranteed not to be anywhere on the list.

I’ll call the real number I’m after “d”; to specify d , I’m going to specify its

decimal representation 0.d0d1d2 . . . . Here is my de�nition of the j th
digit in

this decimal representation:

d j =

(

6 if a j , j = 5

5 otherwise

The “a j , j ”s refer to the grid depicting f above; thus, what real number d we

have de�ned depends on the nature of the grid, and thus on the nature of the

function f .

To get a handle on what’s going on here, think about it geometrically.

Consider the digits on the following diagonal line in the grid:

f (0) = 0 .
�� ��a0,0 a0,1 a0,2 . . .

f (1) = 0 . a1,0

�� ��a1,1 a1,2 . . .

f (2) = 0 . a2,0 a2,1

�� ��a2,2 . . .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

To these diagonal digits, there corresponds a real number: 0.a0,0a1,1a2,2 . . . . Call

this real number a. What we did to arrive at our number d (so-called because we

are giving a “diagonal argument”) was to begin with a’s decimal representation

and change each of its digits. We changed each of its digits to 5, except when

the digit was already 5, in which case we changed it to 6.

We now approach the punch line. d ’s de�nition insures that it cannot

be anywhere on the list. Let f (i) be any member of the list. We can prove



CHAPTER 1. WHAT IS LOGIC? 28

that d and f (i) are not the same number. If they were, then their decimal

representations 0.d0d1d2 . . . and 0.ai ,0ai ,1ai ,2 . . . would also be the same. So each

digit d j in d ’s decimal representation would equal its corresponding digit ai , j in

f (i)’s decimal representation. But this can’t be. There is one place in particular

where the digits must differ: the i th
place. di is de�ned to be 6 if ai ,i is 5, and

de�ned to be 5 if ai ,i is not 5. Thus, di is not the same digit as ai ,i . So d ’s decimal

representation differs in at least one place from f (i)’s decimal representation;

so d is different from f (i). But f (i) was an arbitrarily chosen member of the

list. Thus we have our conclusion: d isn’t anywhere on the list. But d is a real

number between 0 and 1. So if our initial assumption that the range of f is all

of R were correct, d would have to be on the list. So that initial assumption

was false, and we’ve completed our argument: it’s impossible for there to be

a one-to-one function whose domain is N and whose range is all of R. Even

though N and R are both in�nite sets, R is a bigger in�nite set.

To grasp the argument’s �nal phase, think again in geometric terms. If

d were on the list, its decimal representation would intersect the diagonal.

Suppose, for instance, that d were f (3):

f (0) = 0 .
�� ��a0,0 a0,1 a0,2 a0,3 a0,4 . . .

f (1) = 0 . a1,0

�� ��a1,1 a1,2 a1,3 a1,4 . . .

f (2) = 0 . a2,0 a2,1

�� ��a2,2 a2,3 a2,4 . . .

d = f (3) = 0 . a3,0 a3,1 a3,2 a3,3 a3,4 . . .

f (4) = 0 . a4,0 a4,1 a4,2 a4,3

�� ��a4,4 . . .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Then, given d ’s de�nition, its decimal representation would be guaranteed to

differ from the diagonal series in its fourth digit, the point of intersection.

It’s natural to voice the following misgiving about the argument: “if d was

left off the list, then why can’t you just add it in? You could add it in at the

beginning, bumping all the remaining members of the list down one slot to

make room for it”:
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initial list make room for d new list

f (0)
��

d

f (1) f (0)
��

f (0)

f (2) f (1)

��

f (1)

.

.

.
f (2)

��

f (2)

.

.

.

.

.

.

.

.

.

Natural as it is, the misgiving is misguided. It’s true that, given any list, one

could add d to that list using the method described. But this fact is irrelevant

to the argument. The argument wasn’t that there is some unlistable real number,

d—some real number d that is somehow prevented from occurring in the

range of any one-to-one function whose domain is N. That would be absurd.

The argument was rather that no one list can be complete; any list (i.e., any

one-to-one function whose domain is N) will leave out some real numbers.

The left-out real numbers can appear on other lists, but that’s beside the point.

Compare: if a thousand people show up to eat at a small restaurant, many

people will be left out. That’s not to say that any individual person is incapable

of entering; it’s just to say that not everyone can enter at once. No matter who

enters, others will be left out in the cold.

Exercise 1.4* For any set, A, the powerset of A is de�ned as the

set of all A’s subsets. Write out the de�nition of the powerset of A
in the “{u : . . .}” notation. Write out the powerset of {2,4,6} in the

braces notation (the one where you list each member of the set).

Exercise 1.5* Is N equinumerous with the set Z of all integers,

negative, positive, and zero: {· · · − 3,−2,−1,0,1,2,3, . . .}?



Chapter 2

Propositional Logic

W
e begin with the simplest logic commonly studied: propositional logic.

Despite its simplicity, it has great power and beauty.

2.1 Grammar of PL
We’re going to approach propositional logic by studying a formal language.

And the �rst step in the study of a formal language is always to rigorously de�ne

the language’s grammar.

If all you want to do is to use and understand the language of logic, you

needn’t be so careful about grammar. For even without a precisely formulated

grammar, you can intuitively recognize that things like this make sense:

P→Q
R∧ (∼S↔P )

whereas things like this do not:

→PQR∼
(P∼Q∼(∨

P ⊕Q

But to make any headway in metalogic, we will need more than an intuitive

understanding of what makes sense and what does not. We will need a precise

de�nition that has the consequence that only the strings of symbols in the �rst

group “make sense”.

30
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Grammatical strings of symbols (i.e., ones that “make sense”) are called

well-formed formulas, or “formulas” or “wffs” for short. We de�ne these by

�rst carefully de�ning exactly which symbols are allowed to occur in wffs (the

“primitive vocabulary”), and second, carefully de�ning exactly which strings of

these symbols count as wffs. Here is the of�cial de�nition; I’ll explain what it

means in a moment:

Primitive vocabulary:

· Connectives:
1 →, ∼

· Sentence letters: P,Q, R . . . , with or without numerical subscripts

· Parentheses: ( , )

Definition of wff:

i) Every sentence letter is a PL-wff

ii) If φ and ψ are PL-wffs then (φ→ψ) and ∼φ are also PL-wffs

iii) Only strings that can be shown to be PL-wffs using i) and ii) are PL-wffs

(We allow numerical subscripts on sentence letters so that we don’t run out

when constructing increasingly complex formulas. Since P1, P2, P3 . . . are all

sentence letters, we have in�nitely many to choose from.)

We will be discussing a number of different logical systems throughout this

book, with differing grammars. What we have de�ned here is the notion of

a wff for one particular language, the language of PL. So strictly, we should

speak of PL-wffs, as the of�cial de�nition does. But usually I’ll just say “wff” if

there is no danger of ambiguity.

Here is how the de�nition works. Its core is clauses i) and ii) (they’re

sometimes called the formation rules). Clause i) says that if you write down a

sentence letter on its own, that counts as a wff. So, for example, the sentence

letter P , all by itself, is a wff. (So is Q, so is P147, and so on. Sentence letters are

often called “atomic” wffs, because they’re not made up of smaller wffs.) Next,

clause ii) tells us how to build complex wffs from smaller wffs. It tells us that

we can do this in two ways. First, it says that if we already have a wff, then we

can put a ∼ in front of it to get another wff. (The resulting wff is often called a

1
Some books use ⊃ instead of→, or ¬ instead of ∼. Other common symbols include & or

· for conjunction, | for disjunction, and ≡ for the biconditional.
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“negation”.) For example, since P is a wff (we just used clause i) to establish this),

then ∼P is also a wff. Second, clause ii) says that if we already have two wffs,

then we can put an→ between them, enclose the whole thing in parentheses,

and we get another wff. (The resulting wff is often called a “conditional”, whose

“antecedent” is the wff before the→ and whose “consequent” is the wff after

the→.) For example, since we know that Q is a wff (clause i)), and that ∼P
is a wff (we just showed this a moment ago), we know that (Q→∼P ) is also

a wff. This process can continue. For example, we could put an→ between

the wff we just constructed and R (which we know to be a wff from clause i))

to construct another wff: ((Q→∼P )→R). By iterating this procedure, we can

demonstrate the wffhood of arbitrarily complex strings.

Why the greek letters in clause ii)? Well, it wouldn’t be right to phrase it,

for example, in the following way: “if P and Q are wffs, then ∼P and (P→Q)
are also wffs”. That would be too narrow, for it would apply only in the case of

the sentence letters P and Q. It wouldn’t apply to any other sentence letters (it

wouldn’t tell us that∼R is a wff, for example), nor would it allow us to construct

negations and conditionals from complex wffs (it wouldn’t tell us that (P→∼Q)
is a wff). We want to say that for any wff (not just P ), if you put a ∼ in front

of it you get another wff; and for any two wffs (not just P and Q), if you put

an→ between them (and enclose the result in parentheses) you get another

wff. That’s why we use the metalinguistic variables “φ” and “ψ”.
2

The practice

of using variables to express generality is familiar; we can say, for example,

“for any integer n, if n is even, then n + 2 is even as well”. Just as “n” here

is a variable for numbers, metalinguistic variables are variables for linguistic

items. (We call them metalinguistic because they are variables we use in our

metalanguage, in order to talk generally about the object language, which is in

this case the formal language of propositional logic.)

What’s the point of clause iii)? Clauses i) and ii) provide only suf�cient

conditions for being a wff, and therefore do not on their own exclude nonsense

combinations of primitive vocabulary like P∼Q∼R, or even strings like P ⊕Q
that include disallowed symbols. Clause iii) rules these strings out, since there

is no way to build up either of these strings from clauses i) and ii), in the way

that we built up the wff (∼P→(P→Q)).
Notice an interesting feature of this de�nition: the very expression we

are trying to de�ne, ‘wff’, appears on the right hand side of clause ii) of the

de�nition. In a sense, we are using the expression ‘wff’ in its own de�nition. But

2
Strictly speaking clause iii) ought to be phrased using corner quotes; see exercise 1.2b.
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this “circularity” is benign, because the de�nition is recursive. A recursive (or

“inductive”) de�nition of a concept F contains a circular-seeming clause, often

called the “inductive” clause, which speci�es that if such-and-such objects are

F , then so-and-so objects are also F . But a recursive de�nition also contains

a “base clause”, which speci�es noncircularly that certain objects are F . Even

though the inductive clause rests the status of certain objects as being F s on

whether certain other objects are F s (whose status as F s might in turn depend

on the status of still other objects…), this eventually traces back to the base

clause, which secures F -hood all on its own. Thus, recursive de�nitions are

anchored by their base clauses; that’s what distinguishes them from viciously

circular de�nitions. In the de�nition of wffs, clause i) is the base, and clause ii)

is the inductive clause. The wffhood of the string of symbols ((P→Q)→∼R),
for example, rests on the wffhood of (P→Q) and of ∼R by clause ii); and the

wffhood of these, in turn, rests on the wffhood of P , Q and R, again by clause

ii). But the wffhood of P , Q, and R doesn’t rest on the wffhood of anything

else; clause i) speci�es directly that all sentence letters are wffs.

What happened to ∧, ∨, and↔? The only connectives in our primitive

vocabulary are→ and ∼; expressions like P∧Q, P∨Q, and P↔Q therefore do

not of�cially count as wffs. But we can still use ∧, ∨, and↔ unof�cially, since

we can de�ne those connectives in terms of ∼ and→:

Definitions of ∧, ∨, and↔:

· “φ∧ψ” is short for “∼(φ→∼ψ)”
· “φ∨ψ” is short for “∼φ→ψ”

· “φ↔ψ” is short for “(φ→ψ) ∧ (ψ→φ)” (which is in turn short for

“∼((φ→ψ)→∼(ψ→φ))”)

So, whenever we subsequently write down an expression that includes one of

the de�ned connectives, we can regard it as being short for an expression that

includes only the of�cial connectives, ∼ and→. (Why did we choose these

particular de�nitions? We’ll show below that they generate the usual truth

conditions for ∧, ∨, and↔.)

Our choice to begin with→ and∼ as our of�cial connectives was somewhat

arbitrary. We could have started with∼ and ∧, and de�ned the others as follows:

· “φ∨ψ” is short for “∼(∼φ∧∼ψ)”
· “φ→ψ” is short for “∼(φ∧∼ψ)”
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· “φ↔ψ” is short for “(φ→ψ)∧ (ψ→φ)”

And other alternate choices are possible. (Why did we choose only a small num-

ber of primitive connectives, rather than including all of the usual connectives?

Because, as we will see, it makes metalogic easier.)

The de�nition of wff requires conditionals to have outer parentheses. P→Q,

for example, is of�cially not a wff; one must write (P→Q). But informally,

I’ll often omit those outer parentheses. Similarly, I’ll sometimes write square

brackets instead of the of�cial round ones (for example, “[(P→Q)→R]→P”)

to improve readability.

2.2 The semantic approach to logic
In the next section I will introduce a “semantics” for propositional logic, and

formal representations of logical truth and logical consequence of the semantic

(model-theoretic) variety (recall section 1.5).

On the semantic conception, logical consequence amounts to: truth-preser-

vation in virtue of the meanings of the logical constants. This slogan isn’t

perfectly clear, but it does lead to a clearer thought: suppose we keep the

meanings of an argument’s logical constants �xed, but vary everything else. If

the argument remains truth-preserving no matter how we vary everything else,

then it would seem to preserve truth “in virtue of” the meanings of its logical

constants. But what is to be included in “everything else”?

Here is an attractive picture of truth and meaning. The truth of a sentence

is determined by two factors, meaning and the world. A sentence’s meaning

determines the conditions under which its true—the ways the world would have

to be, in order for that sentence to be true. If the world is one of the ways picked

out by the sentence’s truth conditions, then the sentence is true; otherwise, not.

Furthermore, a sentence’s meaning is typically determined by the meanings of

its parts—both its logical constants and its nonlogical expressions. So: three

elements determine whether a sentence is true: the world, the meanings of its

nonlogical expressions, and the meanings of its logical constants.
3

Now we can say what “everything else” means. Since we’re holding con-

stant the third element (the meanings of logical constants), varying everything

else means varying the �rst two elements. The clearer thought about logical

consequence, then, is that if an argument remains truth-preserving no matter

3
And also a fourth element: its syntax. We hold this constant as well.
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how we vary i) the world, and ii) the meanings of nonlogical expressions, then

its premises logically imply its conclusion.

To turn this clearer, but still not perfectly clear, thought into a formal ap-

proach, we need to do two things. First, we need mathematical representations—

I’ll call them con�gurations—of variations of types i) and ii). A con�guration

is a mathematical representation, both of the world and of the meanings of

nonlogical expressions. Second, we need to de�ne the conditions under which

a sentence of the formal language in question is true in one of these con�gu-

rations. When we’ve done both things, we’ll have a semantics for our formal

language.

One thing such a semantics is good for, is giving a formalization, of the

semantic variety, of the notions of logical consequence and logical truth. This

formalization represents one formula as being a logical consequence of others

iff it is true in any con�guration in which the latter formulas are true, and

represents a formula as being a logical truth iff it is true in all con�gurations.

But a semantics for a formal language is good for something else as well.

De�ning con�gurations, and truth-in-a-con�guration, can shed light on mean-

ing in natural and other interpreted languages.

Philosophers disagree over how to understand the notion of meaning in

general. But meaning surely has something to do with truth conditions, as in the

attractive picture above. If so, a formal semantics can shed light on meaning, if

the ways in which con�gurations render formal sentences true and false are

parallel to the ways in which the real world plus the meanings of words render

corresponding interpreted sentences true and false. Expressions in formal

languages are typically intended to represent bits of interpreted languages. The

PL logical constant∼, for example, represents the English logical constant ‘not’;

the sentence letters represent English declarative sentences, and so on. Part of

specifying a con�guration will be specifying what the nonlogical expressions

mean in that con�guration. And the de�nition of truth-in-a-con�guration will

be constructed so that the contributions of the symbolic logical constants to

truth-conditions will mirror the contributions to truth conditions of the logical

constants that they represent.

2.3 Semantics of propositional logic
Our semantics for propositional logic is really just a more rigorous version

of the method of truth tables from introductory logic books. What a truth
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table does is depict how the truth value of a given formula is determined by the

truth values of its sentence letters, for each possible combination of truth values

for its sentence letters. To do this nonpictorially, we need to de�ne a notion

corresponding to “a possible combination of truth values for sentence letters”:

Definition of interpretation: A PL-interpretation is a function I , that

assigns to each sentence letter either 1 or 0

The numbers 1 and 0 are our truth values. (Sometimes the letters ‘T’ and

‘F’ are used instead.) So an interpretation assigns truth values to sentence

letters. Instead of saying “let P be false, and Q be true”, we can say: let I be

an interpretation such that I (P ) = 0 and I (Q) = 1. (As with the notion of a

wff, we will have different de�nitions of interpretations for different logical

systems, so strictly we must speak of PL-interpretations. But usually it will be

�ne to speak simply of interpretations when it’s clear which system is at issue.)

An interpretation assigns a truth value to each of the in�nitely many sentence

letters. To picture one such interpretation we could begin as follows:

I (P ) = 1
I (Q) = 1
I (R) = 0
I (P1) = 0
I (P2) = 1

but since there are in�nitely many sentence letters, the picture could not be

completed. And this is just one interpretation among in�nitely many; any other

combination of assigned 1s and 0s to the in�nitely many sentence letters counts

as a new interpretation.

Once we settle what truth values a given interpretation assigns to the sen-

tence letters, the truth values of complex sentences containing those sentence

letters are thereby �xed. The usual, informal, method for showing exactly how

those truth values are �xed is by giving truth tables for each connective. The
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standard truth tables for the→ and ∼ are the following:
4

→ 1 0
1 1 0
0 1 1

∼
1 0
0 1

What we will do, instead, is write out a formal de�nition of a function—the

valuation function—that assigns truth values to complex sentences as a function

of the truth values of their sentence letters—i.e., as a function of a given

intepretation I . But the idea is the same as the truth tables: truth tables are

really just pictures of the de�nition of a valuation function.

Definition of valuation: For any PL-interpretation, I , the PL-valuation

for I , VI , is de�ned as the function that assigns to each wff either 1 or 0, and

which is such that, for any sentence letter α and any wffs φ and ψ:

VI (α) =I (α)
VI (φ→ψ) = 1 iff either VI (φ) = 0 or VI (ψ) = 1

VI (∼φ) = 1 iff VI (φ) = 0

Intuitively: we begin by choosing an interpretation function, which �xes the

truth values for sentence letters. Then the valuation function assigns corre-

sponding truth values to complex sentences depending on what connectives

they’re built up from: a negation is true iff the negated formula is false, and a

conditional is true when its antecedent is false or its consequent is true.

We have here another recursive de�nition: the valuation function’s values

for complex formulas are determined by its values for smaller formulas; and this

procedure bottoms out in the values for sentence letters, which are determined

directly by the interpretation function I .

Notice how the de�nition of the valuation function contains the English

logical connectives ‘either…or’, and ‘iff ’. I used these English connectives

rather than the logical connectives ∨ and↔, because at that point I was not

4
The→ table, for example, shows what truth value φ→ψ takes on depending on the truth

values of its parts. Rows correspond to truth values for φ, columns to truth values for ψ. Thus,

to ascertain the truth value of φ→ψ when φ is 1 and ψ is 0, we look in the 1 row and the 0
column. The listed value there is 0—the conditional is false in this case. The ∼ table has only

one “input-column” and one “result-column” because ∼ is a one-place connective.
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writing down wffs of the language of study (in this case, the language of propo-

sitional logic). I was rather using sentences of English—our metalanguage, the

informal language we’re using to discuss the formal language of propositional

logic—to construct my de�nition of the valuation function. My de�nition

needed to employ the logical notions of disjunction and biconditionalization,

the English words for which are ‘either…or’ and ‘iff’.

One might again worry that something circular is going on. We de�ned

the symbols for disjunction and biconditionalization, ∨ and↔, in terms of

∼ and → in section 2.1, and now we’ve de�ned the valuation function in

terms of disjunction and biconditionalization. So haven’t we given a circular

de�nition of disjunction and biconditionalization? No. When we de�ne the

valuation function, we’re not trying to de�ne logical concepts such as negation,

conjunction, disjunction, conditionalization, and biconditionalization, and

so on, at all. Reductive de�nition of these very basic concepts is probably

impossible (though one can de�ne some of them in terms of the others). What

we are doing is starting with the assumption that we already understand the

logical concepts, and then using those concepts to provide a semantics for a

formal language. This can be put in terms of object- and meta-language: we use

metalanguage connectives, such as ‘iff’ and ‘or’, which we simply take ourselves

to understand, to provide a semantics for the object language connectives ∼
and→.

An elementary fact will be important in what follows: for every wff φ and

every PL-interpretation I , VI (φ) is either 0 or 1, but not both.
5

Equivalently:

a formula has one of the truth values iff it lacks the other. That this is a fact

is built into the de�nition of the valuation function for PL. First of all, VI is

de�ned as a function, and so it can’t assign both the number 0 and the number 1
to a wff. And second, VI is de�ned as a function that assigns either 1 or 0 to each
wff (thus, in the case of the second and third clauses, if a complex wff fails the

condition for getting assigned 1, it automatically gets assigned 0.)

Back to the de�nition of the valuation function. The de�nition applies only

to of�cial wffs, which can contain only the primitive connectives→ and ∼. But

sentences containing ∧, ∨, and↔ are abbreviations for of�cial wffs, and are

therefore indirectly governed by the de�nition. In fact, given the abbreviations

de�ned in section 2.1, we can show that the de�nition assigns the intuitively

5
This fact won’t hold for all the valuation functions we’ll consider in this book; in chapter

3 we will consider “trivalent” semantic systems in which some formulas are assigned neither 1
nor 0.
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correct truth values to sentences containing ∧, ∨, and↔. In particular, we can

show that for any PL-interpretation I , and any wffs ψ and χ ,

VI (ψ∧χ ) = 1 iff VI (ψ) = 1 and VI (χ ) = 1
VI (ψ∨χ ) = 1 iff either VI (ψ) = 1 or VI (χ ) = 1

VI (ψ↔χ ) = 1 iff VI (ψ) =VI (χ )

I’ll show that the �rst statement is true here; the others are exercises for the

reader. I’ll write out this proof in excessive detail, to make it clear exactly how

the reasoning works.

Example 2.1: Proof that ∧ gets the right truth condition. We are to show that

for every wffs ψ and χ , and any PL-interpretation I , VI (ψ∧χ ) = 1 iff VI (ψ) =
1 and VI (χ ) = 1. So, letψ andχ be any wffs, and letI be any PL-interpretation;

we must show that: VI (ψ∧χ ) = 1 iff VI (ψ) = 1 and VI (χ ) = 1. The expression

ψ∧χ is an abbreviation for the expression ∼(ψ→∼χ ). So what we must show

is this: VI (∼(ψ→∼χ )) = 1 iff VI (ψ) = 1 and VI (χ ) = 1.

Now, in order to show that a statement A holds iff a statement B holds,

we must �rst show that if A holds, then B holds; then we must show that if B
holds then A holds. So, �rst we must establish that if VI (∼(ψ→∼χ )) = 1, then

VI (ψ) = 1 and VI (χ ) = 1. So, we begin by assuming that VI (∼(ψ→∼χ )) = 1,

and we then attempt to show that VI (ψ) = 1 and VI (χ ) = 1. Well, since

VI (∼(ψ→∼χ )) = 1, by de�nition of the valuation function, clause for ∼, we

know that VI (ψ→∼χ ) = 0. Now, we earlier noted the principle that a wff

has one of the two truth values iff it lacks the other; thus, VI (ψ→∼χ ) is not 1.

(Henceforth I won’t mention it when I make use of this principle.) But then,

by the clause in the de�nition of VI for the→, we know that it’s not the case

that: either VI (ψ) = 0 or VI (∼χ ) = 1. So, VI (ψ) = 1 and VI (∼χ ) = 0. From

the latter, by the clause for ∼, we know that VI (χ ) = 1. So now we have what

we wanted: VI (ψ) = 1 and VI (χ ) = 1.

Next we must show that if VI (ψ) = 1 and VI (χ ) = 1, then VI (∼(ψ→∼χ )) =
1. This is sort of like undoing the previous half. Suppose that VI (ψ) = 1 and

VI (χ ) = 1. Since VI (χ ) = 1, by the clause for ∼, VI (∼χ ) = 0; but now since

VI (ψ) = 1 and VI (∼χ ) = 0, by the clause for→ we know that VI (ψ→∼χ ) = 0;

then by the clause for ∼, we know that VI (∼(ψ→∼χ )) = 1, which is what we

were trying to show.

Example 2.1 is the �rst of many metalogic proofs we will be constructing in this

book. (The symbol marks the end of such a proof.) It is an informal argument,
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phrased in the metalanguage, which establishes a fact about a formal language.

As noted in section 1.3, metalogic proofs must be distinguished from proofs

in formal systems—from the derivations and truth trees of introductory logic,

and from the axiomatic and sequent proofs we will introduce below. Although

there are no explicit guidelines for how to present metalogic proofs, they are

generally given in a style that is common within mathematics. Constructing

such proofs can at �rst be dif�cult. I offer the following pointers. First, keep in

mind exactly what you are trying to prove. (In your �rst few proofs, it might

be a good idea to begin by writing down: “what I am trying to prove is…”.)

Second, keep in mind the de�nitions of all the relevant technical terms (the

de�nition of ψ∧χ , for instance.) Third, keep in mind exactly what you are

given. (In the preceding, for example, the important bit of information you are

given is the de�nition of the valuation function; that de�nition tells you the

conditions under which valuation functions assign 1s and 0s to negations and

conditionals.) Fourth, keep in mind the canonical methods for establishing

claims of various forms. (For example, if you want to show that a certain claim

holds for every two wffs, begin with “let ψ and χ be any wffs”; show that the

claim holds for ψ and χ ; and conclude that the claim holds for all pairs of

wffs. If you want to establish something of the form “if A, then B”, begin by

saying “suppose A”, go on to reason your way to “B”, and conclude: “and so, if

A then B .” Often it can be helpful to reason by reductio ad absurdum: assume

the opposite of the assertion you are trying to prove, reason your way to a

contradiction, and conclude that the assertion is true since its opposite leads to

contradiction.) Fifth: practice, practice, practice. As we progress, I’ll gradually

speed up the presentation of such proofs, omitting more and more details when

they seem obvious. You should feel free to do the same; but it may be best

to begin by constructing proofs very deliberately, so that later on you know

exactly what details you are omitting.

Let’s re�ect on what we’ve done so far. We have de�ned the notion of a PL-

interpretation, which assigns 1s and 0s to sentence letters of the formal language

of propositional logic. And we have also de�ned, for any PL-interpretation, a

corresponding PL-valuation function, which extends the interpretation’s as-

signment of 1s and 0s to complex wffs of PL. Note that we have been informally

speaking of these assignments as assignments of truth values. That’s because

the assignment of 1s and 0s to complex wffs mirrors the way complex natural

language sentences get their truth values, as a function of the truth values of

their parts. For example, the ∼ of propositional logic is supposed to represent

the English phrase ‘it is not the case that’. Accordingly, just as an English
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sentence “It is not the case that φ” is true iff φ is false, one of our valuation

functions assigns 1 to ∼φ iff it assigns 0 to φ. But strictly, it’s probably best not

to think of wffs of our formal language as genuinely having truth values. They

don’t genuinely have meanings after all. Our assignments of 1 and 0 represent
the having of truth values.

A semantics for a formal language, recall, de�nes two things: con�gurations

and truth-in-a-con�guration. In the propositional logic semantics we have

laid out, the con�gurations are the interpretation functions. A con�guration is

supposed to represent a way for the world to be, plus the meanings of nonlogical

expressions. The only nonlogical expressions in PL are the sentence letters;

and, for the purposes of PL anyway, their meanings can be represented simply

as truth-values. And once we’ve speci�ed a truth-value for each sentence letter,

we’ve already represented the world as much as we can in PL. Thus, PL-

interpretations are appropriate con�gurations. As for truth-in-a-con�guration,

this is accomplished by the valuation functions. For any PL-interpretation,

its corresponding valuation function speci�es, for each complex wff, what

truth value that wff has in that interpretation. Thus, for each wff (φ) and

each con�guration (I ), we have speci�ed the truth value of that wff in that

con�guration (VI (φ)).
Onward. We are now in a position to de�ne the semantic versions of the

notions of logical truth and logical consequence for propositional logic. The

semantic notion of a logical truth is that of a valid formula:

Definition of validity: A wff φ is PL-valid iff for every PL-interpretation,

I , VI (φ) = 1

We write “�
PL
φ” for “φ is PL-valid”. (When it’s obvious which system

we’re talking about, we’ll omit the subscript on �.) The valid formulas of

propositional logic are also called tautologies.
As for logical consequence, the semantic version of this notion is that of a

single formula’s being a semantic consequence of a set of formulas:

Definition of semantic consequence: A wff φ is a PL-semantic consequence

of a set of wffs Γ iff for every PL-interpretation, I , if VI (γ ) = 1 for each γ
such that γ ∈ Γ, then VI (φ) = 1

That is, φ is a PL-semantic consequence of Γ iff φ is true whenever each

member of Γ is true. We write “Γ �
PL
φ” for “φ is a PL-semantic consequence

of Γ”. (As usual we’ll often omit the “PL” subscript; and further, let’s improve
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readability by writing “φ1, . . . ,φn �ψ” instead of “{φ1, . . . ,φn} �ψ”. That is,

let’s drop the set braces when it’s convenient to do so.)

A related concept is that of semantic equivalence. Formulasφ andψ are said to

be (PL-) semantically equivalent iff each (PL-) semantically implies the other.

For example, φ→ψ and ∼ψ→∼φ are semantically equivalent. Notice that

we could just as well have worded the de�nition thus: semantically equivalent

formulas are those that have exactly the same truth value in every interpretation.

Thus, there is a sense in which semantically equivalent formulas “say the same

thing”: they have the same truth-conditional content.

Just as it’s probably best not to think of sentences of our formal language

as genuinely having truth values, it’s probably best not to think of them as

genuinely being logically true or genuinely standing in the relation of logi-

cal consequence. The notions we have just de�ned, of PL-validity and PL-

semantic-consequence, are just formal representations of logical truth and

logical consequence (semantically conceived). Indeed, the de�nitions we have

given are best thought of as representing, rather than really being, a semantics.

Further, when we get to formal provability, the de�nitions we will give are

probably best thought of as representing facts about provability, rather than

themselves de�ning a kind of provability. But forgive me if I sometimes speak

loosely as if formal sentences really do have these features, rather than just

representing them.

By the way, we can now appreciate why it was important to set up our

grammar so carefully. The valuation function assigns truth values to complex

formulas based on their form. One clause in its de�nition kicks in for atomic

wffs, another clause kicks in for wffs of the form ∼φ, and a third kicks in for

wffs of the form φ→ψ. This works only if each wff has exactly one of these

three forms; only a precise de�nition of wff guarantees this.

Exercise 2.1 Given the de�nitions of the de�ned symbols ∨ and

↔, show that for any PL-interpretation, I , and any wffs ψ and χ ,

VI (ψ∨χ ) = 1 iff either VI (ψ) = 1 or VI (χ ) = 1
VI (ψ↔χ ) = 1 iff VI (ψ) =VI (χ )
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2.4 Establishing validity and invalidity in PL
Now that we have set up a semantics, we can establish semantic facts about

particular wffs. For example:

Example 2.2: Proof that �
PL
(P→Q)→(∼Q→∼P ). To show a wff to be PL-

valid, we must show that it is true in every PL-interpretation. So, let I be any

PL-interpretation, and suppose for reductio that VI ((P→Q)→(∼Q→∼P )) = 0.

This assumption leads to a contradiction, as the following argument shows:

i) VI ((P→Q)→(∼Q→∼P )) = 0 (reductio assumption)

ii) So, by the de�nition of a valuation function, clause for the→, VI (P→Q) =
1 and…

iii) …VI (∼Q→∼P ) = 0

iv) Given iii), again by the clause for the→, VI (∼Q) = 1 and …

v) …VI (∼P ) = 0

vi) Given iv), by the clause for the ∼, VI (Q) = 0.

vii) Similarly, v) tells us that VI (P ) = 1.

viii) From vii) and vi), by the clause for the→ we know that VI (P→Q) = 0,

which contradicts line ii).

Here again we have given a metalogic proof: an informal mathematical ar-

gument establishing a fact about one of our formal languages. (The conclusion

of the argument was not suf�ciently impressive to merit the �ourish at the

end.) There is nothing special about the form that this argument took. One

could just as well have established the fact that �
PL
(P→Q)→(∼Q→∼P ) by

constructing a truth table, as one does in introductory textbooks, for such a

construction is in effect a pictorial metalogic proof that a certain formula is

PL-valid.

Arguments establishing facts of semantic consequence are parallel (in this

example we will proceed more briskly):

Example 2.3: Proof that P→(Q→R) �Q→(P→R). We must show that in

any PL-interpretation in which P→(Q→R) is true, Q→(P→R) is true as well.

Let I be any PL-interpretation; we then reason as follows:
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i) Suppose for reductio that VI (P→(Q→R)) = 1 but…

ii) …VI (Q→(P→R)) = 0. (From now on we’ll omit the subscripted I .)

iii) line ii) tells us that V(Q) = 1 and V(P→R) = 0, and hence that V(R) = 0.

So V(Q→R) = 0.

iv) Since V(P→R) = 0 (line iii)), V(P ) = 1. So then, by iii), V(P→(Q→R)) =
0. This contradicts i).

One can also establish facts of invalidity and failures of semantic conse-

quence:

Example 2.4: Proof that 2 ((P∧R)→Q)→(R→Q). To be valid is to be true

in all interpretations; so to be invalid (i.e., not valid) is to be false in at least one

interpretation. So all we must do is �nd one interpretation in which this wff

is false. Let I be an interpretation such that I (R) = 1 and I (P ) =I (Q) = 0.

Then VI (P∧R) = 0 (example 2.1), so VI ((P∧R)→Q) = 1. But since VI (R) = 1
and VI (Q) = 0, VI (R→Q) = 0. So VI ((P∧R)→Q)→(R→Q)) = 0

Example 2.5: Proof that P→R 2 (P∨Q)→R. Consider a PL-interpretation

in which P and R are false, and in which Q is true. P→R is then true (since its

antecedent is false), but P∨Q is true (since Q is true—see exercise 2.1) while R
is false, so (P∨Q)→R is false.

I’ll end this section by noting a certain fact about validity in propositional

logic: it is mechanically “decidable”. That is, a computer program could be

written that is capable of telling, for any given formula, whether or not that

formula is valid. The program would simply construct a complete truth table

for the formula in question. To give a rigorous proof of this fact would take us

too far a�eld, since we would need to give a rigorous de�nition of what counts

as a computer program, but the point is intuitively clear.

Exercise 2.2 Establish each of the following facts:

a) � [P∧(Q∨R)]→ [(P∧Q)∨(P∧R)]

b) (P↔Q)∨ (R↔S) 2 P∨R

c) ∼(P∧Q) and ∼P∨∼Q are semantically equivalent.
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2.4.1 Schemas, validity, and invalidity
In example 2.2 of the previous section we showed a particular wff to be valid:

(P→Q)→(∼Q→∼P ). But the proof of this fact depended only on the fact

that the wff had the form (φ→ψ)→(∼ψ→∼φ). We could just as easily have

argued that any wff of that form is valid, simply by replacing each reference

to P in the argument with a reference to φ, and each reference to Q with a

reference to ψ. The conclusion of this argument would be: “for any wffs φ
and ψ, � (φ→ψ)→(∼ψ→∼φ)”. This conclusion is more general than, and

so more useful than, the conclusion of example 2.2. Similarly, instead of

showing particular wffs to semantically imply one another (as in example 2.3),

we can show types of wffs to semantically imply one another (we can show,

for example, that φ→(ψ→χ ) � ψ→(φ→χ ), for any wffs φ, ψ, and χ ). And

instead of showing particular wffs to be semantically equivalent, we can show

types of wffs to be semantically equivalent.

It’s tempting to think of general proofs of this sort as establishing facts about

schemas—strings like “(φ→ψ)→(∼ψ→∼φ)”. Once the proof of example 2.2 has

been appropriately generalized, it’s tempting to think of it as showing that the

schema (φ→ψ)→(∼ψ→∼φ) is valid. But strictly speaking such talk is incorrect

since the notion of validity does not apply to schemas. Validity is de�ned in

terms of truth in interpretations, and truth in interpretations is de�ned only for

wffs. And schemas are not wffs, since schemas contain metalinguistic variables

like φ, ψ, and χ , which are not part of the primitive vocabulary of the language

of propositional logic. Rather, schemas are “blueprints”, which become wffs

when we substitute particular wffs in for the metalinguistic variables.

Now, a schema can have a property that’s closely related to validity. The

schema (φ→ψ)→(∼ψ→∼φ) has the following feature: all of its instances (that

is, all formulas resulting from replacing φ and ψ in the schema with wffs) are

valid. So one can informally speak of schemas as being valid when they have

this closely related property. But we must take great care when speaking of the

invalidity of schemas. One might think to say that the schema φ→ψ is invalid.

But what would that mean? If it means that every instance of the schema is

invalid, then the statement would be wrong. The wffs P→P and P→(Q→Q),
for example, are instances of φ→ψ, but each is valid. What’s true about the

schema φ→ψ is that some of its instances are invalid (for example P→Q).

So when dealing with schemas, it will often be of interest to ascertain

whether each instance of the schema is valid; it will rarely (if ever) be of interest

to ascertain whether each instance of the schema is invalid.
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2.5 Sequent proofs in propositional logic
The de�nitions of the previous section were inspired by the semantic con-

ception of logical truth and logical consequence. An alternate conception is

proof-theoretic. On this conception, the logical consequences of a set are

those statements that can be proved if one takes the members of the set as

premises; and a logical truth is a sentence that can be proved without using any

premises at all. A proof procedure is a method of reasoning one’s way, step by

step, according to mechanical rules, from some premises to a conclusion. The

formal systems inspired by this conception introduce mathematical models of

proof procedures, which apply to sentences of formal languages.

There are different methods for de�ning what a proof procedure is. One is

the method of natural deduction. This method is popular in introductory logic

textbooks, since it allows reasoning with assumptions. For example, in order

to prove a conditional, one assumes its antecedent for the sake of conditional

proof, and goes on to establish its consequent on that basis. Natural deduction

proofs often look like this:

1 P→(Q→R)

2 P∧Q

3 P 2, ∧E

4 Q 2, ∧E

5 Q→R 1, 3,→E

6 R 4, 5,→E

7 (P∧Q)→R 2–6,→I

or like this:
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1.

2.

3.

4.

5.

6.

7.

8.

P→(Q→R)
show (P∧Q)→R

P∧Q
show R

P
Q
Q→R
R

Pr.

CD

As.

DD

3, ∧E

3, ∧E

1, 5,→E

6, 7→E

The system we will examine in this section is a bit different. Our “sequent

proofs” will look different from natural deduction proofs:

1. P→(Q→R)⇒ P→(Q→R) RA

2. P∧Q⇒ P∧Q RA

3. P∧Q⇒ P 2, ∧E

4. P∧Q⇒Q 2, ∧E

5. P→(Q→R), P∧Q⇒Q→R 1, 3,→E

6. P→(Q→R), P∧Q⇒ R 4, 5,→E

7. P→(Q→R)⇒ (P∧Q)→R 6,→I

Nevertheless, the underlying idea is quite similar. As we will see, sequent proofs

also let us reason with assumptions.

2.5.1 Sequents
How does everyday reasoning work? In its simplest form, one reasons in a

step-by-step fashion from premises to a conclusion, each step being sanctioned

by a rule of inference. For example, suppose that you begin with the premise

P ∧ (P→Q). You already know this premise to be true, or you are supposing

it to be true for the sake of argument. You can then reason your way to the

conclusion that Q is also true, as follows:
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1. P ∧ (P→Q) premise

2. P from line 1

3. P→Q from line 1

4. Q from lines 2 and 3

In this kind of proof, each step is a tiny, indisputably correct, logical inference.

Consider the moves from 1 to 2 and from 1 to 3, for example. These are

indisputably correct because a conjunctive statement clearly logically implies

each of its conjuncts. Likewise for the move from 2 and 3 to 4: it is clear that a

conditional statement together with its antecedent imply its consequent. Proof

systems consist in part of simple rules of inference, which allow one to infer

further formulas from formulas already contained in the proof. One example

of a rule of inference (the one used to derive lines 2 and 3 in the above example)

might be stated thus: “from a conjunctive statement one may infer either of

the conjuncts”.

In addition to rules of inference, ordinary reasoning employs a further

technique: the use of assumptions. In order to establish a conditional claim “if A
then B”, one would ordinarily i) assume A, ii) reason one’s way to B , and then

iii) on that basis conclude that the conditional claim “if A then B” is true. Once

the assumption of A is shown to lead to B , the conditional claim “if A then B”

may be concluded. Another example: to establish a claim of the form “not-A”,

one would ordinarily i) assume A, ii) reason one’s way to a contradiction, and

iii) on that basis conclude that “not-A” is true. Once the assumption of A is

shown to lead to a contradiction, “not-A” may be concluded. The �rst sort of

reasoning is called conditional proof, the second, reductio ad absurdum.

When you reason with assumptions, you write down sentence that you don’t

know to be true. Suppose you write down the sentence ‘Jones is a bachelor’ as

an assumption for a conditional proof, with the goal of using it to prove the

statement ‘Jones is male’ and thus to conclude that the conditional ‘if Jones is a

bachelor then Jones is male’ is true. In this context, you do not know ‘Jones is

a bachelor’ to be true. You’re merely assuming it for the sake of establishing

the conditional. Outside of this conditional proof, the assumption need not

hold. Once you’ve established the conditional, you stop assuming that Jones is

a bachelor. To model this sort of reasoning formally, we need a way to keep

track of how the conclusions we establish depend on the assumptions we have

made. Natural deduction systems in introductory textbooks tend to do this

geometrically (by placement on the page), with special markers (e.g., ‘show’),

and by drawing lines or boxes around parts of the proof once the assumptions
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that led to those parts are no longer operative. We will do it differently: we

will keep track of the dependence of conclusions on assumptions by writing

down explicitly, for each conclusion, which assumptions it depends on. We will

do this using what are known as sequents.6

A sequent looks like this:

Γ⇒φ

Γ is a set of formulas, called the premises of the sequent.
7 φ is a single formula,

called the conclusion of the sequent. “⇒” is a sign that goes between the sequent’s

premises and its conclusion, to indicate that the whole thing is a sequent. Think

intuitively of a sequent as meaning that its conclusion is a logical consequence

of its premises.

In the proof system that I am about to introduce, one constructs proofs

out of sequents, rather than out of wffs. The lines of a sequent proof are

sequents; the conclusion of a sequent proof is a sequent; and the rules of

inference in sequent proofs let us infer new sequents from earlier sequents in a

proof. Reasoning with sequents might initially seem weird. For example, one

normally infers formulas from formulas; what does it mean to infer sequents

from sequents? Well, think of it this way. Call a natural language sequent one

in which φ and the members of Γ are natural language sentences; and call a

natural language sequent logically correct iff φ is a (genuine) logical consequence

of the members of Γ. Natural language sequent proofs can then be thought of

as attempts to show that natural language sequents are logically correct, and

thus, as attempts to establish that some sentences are logical consequences of

others. On this conception, a good natural language sequent rule ought to

preserve logical correctness. That is, if the rule lets us infer a new sequent from

some old sequents, then if the old sequents are logically correct, so must be

6
The method of sequents (as well as the method of natural deduction) was invented by

Gerhard Gentzen (1935).

7
For reasons I won’t go into, multiple formulas are sometimes allowed on the right hand

side of a sequent. Also, the premises of a sequent are usually taken to be an ordered sequence (or

some other ordered structure) of wffs rather than a set of wffs. This is to allow for nonstandard

logics in which order and repetition of premises can affect the correctness of arguments. To

recover logics in which order and repetition do not matter, one must then introduce “structural”

rules of inference, for example a rule allowing one to infer φ,ψ⇒ χ from ψ,φ⇒ χ and a rule

allowing one to infer φ,φ⇒ψ from φ⇒ψ. In the sequent systems we’ll be discussing, order

and repetition of premises don’t matter, and so I’ll just treat premises as sets. See Restall (2000)

for more on sequent proof systems and structural rules.
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the new sequent. Natural language sequent proofs, thus understood, let us

establish new cases of logical consequence on the basis of old cases of logical

consequence—we reason about logical consequence. The symbolic sequent

proof system we are about to de�ne can be thought of as modeling this sort of

reasoning.

We have seen how to think of reasoning with sequents as reasoning about

logical consequence. But notice that this is, in effect, reasoning with assump-

tions. For whenever one makes some assumptions Γ, and on that basis estab-

lishes φ, φ will be a logical consequence of Γ if the reasoning is any good.

Assumptions that lead to a conclusion are just statements that logically imply

that conclusion. So, one can think of reasoning toφ on the basis of assumptions

Γ as a sequent proof of the sequent Γ⇒φ.

2.5.2 Rules
The �rst step in developing our system is to write down sequent rules. A

sequent rule is a permission to move from certain sequents to another sequent.

Our �rst rule will be “∧ introduction”, or “∧I” for short:
8

Γ⇒φ ∆⇒ψ

Γ,∆⇒φ∧ψ
∧I

Above the line go the “from” sequents; below the line goes the “to”-sequent.

(The comma between Γ and ∆ in the “to” sequent simply means that the

premises of this sequent are all the members of Γ plus all the members of ∆.

Strictly speaking we should write this in set-theoretic notation: Γ∪∆⇒φ∧ψ.)

Thus, ∧I permits us to move from the sequents Γ ⇒ φ and ∆ ⇒ ψ to the

sequent Γ,∆⇒φ∧ψ. We say that the “to” sequent (Γ,∆⇒φ∧ψ in this case)

follows from the “from” sequents (in this case Γ⇒φ and ∆⇒ψ) via the rule

(in this case, ∧I.)

Remember that our sequent rules are supposed to represent natural language

sequent rules that preserve logical correctness. So intuitively, our rules ought to

have the following feature: if all of the “from” sequents are (represent) logically

correct sequents, then the “to” sequent is guaranteed to be (represent) a logically

correct sequent. Intuitively, ∧I has this feature. For if some assumptions Γ
logically imply φ, and some assumptions ∆ logically imply ψ, then (since φ∧ψ
intuitively follows from φ and ψ taken together) the conclusion φ∧ψ should

8
We have rules for ∧ and ∨, even though they’re not grammatically primitive connectives.
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indeed logically follow from all the assumptions together, the ones in Γ and

the ones in ∆.

Our next sequent rule is ∧E:

Γ⇒φ∧ψ
Γ⇒φ

Γ⇒φ∧ψ
Γ⇒ψ

∧E

This has two forms. The �rst lets one move from the sequent Γ ⇒ φ∧ψ
to the sequent Γ⇒ φ; the second lets one move from Γ⇒ φ∧ψ to Γ⇒ ψ.

Again, each appears to preserve logical correctness. If the members of Γ
imply the conjunction φ∧ψ, then (since φ∧ψ intuitively implies both φ and

ψ individually) it must be that the members of Γ imply φ, and they must also

imply ψ.

The rule ∧I is known as an introduction rule for ∧, since it allows us to move

to a sequent of the form Γ ⇒ φ∧ψ. Likewise, the rule ∧E is known as an

elimination rule for ∧, since it allows us to move from a sequent of that form.

In fact our sequent system contains introduction and elimination rules for the

other connectives as well: ∼, ∨, and→ (let’s forget the↔ here.) We’ll present

those rules in turn.

First ∨I and ∨E:

Γ⇒φ

Γ⇒φ∨ψ
Γ⇒φ

Γ⇒ψ∨φ
∨I

Γ⇒φ∨ψ ∆1,φ⇒ χ ∆2,ψ⇒ χ

Γ,∆1,∆2⇒ χ
∨E

∨E embodies reasoning by separation of cases. Here, intuitively, is why it is a

good sequent rule. Suppose we know that the three from-sequents of ∨E are

logically correct. We can then give an intuitive argument that the to-sequent

Γ,∆1,∆2⇒ χ is also logically correct; that is, that χ is a logical consequence

of the formulas in Γ, ∆1, and∆2. Suppose the formulas in Γ, ∆1, and∆2 are all

true. The �rst from-sequent tells us that the disjunction φ∨ψ is true. So either

φ or ψ is true. Now, if φ is true then the second from-sequent tells us that χ is

true. And if ψ is true then the third from-sequent tells us that χ is again true.

Either way, we learn that χ is true (there’s the separation of cases reasoning).

Next, we have double negation:

Γ⇒φ

Γ⇒∼∼φ
Γ⇒∼∼φ
Γ⇒φ

DN



CHAPTER 2. PROPOSITIONAL LOGIC 52

In connection with negation, we also have the rule of reductio ad absurdum:

Γ,φ⇒ψ∧∼ψ
Γ⇒∼φ

RAA

That is, if φ (along with perhaps some other assumptions, Γ) leads to a contra-

diction, we can conclude that ∼φ is true (given the assumptions in Γ). RAA

and DN together are our introduction and elimination rules for ∼.

And �nally we have→I and→E:

Γ,φ⇒ψ

Γ⇒φ→ψ
→I

Γ⇒φ→ψ ∆⇒φ

Γ,∆⇒ψ
→E

→E is perfectly straightforward; it’s just the familiar rule of modus ponens.

→I is the principle of conditional proof. Suppose you can get to ψ on the

assumption that φ (plus perhaps some other assumptions Γ.) Then, you should

be able to conclude that the conditional φ→ψ is true (assuming the formulas

in Γ). Put another way: if you want to establish the conditional φ→ψ, all you

need to do is assume that φ is true, and reason your way to ψ.

We add, �nally, one more sequent rule, the rule of assumptions

φ⇒φ
RA

This is the one sequent rule that requires no “from” sequents (there are no

sequents above the line). The rule permits us to move from no sequents at

all to a sequent of the form φ⇒ φ. (Strictly, this sequent should be written

“{φ}⇒φ”.) Intuitively, any such sequent is logically correct since any statement

logically implies itself.

2.5.3 Sequent proofs
We have assembled all the sequent rules. Now we’ll see how to construct

sequent proofs with them.

Definition of sequent proof: A sequent proof is a series of sequents, each

of which is either of the form φ⇒φ, or follows from earlier sequents in the

series by some sequent rule.

So, for example, the following is a sequent proof
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1. P∧Q⇒ P∧Q RA

2. P∧Q⇒ P 1, ∧E

3. P∧Q⇒Q 1, ∧E

4. P∧Q⇒Q∧P 2, 3, ∧I

Though it isn’t strictly required, we write a line number to the left of each

sequent in the series, and to the right of each line we write the sequent rule

that justi�es it, together with the line or lines (if any) that contained the “from”

sequents required by the sequent rule in question. (The rule of assumptions

requires no “from” sequents, recall.)

To reiterate a distinction I’ve been making, it’s important to distinguish

sequent proofs from metalogic proofs. Sequent proofs (and also the axiomatic

proofs we will introduce in section 2.6) are proofs in formal systems. They

consist of wffs in a formal language (plus the sequent sign,⇒), and are structured

according to a carefully formulated de�nition (the de�nition of a sequent proof).

Moreover, only the system’s of�cial rules of inference may be used. Metalogic

proofs are very different. Recall the argument I gave in section 2.3 that any PL-

valuation assigns 1 to φ∧ψ iff it assigns 1 to φ and 1 to ψ. The sentences in the

argument were sentences of English, and the argument used informal reasoning.

“Informal” means merely that the reasoning doesn’t follow a formally stipulated

set of rules; it doesn’t imply lack of rigor. The argument conforms to the

standards of good argumentation that generally prevail in mathematics.

Next we introduce the notion of a “provable sequent”:

Definition of provable sequent: A provable sequent is a sequent that is the

last line of some sequent proof

So, for example, the sequent proof given above establishes that P∧Q⇒Q∧P
is a provable sequent. We call a sequent proof, whose last line is Γ⇒ φ, a

sequent proof of Γ⇒φ.

Note that it would be equivalent to de�ne a provable sequent as any line

in any sequent proof, because at any point in a sequent proof one may simply

stop adding lines; the proof up until that point counts as a legal sequent proof.

The de�nitions we have given in this section give us a formal model (of the

proof-theoretic variety) of the core logical notions, as applied to propositional

logic. The formal model of φ being a logical consequence of the formulas in

set Γ is: the sequent Γ⇒φ is a provable sequent. The formal model of φ being

a logical truth is: the sequent ∅⇒φ is a provable sequent (∅ is the empty set).
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2.5.4 Example sequent proofs
Let’s explore how to construct sequent proofs. (You may �nd this initially

awkward, but a little experimentation will show that the techniques familiar

from proof systems in introductory textbooks will work here.)

Example 2.6: Let’s return to the sequent proof of P∧Q⇒Q∧P :

1. P∧Q⇒ P∧Q RA

2. P∧Q⇒ P 1, ∧E

3. P∧Q⇒Q 1, ∧E

4. P∧Q⇒Q∧P 2, 3, ∧I

Notice the strategy. We’re trying to prove the sequent P∧Q ⇒ Q∧P . The

premise of this sequent is P∧Q, so our �rst step is to use the rule of assumptions

to introduce this wff into our proof (line 1). We now have a sequent with a

conjunction as its conclusion, but its conjuncts are in the wrong order (we want

Q∧P , not P∧Q). So �rst we take the conjuncts apart using ∧E (lines 2 and 3),

and then put them back together in the other order (line 4).

Example 2.7: Next an example to illustrate conditional proof. Let’s construct

a sequent proof of P→Q,Q→R⇒ P→R:

1. P→Q⇒ P→Q RA

2. Q→R⇒Q→R RA

3. P ⇒ P RA (for conditional proof)

4. P→Q, P ⇒Q 1, 3,→E

5. P→Q,Q→R, P ⇒ R 2, 4,→E

6. P→Q,Q→R⇒ P→R 5,→I

Here we are trying to establish a sequent whose premises are P→Q and Q→R,

so we start by using RA to get these two wffs into the proof. Then, since

the conclusion of the sequent we’re after is a conditional (P→R), we use RA

to introduce its antecedent (P ), and our goal then is to get a sequent whose

conclusion is the conditional’s consequent (R). (To prove a conditional you

assume the antecedent and then try to establish the consequent.) When we

achieve this goal in line 5, we’ve shown that R follows from various assumptions,

including P . The rule→I (in essence, the principle of conditional proof) then
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lets us conclude that the conditional P→R follows from those other assumptions

alone, without the help of P .

Notice how dependencies sometimes get added and sometimes get sub-

tracted when we use sequent rules. The sequent on line 5 has P among its

premises, but when we use→I to move to line 6, P is no longer present as a

premise. Whereas the conclusion of line 5 (R) depends on P , the conclusion

of line 6 (P→R) does not. A dependency is subtracted. (In compensation, the

conclusion weakens, from R to P→R.) But the move from 1 and 3 to 4 adds

dependencies: the conclusion of line 4 depends on the premises from lines 1

and 3 taken together. (The rule→E requires this.)

Example 2.8: Next a “DeMorgan” sequent, ∼(P∨Q)⇒∼P∧∼Q:

1. ∼(P∨Q)⇒∼(P∨Q) RA

2. P ⇒ P RA (for reductio)

3. P ⇒ P∨Q 2, ∨I

4. ∼(P∨Q), P ⇒ (P∨Q)∧∼(P∨Q) 1, 3, ∧I

5. ∼(P∨Q)⇒∼P 4, RAA

6. Q⇒Q RA (for reductio)

7. Q⇒ P∨Q 6, ∨I

8. ∼(P∨Q),Q⇒ (P∨Q)∧∼(P∨Q) 1, 7, ∧I

9. ∼(P∨Q)⇒∼Q 8, RAA

10. ∼(P∨Q)⇒∼P∧∼Q 5, 9, ∧I

The main strategies at work here are two. First, in order to establish a con-

junction (such as ∼P∧∼Q) you independently establish the conjuncts and then

put them together using ∧I. Two, in order to establish a negation (such as ∼P ),

you use reductio ad absurdum.

Example 2.9: Next let’s establish ∅⇒ P∨∼P :
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1. ∼(P∨∼P )⇒∼(P∨∼P ) RA (for reductio)

2. P ⇒ P RA (for reductio)

3. P ⇒ P∨∼P 2, ∨I

4. ∼(P∨∼P ), P ⇒ (P∨∼P )∧∼(P∨∼P ) 1, 3, ∧I

5. ∼(P∨∼P )⇒∼P 4, RAA

6. ∼(P∨∼P )⇒ P∨∼P 5, ∨I

7. ∼(P∨∼P )⇒ (P∨∼P )∧∼(P∨∼P ) 1, 6, ∧I

8. ∅⇒∼∼(P∨∼P ) 7, RAA

9. ∅⇒ P∨∼P 8, DN

Here my overall goal was to assume ∼(P∨∼P ) and then derive a contradiction.

And my route to the contradiction was to �rst establish ∼P (by a reductio

argument, in lines 2–5), and then to get my contradiction from that.

Example 2.10: Finally, let’s establish a sequent corresponding to a way that

∨E is sometimes formulated: P∨Q,∼P ⇒Q:

1. P∨Q⇒ P∨Q RA

2. ∼P ⇒∼P RA

3. Q⇒Q RA (for use with ∨E)

4. P ⇒ P RA (for use with ∨E)

5. ∼Q⇒∼Q RA (for reductio)

6. ∼P, P ⇒ P∧∼P 2, 4, ∧I

7. ∼P, P,∼Q⇒ (P∧∼P )∧∼Q 5, 6, ∧I

8. ∼P, P,∼Q⇒ P∧∼P 7, ∧E

9. ∼P, P ⇒∼∼Q 8, RAA

10. ∼P, P ⇒Q 9, DN

11. P∨Q,∼P ⇒Q 1, 3, 10, ∨E

The basic idea of this proof was to use ∨E on line 1 to get Q. That called, in

turn, for showing that each disjunct of P∨Q leads to Q. Showing that Q leads

to Q is easy; that was line 3. Showing that P leads to Q took lines 4-10; line 10

states the result of that reasoning, namely that Q follows from P (given also

the other premise of the whole argument, ∼P ). I began at line 4 by assuming

P . Then my strategy was to establish Q by reductio, so I assumed ∼Q in
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line 5, and then got a contradiction in line 6. But there was a minor hitch. I

wanted next to use RAA to conclude ∼∼Q. But look carefully at how RAA is

formulated. It says that if we have Γ,φ⇒ ψ∧∼ψ, we can conclude Γ⇒∼φ.

So to use RAA to infer Γ⇒∼φ, Γ together with φ must imply a contradiction.

So in the present case, in order to �nish the reductio argument and conclude

∼∼Q, the contradiction P∧∼P needed to depend on the reductio assumption

∼Q. But on line 6, the contradiction depended only on ∼P and P . To get

around this, I used a little trick in lines 7 and 8. I used ∧I to pop ∼Q onto the

end of the contradiction (thus adding a dependency on ∼Q), and then I used

∧E to pop it off (retaining the dependency). One can always use this trick to

add a dependency—to add any desired wff to the premises of a sequent.
9

(If

the wff you want to add isn’t in the proof already, just use RA to get it in there.)

Exercise 2.3 Prove the following sequents:

a) P→(Q→R)⇒ (Q∧∼R)→∼P

b) P,Q, R⇒ P

c) P→Q, R→Q⇒ (P∨R)→Q

2.6 Axiomatic proofs in propositional logic
In this section we consider a different approach to proof theory, the axiomatic

approach. Sequent proofs are comparatively easy to construct; that is their great

advantage. Axiomatic (or “Hilbert-style”) systems offer different advantages.

Like sequent proofs, axiomatic proofs consist of step-by-step reasoning in

which each step is sanctioned by a rule of inference. But axiomatic systems do

not allow reasoning with assumptions, and therefore do not allow conditional

proof or reductio ad absurdum; and they have very few rules of inference.

Although these differences make axiomatic proofs much harder to construct,

there is a compensatory advantage in metalogic: in many cases it is easier to

prove things about axiomatic systems.

9
Adding arbitrary dependencies is not allowed in relevance logic, where a sequent is provable

only when all of its premises are, intuitively, relevant to its conclusion. Relevance logicians

modify various rules of standard logic, including the rule of ∧E.
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Let’s �rst think about axiomatic systems informally. An axiomatic proof

will be de�ned as a series of formulas (not sequents—we no longer need them

since we’re not reasoning with assumptions anymore), the last of which is the

conclusion of the proof. Each line in the proof must be justi�ed in one of two

ways: it may be inferred by a rule of inference from earlier lines in the proof,

or it may be an axiom. An axiom is a certain kind of formula, a formula that

one is allowed to enter into a proof without any further justi�cation. Axioms

are the “starting points” of proofs, the foundation on which proofs rest. Since

axioms are to play this role, the axioms in a good axiomatic system ought to

represent indisputable logical truths. (For example, “P→P” would be a good

axiom, since sentences like “if it is raining then it is raining” and “if snow is

white then snow is white” are obviously logical truths. But we won’t choose

this particular axiom; we’ll choose other axioms from which it may be proved.)

Similarly, a rule of inference in a good axiomatic system ought to represent an

argument form in which the premises clearly logically imply the conclusion.

Actually we’ll employ a slightly more general notion of a proof: a proof

from a given set of wffs Γ. A proof from Γ will be allowed to contain members

of Γ, in addition to axioms and wffs that follow from earlier lines by a rule.

Think of the members of Γ as premises, which in the context of a proof from Γ
are temporarily treated as axioms, in that they are allowed to be entered into

the proof without any justi�cation. (Premises are a bit like the assumptions in

sequent proofs, but they’re not the same: a proof of φ from set of premises

Γ cannot contain any further assumptions beyond those in Γ. You can’t just

assume a formula for the sake of conditional proof or reductio—there simply is

no conditional proof or proof by reductio in an axiomatic system.) The intuitive

point of a proof from Γ is to demonstrate its conclusion on the assumption that
the members of Γ are true, in contrast to a proof simpliciter (i.e. a proof in the

sense of the previous paragraph), whose point is to demonstrate its conclusion

unconditionally. (Note that we can regard a proof simpliciter as a proof from
the empty set ∅.)

Formally, to apply the axiomatic method, we must choose i) a set of rules,

and ii) a set of axioms. In choosing a set of axioms, we simply choose any set

of wffs, although as we saw, in a good axiomatic system the axioms should

represent logical truths. A rule is simply a permission to infer one sort of

sentence from other sentences. For example, the rule modus ponens can be
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stated thus: “From φ→ψ and φ you may infer ψ”, and pictured as follows:

φ→ψ φ

ψ
MP

(There typically are very few rules, often just modus ponens. Modus ponens

corresponds to the sequent rule→E.) Given any chosen axioms and rules, we

can de�ne the following concepts:

Definition of axiomatic proof from a set: Where Γ is a set of wffs and φ is

a wff, an axiomatic proof from Γ is a �nite sequence of wffs whose last line is

φ, in which each line either i) is an axiom, ii) is a member of Γ, or iii) follows

from earlier wffs in the sequence via a rule.

Definition of axiomatic proof: An axiomatic proof of φ is an axiomatic proof

of φ from ∅ (i.e., a �nite sequence of wffs whose last line is φ, in which each

line either i) is an axiom, or ii) follows from earlier wffs in the sequence via a

rule.)

It is common to write “Γ `φ” to mean that φ is provable from Γ, i.e., that

there exists some axiomatic proof of φ from Γ. We also write “`φ” to mean

that ∅ `φ, i.e. that φ is provable, i.e., that there exists some axiomatic proof

of φ from no premises at all. (Formulas provable from no premises at all are

often called theorems.) This notation can be used for any axiomatic system,

i.e. any choice of axioms and rules. The symbol ` may be subscripted with

the name of the system in question. Thus, for our axiom system for PL below,

we may write: `
PL

. (We’ll omit this subscript when it’s clear which axiomatic

system is being discussed.)

Here is an axiomatic system for propositional logic:

Axiomatic system for PL:

· Rule: modus ponens

· Axioms: The result of substituting wffs for φ, ψ, and χ in any of the

following schemas is an axiom:

φ→ (ψ→φ) (PL1)

(φ→(ψ→χ ))→ ((φ→ψ)→(φ→χ )) (PL2)

(∼ψ→∼φ)→ ((∼ψ→φ)→ψ) (PL3)
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Thus, a PL-theorem is any formula that is the last of a sequence of formulas,

each of which is either a PL1, PL2, or PL3 axiom, or follows from earlier

formulas in the sequence by modus ponens. And a formula is PL-provable from
some set Γ if it is the last of a sequence of formulas, each of which is either a

member of Γ, a PL1, PL2, or PL3 axiom, or follows from earlier formulas in

the sequence by modus ponens.

The axiom “schemas” PL1-PL3 are not themselves axioms. They are,

rather, “recipes” for constructing axioms. Take PL1, for example:

φ→(ψ→φ)

This string of symbols isn’t itself an axiom because it isn’t a wff; it isn’t a wff

because it contains Greek letters, which aren’t allowed in wffs (since they’re

not on the list of PL primitive vocabulary). φ and ψ are variables of our

metalanguage; you only get an axiom when you replace these variables with

wffs. P→(Q→P ), for example, is an axiom (well, of�cially it requires outer

parentheses.) It results from PL1 by replacing φ with P and ψ with Q. (Note:

since you can put in any wff for these variables, and there are in�nitely many

wffs, there are in�nitely many axioms.)

A few points of clari�cation about how to construct axioms from schemas.

First point: you can stick in the same wff for two different Greek letters. Thus

you can let both φ and ψ in PL1 be P , and construct the axiom P→(P→P ).
(But of course, you don’t have to stick in the same thing for φ as for ψ.) Sec-

ond point: you can stick in complex formulas for the Greek letters. Thus,

(P→Q)→(∼(R→S)→(P→Q)) is an axiom (I put in P→Q for φ and ∼(R→S)
for ψ in PL1). Third point: within a single axiom, you can’t substitute different

wffs for a single Greek letter. For example, P→(Q→R) is not an axiom; you

can’t let the �rst φ in PL1 be P and the second φ be R. Final point: even

though you can’t substitute different wffs for a single Greek letter within a

single axiom, you can let a Greek letter become one wff when making one axiom,

and let it become a different wff when making another axiom; and you can use

each of these axioms within a single axiomatic proof. For example, each of the

following is an instance of PL1; you could use both within a single axiomatic

proof:

P→(Q→P )
∼P→((Q→R)→∼P )

In the �rst case, I made φ be P and ψ be Q; in the second case I made φ be ∼P
and ψ be Q→R. This is �ne because I keptφ and ψ constant within each axiom.



CHAPTER 2. PROPOSITIONAL LOGIC 61

(The type of symbol replacement described in this paragraph is sometimes

called uniform substitution.)

Thus, we have developed another formalism that is inspired by the proof-

theoretic conception of the core logical notions. The PL-theorems represent

the logical truths, and PL-provability represents logical consequence.

Axiomatic proofs are much harder to construct than sequent proofs. Some

are easy, of course. Here is a proof of (P→Q)→(P→P ):

1. P→(Q→P ) PL1

2. (P→(Q→P ))→((P→Q)→(P→P )) PL2

3. (P→Q)→(P→P ) 1, 2, MP

The existence of this proof shows that (P→Q)→(P→P ) is a theorem. (The

line numbering and explanations of how the lines were obtained aren’t required,

but they make the proofs easier to read.)

Building on the previous proof, we can construct a proof of P→P from
{P→Q}. (In a proof from a set, when we write down a member of the set we’ll

annotate it “premise”.)

1. P→(Q→P ) PL1

2. (P→(Q→P ))→((P→Q)→(P→P )) PL2

3. (P→Q)→(P→P ) 1, 2, MP

4. P→Q premise

5. P→P 3, 4, MP

Thus, we have shown that {P→Q} ` P→P . (Let’s continue with our practice

of dropping the set-braces in such statements. In this streamlined notation,

what we just showed is: P→Q ` P→P .)

The next example is a little harder: (R→P )→(R→(Q→P ))

1. [R→(P→(Q→P ))]→[(R→P )→(R→(Q→P ))] PL2

2. P→(Q→P ) PL1

3. [P→(Q→P )]→[R→(P→(Q→P ))] PL1

4. R→(P→(Q→P )) 2, 3, MP

5. (R→P )→(R→(Q→P )) 1, 4, MP

Here’s how I approached this problem. What I was trying to prove, namely

(R→P )→(R→(Q→P )), is a conditional whose antecedent and consequent both
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begin: (R→. That looks like the consequent of PL2. So I wrote out an instance

of PL2 whose consequent was the formula I was trying to prove; that gave me

line 1 of the proof. Then I tried to �gure out a way to get the antecedent of

line 1; namely, R→(P→(Q→P )). And that turned out to be pretty easy. The

consequent of this formula, P→(Q→P ) is an axiom (line 2 of the proof). And

if you can get a formula φ, then you choose anything you like—say, R,—and

then get R→φ, by using PL1 and modus ponens; that’s what I did in lines 3

and 4.

As you can see, the proofs are getting harder. And they get harder still.

Fortunately, we will be able to develop some machinery to make them easier;

but that will need to wait for a couple of sections.

Exercise 2.4 Establish each of the following facts. For these prob-

lems, do not use the “toolkit” assembled below; construct the ax-

iomatic proofs “from scratch”. However, you may use a fact you

prove in an earlier problem in later problems.

a) ` P→P

b) ` (∼P→P )→P

c) ∼∼P ` P

2.7 Soundness of PL and proof by induction
Note: the next three sections are more dif�cult than the preceding sections,

and may be skipped without much loss. If you decide to work through the

more dif�cult sections dealing with metalogic later in the book (for example

sections 6.5 and 6.6), you might �rst return to these sections.

In this chapter we have taken both a proof-theoretic and a semantic approach

to propositional logic. In each case, we introduced formal notions of logical

truth and logical consequence. For the semantic approach, these notions

involved truth in PL-interpretations. For the proof-theoretic approach, we

considered two formal de�nitions, one involving sequent proofs, the other

involving axiomatic proofs.

An embarrassment of riches! We have multiple formal accounts of our

logical notions. But in fact, it can be shown that all three of our de�nitions yield
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exactly the same results. Here I’ll prove this just for the notion of a theorem
(last line of an axiomatic proof) and the notion of a valid formula (true in all

PL-interpretations). I’ll do this by proving the following two statements:

Soundness of PL: Every PL-theorem is PL-valid

Completeness of PL: Every PL-valid wff is a PL-theorem

Soundness is pretty easy to prove; we’ll do that in a moment. Completeness is

harder; we’ll prove that in section 2.9. Soundness and completeness together

tell us that PL-validity and PL-theoremhood exactly coincide.

But �rst a short detour: we need to introduce a method of proof that

is ubiquitous throughout metalogic (as well as mathematics generally), the

method of induction. The basic idea, in its simplest form, is this. Suppose we

have in�nitely many objects lined up like this:

• • • • . . .

And suppose we want to show that each of these objects has a certain property.

How to do it?

The method of induction directs us to proceed in two steps. First, show

that the �rst object has the property:

'&%$ !"#• • • • . . .

This is called the “base case” of the inductive proof. Next, show that quite

generally, whenever one object in the line has the property, then the next must

have the property as well. This is called the “inductive step” of the proof. The

method of induction then says: if you’ve established those two things, you can

go ahead and conclude that all the objects in the line have the property. Why

is this conclusion justi�ed? Well, since the �rst object has the property, the

second object must have the property as well, given the inductive step:

'&%$ !"#• '' '&%$ !"#• • • . . .

But then another application of the inductive step tells us that the third object

has the property as well:

'&%$ !"#• '&%$ !"#• '' '&%$ !"#• • . . .
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And so on; all objects in the line have the property:

'&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#• . . .

That is how induction works when applied to objects lined up in the manner

depicted: there is a �rst object in line; after each object there is exactly one

further object; and each object appears some �nite number of jumps after the

�rst object. Induction can also be applied to objects structured in different

ways. Consider, for example, the following in�nite grid of objects:

•

.

.

.

.

.

.

.

.

.

• •

•

OO ??����������������� •

__?????????????????

??����������������� •

__?????????????????

OO

•

OO ??����������������� •

__?????????????????

??����������������� •

__?????????????????

OO

At the bottom of this grid there are three dots. Every pair of these three dots

combines to produce one new dot. (For example, the leftmost dot on the second

from the bottom level is produced by the leftmost two dots on the bottom

level.) The resulting three dots (formed from the three pairs drawn from the

three dots on the bottom level) form the second level of the grid. These three

dots on the second level produce the third level in the same way, and so on.

Suppose, now, that one could prove that the bottom three dots have some
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property:

•

.

.

.

.

.

.

.

.

.

• •

•

OO ??����������������� •

__?????????????????

??����������������� •

__?????????????????

OO

'&%$ !"#•

OO ??����������������� '&%$ !"#•

__?????????????????

??����������������� '&%$ !"#•

__?????????????????

OO

(This is the “base case”.) And suppose further that one could prove that when-

ever two dots with the property combine, the resulting dot also has the property

(“inductive step”). Then, just as in the previous example, induction allows us

to conclude that all the dots in the grid have the property. Given the base case

and the inductive step, we know that the dots on the second level of the grid

have the property:

•

.

.

.

.

.

.

.

.

.

• •

'&%$ !"#•

OO ??����������������� '&%$ !"#•

__?????????????????

??����������������� '&%$ !"#•

__?????????????????

OO

'&%$ !"#•

KS ;C�����������������

����������������� '&%$ !"#•

[c?????????????????

?????????????????

;C�����������������

����������������� '&%$ !"#•

[c?????????????????

?????????????????

KS

But then, given the inductive step, we know that the dots on the third level

have the property. And so on, for all the other levels.

In general, induction is a method for proving that each member of a certain

collection of objects has a property. It works when (but only when) each object

in the collection results from some “starting objects” by a �nite number of

iterations of some “operations”. In the base case one proves that the starting
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objects have the property; in the induction step one proves that the operations

preserve the property, in the sense that whenever one of the operations is applied

to some objects with the property, the resulting new object has the property as

well; and �nally one concludes that all objects have the property.

This idea manifests itself in logic in a few ways. One is in a style of proof

sometimes called “induction on formula construction” (or: induction “on the

number of connectives” of the formula). Suppose we want to establish that

absolutely every wff has a certain property, p. The method of proof by induction

on formula construction tells us to �rst establish the following two claims:

b) every atomic wff (i.e. every sentence letter) has property p

i) for any wffs φ and ψ, if both φ and ψ have property p, then the wffs ∼φ
and φ→ψ also have property p

Once these are established, proof by induction allows us to conclude that every

wff has property p. Why is this conclusion justi�ed? Recall the de�nition

of a wff from section 2.1: each wff is built up from atomic wffs by repeated

application of clause ii): “if φ and ψ are wffs then ∼φ and φ→ψ are also wffs”.

So each wff is the culmination of a �nite process that starts with atomic wffs and

continues by building conditionals and negations from wffs formed in previous

steps of the process. But claim b) (the base case) shows that the starting points
of this process all have property p. And claim i) (the induction step) shows that

the subsequent steps in this process preserve property p: if the formulas one has

built up so far have property p, then the next formula in the process (built up of

previous formulas using either→ or ∼) is guaranteed to also have p. So all wffs

have property p. In terms of the general idea of inductive proof, the atomic

wffs are our “starting objects” (like the bottom three dots in the grid), and the

rules of grammar for ∼ and→ which generate complex wffs from simpler wffs

are the “operations”.

Here is a simple example of proof by induction on formula construction:

Proof that every wff contains a �nite number of sentence letters. We are trying to

prove a statement of the form: every wff has property p. The property p
in this case is having a �nite number of different sentence letters. Our proof has

two separate steps:

base case: here we must show that every atomic sentence has the property.

This is obvious—atomic sentences are just sentence letters, and each of them
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contains one sentence letter, and thus �nitely many different sentence letters.

induction step: here we must show that if wffs φ and ψ have property p, then

so do ∼φ and φ→ψ. So we begin by assuming:

formulas φ and ψ each have �nitely many different sentence letters (ih)

This assumption is often called the “inductive hypothesis”. And we must go on

to show that both ∼φ and φ→ψ have �nitely many different sentence letters.

This, too, is easy. ∼φ has as many different sentence letters as does φ; since ih)

tells us that φ has �nitely many, then so does ∼φ. As for φ→ψ, it has, at most,

n+m sentence letters, where n and m are the number of different sentence

letters in φ and ψ, respectively; ih) tells us that n and m are �nite, and so n+m
is �nite as well.

We’ve shown that every atomic formula has the property having a �nite
number of different sentence letters; and we’ve shown that the property is inherited

by complex formulas built according to the formation rules. But every wff is

either atomic, or built from atomics by a �nite series of applications of the

formation rules. Therefore, by induction, every wff has the property.

A different form of inductive proof is called for in the following proof of

soundness:

Proof of soundness for PL. Unlike the previous inductive proof, here we are not

trying to prove something of the form “Every wff has property p”. Instead,

we’re trying to prove something of the form “Every theorem has property p”.

Nevertheless we can still use induction, only we need to use induction of a

slightly different sort from induction on formula construction. Consider: a

theorem is any line of a proof. And every line of every proof is the culmination

of a �nite series of wffs, in which each member is either an axiom, or follows

from earlier lines by modus ponens. So the conditions are right for an inductive

proof. The “starting points” are the axioms; and the “operation” is the inference

of a new line from earlier lines using modus ponens. If we can show that the

starting points (axioms) have the property of validity, and that the operation

(modus ponens) preserves the property of validity, then we can conclude that

every wff in every proof—i.e., every theorem—has the property of validity.

This sort of inductive proof is called induction “on the proof of a formula” (or

induction “on the length of the formula’s proof”).

base case: here we need to show that every PL-axiom is valid. This is

tedious but straightforward. Take PL1, for example. Suppose for reduc-

tio that some instance of PL1 is invalid, i.e., for some PL-interpretation I ,
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VI (φ→(ψ→φ)) = 0. Thus, VI (φ) = 1 and VI (ψ→φ) = 0. Given the latter,

VI (φ) = 0—contradiction. Analogous proofs can be given that instances of

PL2 and PL3 are also valid (exercise 2.5).

induction step: here we begin by assuming that every line in a proof up to

a certain point is valid (the “inductive hypothesis”); we then show that if one

adds another line that follows from earlier lines by the rule modus ponens, that

line must be valid too. I.e., we’re trying to show that “modus ponens preserves

validity”. So, assume the inductive hypothesis: that all the earlier lines in the

proof are valid. And now, consider the result of applying modus ponens. That

means that the new line we’ve added to the proof is some formula ψ, which

we’ve inferred from two earlier lines that have the forms φ→ψ and φ. We

must show that ψ is a valid formula, i.e., is true in every interpretation. So

let I be any interpretation. By the inductive hypothesis, all earlier lines in

the proof are valid, and hence both φ→ψ and φ are valid. Thus, VI (φ) = 1
and VI (φ→ψ) = 1. But if VI (φ) = 1 then VI (ψ) can’t be 0, for if it were, then

VI (φ→ψ) would be 0, and it isn’t. Thus, VI (ψ) = 1.

(If our system had included rules other than modus ponens, we would have

needed to show that they too preserve validity. The paucity of rules in axiomatic

systems makes the construction of proofs within those systems a real pain in

the neck, but now we see how it makes metalogical life easier.)

We’ve shown that the axioms are valid, and that modus ponens preserves

validity. All theorems are generated from the axioms via modus ponens in a

�nite series of steps. So, by induction, every theorem is valid.

One nice thing about soundness is that it lets us establish facts of unprov-
ability. Soundness says “if ` φ then � φ”. Equivalently, it says: “if 2 φ then

0 φ”. So, to show that something isn’t a theorem, it suf�ces to show that it

isn’t valid. Consider, for example, the formula (P→Q)→(Q→P ). There exist

PL-interpretations in which the formula is false, namely, PL-interpretations in

which P is 0 and Q is 1. So, (P→Q)→(Q→P ) is not valid (since it’s not true

in all PL-interpretations.) But then soundness tells us that it isn’t a theorem

either. In general: given soundness, in order to show that a formula isn’t a

theorem, all you need to do is �nd an interpretation in which it isn’t true.

Before we leave this section, let me reiterate the distinction between the

two types of induction most commonly used in metalogic. Induction on the

proof of a formula (the type of induction used to establish soundness) is used

when one is establishing a fact of the form: every theorem has a certain property
p. Here the base case consists of showing that the axioms have the property p,
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and the inductive step consists of showing that the rules of inference preserve

p—i.e., in the case of modus ponens: that if φ and φ→ψ both have property

p then so does ψ. (Induction on proofs can also be used to show that all wffs

provable from a given set Γ have a given property; in that case the base case

would also need to include a demonstration that all members of Γ have the

property.) Induction on formula construction (the type of induction used to

show that all formulas have �nitely many sentence letters), on the other hand,

is used when one is trying to establish a fact of the form: every formula has
a certain property p. Here the base case consists of showing that all sentence

letters have property p; and the inductive step consists of showing that the

rules of formation preserve p—i.e., that if φ and ψ both have property p, then

both (φ→ψ) and ∼φ also will have property p.

If you’re ever proving something by induction, it’s important to identify

what sort of inductive proof you’re constructing. What are the entities you’re

dealing with? What is the property p? What are the starting points, and what

are the operations generating new entities from the starting points? If you’re

trying to construct an inductive proof and get stuck, you should return to these

questions and make sure you’re clear about their answers.
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Exercise 2.5 Finish the soundness proof by showing that all in-

stances of axiom schemas PL2 and PL3 are valid.

Exercise 2.6 Consider the following (strange) system of propo-

sitional logic. The de�nition of wffs is the same as for standard

propositional logic, and the rules of inference are the same (just one

rule: modus ponens); but the axioms are different. For any wffs φ
and ψ, the following are axioms:

φ→φ
(φ→ψ)→(ψ→φ)

Establish the following two facts about this system: (a) every the-

orem of this system has an even number of “∼”s; (b) soundness is

false for this system—i.e., some theorems are not valid formulas.

Exercise 2.7 Show by induction that the truth value of a wff de-

pends only on the truth values of its sentence letters. That is,

show that for any wff φ and any PL-interpretations I and I ′, if

I (α) =I ′(α) for each sentence letter α in φ, then VI (φ) =VI ′(φ).

Exercise 2.8** Suppose that a wff φ has no repetitions of sentence

letters (i.e., each sentence letter occurs at most once in φ.) Show

that φ is not PL-valid.

Exercise 2.9 Prove “strong soundness”: for any set of formulas, Γ,

and any formula φ, if Γ `φ then Γ �φ (i.e., if φ is provable from

Γ then φ is a semantic consequence of Γ.)

Exercise 2.10** Prove the soundness of the sequent calculus. That

is, show that if Γ⇒φ is a provable sequent, then Γ �φ. (No need

to go through each and every detail of the proof once it becomes

repetitive.)
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2.8 PL proofs and the deduction theorem
Before attempting to prove completeness we need to get better at establishing

theoremhood. And the way to do that is to assemble a “toolkit”: a collection

of techniques for doing bits of proofs, techniques that are applicable in a wide

range of situations. These techniques will both save time and make proofs

easier to construct.

To assemble the toolkit, we’ll need to change our focus from construct-

ing proofs to constructing proof schemas. Recall the proof of the formula

(R→P )→(R→(Q→P )) from section 2.6:

1. [R→(P→(Q→P ))]→[(R→P )→(R→(Q→P ))] PL2

2. P→(Q→P ) PL1

3. [P→(Q→P )]→[R→(P→(Q→P ))] PL1

4. R→(P→(Q→P )) 2, 3, MP

5. (R→P )→(R→(Q→P )) 1, 4, MP

Consider the result of replacing the sentence letters P , Q, and R in this proof

with metalinguistic variables φ, ψ, and χ :

1. [χ→(φ→(ψ→φ))]→[(χ→φ)→(χ→(ψ→φ))] PL2

2. φ→(ψ→φ) PL1

3. [φ→(ψ→φ)]→[χ→(φ→(ψ→φ))] PL1

4. χ→(φ→(ψ→φ)) 2, 3, MP

5. (χ→φ)→(χ→(ψ→φ)) 1, 4, MP

Given our of�cial de�nition, this does not count as a proof: proofs must be made

up of wffs, and the symbols φ, ψ, and χ can’t occur in wffs. But it becomes

a proof if we substitute in wffs for φ, ψ, and χ . (As with the construction of

axioms, the substitution must be “uniform”. Uniform throughout the proof,

in fact: each greek letter must be changed to the same wff throughout the

proof.) So let’s call it a proof schema—a proof schema of the wff schema

(χ→φ)→(χ→(ψ→φ)) (call this latter schema “weakening the consequent”).

The existence of this proof schema shows that each instance of weakening the

consequent is a theorem.

A proof schema is more useful than a proof because it shows that any instance

of a certain schema can be proved. Suppose you’re laboring away on a proof,
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and you �nd that you need (P→∼P )→[P→((R→R)→∼P )] to complete the

proof. This wff is an instance of weakening the consequent. So you know that

you can construct a �ve-line proof of it anytime you like, by beginning with

the proof schema of weakening the consequent, and substituting P for χ , ∼P
for φ, and R→R for ψ. Instead of actually inserting those �ve lines into your

proof, why not instead just write down the line:

i . (P→∼P )→[P→((R→R)→∼P )] weakening the consequent

? You know that you could always replace this line, if you wanted to, with the

�ve-line proof.

Citing previously proved theorem schemas saves time and writing. Let’s

introduce another time-saving practice: that of doing two or more steps at once.

We’ll allow ourselves to do this, and annotate in some perspicuous way, when

it’s reasonably obvious what the skipped steps are. For example, let’s rewrite

the proof of the weakening-the-consequent schema thus:

1. φ→(ψ→φ) PL1

2. χ→(φ→(ψ→φ)) PL1, 1, MP

3. (χ→φ)→(χ→(ψ→φ)) PL2, 2, MP

So the �rst tools in our toolkit are the weakening the consequent schema

and doing multiple steps at once. Once the kit is full, we’ll try to reduce a given

problem to a few chunks, each of which can be accomplished by citing a tool

from the kit.

Notice that as soon as we start using the toolkit, the proofs we construct

cease to be of�cial proofs—not every line will be either an axiom or premise or

follow from earlier lines by MP. They will instead be informal proofs, or proof

sketches. A proof sketch is in essence a metalogic proof to the effect that there
exists some proof or other of the desired type. It is a blueprint that an ambitious

reader could always use to construct an of�cial proof, by �lling in the details.

We’re now ready to make a more signi�cant addition to our toolkit. Suppose

we already have φ→ψ and φ→(ψ→χ ). The following technique then shows

us how to move to φ→χ . Let’s call it the “MP technique”, since it lets us do

modus ponens “within the consequent of the conditional φ→”:
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1. φ→ψ
2. φ→(ψ→χ )
3. (φ→(ψ→χ ))→((φ→ψ)→(φ→χ )) PL2

4. (φ→ψ)→(φ→χ ) 2, 3, MP

5. φ→χ 1, 4, MP

In effect we have given a metalogic proof of the following fact: “for any wffs φ,

ψ, and χ : φ→ψ,φ→(ψ→χ ) `φ→χ ”.

Let’s add a “meta-tool” to the kit:

Cut: If Γ1 ` δ1, . . . ,Γn ` δn, and Σ,δ1 . . .δn `φ, then Γ1 . . . ,Γn,Σ `φ

Think of Cut as saying that one can “cut out the middleman”. Suppose Γ1 . . .Γn
lead to some intermediate conclusions, δ1 . . .δn (the middleman). And suppose

one can go from those intermediate conclusions to some ultimate conclusion

φ (perhaps with the help of some auxiliary premises Σ). Then, Cut says, you

can go directly from Γ1 . . .Γn to the ultimate conclusion φ (with the help of Σ
if needed). I call this a meta-tool because it facilitates use of other tools in the

kit. For example, suppose you know that Γ1 ` P→Q and Γ2 ` P→(Q→R). We

know from the MP technique that P→Q, P→(Q→R) ` P→R. Cut then tells

us that Γ1,Γ2 ` P→R (δ1 is P→Q, δ2 is P→(Q→R); Σ is null in this case).

Proof of Cut. We are given that there exists a proof Ai of δi from Γi , for i =
1 . . . n, and that there exists a proof B of φ from Σ,δ1 . . .δn. Let C be the result

of concatenating all these proofs, in that order. That is, C begins with a �rst

phase, consisting of the formulas of proof A1, followed by the formulas of proof

A2, and so on, �nishing with the formulas of proof An. Then, in the second

phase, C concludes with the formulas of proof B . The last formula of C is the

last formula of B , namely, φ. So all we need to show is that C counts as a proof

from Γ1 . . . ,Γn,Σ—that is, that each line of C is either an axiom, a member of

Γ1, or of Γ2,…, or of Γn, or of Σ, or follows from earlier lines in C by MP. For

short, we must show that each line of C is “legit”. Clearly, each line j of the

�rst phase of C is legit: j is from one of the Ai segments; Ai is a proof from Γi ;

so the formula on line j is either an axiom, a member of Γi , or follows from

earlier lines in that Ai segment by MP. Consider, �nally, the second phase of

C , namely, the B portion. Since B is a proof from Σ,δ1 . . .δn, the formula on

any line j here is either i) an axiom, ii) a member of Σ, iii) one of the δi s, or

iv) follows from earlier lines of the B portion by MP. Line j is clearly legit in
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cases i), ii), and iv). In case iii), the formula on line j is some δi . But δi also

occurred in the �rst phase of C , as the last line, k, of the Ai portion. So δi
is either an axiom, or a member of Γi , or follows from earlier lines in the Ai
portion—which are before k—by MP. In either of the �rst two cases, line j is

legit; and it’s also legit in the last case because lines before k in C are also lines

before j .

We’re now ready for the most important addition to our toolkit: the deduc-

tion theorem. As you have been learning (perhaps to your dismay), constructing

axiomatic proofs is much harder than constructing sequent proofs. It’s hard

to prove things when you’re not allowed to reason with assumptions! Nev-

ertheless, one can prove a metalogical theorem about our axiomatic system

that is closely related to one method of reasoning with assumptions, namely

conditional proof:

Deduction theorem for PL: If Γ,φ `
PL
ψ, then Γ `

PL
φ→ψ

That is: whenever there exists a proof from (Γ and) {φ} to ψ, then there also
exists a proof of φ→ψ (from Γ).

Suppose we want to prove φ→ψ. Our axiomatic system does not allow

us to assume φ in a conditional proof of φ→ψ. But once we’ve proved the

deduction theorem, we’ll be able to do the next best thing. Suppose we succeed

in constructing a proof of ψ from {φ}. That is, we write down a proof in which

each line is either i) a member of {φ} (that is, φ itself), or ii) an axiom, or

iii) follows from earlier lines in the proof by modus ponens. The deduction

theorem then lets us conclude that some proof of φ→ψ exists. We won’t have

constructed such a proof ourselves; we only constructed the proof from φ to ψ.

Nevertheless the deduction theorem assures us that it exists. More generally,

whenever we can construct a proof of ψ from φ plus some other premises (the

formulas in some set Γ), then the deduction theorem assures us that some proof

of φ→ψ from those other premises also exists.

Proof of deduction theorem. Suppose Γ∪ {φ} `ψ. Thus there exists some proof,

A, from Γ∪{φ} to ψ. Each line αi of A is either a member of Γ∪{φ}, an axiom,

or follows from earlier lines in the proof by MP; the last line of A is ψ. Our

strategy will be to establish that:

for each αi in proof A, Γ `φ→αi (*)
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We already know that each line of proof A is provable from Γ∪φ; what (*) says

is that if you stick “φ→” in front of any of those lines, the result is provable

from Γ all by itself. Once we succeed in establishing (*) then we will have

proved the deduction theorem. For since the last line of proof A is ψ, (*) tells

us that φ→ψ is provable from Γ.

(*) says that each line of proof A has a certain property, namely, the property

of: being provable from Γ when pre�xed with “φ→”. Just as in the proof of

soundness, this calls for the method of proof by induction, and in particular,

induction on φ’s proof. Here goes.

What we’re going to do is show that whenever a line is added to proof A,

then it has the property—provided, that is, that all earlier lines in the proof

have the property. There are three cases in which a line αi could have been

added to proof A. The �rst case is where αi is an axiom. We must show that αi
has the property—that is, show that Γ `φ→αi . Well, consider this:

1. αi axiom

2. φ→αi PL1, 1, MP

This is a proof (sketch) of φ→αi from Γ. It’s true that we didn’t actually use

any members of Γ in the proof, but that’s OK. If you look back at the de�nition

of a proof from a set, you’ll see that this counts of�cially as a proof from Γ.

The second case in which a line αi could have been added to proof A is

where αi is a member of Γ∪ {φ}. This subdivides into two subcases. The �rst

is where αi is φ itself. Here, φ→αi is φ→φ, which can be proved from no

premises at all using the method of exercise 2.4a; so Γ ` φ→φ. The second

subcase is where αi ∈ Γ. But here we can prove φ→αi from Γ as follows:

1. αi premise

2. φ→αi PL1, 1, MP

The �rst two cases were “base” cases of our inductive proof, because we

didn’t need to assume anything about earlier lines in proof A. The third case in

which a line αi could have been added to proof A leads us to the inductive part

of our proof: the case in which αi follows from two earlier lines of the proof

by MP. Here we simply assume that those earlier lines of the proof have the

property we’re interested in (this assumption is the inductive hypothesis; the

property, recall, is: being provable from Γ when pre�xed with “φ→”) and we show

that αi has the property as well.
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So: we’re considering the case where αi follows from earlier lines in the

proof by modus ponens. That means that the earlier lines have to have the

forms χ→αi and χ . Furthermore, the inductive hypothesis tells us that the

result of pre�xing either of these earlier lines with “φ→” is provable from Γ.

Thus, Γ `φ→(χ→αi ) and Γ `φ→χ . But then, given the MP technique and

Cut, Γ `φ→αi .

Thus, in all three cases, whenever αi was added to proof A, there always

existed some proof of φ→αi from Γ. By induction, (*) is established; and this

in turn completes the proof of the deduction theorem.

Once we’ve got the deduction theorem for PL in our toolkit, we can really

get going. For we can now, in effect, use conditional proof. As an illustration, I’ll

show how to use the deduction theorem to establish that: φ→ψ,ψ→χ `φ→χ .

That is: conditionals are transitive (a useful addition to the toolkit). Consider

the following proof schema:

1. φ→ψ premise

2. ψ→χ premise

3. φ premise

4. ψ 1, 3, MP

5. χ 2, 4, MP

This is a proof of χ from the set {φ→ψ,ψ→χ ,φ}. Thus, φ→ψ,ψ→χ ,φ ` χ .

The deduction theorem then tells us that φ→ψ,ψ→χ ` φ→χ . That’s all it

takes!—much easier than constructing from scratch a proof of φ→χ from

φ→ψ and ψ→χ .

Let’s call this last addition to the toolkit, the fact that φ→ψ,ψ→χ `φ→χ ,

“transitivity”. (As with the MP technique, it’s a metalogical theorem.)

The transitivity schema tells us that certain wffs are provable from cer-

tain other wffs. It does not tell us that certain wffs are theorems. That is,

it’s not a theorem schema. However, there is a theorem schema correspond-

ing to transitivity: (φ→ψ)→[(ψ→χ )→(φ→χ )]. The theoremhood of this

schema follows immediately from the transitivity schema via two application

of the deduction theorem. In general, if the toolkit includes a provability-

from schema φ1 . . .φn ` ψ rather than the corresponding theorem schema

`φ1→(φ2→ . . . (φn→ψ)), one can always infer the existence of the latter, if one

wants it, by using the deduction theorem repeatedly.
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Example 2.11: More additions to the toolkit:

∼ψ→∼φ `φ→ψ (“contraposition 1”):

The following proof shows that ∼ψ→∼φ,φ `ψ:

1. ∼ψ→∼φ premise

2. φ premise

3. ∼ψ→φ PL1, 2, MP

4. ψ PL3, 1, MP, 3, MP

The desired result then follows by the deduction theorem.

φ→ψ `∼ψ→∼φ (“contraposition 2”):

1. φ→ψ premise

2. ψ→∼∼ψ exercise 2.11d

3. ∼∼φ→φ exercise 2.11c

4. ∼∼φ→∼∼ψ 3, 1, 2, transitivity

5. ∼ψ→∼φ 3, contraposition 1

φ,∼φ `ψ (“ex falso quodlibet”):

1. φ premise

2. ∼φ premise

3. ∼ψ→φ PL1, 1, MP

4. ∼ψ→∼φ PL1, 2, MP

5. ψ PL3, 4, MP, 3, MP

∼(φ→ψ) `φ and ∼(φ→ψ) `∼ψ (“negated conditional”)

To demonstrate the �rst: by two applications of the deduction theorem to ex

falso quodlibet, we know that `∼φ→(φ→ψ). So, begin a proof with a proof

of this wff, and then continue as follows:

1. ∼φ→(φ→ψ)
2. ∼(φ→ψ)→∼∼φ 1, contraposition 2

3. ∼(φ→ψ) premise

4. ∼∼φ 2, 3, MP

5. φ 4, exercise 2.4c
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As for the second:

1. ψ→(φ→ψ) PL1

2. ∼(φ→ψ)→∼ψ 1, contraposition 2

3. ∼(φ→ψ) premise

4. ψ 2, 3, MP

φ→ψ,∼φ→ψ `ψ (“excluded middle MP”)

1. φ→ψ premise

2. ∼φ→ψ premise

3. ∼ψ→∼φ 1, contraposition 2

4. ∼ψ→∼∼φ 2, contraposition 2

5. ∼ψ→φ 4, exercise 2.11c, transitivity

6. ψ PL3, 3, MP, 5, MP

Exercise 2.11 Establish each of the following. You may use the

toolkit, including the deduction theorem.

a) `φ→[(φ→ψ)→ψ]

b) ` [φ→(ψ→χ )]→[ψ→(φ→χ )] (“permutation”):

c) `∼∼φ→φ (“double-negation elimination”)

d) `φ→∼∼φ (“double-negation introduction”)

Exercise 2.12 (Long.) Establish the axiomatic correctness of the

rules of inference from our sequent system. For example, in the

case of ∧E, show that φ,ψ `φ∧ψ—i.e., give an axiomatic proof of

∼(φ→∼ψ) from {φ,ψ}. You may use the toolkit.

2.9 Completeness of PL
We’re �nally ready for the completeness proof. We will give what is known as a

“Henkin-proof”, after Leon Henkin, who used similar methods to demonstrate
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completeness for (nonmodal) predicate logic. Most of the proof will consist of

assembling various pieces—various de�nitions and facts. The point of these

pieces will become apparent at the end, when we put them all together.

2.9.1 Maximal consistent sets of wffs
Let “⊥” abbreviate “∼(P→P )”. (The idea of ⊥ is that it stands for a generic

contradiction. The choice of ∼(P→P ) was arbitrary; all that matters is that ⊥
is the negation of a theorem.) Here are the central de�nitions we’ll need:

Definition of consistency and maximality:

· A set of wffs, Γ, is inconsistent iff Γ ` ⊥. Γ is consistent iff it is not

inconsistent

· A set of wffs, Γ, is maximal iff for every wff φ, either φ or∼φ (or perhaps

both) is a member of Γ

Intuitively: a maximal set is so large that it contains each formula or its negation;

and a consistent set is one from which you can’t prove a contradiction. Note

the following lemmas:

Lemma 2.1 For any set of wffs Γ and wff φ, if φ is provable from Γ then φ is

provable from some �nite subset of Γ. That is, if Γ ` φ then γ1 . . .γn ` φ for

some γ1 . . .γn ∈ Γ (or else `φ)

Proof. If Γ ` φ then there is some proof, A, of φ from Γ. Like every proof,

A is a �nite series of wffs. Thus, only �nitely many of Γ’s members can have

occurred as lines in A. Let γ1 . . .γn be those members of Γ. (If no member of

Γ occurs in A then A proves φ from no premises at all, in which case `φ.) In

addition to counting as a proof of φ from Γ, proof A is also a proof of φ from

{γ1 . . .γn}. Thus, γ1 . . .γn `φ.

Lemma 2.2 For any set of wffs Γ, if Γ ` φ and Γ ` ∼φ for some φ then Γ is

inconsistent

Proof. Follows immediately from ex falso quodlibet (example 2.11) and Cut.

Note that the �rst lemma tells us that a set is inconsistent iff some �nite subset

of that set is inconsistent.
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2.9.2 Maximal consistent extensions
Suppose we begin with a consistent set ∆ that isn’t maximal—for at least one

wff φ, ∆ contains neither φ nor ∼φ. Is there some way of adding wffs to ∆ to

make it maximal, without destroying its consistency? That is, is ∆ guaranteed

to have some maximal consistent “extension”? The following theorem tells us

that the answer is yes:

Theorem 2.3 If ∆ is a consistent set of wffs, then there exists some maximal

consistent set of wffs, Γ, such that ∆⊆ Γ

Proof of Theorem 2.3. In outline, we’re going to build up Γ as follows. We’re

going to start by dumping all the formulas in∆ into Γ. Then we will go through

all the wffs, φ1, φ2,…, one at a time. For each wff, we’re going to dump either

it or its negation into Γ, depending on which choice would be consistent. After

we’re done, our set Γ will obviously be maximal; it will obviously contain ∆ as

a subset; and, we’ll show, it will also be consistent.

So, let φ1, φ2,… be a list—an in�nite list, of course—of all the wffs.
10

To

10
We need to be sure that there is some way of arranging all the wffs into such a list. Here is

one method. First, begin with a list of the primitive expressions of the language. In the case of

PL this can be done as follows:

( ) ∼ → P1 P2 . . .
1 2 3 4 5 6 . . .

(For simplicity, get rid of all the sentence letters except for P1, P2, . . . .) Since we’ll need to

refer to what position an expression has in this list, the positions of the expressions are listed

underneath those expressions. (E.g., the position of the → is 4.) Now, where φ is any wff,

call the rating of φ the sum of the positions of the occurrences of its primitive expressions.

(The rating for the wff (P1→P1), for example, is 1+ 5+ 4+ 5+ 2= 17.) We can now construct

the listing of all the wffs of PL by an in�nite series of stages: stage 1, stage 2, etc. In stage

n, we append to our growing list all the wffs of rating n, in alphabetical order. The notion of

alphabetical order here is the usual one, given the ordering of the primitive expressions laid

out above. (E.g., just as ‘and’ comes before ‘dna’ in alphabetical order, since ‘a’ precedes ‘d’

in the usual ordering of the English alphabet, (P1→P2) comes before (P2→P1) in alphabetical

order since P1 comes before P2 in the ordering of the alphabet of PL. Note that each of these

wffs are inserted into the list in stage 18, since each has rating 18.) In stages 1–4 no wffs are

added at all, since every wff must have at least one sentence letter and P1 is the sentence letter

with the smallest position. In stage 5 there is one wff: P1. Thus, the �rst member of our list

of wffs is P1. In stage 6 there is one wff: P2, so P2 is the second member of the list. In every

subsequent stage there are only �nitely many wffs; so each stage adds �nitely many wffs to

the list; each wff gets added at some stage; so each wff eventually gets added after some �nite

amount of time to this list.
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construct Γ, our strategy is to start with ∆, and then go through this list one-

by-one, at each point adding either φi or ∼φi . Here’s how we do this more

carefully. We �rst de�ne an in�nite sequence of sets, Γ0,Γ1, . . . :

Γ0 =∆

Γn+1 =

(

Γn ∪{φn+1} if Γn ∪{φn+1} is consistent

Γn ∪{∼φn+1} if Γn ∪{φn+1} is not consistent

This de�nition is recursive, notice. We begin with a noncircular de�nition

of the �rst member of the sequence of sets, Γ0, and after that, we de�ne each

subsequent member Γn+1 in terms of the previous member Γn: we add φn+1 to

Γn if the result of doing so would be consistent; otherwise we add ∼φn+1.

Next let’s prove that each member in this sequence—that is, each Γi —is a

consistent set. We do this inductively, by �rst showing that Γ0 is consistent, and

then showing that if Γn is consistent, then so will be Γn+1. This is a different sort

of inductive proof from what we’ve seen so far, neither an induction on formula

construction nor on formula proof. Nevertheless we have the required structure

for proof by induction: each of the objects of interest (the Γi s) is generated

from a starting point (Γ0) by a �nite series of operations (the operation taking

us from Γn to Γn+1).

Base case: obviously, Γ0 is consistent, since∆was stipulated to be consistent.

Inductive step: we suppose that Γn is consistent (inductive hypothesis), and

then show that Γn+1 is consistent. Look at the de�nition of Γn+1. What Γn+1
gets de�ned as depends on whether Γn ∪ {φn+1} is consistent. If Γn ∪ {φn+1}
is consistent, then Γn+1 gets de�ned as that very set Γn ∪{φn+1}. So of course

Γn+1 is consistent in that case.

The remaining possibility is that Γn ∪ {φn+1} is inconsistent. In that case,

Γn+1 gets de�ned as Γn∪{∼φn+1}. So must show that in this case, Γn∪{∼φn+1}
is consistent. Suppose for reductio that it isn’t. Then ⊥ is provable from

Γn ∪ {∼φn+1}, and so given lemma 2.1 is provable from some �nite subset

of this set; and the �nite subset must contain ∼φn+1 since Γn was consistent.

Letting ψ1 . . .ψm be the remaining members of the �nite subset, we have,

then: ψ1 . . .ψm,∼φn+1 ` ⊥, from which we get ψ1 . . .ψm ` ∼φn+1→⊥ by the

deduction theorem. Since Γn ∪{φn+1} is inconsistent, similar reasoning tells

us that χ1 . . .χp ` φn+1→⊥, for some χ1 . . .χp ∈ Γn. It then follows by “ex-

cluded middle MP” (example 2.11) and Cut that ψ1 . . .ψm,χ1 . . .χp `⊥. Since

ψ1 . . .ψm,χ1 . . .χp are all members of Γn, this contradicts the fact that Γn is

consistent.
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We have shown that all the sets in our sequence Γi are consistent. Let

us now de�ne Γ to be the union of all the sets in the in�nite sequence—i.e.,

{φ :φ ∈ Γi for some i}. We must now show that Γ is the set we’re after: that i)

∆⊆ Γ, ii) Γ is maximal, and iii) Γ is consistent.

Any member of ∆ is a member of Γ0 (since Γ0 was de�ned as ∆), hence is a

member of one of the Γi s, and hence is a member of Γ. So ∆⊆ Γ.

Any wff is in the list of all the wffs somewhere—i.e., it is φi for some i . But

by de�nition of Γi , either φi or ∼φi is a member of Γi ; and so one of these is a

member of Γ. Γ is therefore maximal.

Suppose for reductio that Γ is inconsistent. Given lemma 2.1, there exist

ψ1 . . .ψm ∈ Γ such that ψ1 . . .ψm ` ⊥. By de�nition of Γ, each ψi ∈ Γ ji
, for

some ji . Let k be the largest of j1 . . . jm. Given the way the Γ0,Γ1, . . . series is

constructed, each set in the series is a subset of all subsequent ones. Thus, each

of ψ1 . . .ψm is a member of Γk , and thus Γk is inconsistent. But we showed that

each member of the series Γ0,Γ1, . . . is consistent.

2.9.3 Features of maximal consistent sets
Next we’ll establish two facts about maximal consistent sets that we’ll need for

the completeness proof:

Lemma 2.4 Where Γ is any maximal consistent set of wffs:

2.4a for any wff φ, exactly one of φ, ∼φ is a member of Γ

2.4b φ→ψ ∈ Γ iff either φ /∈ Γ or ψ ∈ Γ

Proof of Lemma 2.4a. Since Γ is maximal it must contain at least one of φ or

∼φ. But it cannot contain both; otherwise each would be provable from Γ,

whence by lemma 2.2, Γ would be inconsistent.

Proof of Lemma 2.4b. Suppose �rst that φ→ψ is in Γ, and suppose for reductio

that φ is in Γ but ψ is not. Then we can prove ψ from Γ (begin with φ and

φ→ψ as premises, and then use MP). But since ψ /∈ Γ and Γ is maximal, ∼ψ
is in Γ, and hence is provable from Γ. Given lemma 2.2, this contradicts Γ’s

consistency.

Suppose for the other direction that either φ /∈ Γ or ψ ∈ Γ, and suppose for

reductio that φ→ψ /∈ Γ. Since Γ is maximal, ∼(φ→ψ) ∈ Γ. Then Γ `∼(φ→ψ),
and so by “negated conditional” (example 2.11) and Cut, Γ ` φ and Γ ` ∼ψ.
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Now, if φ /∈ Γ then ∼φ ∈ Γ and so Γ `∼φ; and if on the other hand ψ ∈ Γ then

Γ `ψ. Each possibility contradicts Γ’s consistency, given lemma 2.2.

2.9.4 The proof
Now it’s time to put together all the pieces that we’ve assembled.

Proof of PL completeness. Completeness says: if �φ then `φ. We’ll prove this

by proving the equivalent statement: if 0 φ then 2 φ. So, suppose that 0 φ.

We must construct some PL-interpretation in which φ isn’t true.

Since 0φ, {∼φ}must be consistent. For suppose otherwise. Then ∼φ `⊥;

so ` ∼φ→⊥ by the deduction theorem. That is, given the de�nition of ⊥:

`∼φ→∼(P→P ). Then by contraposition 1 (example 2.11), ` (P→P )→φ. But

` P→P (exercise 2.4a), and so `φ—contradiction.

Since {∼φ} is consistent, theorem 2.3 tells us that it is a subset of some

maximal consistent set of wffs Γ. Next, let’s use Γ to construct a somewhat odd

PL-interpretation. This PL-interpretation decides whether a sentence letter

is true or false by looking to see whether that sentence letter is a member of Γ.

What we will do next is show that all formulas, not just sentence letters, are

true in this odd interpretation iff they are members of Γ.

So, let I be the PL-interpretation in which for any sentence letter α,

I (α) = 1 iff α ∈ Γ. We must show that:

for every wff φ, VI (φ) = 1 iff φ ∈ Γ (*)

We do this by induction on formula construction. The base case, that the

assertion holds for sentence letters, follows immediately from the de�nition of

I . Next we make the inductive hypothesis (ih): that wffs φ and ψ are true in I
iff they are members of Γ, and we show that the same is true of ∼φ and φ→ψ.

First, ∼φ: we must show that VI (∼φ) = 1 iff ∼φ ∈ Γ:
11

VI (∼φ) = 1 iff VI (φ) = 0 (truth cond. for ∼)

iff φ /∈ Γ (ih)

iff ∼φ ∈ Γ (lemma 2.4a)

11
Here we continue to use the fact that a formula has one truth value iff it lacks the other.
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Next,→: we must show that VI (φ→ψ) = 1 iff φ→ψ ∈ Γ:

VI (φ→ψ) = 1 iff either VI (φ) = 0 or VI (ψ) = 1 (truth cond for→)

iff either φ /∈ Γ or ψ ∈ Γ (ih)

iff φ→ψ ∈ Γ (lemma 2.4b)

The inductive proof of (*) is complete. But now, since {∼φ} ⊆ Γ, ∼φ ∈ Γ,

and so by lemma 2.4a, φ /∈ Γ. Thus, by (*), φ is not true in I . So we have

succeeded in constructing an interpretation in which φ isn’t true.



Chapter 3

Beyond Standard Propositional
Logic

A
s promised, we will study more than the standard logical systems familiar

from introductory textbooks. In this chapter we’ll examine some varia-

tions and deviations from standard propositional logic. (In later chapters we

will discuss several extensions of standard propositional logic.)

In this chapter, let’s treat all connectives as primitive unless otherwise

speci�ed. (So, for example, our recursive de�nition of a wff now has a clause

saying that ifφ andψ are wffs, then so are (φ∧ψ), (φ∨ψ), and (φ↔ψ), and our

of�cial de�nition of a PL-valuation now contains the semantic clauses for the

∧, ∨, and↔ that were derived in chapter 2.) The main reason for doing this

is that in some nonstandard logics, the de�nitions of the de�ned connectives

given in section 2.1 are inappropriate.

3.1 Alternate connectives

3.1.1 Symbolizing truth functions in propositional logic
Standard propositional logic is in a sense “expressively complete”. To get at this

idea, let’s introduce the idea of a truth function. A truth function is a function

that maps truth values (i.e., 0s and 1s ) to truth values. For example:

f (1) = 0
f (0) = 1

85
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f is a one-place function because it takes only one truth value as input. We

have an English name for this truth function: ‘negation’; and we have a symbol

for it: ∼. Consider next the two-place conjunction truth function:

g (1,1) = 1
g (1,0) = 0
g (0,1) = 0
g (0,0) = 0

We have a symbol for this truth function as well: ∧.

The language of propositional logic we have been using doesn’t have a

symbol for every truth function. It has no symbol for the “not-both” truth

function, for example:
1

h(1,1) = 0
h(1,0) = 1
h(0,1) = 1
h(0,0) = 1

But in a sense that I’ll introduce in a moment, we can “symbolize” this truth

function using a complex sentence: ∼(P∧Q). In fact, we can symbolize (in this

sense) any truth function (of any �nite number of places) using just ∧,∨, and ∼.

Proof that every truth function can be symbolized using just ∧, ∨, and ∼. We need

to de�ne what it means to say that a wff “symbolizes” a truth function. The

rough idea is that the wff has the right truth table. Here’s a precise de�nition:

Definition of symbolizing: Wff φ symbolizes n-place truth function f
iff φ contains the sentence letters P1 . . . Pn and no others, and for any PL-

interpretation I , VI (φ) = f (I (P1) . . .I (Pn)).

The sentence letters P1 . . . Pn represent the n inputs to the truth-function f .

(The choice of these letters (and this order) is arbitrary; but given the choice,

∼(P∧Q) doesn’t of�cially symbolize not-both; we must instead use ∼(P1∧P2).)
Now let’s prove that for every truth function, there exists some wff contain-

ing no connectives other than∧, ∨, and∼ that symbolizes the truth function. I’ll

1
Though we’ll consider below the addition of a symbol, |, for this truth function.



CHAPTER 3. BEYOND STANDARD PROPOSITIONAL LOGIC 87

do this informally. Let’s begin with an example. Suppose we want to symbolize

the following three-place truth-function:

i(1,1,1) = 0
i(1,1,0) = 1
i(1,0,1) = 0
i(1,0,0) = 1
i(0,1,1) = 0
i(0,1,0) = 0
i(0,0,1) = 1
i(0,0,0) = 0

We must construct a sentence whose truth value is the same as the output of

function i , whenever the sentence letters P1, P2, and P3 are given i ’s inputs.

Now, if we ignore everything but the numbers in the above picture of function

i , we can think of it as a kind of truth table for the sentence we’re after. The

�rst column of numbers represents the truth values of P1, the second column,

the truth values of P2, and the third column, the truth values of P3; and the far

right column represents the truth values that the desired formula should have.

Each row represents a possible combination of truth values for these sentence

letters. Thus, the second row (“i(1,1,0) = 1”) is the combination where P1 is

1, P2 is 1, and P3 is 0; the fact that the fourth column in this row is 1 indicates

that the desired formula should be true here.

Since function i returns the value 1 in just three cases (rows two, four, and

seven), the sentence we’re after should be true in exactly those three cases. Now,

we can construct a sentence that is true in the case of row two (i.e. when P1, P2,

and P3 are 1, 1, and 0, respectively) and false otherwise: P1∧P2∧∼P3. And we

can do the same for rows four and seven: P1∧∼P2∧∼P3 and ∼P1∧∼P2∧P3. But

then we can simply disjoin these three sentences to get the sentence we want:

(P1∧P2∧∼P3)∨ (P1∧∼P2∧∼P3)∨ (∼P1∧∼P2∧P3)

(Strictly speaking the three-way conjunctions, and the three-way disjunction,

need parentheses. But it doesn’t matter where they’re added since conjunc-

tion and disjunction are associative. That is, φ∧(ψ∧χ ) and (φ∧ψ)∧χ are

semantically equivalent, as are φ∨(ψ∨χ ) and (φ∨ψ)∨χ .)

This strategy is in fact purely general. Any n-place truth function, f , can

be represented by a chart like the one above. Each row in the chart consists of
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a certain combination of n truth values, followed by the truth value returned

by f for those n inputs. For each such row, construct a conjunction whose

i th
conjunct is Pi if the i th

truth value in the row is 1, and ∼Pi if the i th
truth

value in the row is 0. Notice that the conjunction just constructed is true if and

only if its sentence letters have the truth values corresponding to the row in

question. The desired formula is then simply the disjunction of all and only

the conjunctions for rows where the function f returns the value 1.
2

Since the

conjunction for a given row is true iff its sentence letters have the truth values

corresponding to that row, the resulting disjunction is true iff its sentence

letters have truth values corresponding to one of the rows where f returns the

value true, which is what we want.

Say that a set of connectives is adequate iff all truth functions can be symbol-

ized using sentences containing no connectives not in that set. What we just

showed was that the set {∧,∨,∼} is adequate. We can now use this fact to prove

that other sets of connectives are adequate. Take {∧,∼}, for example. Where

f is any truth function, we must �nd some wff χ that symbolizes f whose

only connectives are ∧ and ∼. Since {∧,∨,∼} is adequate, some sentence χ ′

containing only ∧, ∨, and∼ symbolizes f . But it’s easy to see that any wff of the

form φ∨ψ is (PL-) semantically equivalent to ∼(∼φ∧∼ψ); so we can obtain

our desired χ by replacing all wffs in χ ′ of the form φ∨ψ with ∼(∼φ∧∼ψ).
3

Similar arguments can be given to show that other connective sets are

adequate as well. For example, the ∧ can be eliminated in favor of the→ and

the ∼ (since φ∧ψ is semantically equivalent to ∼(φ→∼ψ)); therefore, since

{∧,∼} is adequate, {→, ∼} is also adequate.

3.1.2 Sheffer stroke
All of the adequate connective sets we’ve seen so far contain more than one

connective. But consider next a new connective, called the “Sheffer stroke”: |.
2
Special case: if there are no such rows—i.e., if the function returns 0 for all inputs—

then let the formula simply be any always-false formula containing P1 . . . Pn , for example

P1∧∼P1∧P2∧P3∧· · ·∧Pn .

3
Here I’m using the obvious fact that semantically equivalent wffs represent the same truth-

functions, and also the slightly less obvious but still obvious fact that substituting semantically

equivalent wffs inside a wff α results in a wff that is semantically equivalent to α.
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φ|ψ means that not both φ and ψ are true; thus, its truth table is:

| 1 0
1 0 1
0 1 1

In fact, | is an adequate connective all on its own; one can symbolize all the

truth functions using just |! (One other binary connective is adequate all on its

own; see exercise 3.2.)

Proof that {|} is an adequate connective set. ψ|ψ is semantically equivalent to ∼ψ.

Furthermore, ψ→χ is semantically equivalent to∼(ψ∧∼χ ), and thus to ψ|∼χ ,

and thus to ψ|(χ |χ ). So: take any truth function, f . We showed earlier that

{∼,→} is adequate; so some sentence φ containing just→ and ∼ symbolizes f .

Replace each occurrence of ψ→χ in φ with ψ|(χ |χ ), and each occurrence of

∼ψ with ψ|ψ; the resulting wff contains only | and symbolizes f .

3.1.3 Inadequate connective sets
Can we show that certain sets of connectives are not adequate?

We can quickly answer yes, for a trivial reason. The set {∼} isn’t adequate,

for the simple reason that, since ∼ is a one-place connective, no sentence with

more than one sentence letter can be built using just ∼. So there’s no hope of

symbolizing n-place truth functions, for n > 1, using just the ∼.

More interestingly, we can show that there are inadequate connective sets

containing two-place connectives. One example is {∧,→}.

Proof that {∧,→} is not an adequate set of connectives. Suppose for reductio that

the set is adequate. Then there exists some wff, φ, containing just the sentence

letter P1 and no connectives other than ∧ and→ that symbolizes the negation

truth function. But there can be no such wff φ. For φ would have to be false

whenever P1 is true, whereas we can prove the following by induction:

Each wff φ whose only sentence letter is P1, and which

contains no connectives other than ∧ and→, is true in

any PL-interpretation in which P1 is true.
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Base case: if φ has no connectives then φ is just the sentence letter P1 itself,

in which case it’s clearly true in any PL-interpretation in which P1 is true.

Next we assume the inductive hypothesis, that wffs φ and ψ are true in any

PL-interpretation in which P1 is true; we must now show that φ∧ψ and φ→ψ
are true in any such PL-interpretation. But this follows immediately from the

truth tables for ∧ and→.

Exercise 3.1 For each of the following two truth functions, i) �nd

a sentence with just ∼, ∧, ∨,↔,→) that symbolizes it; and ii) �nd

a sentence containing just the Sheffer stroke that symbolizes it. You

may save time by making abbreviations and saying things like “make

such-and-such substitutions throughout”.

f (1,1) = 1 g (1,1,0) = 0
f (1,0) = 0 g (0,0,1) = 0
f (0,1) = 0 g (x, y, z) = 1 otherwise

f (0,0) = 1

Exercise 3.2 Show that all truth functions can be symbolized using

just ↓ (nor). φ ↓ψ is 1 when both φ and ψ are 0, and 0 otherwise.

Exercise 3.3 Can all the truth functions be symbolized using just

the following connective? (Give a proof to justify your answer.)

% 1 0
1 0 1
0 1 0

3.2 Polish notation
Reformulating standard logic using the Sheffer stroke is a mere variation

(section 1.7) of standard logic, since in a sense it’s a mere notational change.

Another variation is Polish notation. In Polish notation, the connectives all

go before the sentences they connect. Instead of writing P∧Q, we write ∧PQ.
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Instead of writing P∨Q we write ∨PQ. Formally, we rede�ne the wffs as

follows:

Definition of wffs for Polish notation:

· sentence letters are wffs

· if φ and ψ are wffs, then so are: ∼φ, ∧φψ, ∨φψ,→φψ, and↔φψ

What’s the point? This notation eliminates the need for parentheses. With the

usual notation, in which we put the connectives between the sentences they

connect, we need parentheses to distinguish, e.g.:

(P∧Q)→ R
P ∧ (Q→R)

But with Polish notation, these are distinguished without parentheses:

→∧PQR
∧P→QR

Exercise 3.4 Translate each of the following into Polish notation:

a) P↔∼P

b) (P→(Q→(R→∼∼(S∨T ))))

c) [(P∧∼Q)∨(∼P∧Q)]↔∼[(P∨∼Q)∧(∼P∨Q)]

3.3 Nonclassical propositional logics
In the rest of this chapter we will examine certain deviations from standard

propositional logic. These are often called “nonclassical” logics, “classical”

logic being the standard type of propositional and predicate logic studied in

introductory courses and presented here in chapters 2 and 4.
4

These nonclassi-

cal logics use the standard language of logic, but they offer different semantics

and/or proof theories.

4
Extensions to standard propositional logic, such as modal logic, are also sometimes called

nonclassical; but by ‘nonclassical’ I’ll have in mind just deviations.
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There are many reasons to get interested in nonclassical logic, but one

exciting one is the belief that classical logic is wrong—that it provides an inade-

quate model of (genuine) logical truth and logical consequence. For example,

every wff of the form φ∨∼φ is PL-valid and a PL-theorem. But mathematical

intuitionists (section 3.5) claim that for certain mathematical statements φ, the

sentence “either φ or it is not the case that φ” is not even one we are entitled to

assert, let alone a logical truth. As elsewhere in this book, our primary concern

is to understand how formalisms work, rather than to evaluate philosophical

claims about genuine logical truth and logical consequence. However, to ex-

plain why nonclassical formalisms have been developed, and to give them some

context, in each case we’ll dip brie�y into the relevant philosophical issues.

In principle, a critic of classical logic could claim either that classical logic

recognizes too many logical consequences (or logical truths), or that it rec-

ognizes too few. But in practice, the latter is rare. In nearly every case, the

nonclassicalist’s concern is to scale back classical logic’s set of logical truths or

logical consequences. Intuitionists and many other nonclassical logicians want

to remove φ∨∼φ, the so-called law of the excluded middle, from the set of

logical truths; paraconsistent logicians (section 3.4.4) want to remove ex falso

quodlibet (φ; ∼φ; therefore, ψ) from the set of logical implications; and so on.

Like classical logic, one can approach a given nonclassical logic in various

ways. One can take a proof-theoretic approach (using axioms, sequents, or

some other proof system). Or one can take a semantic approach. I’ll take

different approaches to different logics, depending on which approach seems

most natural.

Nonclassical logic can seem dizzying. It challenges assumptions that we

normally regard as utterly unproblematic, assumptions we normally make

without even noticing, assumptions that form the very bedrock of rational

thought. Can these assumptions sensibly be questioned? Some nonclassical

logicians even say that there are true contradictions! (See section 3.4.4.) If

even the law of noncontradiction is up for grabs, one might worry, how is

argumentation possible at all?

My own view is that even the most radical challenges to classical logic can

coherently be entertained, and need not amount to intellectual suicide. But if

you’re more philosophically conservative, fear not: from a formal point of view

there’s nothing at all dizzying about nonclassical logic. In the previous chapter

we gave various mathematical de�nitions: of the notion of a PL-interpretation,

the notion of a sequent proof, and so on. Formally speaking, nonclassical logics

result simply from giving different de�nitions. As we’ll see, these different
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de�nitions are easy to give and to understand. Furthermore, when I give the

de�nitions and reason about them, I will myself be assuming “classical logic in

the metalanguage”. For example, even when we discuss the formalism accepted

by the defenders of true contradictions, I won’t myself accept any true contra-

dictions. I will reason normally in the course of developing a formal system

which represents abnormal patterns of inference, much as a sane psychologist

might develop a model of insanity. Thus, even if there’s something philosophi-

cally perplexing about the claims about (genuine) logical consequence made

by nonclassical logicians, there’s nothing mathematically perplexing about the

formal systems that represent those claims.

3.4 Three-valued logic
For our �rst foray into nonclassical logic, we will take a semantic approach.

Various logicians have considered adding a third truth value to the usual two. In

these new systems, in addition to truth (1) and falsity (0) , we have a third truth-

value, #. The third truth value is (in most cases anyway) supposed to represent

sentences that are neither true nor false, but rather have some other status.

This other status could be taken in various ways, depending on the intended

application, for example: “meaningless”, “unde�ned”, or “indeterminate”.

Classical logic is “bivalent”: there are exactly two truth values, and each

formula is assigned exactly one of them in any interpretation. So, admitting a

third truth value is one way to deny bivalence. There are others. One could

admit four, �ve, or even in�nitely many truth values. Or, one could stick with

two truth values but allow formulas to have both truth values, or to lack both.

(Some would argue that there’s no real difference between allowing formulas

to lack both of two truth values, and admitting a third truth value thought

of as meaning “neither true nor false”.) Here we will only discuss trivalent
systems—systems in which each formula has exactly one of three truth values.

Why introduce a third truth value? Various philosophical reasons have been

given. One concerns vagueness. Donald Trump is rich. Pete the peasant is not.

Somewhere in the middle there are people who are hard to classify. Perhaps

middling Mary, who has $50,000, is an example. Is she rich? She is on the

borderline. It is hard to admit either that she is rich, or that she is not rich. (If

you think $50,000 clearly makes you rich, choose a somewhat smaller amount

for the example; if you think it clearly doesn’t, choose a larger amount.) So

there’s pressure to say that the statement “Mary is rich” can be neither true nor
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false.

Others say we need a third truth value for statements about the future. If

it is in some sense “not yet determined” whether there will be a sea battle

tomorrow, then, it has been argued, the sentence:

There will be a sea battle tomorrow

is neither true nor false. In general, this viewpoint says, statements about

the future are neither true nor false if there is nothing about the present that

determines their truth value one way or the other.
5

Yet another case in which some have claimed that bivalence fails concerns

failed presupposition. Consider this sentence:

Ted stopped beating his dog

In fact, I’ve never beaten a dog. I’ve never beaten anything. I don’t even have a

dog. So is it true that I stopped beating my dog? Obviously not. But on the

other hand, is this statement false? Certainly no one would want to assert its

negation: “Ted has not stopped beating his dog”. “Ted stopped beating his dog”

presupposes that I was beating a dog in the past; since this presupposition is false,

the sentence does not rise to the level of truth or falsity.

For a �nal challenge to bivalence, consider the sentence:

Sherlock Holmes has a mole on his left leg

‘Sherlock Holmes’ doesn’t refer to a real entity. Further, Sir Arthur Conan

Doyle does not specify in his Sherlock Holmes stories whether Holmes has such

a mole. For either of these reasons, one might argue, the displayed sentence is

neither true nor false.

It’s an open question whether any of these arguments against bivalence is

any good. Moreover, powerful arguments can be given against the idea that

some sentences are neither true nor false. First, it is natural to identify the

falsity of a sentence with the truth of its negation. So, if we say that ‘Mary is

rich’ is neither true nor false, i.e., not true and not false, we must also say that:

5
There is an alternate view that upholds the “open future” without denying bivalence.

According to this view, both ‘There will be a sea battle tomorrow’ and ‘There will fail to be a

sea battle tomorrow’ are false. Thus, the defender of this position denies that “It will be the

case tomorrow that not-φ” and “not: it will be the case tomorrow that φ” are equivalent. See

Prior (1957, chapter X).
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‘May is rich’ is not true, and ‘Mary is not rich’ is not

true

Second, the notion of truth is often thought to be “transparent”, in that for

any (meaningful) sentence φ, φ and “ ‘φ’ is true” are interchangeable, even

when (nonquotationally) embedded inside other expressions. So in particular,

“‘φ’ is not true”—i.e., “not: φ is true”—implies “not-φ”. Thus, the previously

displayed sentence commits us to saying:

not: Mary is rich, and not: Mary is not rich

Saying that ‘Mary is rich’ is neither true nor false would therefore seem to

commit us to a contradiction!

So there is controversy about whether some sentences are neither true nor

false. But rather than spending more time on such philosophical questions, let’s

now concentrate on a certain sort of formalism that is intended to represent

the failure of bivalence. The idea is simple: give three-valued truth-tables for

the connectives of propositional logic. The classical truth tables give you the

truth values of complex formulas based on whether their constituent sentences

are true or false (1 or 0), whereas the new truth tables will take into account

new cases: cases where sentences are #.

3.4.1 Łukasiewicz’s system
Here is one set of three-valued truth tables, due to Jan Łukasiewicz (who also

invented the Polish notation of section 3.2):

∼
1 0
0 1
# #

∧ 1 0 #
1 1 0 #
0 0 0 0
# # 0 #

∨ 1 0 #
1 1 1 1
0 1 0 #
# 1 # #

→ 1 0 #
1 1 0 #
0 1 1 1
# 1 # 1

(In our discussion of three-valued logic, let φ↔ψ abbreviate (φ→ψ)∧ (ψ→φ)
as before.) Using these truth tables, one can calculate truth values of wholes

based on truth values of parts.

Example 3.1: Where P is 1, Q is 0 and R is #, calculate the truth value of

(P∨Q)→∼(R→Q). First, what is R→Q? The truth table for→ tells us that

#→0 is #. So, since the negation of a # is #, ∼(R→Q) is # as well. Next, P∨Q:

that’s 1∨0—i.e., 1. Finally, the whole thing: 1→#, i.e., #.
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We can formalize this a bit more by de�ning new interpretation and valua-

tion functions:

Definition of trivalent interpretation: A trivalent interpretation is a func-

tion that assigns to each sentence letter exactly one of the values: 1, 0, #.

Definition of valuation: For any trivalent interpretation,I , the Łukasiewicz-

valuation for I , ŁVI , is de�ned as the function that assigns to each wff either

1, 0, or #, and which is such that, for any wffs φ and ψ,

ŁVI (φ) =I (φ) if φ is a sentence letter

ŁVI (φ∧ψ) =











1 if ŁVI (φ) = 1 and ŁVI (ψ) = 1

0 if ŁVI (φ) = 0 or ŁVI (ψ) = 0

# otherwise

ŁVI (φ∨ψ) =











1 if ŁVI (φ) = 1 or ŁVI (ψ) = 1

0 if ŁVI (φ) = 0 and ŁVI (ψ) = 0

# otherwise

ŁVI (φ→ψ) =























1 if ŁVI (φ) = 0, or ŁVI (ψ) = 1, or

ŁVI (φ) =ŁVI (ψ) = #

0 ŁVI (φ) = 1 and ŁVI (ψ) = 0

# otherwise

ŁVI (∼φ) =











1 if ŁVI (φ) = 0

0 if ŁVI (φ) = 1

# otherwise

Let’s de�ne validity and semantic consequence for Łukasiewicz’s system much

like we did for standard PL:

Definitions of validity and semantic consequence:

· φ is Łukasiewicz-valid (“�
Ł
φ”) iff for every trivalent interpretation I ,

ŁVI (φ) = 1
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· φ is a Łukasiewicz-semantic-consequence of Γ (“Γ �
Ł
φ”) iff for every

trivalent interpretation,I , if ŁVI (γ ) = 1 for each γ ∈ Γ, then ŁVI (φ) = 1

Example 3.2: Is P ∨∼P Łukasiewicz-valid? Answer: no, it isn’t. Suppose P
is #. Then ∼P is #; but then the whole thing is # (since #∨# is #.)

Example 3.3: Is P→P Łukasiewicz-valid? Answer: yes. P could be either 1,

0 or #. From the truth table for→, we see that P→P is 1 in all three cases.

Notice that even if a formula can never be false, it doesn’t follow that the

formula is valid—perhaps the formula is sometimes #. “Valid” (under this

de�nition) means always true; it does not mean never false. (Similarly, the notion

of semantic consequence that we de�ned is that of truth-preservation, not
nonfalsity-preservation.)

One could de�ne validity differently, as meaning never-false (rather than

always-true). (And one could de�ne semantic consequence as nonfalsity-

preservation.) Such de�nitions would generate a very different system; they

would generate a very different range of valid formulas and semantic conse-

quences. This illustrates an important fact. Once one chooses to introduce

extra truth values (and extra truth tables based on them), one then faces a

second choice: how should validity and semantic consequence be understood?

New theories of the nature of validity and semantic consequence do not result

solely from the �rst choice, only from a combination of the two choices.

There is a helpful terminology for talking about the second of these choices.

Consider any semantics that employs some set V of truth values. (In standard

logic V = {1,0}; in our trivalent systems V = {1,0,#}.) We can select some

subset ofV and call the members of that subset the designated truth values. Once

the designated values have been selected, we can then say: a valid formula is

one that has a designated truth value in every interpretation; and Γ semantically

implies φ iff φ has a designated truth value in every interpretation in which

each γ ∈ Γ has a designated truth value. Our de�nition of Łukasiewicz-validity

(as meaning always-true) takes 1 to be the sole designated value; de�ning “valid”

to mean never-false would amount to taking both 1 and # as designated.

Now is perhaps as good at time as any to make a general point about

semantic de�nitions of logical truth and logical consequence. In this section we

used a three-valued semantics to de�ne a certain property of wffs (Łukasiewicz-

validity) and a certain relation between sets of wffs and wffs (Łukasiewicz-

semantic-consequence). It would be possible to sharply distinguish the semantic

means from the resulting end. Imagine a philosopher who says the following:
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The three-valued Łukasiewicz semantics does not represent the

real semantics of natural language, since no (meaningful) natural

language sentences are neither true nor false. (I accept the argument

at the end of section 3.4: the claim that a sentence is neither true

nor false would lead to a contradiction.) Nevertheless, I do think

that Łukasiewicz-validity and Łukasiewicz-semantic-consequence

do a pretty good job of modeling genuine logical truth and logical

consequence. If you ignore the internal workings of the de�nitions,

and focus just on their outputs—that is, if you focus just on which

wffs count as Łukasiewicz-valid and which sets of wffs Łukasiewicz-

semantically-imply which other wffs—you get the right results.

For example, P→P is Łukasiewicz-valid whereas P∨∼P is not; and

sure enough, on my view, “if there will be a sea battle tomorrow

then there will be a sea battle tomorrow” is a logical truth whereas

“either there will be a sea battle tomorrow or there won’t” is not.

There may well be tensions within such a position, but it is, at least on its face, a

position someone might take. The moral is that the properties and relations we

de�ne using a formal semantics have a “life of their own” beyond the semantics.

Exercise 3.5 We noted that it seems in-principle possible for a

formula to be “never-false”, given the Łukasiewicz tables, without

being “always-true”. Give an example of such a formula.

Exercise 3.6 Show that no wff φ whose sentence letters are just

P and Q and which has no connectives other than ∧, ∨, and ∼ has

the same Łukasiewicz truth table as P→Q—i.e., that for no such φ
is ŁVI (φ) =ŁVI (P→Q) for each trivalent interpretation I .

3.4.2 Kleene’s tables
Łukasiewicz’s tables are not the only three-valued truth-tables one can give.

Stephen C. Kleene gave three-valued tables that are just like Łukasiewicz’s
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except for the following different table for the→:
6

→ 1 0 #
1 1 0 #
0 1 1 1
# 1 # #

As in the previous section, we could write out a corresponding de�nition of

a Kleene valuation function KVI , relative to a trivalent assignment I . But

let’s not bother. To de�ne Kleene-validity and Kleene-semantic-consequence

(“�
K

”), we continue to take 1 as the sole designated value; thus we have: �
K
φ

iff KVI (φ) = 1 for all trivalent interpretations I ; and Γ �
K
φ iff KVI (φ) = 1

for each trivalent interpretation I in which KVI (γ ) = 1 for all γ ∈ Γ.

Here is the intuitive idea behind the Kleene tables. Let’s call the truth values

0 and 1 the “classical” truth values. If the immediate parts of a complex formula

have only classical truth values, then the truth value of the whole formula is

just the classical truth value determined by the classical truth values of those

parts. But if some of those parts are #, then we must consider the result of

turning each # into one of the classical truth values. If the entire formula would

sometimes be 1 and sometimes be 0 after doing this, then the entire formula

is #. But if the entire formula always takes the same truth value, X, no matter

which classical truth value any #s are turned into, then the entire formula gets

this truth value X. Intuitively: if there is “enough information” in the classical

truth values of a formula’s immediate parts to settle on one particular classical

truth value, then that truth value is the formula’s truth value.

Take Kleene’s truth table forφ→ψ, for example. Whenφ is 0 andψ is #, the

table says that φ→ψ is 1—because the false antecedent is classically suf�cient

to make φ→ψ true, no matter what classical truth value we convert ψ to. On

the other hand, when φ is 1 and ψ is #, then φ→ψ is #. For what classical truth

value we substitute in for ψ’s # affects the truth value of φ→ψ. If the # becomes

a 0 then φ→ψ is 0; but if the # becomes a 1 then φ→ψ is 1.

Let me mention two important differences between the Łukasiewicz and

Kleene systems. First, unlike Łukasiewicz’s system, Kleene’s system makes the

formula P→P invalid. (This might be regarded as an advantage for Łukasiewicz.)

6
These are sometimes called Kleene’s “strong tables”. Kleene also gave another set of tables

known as his “weak” tables, which assign # whenever any constituent formula is # (and are

classical otherwise). Perhaps # in the weak tables can be thought of as representing “nonsense”:

any nonsense in a part of a sentence is infectious, making the entire sentence nonsense.
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The reason is that in Kleene’s system, #→# is #; thus, P→P isn’t true in all

valuations (it is # in the valuation where P is #.) In fact, it’s easy to show that

there are no valid formulas in Kleene’s system (exercise 3.7). Nevertheless,

there are cases of semantic consequence. For example, P∧Q �
K

P , since the

only way for P∧Q to be 1 is for both P and Q to be 1.

Second, in Kleene’s system,→ is interde�nable with the ∼ and ∨, in that

φ→ψ has exactly the same truth table as ∼φ∨ψ. (Look at the truth tables to

verify that this is true.) That’s not true in Łukasiewicz’s system (exercise 3.6).

Exercise 3.7* Show that there are no Kleene-valid wffs.

Exercise 3.8** Say that one trivalent interpretation J re�nes an-

other, I , iff for any sentence letter α, if I (α) = 1 then J (α) = 1,

and if I (α) = 0 then J (α) = 0. That is, J preserves all of I ’s clas-

sical values (though it may assign some additional classical values,

in cases where I assigns #.) Show that re�ning a trivalent interpre-

tation preserves classical values for all wffs, given the Kleene tables.

That is, if J re�nes I then for every wff, φ, if KVI (φ) = 1 then

KVJ (φ) = 1, and if KVI (φ) = 0 then KVJ (φ) = 0.

Exercise 3.9 Show that the claim in exercise 3.8 does not hold if

you valuate using Łukasiewicz’s tables rather than Kleene’s.

3.4.3 Determinacy
As we saw at the beginning of section 3.4, one potential application of three-

valued logic is to vagueness. Here we think of 1 as representing de�nite truth

(“Donald Trump is rich”), 0 as representing de�nite falsehood (“Pete the peasant

is rich”), and # as representing indeterminacy (“Middling Mary is rich”).

1, 0, and # are values that are possessed by sentences (relative to three-valued

interpretations). To attribute one of these values to a sentence is thus to say

something about that sentence. So these values represent statements about

determinacy that we make in the metalanguage, by quoting sentences and

attributing determinacy-statuses to them:

‘Donald Trump is rich’ is determinately true

‘Pete the peasant is rich’ is determinately false
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‘Middling Mary is rich’ is indeterminate

But we can speak of determinacy directly, in the object language, without

quoting sentences, by using the adverb ‘de�nitely’:

Donald Trump is de�nitely rich

Pete the peasant is de�nitely not rich

Middling Mary is rich is inde�nitely rich (she’s neither

de�nitely rich nor de�nitely not rich)

How might we represent this use of ‘de�nitely’ within logic?

We could add a new symbol to the language of propositional logic. The

usual choice is a one-place sentence operator,4. We read “4φ” as meaning

“de�nitely,φ” (or: “determinately,φ”). (Being a one-place sentence operator,4
has the same grammar as ∼; it’s governed in the de�nition of a wff by the clause

that if φ is a wff then so is 4φ. A corresponding operator for inde�niteness

could be de�ned in terms of4: “5φ” is short for “∼4φ∧∼4∼φ”.)

The next question is how to treat 4 semantically. It’s easy to see how to

extend the systems of Łukasiewicz and Kleene to cover4; we simply adopt the

following new truth table:

4
1 1
0 0
# 0

Thus,4φ is 1 whenever φ is 1, and is 0 otherwise. (And5φ is 1 when φ is #;

0 otherwise.)

This approach to the semantics of4 has an apparently serious shortcoming:

4φ can never have the value #. This is a shortcoming because some statements

about determinacy seem themselves to be indeterminate. Donald Trump is

de�nitely rich; but if in a �t of philanthropy he started giving money away,

one dollar at a time, eventually it would become unclear whether he was still

de�nitely rich. Letting R symbolize “Philanthropic Trump is rich”, it’s natural

to think that4R should here be #.

“Higher-order vagueness” is vagueness in whether there’s vagueness. The

shortcoming of our three-valued approach to 4 is in essence that it doesn’t

allow for higher-order vagueness. This de�ciency comes out in other ways as
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well. For example, it’s natural to describe philanthropic Trump as being an

inde�nite case of de�nite richness—he’s neither de�nitely de�nitely rich nor

de�nitely not de�nitely rich. But ∼44R∧∼4∼4R (i.e.,54R) comes out 0
no matter what value R has (on all three systems), given the above truth table for

4. Our semantics does a bad job with4s embedded within4s. Furthermore,

4R∨∼4R comes out 1 no matter what value R has, whereas, one might think,

‘Philanthropic Trump is either de�nitely rich or not de�nitely rich’ is neither

true nor false.

The root of these problems is that the approach to vagueness that we have

taken in the last three sections only lets us represent three states for a given

sentence letter: de�nite truth (1), de�nite falsity (0), and indeterminacy (#); this

leaves out states distinctive of higher-order vagueness such as de�nite de�nite

falsity, inde�nite de�nite falsity, and so on. More sophisticated approaches

to vagueness and the logic of4 than those we will consider in this book do a

better job of allowing for higher-order vagueness.
7

3.4.4 Priest’s logic of paradox
Suppose we keep Kleene’s tables, but take both # and 1 to be designated truth

values. Thus, we call a wff valid iff it is either 1 or # in every trivalent interpre-

tation; and we say that a set of wffs Γ semantically implies wff φ iff φ is either

1 or # in every trivalent interpretation in which each member of Γ is either 1 or

#. The resulting logic is Graham Priest’s (1979) LP. The of�cial de�nitions:

Definitions of validity and semantic consequence:

· φ is LP-valid (“�
LP
φ”) iff KVI (φ) 6= 0 for each trivalent interpretation

I

· φ is an LP-semantic-consequence of Γ (“Γ �
LP
φ”) iff for every trivalent

interpretation, I , if KVI (γ ) 6= 0 for each γ ∈ Γ, then KVI (φ) 6= 0

‘LP’ stands for “the logic of paradox”. Priest chose this name because of

the philosophical interpretation he gave to #. For Priest, # represents the

state of being both true and false (a truth-value “glut”), rather than the state of

being neither true nor false (a truth-value “gap”). Correspondingly, he takes 1 to

represent true and only true, and 0 to represent false and only false.
7
See for example Fine (1975); Williamson (1999b).
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For Priest, LP is not an idle formal game, since according to him, some

natural language sentences really are both true and false. (This position is

known as dialetheism.) Consider, for example, the liar sentence “this sentence

is false”. The liar sentence presents a challenging paradox to everyone. Is it

true? Well, if so, then since what it says is that it is false, it must be false as

well. Is it false? Well, if so, then since what it says is that it is false, it must then

be true as well. We’ve shown that in each alternative—the alternative that the

liar sentence is true and the alternative that the liar sentence is false—the liar

sentence comes out both true and false. These are the only alternatives; hence,

the formula is both true and false. That’s the liar paradox. Most people conclude

that something has gone wrong along the way, whereas Priest embraces the

paradoxical conclusion.

It’s natural for a dialetheist like Priest to embrace a logic like LP. For it’s

natural to think of logical consequence as truth preservation; LP represents

logical consequence as the preservation of either 1 or #; and in LP, a formula is

thought of as being true iff it is either 1 or # (in the latter case the formula is

false as well). Further, a look at the Kleene tables shows that their assignments

to # seem, intuitively, to mesh with Priest’s “both true and false” interpretation.

Further, Priest embraces some contradictions. That is, for some sentences

φ, he accepts both φ and also “not-φ”.
8

But in standard propositional logic,

everything follows from a contradiction, via the principle of ex falso quodlibet:

φ,∼φ �
PL
ψ. Priest does not of course want to have to accept every sentence

ψ, and so he needs a logic that does not let you infer any old sentence from a

contradiction. That is, he needs a paraconsistent logic. But LP is a paraconsistent

logic (there are others). For it’s easy to check that P,∼P 2
LP

Q. In a trivalent

interpretation in which P is # and Q is 0, both P and ∼P are #, but Q is 0. So

in this trivalent interpretation, the premises (P and ∼P ) have designated values

whereas the conclusion (Q) does not.

Ex falso quodlibet is not the only classical inference that fails in LP. Modus

ponens is another (exercise 3.10d). So LP’s relation of logical consequence

differs drastically from that of classical logic. However, LP generates precisely

the same results as classical propositional logic when it comes to the validity of

individual formulas (exercise 3.11).

8
Accepting “Sentence ‘φ’ is both true and false” is not exactly the same as accepting both φ

and “not-φ”; but the former leads to the latter given the principles about truth and negation

described at the end of section 3.4.
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Exercise 3.10 Demonstrate each of the following.

a) P∧Q �
LP

Q∧P

b) P→(Q→R) �
LP

Q→(P→R)

c) ∼(P∧Q) �
LP
∼P∨∼Q

d) P, P→Q 2
LP

Q

e) ∼P, P∨Q 2
LP

Q

Exercise 3.11** Show that a formula is PL-valid iff it is LP-valid.

3.4.5 Supervaluationism
Recall the guiding thought behind the Kleene tables: if a formula’s classical

truth values �x a particular truth value, then that is the value that the formula

takes on. There is a way to take this idea a step further, which results in a new

and interesting way of thinking about three-valued logic.

According to the Kleene tables, we get a classical truth value for φ4ψ,

where4 is any connective, only when we have “enough classical information”

in the truth values of φ and ψ to �x a classical truth value for φ4ψ. Consider

φ∧ψ for example: if eitherφ orψ is false, then since the falsehood of a conjunct

is classically suf�cient for the falsehood of the whole conjunction, the entire

formula is false. But if, on the other hand, both φ and ψ are #, then neither φ
nor ψ has a classical truth value, we do not have enough classical information

to settle on a classical truth value for φ∧ψ, and so the whole formula is #.

But now consider a special case of the situation in the previous paragraph:

let φ be P , ψ be ∼P , and consider a trivalent interpretation I in which P is

#. According to the Kleene tables, the conjunction P∧∼P is #, since it is the

conjunction of two formulas that are #. But there is a way of thinking about

truth values of complex sentences according to which the truth value ought

to be 0, not #. Consider changing I ’s assignment to P from # to a classical

truth value. No matter which classical value we choose, the whole sentence

P∧∼P would then become 0. If we changed I to make P 0, then P∧∼P would

be 0∧∼0—that is 0; and if we made P 1 then P∧∼P would be 1∧∼1—0 again.

P∧∼P becomes false no matter what classical truth value we give to its sentence
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letter P—isn’t that a reason to think that, contrary to what Kleene says, P∧∼P
is false?

The general thought here is this: suppose a sentence φ contains some

sentence letters P1 . . . Pn that are #. If φ would be false no matter how we assign

classical truth values to P1 . . . Pn—that is, no matter how we precisi�ed φ—then

φ is in fact false. Further, if φ would be true no matter how we precisi�ed it,

then φ is in fact true. But if precisifying φ would sometimes make it true and

sometimes make it false, then φ in fact is #.

The idea here can be thought of as an extension of the idea behind the

Kleene tables. Consider a formula φ4ψ, where4 is any connective. If there is

enough classical information in the truth values of φ and ψ to �x on a particular

classical truth value, then the Kleene tables assign φ4ψ that truth value. Our

new idea goes further, and says: if there is enough classical information within
φ and ψ to �x a particular classical truth value, then φ4ψ gets that truth value.

Information “within” φ and ψ includes, not only the truth values of φ and ψ,

but also a certain sort of information about sentence letters that occur in both

φ and ψ. For example, in P∧∼P , when P is #, there is insuf�cient classical

information in the truth values of P and of ∼P to settle on a truth value for

the whole formula P∧∼P (since each is #). But when we look inside P and ∼P ,

we get more classical information: we can use the fact that P occurs in each

to reason as we did above: whenever we turn P to 0, we turn ∼P to 1, and so

P∧∼P becomes 0; and whenever we turn P to 1 we turn ∼P to 0, and so again,

P∧∼P becomes 0.

This new idea—that a formula has a classical truth value iff every way of

precisifying it results in that truth value—is known as supervaluationism. Let us

lay out this idea formally.

Where I is a trivalent interpretation and C is a PL-interpretation (i.e., a

bivalent interpretation in the sense of section 2.3), say thatC is a precisi�cation of

I iff: whenever I assigns a classical truth value (i.e., 1 or 0) to a sentence letter,

C assigns that sentence letter the same classical value. Thus, precisi�cations

of I agree with what I says about the classical truth values, but in addition—

being PL-interpretations—they also assign classical truth values to sentence

letters to which I assigns #. Each precisi�cation of I “decides” each of I ’s

#s in some way or other; different precisi�cations decide those #s in different

ways.

We can now say how the supervaluationist assigns truth values to complex

formulas relative to a given trivalent interpretation.



CHAPTER 3. BEYOND STANDARD PROPOSITIONAL LOGIC 106

Definition of supervaluation: When φ is any wff and I is a trivalent inter-

pretation, the supervaluation of φ relative to I , is the function SVI (φ) which

assigns 0, 1, or # to each wff as follows:

SVI (φ) =











1 if VC (φ) = 1 for every precisi�cation, C , of I
0 if VC (φ) = 0 for every precisi�cation, C , of I
# otherwise

Here VC is the valuation for PL-interpretation C , as de�ned in section 2.3.

When SVI (φ) = 1, we say that φ is supertrue in I ; when SVI (φ) = 0, we

say that φ is superfalse in I . Supervaluational notions of validity and semantic

consequence may be de�ned thus:

Definitions of validity and semantic consequence:

· φ is supervaluationally valid (“�
S
φ”) iff φ is supertrue in every trivalent

interpretation

· φ is a supervaluational semantic consequence of Γ (“Γ �
S
φ”) iff φ is

supertrue in each trivalent interpretation in which every member of Γ is

supertrue

Example 3.4: Let I be a trivalent interpretation where I (P ) =I (Q) = #.

What is SVI (P∧Q)? Answer: #. Let C and C ′ be functions de�ned as follows,

where α is any sentence letter:

C (α) =
(

1 if I (α) = #

I (α) if I (α) = either 1 or 0

C ′(α) =
(

0 if I (α) = #

I (α) if I (α) = either 1 or 0

C and C ′ always assign either 1 or 0; and they agree with I whenever the

latter assigns a classical value. So each is a precisi�cation of I . Since C (P ) =
C (Q) = 1, VC (P∧Q) = 1. Since C ′(P ) =C ′(Q) = 0, VC ′(P∧Q) = 0. So P∧Q
is 1 on some precisi�cations of I and 0 on others.
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Example 3.5: Where I is the same trivalent interpretation considered in

example 3.4, what is SVI (P∧∼P )? Answer: 0. (A different result, notice,

from that delivered by the Kleene and Łukasiewicz tables.) For let C be

any precisi�cation of I . C is a PL-interpretation, and P∧∼P is 0 in each

PL-interpretation. So P∧∼P is supertrue in I .

Supervaluation is a formalism, a way of assigning 1s, 0s, and #s to wffs of

the language of PL relative to trivalent interpretations. While this formalism

can be applied in many ways—not all of them involving vagueness—the follow-

ing philosophical idea is often associated with it. For any vague, interpreted

language, we can consider various sharpenings: ways of making its vague terms

precise without disturbing their determinate semantic features. For example, to

sharpen the vague term ‘rich’, we go through everyone who is on the borderline

of being rich and arbitrarily classify each one either as being rich or as not being

rich; but we must continue to classify all the de�nitely rich people as being rich

and all the de�nitely not rich people as being not rich. Some sentences come

out true on some sharpenings and false on others. For example, since Middling

Mary is a borderline case of being rich, we are free to sharpen ‘rich’ so that

‘Mary is rich’ comes out true, and we are free to sharpen ‘rich’ so that ‘Mary is

rich’ comes out false. But since Donald Trump is de�nitely rich, we are not free

to sharpen ‘rich’ so that ‘Trump is rich’ comes out false; ‘Trump is rich’ is true

on all sharpenings. Also, the disjunction ‘Middling Mary is either rich or not

rich’ comes out true on all sharpenings, even though Mary is in the borderline,

since each sharpening will count one or the other of its disjuncts, and hence the

whole disjunction, as being true. And still other sentences come out false on all

sharpenings, for instance ‘Pete the peasant is rich’ and ‘Mary is both rich and

not rich’. The philosophical idea is this: truth is truth-on-all-sharpenings, and

falsity is falsity-on-all-sharpenings. ‘Trump is rich’ is true, because it is true on

all sharpenings; ‘Pete is rich’ is false, because it is false on all sharpenings; ‘Mary

is rich’ is neither true nor false, because it is neither true on all sharpenings

nor false on all sharpenings. Supertruth relative to trivalent interpretations is a

good formal model of truth-in-all-sharpenings, and hence of truth itself; so

supervaluational validity and semantic consequence are good formal models of

(genuine) logical truth and logical consequence.
9

Let’s close by noticing two important facts about supervaluationism. The

9
See Fine (1975) for a fuller presentation and Williamson (1994, chapter 5) for a critique.

Some supervaluationists do not identify truth with truth-on-all-sharpenings; see McGee and

McLaughlin (1995).
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�rst is that the supervaluation functions SV are not in general truth-functional.
To say that a valuation function is truth-functional is to say that the value it

assigns to any complex wff is a function of the values it assigns to that wff’s

immediate constituents. Now, the valuation functions associated with the

Łukasiewicz and Kleene tables are truth-functional. (This is trivial—what a

truth table is, is a speci�cation of how the values of a certain sort of complex

wff depend on the values of that wff’s parts.) But not so for supervaluations.

Examples 3.4 and 3.5 show that if trivalent interpretation I assigns # to both

P and Q, then SVI (P∧Q) = # whereas SVI (P∧∼P ) = 0. But SVI (∼P ) is

obviously # (the precisi�cations of I considered in example 3.4 show this). So

P∧Q and P∧∼P are both conjunctions, each of whose conjuncts is # in SVI ,

and yet they are assigned different values by SVI . So SVI isn’t truth-functional;

the values it assigns to conjunctions aren’t a function of the values it assigns to

their conjuncts. (Similar arguments can be made for other connectives as well;

see for example exercise 3.12.)

The second important fact about supervaluationism is this: even though

supervaluations are three-valued, there is a sense in which supervaluationism

preserves classical logic. For example, every tautology (PL-valid formula) turns

out to be supervaluationally valid. Let φ be a tautology; and consider any

trivalent interpretation I , and any precisi�cation C of I . Precisi�cations are

PL-interpretations; so, since φ is a tautology, φ is true in C . So φ is supertrue

in I . I was arbitrarily chosen, so �
S
φ. Similarly, any PL-consequence of a

set is also a supervaluational consequence of that set (exercise 3.13).

So in a sense, supervaluationism preserves classical logic. However, when we

add the operator4 for determinacy, and extend the supervaluational semantics

in a natural way to handle4, there’s a sense in which classical logic is violated.

The details of this semantics and argument can be found in Williamson (1994,

section 5.3); here I will argue informally. Speci�cally, I’ll argue for two claims

with respect to English, assuming that truth is truth-on-all-sharpenings, and

then I’ll draw a conclusion about supervaluationism.

Assume that truth is truth-on-all-sharpenings. Claim 1: any English sen-

tence φ logically implies “de�nitely, φ”. Argument: assume φ is true. Then

φ is true on all sharpenings. But then, surely, “de�nitely, φ” is true. Claim

2: the sentence ‘if Middling Mary is rich, then Middling Mary is de�nitely

rich’ is not true, and so is not a logical truth. Argument: on some sharpenings,

the antecedent of this conditional is true while its consequent is false (assume

Mary is a de�nite case of inde�nite richness; so the consequent is false on all

sharpenings).
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Given claims 1 and 2, if a supervaluational semantics for 4 is to model

English, it must have these two features: P �4P and 2 P→4P . But it is a

law of classical logic that whenever φ �
PL
ψ, it’s also true that �

PL
φ→ψ. So

the classical law of “conditional proof” (compare the deduction theorem) fails

supervaluationally. Analogous arguments can be made for other classical laws.

For example, contraposition and reductio hold for classical logic:

· If φ �
PL
ψ then ∼ψ �

PL
∼φ

· If φ �
PL
ψ and φ �

PL
∼ψ then �∼φ

But they too can be argued to fail, given a supervaluational semantics for

4 (exercise 3.16). These discrepancies with classical logic involve, in effect,

laws about sequent validity—reasoning with assumptions. When it comes

to reasoning with assumptions, then, a supervaluational logic for 4 will be

nonclassical, if it is inspired by the identi�cation of truth with truth-on all

sharpenings.
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Exercise 3.12 Show that supervaluations aren’t truth-functional

with respect to conditionals. That is, �nd a trivalent interpretation,

I , and wffs φ1, φ2, ψ1, and ψ2, such that SVI (φ1) = SVI (φ2) and

SVI (ψ1) = SVI (ψ2), but SVI (φ1→ψ1) 6= SVI (φ2→ψ2).

Exercise 3.13 Show that if Γ �
PL
φ then Γ �

S
φ.

Exercise 3.14 Show that if a formula is true in a trivalent inter-

pretation given the Kleene truth tables, then it is supertrue in that

interpretation.

Exercise 3.15** Our de�nition of supervaluational semantic con-

sequence is sometimes called the “global” de�nition. An alternate

de�nition, sometimes called the local de�nition, says that φ is a

supervaluational semantic consequence of Γ iff for every trivalent

interpretation, I , and every precisi�cation, C , of I , if VC (γ ) = 1
for each γ ∈ Γ, then VC (φ) = 1. Show that the global and local de�-

nitions are equivalent. (Equivalent, that is, before4 is introduced.

Under some supervaluational semantics for 4, the global and local

de�nitions are not equivalent.)

Exercise 3.16* Argue on intuitive grounds that a supervaluational

semantics for4 should violate contraposition and reductio.

3.5 Intuitionistic propositional logic: proof the-
ory

Intuitionism is a philosophy of mathematics according to which there are no

mind-independent mathematical facts. Rather, mathematical facts and entities

are mental constructs that owe their existence to the activities of mathematicians

constructing proofs.

In addition to espousing this constructivist philosophy of mathematics,

intuitionists also rejected classical logic, in favor of a new nonclassical logic

now known as “intuitionistic logic”. This logic rejects various classical laws,

most notoriously the law of the excluded middle, which says that each statement

of the form “φ or not-φ” is a logical truth, and double-negation elimination,
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which says that a statement of the form “not-not-φ” logically implies the

statement φ. Intuitionistic logic has been highly in�uential within philosophy

in a way that transcends its connection with constructivist mathematics, in

large part because it is often regarded as a logic appropriate to “anti-realism”.

While intuitionistic logic itself will be our main focus, let me �rst say a bit

about why mathematical intuitionists are drawn to it. Consider the decimal

expansion of π: 3.14159 . . . Little is known about the patterns occurring in it.

We do not know, for example, whether the sequence 0123456789 eventually

appears. It has not been observed in the trillion or so digits to which π has so

far been expanded; but no one has proved that it cannot appear. Now, from

a mathematical realist (platonist) point of view, we should say nevertheless

that: either this sequence eventually appears or it does not. That is, where P
is the statement “The sequence 0123456789 occurs somewhere in the decimal

expansion of π”, we should accept this instance of the law of the excluded

middle: “P or not-P”. Mathematical reality includes a certain in�nite object,

the decimal expansion of π, which either contains or fails to contain the se-

quence 0123456789. But facts about in�nite totalities of this sort are precisely

what intuitionists reject. According to intuitionists, there are no “completed

in�nities”. In the case of π, we have the potential to construct longer and

longer initial segments of its decimal expansion, but we should not think of

the entire in�nite expansion as “already existing”. As a result, according to

intuitionists, until we either observe the sequence 0123456789 (thus proving P )

or show that it cannot appear (thus proving ∼P ), we cannot assume that “P or

not-P” is true. To assume this would be to assume that facts about π’s decimal

expansion are “already out there”, independently of our constructing proofs.

But these vague thoughts are not an argument. And turning them into

an argument is not straightforward. For example, we cannot formulate the

intuitionist’s challenge to “P or not-P” as follows: “since mathematical truth is

constituted by proof, and we have no proof of either disjunct, neither disjunct is

true, and so the disjunction is not true.” This challenge leads to a three-valued

approach to propositional logic (if neither P nor “not-P” is true then P is neither

true nor false) whereas intuitionistic logic is not a three-valued approach. It is

not based on constructing truth tables of any sort, and it embraces a different set

of logical truths and logical consequences from all the three-valued approaches

we have considered so far (see exercises 3.17 and 7.10).

What then is the intuitionist’s complaint about “P or not-P”, if not that
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its disjuncts are untrue? Here is one thought.
10

Intuitionist philosophy of

mathematics requires acceptance of the following two conditionals:

If P then it is provable that P

If not-P , then it is provable that not-P

So if we were entitled to assume “P or not-P”, we could infer that: “it is provable

that P or it is provable that not-P”. But we’re not entitled to this conclusion.

We don’t have any guarantee that our methods of proof are powerful enough

to settle the question of whether P is true.
11

Conclusion: we are not entitled

to assume “P or not-P”, so it’s not a logical truth.

So: intuitionists are unwilling to accept “P or not-P”. Interestingly, they

do not accept its denial “not: P or not-P”, since they accept the denial of this

denial: “not-not: P or not-P”. Why? Consider the following argument.
12

Assume for reductio: “not: P or not-P”. Now, if P were

true, then we would have “P or not-P”, contradicting

the assumption. So “not-P” must be true. But from

“not-P” it follows that “P or not-P”—contradiction. So,

“not-not: P or not-P”.

The reasoning in this argument is hard to resist (in essence it uses only reductio

ad absurdum and disjunction-introduction) and is accepted by intuitionists. So

even intuitionists have reason to accept that “not-not: P or not-P” is a logical

truth. Since intuitionists reject double-negation elimination, this is consistent

with their refusal to accept “P or not-P”.
13

In the classical semantics for propositional logic, φ∨∼φ is of course as-

signed the truth value 1 no matter what truth value φ is assigned, and φ is

10
Here I follow Wright (1992, 37–44). For some other thoughts on this matter, see the

works by Brouwer, Heyting and Dummett in Benacerraf and Putnam (1983).

11
Beware: the intuitionist will not say “it is not provable that P nor is it provable that

not-P”—that would lead, via the two conditionals, to a contradiction: “not-P and not-not-P”.

12
Compare the �rst 8 lines of example 2.9.

13
To get more of a feel for the intuitionist’s rejection of double-negation elimination, suppose

we could show that the assumption of “not-P”—that 0123456789 never occurs—leads to a

contradiction. This would establish “not-not-P”, but it would not establish P . To establish P ,

we would need to construct enough of π’s decimal expansion to observe 0123456789. (Relatedly,

intuitionistic predicate logic (which we won’t consider further in this book) rejects the inference

from “not everything is F ” to “something is not-F ”. To prove the former one must merely

show that “everything is F ” leads to contradiction; to prove the latter one must prove an

instance—some particular sentence of the form “a is not-F ”.)



CHAPTER 3. BEYOND STANDARD PROPOSITIONAL LOGIC 113

assigned 1 whenever ∼∼φ is. But this does not faze the intuitionist, since

classical semantics is by her lights based on a mistaken picture: the picture

of mathematical statements being statements about independently-existing

mathematical reality (such as the in�nite decimal expansion of π), and thus as

being appropriately represented as having truth values (either 1 or 0) depending

on the nature of this reality.

So much for philosophical justi�cation; now on to the logic itself. I’m

going to approach this proof-theoretically, with sequents. (A semantics will

have to wait until section 7.4.) Two simple modi�cations to the sequent proof

system of section 2.5 generate a proof system for intuitionistic propositional

logic. First, we need to split up the double-negation rule, DN, into two halves,

double-negation introduction and double-negation elimination:

Γ `∼∼φ
Γ `φ

DNE

Γ `φ
Γ `∼∼φ

DNI

In the classical system of section 2.5 we were allowed to use both DNE and

DNI; but in the intuitionist system, only DNI is allowed. Second, to make up

for the dropped rule DNE, our intuitionist system adds the rule “ex falso”:

Γ `φ∧∼φ
Γ `ψ

EF

In the move from our old classical sequent system to the new intuitionist

system, the only rule we have added was EF. And any use of EF can be replicated

in the old system: simply use RAA and then DNE. That means that every

sequent proof in the new system can be replicated in the old system; every

intuitionistically provable sequent is also classically provable.

Notice how dropping DNE blocks proofs of various classical theorems the

intuitionist wants to avoid. The proof of∅ ` P∨∼P (example 2.9), for instance,

used DNE. Of course, for all we’ve said so far, there might be some other way

to prove this sequent. Only when we have a semantics for intuitionistic logic,

and a soundness proof relative to that semantics, can we show that this sequent

cannot be proven without DNE (section 7.4).

It is interesting to note that even though intuitionists reject the inference

from ∼∼P to P , they accept the inference from ∼∼∼P to ∼P , since its proof

only requires the half of DN that they accept, namely the inference from P to

∼∼P :



CHAPTER 3. BEYOND STANDARD PROPOSITIONAL LOGIC 114

1. ∼∼∼P ⇒∼∼∼P RA

2. P ⇒ P RA (for reductio)

3. P ⇒∼∼P 2, DNI

4. ∼∼∼P, P ⇒∼∼P ∧∼∼∼P 1, 3, ∧I

5. ∼∼∼P ⇒∼P 4, RAA

Note that you can’t use this sort of proof to establish ∼∼P ` P . Given the way

RAA is stated, its application always results in a formula beginning with ∼.

Exercise 3.17* Show that our intuitistic proof system generates

a different logic from the three-valued systems of Łukasiewicz,

Kleene, and Priest. For each of those three-valued systems S3, �nd

an intuitionistically provable sequent Γ⇒ φ such that Γ 2
S3
φ (if

your chosen Γ is the empty set this means showing that 2
S3
φ.)



Chapter 4

Predicate Logic

L
et’s now turn from propositional logic to predicate logic, or the “pred-

icate calculus” (PC), as it is sometimes called—the logic of “all” and

“some”. As with propositional logic, we’re going to formalize predicate logic.

We’ll �rst do grammar, then semantics, then proof theory.

4.1 Grammar of predicate logic
As before, we start by specifying the primitive vocabulary—the symbols that

may be used in (well-formed) formulas of predicate logic. Then we de�ne the

formulas as strings of primitive vocabulary that have the right form.

Primitive vocabulary:

· Connectives: →, ∼, ∀
· variables x, y . . ., with or without subscripts

· for each n > 0, n-place predicates F ,G . . ., with or without subscripts

· individual constants (names) a, b . . ., with or without subscripts

· parentheses

No symbol of one type is a symbol of any other type. Let’s call any variable or

constant a term.

Note how we allow subscripts on predicates, variables, and names, just as

we allowed subscripts on sentence letters in propositional logic. We do this so

115
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that we’ll never run out of vocabulary when constructing increasingly complex

sentences, such as ∀x∀y∀z∀x259∀y47(Rxy z x259→∼R3xy47).

Definition of wff:

i) if Π is an n-place predicate and α1 . . .αn are terms, then Πα1 . . .αn is a

PC-wff

ii) if φ and ψ are PC-wffs, and α is a variable, then ∼φ, (φ→ψ), and ∀αφ
are PC-wffs

iii) Only strings that can be shown to be PC-wffs using i) and ii) are PC-wffs

We’ll call wffs generated by clause i) “atomic” formulas.

∀ is called the “universal quanti�er”. Read ∀x . . . as saying “everything x
is such that …”. So “∀xF x” is read as “everything is F ”, “∼∀x(F x→Gx)” as

“not all F s are Gs”, and so on.

Notice that in addition to familiar-looking wffs such as F a and ∀x∼∀yRxy,

our de�nition also counts the following as wffs:

F x
∀xRxy

What is distinctive about such wffs is that they contain variables that don’t

“belong” to any quanti�er in the formula. In the �rst formula, for example, the

variable x doesn’t belong to any quanti�er; and in the second formula, whereas

the second x belongs to the quanti�er ∀x, the variable y doesn’t belong to any

quanti�er. Variables that don’t belong to quanti�ers are called free; variables

that do belong to quanti�ers are called bound.

More carefully: we must speak of variables as being free or bound in given
formulas (since x is free in F x but bound in ∀xF x). Still more carefully, we must

speak of individual occurrences of variables being free or bound (in formulas).

For example, in the formula F x→∀xF x, the �rst occurrence of x is free (in

the whole formula) whereas the third is bound. (We also count the second

occurrence of x, within the quanti�er ∀x itself, as being bound.) Even more

carefully: we may de�ne the notions as follows.

Definition of free and bound variables: An occurrence of variable α in wff

φ is bound in φ iff that occurrence is within an occurrence of some wff of the

form ∀αψ within φ. Otherwise the occurrence is free in φ.
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When a formula has no free occurrences of variables, we’ll say that it is a closed

formula, or sentence; otherwise it is an open formula.

Our concern is normally with closed formulas, since it is those formulas that

represent quanti�cational statements of everyday language. A statement with

free variables, by contrast, is “semantically incomplete”, intuitively speaking.

Nevertheless, open formulas are useful for certain purposes, especially in proof

theory (section 4.4).

We have the same de�ned connectives: ∧,∨,↔. We also add the following

de�nition of the existential quanti�er:

Definition of ∃: “∃αφ” is short for “∼∀α∼φ” (where α is a variable and φ is

a wff)

This is an intuitively correct de�nition, given that ∃ is supposed to represent

“some”: there are some pigs if and only if not everything is a non-pig.

4.2 Semantics of predicate logic
Recall from section 2.2 the semantic approach to logic, in which we i) de�ne

con�gurations, which are mathematical representations of ways for the world

to be, and of the meanings of nonlogical expressions; and ii) de�ne the notion of

truth for formulas in these con�gurations. We thereby shed light on meaning,

and we are thereby able to de�ne formal analogs of the notions of logical truth

and logical consequence.

In propositional logic, the con�gurations were assignments of truth values

to atomic wffs. This strategy breaks down in predicate logic, for various reasons.

First, atomic wffs now include formulas with free variables, and we shouldn’t

assign truth values to such wffs. A variable like x doesn’t stand for any �xed

thing; variables are rather used to express generality when combined with

quanti�ers, as in sentences like ∀xF x and ∀x(F x→Gx). But when a variable

is not combined with a quanti�er, as in wffs like F x and Rxy, the result is,

intuitively, semantically incomplete, and not the kind of linguistic entity that is

capable of truth or falsity. Second, con�gurations generally assign meanings

to the smallest meaningful bits of language, so as to enable the calculation

of truth values of complex sentences. In propositional logic, sentence letters

were the smallest meaningful bits of language, and so it was appropriate for

the con�gurations there to assign semantic values to them (and truth values

are appropriate semantic values for sentence letters). But here in predicate
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logic, the smallest meaningful bits of language are the names and predicates,

for example a, b , F , and R, so the con�gurations here ought to assign semantic

values to names and predicates, so as to enable the calculation of truth values of

complex sentences like F a, Rab , and∀xF x. But truth values are not appropriate

semantic values for names and predicates.

As a �rst step towards solving these problems, let’s begin by adopting a new

conception of a con�guration, that of a model:

Definition of model: A PC-model is an ordered pair 〈D,I 〉 such that:

· D is a non-empty set (“the domain”)

· I is a function (“the interpretation function”) obeying the following

constraints:

· if α is a constant then I (α) ∈D
· if Π is an n-place predicate, then I (Π) is an n-place relation over D

(Recall the notion of a relation from section 1.8.)

A con�guration is supposed to represent a way for the world to be, as well

as meanings for nonlogical expressions. The part of a model that represents

a way for the world to be is its domain, D, which contains, intuitively, the

individuals that exist in the con�guration.
1

The part of a model that represents

the meanings of nonlogical expressions is its interpretation function, I , which

tells us what names and predicates mean in the con�guration. I assigns to

each name a member of the domain—its referent. For example, if the domain

is the set of persons, then I might assign me to the name ‘a’. An n-place

predicate gets assigned an n-place relation over D—that is, a set of n-tuples

drawn from D. This set is called the extension of the predicate in the model.

Think of the extension of a predicate as the set of ’tuples to which the predicate

applies. One-place predicates get assigned sets of 1-tuples of D—that is, sets

of members of D. If the extension of ‘F ’ is the set of males, then ‘F ’ might be

thought of as symbolizing “is male”. Two-place predicates get assigned binary

relations over the domain. If a two place predicate ‘R’ is assigned the set of

ordered pairs of persons 〈u, v〉 such that u is taller than v, we might think of

1
There’s more to the world than which objects exist; there are also the features those objects

have. Predicate logic models blur their representation of this second aspect of the world with

their representation of the meanings of predicates (much as PL-interpretations blur their

representation of the world with their representation of the meanings of sentence letters.)
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‘R’ as symbolizing “is taller than”. Similarly, three-place predicates get assigned

sets of ordered triples, and so on.

Relative to any PC-model 〈D,I 〉, we want to de�ne what it is for wffs to

be true in that model. But we’ll need some apparatus �rst. It’s pretty easy to

see what truth value a sentence like F a should have. I assigns a member of

the domain to a—call that member u. I also assigns a subset of the domain to

F —let’s call that subset S. The sentence F a should be true iff u ∈ S—that is,

iff the referent of a is a member of the extension of F . That is, F a should be

true iff I (a) ∈ I (F ). Similarly, Rab should be true iff 〈I (a),I (b )〉 ∈ I (R).
Similarly for other atomic wffs without free variables.

As before, we can give recursive clauses for the truth values of negations

and conditionals. φ→ψ, for example, will be true iff either φ is false or ψ is

true.

But we encounter a problem when we try to specify the truth value of ∀xF x.

It should, intuitively, be true if and only if ‘F x’ is true, no matter what we put

in in place of ‘x’. But what does “no matter what we put in place of ‘x”’ mean?

Does it mean “no matter what name (constant) we put in place of ‘x”’? No,

because we don’t want to assume that we’ve got a name for everything in the

domain (F x might be true for all the objects we have names for, but false for

one of the nameless things). Does it mean, “no matter what object from the
domain we put in place of ‘x”’? No; objects from the domain needn’t be part of

our primitive vocabulary, so the result of replacing ‘x’ with an object from the

domain won’t in general be a wff.

The way forward here is due to Alfred Tarski. First step: we let the variables

refer to certain things in the domain temporarily. Second step: we show how to

compute the truth value of a formula like F x, relative to a temporary referent

of the variable x. Third step: we say that ∀xF x is true iff for all objects u in

the domain D, F x is true when x temporarily refers to u.

We implement this idea of temporary reference with the idea of a “variable

assignment” (Tarski did it a bit differently):

Definition of variable assignment: g is a variable assignment for model

〈D,I 〉 iff g is a function that assigns to each variable some object in D.

When g (x) = u, think of u as the object to which the variable x temporar-

ily refers. Notice that a variable assignment assigns a value to each of the

in�nitely many variables that are allowed to occur in predicate logic wffs.

We do this because we need to be ready to evaluate any formula for a truth
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value, no matter what variables it contains. When we evaluate the formula

F xy→Gz x1y47x191, for example, we’ll need temporary referents for all its vari-

ables: x, y, z, x1, y47, x191. Other formulas contain other variables. So we take

the safe course and assign temporary referents to all variables.

We need a further bit of notation. Let u be some object in D, let g be some

variable assignment, and let α be a variable. We then de�ne “g αu ” to be the

variable assignment that is just like g , except that it assigns u to α. (If g already

assigns u to α then g αu will be the same function as g .) Note the following

important fact about variable assignments: g αu , when applied to α, must give

the value u. (Work through the de�nitions to see that this is so.) That is:

g αu (α) = u

One more bit of apparatus. Given any modelM (= 〈D,I 〉), any variable

assignment, g , and any term (i.e., variable or name) α, we de�ne the denotation
of α, relative toM and g , “[α]M ,g ”, as follows:

[α]M ,g =

(

I (α) if α is a constant

g (α) if α is a variable

The subscriptsM and g on [ ] indicate that denotations are assigned relative

to a model (M ), and relative to a variable assignment (g ).

Now we are ready to de�ne truth in a model. That is, we’re ready to de�ne

the valuation function for a given model,M . The valuation function will assign

truth values to formulas relative to variable assignments. This relativization is

crucial to Tarski’s strategy. The second step of that strategy, recall, was to show

how to compute truth values of sentences relative to choices of temporary

referents for their variables—i.e., relative to variable assignments.

Definition of valuation: The PC-valuation function, VM ,g , for PC-model

M (= 〈D,I 〉) and variable assignment g , is de�ned as the function that assigns

to each wff either 0 or 1 subject to the following constraints:

i) for any n-place predicate Π and any terms α1 . . .αn, VM ,g (Πα1 . . .αn) = 1
iff 〈[α1]M ,g . . .[αn]M ,g 〉 ∈ I (Π)

ii) for any wffs φ, ψ, and any variable α:

VM ,g (∼φ) = 1 iff VM ,g (φ) = 0

VM ,g (φ→ψ) = 1 iff either VM ,g (φ) = 0 or VM ,g (ψ) = 1

VM ,g (∀αφ) = 1 iff for every u ∈D,VM ,gαu
(φ) = 1
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The valuation functions of propositional logic de�ned a kind of relativized

truth: truth relative to an PL-interpretation. Predicate logic valuation functions

are relativized to variable assignments as well as to interpretations (which

are now models), and so de�ne a doubly relativized kind of truth; think of

VM ,g (φ) = 1 as meaning that φ is true inM relative to g . But we’d also like a

singly relativized notion of truth that is relativized only to models, not valuation

functions. (We want this because we want to de�ne, e.g., a valid formula as

one that is true in all models.) How are we to de�ne such a notion? Consider

an example. What must be true in order for the formula ∀xF x to be true in

some modelM (= 〈D,I 〉), relative to some variable assignment g? Working

through our various de�nitions:

VM ,g (∀xF x) = 1 iff for every u ∈D,VM ,g x
u
(F x) = 1 (truth condition for ∀)

iff for every u ∈D,[x]g x
u
∈I (F ) (t.c. for atomics)

iff for every u ∈D, g x
u (x) ∈I (F ) (def of denotation)

iff for every u ∈D, u ∈I (F ) (def of g x
u )

Notice how, by the end, the function g with which we began has dropped

out. The values that g assigns, as a result, do not affect whether ∀xF x is true

relative to g in this model. In fact, this happens for every formula which, like

∀xF x, lacks free variables: whether the formula is true in a model relative to

variable assignment g does not depend at all on g (exercise 4.1). So we might

as well de�ne the singly relativized notion of truth thus:

Definition of truth in a model: φ is true in PC-modelM iff VM ,g (φ) = 1,

for each variable assignment g forM

(So as far as closed formulas are concerned, we would have gotten the same

result if we had required truth relative to some variable assignment.)

What about formulas with free variables, such as F x? These aren’t generally

the formulas we’re interested in; but nevertheless, what does our de�nition of

singly relativized truth say about them? It’s fairly easy to see that these formulas

turn out true in a model iff they are true for all values of their variables in that

model’s domain. Thus, a formula with free variables is true in a model iff its

“universal closure”, the result of pre�xing the formula with universal quanti�ers

for each of its free variables, is true in that model. For example, F x is true in a

model iff ∀xF x is true in that model.

Next, we can give de�nitions of validity and consequence:
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Definition of validity: φ is PC-valid (“�
PC
φ”) iff φ is true in all PC-models

Definition of semantic consequence: φ is a PC-semantic consequence of set

of wffs Γ (“Γ �
PC
φ”) iff for every PC-modelM and every variable assignment

g forM , if VM ,g (γ ) = 1 for each γ ∈ Γ, then VM ,g (φ) = 1

Note: exercise 4.1 tells us that if a closed formula is true in a model relative

to one variable assignment, then it’s true relative to every variable assignment.

Thus, when φ and the members of Γ are all closed formulas, an equivalent

de�nition of semantic consequence would be this: if every member of Γ is true in
M , then so is φ.

Since predicate logic valuation functions treat the propositional connectives

→ and ∼ in the same way as propositional logic valuations do, they also treat

the de�ned connectives ∧, ∨, and↔ in the same way:

VM ,g (φ∧ψ) = 1 iff VM ,g (φ) = 1 and VM ,g (ψ) = 1

VM ,g (φ∨ψ) = 1 iff VM ,g (φ) = 1 or VM ,g (ψ) = 1

VM ,g (φ↔ψ) = 1 iff VM ,g (φ) =VM ,g (ψ)

Moreover, we can also prove that ∃ gets the correct truth condition:

Example 4.1: Let’s show that

VM ,g (∃αφ) = 1 iff there is some u ∈D such that VM ,gαu
(φ) = 1

The de�nition of ∃αφ is: ∼∀α∼φ. So, we must show that for any model,M
(= 〈D,I 〉), and any variable assignment g forM , VM ,g (∼∀α∼φ) = 1 iff there

is some u ∈D such that VM ,gαu
(φ) = 1. (I’ll sometimes stop writing the subscript

M in order to reduce clutter. It should be obvious from the context what the

relevant model is.) Here’s the argument:

Vg (∼∀α∼φ) = 1 iff Vg (∀α∼φ) = 0 (t.c. for ∼)

iff for some u ∈D, Vgαu
(∼φ) = 0 (t.c. for ∀)

iff for some u ∈D, Vgαu
(φ) = 1 (t.c. for ∼)

Exercise 4.1** Show that if φ has no free variables, then for any

model M and variable assignments g and h for M , VM ,g (φ) =
VM ,h(φ)
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4.3 Establishing validity and invalidity
Given our de�nitions, we can establish that particular formulas are valid.

Example 4.2: Show that ∀xF x→F a is valid. That is, show that this formula

is true relative to any model and any variable assignment for that model:

i) Suppose otherwise; then VM ,g (∀xF x→F a) = 0, for some model M =
〈D,I 〉 and variable assignment g forM . So (dropping theM subscript

henceforth) Vg (∀xF x) = 1 and Vg (F a) = 0.

ii) Given the latter, [a]g /∈I (F ). But [a]g =I (a); so I (a) /∈I (F ).

iii) Given the former, for any u ∈ D, Vg x
u
(F x) = 1. But I (a) ∈ D, so

Vg x
I (a)
(F x) = 1. So, by the truth condition for atomics, [x]g x

I (a)
∈ I (F ).

But [x]g x
I (a)
= g x

I (a)(x) =I (a). Thus, I (a) ∈I (F ), contradicting ii).

The claim in step iii) that I (a) ∈D comes from the de�nition of an interpreta-

tion function: the interpretation of a name is always a member of the domain.

Notice that “I (a)” is a term of our metalanguage; that’s why, when I learn that

“for any u ∈D…” in step ii), I can set u equal to I (a).

Example 4.3: Show that � ∀x∀yRxy→∀xRx x (moving more quickly now):

i) Suppose for reductio that Vg (∀x∀yRxy→∀xRx x) = 0 (for some assign-

ment g in some model). Then Vg (∀x∀yRxy) = 1 and …

ii) …Vg (∀xRx x) = 0. So for some v ∈ D,Vg x
v
(Rx x) = 0. Call one such v

“u”. So we have: Vg x
u
(Rx x) = 0.

iii) Given ii), 〈[x]g x
u
,[x]g x

u
〉 /∈I (R). [x]g x

u
is g x

u(x), i.e., u. So 〈u, u〉 /∈I (R)

iv) Given i), for every member ofD, and so for u in particular, Vg x
u
(∀yRxy) =

1. So for every member of D, and so for u in particular, Vg xy
u u
(Rxy) = 1.

So 〈[x]g xy
u u

,[y]g xy
u u
〉 ∈ I (R). But [x]g xy

u u
and [y]g xy

u u
are each just u. Hence

〈u, u〉 ∈ I (R), contradicting iii).

Line ii) of example 4.3 illustrates an elementary inferential practice that is

ubiquitous in mathematical reasoning. Suppose you learn that there exists some



CHAPTER 4. PREDICATE LOGIC 124

object of a certain type, T . Immediately afterwards you should give one of

these objects of type T a name. Say: “call one such object ‘u’.”. Then continue

your proof, using the name u.
2

Once this practice becomes familiar, I’ll streamline proofs by no longer

explicitly saying “call one such object u”. Instead, after writing down an initial

line of the form “there exists some u of type T ”, I’ll subsequently use ‘u’ as a

name of one such object. But strictly one ought always to say “call one of the

objects of type T ‘u’”, to mark this change in how ‘u’ is being used, since in

the initial line ‘u’ is not a name, but is rather a bound metalanguage variable

(bound to the metalanguage quanti�er ‘there is some’). (A common mistake to

avoid: using an expression like ‘u’ initially as a metalanguage variable, but then

drifting into using it as if it’s a name, where it isn’t clear which object it names.)

This practice needs to be employed with care. Suppose you introduce ‘u’

as a name for some object of type T , and suppose that later in the same proof,

you learn that there exists an object of a certain other type T ′. You cannot then

introduce the same name ‘u’ for some object of type T ′—what if nothing is

both of type T and of type T ′? You must instead give the new object a new

name: ‘v’, say.

The practice of introducing a name for an object of a certain type is for use

with existentially quanti�ed statements of the metalanguage—statements of

the form “there exists some object of such and such type”. It’s not for use with

universally quanti�ed statements; if you learn that every object is of a certain

type, it’s usually not a good idea to say: “call one such object ‘u’.” Instead,

wait. Wait until some particular object or objects of interest have emerged

in the proof—until, for example, you’ve learned some existentially quanti�ed

statements, and have introduced corresponding names. Only then should you

use the universally quanti�ed statement—you can now apply it to the objects

of interest. For example, if you introduced a name ‘u’, you could use a univer-

sally quanti�ed statement ‘everything is of type T ’ to infer that u is of type T .

(Compare line iv) in example 4.3.) In general: deal with existentially quanti�ed

metalanguage statements �rst, and universally quanti�ed metalanguage state-

ments later. (Note that statements of the form Vg (∀αφ) = 1 and Vg (∃αφ) = 0
imply universally quanti�ed metalanguage statements, whereas statements of

2
You haven’t really attached the name ‘u’ to any particular one of the objects of type T .

But this doesn’t matter, so long as you only use the name u to derive conclusions that could

be derived for any object of type T . The practice I’m describing is often called the rule of

“existential elimination” in introductory logic texts.
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the form Vg (∃αφ) = 1 and Vg (∀αφ) = 0 imply existentially quanti�ed metalan-

guage statements. So deal with the latter �rst.)

We’ve seen how to establish that particular formulas are valid. How do we

show that a formula is invalid? All we must do is exhibit a single model in which

the formula is false. (A valid formula must be true in all models; therefore, it

only takes one model in which a formula is false to make that formula invalid.)

Example 4.4: Show that the formula (∃xF x∧∃xGx)→∃x(F x∧Gx) isn’t

valid. We need to �nd a model in which this formula is false. My model

will contain letters in its domain:

D = {u,v}
I (F ) = {u}
I (G) = {v}

It is intuitively clear that the formula is false in this model. In this model,

something is F (namely, u), and something is G (namely, v), but nothing in the

model’s domain is both F and G.

Example 4.5: Show that ∀x∃yRxy 2 ∃y∀xRxy. We must show that the �rst

formula does not semantically imply the second. So we must come up with a

model and variable assignment in which the �rst formula is true and the second

is false. (Since these formulas are closed, as noted above it won’t matter which

variable assignment we choose; so all we need is a model in which the premise

is true and the conclusion is false.) It helps to think about natural language

sentences that these formulas might represent. If R symbolizes “respects”,

then the �rst formula says that “everyone respects someone or other”, and

the second says that “there is someone whom everyone respects”. Clearly, the

�rst can be true while the second is false: suppose that each person respects a

different person, so that no one person is respected by everyone. A simple case

of this occurs when there are just two people, each of whom respects the other,

but neither of whom respects him/herself:

• (( •hh

Here is a model based on this idea:

D = {u,v}
I (R) = {〈u,v〉, 〈v,u〉}
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Exercise 4.2 Show that:

a) � ∀x(F x→(F x∨Gx))

b) � ∀x(F x∧Gx)→(∀xF x∧∀xGx)

c) ∀x(F x→Gx),∀x(Gx→H x) � ∀x(F x→H x)

d) � ∃x∀yRxy→∀y∃xRxy

Exercise 4.3 Show that:

a) 2 ∀x(F x→Gx)→∀x(Gx→F x)

b) 2 ∀x(F x∨∼Gx)→(∀xF x∨∼∃xGx)

c) Rab 2 ∃xRx x

d)** F x 2 ∀xF x

e) ∀x∀y∀z[(Rxy∧Ry z)→Rx z],∀x∃yRxy 2 ∃xRx x

4.4 Axiomatic proofs in PC
Let’s turn now to proof theory for predicate logic. One can construct natural

deduction, sequent, or axiomatic systems of proof for predicate logic, just as

with propositional logic. (And there are other approaches as well.) Although

axiomatic proofs are less intuitive than the others, we’ll take the axiomatic

approach since this will be convenient for use with modal logic later on.

We’ll continue to use section 2.6’s de�nitions of the key concepts of the

axiomatic approach: a proof from a set of wffs Γ is de�ned as a sequence of wffs,

each of which is either a member of Γ, an axiom, or follows from earlier lines

in the proof by a rule; φ is provable from Γ iff φ is the last line of a proof from

Γ; φ is a theorem iff φ is provable from the empty set—i.e. provable using only

the axioms and rules. Once we have given appropriate axioms and rules for

predicate logic, we will have de�ned provability in predicate logic (`
PC
φ and

Γ `
PC
φ).

Our axioms and rules for predicate logic will include our axioms and rules
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for propositional logic, plus additional ones dealing with quanti�ers:
3

Axiomatic system for PC:

· Rules: modus ponens, plus universal generalization (UG):

φ

∀αφ

· Axioms: all instances of PL1-PL3, plus:

∀αφ→φ(β/α) (PC1)

∀α(φ→ψ)→ (φ→∀αψ) (PC2)

where:

· φ, ψ, and χ are any PC-wffs, α is any variable, and β is any term

· φ(β/α) results from φ by “correct substitution” of β for α (see

below)

· in PC2, no occurrences of variable α may be free in φ

Let’s examine the new predicate logic axioms and rule. The rule UG is

based on the idea that proving an arbitrary instance of a universal generalization

suf�ces to prove that universal generalization. To prove that every F is an F ,

for example, one picks an “arbitrary” object, x, proves that F x→F x, and then

concludes by UG that ∀x(F x→F x). (See also example 4.6.)

Axiomatic proof systems tend to handle inferences using free variables a bit

unsteadily. (It’s easier with natural deduction and sequent systems to smooth

out the wrinkles.) For example, our system allows the following proof of ∀xF x
from F x:

1. F x premise

2. ∀xF x 1, UG

Hence, F x ` ∀xF x. Since 0 F x→∀xF x (I won’t prove this here, but it’s true),

and since F x 2 ∀xF x (exercise 4.3d), it follows that unless they are restricted

in certain ways, the deduction theorem (section 2.9) and a generalized version

3
See Mendelson (1987, 55–56).
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of soundness (“Γ � φ whenever Γ ` φ”—compare exercise 2.9) both fail for

our axiomatic system. (The needed restrictions are of a sort familiar from

introductory logic books, which require variables used in connection with UG

to be “new” to proofs.) Let’s not worry about this glitch; our interest will be

solely in theoremhood, and in inferences Γ `φ where φ and all the members of

Γ are closed wffs; and UG doesn’t lead to bad results in those cases.
4

PC1 embodies the familiar principle of substitution (often called “uni-

versal instantiation”), which yields axioms like ∀xF x→F a (and ∀xF x→F b ,

∀xF x→F x, etc.) To construct an instance of PC1, you: i) begin with ∀αφ, ii)

strip off the quanti�er ∀α to get φ, iii) choose a term (variable or constant) β,

called the “instantial term”, iv) change the αs in φ to βs to arrive at φ(β/α),
and then v) write down the conditional ∀αφ→φ(β/α). But steps iii) and iv)

need to be restricted. First, only the αs that are free in φ are to be changed

in step iv). For example, if φ is F x→∀xRx x and the instantial term is a, you

only change the �rst x to a. (Thus, the resulting axiom is ∀x(F x→∀xRx x)→
(F a→∀xRx x). It’s not ∀x(F x→∀xRx x) → (F a→∀aRaa)—that’s not even a

wff.) Second, all free occurrences of α in φ must be changed to the instantial

term. (∀xRx x→Rxa is not an instance of PC1.) Third, if the instantial term is

a variable, none of the occurrences of that variable that would result from the

substitution can be bound in the axiom. For example, ∀x∃yRxy→∃yRyy isn’t

an instance of PC1 (even after ∃ is replaced with its de�nition). You can’t choose

y as the instantial term here, since the occurrence of y that would result from

the substitution in the consequent (the underlined one: ∀x∃yRxy→∃yRyy)

would be bound in the would-be axiom, not free. (This wff shouldn’t count as

an axiom; it would symbolize, for example, the sentence “If everyone respects

someone (or other) then someone respects him or her self”, which isn’t a logical

truth.) “Correct substitutions” are those that meet these three restrictions.

The importance of PC2 will be illustrated in the examples below.

As we saw in section 2.6, constructing axiomatic proofs in propositional

logic can be tedious. We paid our dues in that section, so now let’s give

ourselves a break. Suppose, for example, that we want to get the formula

(∀xF x→∀xGx)→(∀xF x→∀xF x) into one of our predicate logic proofs. Re-

call from section 2.6 that we were able to construct an axiomatic proof in

propositional logic of (P→Q)→(P→P ). But if we take that proof and change

each P to ∀xF x and each Q to ∀xGx, the result is a legal predicate logic proof

of (∀xF x→∀xGx)→(∀xF x→∀xF x), since our predicate logic axiomatic sys-

4
A similar issue will be raised by modal logic’s rule of necessitation.
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tem includes the axioms and rules of propositional logic. Instead of actually

inserting this proof of (∀xF x→∀xGx)→(∀xF x→∀xF x) into our predicate

logic proof, let’s allow ourselves to write merely:

i . (∀xF x→∀xGx)→(∀xF x→∀xF x) PL

In essence, writing “PL” means: “I could prove this line using just PL1–PL3

and MP if I wanted to.”

Since our focus in this section is on predicate rather than propositional

logic, let’s be quite liberal about when this time-saving expedient may be used:

let’s allow it for any formula that is a “PC-tautology”. By this I mean the

following. Suppose that ψ is a tautology—i.e., a valid wff of propositional logic.

And suppose that there is some way of uniformly substituting predicate logic

formulas for ψ’s sentence letters to obtain a predicate-logic formula φ. In such

a case, we’ll say that φ is a PC-tautology. For example, in the previous para-

graph, (∀xF x→∀xGx)→(∀xF x→∀xF x) is a PC-tautology, resulting from the

tautology (P→Q)→(P→P ). (I call φ a PC-tautology rather than a tautology

full-stop because tautologies have to be propositional logic wffs, whereas φ is a

predicate logic wff.) Breezily writing “PL” beside any suchφ is justi�ed because

i) our PL-axiomatic system is complete (section 2.9), so ψ has a PL-proof,

and ii) that proof can be converted into a PC-proof of φ as in the previous

paragraph.

Furthermore, suppose in some PC proof we have some formulasφ1 . . .φn on

separate lines. And suppose that formula ψ is a “PC-tautological consequence”

of formulas φ1 . . .φn, in the sense that the formula

(φ1→(φ2→ . . . (φn→ψ))

is a PC-tautology. Then, let’s allow ourselves to enter ψ into our proof, anno-

tating “PL” and referencing the lines on which φ1 . . .φn occurred. This too

is a harmless shortcut, for since (φ1→(φ2→ . . . (φn→ψ)) is a PC-tautology, we

know that a proof of it exists, which we could insert and then use modus ponens

n times from the lines containing φ1 . . .φn to obtain ψ by more legitimate

means.

When annotating “PL”, how do we �gure out whether something is a tau-

tology? Any way we like: with truth tables, natural deduction derivations,

memory—whatever. For future reference, table 4.1 lists some helpful tau-

tologies. Henceforth, when I annotate a line “PL” I will sometimes refer

parenthetically to one or more of the tautologies in this table, to clarify how I
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Table 4.1: Some tautologies

φ↔∼∼φ (double negation)

(φ→ψ)↔ (∼ψ→∼φ) (contraposition)

((φ→ψ)∧ (ψ→χ ))→ (φ→χ ) (syllogism)

(φ→(ψ→χ ))↔ ((φ∧ψ)→χ ) (import/export)

(φ→(ψ→χ ))↔ (ψ→(φ→χ )) (permutation)

((φ→ψ)∧ (φ→χ ))↔ (φ→(ψ∧χ )) (composition)

((φ→χ )∧ (ψ→χ ))↔ ((φ∨ψ)→χ ) (dilemma)

((φ→ψ)∧ (ψ→φ))↔ (φ↔ψ) (biconditional)

(∼φ→ψ)↔ (φ∨ψ) (disjunction)

(φ→∼ψ)↔∼(φ∧ψ) (negated conjunction)

obtained the line. (The line won’t always come exactly or solely from the cited

tautology; my goal here is to make proofs easier to understand, not to intro-

duce a rigorous convention.) Also, notice this fact about propositional logic: if

φ↔ψ is a tautology, then the result of substituting φ for ψ in any tautology is

itself a tautology.
5

This fact makes table 4.1 all the more useful. For example,

since (P→Q)↔ (∼Q→∼P ) is a tautology (contraposition), we can substitute

∼Q→∼P for P→Q in the tautology ((P→R)∧ (R→Q))→ (P→Q) (syllogism)

to conclude that ((P→R)∧ (R→Q))→ (∼Q→∼P ) is also a tautology.

And while we’re on the topic of shortcuts, let’s also continue in the practice

of doing two or more steps at once, as in section 2.8. (As noted in that section,

whenever we use any of these shortcuts, we are constructing proof sketches

rather than of�cial proofs.)

Example 4.6: As our �rst example, let’s show that ∀xF x,∀x(F x→Gx) `
PC

∀xGx:

5
See note 3.
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1. ∀xF x Premise

2. ∀x(F x→Gx) Premise

3. ∀xF x→F x PC1

4. F x 1, 3 MP

5. F x→Gx PC1, 2, MP

6. Gx 4, 5 MP

7. ∀xGx 6, UG

This proof illustrates the main method for proving universally quanti�ed

formulas: to prove ∀xφ, �rst prove φ; and then use UG. Here we wanted to

prove ∀xGx, so we �rst proved Gx (line 6) and then used UG. To do this,

notice, we must include formulas with free variables in our proofs. We must

use free variables as instantial terms when using PC1 (lines 3 and 5), we must

apply propositional logic’s axioms and rules to formulas with free variables

(lines 4–6), and we must apply UG to such formulas (line 7). This may seem

odd. What does a formula with a free variable mean? Well, intuitively, think of

a free variable as denoting some particular but unspeci�ed object. Thus, think

of line 3, ∀xF x→F x (in which the �nal occurrence of x is free), as saying “if

everything is F , then this particular object is F ”. And think of the whole proof as

follows. Since we want to prove ∀xGx, we choose an arbitrary object, x, and

try to show that x is G. Once we do so (line 6), we can conclude that everything

is G because x was arbitrarily chosen.
6

Example 4.7: Let’s show that `
PC
∀x∀yRxy→∀y∀xRxy (this will illustrate

the need for PC2):

1. ∀x∀yRxy→∀yRxy PC1

2. ∀yRxy→Rxy PC1

3. ∀x∀yRxy→Rxy 1, 2, PL (syllogism)

4. ∀x(∀x∀yRxy→Rxy) 3, UG

5. ∀x∀yRxy→∀xRxy 4, PC2, MP

6. ∀x∀yRxy→∀y∀xRxy 5, UG, PC2, MP

6
If any of the premises contained free occurrences of x then x wouldn’t really have been

“arbitrarily chosen”. Such cases are precisely the ones where UG gets restricted in introductory

books; but as I said, I’m not worrying here about this glitch.
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Example 4.8: A theorem schema that will be useful is the following:

`
PC
∀α(φ→ψ)→(∀αφ→∀αψ) (Distribution)

Any instance of Distribution can be established as follows:

1. ∀α(φ→ψ)→(φ→ψ) PC1

2. ∀αφ→φ PC1

3. ∀α(φ→ψ)→(∀αφ→ψ) 1, 2 PL (see below)

4. ∀α(∀α(φ→ψ)→(∀αφ→ψ)) 3, UG

5. ∀α(φ→ψ)→∀α(∀αφ→ψ)) PC2, 4, MP

6. ∀α(∀αφ→ψ)→(∀αφ→∀αψ) PC2

7. ∀α(φ→ψ)→(∀αφ→∀αψ) 5, 6, PL (syllogism)

(Line 3 is via the tautology (P→(Q→R))→((S→Q)→(P→(S→R))). Note that

steps 1 and 2 are legal instances of PC1, regardless of what φ and ψ look like.

In step 2, for example, we strip off the ∀α from ∀αφ, and leave φ alone. If

you go back and look at the two restrictions on PC, you will see that since

no occurrences of α within φ are changed, those two restrictions are satis�ed.

And notice further why the uses of PC2 are correct. Line 6, for example, is

a legal instance of PC2 because the variable α is not free in ∀αφ—any free

occurrences of α in φ get bound to the quanti�er ∀α.

Example 4.9: One thing distribution is good for is proving wffs of the form

∀xφ→∀xψ where φ→ψ is provable. For example:

1. (F x∧Gx)→F x PL

2. ∀x((F x∧Gx)→F x) 1, UG

3. ∀x(F x∧Gx)→∀xF x Distribution, 2, MP

Example 4.10: Show that ∃x∀yRxy `
PC
∀y∃xRxy. Given the de�nition of

∃ this means showing that ∼∀x∼∀yRxy `
PC
∀y∼∀x∼Rxy:

1. ∼∀x∼∀yRxy premise

2. ∀yRxy→Rxy PC1

3. ∼Rxy→∼∀yRxy 2, PL (contraposition)

4. ∀x(∼Rxy→∼∀yRxy) 3, UG

5. ∀x∼Rxy→∀x∼∀yRxy Distribution, 4, MP

6. ∼∀x∼Rxy 1, 5 PL (contraposition)

7. ∀y∼∀x∼Rxy 6, UG
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My approach to this problem was to work my way backwards. (This approach

is often helpful.) I set myself an initial goal, and then thought about how to

reach that goal. Whatever I would need to reach that initial goal became my

new goal. Then I thought about how to reach this new goal. I continued in this

way until I got a goal I knew how to reach. In this case, this thought process

went as follows:

· goal 1: get ∀y∼∀x∼Rxy (since this is the conclusion of the argument)

· goal 2: get ∼∀x∼Rxy (since then I can get goal 1 by UG)

· goal 3: get ∀x∼Rxy→∀x∼∀yRxy (since then I can get goal 2 from the

argument’s premise and propositional logic)

· goal 4: get ∼Rxy→∼∀yRxy (since then I can get goal 3 by UG and

distribution)

Once I had written down goal 4, I had something I knew how to achieve, so

then I started work on the actual proof. I then worked backwards toward the

ultimate goal: goal 1. Notice in particular goal 3. Something like this strategy

is often needed in connection with negation. I �gured that at some point I

would need to use the argument’s premise, which was a negation. And a natural

way to use a negation, ∼φ, is to attempt to prove some conditional ψ→φ, and

then conclude ∼ψ by modus tollens. This is what happened in goal 3.

Exercise 4.4 Construct axiomatic proofs to establish each of the

following facts. You may use the various shortcuts introduced in

this chapter; and you may use the principle of Distribution.

a) ∀x(F x→Gx),∀x(Gx→H x) `
PC
∀x(F x→H x)

b) `
PC

F a→∃xF x

c) `
PC
∀xRax→∀x∃yRy x

d) ∃xRax,∀y(Ray→∀zRzy) `
PC
∃x∀zRz x
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4.5 Metalogic of PC
We have given a semantics and a proof theory for predicate logic. Mathematical

logicians have proved fascinating metalogical results about this semantics and

proof theory. Although the raison d’être of this book is to not focus on these

matters in detail, the results are important to appreciate. I’ll state—informally

and without proof—and comment on some of the most signi�cant results.
7

Needless to say, our discussion will only scratch the surface.

Soundness and Completeness. When φ and Γ contain only sentences (wffs

without free variables
8
), then it can be shown that Γ `

PC
φ iff Γ �

PC
φ. For

predicate logic (closed, �rst-order wffs), provability and semantic consequence

coincide. Thus, one can establish facts of the form Γ 0φ by exhibiting a model

in which all members of Γ are true and φ is false, and then citing soundness;

and one can establish facts of the form Γ ` φ while avoiding the agonies of

axiomatic proofs by reasoning directly about models to conclusions about

semantic consequence, and then citing completeness.

Compactness. Say that a set of sentences is satis�able iff there is some model

in which each of its members is true. It can be shown that if each �nite subset

of a set Γ of sentences is satis�able, then Γ itself must be satis�able. This result,

known as compactness, is intuitively surprising because it holds even in the

case where Γ contains in�nitely many sentences. One might have thought that

there could be some contradiction latent within some in�nite set Γ, preventing

it from being satis�able, but which only emerges when you consider all of its

in�nitely many members together—a contradiction which does not emerge,

that is, if you consider only �nite subsets of Γ. Compactness says that this can

never happen.

Compactness is a sign of a kind of expressive weakness in (�rst-order)

predicate logic. The weakness pertains to in�nity: intuitively speaking, you

can’t say anything in predicate logic whose logical signi�cance would emerge

only in connection with in�nitely many other sentences. For example, after

we add the identity sign to predicate logic in section 5.1, we will show how to

symbolize the sentences “there are at least two F s”, “there are at least three

F s”, and so on. Call these symbolizations ∃2xF x,∃3xF x . . . . These “symbolize”

the various numeric claims in the sense that ∃n xF x is true in a model iff the

7
See, for example, Boolos et al. (2007) or Mendelson (1987) for the details.

8
Other axiomatic systems for predicate logic can be given which are sound and complete

even for inferences involving free variables.
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extension of F in that model has at least n members. Given compactness, there

is no way to symbolize, in this same sense of ‘symbolize’, “there are �nitely

many F s”. For if there existed a sentence, φ, that is true in a given model iff

the extension of F in that model is �nite, then the following in�nite set would

violate compactness: {φ,∃2xF x,∃3xF x . . .} (exercise 4.5).

Undecidability says roughly that there is no mechanical procedure for decid-

ing whether a given sentence of predicate logic is valid. Intuitively, this means

that there is no way to write a computer program that will tell you whether an

arbitrary sentence is valid or invalid, in the sense that:

i) You feed the program sentences; it can give answers of the form “valid”

or “invalid”

ii) It never answers incorrectly. That is, if it says “valid” then the sentence

is indeed valid; if it says “invalid” then the sentence is indeed invalid

iii) If you feed it a valid sentence it eventually answers “valid”

iv) If you feed it an invalid sentence it eventually answers “invalid”

The intuitive idea of a “mechanical procedure” needs to be precisely de�ned,

of course. But, it turns out, all reasonable ways of de�ning it are equivalent.

(One common de�nition is that of a “Turing Machine”.) So the upshot is: on

any reasonable construal of “mechanical procedure”, there’s no mechanical

procedure for �guring out whether an arbitrary sentence is PC-valid. (Given

soundness and completeness, it follows that there’s no mechanical procedure to

�gure out whether an arbitrary sentence is a PC-theorem.) There are, it turns

out, mechanical “positive” tests for validity, in the sense of computer programs

satisfying i)-iii). Such a program would be guaranteed to correctly classify any

valid formula as such. But if you fed it an invalid formula, it might just go on

churning away forever, never delivering an answer.

Gödel’s incompleteness theorem. One can write down axioms for predicate logic

from which one can prove all and only the valid sentences of predicate logic. (That is

what the soundness and completeness theorems say.) This axiomatic approach

has been attempted in other areas as well. Euclid, for example, attempted to

write down axioms for plane geometry. The intent was that one could prove

all and only the truths of plane geometry using his axioms. What Kurt Gödel

showed is that this axiomatic approach will not work for the truths of arithmetic.
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Arithmetic is the theory of multiplication and addition over natural numbers.

One can represent statements of arithmetic using the language of predicate

logic.
9

Can we write down axioms for arithmetic? That is, are there axioms

from which one can prove all and only the truths of arithmetic? In a trivial sense

there are: we could just say “let each truth of arithmetic be an axiom”. But such

an “axiomatic system” would be useless; there would be no way of telling what

counts as an axiom! Gödel’s (�rst) incompleteness theorem tells us that there

is no set S of axioms such that i) there is a mechanical procedure for telling

what counts as a member of S, and ii) one can prove all and only the truths

of arithmetic from S. (It can also be shown that there exists no mechanical

procedure for �guring out whether an arbitrary sentence of Arithmetic is true.)

Exercise 4.5* Show that the set {φ,∃2xF x,∃3xF x . . .} mentioned

above would violate compactness.

9
Including identity—see section 5.1.



Chapter 5

Beyond Standard Predicate Logic

S
tandard predicate logic is powerful. It can be used to model the logical

structure of a signi�cant portion of natural language. Still, it isn’t perfect.

In this chapter we consider some of its limitations, and in each case we’ll discuss

additions to predicate logic to make up for the de�cits.
1

5.1 Identity
How might we symbolize “Only Ted is happy” using predicate logic? “H t” gets

half of it right—we’ve said that Ted is happy—but we’ve left out the “only” part.

We can’t say H t ∧∼∃xH x, because that’s a logical falsehood: if the �rst part,

“Ted is happy”, is true, then the second part, “it’s not the case that someone is

happy” can’t be right, since Ted is a someone, and we just said that he’s happy.

What we want to add to H t is that it’s not the case that someone else is happy.

But how to say “someone else”?

“Someone else” means: someone not identical to. So we need a predicate for

identity. Now, we could simply choose some two-place predicate to symbolize

“is identical to”—I , say. Then we could symbolize “Only Ted is happy” as

meaning H t ∧∼∃x(H x ∧∼I x t ). But treating “is identical to” as just another

predicate sells it short. For surely it’s a logical truth that everything is self-

identical, whereas the sentence ∀xI x x is not PC-valid.

In order to recognize distinctive logical truths issuing from the meaning of

1
Actually “standard” predicate logic is often taken to already include the identity sign, and

sometimes function symbols as well.

137
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“is identical to”, we must treat that predicate as a logical constant (recall section

1.6). To mark this special status, we’ll symbolize identity with a symbol unlike

other predicates: “=”. And we’ll write it between its two arguments rather than

before them—we write α=β rather than =αβ. We can now symbolize “Only

Ted is happy” thus: H t ∧∼∃x(H x ∧∼ x=t ).

5.1.1 Grammar for the identity sign
We �rst need to expand our grammar of predicate logic to allow for the new

symbol =. Two changes are needed. First, we need to add = to the primitive

vocabulary of predicate logic. Then we need to add the following clause to the

de�nition of a well-formed formula:

· If α and β are terms, then α=β is a wff

I’m now using the symbol ‘=’ as the object-language symbol for identity.

But I’ve also been using ‘=’ as the metalanguage symbol for identity, for instance

when I write things like “I (P ) = 1”. This shouldn’t generally cause confusion,

but if there’s a danger of misunderstanding, I’ll clarify by writing things like:

“I (P ) = (i.e., is the same object as) 1”, to make clear that it’s the metalanguage’s

identity predicate I’m using.

5.1.2 Semantics for the identity sign
This is easy. We keep the notion of a PC-model from the last chapter, and

simply add a clause to the de�nition of a valuation function telling it what truth

values to give to sentences containing the = sign. Here is the clause:

VM ,g (α=β) = 1 iff: [α]M ,g = (i.e., is the same object as) [β]M ,g

That is, the wff α=β is true iff the terms α and β refer to the same object.

Example 5.1: Show that the formula ∀x∃y x=y is valid. Let g be any vari-

able assignment for any model, and suppose for reductio that Vg (∀x∃y x=y) = 0.

Given the clause for ∀, we know that for some object in the domain, call it “u”,

Vg x
u
(∃y x=y) = 0. Given the clause for ∃, for every member of the domain, and

so for u in particular, Vg xy
u u
(x=y) = 0. So, given the clause for “=”, [x]g xy

u u
is not

the same object as [y]g xy
u u

. But [x]g xy
u u

and [y]g xy
u u

are the same object. [x]g xy
u u

is

g xy
u u(x), i.e., u; and [y]g xy

u u
is g xy

u u(y), i.e., u.
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5.1.3 Symbolizations with the identity sign
Why do we ever add anything to our list of logical constants? Why not stick

with the tried and true logical constants of propositional and predicate logic?

We generally add a logical constant when it has a distinctive inferential and

semantic role, and when it has very general application—when, that is, it occurs

in a wide range of linguistic contexts. We studied the distinctive semantic role

of ‘=’ in the previous section. In this section, we’ll have a quick look at some

linguistic contexts that can be symbolized using ‘=’.

The most obvious sentences that may be symbolized with ‘=’ are those

that explicitly concern identity, such as “Mark Twain is identical to Samuel

Clemens”:

t=c

and “Every man fails to be identical to George Sand”:

∀x(M x→∼x=s)

(It will be convenient to abbreviate ∼α=β as α 6=β. Thus, the second symbol-

ization can be rewritten as: ∀x(M x→x 6=s).) But many other sentences involve

the concept of identity in subtler ways.

For example, there are sentences involving ‘only’, as the example “Only Ted

is happy” illustrated. Next, consider “Every lawyer hates every other lawyer”.

The ‘other’ signi�es nonidentity; we have, therefore:

∀x(Lx→∀y[(Ly∧x 6=y)→H xy])

Another interesting class of sentences concerns number. We cannot symbolize

“There are at least two dinosaurs” as: “∃x∃y(D x∧Dy)”, since this would be

true even if there were only one dinosaur: x and y could be assigned the same

dinosaur. The identity sign to the rescue:

∃x∃y(D x∧Dy ∧ x 6=y)

This says that there are two different objects, x and y, each of which are di-

nosaurs. To say “There are at least three dinosaurs” we say:

∃x∃y∃z(D x∧Dy∧D z ∧ x 6=y ∧ x 6=z ∧ y 6=z)
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Indeed, for any n, one can construct a sentence φn that symbolizes “there are

at least n F s”:

φn : ∃x1 . . .∃xn(F x1∧· · ·∧F xn ∧δ)

where δ is the conjunction of all sentences “xi 6=x j ” where i and j are integers

between 1 and n (inclusive) and i < j . (The sentence δ says in effect that no

two of the variables x1 . . . xn stand for the same object.)

Since we can construct eachφn, we can symbolize other sentences involving

number as well. To say that there are at most n F s, we write: ∼φn+1. To say

that there are between n and m F s (where m > n), we write: φn∧∼φm+1. To

say that there are exactly n F s, we write: φn∧∼φn+1.

These methods for constructing sentences involving number will always

work; but one can often construct shorter numerical symbolizations by other

methods. For example, to say “there are exactly two dinosaurs”, instead of

saying “there are at least two dinosaurs, and it’s not the case that there are at

least three dinosaurs”, we could say instead:

∃x∃y(D x∧Dy ∧ x 6=y ∧∀z[D z→(z=x∨z=y)])

Exercise 5.1 Demonstrate each of the following:

a) F ab � ∀x(x=a→F x b )

b) ∃x∃y∃z(F x∧F y∧F z∧x 6=y∧x 6=z∧y 6=z),
∀x(F x→(Gx∨H x) 2 ∃x∃y∃z(Gx∧Gy∧Gz ∧ x 6=y∧x 6=z∧y 6=z)

Exercise 5.2 Symbolize each of the following, using predicate

logic with identity.

a) Everyone who loves someone else loves everyone

b) The only truly great player who plays in the NBA is Allen

Iverson

c) If a person shares a solitary con�nement cell with a guard,

then they are the only people in the cell

d) There are at least �ve dinosaurs (What is the shortest sym-

bolization you can �nd?)
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5.2 Function symbols
A singular term, such as ‘Ted’, ‘New York City’, ‘George W. Bush’s father’,

or ‘the sum of 1 and 2’, is a term that purports to refer to a single entity.

Notice that some of these have semantically signi�cant structure. ‘George

W. Bush’s father’, for example, means what it does because of the meaning

of ‘George W. Bush’ and the meaning of ‘father’ (and the meaning of the

possessive construction). But standard predicate logic’s only (constant) singular

terms are its names: a, b , c . . . , which do not have semantically signi�cant parts.

Thus, using predicate logic’s names to symbolize semantically complex English

singular terms leads to an inadequate representation.

Suppose, for example, that we give the following symbolizations:

“3 is the sum of 1 and 2”: a = b

“George W. Bush’s father was a politician”: P c

By symbolizing ‘the sum of 1 and 2’ as simply ‘b ’, the �rst symbolization ignores

the fact that ‘1’, ‘2’, and ‘sum’ are semantically signi�cant constituents of ‘the

sum of 1 and 2’; and by symbolizing “George W. Bush’s father” as ‘c ’, we ignore

the semantically signi�cant occurrences of ‘George W. Bush’ and ‘father’. This

is a bad idea. We ought, rather, to produce symbolizations of these terms

that take account of their semantic complexity. The symbolizations ought to

account for the distinctive logical behavior of sentences containing the complex

terms. For example, the sentence “George W. Bush’s father was a politician”

logically implies the sentence “Someone’s father was a politician”. This ought

to be re�ected in the symbolizations; the �rst sentence’s symbolization ought

to semantically imply the second sentence’s symbolization.

One way of doing this is via an extension of predicate logic: we add function
symbols to its primitive vocabulary. Think of “George W. Bush’s father” as

the result of plugging “George W. Bush” into the blank in “ ’s father”. “ ’s

father” is an English function symbol. Function symbols are like predicates

in some ways. The predicate “ is happy” has a blank in it, in which you can

put a name. “ ’s father” is similar in that you can put a name into its blank.

But there is a difference: when you put a name into the blank of “ is happy”,

you get a complete sentence, such as “Ted is happy”, whereas when you put a

name into the blank of “ ’s father”, you get a noun phrase, such as “George

W. Bush’s father”.

Corresponding to English function symbols, we’ll add logical function

symbols. We’ll symbolize “ ’s father” as f ( ). We can put names into the
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blank here. Thus, we’ll symbolize “George W. Bush’s father” as “ f (a)”, where

“a” symbolizes “George W. Bush”.

This story needs to be revised in two ways. First, what goes into the blank

doesn’t have to be a name—it could be something that itself contains a function

symbol. E.g., in English you can say: “George W. Bush’s father’s father”. We’d

symbolize this as: f ( f (a)). Second, just as we have multi-place predicates, we

have multi-place function symbols. “The sum of 1 and 2” contains the function

symbol “the sum of and —”. When you �ll in the blanks with the names “1”

and “2”, you get the noun phrase “the sum of 1 and 2”. So, we symbolize this

using the two-place function symbol, “s( ,—). If we let “a” symbolize “1” and

“b” symbolize “2”, then “the sum of 1 and 2” becomes: s(a, b ).
The result of plugging names into function symbols in English is a noun

phrase. Noun phrases combine with predicates to form complete sentences.

Function symbols function analogously in logic. Once you combine a function

symbol with a name, you can take the whole thing, apply a predicate to it, and

get a complete sentence. Thus, the sentence “George W. Bush’s father was a

politician” becomes:

P f (a)

And “3 is the sum of 1 and 2” becomes:

c = s(a, b )

(here “c” symbolizes “3”). We can put variables into the blanks of function

symbols, too. Thus, we can symbolize “Someone’s father was a politician” as

∃xP f (x)

Example 5.2: Symbolize the following sentences using predicate logic with

identity and function symbols:

Everyone loves his or her father

∀xLx f (x)

No one’s father is also his or her mother

∼∃x f (x)=m(x)

No one is his or her own father

∼∃x x= f (x)
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A person’s maternal grandfather hates that person’s pa-

ternal grandmother

∀x H f (m(x)) m( f (x))

Every even number is the sum of two prime numbers

∀x(E x→∃y∃z(P y∧P z∧x=s(y, z)))

Exercise 5.3 Symbolize each of the following, using predicate

logic with identity and function symbols.

a) The product of an even number and an odd number is an

even number.

b) If the square of a number that is divisible by each smaller

number is odd, then that number is greater than all numbers. (I

know, the sentence is silly.)

5.2.1 Grammar for function symbols
We need to update our grammar to allow for function symbols. First, we need

to add function symbols to our primitive vocabulary:

· for each n > 0, n-place function symbols f , g ,…, with or without sub-

scripts

The de�nition of a wff, actually, stays the same. What needs to change is the

de�nition of a “term”. Before, terms were just names or variables. Now, we

need to allow for f (a), f ( f (a)), etc., to be terms. This is done by the following

recursive de�nition of a term:
2

Definition of terms:

· names and variables are terms

· if f is an n-place function symbol and α1 . . .αn are terms, then f (α1 . . .αn)
is a term

· Only strings that can be shown to be terms by the preceding clauses are

terms

2
Complex terms formed from function symbols with more than one place do not, of�cially,

contain commas. But to improve readability I will write, for example, f (x, y) instead of f (xy).
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5.2.2 Semantics for function symbols
We now need to update our de�nition of a PC-model by saying what the

interpretation of a function symbol is. That’s easy: the interpretation of an

n-place function symbol ought to be an n-place function de�ned on the model’s

domain—i.e., a rule that maps any n members of the model’s domain to another

member of the model’s domain. For example, in a model in which the domain

is a set of people and the one-place function symbol f ( ) is to represent “ ’s

father”, the interpretation of f will be the function that assigns to any member

of the domain that object’s father. So we must add to our de�nition of a model

the following clause (call the new models “PC+FS-models”, for “predicate

calculus plus function symbols”):

· If f is an n-place function symbol, thenI ( f ) is an n-place (total) function

de�ned on D.

Calling the function a “total” function “de�ned on D” means that the function

must have a well-de�ned output (which is a member of D) whenever it is given

as inputs any n members of D. So if, for example, D contains both numbers

and people, I ( f ) could not be the father-of function, since that function is

unde�ned for numbers.

The de�nition of the valuation function stays the same; all we need to do is

update the de�nition of denotation to accommodate our new complex terms:

Definition of denotation: For any modelM (= 〈D,I 〉), variable assignment

g forM , and term α, [α]M ,g is de�ned as follows:

[α]M ,g =











I (α) if α is a constant

g (α) if α is a variable

I ( f )([α1]M ,g . . .[αn]M ,g ) if α is a complex term f (α1 . . .αn)

Note the recursive nature of this de�nition: the denotation of a complex term

is de�ned in terms of the denotations of its smaller parts. Let’s think carefully

about what the �nal clause says. It says that, in order to calculate the denotation

of the complex term f (α1 . . .αn) (relative to assignment g ), we must �rst �gure

out what I ( f ) is—that is, what the interpretation function I assigns to the

function symbol f . This object, the new de�nition of a model tells us, is an

n-place function on the domain. We then take this function, I ( f ), and apply
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it to n arguments: namely, the denotations (relative to g ) of the terms α1 . . .αn.

The result is our desired denotation of f (α1 . . .αn).
It may help to think about a simple case. Suppose that f is a one-place

function symbol; suppose our domain consists of the set of natural numbers;

suppose that the name a denotes the number 3 in this model (i.e., I (a) = 3),

and suppose that f denotes the successor function (i.e., I ( f ) is the function,

successor, that assigns to any natural number n the number n+ 1.) In that case,

the de�nition tells us that:

[ f (a)]g =I ( f )([a]g )

=I ( f )(I (a))
= successor(3)
= 4

Example 5.3: Here’s a sample metalanguage argument that makes use of

the new de�nitions. As mentioned earlier, ‘George W. Bush’s father was a

politician’ logically implies ‘Someone’s father was a politician’. Let’s show that

these sentences’ symbolizations stand in the relation of semantic implication.

That is, let’s show that P f (c) � ∃xP f (x)

i) Suppose for reductio that for some model and variable assignment g ,

Vg (P f (c)) = 1, but…

ii) …Vg (∃xP f (x)) = 0

iii) By line i), Vg (P f (c)) = 1, and so [ f (c)]g ∈I (P ). [ f (c)]g is justI ( f )([c]g ),
and [c]g is just I (c). So I ( f )(I (c)) ∈I (P ).

iv) By ii), for every member ofD, and so forI (c) in particular, Vg x
I (c)
(P f (x)) =

0. So [ f (x)]g x
I (c)

/∈ I (P ). But [ f (x)]g x
I (c)
= I ( f )([x]g x

I (c))
), and [x]g x

I (c)
=

gI (c)x (x) =I (c). So I ( f )(I (c)) /∈I (P ), which contradicts line iii)

Exercise 5.4 Demonstrate each of the following:

a) � ∀xF x→F f (a)

b) {∀x f (x)6=x} 2 ∃x∃y( f (x)=y ∧ f (y)=x)
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5.3 De�nite descriptions
Our logic has gotten more powerful with the addition of function symbols,

but it still isn’t perfect. Function symbols let us “break up” certain complex

singular terms—e.g., “Bush’s father”. But there are others we still can’t break

up—e.g., “The black cat”. Even with function symbols, the only candidate for

a direct symbolization of this phrase into the language of predicate logic is a

simple name, “a” for example. But this symbolization ignores the fact that “the

black cat” contains “black” and “cat” as semantically signi�cant constituents.

It therefore fails to provide a good model of this term’s distinctively logical

behavior. For example, ‘The black cat is happy’ logically implies ‘Some cat

is happy’. But the simple-minded symbolization of the �rst sentence, H a,

obviously does not semantically imply ∃x(C x∧H x).
One response is to introduce another extension of predicate logic. We

introduce a new symbol, ι, to stand for “the”. The grammatical function of

“the” in English is to turn predicates into noun phrases. “Black cat” is a predicate

of English; “the black cat” is a noun phrase that refers to the thing that satis�es

the predicate “black cat”. Similarly, in logic, given a predicate F , we’ll let ιxF x
be a term that means: the thing that is F .

We’ll want to let ιx attach to complex wffs, not just simple predicates. To

symbolize “the black cat”—i.e., the thing that is both black and a cat—we want

to write: ιx(B x∧C x). In fact, we’ll let ιx attach to wffs with arbitrary complexity.

To symbolize “the �reman who saved someone”, we’ll write: ιx(F x∧∃yS xy).

5.3.1 Grammar for ι
To the primitive vocabulary of the previous section, we add one further expres-

sion: ι. And we revise our de�nition of terms and wffs, as follows:

Definition of terms and wffs:

i) names and variables are terms

ii) if φ is a wff and α is a variable then ιαφ is a term

iii) if f is an n-place function symbol, and α1 . . .αn are terms, then f (α1 . . .αn)
is a term

iv) if Π is an n-place predicate and α1 . . .αn are terms, then Πα1 . . .αn is a wff

v) If α and β are terms, then α=β is a wff
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vi) if φ, ψ are wffs, and α is a variable, then ∼φ, (φ→ψ), and ∀αφ are wffs

vii) Only strings that can be shown to be terms or wffs using i)-vi) are terms

or wffs

Notice how we needed to combine the recursive de�nitions of term and wff

into a single recursive de�nition of wffs and terms together. The reason is that

we need the notion of a wff to de�ne what counts as a term containing the ι
operator (clause ii); but we need the notion of a term to de�ne what counts as

a wff (clause iv). The way we accomplish this is not circular. The reason it isn’t

is that we can always decide, using these rules, whether a given string counts as

a wff or term by looking at whether smaller strings count as wffs or terms. And

the smallest strings are said to be wffs or terms in non-circular ways.

5.3.2 Semantics for ι
We need to update the de�nition of denotation so that ιxφ will denote the one

and only thing in the domain that is φ. But there’s a snag. What if there is

no such thing as “the one and only thing in the domain that is φ”? Suppose

that ‘K ’ symbolizes “king of” and ‘a’ symbolizes “USA”. Then what should

‘ιxK xa’ denote? It is trying to denote the king of the USA, but there is no

such thing. Further, what if more than one thing satis�es the predicate? What

should ‘the daughter of George W. Bush’ denote, given that Bush has more

than one daughter? In short, what do we say about “empty descriptions”?

One approach is to say that every atomic sentence with an empty description

is false.
3

To implement this thought, we keep the de�nition of a PC+FS model

from before, but rework the de�nition of truth in a model as follows:

Definition of denotation and valuation: The denotation and valuation

functions, []M ,g and VM ,g , for PC+FS-modelM (=〈D,I 〉) and variable as-

signment g , are de�ned as the functions that satisfy the following constraints:

i) VM ,g assigns to each wff either 0 or 1

ii) For any term α,

3
An alternate approach would appeal to three-valued logic. We could treat atomic sentences

with empty descriptions as being neither true nor false—i.e., #. We would then need to

update the other semantic clauses to allow for #s, using one of the three-valued approaches to

propositional logic from chapter 3.
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[α]M ,g =



































































































I (α) if α is a constant

g (α) if α is a variable

I ( f )([α1]M ,g . . .[αn]M ,g )
if α has the form f (α1 . . .αn)
and [α1]M ,g . . .[αn]M ,g
are all de�ned

unde�ned

if α has the form f (α1 . . .αn)
and not all of [α1]M ,g . . .
[αn]M ,g are de�ned

the u ∈D such that VM ,gβu
(φ) = 1 if α has the form ιβφ and

there is a unique such u

unde�ned

if α has the form ιβφ and

there is no such u

iii) for any n-place predicate Π and any terms α1 . . .αn,VM ,g (Πα1 . . .αn) = 1
iff [α1]M ,g . . .[αn]M ,g are all de�ned and 〈[α1]M ,g . . .[αn]M ,g 〉 ∈ I (Π)

iv) VM ,g (α=β) = 1 iff: [α]M ,g and [β]M ,g are each de�ned and are the same

object

v) for any wffs φ, ψ, and any variable α:

VM ,g (∼φ) = 1 iff VM ,g (φ) = 0

VM ,g (φ→ψ) = 1 iff either VM ,g (φ) = 0 or VM ,g (ψ) = 1

VM ,g (∀αφ) = 1 iff for every u ∈D,VM ,gαu
(φ) = 1

As with the grammar, we need to mix together the de�nition of denotation

and the de�nition of the valuation function. The reason is that we need to

de�ne the denotations of de�nite descriptions using the valuation function (in

clause ii), but we need to de�ne the valuation function using the concept of

denotation (in clauses iii and iv). As before, this is not circular.

Notice that the denotation of a term can now be “unde�ned”. This means

simply that there is no such thing as the denotation of such a term (put another

way: such a term is not in the domain of the denotation function.) The initial

source of this status is the sixth case of clause ii)—empty de�nite descriptions.

But then the unde�ned status is inherited by complex terms formed from such

terms using function symbols, via the fourth case of clause ii). And then, �nally,
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clauses iii) and iv) insure that atomic and identity sentences containing such

terms all turn out false.

Note a consequence of this last feature of the semantics. There are now

two ways that an atomic sentence can be false (similar remarks apply to identity

sentences). There is the old way: the ’tuple of the denotations of the terms

can fail to be in the predicate’s extension. But now there is a new way: one

of the terms might have an unde�ned denotation. So you have to be careful

when constructing validity proofs. Suppose, for example, that you learn that

Vg (Fα) = 0 for some term α. You can’t immediately conclude that [α]g /∈I (F ),
since [α]g might not even be de�ned. To conclude this, you must �rst show

that [α]g is de�ned.

Example 5.4: Show that �GιxF x→∃x(F x∧Gx):

i) Suppose for reductio that in some model, and some assignment g in that

model, Vg (GιxF x→∃x(F x∧Gx)) = 0. So, Vg (GιxF x) = 1 and …

ii) …Vg (∃x(F x∧Gx)) = 0.

iii) By i), via the clause for atomics in the de�nition of truth in a model,

[ιxF x]g is both de�ned and a member of I (G).

iv) Since [ιxF x]g is de�ned, the de�nition of denotation for ι terms tells us

that [ιxF x]g is the unique u ∈D such that Vg x
u
(F x) = 1. Call this object

(i.e., [ιxF x]g ) henceforth: “u”.

v) Given ii), for every member ofD, and so for u in particular, Vg x
u
(F x∧Gx) =

0. So either Vg x
u
(F x) = 0 or Vg x

u
(Gx) = 0. Since Vg x

u
(F x) = 1 (line iv)),

Vg x
u
(Gx) = 0.

vi) Since Vg x
u
(Gx) = 0, given the de�nition of truth for atomics, either [x]g x

u

is unde�ned or else it is de�ned and is not a member of I (G). But it is
de�ned: the de�nition of denotation (second case) de�nes it as g x

u (u)—i.e.,

u. So u /∈I (G), contradicting iii).
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Exercise 5.5 Establish the following:

a)** � ∀xLxιyF xy→∀x∃yLxy

b) F ιx∀yLxy � ∀x∀y((∀zLx z ∧∀zLy z)→ x=y)

c) 2GιxF x→F ιxGx

Exercise 5.6* Show that the denotation of any term is either un-

de�ned or a member of D.

5.3.3 Elimination of function symbols and descriptions
In a sense, we don’t really need function symbols or the ι. Let’s return to

the English singular term ‘the black cat’. Introducing the ι gave us a way

to symbolize this singular term in a way that takes into account its semantic

structure (namely: ιx(B x∧C x).) But even without the ι, there is a way to

symbolize whole sentences containing ‘the black cat’, using just standard predicate

plus identity. We could, for example, symbolize “The black cat is happy” as:

∃x[ (B x∧C x)∧∀y[(By∧C y)→y=x]∧H x]

That is, “there is something such that: i) it is a black cat, ii) nothing else is a

black cat, and iii) it is happy”.

This method for symbolizing sentences containing ‘the’ is called “Russell’s

theory of descriptions”, in honor of its inventor Bertrand Russell (1905). The

general idea is to symbolize: “the φ is ψ” as ∃x[φ(x)∧∀y(φ(y)→x=y)∧ψ(x)].
This method can be iterated so as to apply to sentences with two or more

de�nite descriptions, such as “The 8-foot tall man drove the 20-foot long

limousine”, which becomes, letting ‘E ’ stand for ‘is eight feet tall’ and ‘T ’ stand

for ‘is twenty feet long’:

∃x[E x∧M x ∧∀z([E z∧M z]→x=z)∧
∃y[T y∧Ly ∧∀z([T z∧Lz]→y=z)∧D xy]]

An interesting question arises with negations of sentences involving de�nite

descriptions, when we use Russell’s method. Consider “The president is not
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bald”. Does this mean “The president is such that he’s non-bald”, which is

symbolized as follows:

∃x[P x ∧∀y(P y→x=y)∧∼B x]

? Or does it mean “It is not the case that the President is bald”, which is

symbolized thus:

∼∃x[P x ∧∀y(P y→x=y)∧B x]

? According to Russell, the original sentence is simply ambiguous. Symbolizing

it the �rst way is called “giving the description wide scope (relative to the ∼)”,

since the ∼ is in the scope of the ∃. (That is, the ∼ is “inside” the ∃; i.e., the

formula has the form ∃xφ, and the ∼ is part of the φ.) Symbolizing it in the

second way is called “giving the description narrow scope (relative to the ∼)”,

because the ∃ is in the scope of the ∼ (the formula has the form ∼ψ, and the ∃
is part of the ψ). These two symbolizations differ in meaning. The �rst says

that there really is a unique president, and adds that he is not bald. So the �rst

implies that there’s a unique president. The second merely denies that: there

is a unique president who is bald. That doesn’t imply that there’s a unique

president. It would be true if there’s a unique president who is not bald, but it

would also be true in two other cases: the case in which there are no presidents

at all, and the case in which there is more than one president.

A similar issue arises with the sentence “The round square does not exist”.

We might think to symbolize it:

∃x[Rx∧S x∧∀y([Ry∧Sy]→x=y)∧∼E x]

letting “E” stands for “exists”. In other words, we might give the description

wide scope. But this symbolization says something very odd: that there is
a certain round square that doesn’t exist. This corresponds to reading the

sentence as saying “The thing that is a round square is such that it does not

exist”. But that isn’t the most natural way to read the sentence. The sentence

would usually be interpreted to mean: “It is not true that the round square

exists”, —that is, as the negation of “the round square exists”:

∼∃x[Rx∧S x∧∀y([Ry∧Sy]→x=y)∧ E x]

with the ∼ out in front. Here we’ve given the description narrow scope.
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If we are willing to use Russell’s method for translating de�nite descrip-

tions, we can drop ι from our language. We would, in effect, not be treating

“the F ” as a syntactic unit. We would instead be symbolizing sentences that

contain “the F ” with wffs that contain no correlative term. “The black cat is

happy” gets symbolized as ∃x[ (B x∧C x)∧∀y[(By∧C y)→y=x]∧H x] See?—

no term corresponds to “the black cat”. The only terms in the symbolization

are variables.

In fact, once we use Russell’s method, we can get rid of function symbols too.

Given function symbols, we treated “father” as a function symbol, symbolized

it with “ f ”, and symbolized the sentence “George W. Bush’s father was a

politician” as P f (b ). But instead, we could treat ‘father of’ as a two-place

predicate, F , and regard the whole sentence as meaning: “The father of George

W. Bush was a politician.” Given the ι, this could be symbolized as:

P ιxF x b

But given Russell’s method, we can symbolize the whole thing without using

either function symbols or the ι:

∃x(F x b ∧∀y(F y b→y=x)∧ P x)

We can get rid of all function symbols this way, if we want. Here’s the method:

· Take any n-place function symbol f

· Introduce a corresponding n+ 1-place predicate R

· In any sentence containing the term “ f (α1 . . .αn)”, replace each occur-

rence of this term with “the x such that R(x,α1 . . .αn)”.

· Finally, symbolize the resulting sentence using Russell’s theory of de-

scriptions

For example, let’s go back to: “Every even number is the sum of two prime

numbers”. Instead of introducing a function symbol s(x, y) for “the sum of x
and y”, let’s introduce a predicate letter R(z, x, y) for “z is a sum of x and y”.

We then use Russell’s method to symbolize the whole sentence thus:

∀x(E x→∃y∃z[P y∧P z ∧∃w(Rwy z ∧∀w1(Rw1y z→w1=w)∧ x=w)])
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The end of the formula (beginning with ∃w) says “the product of y and z is

identical to x”—that is, that there exists some w such that w is a product of y
and z, and there is no other product of y and z other than w, and w = x.

Exercise 5.7 Symbolize each of the following, using predicate

logic with identity, function symbols, and the ι operator. (Do not
eliminate descriptions using Russell’s method.)

a) If a person commits a crime, then the judge that sentences

him/her wears a wig.

b) The tallest spy is a spy. (Use a two-place predicate to sym-

bolize “is taller than”.)

Exercise 5.8 For the sentence “The ten-feet-tall man is not happy”,

�rst symbolize with the ι operator. Then symbolize two readings us-

ing Russell’s method. Explain the intuitive difference between those

two readings. Which gives truth conditions like the ι symbolization?

5.4 Further quanti�ers
Predicate logic, with its quanti�ers ∀ and ∃, can symbolize a great many sen-

tences of natural language. But not all. For instance, it can be shown that there

is no way to symbolize the following sentences using just predicate logic:

Most things are massive

Most men are brutes

There are in�nitely many numbers

Some critics admire only one another

Like those sentences that are representable in standard logic, these sentences

involve quanti�cational notions: most things, some critics, and so on. In this

section we introduce a broader conception of what a quanti�er is, and new

quanti�ers that allow us to symbolize these sentences.
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5.4.1 Generalized monadic quanti�ers
We will generalize the idea behind the standard quanti�ers ∃ and ∀ in two ways.

To approach the �rst, let’s introduce the following bit of terminology. For any

PC-model,M (= 〈D,I 〉), and wff, φ, let’s introduce the name “φM ,g ,α
” for

(roughly speaking) the set of members ofM ’s domain of which φ is true:

Definition: φM ,g ,α = {u : u ∈D and VM ,gαu
(φ) = 1}

Thus, if we begin with any variable assignment g , then φM ,g ,α
is the set of

things u in D such that φ is true, relative to variable assignment g αu . Now,

recall the truth conditions in a PC-model,M , with domain D, for ∀ and ∃:

VM ,g (∀αφ) = 1 iff for every u ∈D,VM ,gαu
(φ) = 1

VM ,g (∃αφ) = 1 iff for some u ∈D,VM ,gαu
(φ) = 1

Given our new terminology, we can write equivalent truth conditions as follows:

VM ,g (∀αφ) = 1 iff φM ,g ,α =D
VM ,g (∃αφ) = 1 iff φM ,g ,α 6=∅

But if we can rewrite the truth conditions for the familiar quanti�ers ∀ and ∃
in this way—as conditions on φM ,g ,α

—then why not introduce new symbols

of the same grammatical type as ∀ and ∃, whose semantics is parallel to ∀ and

∃ except in laying down different conditions on φM ,g ,α
? These would be new

kinds of quanti�ers. For instance, for any integer n, we could introduce a

quanti�er ∃n such that ∃nφ means: “there are at least n φs.” The de�nitions of

a wff, and of truth in a model, would be updated with the following clauses:

· if α is a variable and φ is a wff, then ∃nαφ is a wff

· VM ,g (∃nαφ) = 1 iff |φM ,g ,α| ≥ n

The expression |A| stands for the “cardinality” of set A—i.e., the number of

members of A. So the truth condition says that ∃nαφ is true iff φM ,g ,α
has at

least n members.

Now, the introduction of the symbols ∃n do not increase the expressive

power of predicate logic, for as we saw in section 5.1.3, we can symbolize

“there are at least n F s” using just standard predicate logic (plus “=”). The

new notation is merely a space-saver. But other such additions are not mere

space-savers. For example, by analogy with the symbols ∃n, we can introduce a

symbol ∃∞, meaning “there are in�nitely many”:
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· if α is a variable and φ is a wff, then “∃∞αφ” is a wff

· VM ,g (∃∞αφ) = 1 iff |φM ,g ,α| is in�nite

As it turns out, the addition of ∃∞ genuinely enhances predicate logic: no

sentence of standard (�rst-order) predicate logic has the same truth condition

as does ∃∞xF x.
4

One can then use this new generalized quanti�er to symbolize

new English sentences. For example, “The number of �sh that have escaped

some predator is in�nite” could be symbolized thus: ∃∞x(F x∧∃y(P y∧E xy)).
And “for every number, there are in�nitely many greater numbers” could be

symbolized thus: ∀x(N x→∃∞y(N y∧Gy x)).
Another generalized quanti�er that is not symbolizable using standard

predicate logic is most:

· If α is a variable and φ is a wff, then “most αφ” is a wff

· VM ,g (most αφ) = 1 iff |φM ,g ,α|> |D −φM ,g ,α|

The minus-sign in the second clause is the symbol for set-theoretic difference:

A−B is the set of things that are in A but not in B . Thus, the de�nition says

that most αφ is true iff more things in the domain D are φ than are not φ.

One could add all sorts of additional “quanti�ers” Q in this way. Each

would be, grammatically, just like ∀ and ∃, in that each would combine with

a variable, α, and then attach to a sentence φ, to form a new sentence Qαφ.

Each of these new quanti�ers, Q, would be associated with a relation between

sets, RQ , such that Qαφ would be true in a PC-model,M , with domain D,

relative to variable assignment g , iff φM ,g ,α
bears RQ to D.

If such an added symbol Q is to count as a quanti�er in any intuitive sense,

then the relation RQ can’t be just any relation between sets. It should be a

relation concerning the relative “quantities” of its relata. It shouldn’t, for

instance, “concern particular objects” in the way that the following symbol,

∃
Ted-loved

, concerns particular objects:

VM ,g (∃Ted-loved
αφ) = 1 iff φM ,g ,α ∩{u : u ∈D and Ted loves u} 6=∅

So we should require the following of RQ : if a subset X of some set D bears

RQ to D, and f is a one-to-one function with domain D and range D ′, then

f [X ] must bear RQ to D ′. ( f [X ] is the image of X under function f —i.e.,

4
I won’t prove this; but see note 4.5.
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{u : u ∈ D ′ and u = f (v), for some v ∈ D}. It is the subset of D ′ onto which

f “projects” X .)

Exercise 5.9 Let the quanti�er ∃prime mean “there are a prime

number of”. Using the notation of generalized quanti�ers, write

out the semantics of this quanti�er.

5.4.2 Generalized binary quanti�ers
We have seen how the standard quanti�ers ∀ and ∃ can be generalized in

one way: syntactically similar symbols may be introduced and associated with

different semantic conditions of quantity. Our second way of generalizing the

standard quanti�ers is to allow two-place, or binary quanti�ers. ∀ and φ are

monadic in that ∀α and ∃α attach to a single open sentence φ. Compare the

natural language monadic quanti�ers ‘everything’ and ‘something’:

Everything is material

Something is spiritual

Here, the predicates (verb phrases) ‘is material’ and ‘is spiritual’ correspond

to the open sentences of logic; it is to these that ‘everything’ and ‘something’

attach.

But in fact, monadic quanti�ers in natural language are atypical. ‘Every’

and ‘some’ typically occur as follows:

Every student is happy

Some �sh are tasty

The quanti�ers ‘every’ and ‘some’ attach to two predicates. In the �rst sentence,

‘every’ attaches to ‘[is a] student’ and ‘is happy’; in the second, ‘some’ attaches

to ‘[is a] �sh’ and ‘[is] tasty’. In these sentences, we may think of ‘every’ and

‘some’ as binary quanti�ers. (Indeed, one might think of ‘everything’ and

‘something’ as the result of applying the binary quanti�ers ‘every’ and ‘some’

to the predicate ‘is a thing’.) A logical notation with a parallel structure can be

introduced, in which ∀ and ∃ attach to two open sentences. In this notation we

symbolize “every φ is a ψ” as (∀α:φ)ψ, and “some φ is a ψ” as (∃α:φ)ψ. The

grammar and semantic clauses for these binary quanti�ers are as follows:
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· if φ and ψ are wffs and α is a variable, then (∀α:φ)ψ and (∃α:φ)ψ are

wffs

· VM ,g ((∀α:φ)ψ) = 1 iff φM ,g ,α ⊆ψM ,g ,α

· VM ,g ((∃α:φ)ψ) = 1 iff φM ,g ,α ∩ψM ,g ,α 6=∅

A further important binary quanti�er is the:

· if φ and ψ are wffs and α is a variable, then (theα:φ)ψ is a wff

· VM ,g ((theα:φ)ψ) = 1 iff |φM ,g ,α|= 1 and φM ,g ,α ⊆ψM ,g ,α

That is, (theα:φ)ψ is true iff i) there is exactly one φ, and ii) every φ is a

ψ. This truth condition, notice, is exactly the truth condition for Russell’s

symbolization of “the φ is a ψ”; hence the name the.

As with the introduction of the monadic quanti�ers ∃n, the introduction of

the binary existential and universal quanti�ers, and of the, does not increase the

expressive power of �rst order logic, for the same effect can be achieved with

monadic quanti�ers. (∀α:φ)ψ, (∃α:φ)ψ, and (theα:φ)ψ become, respectively:

∀α(φ→ψ)
∃α(φ∧ψ)

∃α(φ∧∀β(φ(β/α)→β=α)∧ψ)

But, as with the monadic quanti�ers ∃∞ and most, there are binary quanti�ers

that genuinely increase expressive power. For example, most occurrences of

‘most’ in English are binary, as in:

Most �sh swim

To symbolize such sentences, we can introduce a binary quanti�er most2. We

read the sentence (most2α:φ)ψ as “most φs are ψs”. The semantic clause for

most2 is:

VM ,g ((most2α:φ)ψ) = 1 iff |φM ,g ,α ∩ψM ,g ,α|> |φM ,g ,α−ψM ,g ,α|

The binary most2 increases our expressive power, even relative to the monadic

most: not every sentence expressible with the former is equivalent to a sentence

expressible with the latter.
5

One can then use this binary quanti�er to symbolize

5
See Westerståhl (1989) for this and related results cited in this chapter.
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more complex sentences. For example, “Most people who love someone are

loved by someone” could be symbolized as: (most2x : ∃yLxy)∃yLy x.

Exercise 5.10 Symbolize the following sentence:

The number of people multiplied by the

number of cats that bite at least one dog is

198.

You may invent any generalized quanti�ers you need, provided you

write out their semantics.

5.4.3 Second-order logic
All the predicate logic we have considered so far is known as �rst-order. We’ll

now brie�y look at second-order predicate logic, a powerful extension to �rst-

order predicate logic. The distinction has to do with how variables behave, and

has syntactic and semantic aspects.

The syntactic aspect concerns the grammar of variables. All the variables

in �rst-order logic are grammatical terms. That is, they behave grammatically

like names: to produce a wff you must combine them with a predicate, not just

other terms. But in second-order logic, variables can occupy predicate position,

resulting in well-formed formulas like the following:

∃X X a
∃X∃yXy

Here the variable X occupies predicate position. Predicate variables, like the

normal predicates of standard �rst-order logic, can be one-place, two-place,

three place, etc. Thus, to our primitive vocabulary we must add, for each n,

n-place predicate variables X ,Y, . . . ; and we must add the following clause to

the de�nition of a wff:

· Ifπ is an n-place predicate variable and α1 . . .αn are terms, thenπα1 . . .αn
is a wff

The semantic aspect concerns the interpretation of variables. In �rst-order

logic, a variable-assignment assigns to each variable a member of the domain. A
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variable assignment in second-order logic assigns to each standard (�rst-order)

variable α a member of the domain, as before, but assigns to each n-place

predicate variable a set of n-tuples drawn from the domain. (This is what one

would expect: the semantic value of a n-place predicate is its extension, a set of

n-tuples, and variable assignments assign temporary semantic values.) Then,

the following clauses to the de�nition of truth in a PC-model must be added:

· If π is an n-place predicate variable and α1 . . .αn are terms, then

VM ,g (πα1 . . .αn) = 1 iff 〈[α1]M ,g . . .[αn]M ,g 〉 ∈ g (π)

· If π is a predicate variable and φ is a wff, then VM ,g (∀πφ) = 1 iff for

every set U of n-tuples from D, VM ,gπU
(φ) = 1

(where gπU is the variable assignment just like g except in assigning U to π.)

Notice that, as with the generalized monadic quanti�ers, no alteration to the

de�nition of a PC-model is needed. All we need to do is change grammar and

the de�nition of the valuation function.

The metalogical properties of second-order logic are dramatically different

from those of �rst-order logic that we brie�y mentioned in section 4.5. For

instance, second order logic is “incomplete” in the sense that there are no

axioms from which one can prove all and only the second-order valid sentences.

(Unless, that is, one resorts to cheap tricks like saying “let every valid wff

be an axiom”. This trick is “cheap” because there would be no mechanical

procedure for telling what an axiom is.
6
) Moreover, the compactness theorem

fails for second-order logic. Moreover, one can write down a single second-

order sentence whose second-order semantic consequences are all and only

the truths of Arithmetic. (This is cold-comfort given the incompleteness of

second-order logic: there is no complete axiomatic system we can use to draw

out the consequences of this arithmetic “axiom”.)

Second-order logic also differs “expressively” from �rst-order logic; the

addition of the second-order quanti�ers and variables lets us, in a sense, say

new things that we couldn’t say using �rst-order logic. For example, in second-

order logic we can state the two principles that are sometimes collectively called

“Leibniz’s Law”:

∀x∀y(x=y→∀X (X x↔Xy)) (indiscernibility of identicals)

∀x∀y(∀X (X x↔Xy)→ x=y) (identity of indiscernibles)

6
For a rigorous statement and proof of this and other metalogical results about second-order

logic, see, e.g., Boolos et al. (2007, chapter 18).
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The indiscernibility of identicals says, intuitively, that identical objects have

exactly the same properties; the identity of indiscernibles says that objects with

exactly the same properties are identical. Given our de�nitions, each is a logical

truth (exercise 5.11).
7

This might seem like an unwanted result. The identity of indiscernibles

isn’t necessarily true, it might be thought; there could exist two distinct objects

that are nevertheless exactly alike—perfectly alike marbles, say, made by the

same factory. But in fact nothing is amiss here. The identity of indiscernibles is
necessarily true, provided we construe ‘property’ very broadly, so that “being

a member of such-and-such set” counts as a property. Under this construal,

there just couldn’t be two marbles, A and B , with exactly the same properties,

since if A 6= B then A would have the property of being a member of the set

{A} whereas B would not. If we want to say that two marbles could have the

same properties, we must construe ‘property’ more restrictively—perhaps as

meaning qualitative property.
8

It was the broad conception of property that I

had in mind when I wrote above that “the identity of indiscernibles says that

objects with exactly the same properties are identical”, since the second order

variable X ranges over all the subsets of the domain (in the semantics I gave

above, anyway), not just those picked out by some qualitative property.

The increased expressive power of second-order logic can be illustrated by

the “Geach-Kaplan sentence”:
9

Some critics admire only one another (GK)

On one reading, anyway, this sentence says that there is a (nonempty) group
of critics in which members admire only other members. Suppose we want to

symbolize (GK) as some formal sentenceφ. What mustφ be like? First,φmust

contain a one-place predicate symbolizing ‘critic’ and a two-place predicate

symbolizing ‘admires’. Let these be C and A, respectively. Second, φ must

have the right truth condition; φ must be true in an arbitrary model 〈D,I 〉 iff:

I (C ) has some nonempty subset E , such that whenever 〈u, v〉 ∈ I (A)
and u ∈ E , then v ∈ E and v 6= u (*)

Now, it can be shown that no sentence of �rst-order logic has this truth-

condition. That is, for no sentence φ of �rst-order logic containing A and C
7
Relatedly, one can now de�ne “α=β” as ∀X (Xα↔Xβ).

8
See Lewis (1986, section 1.5) on different conceptions of properties.

9
The sentence and its signi�cance were discovered by Peter Geach and David Kaplan. See

Boolos (1984).
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is (*) true of every model 〈D,I 〉. However, there is a sentence of second-order
logic with this truth-condition; namely:

∃X [∃xX x ∧∀x(X x→C x)∧∀x∀y([X x∧Axy]→[Xy∧x 6=y])] (GK
2
)

So in a sense, you need to use second-order logic if you want to symbolize the

Geach-Kaplan sentence. But we have to be careful with this talk of symbolizing,

since there is another sense of ‘symbolize’ on which the Geach-Kaplan sentence

can be symbolized in �rst-order logic after all. Suppose we use a two-place

predicate M for set-membership:
10

∃z[∃xM x z ∧∀x(M x z→C x)∧∀x∀y([M x z∧Axy]→[M y z∧x 6=y)] (GK
1
)

(GK
1
) doesn’t symbolize (GK) in the sense of being true in exactly those models

that satisfy (*); correspondingly, it isn’t true in exactly the same models as (GK
2
).

For even though we said that M is to be a predicate “for” set-membership,

there’s nothing in the de�nition of a model that re�ects this, and so there are

models in which M doesn’t mean set-membership; and in such models, (GK
1
)

and (GK
2
) needn’t have the same truth value. But if we restrict our attention

to models 〈D,I 〉 in which M does mean set-membership (restricted to the

model’s domain, of course—that is, I (M ) = {〈u, v〉 : u, v ∈D and u ∈ v}), and

in which each subset of I (C ) is a member of D, then (GK
1
) will indeed be true

iff (GK
2
) is (and iff the model satis�es (*)). In essence, the difference between

(GK
1
) and (GK

2
) is that it is hard-wired into the de�nition of truth in a model

that second-order predications Xα express set-membership, whereas this is

not hard-wired into the de�nition of the �rst-order predication Mαβ.
11

Exercise 5.11 Show that the indiscernibility of identicals and the

identity of indiscernibles are both true under every variable assign-

ment in every model.

5.5 Complex Predicates
In section 5.3 we introduced the ι symbol, which allowed us to create complex

terms from sentences. In this section we’ll introduce something analogous:

10
One can in the same sense symbolize the identity of indiscernibles and the indiscernibility

of identicals using �rst order sentences and the predicate M .

11
For more on second-order logic, see Boolos (1975, 1984, 1985).
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complex predicates. In particular, we’ll introduce the means for taking a sen-

tence, φ, and creating a corresponding complex predicate that means “is such

that φ”.

The means is a new symbol, λ, with the following grammar:

· if α is a variable and φ is a wff then λαφ is a one-place predicate

Think of λαφ as meaning “is an α such that φ”. Such predicates are often

called “λ-abstracts” (“lambda-abstracts”).

We now have two kinds of predicates, simple predicates (like F , G, R, and so

on) which are part of the primitive vocabulary, and complex predicates formed

by λ-abstraction. As a result, the class of atomic wffs now includes wffs like the

following (in addition to wffs like F a, Gy, and Ry b ):

λxF x(a) “a is such that: it is F ”

λx∼Gx(y) “y is such that: it is not G”

λx∀yRy x(b ) “b is such that: everyone respects her/him”

(Of�cially these wffs do not contain parentheses; I added them for readability.)

I call these atomic, even though the latter two contain ∼ and ∀, because each

is formed by attaching a predicate (albeit a complex one) to a term.

As for semantics, in any modelM (= 〈D,I 〉), what should the meaning

of λαφ be? Since it’s a one-place predicate, its meaning should be the same

kind of animal as the meaning of a simple one-place predicate like F : a set of

members of D. Which set? Roughly: the set of members of D for which φ is

true. More precisely (using the notation of section 5.4.1): the set φM ,g ,α
(i.e.,

{u : u ∈D and VM ,gαu
(φ) = 1}.) So the meaning of λx∼F x, for example, will be

the set of members of the domain that are not in the extension of F . This talk

of “the meaning” of λ-abstracts is incorporated into the semantics of�cially

as a new clause in the de�nition of the valuation function governing atomic

sentences containing λ-abstracts:

· for any wff φ, variable α, and term β, VM ,g (λαφ β) = 1 iff [β]M ,g ∈
φM ,g ,α

The λ-abstracts are semantically super�uous (given our current setup, any-

way). For example, λx(F x∧Gx)(a) is true in a model iff F a∧Ga is true in that

model, λxRx x(y) is true in a model under a variable assignment iff Ryy is true

in that model under that assignment, and so on. So what is their point?
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For one thing, even though λx(F x∧Gx)(a) and F a∧Ga are semantically

equivalent, they are grammatically different. The former has a subject-predicate

form, whereas the latter is a conjunction. Likewise, λxRx x(y) is a one-place

predication, whereas Ryy is a two-place predication. Such grammatical differ-

ences are important in some theoretical contexts, such as in empirical linguistics

when semantics must be integrated with natural language syntax. We might

prefer λx(F x∧Gx)(a) as the symbolization of “John is cold and hungry”, for

example, since it treats ‘is cold and hungry’ as a single predicate. And we

might prefer to symbolize ‘No self-respecting Philadelphian is a Yankees fan’

as ∼∃x(λy(Ryy∧P y)(x)∧Y x) since this treats ‘self-respecting Philadelphian’

as a single one-place predicate.
12

For another case of this sort, consider the

symbolization of natural language de�nite descriptions.
13

The semantics of

section 5.3 treated atomic sentences containing ι terms (terms of the form

ιαφ) as “existence-entailing”—as being true only if the contained ι terms are

non-empty. But sometimes we want existence-entailing sentences containing

ι terms even when those sentences aren’t atomic. Suppose, for example, that

we want to symbolize a reading of “The King of the USA is not bald” that is

existence-entailing. (Imagine the sentence uttered by someone who believes

that there is a King of the USA; intuitively, the person is trying to say that “the

King of the USA is nonbald.”) This reading of the sentence is false since the

USA has no king. So it can’t be symbolized as ∼B ιxK x u: the atomic sentence

B ιxK x u is false since ιxK x u is empty, and thus the whole sentence is true. We

could always give up on using the ι, and use Russell’s wide-scope symbolization

instead:

∃x(K x u ∧∀y(Ky u→y=x)∧∼B x)

This generates the right truth conditions. But ‘The King of the USA’ functions

syntactically in English as a singular term, whereas the Russellian symbolization

contains no corresponding syntactic unit. Lambda abstraction lets us capture

the correct truth conditions
14

while continuing to symbolize ‘The King of the

USA’ with an ι term, thus treating it as a syntactic unit:

λx∼B x(ιxK x u)

12
See Gamut (1991b, section 4.4.1).

13
Compare Stalnaker (1977).

14
Assuming we update the semantics of section 5.3.2 in the obvious way, treating atomic sen-

tences with λ-abstract predicates as false when they contain terms with unde�ned denotations.
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The difference between a sentence of the form λx∼F (α) (“α is non-F ”), on the

one hand, and the sentences ∼λxF (α) and ∼Fα (“it’s not the case that α is F ”),

on the other, is often called the difference between “internal” and “external”

negation.

The kind of λ-abstraction we have been discussing is a special case of a

much more general and powerful tool, of particular interest in linguistics.
15

For just a taste of the possibilities, consider the sentences:

John crossed the street without looking

Crossing the street without looking is dangerous.

It’s natural to regard ‘crossed the street’ and ‘looking’ in the �rst sentence as

predicates, generating the symbolization: C j ∧∼L j . And it would be strange

to treat ‘crossed the street’ and ‘looking’ as meaning something different in

the second sentence. But the second sentence doesn’t seem to be claiming that

people who cross the street without looking are dangerous. Rather, it seems to

be saying that crossing the street without looking in general—the activity (or feature,

or property)—is dangerous. So how do we represent the second sentence?

One possibility is to use λ-abstraction, together with second-order predicates. A

second-order predicate attaches to an ordinary (�rst-order) predicate to form a

sentence. Thus, “walking is dangerous” might be symbolized by attaching a

second-order predicate D2
to the �rst order predicate W : D2(W ). So, we could

symbolize the second displayed sentence above by attaching D2
to a λ-abstract:

D2(λx(C x∧∼Lx))

As a �nal example, we might additionally bring in second-order quanti�cation

to symbolize “If John crossed the street without looking, and crossing the street

without looking is dangerous, then John did something dangerous”:

(C j∧∼L j ∧D2(λx(C x∧∼Lx)))→∃X (D2(X )∧X j )

15
See for example Dowty et al. (1981); Gamut (1991b); Heim and Kratzer (1998).
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Exercise 5.12 Symbolize the following sentences, sticking as close

to the English syntax as possible:

a) Any friend of Barry is either insane or friends with everyone

b) If a man is from Philadelphia, then insulting him is foolish

Exercise 5.13 Show that λx∀yRy x(a) and∀xRxa are semantically

equivalent (true in the same models).

5.6 Free Logic
So far we have considered extensions of standard predicate logic. Let’s �nish

this chapter with a brief discussion of a variation: free logic. In standard

predicate logic, it is assumed that individual constants denote existing entities.

In each model, the interpretation function assigns to each individual constant

some member of the domain. But some natural language names, for example

‘Pegasus’, ‘Santa Claus’, and ‘Sherlock Holmes’, seem not to denote existing

entities. Call such names “empty names”.

Standard predicate logic does not capture the logic of empty names, accord-

ing to the advocates of free logic. Consider, for example, the sentence “Sherlock

Holmes exists”. This sentence seems false. But it’s natural to symbolize it as

∃x x=a (to say that something exists is to say that something is identical to it),

and ∃x x=a is a valid sentence of standard predicate logic. (In any model, the

name a must denote some member u of the model’s domain. But then, where

g is any variable assignment for this model, the open sentence x=a is true with

respect to g x
u . So, ∃x x=a is true with respect to g , and so is true in the model.)

In essence: standard predicate logic assumes that all names are nonempty.

How to respond to this apparent discrepancy? The free logicians propose

to alter the semantics and proof theory of predicate logic so as to allow empty

names.

In addition to assuming that names are nonempty, standard predicate logic

also assumes that: something exists. For example, the sentence ∃x(F x∨∼F x)
is valid in standard predicate logic. The de�nition of a model in standard

predicate logic requires that the domain be nonempty; as a result this formula

comes out valid. This too might be regarded as objectionable. Other things
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being equal, it would be good to have a logic that recognizes the possibility of

there existing nothing at all.

One could admit empty names without admitting the logical possibility

of there existing nothing. Nevertheless, it’s natural to follow up the former

with the latter. There’s a barrier to the latter: if nothing exists then what do

empty names denote? So if we’re in the business of �guring out how to admit

empty names anyway, why not simultaneously �gure out how to recognize the

possibility of nothing? Logics allowing the possibility of nothing existing are

sometimes called “inclusive”.

5.6.1 Semantics for free logic
There are various ways to implement a semantics for (inclusive) free logic. The

most straightforward introduces, in addition to the normal domain over which

quanti�ers range, a further outer domain. Think of the normal domain—now

called the “inner” domain—as containing the existent entities; think of the

outer domain as containing the nonexistent ones, such as Pegasus, Santa Claus,

and Sherlock Holmes. Here are the de�nitions (the language in question is

assumed to be the language of predicate logic plus identity):

Definition of model: A FPC-model (“F” for “free”) is an ordered triple

〈D,D ′,I 〉 such that

· D is a set (“the inner domain”)

· D ′ is a set (“the outer domain”)

· D and D ′ share no member in common, and while either one of them

may be empty, their union must be nonempty

· I is a function obeying the following constraints

· if α is a constant then I (α) is a member of D ∪D ′

· ifΠ is an n-place predicate thenI (Π) is a set of n-tuples of members

of D

Definition of variable assignment: A variable assignment for a FPC-model,

〈D,D ′,I 〉 is a function that assigns to each variable some member of D ∪D ′
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Definition of valuation: The FPC-valuation function, VM ,g , for FPC-model

M (= 〈D,D ′,I 〉) and variable assignment g , is de�ned as the function that

assigns to each wff either 0 or 1 subject to the following constraints:

· for any n-place predicate Π and any terms α1 . . .αn, VM ,g (Πα1 . . .αn) = 1
iff 〈[α1]M ,g . . .[αn]M ,g 〉 ∈ I (Π)
· VM ,g (α=β) = 1 iff: [α]M ,g = (i.e., is the same object as) [β]M ,g

· for any wffs φ, ψ, and any variable α:

VM ,g (∼φ) = 1 iff VM ,g (φ) = 0

VM ,g (φ→ψ) = 1 iff either VM ,g (φ) = 0 or VM ,g (ψ) = 1

VM ,g (∀αφ) = 1 iff for every u ∈D,VM ,gαu
(φ) = 1

The de�nition of denotation, [α]M ,g , is unchanged, as are the de�nitions of

truth in a model, validity, and semantic consequence.

Let me make several comments about these de�nitions. First, few philoso-

phers—even among the free logicians—believe in such things as nonexistent

entities. Now, even if these philosophers are right, there’s nothing wrong

with FPC models as formal constructions. Accepting the existence of FPC-

models doesn’t commit you to real live nonexistent objects. We call D ′ the

“outer domain” for the sake of vividness, and it is a convenient heuristic to

call its members “nonexistent objects”, but nowhere do the formal de�nitions

require its members really to be nonexistent. Its members can be any sorts of

existent entities one likes. There is, however, a genuine worry about the FPC

semantics. If the philosophical opponents of nonexistent objects are right, then

the structure of FPC-models doesn’t match the structure of the real world;

so why should FPC-validity and FPC-semantic consequence shed any light

on genuine validity and logical consequence? The question is legitimate and

pressing. Nevertheless, let’s stick to our inner/outer domain approach. For one

thing, it’s an approach that many free logicians have taken; and for another, it’s

the most straightforward, formally speaking.
16

Second, the de�nition of the valuation function says that ∀αφ is true if and

only if φ is true for each object of the inner domain. (Similarly, the obvious

16
Another approach is to stick to a single domain, allow that domain to sometimes be empty,

and allow the interpretation function to be partial, so that I (α) is unde�ned for some names

α. But a formal obstacle looms: no variable assignments will exist if the domain is empty; how

then will truth in such models be de�ned? Williamson (1999a) discusses some of these issues.
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derived clause for the ∃ says that ∃αφ is true iff φ is true for some object in

the inner domain.) The quanti�ers range only over the inner domain, not the

outer. As a result, no sentence of the form ∃αφ turns out valid (example 5.5).

Thus, ∃x(F x∨∼F x) turns out invalid. Which is what we wanted: if it’s logically

possible that there be nothing, then it shouldn’t be a logical truth that there is

something that is either green or not green.

Third, notice that the de�nition of a model does not require the denotation

of a constant to be a member of the inner domain (though it must be a member

either of the inner or outer domain). This gives us another thing we wanted out

of free logic: individual constants don’t need to denote what one usually thinks

of as existing objects—i.e., objects in the range of the quanti�ers. Now, the fact

noted in the previous paragraph already showed that ∃x x=a is not valid (since

it has the form ∃αφ). But something stronger is true: ∃x x=a doesn’t even

follow from ∃x x=x, which says in effect that “something exists” (example 5.6).

This too is what we wanted: it shouldn’t follow (according to the defenders of

free logic) from the fact that something exists that Sherlock Holmes exists.

Fourth, notice that the de�nition of a model requires the extension of a

predicate to be a set of ’tuples drawn from the inner domain.
17

As a result,

formulas of the form Πα1 . . .αn are false (relative to a variable assignment)

whenever any of the αi s fail to denote anything in the inner domain (relative

to that variable assignment). Informally: atomic formulas containing “empty

terms” are always false. Free logics with this feature are often called “negative”

free logics. This is not the only alternative. Positive free logics allow some

atomic formulas containing empty terms to be true. And neutral free logics say

that all such formulas are neither true nor false.
18

Though we won’t pursue

any of these alternatives in detail, note some possible strategies: for positive

free logic, we might modify our current de�nitions to allow the extensions of

predicates to be tuples drawn from all of D∪D ′; and for neutral free logic, one

might make use of strategies for multi-valued logic discussed in section 3.4.

Some examples:

17
The identity predicate is a kind of exception. Though the interpretation function I does

not assign values to the identity predicate, the valuation function counts α=β as being true

whenever α and β denote the same thing—even if that thing is in the outer domain. Thus the

identity sign is in effect treated as if its extension is {〈u, u〉}, for all u ∈D ∪D ′.
18

Exception: neutral free logics that treat ‘exists’ as a primitive predicate (rather than de�ning

“α exists” as ∃x x=α) sometimes allow ‘α exists’ to be false, rather than lacking in truth-value,

when α fails to denote an existing entity.
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Example 5.5: Show that 2
FPC
∃αφ, for any variable α and any wff φ. Con-

sider any model in which the inner domain is empty, and let g be any variable

assignment in this model. (Since the inner domain is empty g assigns only

members of the outer domain.) The derived truth condition for the ∃ then says

that Vg (∃αφ) = 1 iff there is some u in the inner domain such that Vgαu
(φ) = 1.

But there is no such u since the inner domain is empty. So Vg (∃αφ) = 0 for

this model; and so ∃αφ is invalid.

Example 5.6: Show that ∃x x=x 2
FPC
∃x x=a. Consider a model with

a nonempty inner domain, but in which the constant a denotes something

in the outer domain. Where g is any variable assignment, note �rst that

Vg (∃x x=x) = 1. For Vg (∃x x=x) = 1 iff for some u ∈ D, Vg x
u
(x=x) = 1. But

D is nonempty, so we can let u be any member of D. And note second that

Vg (∃x x=a) = 0. For Vg (∃x x=a) = 1 iff for some u ∈ D, Vg x
u
(x=a) = 1, which

holds iff for some u ∈D, [x]g x
u
= [a]g x

u
, i.e. iff for some u ∈D, u =I (a). But

there is no such u, since I (a) /∈D.

Exercise 5.14 Show that 2
FPC
∀xF x→ F a.

Exercise 5.15 Show �
FPC
∀xF x→ (∃y y=a→F a).

5.6.2 Proof theory for free logic
Here we will be brief. How would the free logician view the axioms and rules

of predicate logic from section 4.4?

φ

∀αφ
UG

∀αφ→φ(β/α) (PC1)

∀α(φ→ψ)→ (φ→∀αψ) (PC2)

UG and PC2 seem unobjectionable, but the free logician will reject PC1.

She will not accept that ∀xF x→F a, for example, is a logical truth: if a is an

empty name then F a will be false even if all existing things are F . (Compare
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exercise 5.14.) To make things even more vivid, consider another instance of

PC1: ∀x∃y y=x→∃y y=a (“if everything exists, then a exists”). This the free

logician will clearly reject. For, since she thinks that both the existential and the

universal quanti�er range only over the existent entities, she thinks that the

antecedent ∀x∃y y=x is a logical truth. For every existent thing, there is some

existent thing to which it is identical. But she thinks that the consequent might

be false: there will be no existent thing identical to a, if a is an empty name.

If PC1 is to be rejected, what should be put in its place? One possibility is:

∀αφ→ (∃κκ=β→φ(β/α)) (PC1
′
)

That is: if everything is φ, then if β exists, β must be φ as well. The principle

of “universal instantiation” has been restricted to existing entities; the free

logician will accept this restricted principle. (Compare exercise 5.15.)



Chapter 6

Propositional Modal Logic

M
odal logic is the logic of necessity and possibility. In it we treat “modal”

words like ‘necessary’, ‘possible’, ‘can’, and ‘must’ as logical constants.

Our new symbols for these words are called “modal operators”:

2φ: “It is necessary that φ” (or: “Necessarily, φ”, “It must be that φ”)

3φ: “It is possible that φ” (or: “Possibly, φ”, “It could be that φ”, “It can be

that φ”, “It might be that φ”, “it might have been that φ”)

It helps to think of modality in terms of possible worlds. A possible world is a

complete and possible scenario. Calling a scenario “possible” means simply that

it’s possible in the broadest sense for the scenario to happen. This requirement

disquali�es scenarios in which, for example, it is both raining and also not

raining (at the same time and place)—such a thing couldn’t happen, and so

doesn’t happen in any possible world. But within this limit, we can imagine all

sorts of possible worlds: possible worlds with talking donkeys, possible worlds

in which I am ten feet tall, and so on. “Complete” means simply that no detail is

left out—possible worlds are completely speci�c scenarios. There is no possible

world in which I am “somewhere between ten and eleven feet tall” without

being some particular height.
1

Likewise, in any possible world in which I am

exactly ten feet, six inches tall (say), I must have some particular weight, must

live in some particular place, and so on. One of these possible worlds is the

actual world—this is the complete and possible scenario that in fact obtains.

1
This is not to say that possible worlds exclude vagueness.

171
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The rest of them are merely possible—they do not obtain, but would have

obtained if things had gone differently. In terms of possible worlds, we can

think of our modal operators thus:

“2φ” is true iff φ is true in all possible worlds

“3φ” is true iff φ is true in at least one possible world

It is necessarily true that all bachelors are male; in every possible world, every

bachelor is male. There might have existed a talking donkey; some possible

world contains a talking donkey.

Possible worlds provide, at the very least, a vivid way to think about necessity

and possibility. How much more they provide is an open philosophical question.

Some maintain that possible worlds are the key to the metaphysics of modality,

that what it is for a proposition to be necessarily true is for it to be true in all

possible worlds.
2

Whether this view is defensible is a question beyond the

scope of this book; what is important for present purposes is that we distinguish

possible worlds as a vivid heuristic from possible worlds as a concern in serious

metaphysics.

Natural language modal words are semantically �exible in a systematic way.

For example, suppose I say that I can’t attend a certain conference in Cleveland.

What is the force of “can’t” here? Probably I’m saying that my attending the

conference is inconsistent with honoring other commitments I’ve made at

that time. But notice that another sentence I might utter is: “I could attend

the conference; but I would have to cancel my class, and I don’t want to do

that.” Now I’ve said that I can attend the conference; have I contradicted my

earlier assertion that I cannot attend the conference? No—what I mean now is

perhaps that I have the means to get to Cleveland on that date. I have shifted

what I mean by “can”.

In fact, there is quite a wide range of things one can mean by words for

possibility:

I can come to the party, but I can’t stay late. (“can” = “is

not inconvenient”)

Humans can travel to the moon, but not Mars. (“can” = “is

achievable with current technology”)

2
Sider (2003) presents an overview of this topic.
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It’s possible to move almost as fast as the speed of light, but
not to travel faster than light. (“possible” = “is consistent

with the laws of nature”)

Objects could have traveled faster than the speed of light (if
the laws of nature had been different), but no matter what
the laws had been, nothing could have traveled faster than
itself. (“could” = “metaphysical possibility”)

You may borrow but you may not steal. (“may” = “morally

acceptable”)

It might rain tomorrow (“might” = “epistemic possibil-

ity”)

For any strength of possibility, there is a corresponding strength of necessity,

since “necessarilyφ” is equivalent to “not-possibly-not-φ”. (Similarly, “possibly

φ” is equivalent to “not-necessarily-not-φ”.) So we have a range of strengths

of necessity as well: natural necessity (guaranteed by the laws of nature), moral

or “deontic” necessity (required by morality), epistemic necessity (“known to

be true”) and so on.

Some sorts of necessity imply truth; those that do are called “alethic” neces-

sities. For example, if P is known then P is true; if it is naturally necessary that

massive particles attract one another, then massive particles do in fact attract

one another. Epistemic and natural necessity are alethic. Deontic necessity, on

the other hand, is not alethic; we do not always do what is morally required.

As we saw, we can think of the 2 and the 3 as quanti�ers over possible

worlds (the former a universal quanti�er, the latter an existential quanti�er).

This idea can accommodate the fact that necessity and possibility come in

different strengths: those different strengths result from different restrictions

on the quanti�ers over possible worlds. Thus, natural possibility is truth in

some possible world that obeys the actual world’s laws; deontic possibility is

truth in some possible world in which nothing morally forbidden occurs; and

so on.
3

3
This raises a question, though: to what strength of ‘necessary’ and ‘possible’ does the

notion of possible world itself correspond? Is there some special, strictest notion of necessity,

which can be thought of as truth in absolutely all possible worlds? Or do we simply have

different notions of possible world corresponding to different strengths of necessity?
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6.1 Grammar of MPL
Our �rst topic in modal logic is the addition of the 2 and the 3 to propositional

logic; the result is modal propositional logic (“MPL”). A further step will be modal

predicate logic (chapter 9).

We need a new language: the language of MPL. The grammar of this

language is just like the grammar of propositional logic, except that we add the

2 as a new one-place sentence connective:

Primitive vocabulary:

· Sentence letters: P,Q, R . . . , with or without numerical subscripts

· Connectives: →, ∼, 2

· Parentheses: (, )

Definition of wff:

· Sentence letters are wffs

· If φ and ψ are wffs then φ→ψ, ∼φ, and 2φ are also wffs

· Only strings that can be shown to be wffs using the preceding clauses are

wffs

The 2 is the only new primitive connective. But just as we were able to

de�ne ∧, ∨, and↔, we can de�ne new nonprimitive modal connectives:

· “3φ” (“Possibly φ”) is short for “∼2∼φ”

· “φJψ” (“φ strictly implies ψ”) is short for “2(φ→ψ)”

6.2 Symbolizations in MPL
Modal logic allows us to symbolize a number of sentences we couldn’t symbolize

before. The most obvious cases are sentences that overtly involve “necessarily”,

“possibly”, or equivalent expressions:

Necessarily, if snow is white, then snow is white or grass

is green

2[S→(S∨G)]
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I’ll go if I must

2G→G

It is possible that Bush will lose the election

3L

Snow might have been either green or blue

3(G∨B)

If snow could have been green, then grass could have

been white

3G→3W

‘Impossible’ and related expressions signify the lack of possibility:

It is impossible for snow to be both white and not white

∼3(W∧∼W )

If grass cannot be clever then snow cannot be furry

∼3C→∼3F

God’s being merciful is inconsistent with your imper-

fection being incompatible with your going to heaven

∼3(M∧∼3(I∧H ))

As for the strict conditional, it arguably does a decent job of representing

certain English conditional constructions:

Snow is a necessary condition for skiing

∼WJ∼K

Food and water are required for survival

∼(F∧W )J∼S

Thunder implies lightning

TJL

Once we add modal operators, we can make an important distinction in-

volving modal conditionals in natural language. Consider the sentence “if Jones

is a bachelor, then he must be unmarried”. The surface grammar misleadingly

suggests the symbolization:

B→2U
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But suppose that Jones is in fact a bachelor. It would then follow from this

symbolization that the proposition that Jones is unmarried is necessarily true.

But nothing we have said suggests that Jones is necessarily a bachelor. Surely

Jones could have been married! In fact, one would normally not use the sentence

“if Jones is a bachelor, then he must be unmarried” to mean that if Jones is in fact

a bachelor, then the following is a necessary truth: Jones is unmarried. Rather,

one would mean: necessarily, if Jones is a bachelor then Jones is unmarried:

2(B→U )

It is the relationship between Jones’s being a bachelor and his being unmarried

that is necessary. Think of this in terms of possible worlds: the �rst symboliza-

tion says that if Jones is a bachelor in the actual world, then Jones is unmarried

in every possible world (which is absurd); whereas the second one says that in

each possible world, w, if Jones is a bachelor in w, then Jones is unmarried in
w (which is quite sensible). The distinction between φ→2ψ and 2(φ→ψ) is

called the distinction between the “necessity of the consequent” (�rst sentence)

and the “necessity of the consequence” (second sentence). It is important to

keep the distinction in mind, because of the fact that English surface structure

is misleading.

One �nal point: when representing English sentences using the 2 and

the 3, keep in mind that these expressions can be used to express different

strengths of necessity and possibility. (One could introduce different symbols

for the different sorts; we’ll do a bit of this in chapter 7.)

6.3 Semantics for MPL
As usual, we’ll consider semantics �rst. We’ll show how to construct mathe-

matical con�gurations in a way that’s appropriate to modal logic, and show

how to de�ne truth for formulas of MPL within these con�gurations. Ideally,

we’d like the assignment of truth values to wffs to mirror the way that natural

language modal statements are made true by the real world, so that we can

shed light on the meanings of natural language modal words, and in order to

provide plausible semantic models of the notions of logical truth and logical

consequence.

In constructing a semantics for MPL, we face two main challenges, one

philosophical, the other technical. The philosophical challenge is simply that

it isn’t wholly clear which formulas of MPL are indeed logical truths. It’s hard
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to construct an engine to spit out logical truths if you don’t know which logical

truths you want it to spit out. With a few exceptions, there is widespread

agreement over which formulas of nonmodal propositional and predicate logic

are logical truths. But for modal logic this is less clear, especially for sentences

that contain iterations of modal operators. Is 2P→22P a logical truth? It’s

hard to say.

A quick peek at the history of modal logic is in order. Modal logic arose

from dissatisfaction with the material conditional→ of standard propositional

logic. In standard logic, φ→ψ is true whenever φ is false or ψ is true; but in

expressing the conditionality of ψ on φ, we sometimes want to require a tighter

relationship: we want it not to be a mere accident that either φ is false or ψ
is true. To express this tighter relationship, C. I. Lewis introduced the strict

conditional φJψ, which he de�ned, as above, as 2(φ→ψ).4 Thus de�ned,

φJψ isn’t automatically true just because φ is false or ψ is true. It must be

necessarily true that either φ is false or ψ is true.

Lewis then asked: what principles govern this new symbol 2? Certain

principles seemed clearly appropriate, for instance: 2(φ→ψ)→(2φ→2ψ).
Others were less clear. Is 2φ→22φ a logical truth? What about 32φ→φ?

Lewis’s solution to this problem was not to choose. Instead, he formulated

several different modal systems. He did this axiomatically, by formulating differ-

ent systems that differed from one another by containing different axioms and

hence different theorems.

We will follow Lewis’s approach, and construct several different modal

systems. Unlike Lewis, we’ll do this semantically at �rst (the semantics for

modal logic we will study was published by Saul Kripke in the 1950s, long

after Lewis was writing), by constructing different de�nitions of a model for

modal logic. The de�nitions will differ from one another in ways that result

in different sets of valid formulas. In section 6.4 we’ll study Lewis’s axiomatic

systems, and in sections 6.5 and 6.6 we’ll discuss the relationship between the

semantics and the axiom systems.

Formulating multiple systems does not answer the philosophical question

of which formulas of modal logic are logically true; it merely postpones it.

The question re-arises when we want to apply Lewis’s systems; when we ask

which system is the correct system—i.e., which one correctly mirrors the logical

properties of the English words ‘possibly’ and ‘necessarily’? (Note that since

there are different sorts of necessity and possibility, different systems might

4
See Lewis (1918); Lewis and Langford (1932).
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correctly represent different sorts.) But I’ll mostly ignore such philosophical

questions here.

The technical challenge to constructing a semantics for MPL is that the

modal operators 2 and 3 are not truth functional. A sentential connective is

truth-functional, recall, iff whenever it combines with sentences to form a new

sentence, the truth value of the resulting sentence is determined by the truth

values of the component sentences. For example, ‘it is not the case that’ is truth-

functional, since the truth value of “it is not the case that φ” is determined by

the truth value ofφ (the latter is true iff the former is not true). But ‘necessarily’

is not truth-functional. If I tell you that φ is true, you won’t yet have enough

information to determine whether “Necessarily φ” is true or false, since you

won’t know whether φ is necessarily true or merely contingently true. Here’s

another way to put the point: even though the sentences “If Ted is a philosopher

then Ted is a philosopher” and “Ted is a philosopher” have the same truth value,

if you pre�x each with ‘Necessarily’ (intended to mean metaphysical necessity,

say), you get sentences with different truth values. Hence, the truth value of

“Necessarily φ” is not a function of the truth value of φ. Similarly, ‘possibly’

isn’t truth-functional either: ‘I might have been six feet tall’ is true, whereas ‘I

might have been a round square’ is false, despite the sad fact that ‘I am six feet

tall’ and ‘I am a round square’ have the same truth value.

Since the 2 and the 3 are supposed to represent ‘necessarily’ and ‘possibly’,

and since the latter aren’t truth-functional, we can’t do modal semantics with

truth tables. For the method of truth tables assumes truth-functionality. Truth

tables are just pictures of truth functions: they specify what truth value a

complex sentence has as a function of what truth values its parts have. Our

challenge is clear: we need a semantics for the 2 and the 3 other than the

method of truth tables.

6.3.1 Kripke models
Our approach will be that of possible-worlds semantics. The intuitive idea is to

count 2φ as being true iff φ is true in all possible worlds, and 3φ as being true

iff φ is true in some possible worlds. More carefully: we are going to develop

models for modal propositional logic. These models will contain objects we

will call “possible worlds”. And formulas are going to be true or false “in” (or

“at”) these worlds. That is, we are going to assign truth values to formulas in

these models relative to possible worlds, rather than absolutely. Truth values of

propositional-logic compound formulas—that is, negations and conditionals—
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will be determined by truth tables within each world; ∼φ, for example, will be

true at a world iff φ is false at that world. But the truth value of 2φ at a world

won’t be determined by the truth value of φ at that world; the truth value of φ
at other worlds will also be relevant.

Speci�cally, 2φ will count as true at a world iff φ is true at every world

that is “accessible” from the �rst world. What does “accessible” mean? Each

model will come equipped with a binary relation,R , over the set of possible

worlds; we will say that world v is “accessible from” world w whenRwv . The

intuitive idea is thatRwv if and only if v is possible relative to w. That is, if you

live in world w, then from your perspective, the events in world v are possible.

The idea that what is possible might vary depending on what possible

world you live in might at �rst seem strange, but it isn’t really. “It is physically

impossible to travel faster than the speed of light” is true in the actual world,

but false in worlds where the laws of nature allow faster-than-light travel.

On to the semantics. We �rst de�ne a generic notion of an MPL model,

which we’ll then use to give a semantics for different modal systems:

Definition of model: An MPL-model is an ordered triple, 〈W ,R ,I 〉, where:

· W is a non-empty set of objects (“possible worlds”)

· R is a binary relation overW (“accessibility relation”)

· I is a two-place function that assigns 0 or 1 to each sentence letter,

relative to (“at”, or “in”) each world—that is, for any sentence letter α,

and any w ∈W ,I (α, w) is either 0 or 1. (“interpretation function”)

Each MPL-model contains a setW of possible worlds, and an accessibility

relationR overW . 〈W ,R〉 is sometimes called the model’s frame. Think of

the frame as giving the “structure” of the model’s space of possible worlds: it

says how many worlds there are, and which worlds are accessible from which.

In addition to a frame, each model also contains an interpretation function I ,

which assigns truth values to sentence letters in worlds.

MPL-models are the con�gurations for propositional modal logic (recall

section 2.2). A con�guration is supposed to represent both a way for the

world to be, and also the meanings of nonlogical expressions. In MPL-models,

the former is represented by the frame. (When we say that a con�guration

represents “the world”, we don’t just mean the actual world. “The world”

signi�es, rather, reality, which is here thought of as including the entire space

of possible worlds.) The latter is represented by the interpretation function.
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(Recall that in propositional logic, the meaning of a sentence letter was a mere

truth value. The meaning is now richer: a truth value for each possible world.)

A model’s interpretation function assigns truth values only to sentence

letters. But the sum total of all the truth values of sentence letters in worlds,

together with the frame, determines the truth values of all complex wffs, again

relative to worlds. It is the job of the model’s valuation function to specify

exactly how these truth values get determined:

Definition of valuation: WhereM (= 〈W ,R ,I 〉) is any MPL-model, the

valuation forM , VM , is de�ned as the two-place function that assigns either

0 or 1 to each wff relative to each member of W , subject to the following

constraints, where α is any sentence letter, φ and ψ are any wffs, and w is any

member ofW :

VM (α, w) =I (α, w)
VM (∼φ, w) = 1 iff VM (φ, w) = 0

VM (φ→ψ, w) = 1 iff either VM (φ, w) = 0 or VM (ψ, w) = 1
VM (2φ, w) = 1 iff for each v ∈W , ifRwv, then VM (φ, v) = 1

What about truth values for complex formulas containing∧,∨,↔,3, and J?

Given the de�nition of these de�ned connectives in terms of the primitive

connectives, it is easy to prove that the following derived conditions hold:

VM (φ∧ψ, w) = 1 iff VM (φ, w) = 1 and VM (ψ, w) = 1
VM (φ∨ψ, w) = 1 iff VM (φ, w) = 1 or VM (ψ, w) = 1

VM (φ↔ψ, w) = 1 iff VM (φ, w) =VM (ψ, w)
VM (3φ, w) = 1 iff for some v ∈W ,Rwv and VM (φ, v) = 1

VM (φJψ, w) = 1 iff for each v ∈W , ifRwv then either VM (φ, v) = 0 or

VM (ψ, v) = 1

So far, we have introduced a generic notion of an MPL model, and have

de�ned the notion of a wff’s being true at a world in an MPL model. But

remember C. I. Lewis’s plight: it wasn’t clear which modal formulas ought to

count as logical truths. His response, and our response, is to construct different

modal systems, in which different formulas count as logical truths. The systems

we will discuss are named: K, D, T, B, S4, S5. Here in our discussion of

semantics, we will come up with different de�nitions of what counts as a model,
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one for each system: K, D, T, B, S4, S5. As a result, different formulas will

come out valid in the different systems. For example, the formula 2P→22P
is going to come out valid in S4 and S5, but not in the other systems.

The models for the different systems differ according to the formal prop-

erties of their accessibility relations. (Formal properties of relations were

discussed in section 1.8.) For example, we will de�ne a model for system T

(“T-model”) as any MPL model whose accessibility relation is re�exive (inW ,

the set of worlds in that model). Here is the de�nition:

Definition of model for modal systems: An “S-model”, for any of our

systems S, is de�ned as an MPL-model 〈W ,R ,I 〉 whose accessibility relation

R has the formal feature given for system S in the following chart:

System accessibility relation must be
K no requirement

D serial (inW )

T re�exive (inW )

B re�exive (inW ) and symmetric

S4 re�exive (inW ) and transitive

S5 re�exive (inW ), symmetric, and transitive

Thus, any MPL-model counts as a K-model, whereas the requirements for the

other systems are more stringent.

Our next task is to de�ne validity and semantic consequence for the various

systems. A slight wrinkle arises: we can’t just de�ne validity as “truth in all

models”, since formulas aren’t simply true or false in MPL-models; they’re

true or false in various worlds in these models. Instead, we �rst de�ne a notion

of being valid in an MPL model:

Definition of validity in an MPL model: An MPL-wff φ is valid in MPL-

modelM (= 〈W ,R ,I 〉 iff for every w ∈W , VM (φ, w) = 1

Finally we can give the desired de�nitions:

Definition of validity and semantic consequence:

· An MPL-wff is valid in system S (where S is either K, D, T, B, S4, or S5)

iff it is valid in every S-model

· MPL-wff φ is a semantic consequence in system S of set of MPL-wffs

Γ iff for every S-model 〈W ,R ,I 〉 and each w ∈W , if VM (γ , w) = 1 for

each γ ∈ Γ, then VM (φ, w) = 1
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As before, we’ll use the � notation for validity and semantic consequence.

But since we have many modal systems, if we claim that a formula is valid, we’ll

need to indicate which system we’re talking about. Let’s do that by subscripting

� with the name of the system; e.g., “�
T
φ” means that φ is T-valid.

It’s important to get clear on the status of possible-worlds lingo here. Where

〈W ,R ,I 〉 is an MPL-model, we call the members ofW “worlds”, and we call

R the “accessibility” relation. This is certainly a vivid way to talk about these

models. But of�cially, W is nothing but a nonempty set, any old nonempty

set. Its members needn’t be the kinds of things metaphysicians call possible

worlds. They can be numbers, people, bananas—whatever you like. Similarly

forR and I . The former is just de�ned to be any old binary relation onW ;

the latter is just de�ned to be any old function mapping each pair of a sentence

letter and a member ofW to either 1 or 0. Neither needs to have anything to

do with the metaphysics of modality. Of�cially, then, the possible-worlds talk

we use to describe our models is just talk, not heavy-duty metaphysics.

Still, models are usually intended to depict some aspect of the real world.

The usual intention is that wffs get their truth values within models in a parallel

fashion to how natural language sentences are made true by the real world. So

if natural language modal sentences aren’t made true by anything like possible

worlds, then possible worlds semantics would be less valuable than, say, the usual

semantics for nonmodal propositional and predicate logic. To be sure, possible

worlds semantics would still be useful for various purely formal purposes. For

example, given the soundness proofs we will give in section 6.5, the semantics

could still be used to establish facts about unprovability in the axiomatic systems

to be introduced in section 6.4. But it would be hard to see why possible worlds

models would shed any light on the meanings of English modal words, or

why truth-in-all-possible-worlds-models would be a good way of modeling

(genuine) logical truth for modal statements.

On the other hand, if English modal sentences are made true by facts about

possible worlds, then the semantics takes on a greater importance. Perhaps

then we can, for example, decide what the right logic is, for a given strength of

necessity, by re�ecting on the formal properties of the accessibility relation—

the real accessibility relation, over real possible worlds, not the relationR over

the members ofW in our models. Suppose we’re considering some strength,

M , of modality. A (real) possible world v is M -accessible from another world,

w, iff what happens in v counts as being M -possible, from the point of view

of w. Perhaps we can �gure out the logic of M -necessity and M -possibility by

investigating the formal properties of M -accessibility.
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Consider deontic necessity and possibility, for example: a proposition is

deontically necessary iff it ought to be the case; a proposition is deontically

possible iff it is morally acceptable that it be the case. The relation of deontic

accessibility seems not to be re�exive: in an imperfect world like our own, many

things that ought not to be true are nevertheless true. Thus, a world can fail to

be deontically accessible relative to itself. (As we will see, this corresponds to

the fact that deontic necessity is non-alethic; it does not imply truth.) On the

other hand, one might argue, deontic accessibility is serial, since surely there

must always be some deontically accessible world—some world in which what

occurs is morally acceptable. (To deny this would be to admit that everything

could be forbidden.) So, perhaps system D gives the logic of deontic necessity

and possibility (see also section 7.1).

To take one other example: some have argued that the relation of metaphysi-
cal-accessibility (the relation relevant to metaphysical necessity and possibility)

is a total relation: every world is metaphysically possible relative to every other.
5

What modal logic would result from requiringR to be a total (inW ) relation?

The answer is: S5. That is, you get the same valid formulas whether you require

R to be a total relation or an equivalence relation (see exercise 6.1). So, if the

(real) metaphysical accessibility relation is a total relation, the correct logic for

metaphysical necessity is S5. But others have argued that metaphysical accessi-

bility is intransitive.
6

Perhaps one possible world is metaphysically accessible

from another only if the individuals in the latter world aren’t too different from

how they are in the former world—only if such differences are below a certain

threshold. In that case, it might be argued, a world in which I’m a frog is not

metaphysically accessible from the actual world: any world in which I’m that

drastically different from my actual, human, self, just isn’t metaphysically pos-

sible, relative to actuality. But perhaps a world, w, in which I’m a human-frog

hybrid is accessible from the actual world (the difference between a human

and a frog-human hybrid is below the threshold); and perhaps the frog world

is accessible from w (since the difference between a frog-human hybrid and

a frog is also below the threshold). If so, then metaphysical accessibility is

intransitive. Metaphysical accessibility is clearly re�exive. So perhaps the logic

of metaphysical possibility is given by system B or system T.

5
See Lewis (1986, 246).

6
Compare Salmon (1986).
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Exercise 6.1** Let O be the modal system given by the require-

ment thatR must be total (inW ). Show that �
O
φ iff �

S5
φ.

6.3.2 Semantic validity proofs
Given our de�nitions, we can now show particular formulas to be valid in

various systems.

Example 6.1: The wff 2(P∨∼P ) is K-valid. To show this, we must show

that the wff is valid in all MPL-models, since validity-in-all-MPL-models is

the de�nition of K-validity. Being valid in a model means being true at every

world in the model. So, consider any MPL-model 〈W ,R ,I 〉, and let w be any

world inW . We must show that VM (2(P∨∼P ), w) = 1. (As before, I’ll start to

omit the subscriptM on VM when it’s clear which model we’re talking about.)

i) Suppose for reductio that V(2(P∨∼P ), w) = 0

ii) So, by the truth condition for 2 in the de�nition of the valuation function,

there is some world, v, such thatRwv and V(P∨∼P, v) = 0

iii) Given the (derived) truth condition for ∨, V(P, v) = 0 and V(∼P, v) = 0

iv) Since V(∼P, v) = 0, given the truth condition for ∼, V(P, v) = 1. But

that’s impossible; V(P, v) can’t be both 0 and 1.

Thus, �
K

2(P∨∼P ).

Note that similar reasoning would establish �
K

2φ, for any tautology φ.

For within any world, the truth values of complex statements of propositional

logic are determined by the truth values of their constituents in that world by

the usual truth tables. So if φ is a tautology, it will be true in any world in any

model; hence 2φ will turn out true in any world in any model.

Example 6.2: Show that �
T
(32(P→Q)∧2P )→3Q. Let w be any world

in any T-modelM ; we must show that VM ((32(P→Q)∧2P )→3Q, w) = 1:

i) Suppose for reductio that V((32(P→Q)∧2P )→3Q, w) = 0.

ii) So V(32(P→Q)∧2P, w) = 1 and …
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iii) …V(3Q, w) = 0. So Q is false in every world accessible from w.

iv) From ii), 32(P→Q) is true at w, and so V(2(P→Q), v) = 1, for some

world, call it v, such thatRwv.

v) From ii), V(2P, w) = 1. So, by the truth condition for the 2, P is true

in every world accessible from w; sinceRwv , it follows that V(P, v) = 1.

But V(Q, v) = 0 given iii). So V(P→Q) = 0.

vi) From iv), P→Q is true in every world accessible from v; sinceM is a

T-model,R is re�exive; soRvv; so V(P→Q, v) = 1, contradicting v).

The last example showed that the formula (32(P→Q)∧2P )→3Q is valid

in T. Suppose we wanted to show that it is also valid in S4. What more would

we have to do? Nothing! To be S4-valid is to be valid in every S4-model. But

a quick look at the de�nitions shows that every S4-model is a T-model. So,

since we already know that the the formula is valid in all T-models, we may

conclude that it must be valid in all S4-models without doing a separate proof:

S4

models

T

models

The S4 models are a subset of the

T models.

S4

models

T

models

So if a formula is valid in all T mod-

els, it’s automatically valid in all S4

models

Think of it another way. A proof that a wff is S4-valid may use the information

that the accessibility relation is both transitive and re�exive. But it doesn’t need

to. So the T-validity proof in example 6.2 also counts as an S4-validity proof.

(It also counts as a B-validity proof and an S5-validity proof.) But it doesn’t

count as a K-validity proof, since it assumes in line vi) thatR is re�exive. To be

K-valid, a wff must be valid in all models, whereas the proof in example 6.2 only

establishes validity in all re�exive models. (In fact (32(P→Q)∧2P )→ 3Q
isn’t K-valid, as we’ll be able to demonstrate shortly.)
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Consider the following diagram of systems:

S5

S4

==||||||
B

``@@@@@@

T

>>~~~~~~

aaBBBBBB

D

OO

K

OO

An arrow from one system to another indicates that validity in the �rst system

implies validity in the second system. For example, all D-valid wffs are also

T-valid. For if a wff is valid in all D-models, then, since every T-model is also a

D-model (re�exivity implies seriality), it must be valid in all T-models as well.

S5 is the strongest system, since it has the most valid formulas. That’s

because it has the fewest models: it’s easy to be S5-valid since there are so

few potentially falsifying models. K is the weakest system—fewest validities—

since it has the most potentially falsifying models. The other systems are

intermediate.

Notice that the diagram isn’t linear. Both B and S4 are stronger than T:

each contains all the T-valid formulas and more besides. And S5 is stronger

than both B and S4. But (as we will see below) neither B nor S4 is stronger

than the other (nor are they equally strong): some B-valid wffs aren’t S4-valid,

and some S4-valid wffs aren’t B-valid. (The de�nitions of B and S4 hint at this.

B requires symmetry but not transitivity, whereas S4 requires transitivity but

not symmetry, so some B-models aren’t S4-models, and some S4-models aren’t

B-models.)

Suppose you’re given a formula, and for each system in which it is valid,

you want to give a semantic proof of its validity. This needn’t require multiple

semantic proofs. As we saw with example 6.2, to prove that a wff is valid in a

number of systems, it suf�ces to give a validity proof in the weakest of those

systems, since that very proof will automatically be a proof that it is valid in

all stronger systems. For example, a K-validity proof is itself a validity proof

for D, T, B, S4, and S5. But there is an exception. Suppose a wff is not valid

in T, but you’ve given a semantic proof of its validity in B. This proof also
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shows that the wff is S5-valid, since every S5 model is a B-model. But you can’t

yet conclude that the wff is S4-valid, since not every S4-model is a B-model.

Another semantic proof may be needed: of the formula’s S4-validity. (Of course,

the formula may not be S4-valid.) So: when a wff is valid in both B and S4, but

not in T, two semantic proofs of its validity are needed.

We are now in a position to do validity proofs. But as we’ll see in the next

section, it’s often easier to do proofs of validity when one has failed to construct

a counter-model for a formula.

Exercise 6.2 Use validity proofs to demonstrate the following:

a) �
D
[2P∧2(∼P∨Q)]→3Q

b) �
S4

33(P∧Q)→3Q

6.3.3 Countermodels
We have a de�nition of validity for the various systems, and we’ve shown how

to establish validity of particular formulas. (We have also de�ned semantic

consequence for these systems, but our focus will be on validity.) Now we’ll see

how to establish invalidity. We establish that a formula is invalid by constructing

a countermodel for it—a model containing a world in which the formula is

false. (Since validity means truth in every world in every model, the existence

of a single countermodel establishes invalidity.)

I’m going to describe a helpful graphical procedure, introduced by Hughes

and Cresswell (1996), for constructing countermodels. Now, it’s always an

option to bypass the graphical procedure and directly intuit what a counter-

model might look like. But the graphical procedure makes things a lot easier,

especially with more complicated formulas.

I’ll illustrate the procedure by using it to show that the wff 3P→2P is not
K-valid. To be K-valid, a wff must be valid in all MPL-models, so all we must

do is �nd one MPL-model in which 3P→2P is false in some world.

Place the formula in a box

We begin by drawing a box, which represents some chosen world in the model

we’re in the process of pictorially constructing. The goal is to make the formula

false in this world. In these examples I’ll always call this �rst world “r”:
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3P→2Pr

Now, since the box represents a world, we should have some way of representing

the accessibility relation. What worlds are accessible from r; what worlds does

r “see”? Well, to represent one world (box) seeing another, we’ll draw an arrow

from the �rst to the second. But in this case we don’t need to draw any arrows.

We’re only trying to show that 3P→2P is K-invalid, and the accessibility

relation for system K doesn’t even need to be serial—no world needs to see any

worlds at all. So, we’ll forget about arrows for the time being.

Make the formula false in the world

We’ll indicate a formula’s truth value by writing that truth value above the

formula’s major connective. (The “major connective” of a wff is the last con-

nective that was added when the wff was formed via the rules of grammar.
7

Thus, the major connective of P→2Q is the→, and the major connective of

2(P→2Q) is the leftmost 2.) So to indicate that 3P→2P is to be false in this

model, we’ll put a 0 above its arrow:

0

3P→2P
r

Enter forced truth values

Assigning a truth value to a formula sometimes forces us to assign truth values

to other formulas in the same world. For example, if we make a conjunction

true in a world then we must make each of its conjuncts true at that world; and

if we make a conditional false at a world, we must make its antecedent true and

its consequent false at that world. In the current example, since we’ve made

3P→2P false in r, we’ve got to make 3P true at r (indicated on the diagram

by a 1 over its major connective, the 3), and we’ve got to make its consequent

2P false at r:

1 0 0

3P→2P
r

7
In talking about major connectives, let’s treat nonprimitive connectives as if they were

primitive. Thus, the major connective of 2P∧∼Q is the ∧.
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Enter asterisks

When we assign a truth value to a modal formula, we thereby commit ourselves

to assigning certain other truth values to various formulas at various worlds.

For example, when we make 3P true at r, we commit ourselves to making P
true at some world that r sees. To remind ourselves of this commitment, we’ll

put an asterisk (*) below 3P . An asterisk below indicates a commitment to there

being some world of a certain sort. Similarly, since 2P is false at r, this means

that P must be false in some world P sees (if it were true in all such worlds then

2P would be true at r). We again have a commitment to there being some

world of a certain sort, so we enter an asterisk below 2P as well:

1 0 0

3P→2P
∗ ∗

r

Discharge bottom asterisks

The next step is to ful�ll the commitments we incurred when we added the

bottom asterisks. For each, we need to add a world to the diagram. The �rst

asterisk requires us to add a world in which P is true; the second requires us to

add a world in which P is false. We do this as follows:

1 0 0

3P→2P
∗ ∗

r

����
��

��
��

��

��?
??

??
??

??
?

1
Pa

0
Pb

The of�cial model

We now have a diagram of a K-model containing a world in which 3P→2P
is false. But we need to produce an of�cial model, according to the of�cial

de�nition of a model. A model is an ordered triple 〈W ,R ,I 〉, so we must

specify the model’s three members.

The set of worlds,W , is simply the set of worlds I invoked:

W = {r, a,b}
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What are r, a, and b? Let’s just take them to be the letters ‘r’, ‘a’, and ‘b’. No

reason not to—the members ofW , recall, can be any things whatsoever.

Next, the accessibility relation. This is represented on the diagram by the

arrows. In our model, there is an arrow from r to a, an arrow from r to b, and

no other arrows. Thus, the diagram represents that r sees a, that r sees b, and

that there are no further cases of seeing. Now, remember that the accessibility

relation, like all relations, is a set of ordered pairs. So, we simply write out this

set:

R = {〈r, a〉, 〈r,b〉}

That is, we write out the set of all ordered pairs 〈w1, w2〉 such that w1 “sees”

w2.

Finally, we need to specify the interpretation function, I , which assigns

truth values to sentence letters at worlds. In our model, I must assign 1 to

P at world a, and 0 to P at world b. Now, our of�cial de�nition requires an

interpretation to assign a truth value to each of the in�nitely many sentence

letters at each world; but so long as P is true at world a and false at world b,

it doesn’t matter what other truth values I assigns. So let’s just (arbitrarily)

choose to make all other sentence letters false at all worlds in the model. We

have, then:

I (P, a) = 1
I (P, b) = 0
I (α, w) = 0 for all other sentence letters α and worlds w

That’s it—we’re done. We have produced a model in which 3P→2P is

false at some world; hence this formula is not valid in all models; and hence it’s

not K-valid: 2
K

3P→2P .

Check the model

At the end of this process, it’s a good idea to double-check that your model is

correct. This involves various things. First, make sure that you’ve succeeded in

producing the correct kind of model. For example, if you’re trying to produce

a T-model, make sure that the accessibility relation you’ve written down is

re�exive. (In our case, we were only trying to construct a K-model, and so for

us this step is trivial.) Second, make sure that the formula in question really

does come out false at one of the worlds in your model.
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Simplifying models

Sometimes a model can be simpli�ed. In the countermodel for 3P→2P , we

needn’t have used three worlds. We added world a because the truth of 3P
called for a world that r sees in which P is true. But we needn’t have made

that a new world—we could have made P true in r and made r see itself. (We

couldn’t have done that for both asterisks; that would have made P both true

and false at r.) So, we could make this one simpli�cation:

1 1 0 0

3P→2P
∗ ∗

r

��

00

0
Pb

Of�cial model:

W = {r, b}
R = {〈r, r 〉, 〈r, b 〉}

I (P, r) = 1, all others 0

Adapting models to different systems

We have shown that 3P→2P is not K-valid. Next let’s show that this formula

isn’t D-valid—that it is false in some world of some model with a serial accessi-

bility relation. The model we just constructed won’t do, since its accessibility

relation isn’t serial; world b doesn’t see any world. But we can easily change

that:

1 1 0 0

3P→2P
∗ ∗

r

��

00

0
Pb

00

Of�cial model:

W = {r, b}
R = {〈r, r 〉, 〈r, b 〉, 〈b , b 〉}

I (P, r) = 1, all others 0

That was easy—adding the fact that b sees itself didn’t require changing any-

thing else in the model.

Suppose we want now to show that 3P→2P isn’t T-valid. What more

must we do? Nothing! The model we just displayed is a T-model, in addition

to being a D-model, since its accessibility relation is re�exive. In fact, its
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accessibility relation is also transitive, so it’s also an S4-model. What about B?

It’s easy to make the accessibility relation symmetric:

1 1 0 0

3P→2P
∗ ∗

r

OO

��

00

0
Pb

00

Of�cial model:

W = {r, b}
R = {〈r, r〉, 〈r,b〉, 〈b,b〉, 〈b, r〉}

I (P, r) = 1, all others 0

So we’ve established B-invalidity as well. In fact, the model just displayed is

an S5 model since its accessibility relation is an equivalence relation. And so,

since any S5 model is also a K, D, T, B, and S4 model, this one model shows

that 3P→2P is not valid in any of our systems. So we have established that:

2
K,D,T,B,S4,S5

3P→2P .

In this case it wouldn’t have been hard to move straight to the �nal S5

model, right from the start. But in more dif�cult cases, it’s best to proceed

slowly, as I did here. Try �rst for a countermodel in K. Then build the model

up gradually, trying to make its accessibility relation satisfy the requirements of

stronger systems. When you get a countermodel in a stronger system (a system

with more requirements on its models), that very countermodel will establish

invalidity in all weaker systems. Keep in mind the diagram of systems:

S5

S4

==||||||
B

``@@@@@@

T

>>~~~~~~

aaBBBBBB

D

OO

K

OO

An arrow from one system to another, recall, indicates that validity in the �rst

system implies validity in the second. The arrows also indicate facts about

invalidity, but in reverse: when an arrow points from one system to another,
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then invalidity in the second system implies invalidity in the �rst. For example,

if a wff is invalid in T, then it is invalid in D. (That’s because every T-model is

a D-model; a countermodel in T is therefore a countermodel in D.)

When our task is to discover the systems in which a given formula is invalid,

usually only one countermodel will be needed—a countermodel in the strongest

system in which the formula is invalid. But there is an exception involving B

and S4. Suppose a given formula is valid in S5, but we discover a model showing

that it isn’t valid in B. That model is automatically a T, D, and K-model, so

we know that the formula isn’t T, D, or K-valid. But we don’t yet know about

S4-validity. If the formula is S4-invalid, then we will need to produce a second

countermodel, an S4 countermodel. (Notice that the B-model couldn’t already
be an S4-model. If it were, then its accessibility relation would be re�exive,

symmetric, and transitive, and so it would be an S5 model, contradicting the

fact that the formula was S5-valid.)

So far we have the following steps for constructing countermodels:

1. Place the formula in a box and make it false

2. Enter forced truth values

3. Enter asterisks

4. Discharge bottom asterisks

5. The of�cial model

We need to add to this list.

Top asterisks

Let’s try to get a countermodel for 32P→23P in all the systems in which it

is invalid. A cautious beginning would be to try for a K-model. After the �rst

few steps, we have:

1 0 0

32P→23P
∗ ∗

r

}}{{
{{

{{
{{

{{
{

!!CC
CC

CC
CC

CC
C

1

2P
a

0

3Pb
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At this point we have a true 2 (in world a) and a false 3 (in world b). Like

true 3s and false 2s, these generate commitments pertaining to other worlds.

But unlike true 3s and false 2s, they don’t commit us to the existence of some
accessible world of a certain type; they carry commitments for every accessible

world. The true 2P in world a, for example, requires us to make P true in every

world accessible from a. Similarly, the falsity of 3P in world b commits us to

making P false in every world accessible from b. We indicate such commitments,

universal rather than existential, by putting asterisks above the relevant modal

operators:

1 0 0

32P→23P
∗ ∗

r

��~~
~~

~~
~~

~~
~~

��@
@@

@@
@@

@@
@@

@

∗
1

2P
a

∗
0

3P
b

Now, how can we honor these commitments; how must we “discharge” these

asterisks? In this case, when trying to construct a K-model, we don’t need to do

anything. Since world a, for example, doesn’t see any world, P is automatically

true in every world it sees; the statement “for every world, w, if Raw then

V(P, w) = 1” is vacuously true. Same goes for b—P is automatically false in all

worlds it sees. So, we’ve got a K-model in which 32P→23P is false.

Now let’s turn the model into a D-model. Every world must now see at

least one world. Let’s try:
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1 0 0

32P→23P
∗ ∗

r

��~~
~~

~~
~~

~~
~~

��@
@@

@@
@@

@@
@@

@

∗
1

2P
a

��

∗
0

3P
b

��
1

P
c

00

0

Pd

00

I added worlds c and d, so that a and b would each see at least one world.

(Further, worlds c and d each had to see a world, to keep the relation serial. I

could have added new worlds e and f seen by c and d, but e and f would have

needed to see some worlds. So I just let c and d see themselves.) But once c

and d were added, discharging the upper asterisks in worlds a and b required

making P true in c and false in d (since a sees c and b sees d).

Let’s now try for a T-model. Worlds a and b must now see themselves. But

then we no longer need worlds c and d, since they were added just to make the

relation serial. So we can simplify:

1 0 0

32P→23P
∗ ∗

r

��~~
~~

~~
~~

~~
~~

��

00

∗
1 1

2P
a

00

∗
0 0

3P
b

00

Of�cial model:

W = {r,a,b}
R = {〈r, r〉, 〈a, a〉, 〈b,b〉, 〈r, a〉, 〈r,b〉}

I (P, a) = 1, all others 0

When you add arrows, you need to make sure that all top asterisks are dis-

charged. In this case this required nothing of world r, since there were no top
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asterisks there. There were top asterisks in worlds a and b; these I discharged

by making P be true in a and false in b.

Notice that I could have moved straight to this T-model—which is itself a

D-model—rather than �rst going through the earlier mere D-model. However,

this won’t always be possible—sometimes you’ll be able to get a D-model, but

no T-model.

At this point let’s verify that our model does indeed assign the value 0 to

our formula 32P→23P . First notice that 2P is true in a (since a only sees

one world—itself—and P is true there). But r sees a. So 32P is true at r. Now,

consider b. b sees only one world, itself; and P is false there. So 3P must also

be false there. But r sees b. So 23P is false at r. But now, the antecedent of

32P→23P is true, while its consequent is false, at r. So that conditional is

false at r. Which is what we wanted.

Onward. Our model is not a B-model since r sees a and b but they don’t

see r back. Suppose we try to make a and b see r:

1 0 0

32P→23P
∗ ∗

r

??

��~~
~~

~~
~~

~~
~~

__

��@
@@

@@
@@

@@
@@

@00

∗
1 1

2P
a

00

∗
0 0

3P
b

00

We must now make sure that all top asterisks are discharged. Since a now sees

r, P must be true at r. But b sees r too, so P must be false at r. Since P can’t be

both true and false at r, we’re stuck. We have failed to construct a B-model in

which this formula is false.

Our failure to construct a B-countermodel suggests that it may be impossible

to do so. We can prove that this is impossible by showing that the formula is

true in every world of every B-model—that is, that the formula is B-valid. Let

M = 〈W ,R ,I 〉 be any model in which R is re�exive and symmetric, and

consider any w ∈W ; we must show that VM (32P→23P, w) = 1:

i) Suppose for reductio that V(32P→23P, w) = 0. Then V(32P, w) = 1
and V(23P, w) = 0.
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ii) Given the former, for some v,Rwv and V(2P, v) = 1.

iii) Given the latter, for some u,Rw u and V(3P, u) = 0.

iv) From ii), P is true at every world accessible from v ; by symmetry,Rvw;

so V(P, w) = 1.

v) From iii), P is false at every world accessible from u; by symmetry,Ruw;

so V(P, w) = 0, contradicting iv)

Just as we suspected: the formula is indeed B-valid; no wonder we failed to

come up with a B-countermodel!

Might there be an S5 countermodel? No: the B-validity proof we just

constructed also shows that the formula is S5-valid. What about an S4 coun-

termodel? The existence of the B-validity proof doesn’t tell us one way or the

other. Remember the diagram: validity in S4 doesn’t imply validity in B, nor

does validity in B imply validity in S4. So we must either try to come up with

an S4-model, or try to construct an S4 semantic validity proof. Usually it’s best

to try for a model. In the present case this is easy: the T-model we gave earlier

is itself an S4-model. Thus, on the basis of that model, we can conclude that

2
K,D,T,S4

32P→23P .

We have accomplished our task. We gave an S4 countermodel, which is a

countermodel for each system in which 32P→23P is invalid. And we gave

a validity proof in B, which is a validity proof for each system in which the

formula is valid.

Example 6.3: Determine in which systems 32P→3232P is valid and in

which systems it is invalid. We can get a T-model as follows:
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∗
1 0 0 0

32P→3232P
∗ ∗

r

00

��

��

I discharged the second

bottom asterisk in

r by letting r see b

∗
1 1 0

2P 232P
∗

a

00

��

Notice how commitments

to truth values for different

formulas are recorded

by placing the formulas

side by side in the box

∗
0 0 1

32P P
∗

b

00

��
0

P
c

00

Of�cial model:

W = {r,a, b , c}
R = {〈r, r 〉, 〈a,a〉, 〈b , b 〉, 〈c , c〉, 〈r,a〉, 〈r, b 〉, 〈a, b 〉, 〈b , c〉}

I (P,a) =I (P,b)= 1, all others 0

Now consider what happens when we try to turn this model into a B-model.

World b must see back to world a. But then the false 32P in b con�icts with

the true 2P in a. So it’s time for a validity proof. In constructing this validity

proof, we can be guided by our failed attempt to construct a countermodel

(assuming all of our choices in constructing that countermodel were forced).

In the following proof that the formula is B-valid, I use variables for worlds

that match up with the attempted countermodel above:

i) Suppose for reductio that V(32P→3232P, r ) = 0, in some world r in

some B-model 〈W ,R ,I 〉. So V(32P, r ) = 1 and V(3232P, r ) = 0.
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ii) Given the former, for some world a,R ra and V(2P,a) = 1.

iii) Given the latter, sinceR ra, V(232P,a) = 0. So for some b ,Rab and

V(32P, b ) = 0. By symmetry,Rba; so V(2P,a) = 0, contradicting ii).

We now have a T-model for the formula, and a proof that it is B-valid. The

B-validity proof shows the formula to be S5-valid; the T-model shows it to be

K- and D-invalid. We don’t yet know about S4. So let’s return to the T-model

above and try to make its accessibility relation transitive. World a must then

see world c, which is impossible since 2P is true in a and P is false in c. So

we’re ready for a S4-validity proof (the proof looks like the B-validity proof at

�rst, but then diverges):

i) Suppose for reductio that V(32P→3232P, r ) = 0, in some world r in

some B-model 〈W ,R ,I 〉. So V(32P, r ) = 1 and V(3232P, r ) = 0.

ii) Given the former, for some world a,R ra and V(2P,a) = 1.

iii) Given the latter, sinceR ra, V(232P,a) = 0. So for some b ,Rab and

V(32P, b ) = 0. By re�exivity,Rb b , so V(2P, b ) = 0. So for some world

c ,Rb c and V(P, c) = 0.

iv) SinceRab andRb c , by transitivity we haveRac . So, given ii), V(P, c) =
1, contradicting iii)

Daggers

If we make a conditional false, we’re forced to enter certain truth values for its

components: 1 for the antecedent, 0 for the consequent. Similarly, making a

conjunction true forces us to make its conjuncts true, making a disjunction false

forces us to make its disjuncts false, and making a negation either true or false

forces us to give the negated formula the opposite truth value. But consider

making a disjunction true. Here we have a choice; we can make either disjunct

true (or both). We similarly have a choice for how to make a conditional true,

or a conjunction false, or a biconditional either true or false.

When one faces choices like these, it’s best to delay making the choice

as long as possible. After all, some other part of the model might force you

to make one choice rather than the other. If you investigate the rest of the

countermodel, and nothing has forced your hand, you may need then to make
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a guess: try one of the truth-value combinations open to you, and see whether

you can �nish the countermodel. If not, go back and try another combination.

To remind ourselves of these choices, we will place a dagger (†) underneath

the major connective of the formula in question. Consider, as an example, con-

structing a countermodel for the formula 3(3P∨2Q)→(3P∨Q). Throwing

caution to the wind and going straight for a T-model, we have after a few steps:

∗
1 0 0 0 0 0

3(3P∨2Q)→(3P ∨Q)
∗

r

00

��
1 0

3P∨2Q P
†

a

00

We still have to decide how to make 3P∨2Q true in world a: which disjunct

to make true? Well, making 2Q true won’t require adding another world to

the model, so let’s do that. We have, then, a T-model:

∗
1 0 0 0 0 0

3(3P∨2Q)→(3P ∨Q)
∗

r

00

��
∗

1 1 1 0

3P∨2Q P
†

a

00

Of�cial model:

W = {r,a}
R = {〈r, r〉, 〈a,a〉, 〈r,a〉}

I (Q,a) = 1, all else 0

Next let’s try to upgrade this to a B-model. We can’t simply leave everything

as-is while letting world a see back to world r, since 2Q is true in a and Q is

false in r. But there’s another possibility. We weren’t forced to discharge the
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dagger in world a by making 2Q true. So let’s explore the other possibility;

let’s make 3P true:

∗
1 0 0 0 0 0

3(3P∨2Q)→(3P ∨Q)
∗

r

00 OO

��
1 1 0

3P∨2Q P
∗ †

a

00 OO

��
1

Pb

00

Of�cial model:

W = {r,a,b}
R = {〈r, r〉, 〈a,a〉, 〈b,b〉, 〈r,a〉, 〈a, r〉,

〈a,b〉, 〈b,a〉}
I (P,b) = 1, all else 0

What about an S4-model? We can’t just add the arrows demanded by

transitivity to our B-model, since 3P is false in world r and P is true in world

b. What we can do instead is revisit the choice of which disjunct of 3P∨2Q to

make true. Instead of making 3P true, we can make 2Q true, as we did when

we constructed our T-model. In fact, that T-model is already an S4-model.

So, we have countermodels in both S4 and B. The �rst resulted from

one choice for discharging the dagger in world a, the second from the other

choice. An S5-model, though, looks impossible. When we made the left

disjunct of 3P∨2Q true we couldn’t make the accessibility relation transitive,

and when we made the right disjunct true we couldn’t make the accessibility

relation symmetric. So apparently we can’t make the accessibility relation both

transitive and symmetric. Here is an S5-validity proof, based on this line of

thought. Note the “separation of cases” reasoning:

i) Suppose for reductio that V(3(3P∨2Q)→(3P∨Q), r ) = 0, for some

world r in some S5-model. Then V(3(3P∨2Q), r ) = 1 and …

ii) …V(3P∨Q, r ) = 0. So V(3P, r ) = 0 and V(Q, r ) = 0.

iii) Given i), for some world a, R ra and V(3P∨2Q,a) = 1. So, either

V(3P,a) = 1 or V(2Q,a) = 1
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iv) The �rst possibility leads to a contradiction. For if V(3P,a) = 1, then

for some b ,Rab and V(P, b ) = 1. But then given transitivity,R r b , and

so, given V(3P, r ) = 0 (line ii)), V(P, b ) = 0.

v) So does the second. For symmetry yieldsRa r , so if V(2Q,a) = 1 then

V(Q, r ) = 1, contradicting ii).

vi) Either way we have a contradiction.

So we have demonstrated that �
S5

3(3P∨2Q)→(3P∨Q).

Summary of steps

Here, then, is a �nal list of the steps for constructing countermodels:

1. Place the formula in a box and make it false

2. Enter forced truth values

3. Enter daggers, and after all forced moves are over…

4. …enter asterisks

5. Discharge asterisks (hint: do bottom asterisks �rst)

6. Back to step 2 if not �nished

7. The of�cial model
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Exercise 6.3 For each of the following wffs, give a countermodel

for every system in which it is not valid, and give a semantic validity

proof for every system in which it is valid. When you use a single

countermodel or validity proof for multiple systems, indicate which

systems it is good for.

a)* 2[P→3(Q→R)]→3[Q→(2P→3R)]

b) 3(P∧3Q)→(23P→32Q)

c) 2(P∨3Q)→(2P∨3Q)

d)* 2(P↔Q)→2(2P↔2Q)

e) 2(P∧Q)→22(3P→3Q)

f) 2(2P→Q)→2(2P→2Q)

g)* 332P↔2P

h) 33P→23P

i) 2[2(P→2P )→2P]→(32P→2P )

6.4 Axiomatic systems of MPL
Let’s turn next to proof theory. In one respect the proof-theoretic approach to

logic is particularly attractive in the case of modal logic. Model-theoretic ap-

proaches are most attractive when they are “realistic”—when truth-in-a-model

parallels real truth in the real world. But possible-worlds models are realistic

only if a possible-worlds metaphysics of modality is correct. Proof theory, on

the other hand, has the virtue of caution, since its attraction does not rely on

assumptions about semantics. Opponents of possible-worlds metaphysics can

always retreat to proof theory and characterize the inferential roles of modal

expressions directly.

Our approach to proof theory will be axiomatic: we’ll write down axioms,

which are sentences of propositional modal logic that seem clearly to be logical

truths, and we’ll write down rules of inference, which say which sentences can



CHAPTER 6. PROPOSITIONAL MODAL LOGIC 204

be logically inferred from which other sentences.

We’ll continue to follow C. I. Lewis in constructing multiple modal systems,

since it’s so unclear which sentences of MPL are logical truths. We’ll formu-

late multiple axiomatic systems, which differ from one another by containing

different axioms (and so, different theorems). In fact, we’ll give these systems

the same names as the systems we investigated semantically: K, D, T, B, S4,

and S5. (Thus we will subscript the symbol for theoremhood with the names

of systems; `
K
φ, for example, will mean that φ is a theorem of system K.) Our

re-use of the system names will be justi�ed in sections 6.5 and 6.6, where we

will establish soundness and completeness for each system, thereby showing

that in each system, exactly the same formulas are provable as are valid.

6.4.1 System K
Our �rst system, K, is the weakest system—the system with the fewest theorems.

Axiomatic system K:

· Rules: modus ponens and necessitation:

φ→ψ φ

ψ
MP

φ

2φ
NEC

· Axioms: for any MPL-wffs φ,ψ, and χ , the following are axioms:

φ→ (ψ→φ) (PL1)

(φ→(ψ→χ ))→ ((φ→ψ)→(φ→χ )) (PL2)

(∼ψ→∼φ)→ ((∼ψ→φ)→ψ) (PL3)

2(φ→ψ)→ (2φ→2ψ) (K)

System K (like all the modal systems we’ll study) is an extension of proposi-

tional logic, in the sense that it includes all of the theorems of propositional

logic, but then adds more theorems. It includes all of propositional logic be-

cause it contains all of the propositional logic rules and axioms; it adds theorems

by adding a new rule of inference (NEC), and a new axiom schema (the K-

schema) (as well as adding new wffs—wffs containing the 2—to the stock of

wffs that can occur in the PL axioms.)
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If you’ve been paying attention, the rule NEC (for “necessitation”) ought

to strike you as being, well, wrong. It says that if you have a formula φ on a line,

then you may infer the formula 2φ. But can’t a sentence be true without being

necessarily true? Yes; but so long as we’re careful how we use our axiomatic

system, this fact won’t get us into trouble. Recall the distinction from section

2.6 between a proof (simpliciter) and a proof from a set Γ. In a proof, each

line must be either i) an axiom or ii) a wff that follows from earlier lines in the

proof by a rule; in a proof from Γ a line may also be iii) a member of Γ (i.e.,

a “premise”). A theorem is de�ned as the last line of any proof. So every line

of every proof is a theorem. So whenever one uses necessitation in a proof—a

proof simpliciter, that is—one is applying it to a theorem. And necessitation does
seem appropriate when applied to theorems: if φ is a theorem, then 2φ ought

also to be a theorem. Think of it another way. The worry about necessitation

is that it doesn’t preserve truth: its premise can be true when its conclusion

is false. But necessitation does preserve logical truth. So if we’re thinking of

our axiomatic de�nition of theoremhood as being a (proof-theoretic) way to

represent logical truth, there seems to be no trouble with its use of necessitation.

So: we don’t get into trouble with NEC if we only consider proofs of

theorems. But we do get into trouble if we consider proofs from premises.

Consider the following:

1. P premise

2. 2P 1, NEC

This is a proof of 2P from {P}. Thus, P `
K

2P (given the way our de�nitions

are set up). But it’s easy to construct a model showing that P 2
K

2P . Thus,

we have a failure of the generalized version of soundness, according to which

Γ �
K
φ whenever Γ `

K
φ. What’s more, even though P `

K
2P , it’s not the

case that `
K

P→2P . (We’ll be able to demonstrate this once we’ve proved

soundness for K.) Thus, the deduction theorem (section 2.9) fails for our

axiomatic system K—and indeed, for all the axiomatic modal systems we will

consider. So we cannot do anything like conditional proof in these systems—we

cannot show that a conditional is a theorem by assuming its antecedent and

proving its consequent on that basis.
8

8
Compare also the failure of conditional proof given a supervaluational semantics for 4

discussed at the end of section 3.4.5.
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These problems aren’t insurmountable. One can develop more complex

de�nitions of provability from premises that lack these negative consequences.
9

But for our purposes, it will be simpler to sidestep rather than solve the prob-

lems, by staying away from proofs from premises. Our axiomatic system delivers

bad results when it comes to proofs from premises, so we won’t think of that

aspect of the system as representing logical consequence.

Let’s investigate some proof techniques. The simplest consists of �rst

proving something from the PL axioms, and then necessitating it.

Example 6.4: Proof of 2((P→Q)→(P→P )):

1. P→(Q→P ) PL1

2. P→(Q→P ))→((P→Q)→(P→P )) PL2

3. (P→Q)→(P→P ) 1, 2, MP

4. 2((P→Q)→(P→P )) 3, NEC

To save on sweat, tears, and ink, let’s reinstate the time-saving shortcuts

introduced in sections 2.8 and 4.4. Whenever φ is an “MPL-tautology”—i.e.,

results from some tautology (PL-valid wff) by uniform substitution of MPL-

wffs for sentence letters—we allow ourselves to simply write down φ in an

axiomatic proof, with the annotation “PL”. (Since our PL axioms and rule

are complete, and are included here in K, we know we could always insert an

of�cial K-proof of φ.) Thus, the previous proof could be shortened to:
10

1. (P→Q)→(P→P ) PL

2. 2((P→Q)→(P→P )) 1, NEC

And we allow ourselves to move directly from some wffsφ1 . . .φn to any “MPL-

tautological consequence” of those wffs. That is, if we already have φ1 . . .φn,

then we may write ψ, annotating the line numbers of φ1 . . .φn and “PL”, if the

conditional φ1→(φ2→·· · (φn→ψ)) is an MPL-tautology. (As in section 4.4,

after writing “PL” I will sometimes cite one of the tautologies from table 4.1 to

clarify what I’ve done.) And we allow ourselves to perform multiple steps at

once, if it’s obvious what’s going on.

9
See, for example, Garson (2006).

10
Here the formula annotated “PL” is in fact a genuine tautology, but in other cases it won’t

be. The MPL-tautology 2P→2P comes from the tautology P→P by uniformly substituting

2P for P , but it isn’t itself a tautology because it isn’t a PL-wff—the 2 isn’t part of the primitive

vocabulary of propositional logic.
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Back to investigating what we can do in K. In K, tautologies are neces-

sary: the strategy of example 6.4 can be used to prove 2φ whenever φ is a

MPL-tautology. The next example illustrates a related fact about K: in it,

contradictions are impossible.

Example 6.5: Proof of ∼3(P∧∼P )—i.e., of ∼∼2∼(P∧∼P )

1. ∼(P∧∼P ) PL

2. 2∼(P∧∼P ) 1, NEC

3. ∼∼2∼(P∧∼P ) 2, PL

So far we have only used necessitation and the PL axioms. What about the

K-axioms 2(φ→ψ)→(2φ→2ψ)? Their point is to enable “distribution of the

2 over the→”. That is, if you ever have the formula 2(φ→ψ), then you can

always move to 2φ→2ψ as follows:

i . 2(φ→ψ)
i + 1. 2(φ→ψ)→(2φ→2ψ) K

i + 2. 2φ→2ψ i , i + 1, MP

Distribution of the 2 over the→, plus the rule of necessitation, combine

to give us a powerful technique for proving wffs of the form 2φ→2ψ. First

prove φ→ψ (this technique works only if you can do this); then necessitate it

to get 2(φ→ψ); then distribute the 2 over the arrow to get 2φ→2ψ. This is

one of the core K-techniques, and is featured in the next example.

Example 6.6: Proof of 2(P∧Q)→(2P∧2Q):

1. (P∧Q)→P PL

2. 2[(P∧Q)→P] 1, NEC

3. 2[(P∧Q)→P]→ [2(P∧Q)→2P] K

4. 2(P∧Q)→2P 2, 3, MP

5. 2(P∧Q)→2Q Insert steps similar to 1–4

6. 2(P∧Q)→(2P∧2Q) 4, 5, PL (composition)

Next, let’s consider how to prove (2P∨2Q)→2(P∨Q). Here we run into

problems. We must prove a conditional whose antecedent is a disjunction of

two 2s. But the modal techniques we’ve developed so far don’t deliver results
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of this form. They only show us how to put 2s in front of theorems, and how to

distribute 2s over→s, and so only deliver results of the form 2φ and 2φ→2ψ.

And since we’re working in an axiomatic system, we cannot use proof strategies

like conditional proof and reductio ad absurdum. To overcome these problems,

I’ll use our modal techniques to prove two conditionals, 2P→2(P∨Q) and

2Q→2(P∨Q), from which the desired result follows by PL.

Example 6.7: Proof of (2P∨2Q)→2(P∨Q):

1. P→(P∨Q) PL

2. 2(P→(P∨Q)) 1, NEC

3. 2P→2(P∨Q) K, 2, MP

4. Q→(P∨Q) PL

5. 2Q→2(P∨Q) 4, NEC, K, MP

6. (2P∨2Q)→2(P∨Q) 3, 5, PL (dilemma)

In general: if the modal techniques don’t deliver the result you’re after, look

for one or more modal formulas that they do deliver which, by PL, imply the

desired result. (Again, remember to consult table 4.1.) Assemble the modal

formulas using the modal techniques, and then write down your desired result,

annotating “PL”.

The next example illustrates our next modal technique: combining two 2s

to get a single 2.

Example 6.8: Proof of (2P∧2Q)→2(P∧Q):

1. P → (Q→(P∧Q)) PL

2. 2P →2(Q→(P∧Q)) 1, NEC, K, MP

3. 2(Q→(P∧Q))→ [2Q→2(P∧Q)] K

4. 2P→[2Q→2(P∧Q)] 2, 3, PL (syllogism)

5. (2P∧2Q)→2(P∧Q) 4, PL (import/export)

(Step 4 is unnecessary since you could go straight from 2 and 3 to 5 by proposi-

tional logic; I put it in for perspicuity.)

In general, whenever φ1→(φ2→·· · (φn→ψ)) is provable you can use the

technique of example 6.8 to prove 2φ1→(2φ2→·· · (2φn→2ψ)). Thus you

can move from 2φ1 . . .2φn to 2ψ in any such case. Roughly speaking: you
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can combine several 2s to get a further 2, provided you can prove the inside

of the further 2 from the insides of the former 2s. First prove the conditional

φ1→(φ2→·· · (φn→ψ)); then necessitate it to get 2[φ1→(φ2→·· · (φn→ψ))];
then distribute the 2 over the arrows repeatedly using K-axioms and PL to get

2φ1→(2φ2→·· · (2φn→2ψ)).
Onward. The next example illustrates one way to prove formulas with

“nested” modal operators:

Example 6.9: Proof of 22(P∧Q)→22P :

1. (P∧Q)→P PL

2. 2(P∧Q)→2P 1, NEC, K, MP

3. 2[2(P∧Q)→2P] 2, NEC

4. 22(P∧Q)→22P K, 3, MP

Notice in line 3 that we necessitated something that was not a PL theorem.

That’s ok; the rule of necessitation applies to all K-theorems, even those whose

proofs were distinctively modal. Notice also how this proof contains two

instances of the technique of example 6.6. This technique involves obtaining

a conditional, necessitating it, and then distributing the 2 over the →. We

did this �rst using the conditional (P∧Q)→P ; that led us to a conditional,

2(P∧Q)→2P . Then we started the technique over again, using this as our

initial conditional.

So far we have no techniques for dealing with the 3, other than eliminating

it by de�nition. It will be convenient to derive some shortcuts involving the 3—

some theorems that we may subsequently cite in proofs. The most important

is an analog of the K axiom:

2(φ→ψ)→(3φ→3ψ) (K3)

By de�nition of the 3, this is an abbreviation of 2(φ→ψ)→(∼2∼φ→∼2∼ψ).
How to prove it? None of our modal techniques delivers a wff of this form.

But notice that this wff follows by PL from 2(φ→ψ)→(2∼ψ→2∼φ). And

this latter wff looks like the result of necessitating an MPL-tautology and then

distributing the 2 over the → a couple of times—just the kind of thing we

know how to do in K. So, any instance of K3 may be proved as follows:
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1. (φ→ψ)→(∼ψ→∼φ) PL (contraposition)

2. 2(φ→ψ)→2(∼ψ→∼φ) 1, NEC, K, MP

3. 2(∼ψ→∼φ)→(2∼ψ→2∼φ) K

4. 2(φ→ψ)→(2∼ψ→2∼φ) 2, 3, PL (syllogism)

5. 2(φ→ψ)→(∼2∼φ→∼2∼ψ) 4, PL (contraposition)

The next example illustrates the importance of K3:

Example 6.10: Proof of 2P→(3Q→3(P∧Q)):

1. P→[Q→(P∧Q)] PL

2. 2P→2[Q→(P∧Q)] 1, NEC, K, MP

3. 2[Q→(P∧Q)]→[3Q→3(P∧Q)] K3

4. 2P→[3Q→3(P∧Q)] 2, 3, PL (syllogism)

In general, K3 lets us construct proofs of the following sort. Suppose we

wish to prove a formula of the form:

O1φ1→(O2φ2→·· · (Onφn→3ψ))

where the Oi s are modal operators, all but one of which are 2s. (Thus, the

remaining Oi is 3.) The technique is like that of example 6.8. First prove a

nested conditional, the antecedents of which are the φi s, and the consequent of

which is ψ (the technique works only when this can be done); then necessitate

it; then repeatedly distribute the 2 over the→s, once using K3, the rest of

the times using K. But there is one catch. We need to use K3 last, after all the

uses of K. This in turn requires that the �nal antecedent in the initial nested

conditional must be whichever of the φi s that we want to end up underneath

the 3. For instance, suppose that O2 is 3. Thus, what we are trying to prove is:

2φ1→(3φ2→(2φ3→·· · (2φn→3ψ)))

In this case, the conditional to use would be:

φ1→(φn→(φ3→·· · (φn−1→(φ2→ψ))))

In other words, one must swap φn with φ2. The end result will therefore have

the modal statements out of order:

2φ1→(2φn→(2φ3→·· · (2φn−1→(3φ2→3ψ))))
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But that’s not a problem since this implies our desired result by PL. (Recall

that α→(β→γ ) is logically equivalent in PL to β→(α→γ ).)

Why do we need to save K3 for last? The strategy of successively dis-

tributing the box over all the nested conditionals comes to a halt as soon as

the K3 theorem is used. Suppose, for example, that we attempted to prove

3P→(2Q→3(P∧Q)) as follows:

1. P→(Q→(P∧Q)) PL

2. 2[P→(Q→(P∧Q))] 1, Nec

3. 3P→3(Q→(P∧Q)) K3, 2, MP

4. ?

Now we’re stuck. We need 3(Q→(P∧Q))→(2Q→3(P∧Q)) to �nish the

proof; but neither K nor K3 gets us this. We must start over, beginning with a

different conditional:

Example 6.11: Proof of 3P→(2Q→3(P∧Q)):

1. Q→(P→(P∧Q)) PL

2. 2(Q→(P→(P∧Q))) 1, Nec

3. 2Q→2(P→(P∧Q)) K, 2, MP

4. 2(P→(P∧Q))→(3P→3(P∧Q)) K3

5. 2Q→(3P→3(P∧Q)) 3, 4, PL (syllogism)

6. 3P→(2Q→3(P∧Q)) 5, PL (permutation)

Let’s derive another helpful shortcut involving the 3, the following “modal

negation” (MN) theorem schemas:

`
K
∼2φ→3∼φ `

K
3∼φ→∼2φ (MN)

`
K
∼3φ→2∼φ `

K
2∼φ→∼3φ

I’ll prove one of these; the rest can be proved as exercises.

Example 6.12: Proof of ∼2φ→3∼φ, i.e. ∼2φ→3∼φ (for any φ):

1. ∼∼φ→φ PL

2. 2∼∼φ→2φ 1, NEC, K, MP

3. ∼2φ→∼2∼∼φ 2, PL (contraposition)
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The MN theorems let us “move” ∼s through strings of 2s and 3s.

Example 6.13: Show that `
K

232∼P→∼323P :

1. 2∼P→∼3P MN

2. 32∼P→3∼3P 1, NEC, K3, MP

3. 3∼3P→∼23P MN

4. 32∼P→∼23P 2, 3, PL (syllogism)

5. 232∼P→2∼23P 4, NEC, K, MP

6. 2∼23P→∼323P MN

7. 232∼P→∼323P 5, 6, PL (syllogism)

It’s important to note, by the way, that this proof can’t be shortened as follows:

1. 232∼P→23∼3P MN

2. 23∼3P→2∼23P MN

3. 2∼23P→∼323P MN

4. 232∼P→∼323P 1, 2, 3, PL

Steps 1 and 2 of the latter proof are mistaken. The MN theorems say only that

particular wffs are provable, whereas steps 1 and 2 attempt to apply MN to the

insides of complex wffs.

K is a very weak system. In it you can’t prove anything interesting about

iterated modalities—sentences with strings of multiple modal operators. You

can’t even prove that necessity implies possibility. (We’ll be able to establish

facts of unprovability after section 6.5.) So it’s unclear whether K represents

any sort of necessity. Still, there’s a point to K. K gives a minimal proof theory

for the 2: if 2 is to represent any sort of necessity at all, it must obey at least
K’s axioms and rules. For on any sense of necessity, surely logical truths must

be necessary; and surely, if both a conditional and its antecedent are necessary

then its consequent must be necessary as well. (Think of the latter in terms

of possible worlds: if φ→ψ is true in all accessible worlds, and φ is true in all

accessible worlds, then by modus ponens within each accessible world, ψ must

be true in all accessible worlds.)

So even if K doesn’t itself represent any sort of necessity, K is well-suited to

be the proof-theoretic basis for all the other systems we’ll study. Each of those
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other systems will result from adding appropriate axioms to K. For example, to

get system T we’ll add each instance of 2φ→φ; and to get S4 we’ll additionally

add each instance of 2φ→22φ. Thus, each of our systems will be extensions

of K: every theorem of K is also a theorem of all the other systems (since each

system differs from K only by containing additional axioms).

Exercise 6.4 Prove the remaining MN theorems.

Exercise 6.5 Give axiomatic proofs in K of the following wffs:

a)* 3(P∧Q)→(3P∧3Q)

b) 2∼P→2(P→Q)

c)* ∼3(Q∧R)↔2(Q→∼R)

d)** 2(P↔Q)→(2P↔2Q)

e) [2(P→Q)∧2(P→∼Q)]→∼3P

f) (2P∧2Q)→2(P↔Q)

g)* 3(P→Q)↔(2P→3Q)

h) 3P→(2Q→3Q)

i) ∼332(P∨Q)→223∼P

6.4.2 System D
To get D we add to K a new axiom saying that “what’s necessary is possible”:

Axiomatic system D:

· Rules: MP, NEC

· Axioms: the PL1, PL2, PL3, and K schemas, plus the D-schema:

2φ→3φ (D)

In D it can be proved that tautologies are possible and contradictions are

not necessary, as the next example and exercise 6.6a illustrate.
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Example 6.14: Show that `
D

3(P∨∼P )

1. P∨∼P PL

2. 2(P∨∼P ) 1, NEC

3. 2(P∨∼P )→3(P∨∼P ) D

4. 3(P∨∼P ) 2, 3, MP

One more example:

Example 6.15: Show that `
D

22P→23P .

1. 2P→3P D

2. 2(2P→3P ) 1, NEC

3. 22P→23P 2, K, MP

Like K, system D is very weak. As we will see later, 2P→P isn’t a D-

theorem. This is not a problem if the 2 is to be given a deontic sense, since

as we noted earlier, some things that ought to be, aren’t. But anything that is

metaphysically, naturally, or technologically necessary, for example, must be

true. (If something is true in all metaphysically possible worlds, or all naturally

possible worlds, or all technologically possible worlds, then surely it must be

true in the actual world, and so must be plain old true.) So any system aspiring

to represent these further sorts of necessity will need new axioms.

Exercise 6.6 Give axiomatic proofs in D of the following wffs:

a) ∼2(P∧∼P )

b) ∼(2P∧2∼P )

c) ∼2[2(P∧Q)∧2(P→∼Q)]

6.4.3 System T
Here we drop the D-schema, and add all instances of the T-schema:

Axiomatic system T:
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· Rules: MP, NEC

· Axioms: the PL1, PL2, PL3, and K schemas, plus the T-schema:

2φ→φ (T)

In section 6.4.1 we proved a theorem schema, K3, which was the analog

for the 3 of the K-axiom schema. Let’s do the same thing here; let’s prove a

theorem schema T3, which is the analog for the 3 of the T axiom schema:

φ→3φ (T3)

For any wff φ, the following is a proof of φ→∼2∼φ, i.e., φ→3φ.

1. 2∼φ→∼φ T

2. φ→∼2∼φ 1, PL

So let’s allow ourselves to write down instances of T3 in proofs.

Notice that instances of the D-axioms are now theorems (2φ→φ is a T

axiom; φ→3φ is an instance of T3; 2φ→3φ then follows by PL). Thus, T

is an extension of D: every theorem of D remains a theorem of T.

Exercise 6.7 Give axiomatic proofs in T of the following wffs:

a) 32P→3(P∨Q)

b)** [2P∧32(P→Q)]→3Q

c) 3(P→2Q)→(2P→3Q)

6.4.4 System B
We turn now to systems that say something distinctive about iterated modalities.

Axiomatic system B:

· Rules: MP, NEC
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· Axioms: the PL1, PL2, PL3, K, and T schemas, plus the B-schema:

32φ→φ (B)

Since we retain the T axiom schema, B is an extension of T (and hence of

D—and K, of course—as well.)

As with K and T, we can establish a theorem schema that is the analog for

the 3 of B’s characteristic axiom schema.

φ→23φ (B3)

For any φ, we can prove φ→23φ (i.e., φ→2∼2∼φ, given the de�nition of

the 3) as follows:

1. ∼2∼2∼φ→∼φ B (given the def of 3)

2. φ→2∼2∼φ 1, PL

Example 6.16: Show that `
B
[2P∧232(P→Q)]→2Q.

1. 32(P→Q)→(P→Q) B

2. 232(P→Q)→2(P→Q) 1, Nec, K, MP

3. 2(P→Q)→(2P→2Q) K

4. 232(P→Q)→(2P→2Q) 2, 3, PL (syllogism)

5. [2P∧232(P→Q)]→2Q 4, PL (import/export)

Exercise 6.8 Give axiomatic proofs in B of the following wffs:

a) 32P↔3232P

b)** 22(P→2P )→2(∼P→2∼P )

6.4.5 System S4
S4 takes a different stand from B on iterated modalities:

Axiomatic system S4:
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· Rules: MP, NEC

· Axioms: the PL1, PL2, PL3, K, and T schemas, plus the S4-schema:

2φ→22φ (S4)

Both B and S4 are extensions of T; but neither is an extension of the other.

(The nonlinearity here mirrors the nonlinearity of the diagram of semantic

systems in section 6.3.2.) S4 contains the S4-schema but not the B-schema,

whereas B contains the B-schema but not the S4-schema. As a result, some

B-theorems are unprovable in S4, and some S4-theorems are unprovable in B.

As before, we have a theorem schema that is the analog for the 3 of the S4

axiom schema:

33φ→3φ (S43)

I’ll prove it by proving its de�nitional equivalent, ∼2∼∼2∼φ→∼2∼φ:

1. 2∼φ→22∼φ S4

2. 2∼φ→∼∼2∼φ PL

3. 22∼φ→2∼∼2∼φ 2, NEC, K, MP

4. 2∼φ→2∼∼2∼φ 1, 3, PL (syllogism)

5. ∼2∼∼2∼φ→∼2∼φ 4, PL (contraposition)

Example 6.17: Show that `
S4
(3P∧2Q)→3(P∧2Q). This problem is rea-

sonably dif�cult. Here’s my approach. We know from example 6.10 how to

prove things of the form 2φ→(3ψ→3χ ), provided we can prove the condi-

tional φ→(ψ→χ ). Now, this technique won’t help directly with the formula

we’re after, since we can’t prove the conditional Q→(P→(P∧2Q)). But we

can use this technique to prove something related to the formula we’re af-

ter: 22Q→(3P→3(P∧2Q)) (since the conditional 2Q→(P→(P∧2Q)) is an

MPL-tautology). This thought inspires the following proof:

1. 2Q→(P→(P∧2Q)) PL

2. 22Q→2(P→(P∧2Q)) 1, Nec, K, MP

3. 2(P→(P∧2Q))→(3P→3(P∧2Q)) K3

4. 22Q→(3P→3(P∧2Q)) 2, 3, PL (syllogism)

5. 2Q→22Q S4

6. (3P∧2Q)→3(P∧2Q) 4, 5, PL (syll., import-export)
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Exercise 6.9 Give axiomatic proofs in S4 of the following wffs:

a) 2P→232P

b) 2323P→23P

c) 32P→3232P

6.4.6 System S5
Our �nal system, S5, takes the strongest stand on iterated modalities. It results

from adding to T the S5 schema:

Axiomatic system S5:

· Rules: MP, NEC

· Axioms: the PL1, PL2, PL3, K, and T schemas, plus the S5-schema:

32φ→2φ (S5)

The analog of the S5-schema for the 3 is:

3φ→23φ (S53)

We can prove 3φ→23φ, i.e., ∼2∼φ→2∼2∼φ, as follows:

1. ∼2∼2∼φ→2∼φ S5 (def of 3)

2. ∼2∼φ→2∼2∼φ 1, PL

Notice that we didn’t include the B and S4 schemas as axiom schemas of S5.

Nevertheless, all their instances are theorems of S5 (so we can still appeal to

them in proofs.) Any instance of the B schema, 32φ→φ, follows immediately

via PL from an S5 axiom 32φ→2φ and a T axiom 2φ→φ. As for the S4

schema, the following proof uses B3, which is a theorem of B and hence of S5.

1. 2φ→232φ B3

2. 32φ→2φ S5

3. 232φ→22φ 2, NEC, K, MP

4. 2φ→22φ 1, 3, PL (syllogism)
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Exercise 6.10 Give axiomatic proofs in S5 of the following wffs:

a) (2P∨3Q)↔2(P∨3Q)

b) 3(P∧3Q)↔(3P∧3Q)

c)** 2(2P→2Q)∨2(2Q→2P )

d) 2[2(3P→Q)↔2(P→2Q)]

6.4.7 Substitution of equivalents and modal reduction
Let’s conclude our discussion of provability in modal logic by proving two

simple meta-theorems. The �rst, substitution of equivalents, says roughly

that you can substitute provably equivalent wffs within complex wffs. More

carefully: call two wffs “α/β variants” iff they differ only in that in zero or more

places, wff α occurs in one where wff β occurs in the other. Thus, you can

turn one into the other by changing (zero or more) αs to βs or βs to αs. (For

example, P→(Q→P ) and ∼S→(Q→∼S) are P/∼S variants, as are P→(Q→P )
and ∼S→(Q→P ).)

Substitution of equivalents: Where S is any of our modal systems, if`
S
α↔β,

then `
S
χ↔χ ′ for any α/β variants χ and χ ′

Proof. Suppose `
S
α↔β. I’ll argue by induction that the following holds for

any wff, χ :

`
S
χ↔χ ′, for any α/β variant χ ′ of χ

Base case: here χ is a sentence letter. Let χ ′ be any α/β variant of χ . If χ is

neither α nor β then χ ′ is just χ itself. If on the other hand χ is either α or

β then χ ′ is either α or β. Either way, we have one of the following cases:

χ ′ = χ , or χ = α and χ ′ = β, or χ = β and χ ′ = α. Since `
S
α↔β and S

includes PL, `
S

(χ↔χ ′) in each case.

Induction case: Now we assume the inductive hypothesis, that wffs χ1 and χ2
obey the theorem:

`
S
χ1↔χ ′1, for any α/β variant χ ′1 of χ1

`
S
χ2↔χ ′2, for any α/β variant χ ′2 of χ2
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We must show that the theorem holds for ∼χ1, χ1→χ2, and 2χ1.

Take the �rst case. We must show that the theorem holds for∼χ1—i.e., that

`
S
∼χ1↔φ, for any α/β variant φ of ∼χ1. Suppose �rst that φ has the form

∼χ ′1, where χ ′1 is an α/β variant of χ1. By the inductive hypothesis, `
S
χ1↔χ ′1;

since S includes PL, `
S
∼χ1↔∼χ ′1, i.e., `

S
∼χ1↔φ. If, on the other hand, φ

does not have the form ∼χ ′1 for some α/β variant χ ′1 of χ1, then φ must result

from changing the whole of ∼χ1 from α to β or from β to α. Thus, each of

∼χ1 and φ must be either α or β. But then, as in the base case, `
S
∼χ1↔φ.

I leave the remaining cases as an exercise.

The following examples illustrate the power of substitution of equivalents.

First, in our discussion of K we proved the following two theorems:

2(P∧Q)→(2P∧2Q)
(2P∧2Q)→2(P∧Q)

Hence (by PL), 2(P∧Q)↔(2P∧2Q) is a K-theorem. Given substitution

of equivalents, whenever we prove a theorem in which the formula 2(P∧Q)
occurs as a subformula, we can infer that the result of changing 2(P∧Q) to

2P∧2Q is also a K-theorem—without having to do a separate proof.

Second, given the modal negation theorems, we know that all instances of

the following schemas are theorems of K (and hence of every other system):

2∼φ↔∼3φ 3∼φ↔∼2φ

Call these “the duals equivalences”.
11

Given the duals equivalences, we can

swap ∼3φ and 2∼φ, or ∼2φ and 3∼φ, within any theorem, and the result

will also be a theorem. So we can easily “move” a ∼ through a series of modal

operators. For example, it’s easy to show that each of the following is a theorem

of each system S:

332∼φ↔332∼φ (1)

33∼3φ↔332∼φ (2)

3∼23φ↔332∼φ (3)

∼223φ↔332∼φ (4)

11
Given the duals equivalences, 2 relates to 3 the way ∀ relates to ∃ (since ∀x∼φ↔∼∃xφ,

and ∃x∼φ↔∼∀xφ are logical truths). This shared relationship is called “duality”; 2 and 3

are said to be duals, as are ∀ and ∃. The duality of 2 and 3 would be neatly explained by a

metaphysics according to which necessity just is truth in all worlds and possibility just is truth

in some worlds!
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(1) is a theorem of S, since it has the form ψ→ψ. (2) is the result of changing

2∼φ on the left of (1) to∼3φ. Since (1) is a theorem of S, (2) is also a theorem

of S, by substitution of equivalents via a duals equivalence. We then obtain (3)

by changing 3∼3φ in (2) to ∼23φ; by substitution of equivalents via a duals

equivalence, this too is a theorem of S. Finally, (4) follows from (3) and a duals

equivalence by PL, so it too is a theorem of S. (Note how much easier this is

than example 6.13!)

Our second meta-theorem concerns only system S5:
12

Modal reduction theorem for S5: Where O1 . . .On are modal operators and

φ is a wff:

`
S5
O1 . . .Onφ↔Onφ

Intuitively: a string of modal operators always boils down to the innermost

operator. For example, 223232232323φ boils down to 3φ; that is, the

following is a theorem of S5: 223232232323φ↔3φ.

Proof. The following equivalences are all theorems of S5:

32φ↔2φ (a)

22φ↔2φ (b)

23φ↔3φ (c)

33φ↔3φ (d)

The left-to-right direction of (a) is just S5; the right-to-left is T3; (b) is T

and S4; (c) is T and S53; and (d) is S43 and T3. Now consider O1O2 . . .Onφ.

Depending on which two modal operators O1 and O2 are, one of (a)-(d) tells

us that `
S5
O1O2 . . .Onφ↔O2 . . .Onφ. Repeating this process n − 1 times, we

have `
S5
O1 . . .Onφ↔Onφ. (It is straightforward to convert this argument into

a more rigorous inductive proof.)

Exercise 6.11 Finish the proof of substitution of equivalents.

12
The modal reduction formula, the duals equivalences, and substitution of equivalents

together let us reduce strings of operators that include ∼s as well as modal operators. Simply

use the duals equivalences to drive any ∼s in the string to the far right hand side, then use the

modal reduction theorem to eliminate all but the innermost modal operator.
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6.5 Soundness in MPL
We have de�ned twelve logical systems: six semantic systems and six axiomatic

systems. But each semantic system was paired with an axiomatic system of the

same name. The time has come to justify this nomenclature. In this section and

the next, we’ll show that for each semantic system, exactly the same wffs are

counted valid in that system as are counted theorems by the axiomatic system

of the same name. That is, for each of our systems, S (for S = K, D, T, B, S4,

and S5), we will prove soundness and completeness:

S-soundness: every S-theorem is S-valid

S-completeness: every S-valid formula is a S-theorem

Our study of modal logic has been in reverse historical order. We began with

semantics, because that is the more intuitive approach. Historically (as we noted

earlier), the axiomatic systems came �rst, in the work of C. I. Lewis. Given

the uncertainty over which axioms to choose, modal logic was in disarray. The

discovery by the teenaged Saul Kripke in the late 1950s of the possible-worlds

semantics we studied in section 6.3, and of the correspondence between simple

constraints (re�exivity, transitivity, and so on) on the accessibility relation in

his models and Lewis’s axiomatic systems, transformed modal logic.

The soundness and completeness theorems have practical as well as the-

oretical value. First, once we’ve proved soundness, we’ll have a method for

showing that formulas are not theorems. We already know from section 6.3.3

how to establish invalidity (by constructing countermodels), and the soundness

theorem tells us that an invalid wff is not a theorem. Second, once we’ve proved

completeness, if we want to know that a given formula is a theorem, rather than

constructing an axiomatic proof we can instead construct a semantic validity

proof, which is much easier.

Let’s begin with soundness. We’re going to prove a general theorem, which

we’ll use in several soundness proofs. First we’ll need a piece of terminology.

Where Γ is any set of modal wffs, let’s call “K+Γ” the axiomatic system that

consists of the same rules of inference as K (MP and NEC), and which has

as axioms the axioms of K (instances of the K- and PL- schemas), plus the

members of Γ. Here, then, is the theorem:

Theorem 6.1 If Γ is any set of modal wffs andM is an MPL-model in which

each wff in Γ is valid, then every theorem of K+Γ is valid inM
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Modal systems of the form K+Γ are commonly called normal. Normal

modal systems contain all the K-theorems, plus possibly more. What Theorem

6.1 gives us is a method for constructing a soundness proof for any normal

system. Since all the systems we have studied here (K, D, etc.) are normal,

this method is suf�ciently general for us. Here’s how the method works for

system T. System T has the same rules of inference as K, and its axioms are all

the axioms of K, plus the instances of the T-schema. In the “K+Γ” notation,

therefore, T=K+ {2φ→φ :φ is an MPL wff}. To establish soundness for T,

all we need to do is show that every instance of the T-schema is valid in all

re�exive models; for we may then conclude by Theorem 6.1 that every theorem

of T is valid in all re�exive models. This method can be applied to each of our

systems: for each system, S, to establish S’s soundness it will suf�ce to show

that S’s “extra-K” axioms are valid in all S-models.

Theorem 6.1 follows from two lemmas we will need to prove:

Lemma 6.2 All instances of the PL and K axiom schemas are valid in all MPL-

models

Lemma 6.3 For every MPL-model,M , MP and NEC preserve validity inM

Proof of Theorem 6.1 from the lemmas. Assume that every wff in Γ is valid in a

given MPL-modelM . Any K+Γ-proof is a series of wffs in which each line is

either an axiom of K+Γ, or follows from earlier lines in the proof by MP or

NEC. Now, axioms of K+Γ are either PL axioms, K axioms, or members of

Γ. By Lemma 6.2, PL and K axioms are valid in all MPL-models, and so are

valid inM ; and members of Γ are valid inM by hypothesis. So all axioms in

the proof are valid inM . Moreover, by Lemma 6.3, MP and NEC preserve

validity inM . Therefore, by induction, every line in every K+Γ-proof is valid

inM . Hence every theorem of K+Γ is valid inM .

We now need to prove the lemmas. I’ll prove half of Lemma 6.2, and leave

the other as an exercise.

Proof that PL axioms are valid in all MPL-models. From our proof of soundness

for PL (section 2.7), we know that the PL truth tables generate the value 1 for

each PL axiom, no matter what truth value its immediate constituents have.

But here in MPL, the truth values of conditionals and negations are determined

at a given world by the truth values at that world of its immediate constituents

via the PL truth tables. So any PL axiom must have truth value 1 at any world,

regardless of what truth values its immediate constituents have. PL-axioms,
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therefore, are true at every world in every model, and so are valid in every

model. I’ll leave that proof that every K axiom is valid in every MPL-model as

an exercise.

Exercise 6.12 Show that every K-axiom is valid in every MPL-

model.

Exercise 6.13 Prove Lemma 6.3—i.e., that for any MPL-model

M , if the inputs to either MP or NEC are valid inM , then that

rule’s output is also valid inM .

6.5.1 Soundness of K
We can now construct soundness proofs for the individual systems. I’ll do this

for some of the systems, and leave the veri�cation of soundness for the other

systems as exercises.

First K. In the “K+Γ” notation, K is just K+∅, and so it follows immediately

from Theorem 6.1 that every theorem of K is valid in every MPL-model. So

K is sound.

6.5.2 Soundness of T
T is K+ Γ, where Γ is the set of all instances of the T-schema. So, given

Theorem 6.1, to show that every theorem of T is valid in all T-models, it

suf�ces to show that all instances of the T-schema are valid in all T-models.

Assume for reductio that V(2φ→φ, w) = 0 for some world w in some T-model

(i.e., some model with a re�exive accessibility relation). So V(2φ, w) = 1 and

V(φ, w) = 0. By re�exivity,Rww, and so V(φ, w) = 1; contradiction.

6.5.3 Soundness of B
B is K+Γ, where Γ is the set of all instances of the T- and B- schemas. Given

Theorem 6.1, it suf�ces to show that every instance of the B-schema and every

instance of the T-schema is valid in every B-model. LetM be any B-model

and w be any world in that model; we must show that all instances of the T-

and B-schemas are true at w inM . The proof of the previous section shows
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that the T-axioms are true at w (sinceM ’s accessibility relation is re�exive).

Now for the B-axioms. Assume for reductio that V(32φ→φ, w) = 0. So

V(32φ, w) = 1 and V(φ, w) = 0. Given the former, V(2φ, v) = 1, for some v
such thatRwv; by symmetry,Rvw; so V(φ, w) = 1, contradicting the latter.

Exercise 6.14 Prove soundness for systems D, S4, and S5.

Exercise 6.15 Consider the system K5 that results from adding

to K all instances of the S5 schema (i.e., S5 minus the T schema).

Let K5 models be understood as MPL models whose accessibility

relation is euclidean: for any worlds w, u, v , ifRw u andRwv then

Ruv. Establish soundness for K5.

6.6 Completeness in MPL
Next, completeness: for each system, we’ll show that every valid formula is a

theorem. As with soundness, most of the work will go into developing some

general-purpose machinery. At the end we’ll use the machinery to construct

completeness proofs for each system. (As in section 2.9, we’ll be constructing a

proof of the Henkin variety.)

For each of our systems, we’re going to show how to construct a certain

special model, the canonical model for that system. The canonical model for a

system, S, will be shown to have the following feature:

If a formula is valid in the canonical model for S, then it is
a theorem of S

This suf�cient condition for theoremhood can then be used to give complete-

ness proofs, as the following example brings out. Suppose we can demonstrate

that the accessibility relation in the canonical model for T is re�exive. Then,

since T-valid formulas are by de�nition true in every world in every model

with a re�exive accessibility relation, we know that every T-valid formula is

valid in the canonical model for T. But then the italicized statement tells us

that every T-valid formula is a theorem of T. So we would have established

completeness for T.

The trick for constructing canonical models will be to let the worlds in

these models be sets of formulas (remember, worlds are allowed to be anything
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we like). In particular, a world will be the set of formulas true at that world.

Working out this idea will occupy us for some time.

6.6.1 De�nition of canonical models
If we want to use sets of wffs as the worlds in canonical models, and if a world

is to be the set of wffs true at that world, then we can’t use just any old set of

wffs. It’s part of the de�nition of a valuation function that for any wff φ and

any world w, either φ or ∼φ is true at w. That means that any set of wffs

that we’re going to call a world had better contain either φ or ∼φ. Moreover,

we’d better not let such a set contain both φ and ∼φ, since a wff can’t be both

true and false at a world. This suggests that we might try using the maximal

consistent sets of wffs introduced in section 2.9.1.

As before, a maximal set is de�ned as one that contains, for each wff (now:

each MPL-wff), either it or its negation. But the de�nition of consistency

needs to be modi�ed a bit. Consistency was de�ned in section 2.9.1 in terms

of provability in PL; here we will de�ne a notion of S-consistency, in terms of

provability in system S, for each of our modal systems. Further, the section

2.9.1 de�nition made use of the notion of provability from a set of premises; but

we’ve been avoiding speaking of provability from premise sets in modal logic

since the rule of necessitation is appropriate only when applied to theorems.

What I’ll do is introduce a new notion of provability from a set, and in terms

of this new notion retain the earlier de�nition of consistency:

New definition of S-provability-from: A wff φ is provable in system S from

a set Γ (“Γ `
S
φ”) iff for some γ1 . . .γn ∈ Γ, `

S
(γ1∧· · ·∧γn)→φ

Definition of S-consistency: A set of wffs Γ is S-inconsistent iff Γ `
S
⊥. Γ is

S-consistent iff it is not S-inconsistent

In the de�nition of S-provability from, understand “(γ1∧· · ·∧γn)→φ” to be

γ1→φ if n = 1 and φ if n = 0 (the latter case is for when Γ is empty; thus,

∅ `
S
φ iff `

S
φ). ⊥, remember, is de�ned as the wff ∼(P→P ).

Given these de�nitions, we can now de�ne canonical models. It may not

be fully clear at this point why the de�nition is phrased as it is. For now, take it

on faith that the de�nition will get us where we want to go.

Definition of canonical model: The canonical model for system S is the

MPL-model 〈W ,R ,I 〉 where:
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· W is the set of all maximal S-consistent sets of wffs

· Rww ′ iff 2−(w)⊆ w ′

· I (α, w) = 1 iff α ∈ w, for each sentence letter α and each w ∈W
· 2−(∆) is de�ned as the set of wffs φ such that 2φ is a member of ∆

Let’s think for a bit about this de�nition. As promised, we have de�ned

the members ofW to be maximal S-consistent sets of wffs. And note that all
maximal S-consistent sets of wffs are included inW .

Accessibility is de�ned using the “2−” notation. Think of this operation as

“stripping off the boxes”: to arrive at 2−(∆) (“the box-strip of set∆”), begin with

set ∆, discard any formula that doesn’t begin with a 2, line up the remaining

formulas, and then strip one 2 off of the front of each. For example, the

box-strip of set {P→Q,2∼R,∼2Q,22(P→2P )}, is the set {∼R,2(P→2P )}.
The de�nition of accessibility, therefore, says thatRww ′ iff for each wff 2φ
that is a member of w, the wff φ is a member of w ′.

The de�nition of accessibility in the canonical model says nothing about

formal properties like transitivity, re�exivity, and so on. As a result, it is not

true by de�nition that the canonical model for S is an S-model. T-models,

for example, must have re�exive accessibility relations, whereas the de�nition

of the accessibility relation in the canonical model for T says nothing about

re�exivity. As we will soon see, for each of the systems S that we have introduced

in this book, the canonical model for S turns out to be an S-model. But this

fact must be proven; it’s not built into the de�nition of a canonical model.

An atomic wff (sentence letter) is de�ned to be true at a world in the

canonical model iff it is a member of that world. Thus, for atomic wffs, truth

and membership coincide. What we really need to know, however, is that truth

and membership coincide for all wffs, including complex wffs. Proving this is

the biggest part of establishing completeness, and will take awhile.

6.6.2 Facts about maximal consistent sets
In section 2.9 we proved various results about maximal consistent sets of PL-

wffs, where “consistency” was de�ned in terms of provability in PL. Here,

we’re going to need to know, among other things, that analogous results hold

for maximal S-consistent sets of MPL-wffs:

Theorem 6.4 If ∆ is an S-consistent set of MPL-wffs, then there exists some

maximal S-consistent set of MPL-wffs, Γ, such that ∆⊆ Γ
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Lemma 6.5 Where Γ is any maximal S-consistent set of MPL-wffs:

6.5a for any MPL-wff φ, exactly one of φ, ∼φ is a member of Γ

6.5b φ→ψ ∈ Γ iff either φ /∈ Γ or ψ ∈ Γ

Proof. A look back at the proofs of theorem 2.3 and lemma 2.4 reveals that the

only features of the relation of provability-in-PL-from-a-set on which they

depend are the following:

· if Γ `
PL
φ then γ1 . . .γn `PL

φ, for some γ1 . . .γn ∈ Γ (or else `
PL
φ)

(lemma 2.1)

· “Excluded middle MP”: φ→ψ,∼φ→ψ `
PL
ψ

· “ex falso quodlibet”: φ,∼φ `
PL
ψ

· modus ponens: φ,φ→ψ `
PL
ψ

· “negated conditional”: ∼(φ→ψ) `
PL
φ and ∼(φ→ψ) `

PL
∼ψ

· if φ ∈ Γ then Γ `
PL
φ

· Cut for PL

· The deduction theorem for PL

(I invite the reader to go back and verify this.) So if the relation of provability-

from-a set in modal system S also has these features, then one can give exactly

analogous proofs of theorem 6.4 and lemma 6.5. And this is indeed the case, as

may easily be veri�ed, since each modal system is an axiomatic proof system

whose axioms include the PL axiom schemas and whose rules include MP. The

one sticking point is the deduction theorem. As we pointed out in section 6.4.1,

the deduction theorem fails for our modal systems if provability-from-a-set is

understood in the usual way. But we are not understanding provability-from-a-

set in the usual way; and given our new de�nition of provability-from-a-set,

the deduction theorem holds:

Deduction theorem for MPL: For each of our modal systems S (and given

our new de�nition of provability from a set), if Γ∪{φ} `
S
ψ then Γ `

S
φ→ψ
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Proof. Suppose Γ∪{φ} `
S
ψ. So for some α1 . . .αn, `

S
(α1∧· · ·∧αn)→ψ, where

perhaps one of the αi s isφ and the others are members ofΓ. Ifφ is one of the αi s,

say αk , then (α1∧· · ·∧αk−1∧αk+1∧· · ·∧αn)→ (φ→ψ) is an MPL-tautological

consequence of (α1∧· · ·∧αn)→ψ, and so is a theorem of S, whence Γ `
S
φ→ψ.

And if none of the αi s is φ then each is in Γ; but (α1∧· · ·∧αn)→ (φ→ψ) is

an MPL-tautological consequence of (α1∧· · ·∧αn)→ ψ, whence again Γ `
S

φ→ψ.

Before we end this section, it will be convenient to establish two further

sub-lemmas of Lemma 6.5:

6.5c if `
S
φ then φ ∈ Γ

6.5d if `
S
φ→ψ and φ ∈ Γ then ψ ∈ Γ

Proof. For 6.5c, if `
S
φ then `

S
(∼φ→⊥) since S includes PL. Since Γ is S-

consistent, ∼φ /∈ Γ; and so, since Γ is maximal, φ ∈ Γ. For 6.5d, use lemmas

6.5c and 6.5b.

Exercise 6.16 (Long.) Show that the relation of provability-from-

a-set de�ned in this section does indeed have the listed features. (As

elsewhere in this chapter, you may simply assume the completeness

of the PL axioms, and hence that any MPL-tautology is a theorem

of each system S.)

6.6.3 “Mesh”
In addition to Theorem 6.4 and Lemma 6.5, we’ll also need one further fact

about maximal S-consistent sets that is speci�c to modal systems. Our ultimate

goal, remember, is to show that in canonical models, a wff is true at a world iff

it is a member of that world. If we’re going to be able to show this, we’d better

be able to show things like this:

(2) If 2φ is a member of world w, then φ is a member of every world

accessible from w
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(3) If 3φ is a member of world w, then φ is a member of some world

accessible from w

We’ll need to be able to show (2) and (3) because it’s part of the de�nition of

truth in any MPL-model (whether canonical or not) that 2φ is true at w iff φ
is true at each world accessible from w, and that 3φ is true at w iff φ is true at

some world accessible from w. Think of it this way: (2) and (3) say that the

modal statements that are members of a world w in a canonical model “mesh”

with the members of accessible worlds. This sort of mesh had better hold if

truth and membership are going to coincide.

(2) we know to be true straightaway, since it follows from the de�nition of

the accessibility relation in canonical models. The de�nition of the canonical

model for S, recall, stipulated that w ′ is accessible from w iff for each wff 2φ
in w, the wff φ is a member of w ′. (3), on the other hand, doesn’t follow

immediately from our de�nitions; we’ll need to prove it. Actually, it will be

convenient to prove something slightly different which involves only the 2:

Lemma 6.6 If ∆ is a maximal S-consistent set of wffs containing ∼2φ, then

there exists a maximal S-consistent set of wffs Γ such that 2−(∆) ⊆ Γ and

∼φ ∈ Γ

(Given the de�nition of accessibility in the canonical model and the de�nition

of the 3 in terms of the 2, Lemma 6.6 basically amounts to (3).)

Proof of Lemma 6.6. Let ∆ be as described. The �rst step is to show that the

set 2−(∆)∪ {∼φ} is S-consistent. Suppose for reductio that it isn’t, and hence

that 2−(∆)∪ {∼φ} `
S
⊥. By the MPL deduction theorem, 2−(∆) `

S
∼φ→⊥.

So for some ψ1 . . .ψn ∈2−(∆), we have: `
S
(ψ1∧· · ·∧ψn)→(∼φ→⊥).13 Next,

begin a proof in S with a proof of this wff, and then continue as follows:

i . (ψ1∧· · ·∧ψn)→(∼φ→⊥)
i + 1. ψ1→(ψ2→·· · (ψn→φ)) i , PL (recall the de�nition of ⊥)

i + 2. 2(ψ1→(ψ2→·· · (ψn→φ))) i + 1, NEC

i + 3. 2ψ1→(2ψ2→·· · (2ψn→2φ)) i + 2, K, PL (×n)

i + 4. (2ψ1∧· · ·∧2ψn∧∼2φ)→⊥ i + 3, PL

13
If 2−(∆) is empty then this means `

S
∼φ→⊥, and the argument runs much as in the text:

by PL, `
S
φ, so by NEC, `

S
2φ, so by PL, `

S
∼2φ→⊥, contradicting ∆’s S-consistency.
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Given this proof, `
S
(2ψ1∧· · ·∧2ψn∧∼2φ)→⊥. But since 2ψ1…2ψn, and

∼2φ are all in ∆, this contradicts ∆’s S-consistency (2ψ1…2ψn are members

of ∆ because ψ1…ψn are members of 2−(∆).)
We’ve shown that 2−(∆)∪{∼φ} is S-consistent. It therefore has a maximal

S-consistent extension, Γ, by Theorem 6.4. Since 2−(∆)∪{∼φ} ⊆ Γ, we know

that 2−(∆)⊆ Γ and that ∼φ ∈ Γ. Γ is therefore our desired set.

Exercise 6.17 Where S is any of our modal systems, show that if

∆ is an S-consistent set of wffs containing the formula 3φ, then

2−(∆) ∪φ is also S-consistent. You may appeal to lemmas and

theorems proved so far.

6.6.4 Truth and membership in canonical models
We’re now in a position to put all of our lemmas to work, and prove that

canonical models have the property that I promised they would have: the wffs

true at a world are exactly the members of that world:

Theorem 6.7 WhereM (= 〈W ,R ,I 〉) is the canonical model for any normal

modal system, S, for any wff φ and any w ∈W , VM (φ, w) = 1 iff φ ∈ w

Proof of Theorem 6.7. We’ll use induction. The base case is when φ has zero

connectives—i.e., φ is a sentence letter. In that case, the result is immediate:

by the de�nition of the canonical model, I (φ, w) = 1 iff φ ∈ w; but by the

de�nition of the valuation function, VM (φ, w) = 1 iff I (φ, w) = 1.

Now the inductive step. We assume the inductive hypothesis (ih), that the

result holds for φ and ψ, and show that it must then hold for ∼φ, φ→ψ, and

2φ as well. The proofs of the �rst two facts make use of lemmas 6.5a and 6.5b,

and are parallel to the proofs of the analogous facts in section 2.9.4. Finally,

2: we must show that 2φ is true at w iff 2φ ∈ w. First the forwards direction.

Assume 2φ is true at w; then φ is true at every w ′ ∈W such thatRww ′. By

the (ih), we have (+) φ is a member of every such w ′. Now suppose for reductio

that 2φ /∈ w; since w is maximal, ∼2φ ∈ w. Since w is maximal S-consistent,

by Lemma 6.6, we know that there exists some maximal S-consistent set Γ such

that 2−(w)⊆ Γ and ∼φ ∈ Γ. By de�nition ofW , Γ ∈W ; by de�nition of R ,

RwΓ; and so by (+) Γ contains φ. But Γ also contains ∼φ, which contradicts

its S-consistency given 6.5a.
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Now the backwards direction. Assume 2φ ∈ w. Then by de�nition ofR ,

for every w ′ such thatRww ′, φ ∈ w ′. By the (ih), φ is true at every such world;

hence by the truth condition for 2, 2φ is true at w.

What was the point of proving theorem 6.7? The whole idea of a canonical

model was that a formula is to be valid in the canonical model for S iff it is a

theorem of S. This fact follows fairly immediately from Theorem 6.7:

Corollary 6.8 φ is valid in the canonical model for S iff `
S
φ

Proof of Corollary 6.8. Let 〈W ,R ,I 〉 be the canonical model for S. Suppose

`
S
φ. Then, by lemma 6.5c, φ is a member of every maximal S-consistent

set, and hence φ ∈ w, for every w ∈ W . By theorem 6.7, φ is true in every

w ∈W , and so is valid in this model. Now for the other direction: suppose 0
S
φ.

Then {∼φ} is S-consistent (if it weren’t then ∼φ `
S
⊥, and hence `

S
∼φ→⊥,

and hence, given the de�nition of ⊥, `
S
φ.) So, by theorem 6.4, {∼φ} has a

maximal consistent extension; thus, ∼φ ∈ w for some w ∈W ; by theorem 6.7,

∼φ is therefore true at w, and so φ is not true at w, and hence φ is not valid

in this model.

So, we’ve gotten where we wanted to go: we’ve shown that every system

has a canonical model, and that a wff is valid in the canonical model iff it

is a theorem of the system. In the next section we’ll use this fact to prove

completeness for our various systems.

6.6.5 Completeness of systems of MPL
I’ll run through the completeness proofs for K, D, and B, leaving the remainder

as exercises.

First, K. Any K-valid wff is valid in all MPL-models, and so is valid in the

canonical model for K, and so, by corollary 6.8, is a theorem of K.

For any other system, S, all we need to do to prove S-completeness is to

show that the canonical model for S is an S-model. That is, we must show

that the accessibility relation in the canonical model for S satis�es the formal

constraint for system S (seriality for D, re�exivity for T and so on).

For D, �rst let’s show that in the canonical model for D, the accessibility

relation,R , is serial. Let w be any world in that model. Example 6.14 showed

that 3(P→P ) is a theorem of D, so it’s a member of w by lemma 6.5c, and so

is true at w by theorem 6.7. Thus, by the truth condition for 3, there must be
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some world accessible to w in which P→P is true; and hence there must be

some world accessible to w.

Now for D’s completeness. Let φ be D-valid. φ is then valid in all D-

models, i.e., all models with a serial accessibility relation. But we just showed

that the canonical model for D has a serial accessibility relation. φ is therefore

valid in that model, and hence by corollary 6.8, `
D
φ.

Next, B. We must show that the accessibility relation in the canonical model

for B is re�exive and symmetric (as with D, B’s completeness then follows from

corollary 6.8). Re�exivity may be proved just as it is proved in the proof of

T’s completeness (exercise 6.18). As for symmetry: in the canonical model for

B, suppose that Rwv. We must show that Rvw—that is, that for any ψ, if

2ψ ∈ v then ψ ∈ w. Suppose 2ψ ∈ v. By theorem 6.7, 2ψ is true at v; since

Rwv , by the truth condition for 3, 32ψ is true at w, and hence is a member

of w by theorem 6.7. Since `
B

32ψ→ψ, by lemma 6.5d, ψ ∈ w.

Exercise 6.18 Prove completeness for T, S4, and S5

Exercise 6.19 Prove completeness for K5 (see exercise 6.15).

Exercise 6.20 Consider the system that results from adding to K

every axiom of the form 3φ→2φ. Let the models for this system

be de�ned as those whose accessibility relation meets the following

condition: every world can see at most one world. Prove completeness

for this (strange) system.



Chapter 7

Beyond Standard Propositional
Modal Logic

K
ripke’s possible worlds semantics has proved itself useful in many areas.

In this chapter we will brie�y examine its use in deontic, epistemic, tense,

and intuitionistic logic.

7.1 Deontic logic
Deontic logic is the study of the logic of normative notions. Let’s introduce

operators O and M, for, roughly speaking, “ought” and “may”. Grammatically,

these are one-place sentence operators (like 2 and ∼): each combines with a

single wff to form another wff. Thus, we can write OP , ∼MQ→OR, and so on.

One can read Oφ and Mφ as saying “Agent S ought to see to it that φ” and

“Agent S may see to it that φ”, respectively, for some �xed agent S . Or, one can

read them as saying “it ought to be the case that φ” and “it is acceptable for it

to be the case that φ”. Either way, the formalism is the same.

It’s plausible to de�ne M as ∼O∼, thus enabling us to take O as the sole

new bit of primitive vocabulary. The de�nition of a wff for deontic logic is thus

like that of nonmodal propositional logic, with the following added clause:

· If φ is a wff, then so is Oφ

For semantics, we use possible worlds. In fact, we’ll use the very same

apparatus as for modal logic: MPL-models, truth relative to worlds in these

234
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models, and so on. O replaces the 2, and behaves exactly analogously: Oφ says

that φ is true in all accessible possible worlds. Thus, its truth condition is:

· V(Oφ, w) = 1 iff V(φ, v) = 1 for each v ∈W such thatRwv

The derived condition for M is then:

· V(Mφ, w) = 1 iff V(φ, v) = 1 for some v ∈W such thatRwv

The clauses for atomics, ∼ and→, and the de�nitions of validity and semantic

consequence, remain unchanged.

Indeed, this just is modal logic. Nothing in the formalism has changed;

we’re just conceiving of accessibility in a certain way. We now think of v as

being accessible from w if the goings-on in v are permitted, given the operative

norms in w (or: given the norms binding agent S in w). That is, Rwv iff

everything that, in w, ought to be true is in fact true in v (thus, v violates

nothing that in w is mandatory). We think ofR as being a relation of “deontic

accessibility”. When we conceptualize modal logic in this way, we write O
instead of 2 and M instead of 3.

If we’re thinking of R in this way, what formal properties should it be

required to have? One simple and common answer is that the only required

property is seriality. Seriality does seem right to require: there must always

be some possibility that morality permits; from every world there is at least

one deontically accessible world. Note that re�exivity in particular would

be inappropriate to impose. Things that morally ought to be, nevertheless

sometimes are not.

If seriality is the sole constraint on R , the resulting logic for O is the

modal logic D. Logic D, recall, builds on the modal system K by validating in

addition all instances of 2φ→3φ, or Oφ→Mφ in the present context. These

do indeed seem like logical truths: whatever is obligatory is permissible. The

characteristic features of K also seem welcome: if φ is valid, so is Oφ (recall

the rule NEC); and every instance of the K-schema is valid (O distributes over

→). Further, since accessibility need not be re�exive, some instances of the

T-schema Oφ→φ turn out invalid, which is what we want (deontic necessity

isn’t alethic).

Formally speaking, there is no difference whatsoever between this semantics

for deontic logic and the semantics for the modal system D. “Reconceptualizing”

the accessibility relation has no effect on the de�nition of a model or the

valuation function. But suppose you took possible worlds semantics seriously,
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as being more than a mere formal semantics for formal languages—suppose

you took it to give real truth conditions in terms of real possible worlds and

real accessibility for natural language modal and deontic talk. Then you would

take the truth conditions for ‘necessarily’ and ‘possibly’ to differ from the truth

conditions for ‘ought’ and ‘may’, since their accessibility relations would be

different relations. The accessibility relation in the semantics of ‘ought’ and

‘may’ would be a real relation of deontic accessibility (we wouldn’t just be

“thinking of it” as being such a relation), whereas the accessibility relation for

‘necessarily’ and ‘possibly’ would have nothing to do with normativity.

This is a mere beginning for deontic logic. Should we impose further

constraints on the models? For example, is the principle (U) (for “utopia”)

O(Oφ→φ) a valid principle of deontic logic? (This principle says that it ought
to be the case that everything that ought to be true is true.) If so, we should �nd

a corresponding condition to impose on the deontic accessibility relation, and

impose it. And is our operator O adequate to represent all deontic reasoning?

For example, how can we represent the apparently true sentence “if you kill the

victim, you ought to kill him quickly” using O? The obvious candidates are:

K→OQ
O(K→Q)

But neither seems right. Against the �rst: suppose that you do in fact kill the

victim. Then it would follow from the �rst that one of your obligations is to do

the following: kill the victim quickly. But surely that’s wrong; you ought not to

kill the victim at all! Against the second: if it’s the right representation of “if

you kill the victim, you ought to kill him quickly”, then the right representation

of “if you kill the victim, you ought to kill him slowly” should be O(K→S).
But O(K→S) follows from O∼K (given just a K modal logic for O), and “you

ought not to kill the victim” certainly does not imply “if you kill the victim,

you ought to kill him slowly”.
1

1
See Feldman (1986) for more on this last issue.
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Exercise 7.1* Find a condition on accessibility that validates every

instance of (U).

Exercise 7.2* Let X be the axiomatic system that results from

modal system D by adding as additional axioms all instances of

(U). Show that X is sound and complete with respect to a Kripke

semantics in which the accessibility relation is required to be serial

and also to obey the condition you came up with in exercise 7.1.

7.2 Epistemic logic
In deontic logic we took the 2 of modal logic and gave it a deontic reading. In

epistemic logic we give it an epistemic reading; we treat it as meaning “it is

known (perhaps by a �xed agent S) to be the case that”. Under this reading,

we write it: K. Thus, Kφ means that φ is known. (∼K∼φ can be thought of as

a kind of epistemic possibility: “as far as what is known is concerned, φ might

be true”.)

As with deontic logic, we do semantics with Kripke models, conceptualized

in a certain way. Formally, this is just modal logic: we still treat Kφ as true at

w iff φ is true at every accessible world. But now we think of the accessibility

relation as “epistemic accessibility”: Rwv iff everything known in w is true in

v.

The constraints on the formal properties of epistemic accessibility must

clearly be different from those on deontic accessibility. For one thing, epistemic

accessibility should be required to be re�exive: since knowledge implies truth,

we want Kφ→φ to be a valid principle of epistemic logic. Whether further

constraints are appropriate is debatable. Do we want K to obey an S5 modal

logic? The analogs for K of the characteristic axioms of S4 and S5 are contro-

versial, but do have some plausibility. The S4 axiom for K is also known as the

“KK” principle, or the principle of “positive introspection”: Kφ→KKφ. From

the S5 axiom schema we get the so-called principle of “negative introspection”:

∼Kφ→K∼Kφ. These schemas (as well as the T axiom schema) are all validated

if we require the relation of epistemic accessibility to be an equivalence relation.

Whether the introspection principles are correct is a disputed question

among epistemologists. It goes without saying that epistemic logic cannot

hope to resolve this question on its own. The question is a philosophical one,
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about the nature of knowledge. One can develop formal systems in which these

principles are valid, and formal systems in which they are not; it is up to the

epistemologists to tell us which of these formal systems best models the actual

logic of knowledge.

Regardless of what constraints we place on accessibility, the mere use of

Kripke semantics gives K at least the features from system K. Some of these

features are apparently objectionable. For example, if φ in fact logically implies

ψ, then our system says that Kφ logically implies Kψ (see exercise 7.3). That

is, we know all the logical consequences of our knowledge. That seems wrong;

can’t I be unaware of subtle or complex consequences of what I know? But

perhaps epistemic logic can be regarded as a useful idealization.

In addition to a logic of knowledge, we can develop a logic of belief, based

on a new one-place sentence operator B. As before, the models are Kripke

models, only now we think ofR as a relation of “doxastic accessibility”: Rwv
iff everything believed in w is true in v . Unlike epistemic accessibility, doxastic

accessibility shouldn’t be required to be re�exive (since belief is not factive); we

don’t want the T-principle BP→P to be valid. Nor do we want the B-principle

∼B∼BP→P to be valid: just because I don’t believe that I don’t believe P , it

doesn’t follow that P is true. As before, there is controversy over introspection—

over whether Bφ→BBφ and∼Bφ→B∼Bφ should be validated. If they should,

then doxastic accessibility must be required to be transitive and also euclidean: if

Rwv andRw u thenRv u. (We know from chapter 6 that transitivity validates

the S4 schema, and if you did exercise 6.15 you showed that euclideanness

validates the S5 schema.) This generates the modal logic K45, in which the K,

S4, and S5 axioms are valid, but not the T or B axioms.

Exercise 7.3 Show that knowledge is closed under entailment in

our epistemic logic. That is, show that ifφ �ψ then Kφ � Kψ. (For

this problem it does not matter which constraints on accessibility

are assumed.)
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7.3 Propositional tense logic

7.3.1 The metaphysics of time
A logical treatment of the full range of things we say and think must cover

temporal discourse. Some philosophers, however, think that this demands

nothing beyond standard predicate logic. This was the view of many early

logicians, notably Quine.
2

Here are some examples of how Quine would

regiment temporal sentences in predicate logic:

Everyone who is now an adult was once a child

∀x(Axn→∃t[E t n∧C x t])

A dinosaur once trampled a mammal

∃x∃y∃t (E t n∧D x ∧M y ∧T xy t )

Here, n (for “now”) is a name of the present time (Quine treats moments of

time as entities). E is a predicate for the earlier-than relation over moments

of time. Thus, E t n means that moment t is earlier than the present moment;

∃t (E t n∧φ(t ))means that φ(t ) is true at some moment t in the past, and so on.

To every predicate that can hold temporarily, Quine adds in a new argument

place for the time at which the predicate is satis�ed. Thus, instead of saying

C x—“x is a child”—he says C x t : “x is a child at t”. Finally, the quanti�er ∃x
is atemporal, ranging over all objects at all times. Thus, Quine is willing to say

that there is a thing, x, that is a dinosaur, and which, at some previous time,

trampled a mammal.

So: we can use Quine’s strategy to represent temporal notions using standard

predicate logic. But Quine’s strategy presupposes a metaphysics of time that

some philosophers reject. First, Quine assumes that there exist past objects.

His symbolization of the presumably true sentence “A dinosaur once trampled

a mammal” says that there is such a thing as a dinosaur. Quine’s view is that time

is “space-like”. Past objects are as real as present ones, they’re just temporally

distant, just as spatially distant objects are just as real as the ones around here.

(Defenders of this metaphysics usually say that future objects exist as well.)

Second, Quine presupposes a distinctive metaphysics of change. Quine would

describe my change from childhood to adulthood thus: C ap ∧Aan, where

a names me, n again names the present moment, and p names some past

moment at which I was a child. Note the symmetry between the past state of

2
See, for example, Quine (1953b).
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my childhood, C ap, and the current state of my adulthood, Aan. Tenselessly

speaking, the states are on a par; there’s nothing metaphysically special about

either. Some conclude that Quine’s approach leaves no room for genuine
change. His approach, they say, assimilates change too closely to variation

across space: compare my being a child-at-p and an adult-at-n with the USA

being mountainous-in-the-west and �at-in-the-middle.

Arthur Prior (1967; 1968) and others reject Quine’s picture of time. Ac-

cording to Prior, rather than reducing notions of past, present, and future to

notions about what is true at times, we must instead include certain special

temporal expressions—sentential tense operators—in our most basic languages,

and develop an account of their logic. Thus he initiated the study of tense logic.
One of Prior’s tense operators was P, symbolizing “it was the case that”.

Grammatically, P attaches to a complete sentence and forms another complete

sentence. Thus, if R symbolizes “it is raining”, then PR symbolizes “it was

raining”. If a sentence letter occurs by itself, outside of the scope of all tem-

poral operators, then for Prior it is to be read as present-tensed. Thus, it was

appropriate to let R symbolize “It is raining”—i.e., it is now raining.

Suppose we symbolize “there exists a dinosaur” as ∃xD x. Prior would then

symbolize “There once existed a dinosaur” as:

P∃xD x

And according to Prior, P∃xD x is not to be analyzed as saying that there exist

dinosaurs located in the past. For him, there is no further analysis of P∃xD x.

Prior’s attitude toward P is like nearly everyone’s attitude toward ∼. Nearly

everyone agrees that ∼ is not further analyzable (for example, no one thinks

that ∼∃xU x, “there are no unicorns”, is to be analyzed as saying that there

exist unreal unicorns.) Further, for Prior there is an asymmetry between past

and future events that allows the possibility of genuine change. He represents

the fact that I was a child thus: PC a, and the fact that I’m now an adult thus:

Aa. Only statements about the present can be made unquali�edly, without

tense operators. Note also that Prior does away with Quine’s relativization of

temporary predicates to times. For Prior, the sentence Aa (“Ted is an adult”) is

a complete statement, but nevertheless can alter its truth value.
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7.3.2 Tense operators
One can study various tense operators. Here is one group:

Gφ : “it is, and is always going to be the case that φ”

Hφ : “it is, and always has been the case that φ”

Fφ : “it either is, or will at some point in the future be the case that, φ”

Pφ : “it either is, or was at some point in the past the case that, φ”

Grammatically, we can take G and H as primitive, governed by the following

clause in the de�nition of a wff:

· If φ is a wff then so are Gφ and Hφ

Then we can de�ne F and P:

· “Fφ” is short for “∼G∼φ”

· “Pφ” is short for “∼H∼φ”

One could also de�ne further tense operators, for example A and S, for “always”

and “sometimes”, in terms of G and H:

· “Aφ” is short for “Hφ∧Gφ”

· “Sφ” is short for “Pφ∨Fφ” (i.e., “∼H∼φ∨∼G∼φ”)

Other tense operators are not de�nable in terms of G and H. Metrical tense

operators, for example, concern what happened or will happen at speci�c

temporal distances in the past or future:

Pxφ : “it was the case x minutes ago that φ”

Fxφ : “it will be the case in x minutes that φ”

We will not consider metrical tense operators further.

The (nonmetrical) tense operators, as interpreted above, “include the

present moment”. For example, if Gφ is now true, then φ must now be true.

One could specify an alternate interpretation on which they do not include the

present moment:

Gφ : “it is always going to be the case that φ”

Hφ : “it always has been the case that φ”

Fφ : “it will at some point in the future be the case that φ”

Pφ : “it was at some point in the past the case that φ”
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Whether we take the tense operators as including the present moment will

affect what kind of logic we develop. For example, Gφ and Hφ should imply φ
if G and H are interpreted as including the present moment, but not otherwise.

7.3.3 Kripke-style semantics for tense logic
As with deontic and epistemic logic our semantic approach is to use Kripke

models, conceived in a certain way. But our new conception is drastically

different from our earlier conceptions. Now we think of the members ofW
as times rather than as possible worlds, we think of the accessibility relation as

a temporal ordering relation, and we think of the interpretation function as

assigning truth values to sentence letters at times.

(A Priorean faces hard philosophical questions about the use of such a

semantics, since according to him, the semantics doesn’t accurately model the

metaphysics of time. The questions are like those questions that confront

someone who uses possible worlds semantics for modal logic but rejects a

possible worlds metaphysics of modality.)

This reconceptualization requires no change to the de�nition of an MPL-

model. But to mark the change in thinking, let’s change our notation. Since

we’re thinking ofW as the set of times, let’s rename it “T ”, and let’s use variables

like t , t ′, etc., for its members. And since we’re thinking of accessibility as a

relation of temporal ordering— the at-least-as-early-as relation over times, in

particular—let’s rename it too: “≤”. (If we were interpreting the tense operators

as not including the present moment, then we would think of the temporal

ordering relation as the strictly-earlier-than relation, and would write it “<”.)

Thus, instead of writing “Rww ′”, we write: t ≤ t ′.
We need to update the de�nition of the valuation function. The clauses

for atomics, ∼, and → remain the same; but in place of the 2 we now have

two 2-like operators, G and H, which look at different directions along the

accessibility relation, so to speak. Here are their semantic clauses:

VM (Gφ, t ) = 1 iff for every t ′ such that t ≤ t ′, VM (φ, t ′) = 1
VM (Hφ, t ) = 1 iff for every t ′ such that t ′ ≤ t , VM (φ, t ′) = 1

F and P are then governed by the following derived clauses:

VM (Fφ, t ) = 1 iff for some t ′ such that t ≤ t ′, VM (φ, t ′) = 1
VM (Pφ, t ) = 1 iff for some t ′ such that t ′ ≤ t , VM (φ, t ′) = 1
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Call an MPL-model, thought of in this way, a “PTL-model” (for “Priorean

Tense Logic”). And say that a wff of tense logic is PTL-valid iff it is true

in every time in every PTL-model. Given our discussion of system K from

chapter 6, we already know a lot about PTL-validity. The truth condition

for the G is the same as the truth condition for the 2 in MPL. So if you take

a K-valid wff of MPL and change all the 2s to Gs, you get a PTL-valid wff

of tense logic. (For example, since 2(P∧Q)→2P is K-valid, G(P∧Q)→GP
is PTL-valid.) Similarly, replacing 2s with Hs in a K-valid wff results in a

PTL-valid wff (exercise 7.5). But in other cases, PTL-validity depends on the

interaction between different tense operators; this has no direct analog in MPL.

For example, φ→GPφ and φ→HFφ are both PTL-valid.

Exercise 7.4 Show that �
PTL

φ→GPφ and �
PTL

φ→HFφ

Exercise 7.5* Show that replacing 2s with Hs in a K-valid formula

of MPL results in a PTL-valid formula.

7.3.4 Formal constraints on ≤
PTL-validity is not a good model for logical truth in tense logic. We have

so far placed no constraints on the formal properties of the relation ≤ in a

PTL-model. That means that there are PTL models in which the ≤ looks

nothing like a temporal ordering. We don’t normally think that time could

consist of a number of temporally disconnected points, for example, or of many

points each of which is at-least-as-early-as all of the rest, and so on, but there

are PTL-models answering to these strange descriptions. PTL-validity, as I

de�ned it, requires truth at every time in every PTL-model, even these strange

models. This means that many tense-logical statements that ought, intuitively,

to count as logical truths, are in fact not PTL-valid.

The formula GP→GGP is an example. It is PTL-invalid, for consider a

model with three times, t1, t2, and t3, where t1 ≤ t2, t2 ≤ t3, and t1 6≤ t3, and in

which P is true at t1 and t2, but not at t3:

•
P

t1
(( •
t2

P

(( •
t3

∼P
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In this model, GP→GGP is false at time t1. But GP→GGP is, intuitively, a

logical truth. If it is and will always be raining, then surely it must also be

true that: it is and always will be the case that: it is and always will be raining.

The problem, of course, is that the ≤ relation in the model we considered is

intransitive, whereas, one normally assumes, the at-least-as-early-as relation

must be transitive.

More interesting notions of validity result from restricting the class of

models in the de�nition of validity to those whose ≤ relations satisfy certain

formal constraints. We might require ≤ to be transitive, for example. Under

this de�nition, every instance of the “S4” schemas is valid:

Gφ→GGφ
Hφ→HHφ

Re�exivity is also natural to require, since that validates the “T-schemas”

Gφ→φ and Hφ→φ. (Assuming, that is, that we’re construing the tense opera-

tors as including the present moment. If we construed them as not including

the present moment, and thought of accessibility as meaning “strictly earlier

than”, then it would be natural to require that no time be accessible from itself.)

One might also require “connectivity” of some sort:

Definition of kinds of connectivity: Let R be any binary relation over A.

· R is strongly connected in A iff for every u, v ∈A, either Ruv or Rv u

· R is weakly connected iff for every u, v, v ′, IF: either Ruv and Ruv ′, or

Rv u and Rv ′u, THEN: either Rvv ′ or Rv ′v

Thus we might require that the ≤ relation be strongly connected (in T ), or,

alternatively, merely weakly connected. This would be to disallow “incom-

parable” pairs of times—pairs of times neither of which bears the ≤ relation

to the other. The stronger requirement disallows all incomparable pairs; the

weaker requirement merely disallows incomparable pairs when each member

of the pair is after or before some one time. Thus, the weaker requirement

disallows “branches” in the temporal order but allows distinct timelines wholly

disconnected from one another, whereas the stronger requirement insures that

all times are part of a single non-branching structure. Each sort validates every

instance of the following schemas (exercise 7.6):

G(Gφ→ψ)∨G(Gψ→φ)
H(Hφ→ψ)∨H(Hψ→φ)
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There are other constraints one might impose, for example anti-symmetry
(no distinct times bear ≤ to each other), density (between any two times there is

another time), or eternality (there exists neither a �rst nor a last time). Some-

times a constraint validates an interesting schema, sometimes it doesn’t. Some

constraints are more philosophically controversial than others.

Symmetry clearly should not be imposed. Obviously if one time is at least

as early as another, then the second time needn’t be at least as early as the �rst.

Moreover, imposing symmetry would validate the “B” schemas FGφ→φ and

PHφ→φ; but these clearly ought not to be validated. Take the �rst: it doesn’t

follow from it will be the case that it is always going to be the case that I’m dead that

I’m (now) dead.

* * *

We have brie�y examined Kripke semantics for deontic, epistemic and

doxastic, and tense operators. Another interesting project in this vicinity is to

explore connections between these and other operators. We might introduce a

single language containing deontic, epistemic, and doxastic operators, as well as

a 2 standing for some further sort of necessity—metaphysical necessity, say. A

natural semantics for this language would be a Kripke semantics with multiple

accessibility relations, one for each of the operators. This leads to interesting

questions about how these operators logically relate to one another. Does

knowledge imply belief? That is, is Kφ→Bφ valid? If so, we should require

that if one world is doxastically accessible from another then it is epistemically

accessible from it as well. Similarly, if metaphysical necessity implies knowledge

then we must validate 2φ→Kφ, and so epistemic accessibility must be required

to imply metaphysical accessibility (the kind of accessibility associated with the

2). Adding in tense operators generates a further dimension of complexity,

since the models must now incorporate a set T of times in addition to the set

W of worlds, and formulas must be evaluated for truth at world-time pairs.

We have considered only the semantic approach to deontic, epistemic and

doxastic, and tense logic. What of a proof-theoretic approach? Since we have

been treating these logics as modal logics, it should be no surprise that axiom

systems similar to those of section 6.4 can be developed for them. Moreover,

the techniques developed in sections 6.5-6.6 can be used to give soundness

and completeness proofs for many of these axiomatic systems, relative to the

possible-worlds semantics that we have developed.
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Exercise 7.6 Show that all instances of G(Gφ→ψ)∨G(Gψ→φ)
and H(Hφ→ψ)∨H(Hψ→φ) turn out valid if ≤ is required to be

connected (either weakly or strongly).

7.4 Intuitionistic propositional logic: semantics

7.4.1 Proof stages
Intuitionists, recall, reject the law of the excluded middle and double-negation

elimination. In section 3.5 we developed a proof-theory for intuitionistic

propositional logic by beginning with the classical sequent calculus and then

dropping double-negation elimination while adding ex falso. In this section we

will develop a semantics for intuitionistic logic due to Saul Kripke.

The semantics is again of the possible-worlds variety. Formally speaking,

the models will be just MPL-models, the only difference being a different

de�nition of the valuation function. But informally, we think of these models

differently. We now think of members of W as “stages in the construction

of proofs”, rather than as possible worlds, and we think of 1 and 0 as “proof

statuses”, rather than truth values. That is, we think of V(φ, w) = 1 as meaning

that formula φ has been proved at stage w, and of V(φ, w) = 0 as meaning that

formula φ has not yet been proved at stage w.

Let’s treat ∧ and ∨, in addition to ∼ and→, as primitive connectives. And

to emphasize the different way we are regarding the “worlds”, we renameW
“S ”, for proof stages, and we use the variables s , s ′, etc., for its members. Here

is the semantics:

Definition of model: An I-model is a triple 〈S ,R ,I 〉, such that:

· S is a non-empty set (“proof stages”)

· R is a re�exive and transitive binary relation over S (“accessibility”)

· I is a two-place function that assigns 0 or 1 to each sentence letter,

relative to each member of S (“interpretation function”)

· for any sentence letter α, if I (α, s) = 1 and R s s ′ then I (α, s ′) = 1
(“heredity condition”)
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Definition of valuation: Where M (= 〈S ,R ,I 〉) is any I-model, the I-

valuation forM , IVM , is de�ned as the two-place function that assigns either

0 or 1 to each wff relative to each member of S , subject to the following

constraints, for any sentence letter α, any wffs φ and ψ, and any s ∈S :

IVM (α, s) =I (α, s)
IVM (φ∧ψ, s) = 1 iff IVM (φ, s) = 1 and IVM (ψ, s) = 1
IVM (φ∨ψ, s) = 1 iff IVM (φ, s) = 1 or IVM (ψ, s) = 1

IVM (∼φ, s) = 1 iff for every s ′ such thatR s s ′, IVM (φ, s ′) = 0
IVM (φ→ψ, s) = 1 iff for every s ′ such thatR s s ′, either IVM (φ, s ′) = 0

or IVM (ψ, s ′) = 1

Note that the valuation conditions for the→ and the ∼ at stage s no longer

depend exclusively on what s is like; they are sensitive to what happens at stages

accessible from s . Unlike the ∧ and the ∨,→ and ∼ are not “truth functional”

(relative to a stage); they behave like modal operators.

While it can be helpful to think informally of these models in terms of

proof stages, this should be taken with more than the usual grain of salt. In-

tuitionists about mathematics would regard the real existence of a space of all

possible future proof stages as clashing with their anti-platonistic philosophy

of mathematics. Further, intuitionists don’t regard mathematical statements

(for example, those of arithmetic) as being about proofs. Finally, not everyone

who employs intuitionistic logic is an intuitionist about mathematics. Of�cially,

then, the semantics is nothing more than a formal tool, useful for establishing

metalogical facts about section 3.5’s proof theory (for example soundness and

completeness—see below.)

Nevertheless, the proof-stage heuristic is vivid, so long as it isn’t taken too

seriously. In its terms, let’s think a bit more about these models. Think of

S as including all possible stages in the construction of mathematical proofs.

Each stage s is associated with a certain collection Prs of proofs: those proofs

you would have come up with, if you were to arrive at that stage. When IV

assigns 1 to a formula at stage s , that means that the formula is proved by some

member of Prs —the formula is proven as of the stage. 0 means that none of the

proofs in Prs proves the formula. (0 does not mean that the formula is disproven;

perhaps it will be proven in some future stage.)

The holding of the accessibility relation represents which stages are left

open, given what you know at your current stage. We can think of R s s ′ as
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meaning: if you’re in stage s , then for all you know, you might subsequently be

in stage s ′. That is, if you know of the proofs in Prs , then for all you know, you

might later come to possess Prs ′ as your set of proofs. At any point in time there

are a number of stages accessible to you; the fewer proofs you’ve accumulated

so far, the more accessible stages there are. As you accumulate more proofs,

you move into one of these accessible stages.

Given this understanding of accessibility, re�exivity and transitivity are

obviously correct to impose, as is the heredity condition, since (on the somewhat

idealized conception of proof we are operating with) one does not lose proved

information when constructing further proofs. But the accessibility relation will

not in general be symmetric. Suppose that at stage s , you don’t know whether

you’re going to be able to prove P . There is an accessible stage s ′ where you

prove P (P is 1 there), and there are accessible stages (in addition to your own

stage) where you don’t prove P (P is 0 there). Now suppose you do in fact prove

P , and so you reach stage s ′. Stage s is then no longer accessible. For now you

have a proof of P ; and you know that you never lose proved information; so you

know from your s ′ vantage point that you’ll never again be in stage s .

Let’s look at the conditions for the connectives ∧, ∨, ∼, and →, in the

de�nition of IV. Remember that we are thinking of IV(φ, s) = 1 intuitively as

meaning that φ is proven at s . So, the condition for the ∧, for example, says

that we’ve proved a conjunction φ∧ψ, at some stage, if and only if we have

proved φ at that stage and also have proved ψ at that stage. In fact, this is a very

natural thing to say, since it is natural to take a proof of a conjunction φ∧ψ as

consisting of two components, a proof of φ and a proof of ψ. Thus, a natural

conception of what a proof of a conjunction requires meshes with the clause

for ∧ in the de�nition of IV. The clauses for the other connectives also mesh

with natural conceptions of the natures of proofs involving those connectives:

· a proof of φ∨ψ is a proof of φ or a proof of ψ

· a proof of ∼φ is a construction for turning any proof of φ into a proof of

a contradiction

· a proof of φ→ψ is a construction for turning any proof of φ into a proof

of ψ

Let’s look more closely at the truth conditions for ∼ and→. A proof of ∼φ,

according to the above conception, is a construction for turning a proof of φ
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into a proof of a contradiction. So if you’ve proved∼φ at stage s (IV(∼φ, s) = 1),

then at s you have such a construction, so you can rule out future stages in which

you prove φ (provided you know that your methods of proof are consistent).

And if you have not proved ∼φ at s (IV(∼φ, s) = 0), then you don’t then have

any such construction, and so for all you know, you will one day prove φ. So

since S includes all possible stages in the development of proofs—and by

these we’d better mean all epistemically possible stages, relative to any stage in

S—then there must be some s ′ ∈S in which you prove φ, as the valuation

condition for ∼ says. As for→: if you have a method for converting any proof

of φ into a proof of ψ, then at no stage in the future could you have a proof of

φ without having a proof of ψ. Conversely, if you lack such a method, then for

all you know, one day you will have a proof of φ but no proof of ψ.

We can now de�ne intuitionist validity and semantic consequence in the

obvious way:

Definitions of validity and semantic consequence:

· φ is I-valid (�
I
φ) iff IVM (φ, s) = 1 for each stage s in each intuitionist

modelM
· φ is an I-semantic-consequence of Γ (Γ �

I
φ) iff for every intuitionist

modelM and every stage s inM , if IVM (γ , s) = 1 for each γ ∈ Γ, then

IVM (φ, s) = 1

Exercise 7.7 Show that φ �
I
ψ iff �

I
φ→ψ.

Exercise 7.8* Show that intuitionist consequence implies classical

consequence. That is, show that if Γ �
I
φ then Γ �

PL
φ.

7.4.2 Examples
Given the semantics just introduced, it’s straightforward to demonstrate facts

about validity and semantic consequence.

Example 7.1: Show that Q �
I

P→Q. (I’ll omit the quali�er “I” from

now on.) Take any model and any stage s ; assume that IV(Q, s) = 1 and

IV(P→Q, s) = 0. Thus, for some s ′, R s s ′ and IV(P, s ′) = 1 and IV(Q, s ′) = 0.

But this violates heredity.
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Example 7.2: Show that P→Q �∼Q→∼P . Suppose IV(P→Q, s) = 1 and

IV(∼Q→∼P, s) = 0. Given the latter, there’s some stage s ′ such thatR s s ′ and

IV(∼Q, s ′) = 1 and IV(∼P, s ′) = 0. Given the latter, for some s ′′, R s ′ s ′′ and

IV(P, s ′′) = 1. Given the former, IV(Q, s ′′) = 0. Given transitivity,R s s ′′. Given

the truth of P→Q at s , either IV(P, s ′′) = 0 or IV(Q, s ′′) = 1. Contradiction.

(Thus, what I called “contraposition 2” in chapter 2 is intuitionistically correct.

But “contraposition 1” is not; see exercise 7.9d.)

It’s also straightforward to use the techniques of section 6.3.3 to construct

countermodels.

Example 7.3: Show that 2 P∨∼P . Here’s a model in which P∨∼P is valu-

ated as 0 in stage r:

0 0 0

P∨∼P
∗

r

��

00

∗
1

P
a

00

The of�cial model:

S = {r,a}
R = {〈r, r〉, 〈a,a〉, 〈r,a〉}

I (P,a) = 1, all other atomics 0 everywhere

(I’ll skip the of�cial models from now on.) As in section 6.3, we use aster-

isks to remind ourselves of commitments that concern other worlds/stages.

The asterisk is under ∼P in stage r because a negation with value 0 carries a

commitment to including some stage at which the negated formula is 1. The

asterisk is over the P in stage a because of the heredity condition: a sentence

letter with value 1 commits us to making that letter 1 in every accessible stage.

(Likewise, negations and conditionals valuated as 1 generate top-asterisks, and

conditionals valuated as 0 generate bottom-asterisks).

Example 7.4: Show that ∼∼P 2 P . Here is a countermodel:
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∗
1 0 0

∼∼P P
∗

r

00

��
∗
1 0

P ∼P
∗

a

00

Note: since ∼∼P is 1 at r, that means that ∼P must be 0 at every stage at

which r sees. Now, Rrr, so ∼P must be 0 at r. So r must see some stage in

which P is 1. World a takes care of that.

Exercise 7.9 Establish the following facts.

a) ∼(P∧Q) 2
I
∼P∨∼Q

b) ∼P∨∼Q �
I
∼(P∧Q)

c) P→(Q∨R) 2
I
(P→Q)∨(P→R)

d) ∼P→∼Q 2
I

Q→P

Exercise 7.10* Bolster the conclusion of exercise 3.17 by �nd-

ing, for the systems of Łukasiewicz, Kleene, and Priest, and also

supervaluationism, a Γ and φ such that Γ semantically implies φ
according to the system but not according to intuitionist semantics.

7.4.3 Soundness
Recall our proof system for intuitionism from section 3.5. What I’d like to

do next is show that that proof system is sound, relative to our semantics for
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intuitionism. One can prove completeness as well, but we won’t do that here.
3

First we’ll need to prove an intermediate theorem:

Generalized heredity: The heredity condition holds for all formulas. That

is, for any wff φ, whether atomic or no, and any stage, s , in any intuitionist

model, if IV(φ, s) = 1 andR s s ′ then IV(φ, s ′) = 1.

Proof. The proof is by induction. The base case is just the of�cial heredity

condition. Next we make the inductive hypothesis (ih): heredity is true for

formulas φ and ψ; we must now show that heredity also holds for ∼φ, φ→ψ,

φ∧ψ, and φ∨ψ. I’ll do this for φ∧ψ, and leave the rest as exercises.

∧: Suppose for reductio that IV(φ∧ψ, s) = 1, R s s ′, and IV(φ∧ψ, s ′) = 0.

Given the former, IV(φ, s) = 1 and IV(ψ, s) = 1. By (ih), IV(φ, s ′) = 1 and

IV(ψ, s ′) = 1—contradiction.

Now for soundness. What does soundness mean in the present context?

The proof system in section 3.5 is a proof system for sequents, not individual

formulas. So �rst, we need a notion of intuitionist validity for sequents.

Definition of sequent I-validity: Sequent Γ⇒φ is intuitionistically valid

(“I-valid”) iff Γ �
I
φ

We can now formulate soundness:

Soundness for intuitionism: Every intuitionistically provable sequent is I-

valid

Proof. This will be an inductive proof. Since a provable sequent is the last

sequent in any proof, all we need to show is that every sequent in any proof

is I-valid. And to do that, all we need to show is that the rule of assumptions

generates I-valid sequents (base case), and all the other rules preserve I-validity

(induction step). For any set, Γ, I-modelM , and stage s , let’s write “IVM (Γ, s) =
1” to mean that IVM (γ , s) = 1 for each γ ∈ Γ.

Base case: the rule of assumptions generates sequents of the form φ⇒φ,

which are clearly I-valid.

Induction step: we show that the other sequent rules from section 3.5

preserve I-validity.

3
See Kripke (1965); Priest (2001, section 6.7), although their proof systems are of the truth

tree variety.
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∧I: Here we assume that the inputs to ∧I are I-valid, and show that its

output is I-valid. That is, we assume that Γ ⇒ φ and ∆ ⇒ ψ are I-valid

sequents, and we must show that it follows that Γ, ∆⇒ φ∧ψ is also I-valid.

So suppose otherwise for reductio. Then IV(Γ∪∆, s) = 1 and IV(φ∧ψ, s) = 0,

for some stage s in some I-model. Since Γ⇒ φ is I-valid, IV(φ, s) = 1 (we

know that IV(Γ∪∆, s) = 1, i.e., all members of Γ∪∆ are 1 at s in the model

we’re discussing; so all members of Γ are 1 at s in this model, so since Γ⇒φ is

I-valid, φ is 1 at s in this model.) Similarly, since∆⇒ψ is I-valid, IV(ψ, s) = 1.

Contradiction.

∨E: Assume that i) Γ ⇒ φ∨ψ, ii) ∆1,φ ⇒ χ , and iii) ∆2,ψ ⇒ χ are all

I-valid, and suppose for reductio that Γ,∆1,∆2 ⇒ χ is I-invalid. So IV(Γ∪
∆1∪∆2, s) = 1 but IV(χ , s) = 0, for some stage s in some model. Since sequent

i) is I-valid, IV(φ∨ψ, s) = 1, so either φ or ψ is 1 at s . If the former then

by the I-validity of ii), IV(χ , s) = 1; if the latter then by the I-validity of iii),

IV(χ , s) = 1. Either way, we have a contradiction.

I leave the proof that the remaining rules preserve I-validity as an exercise.

I can now justify an assertion I made, but did not prove, in section 3.5. I

asserted there that the sequent ∅⇒ P∨∼P is not intuitionistically provable.

Given the soundness proof, to demonstrate that a sequent is not intuitionisti-

cally provable, it suf�ces to show that its premises do not I-semantically-imply

its conclusion. But in example 7.3 we showed that 2 P∨∼P , which is equivalent

to saying that ∅2 P∨∼P .

Similarly, we showed in example 7.4 that∼∼P 2 P . Thus, by the soundness

theorem, the sequent ∼∼P ⇒ P isn’t provable. (Recall how, in constructing

our proof system for intuitionism in section 3.5, we dropped the rule of double-

negation elimination.)

Exercise 7.11 Of the PL-axiom schemas (section 2.6), which are

intuitionistically acceptable (i.e., which have only I-valid instances)?

Exercise 7.12 Complete the proof of generalized heredity.

Exercise 7.13 Complete the soundness proof by showing that ∧E,

∨I, DNI, RAA,→I,→E, and EF preserve I-validity.



Chapter 8

Counterfactuals

T
here are certain conditionals in natural language that are not well-

represented either by propositional logic’s material conditional or by

modal logic’s strict conditional. In this chapter we consider “counterfactual”

conditionals—conditionals that (loosely speaking) have the form:

If it had been that φ, it would have been that ψ

For instance:

If I had struck this match, it would have lit

The counterfactuals that we typically utter have false antecedents (hence

the name), and are phrased in the subjunctive mood. It is common to distin-

guish counterfactuals from conditionals phrased in the indicative mood. A

famous example illustrates the apparent semantic difference: the counterfac-

tual conditional ‘If Oswald hadn’t shot Kennedy, someone else would have’

is false (assuming that certain conspiracy theories are false and Oswald was

acting alone); but the indicative conditional ‘If Oswald didn’t shoot Kennedy

then someone else did’ is true (we know that someone shot Kennedy, so if it

wasn’t Oswald, it must have been someone else.) The semantics of indicative

conditionals is an important topic in its own right (since they too seem not to

be well-represented by the material or strict conditional), but we won’t take up

that topic here.
1

We symbolize the counterfactual with antecedent φ and consequent ψ thus:

φ�ψ. What should the logic of this new connective� be?

1
For a good overview see Edgington (1995).

254
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8.1 Natural language counterfactuals
Well, let’s have a look at how natural language counterfactuals behave. Our

survey will provide guidance for our main task: developing a semantics for�.

As we’ll see, counterfactuals behave very differently from both material and

strict conditionals.

8.1.1 Antecedents and consequents
Our system for counterfactuals should have the following features:

∼P 2 P�Q
Q 2 P�Q

For consider: I did not strike the match; but it doesn’t logically follow that

if I had struck the match, it would have turned into a feather. So if � is

to represent ‘if it had been that…, it would have been that…’, ∼P should

not semantically imply P�Q. Similarly, George W. Bush (somehow) won

the 2004 United States presidential election, but it doesn’t follow that if the

newspapers had discovered beforehand that Bush had an affair with Al Gore,

he would still have won. So our semantics had better not count P�Q as a

semantic consequence of Q either.

(Relatedly, counterfactuals aren’t truth-functional. For example, the coun-

terfactuals ‘If I had struck the match, it would have turned into a feather’ and

‘If I had struck the match, it would have lit’ both have false antecedents and

false consequents; but they differ in truth value.)

Like counterfactuals, strict conditionals are not in general implied by the

falsity of their antecedents or the truth of their consequents (in any modal

system). The material conditional, however, is implied by the truth of its

consequent or the falsity of its antecedent (and it’s truth-functional). We have

our �rst logical difference between counterfactual and material conditionals.

8.1.2 Can be contingent
In the actual world, since there was no conspiracy, it’s not true that if Oswald

hadn’t shot Kennedy, someone else would have. But in a possible world in

which there is a conspiracy and Oswald has a backup, it presumably is true

that if Oswald hadn’t shot Kennedy, someone else would have. Thus, our
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logic should allow counterfactuals to be contingent statements. Just because a

counterfactual is true, it should not follow logically that it is necessarily true;

and just because a counterfactual is false, it should not follow logically that it

is necessarily false. That is, our semantics for� should have the following

features:

P�Q 22(P�Q)
∼(P�Q) 22∼(P�Q)

This places an obstacle (though not the most important one) to using the

strict conditional J to represent natural language counterfactuals. Given the

de�nition of φJψ as 2(φ→ψ), it’s easy to check that φJψ �
S4

2(φJψ) and

∼(φJψ) �
S5

2∼(φJψ). So if the logic of the 2 is at least as strong as S4, we

have a logical mismatch between counterfactuals and the J.

8.1.3 No augmentation
The→ and the J (in all systems) obey the argument form augmentation:

φ→ψ
(φ∧χ )→ψ

φJψ

(φ∧χ )Jψ

That is, φ→ψ �
PL
(φ∧χ )→ψ and φJψ �

K
(φ∧χ )Jψ. However, natural

language counterfactuals famously do not obey augmentation. Consider:

If I had struck the match, it would have lit.

Therefore, if I had struck the match and had been in

outer space, it would have lit.

The premise is true and the conclusion is false. We have another desidera-

tum for our semantics for counterfactuals: it should turn out that P�Q 2
(P∧R)�Q.

8.1.4 No contraposition
→ and J obey contraposition:

φ→ψ
∼ψ→∼φ

φJψ

∼ψJ∼φ
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But counterfactuals do not. Suppose I’m on a �ring squad that executes a victim.

The only chance the victim had for survival was for all of our guns to jam; but

unfortunately for him, none of the guns jammed. Now consider:

If my gun had jammed, the victim would (still) have died.

Therefore, if the victim had not died, my gun would

not have jammed

The premise is true (there’s no reason to suppose that the other guns would

have jammed if mine had) but the conclusion is false (if the victim had not died,

all of the squad’s guns would have jammed).

8.1.5 Some implications
Here is an argument form that intuitively should hold for the�:

φ�ψ

φ→ψ

The counterfactual conditional should imply the material conditional.
2

We

can argue for this contrapositively: if the material conditional φ→ψ is false,

then φ is true and ψ is false. But surely a counterfactual with a true antecedent

and false consequent is false.

Also, the strict conditional arguably should imply the counterfactual:

φJψ

φ�ψ

For if φ entails—necessitates—ψ, then, it seems, if φ had been true, ψ would

have to have been true as well.

8.1.6 Context dependence
Years ago, a few of us were at a restaurant in NY—Red Smith, Frank

Graham, Allie Reynolds, Yogi [Berra] and me. At about 11.30 p.m., Ted

[Williams] walked in helped by a cane. Graham asked us what we thought

2� will then obey modus ponens and modus tollens since→ obeys both. That is, we’ll

have φ,φ�ψ �ψ and ∼ψ,φ�ψ �∼φ.
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Ted would hit if he were playing today. Allie said, “due to the better

equipment probably about .350.” Red Smith said. “About .385.” I said,

“due to the lack of really great pitching about .390.” Yogi said, “.220.” We

all jumped up and I said, “You’re nuts, Yogi! Ted’s lifetime average is .344.”

“Yeah” said Yogi “but he is 74 years old.”

–Buzzie Bavasi, baseball executive.

Who was right? If Ted Williams had played at the time the story was told,

would he or wouldn’t he have hit over .300?

Clearly, there’s no single correct answer. The �rst respondents were imag-

ining Williams playing as a young man. Understood that way, the answer is, no

doubt: yes, he would have hit over .300. But Berra took the question a different

way: he was imagining Williams hitting as he was then: a 74 year old man.

Berra took the others off guard, by deliberately (?—this is Yogi Berra we’re

talking about) shifting how the question was construed, but he didn’t make a

semantic mistake in so doing. It’s perfectly legitimate, in other circumstances

anyway, to take the question in Berra’s way. (Imagine Williams muttering to

himself at the time: “These punks nowadays! If I were playing today, I’d still
hit over .300!”) Counterfactual sentences can be interpreted in different ways

depending on the conversational context in which they are uttered.

Another example:

If Syracuse had been located in Louisiana, Syracuse

winters would have been warm.

True or false? It might seem true: Louisiana is in the south. But wait—perhaps

Louisiana would have included Syracuse by having its borders extend north to

Syracuse’s actual latitude.

Would Syracuse have been warm in the winter? Would Williams have hit

over .300? No single answer is correct, once and for all. Which answer is

correct depends on the linguistic context. Whether a counterfactual is true or

whether it is false depends in part on what the speaker means to be saying, and

on what her audience takes her to be saying, when she utters the counterfactual.

When we consider the counterfactual hypothesis that Syracuse is located in

Louisiana, we imagine reality having been different in certain respects from

actuality. In particular, we imagine Syracuse having been in Louisiana. But we

don’t imagine reality having been different in any old way—we don’t imagine

Syracuse and Louisiana both being located in China. We hold certain things

constant (Syracuse and Louisiana not being in China) while varying others.
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The question then arises: what parts of reality, exactly, do we hold constant?

In the Syracuse-Louisiana case, we seem to have at least two choices. Do we

hold constant the location of Syracuse, or do we hold constant the borders of

Louisiana? The truth value of the counterfactual depends on which choice we

make.

What determines which things are to be held constant, when we evaluate

the truth value of a counterfactual? In large part: the context of utterance of

the counterfactual. Suppose I am in the middle of the following conversation:

“Syracuse restaurants struggle to survive because the climate there is so bad:

no one wants to go out to eat in the winter. If Syracuse had been located in

Louisiana, its restaurants would have done much better.” In such a context,

an utterance of the counterfactual “If Syracuse had been located in Louisiana,

Syracuse winters would have been warm” would be regarded as true. But if

this counterfactual were uttered in the midst of the following conversation, it

would be regarded as false: “You know, Louisiana is statistically the warmest

state in the country. Good thing Syracuse isn’t located in Louisiana, because

that would have ruined the statistic.”

Does just saying a sentence, intending it to be true, make it true? Well,

sort of! When a sentence has a meaning that is partly determined by context,

then when a person utters that sentence with the intention of saying something

true, that tends to create a context in which the sentence is true. In ordinary

circumstances, if you look at your kitchen table and say “that table is �at”, you

would say something true. But suppose a scientist walked into your kitchen

and said: “you know, macroscopic objects are far from being �at. Take that

table, for instance. It isn’t �at at all; when viewed under a microscope, it can

be seen to have a very irregular surface”. You’d take the scientist to be saying

something true as well. Indeed, you’d go along with her and say yourself: “that

table is not �at”. (In saying this you wouldn’t take yourself to be contradicting

your earlier utterance of ‘that table is �at’. You meant something different

earlier.) The term ‘�at’ can mean different things depending on how strict the

standards are for counting as “�at”. What the standards are depends on the

conversational context, and when the scientist made her speech, you and she

adopted standards under which what she said came out true.
3

3
See Lewis (1979).
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8.2 The Lewis/Stalnaker theory
What do counterfactuals mean? What are their truth conditions? David Lewis

(1973a) and Robert Stalnaker (1968) give versions of the following answer. To

determine whether a counterfactual P�Q is true, we must consider all the

possible worlds in which P is true, and �nd the one that is most similar to the

actual world. P�Q is true in the actual world if and only if Q is true in that

most similar world. Consider Lewis’s example:

If kangaroos had no tails, they would topple over.

When we consider the possible world that would be actual if kangaroos had no

tails, we do not depart gratuitously from actuality. We do not consider a world

in which kangaroos have wings, or crutches. We do not consider a world with

different laws of nature, in which there is no gravity. We keep the kangaroos

and the laws of nature as similar as we can to how they actually are (while still

removing the tails). It seems that the kangaroos would then fall over.

In the previous section we saw how one and the same counterfactual sen-

tence can have different truth values in different contexts. On the Lewis-

Stalnaker view, this context dependence results from the fact that the similarity

relation mentioned in the truth conditions for counterfactuals varies from

context to context.

To clarify this point, let’s think generally about similarity. Things can be

similar in certain respects but not in others. A blue square is similar to a blue

circle in respect of color, not in respect of shape. What happens when you

compare objects that differ in multiple respects? Is a blue square more like a

blue circle or a red square? There’s clearly no once-and-for-all answer. If we

grant more importance to similarity in color than to similarity in shape, then the

blue square is more like the blue circle; if we grant more importance to shape

then the blue square is more like the red square. Put another way: a similarity

relation that “weights” shape more heavily counts the red square as being more

similar, whereas a similarity relation that weights color more heavily counts

the blue circle as being more similar. The multiplicity of similarity relations

only increases when we move to possible world similarity. When comparing

entire possible worlds, there are a vast number of respects of similarity, and so

there is room for many, many similarity relations, differing from one another

over the relative weights assigned to different respects of comparison.

Return, now, to the example of context dependence from the previous

section:
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If Syracuse had been located in Louisiana, Syracuse

winters would have been warm.

When we af�rm this counterfactual, according to Lewis and Stalnaker we

are using a similarity relation that weights heavily Louisiana’s actual borders.

Under this similarity relation, the possible world most similar to actuality is

one in which Syracuse has moved south. When we reject the counterfactual,

we are using a similarity relation that weights Syracuse’s actual location more

heavily; under this similarity relation, the most similar world is one in which

Louisiana extends north.

8.3 Stalnaker’s system
Lewis and Stalnaker give different semantic systems for counterfactuals. Each

system is based on the intuitive idea described in the previous section, but the

systems differ over details. I’ll begin with Stalnaker’s system (since it’s simpler).
4

8.3.1 Syntax of SC
The primitive vocabulary of SC is that of propositional modal logic, plus the

connective�. Here’s the grammar:

Definition of wff:

· Sentence letters are wffs

· if φ, ψ are wffs then (φ→ψ), ∼φ, 2φ, and (φ�ψ) are wffs

· nothing else is a wff

8.3.2 Semantics of SC
Where R is a three-place relation, let’s abbreviate “Rxy z” as “Rz xy”. And,

where u is any object, let “Ru” be the two-place relation that holds between

objects x and y iff Ru xy. (Think of Ru as the two-place relation that results

from “plugging” up one place of the three-place relation R with object u.)

Here are the de�nitions of an SC-model and its valuation function (SC-

validity and SC-semantic consequence are then de�ned in the usual way):

4
See Stalnaker (1968). The version of the theory I present here is slightly different from

Stalnaker’s original version; see Lewis (1973a, p. 79).
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Definition of model: An SC-model, M , is an ordered triple 〈W ,�,I 〉,
where:

· W is a nonempty set (“worlds”)

· I is a two-place function that assigns either 0 or 1 to each sentence letter

relative to each w ∈W (“interpretation function”)

· � is a three-place relation overW (“nearness relation”)

· The valuation function VM forM (see below) and� satisfy the following

conditions:

· for any w, �w is strongly connected inW
· for any w, �w is transitive

· for any w, �w is anti-symmetric

· for any x, y, x �xy (“Base”)

· for any SC-wff, φ, provided VM (φ, v) = 1 for at least one v ∈ W ,

then for every z, there’s some w such that VM (φ, w) = 1, and such

that for any x, if VM (φ, x) = 1 then w �z x (“Limit”)

(A binary relation R is strongly connected in set A iff for each u, v ∈A, either

Ruv or Rv u, and anti-symmetric iff u = v whenever both Ruv and Rv u.)

Definition of valuation: Where M (= 〈W ,�,I 〉) is any SC-model, the

SC-valuation for M , VM , is de�ned as the two-place function that assigns

either 0 or 1 to each SC-wff relative to each member of W , subject to the

following constraints, where α is any sentence letter, φ and ψ are any wffs, and

w is any member ofW :

VM (α, w) =I (α, w)
VM (∼φ, w) = 1 iff VM (φ, w) = 0

VM (φ→ψ, w) = 1 iff either VM (φ, w) = 0 or VM (ψ, w) = 1
VM (2φ, w) = 1 iff for any v, VM (φ, v) = 1

VM (φ�ψ, w) = 1 iff for any x, IF [VM (φ, x) = 1 and for any y such that

VM (φ, y) = 1, x �w y] THEN VM (ψ, x) = 1

Phew! Let’s look into what this means.

First, notice that much here is the same as with MPL. A model still has a set

of worlds, and an interpretation function that assigns truth values to sentence
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letters relative to worlds. As before, a valuation function then assigns truth

values to complex wffs relative to worlds. The propositional connectives→
and ∼ have their usual truth conditions (so the derived clauses for ∧, ∨, and

↔ remain the same.)

What happened to the accessibility relation? I’ve dropped it for simplicity’s

sake. The truth condition for 2φ is now just that φ is true at all worlds. (This

is equivalent to including an accessibility relation but requiring it to be total,

which generates an S5 modal logic for the 2 as noted in section 6.3.1.) The

derived truth condition for the 3 is then:

VM (3φ, w) = 1 iff for some v, VM (φ, v) = 1

Next, what about this nearness relation�? Think of x �z y as meaning that

possible world x is at least as similar to (“near to”) world z as is world y; thus,

think of � as the similarity relation between possible worlds that we talked

about before. To decide whether x �w y, place yourself in possible world w,

and ask which possible world is more similar to yours, x or y.

(An option I won’t pursue would be to represent context dependence by

introducing a set C of “contexts of utterance” and multiple nearness relations

�1,�2 . . . into the models. We could then relativize truth values to contexts

(members of C ), allowing which nearness relation determines the truth condi-

tions of� to depend on the context.)

I say “we can think of” � as a similarity relation, but take this with a grain

of salt. As I keep emphasizing, model theory isn’t metaphysics. Just as our

de�nitions allow the members ofW to be any old things, so, � is allowed to

be any old relation overW . Just as the members ofW could be �sh, so the �
relation could be any old relation over �sh. (But as before, if the truth conditions

for natural language counterfactuals have nothing to do with real possible

worlds and similarity then the interest of our semantics is diminished, since the

models won’t be modeling the semantics of natural language counterfactuals.)

The constraints on the formal properties of �—some of them, anyway—

seem plausible if � is to be thought of as a similarity relation. Strong connec-

tivity says that any two worlds can be compared for similarity to a given world.

Transitivity has a transparent meaning. Anti-symmetry prohibits “ties”—it says

that two distinct worlds cannot each be at least as close to a given world w as

the other. The “base” constraint says that every world is at least as close to

itself as is every other. (Given anti-symmetry, each world must then be closer to

itself than any other world is, where “x is closer to w than y is” (x ≺w y) means
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that x �w y and not: y �w x.) Finally, the “limit” assumption says that “there’s

always a closest φ-world”. That is, no matter what world w that you’re in, for

any wff φ there will always be some world x in which φ is true that is at least

as close to your world as is any other φ world (unless φ isn’t true in any worlds

at all). The limit assumption prohibits the following: there are no closest

φ-worlds, only an in�nite sequence of closer and closer φ-worlds. (Notice that

the limit assumption automatically holds whenever there are only �nitely many

worlds. So when we start constructing countermodels, if they’re �nite then we

won’t need to separately verify that they satisfy the limit assumption.) Some of

these assumptions have been challenged, especially anti-symmetry and limit.

We will consider these challenges below.

Note how the limit assumption refers to the valuation function. (MPL

models, by contrast, are de�ned without reference to the valuation function.)

The limit assumption is a constraint that relates the nearness relation to the

truth values of all formulas, complex or otherwise: it says that any formula φ
that is true somewhere is true in some closest-to-w world. (See exercise 8.1.)

Exercise 8.1* Could we have stated an of�cial limit assumption

just for atomics, and then proved a derived limit assumption for

complex wffs (as with heredity in the semantics for intuitionistic

logic)?

8.4 Validity proofs in SC
Here are some examples of semantic validity proofs in Stalnaker’s system.

Example 8.1: Show that �
SC
(P∧Q)→(P�Q). Where 〈W ,�,I 〉 is any

SC-model and r is any world inW :

i) Suppose for reductio that V((P∧Q)→(P�Q), r ) = 0. Then V(P∧Q, r ) =
1 and…

ii) V(P�Q, r ) = 0. Now, the truth condition for� says that P�Q is

true at r iff Q is true at every closest-to-r P-world. So since P�Q is

false at r , there must be a closest-to-r P-world at which Q is false—that

is, there is some world a such that:
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a) V(P,a) = 1

b) for any x, if V(P, x) = 1 then a �r x

c) V(Q,a) = 0

iii) From line i), V(P, r ) = 1. So given b), a �r r . By base, r �r a. So, by

anti-symmetry, r = a. Since V(Q, r ) = 1 by i), we have V(Q,a) = 1,

contradicting c).

Example 8.2: Show that �
SC
[(P�Q)∧((P∧Q)�R)]→ [P�R]. (This

formula is worth taking note of, because it is valid despite its similarity to the

invalid formula [(P�Q)∧(Q�R)]→ [P�R]; see below):

i) Suppose for reductio that the formula is false at some world r in some SC-

model. Then (given the truth conditions for→ and ∧) V(P�Q, r ) = 1
and…

ii) V((P∧Q)�R, r ) = 1 but…

iii) V(P�R, r ) = 0. So some a is a nearest-to-r P world, and V(R,a) = 0.

iv) By i), Q is true in all nearest-to-r P worlds, and so V(Q,a) = 1.

v) Note now that a is a nearest-to-r P∧Q world:

a) By lines iii) and iv), V(P∧Q,a) = 1.

b) If V(P∧Q, x) = 1 then a �r x, for any world x. For V(P, x) = 1 since

V(P∧Q, x) = 1; but then by iii), a �r x. (Remember: “a is a nearest-

to-r P world” means: “V(P,a) = 1, and for any x, if V(P, x) = 1
then a �r x”.)

vi) So by ii) and v), V(R,a) = 1, contradicting iii).

Exercise 8.2 Show that the counterfactual is intermediate in

strength between the strict and material conditionals; i.e., that:

a) φJψ �
SC
φ�ψ

b) φ�ψ �
SC
φ→ψ
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8.5 Countermodels in SC
In this section we’ll learn how to construct countermodels in SC. Along the

way we’ll also look at how to decide whether a given formula is SC-valid or

SC-invalid. As with plain old modal logic, the best strategy is to attempt to

come up with a countermodel. If you fail, you can use your failed attempt to

guide the construction of a validity proof.

We can use diagrams like those from section 6.3.3 to represent SC-counter-

models. The diagrams will be a little different though. They will still contain

boxes (rounded now, to distinguish them from the old countermodels) in which

we put formulas; and we again indicate truth values of formulas with small

numbers above the formulas. But since there is no accessibility relation, we

don’t need the arrows between the boxes. And since we need to represent the

nearness relation, we will arrange the boxes vertically. At the bottom goes a box

for the world, r , of our model in which we’re trying to make a given formula

false. We string the other worlds in the diagram above this bottom world r :

the further away a world is from r in the �r ordering, the further above r we

place it in the diagram. Thus, a countermodel for the formula ∼P→(P�Q)
might look as follows:

/. -,
() *+

1 1

P Qb

OO

no P

��

/. -,
() *+

1 0

P Q
a

/. -,
() *+

1 0 0 0

∼P→(P�Q)
r

In this diagram, the world we’re primarily focusing on is the bottom world,

world r. The nearest world to r is world r itself. The next nearest world to r

is the next world moving up from the bottom: world a. The furthest world

from r is world b. Notice that P is false at world r, and true at worlds a and

b. Thus, a is the nearest world to r in which P is true. Since Q is false at

world a, that makes the counterfactual P�Q false at world r . Since ∼P is

true and P�Q is false at r, the material conditional ∼P→(P�Q) is false at
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r, as desired. (World b isn’t needed in this countermodel; I included it merely

for illustration.) The “no P” sign to the left of worlds a and r is a reminder

to ourselves in case we want to add further worlds to the diagram later on. It

reminds us not to put any P worlds between a and r. Otherwise world a would

no longer be the nearest P world.

What strategy should one use for constructing SC-countermodels? As we

saw in section 6.3.3, a good policy is to make “forced” moves �rst. For example,

if you are committed to making a material conditional false at a world, go

ahead and make its antecedent true and consequent false in that world, right

away. A false counterfactual also forces certain moves. It follows from the

truth condition for the� that if φ�ψ is false at world w, then there exists

a nearest-to-w φ world at which ψ is false. So if you put a 0 overtop of a

counterfactualφ�ψ in some world w, it’s good to do the following two things

right away. First, add a nearest-to-w world in which φ is true (if such a world

isn’t already present in your diagram). And second, make ψ false there.

True counterfactuals don’t force your hand quite so much, since there are

two ways for a counterfactual to be true. If φ�ψ is true at w, then ψ must be

true at every nearest-to-w φ world. This could happen, not only if there exists

a nearest-to-w φ world in which ψ is true, but also if there are no nearest-to-w
φ worlds. In the latter case we say that φ�ψ is “vacuously true” at w. A

counterfactual can be vacuously true only when its antecedent is necessarily

false, since the limit assumption guarantees that if there is at least one φ world,

then there is a nearest φ world. So: if you want to make a counterfactual true at

a world, it’s a good idea to wait until you’ve been forced to make its antecedent

true in at least one world. Only when this has happened, thus closing off

the possibility of making the counterfactual vacuously true, should you add a

nearest world in which its antecedent is true, and make its consequent true at

that nearest antecedent-world. These strategies are illustrated by the following

example.

Example 8.3: Show that [(P�Q)∧(Q�R)]→ (P�R) is SC-invalid. We

begin as follows:

/. -,
() *+

1 1 1 0 0

[(P�Q)∧(Q�R)]→(P�R)r

In keeping with the advice to make forced moves �rst, let’s deal with the false

counterfactual before dealing with the true counterfactual; let’s make P�R
false in r. This means adding a nearest-to-r P world in which R is false. At
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this point, nothing prevents us from making this world r itself, but that might

collide with other things we do later, so I’ll make this nearest-to-r P world a

distinct world from r:

OO

no P

��

/. -,
() *+

1 0 1

P R Qa

/. -,
() *+

0 1 1 1 0 0

[(P�Q)∧(Q�R)]→(P�R)r

“No P” reminds me not to add any P-worlds between a and r. Since world r is

in the “no P zone”, I made P false there.

Notice that I made Q true in a. I did this because P�Q is true in r. P�Q
says that Q is true in the nearest-to-r P world, and a is the nearest-to-r P world.

In general, whenever you add a new world to one of these diagrams, you should

go back to all the counterfactuals in the bottom world and see whether they

require their consequents to have certain truth values in the new world.

We now have to make the �nal counterfactual Q�R true. There are

two ways this could happen: our model might contain no Q worlds at all (the

vacuous case), or it might contain a nearest-to-r Q world in which R is true. Q
is already true in at least one world (world a), so the vacuous case is ruled out.

So we must include a nearest-to-r Q world, call it “b”, and make R true there.

Where will we put this new world b? There are three possibilities. World b

could be farther away from, identical to, or closer to r than a. (These are the

only three possibilities, given anti-symmetry.) Let’s try the �rst possibility:

/. -,
() *+

1 1

Q Rb OO

no Q

��

OO

no P

��

/. -,
() *+

1 0 1

P R Qa

/. -,
() *+

0 1 0 1 1 0 0

[(P�Q)∧(Q�R)]→(P�R)r
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This doesn’t work, because world a is in the no-Q zone, but Q is true at world

a. Put another way: in this diagram, b isn’t the nearest-to-r Q world; world a

is. And so, since R is false at world a, the counterfactual Q�R would come

out false at world r, whereas we want it to be true.

Likewise, we can’t make world b be identical to world a, since we need to

make R true in b and R is already false in a.

But the �nal possibility works; we can let world b be closer to r than a:

OO

no P

��

/. -,
() *+

1 0 1

P R Qa

/. -,
() *+

1 1 0

Q R Pb OO

no Q

��/. -,
() *+

0 1 0 1 1 0 0

[(P�Q)∧(Q�R)]→(P�R)r

(I made P false in b since b is in the no P zone.) Here’s the of�cial model:

W = {r,a,b}
�

r
= {〈b,a〉 . . .}

I (P,a) =I (Q,a) =I (Q,b) =I (R,b) = 1, all others 0

In this of�cial model I left out a lot in the description of the similarity relation.

First, I left out some of the elements of �
r
. Fully written out, it would be:

�
r
= {〈b,a〉, 〈r,b〉, 〈r, a〉, 〈r, r〉, 〈a, a〉, 〈b,b〉}

My policy will be to leave out an ordered pair when you could work out

from the de�nition of a model that the pair must be present. Thus I left

out 〈r,b〉 and 〈r,a〉 because the base condition requires them (〈r,a〉 is also

required by transitivity given the presence of 〈r,b〉 and 〈b,a〉), and I left out

〈r, r〉, 〈a,a〉, and 〈b,b〉 because they’re needed to make �
r

re�exive. (Why must

it be re�exive? Because re�exivity comes from strong connectivity. Let w and

x be any members ofW ; we get “x �w x or x �w x” from strong connectivity

of �w , and hence x �w x.) Second, to fully specify this model, strictly speaking
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it isn’t enough to specify just �
r
. We’d need to specify the rest of � by writing

out �
a

and �
b
. But in this case, it doesn’t matter what �

a
and �

b
are like, so I

omitted them. (In some later problems we’ll need to specify more of � than

just �
r
.)

Example 8.4: Is (P�R)→ ((P∧Q)�R) valid or invalid? (This formula

corresponds to augmentation (section 8.1.3).) As always, we begin by trying

for a countermodel. In this case we succeed:

OO

no P∧Q

��

/. -,
() *+

1 1 1 0

P∧Q Ra

/. -,
() *+

1 1 0

P R Qb OO

no P

��/. -,
() *+

0 1 0 0

(P�R)→[(P∧Q)�R)r

I began with the false: (P∧Q)�R. This forced the existence of a nearest P∧Q
world (world a), in which R was false. But since P∧Q was true there, P was

true there; this ruled out the true P�R in r being vacuously true. So I was

forced to include a nearest P world, b, and make R true in it. It couldn’t be

farther out than a, since P is true in a. It couldn’t be a, since R was already false

there. So I had to put it nearer than a. Notice that I had to make Q false at b.

Why? Well, it was in the “no P∧Q zone”, and I had made P true in it. Here’s

the of�cial model:

W = {r,a,b}
�

r
= {〈b,a〉 . . .}

I (P,a) =I (Q,a) =I (P,b) =I (R,b) = 1, all else 0

Example 8.5: Determine whether �
SC

3P→[(P�Q)→∼(P�∼Q)]. An

attempt to �nd a countermodel fails at the following point:
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OO

no P

��

/. -,

() *+
1

1 1 0

P ∼Q
a

/. -,
() *+

1 0 0 1 0 0 1

3P→[(P�Q)→∼(P�∼Q)]
r

At world a, I’ve got Q being both true and false. A word about how I got to

that point. I noticed that I had to make two counterfactuals true: P�Q and

P�∼Q. Now, this isn’t a contradiction all by itself. Since counterfactuals

are vacuously true if their antecedents are impossible, I could have made both

counterfactuals true if I could have made P impossible. But this route was

closed to me since 3P is true in r. The limit assumption forced me to include a

closest P world; and then the two true counterfactuals created the contradiction.

This reasoning is embodied in the following semantic validity proof:

i) Suppose for reductio that the formula is false in some world r in some

model. Then V(3P, r ) = 1 and…

ii) V(P�Q, r ) = 1 and…

iii) …V(∼(P�∼Q), r ) = 0. So V(P�∼Q, r ) = 1.

iv) Given i), P is true at some world, so by the limit assumption there is some

closest-to-r P world. Call one such world “a”. Then by ii), V(Q,a) = 1,

but by iii), V(∼Q,a) = 1, and so V(Q,a) = 0; contradiction.

Note the use of the limit assumption. It’s needed to establish that there is a

nearest φ-world in cases where we couldn’t infer this otherwise.

Example 8.6: Show that [P�(Q�R)]→[(P∧Q)�R] is SC-invalid. The

antecedent contains a nested counterfactual, which, as we’ll see, calls for some-

thing new.

We begin our countermodel by making the formula false in r, which means

making the antecedent true and the consequent false. Since the consequent is

a false counterfactual, we’re forced to create a nearest P∧Q world in which R
is false:
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OO

no P∧Q

��

/. -,
() *+

1 1 1 0

P∧Q R
a

/. -,
() *+

1 0 0

[P�(Q�R)]→[(P∧Q)�R]
r

Next we must make P�(Q�R) true. We can’t make it vacuously true,

because we’ve already got a P-world in the model: a. So, we’ve got to create a

nearest-to-r P world. Could it be farther away than a? No, because a would be

a closer P world. Could it be a? No, because we’ve got to make Q�R true

in the closest P world, and since Q is true but R is false in a, Q�R is already

false in a. So, we do it as follows:

OO

no P∧Q

��

/. -,
() *+

1 1 1 0

P∧Q R
a

/. -,
() *+

1 0 1

P Q�Rb OO

no P

��/. -,
() *+

0 1 0 0

[P�(Q�R)]→[(P∧Q)�R]
r

(I made Q false at b because b is in the no P∧Q zone and P is true at b.)

Now we must make Q�R true at b. This requires some thought. So far

the diagram represents “the view from r”. That is, it represents how near the

worlds in the model are to r. That is, it represents the�
r

relation. But the truth

value of Q�R at b depends on “the view from b”—on the the �
b

relation. So

we need to depict �
b

with a new diagram, in which b is the bottom world:

OO

no Q

��

/. -,
() *+

1 1

Q R
c

/. -,
() *+

1 0 1

P Q�Rb
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I created a nearest-to-b Q world, c, and made R true there. Notice that I kept

the old truth values of b from the other diagram. This is because this new

diagram is a diagram of the same worlds as the old diagram; the difference is

that the new diagram represents the �
b

nearness relation, whereas the old one

represented a different relation: �
r
. Now, this diagram isn’t �nished. The

diagram is that of the �
b

relation, and that relation relates all the worlds in

the model (given strong connectivity). So, worlds r and a have to show up

somewhere here. The safest place to put them is far away from b, to avoid

con�ict with the no Q zone. Thus, the �nal appearance of this part of the

diagram is as follows:

/. -,() *+r

/. -,() *+a

OO

no Q

��

/. -,
() *+

1 1

Q R
c

/. -,
() *+

1 0 1

P Q�Rb

The old truth values from worlds r and a are still in effect (remember that this

diagram represents the same worlds as the earlier diagram of the view from r),

but I left them out since they’re already speci�ed in that earlier diagram.

The order of the worlds in the r-diagram does not in any way affect the order

of the worlds in the b diagram. The nearness relations in the two diagrams

are completely independent, because the de�nition of an SC-model does not

constrain the relationship between �i and � j when i 6= j . This might seem

unintuitive. The de�nition allows two halves of a model to look as follows:

The view from r The view from a
c r

b b

a c

r a
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It might, for example, seem odd that in the view from r, b is physically closer to

a than c is, whereas in the view from a, c is closer to a than b is. But remember

that in any diagram, only some of the features are intended to be genuinely

representative. I’ve constructed these diagrams from ink, but I don’t mean to

be saying that the worlds in the model are made of ink. This feature of the

diagram—that it’s made of ink—isn’t intended to convey information about

the model. Analogously, the fact that b is physically closer to a than to c in the

view from r is not intended to convey the information that, in the model, b�
a
c.

In fact, the diagram of the view from r is only intended to convey information

about �
r
; it doesn’t carry any information about �

a
, �

b
, or �

c
.

Back to the countermodel. The initial diagram, of the view from r, must be

updated to include world c. It’s safest to put c far from r to avoid collisions:

/. -,() *+c

OO

no P∧Q

��

/. -,
() *+

1 1 1 0

P∧Q R
a

/. -,
() *+

1 0 1

P Q�Rb OO

no P

��/. -,
() *+

0 1 0 0

[P�(Q�R)]→[(P∧Q)�R]
r

Again, I haven’t re-written the truth values in world c, because they’re already

in the other diagram. The of�cial model:

W = {r,a,b,c}
�

r
= {〈b,a〉, 〈a,c〉 . . .}

�
b
= {〈c,a〉, 〈a, r〉 . . .}

I (P,a) =I (Q,a) =I (P,b) =I (Q,c) =I (R,c) = 1, all else 0

As before, I didn’t write out all of�. I left out those bits that follow automatically

(given the de�nition of a model) from what I wrote out, and I didn’t specify �
a

and �
c

since they don’t matter here. But I did specify both �
r

and �
b
, since
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the falsity of the formula [P�(Q�R)]→[(P∧Q)�R] at world r depended

on �
r

and �
b

being as described.

Exercise 8.3 Establish each of the following facts.

a) Q 2
SC

P�Q

b) P�Q 2
SC
∼Q�∼P

c) (P∨Q)�R 2
SC

P→R

d) (P∧Q)�R 2
SC

P�(Q�R)

e)* P�(Q�R) 2
SC

Q�(P�R)

Exercise 8.4 Determine whether the following wffs are SC-valid

or invalid. Give a falsifying model for every invalid wff, and a

semantic validity proof for every valid wff.

a) 3P→[∼(P�∼Q)→(P�Q)]

b) [P�(Q→R)]→[(P∧Q)�R]

c) (P�∼Q)∨ [((P∧Q)�R)↔(P�(Q→R))]

8.6 Logical Features of SC
Does Stalnaker’s semantics for�match the logical features of natural language

counterfactuals that we discussed in section 8.1? Yes.

We wanted counterfactuals to differ from material conditionals by not

following from the falsity of their antecedents or the truth of their consequents.

The Stalnaker system delivers these results. In world r in the �rst model of

section 8.5, ∼P is true but P�Q is false; so ∼P 2
SC

P�Q. And the second

result is demonstrated in exercise 8.3a.

We wanted counterfactuals to differ from strict conditionals by being capa-

ble of contingency. The Stalnaker semantics also delivers this result, because

different worlds can have different similarity metrics. For example: consider a

model with worlds r and a, in which Q is true in the nearest-to-r P world, but
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in which Q is false at the nearest-to-a P world. P�Q is true at r and false at

a, whence 2(P�Q) is false at r. So P�Q 2
SC

2(P�Q).
We wanted augmentation to fail for counterfactuals. Stalnaker delivers

again: the model of example 8.4 shows that P�Q 2
SC
(P∧R)�Q.

We wanted contraposition to fail for counterfactuals. Exercise 8.3b shows

that this result holds too.

We wanted the counterfactual conditional to be intermediate in strength

between the strict and material conditionals; see exercises 8.2a and 8.2b.

So: the SC-semantics reproduces the logical features of natural language

counterfactuals discussed in section 8.1. In the next few sections I’ll discuss

some further logical features of the SC-semantics, and compare them with the

logical features of the→, the J, and natural language counterfactuals.

8.6.1 No exportation
The→ obeys exportation:

(φ∧ψ)→χ
φ→(ψ→χ )

But the J doesn’t in any system; (P∧Q)JR 2
S5

PJ(QJR). Nor does the�

(exercise 8.3d.)

Do natural language counterfactuals obey exportation? Here is an argument

that they do not. The following is true:

If Bill had married Laura and Hillary, he would have

been a bigamist.

But one can argue that the following is false:

If Bill had married Laura, then it would have been the

case that if he had married Hillary, he would have been

a bigamist.

Suppose Bill had married Laura. Would it then have been true that: if he had

married Hillary, he would have been a bigamist? Well, let’s ask for comparison:

what would the world have been like, had George W. Bush married Hillary

Rodham Clinton? Would Bush have been a bigamist? Here the natural answer

is no. George W. Bush is in fact married to Laura Bush; but when imagining him
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married to Hillary Rodham Clinton, we don’t hold constant his actual marriage.

We imagine him being married to Hillary instead. If this is true for Bush, then

one might think it’s also true for Bill in the counterfactual circumstance in

which he’s married to Laura: it would then have been true of him that, if he

had married Hillary, he wouldn’t have still been married to Laura, and hence

would not have been a bigamist.

It’s unclear whether this is a good argument, though, since it assumes that

ordinary standards for evaluating unembedded counterfactuals (“If George had

married Hillary, he would have been a bigamist”) apply to counterfactuals

embedded within other counterfactuals (“If Bill had married Hillary, he would

have been a bigamist” as embedded within “If Bill had married Laura then…”.)

Contrary to the assumption, it seems most natural to evaluate the consequent

of an embedded counterfactual by holding its antecedent constant.

So the argument is questionable. But a defender of the SC semantics might

argue that the second displayed counterfactual above has a reading on which it

is false (recall the context-dependence of counterfactuals), and hence that we

need a semantics that allows for the failure of exportation.

8.6.2 No importation
Importation holds for→, and for J in T and stronger systems:

φ→(ψ→χ )
(φ∧ψ)→χ

φJ(ψJχ )

(φ∧ψ)Jχ

but not for the� (see example 8.6).

The status of importation for natural language counterfactuals is similar to

that of exportation. One can argue that the following is true, at least on one

reading:

If Bill had married Laura, then it would have been the

case that if he had married Hillary, he would have been

happy.

without the result of importing being true:

If Bill had married Laura and Hillary, he would have

been happy

(If he had married both he would have become a public spectacle.)
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8.6.3 No transitivity
Material and strict conditionals are transitive, in that the following implications

hold (in all systems):

ψ→χ φ→ψ
φ→χ

ψJχ φJψ

φJχ

But the model in example 8.3 shows that P�Q,Q�R 2
SC

P�R. Stalnaker’s

� is intransitive.

Natural language counterfactuals also seem intransitive. I am the oldest

child in my family; my brother Mike is the second-oldest. So the following two

counterfactuals seem true:
5

If I hadn’t been born, Mike would have been my parent’s

oldest child.

If my parents had never met, I wouldn’t have been born.

But the result of applying transitivity is false:

If my parents had never met, Mike would have been

their oldest child.

8.6.4 No transposition
Transposition governs the→:

φ→(ψ→χ )
ψ→(φ→χ )

but not the J (in any of our modal systems); PJ(QJR) 2
S5

QJ(PJR). Nor

does it govern the� (see exercise 8.3e).

5
They sound less clearly true if you read them in reverse order: “If my parents had never

met, I wouldn’t have been born; If I hadn’t been born, Mike would have been my parent’s

oldest child.” It’s natural in this case to interpret the second counterfactual by holding constant

the antecedent of the �rst. This fact, together with what we observed about embedded

counterfactuals in section 8.6.1, suggests a systematic dependence of the interpretation of

counterfactuals on their immediate linguistic context. See von Fintel (2001) for a “dynamic”

semantics for counterfactuals, which more accurately models this feature of their use, and also

makes sense of how hard it is to hear the readings argued for in sections 8.6.1, 8.6.2, and 8.6.3.
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The status of transposition for natural language counterfactuals is sim-

ilar to that of importation and exportation. If we can ignore the effects of

embedding on the evaluation of counterfactuals, then we have the following

counterexample to transposition. It is true that:

If Bill Clinton had married Laura Bush, then it would

have been the case that: if he had married Hillary Rod-

ham, he’d have been married to a Democrat.

But it is not true that:

If Bill Clinton had married Hillary Rodham, then it

would have been the case that: if he had married Laura

Bush, he’d have been married to a Democrat.

8.7 Lewis’s criticisms of Stalnaker’s theory
As I mentioned earlier, David Lewis also defends a similarity-based theory of

counterfactuals. Lewis’s system is in many ways similar to Stalnaker’s. But there

are two points of detail where Lewis and Stalnaker disagree.
6

First, Lewis challenges Stalnaker’s assumption of anti-symmetry. Ties in

similarity are generally possible, so why couldn’t two possible worlds be exactly

similar to a given world? The challenge is most straightforward if Stalnaker

intends to be giving truth conditions rather than merely doing model theory, for

then Stalnaker would be assuming anti-symmetry for a real similarity relation:

the similarity relation used to give the truth conditions for natural language

counterfactuals. But even if Stalnaker is not doing this, the objection may yet

have bite, to the extent that the semantics of natural language conditionals is

like similarity-theoretic semantics.

The validity of certain wffs depends on whether you require anti-symmetry.

According to Stalnaker, all instances of the following two schemas are valid:

(φ�ψ)∨ (φ�∼ψ) (“Conditional excluded middle”)

[φ�(ψ∨χ )]→ [(φ�ψ)∨(φ�χ )] (“distribution”)

But Lewis challenges each verdict. Take the �rst one, for example. Suppose

you gave up anti-symmetry, thereby allowing ties. Then the following would

be a countermodel for an instance of conditional excluded middle:

6
See Lewis (1973a, section 3.4). For an interesting response see Stalnaker (1981).
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OO

no Q

��

/. -,
() *+

1 0

P Qa

/. -,
() *+

1 0 1

P ∼Qb

/. -,
() *+

0 0 0

(P�Q)∨(P�∼Q)r

Here worlds a and b are tied for similarity to r. Remember that φ�ψ is

true only if ψ is true in all the nearest φ worlds. So since Q is not true in

all the nearest-to-r P worlds (though it’s true in one of them), P�Q is false

at r. Similarly for P�∼Q. A similar model shows that distribution fails if

anti-symmetry is not required (see exercise 8.5.)

So, should we give up conditional excluded middle? Lewis concedes that

the principle is initially plausible. An equivalent formulation of conditional

excluded middle is: ∼(φ�ψ)→(φ�∼ψ). Now, whenever φ is possibly true,

the converse of this conditional, namely (φ�∼ψ)→∼(φ�ψ), is agreed by

everyone to be true. So if conditional excluded middle is valid, then whenever

φ is possibly true, ∼(φ�ψ) and φ�∼ψ are equivalent to each other. And

we do normally treat them as being indistinguishable. We normally don’t

distinguish between “it’s not true that if she had played, she would have won”

and “if she had played, she would have failed to win” (which does “if she had

played, she wouldn’t have won” mean?).

And take distribution. If someone says: “if I had been a baseball player, I

would have been either a third-baseman or a shortstop”, it might seem natural

to reply with a question: “well, which would you have been?”. This reply

presupposes that either “if you had been a baseball player, you would have been

a third-baseman” or “if you had been a baseball player, you would have been a

shortstop” must be true.

So there’s some intuitive plausibility to both conditional excluded middle

and distribution. But Lewis says two things. The �rst is metaphysical: if we’re

going to accept the similarity analysis, we’ve got to give them up, because ties in

similarity just are possible. The second is purely semantic: the intuitions aren’t

completely compelling. About the coin-�ipping case, Lewis denies that if the

coin had been �ipped, it would have come up heads, and he also denies that if

the coin had been �ipped, it would have come up tails. Rather, he says, if it had

been �ipped, it might have come up heads. And if it had been �ipped, it might
have come up tails. But neither outcome is such that it would have resulted, had
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the coin been �ipped. Concerning conditional excluded middle, Lewis says:

It is not the case that if Bizet and Verdi were compatriots, Bizet would be

Italian; and it is not the case that if Bizet and Verdi were compatriots, Bizet

would not be Italian; nevertheless, if Bizet and Verdi were compatriots,

Bizet either would or would not be Italian. (Lewis, 1973a, p. 80)

If Bizet and Verdi were compatriots, Bizet might be Italian, but it’s not the case

that if they were compatriots, he would be Italian.

Lewis has a related objection to Stalnaker’s semantics. Consider English

conditionals of the form “if it had been thatφ, then it might have been thatψ” (I

used such conditionals in the previous paragraph). Lewis calls these conditionals

might-counterfactuals (to distinguish from the “would-counterfactuals” that we

have mostly been discussing in this chapter). He symbolizes them as φ�ψ,

which he de�nes thus:

· “φ�ψ” is short for “∼(φ�∼ψ)”

But, Lewis argues, this de�nition of� doesn’t work in Stalnaker’s system.

Since conditional excluded middle is valid in Stalnaker’s system, φ�ψ would

always imply φ�ψ. But we treat the might-counterfactual as being weaker

than the would-counterfactual; we often use it when we’re unwilling to utter the

would-counterfactual. So, Lewis’s de�nition of� doesn’t work in Stalnaker’s

system. Moreover, there doesn’t seem to be any other plausible de�nition.

Lewis also objects to Stalnaker’s limit assumption. His example: the dis-

played line is less than one inch long.

Now, the following counterfactual is clearly false:

If the line had been longer than one inch, it would have

been one hundred miles long.

But if we use Stalnaker’s truth conditions as truth conditions for natural lan-

guage counterfactuals, and take our intuitive judgments of similarity at face

value, we seem to get the result that it is true! For there doesn’t seem to be

a closest world in which the line is more than one inch long. For every world

in which the line is, say, 1+ k inches long, there seems to be a world that is

more similar to the actual world: an otherwise similar world in which the line

is 1+ k
2 inches long.



CHAPTER 8. COUNTERFACTUALS 282

8.8 Lewis’s system
In light of the criticisms of the previous section, Lewis proposes a new similarity-

based semantics for counterfactuals. I’ll call it LC, for Lewis-conditionals.
7

Lewis’s semantics: LC-models and their valuation functions LV are de�ned

as in Stalnaker’s semantics except that:

· antisymmetry and limit are not assumed

· the base condition is changed to read: for any x, y, if y �x x then x = y

· the truth condition for the� is changed to this: LVM (φ�ψ, w) = 1 iff

EITHER φ is true at no worlds, OR: there is some world, x, such that

LVM (φ, x) = 1 and for all y, if y �w x then LVM (φ→ψ, y) = 1

Note that the non-anti-symmetric model of the previous section counts

as an LC-model in which (P�Q)∨ (P�∼Q) is false at world r. So Lewis’s

semantics invalidates conditional excluded middle. (It also invalidates distribu-

tion.)

Why the new base condition? Stalnaker’s base condition said that each

world is at least as close to itself as any other is; Lewis’s makes the stronger claim

that each world is closer to itself than any other is. Lewis needs the stronger

claim in order to insure that φ,ψ �
LC
φ�ψ. (Stalnaker could get by with the

weaker claim since it plus anti-symmetry entails the stronger claim, but Lewis

doesn’t assume anti-symmetry.)

Why the new truth condition for the�? The limit assumption is now

allowed to fail; but as we saw with the nearly one-inch line, Stalnaker’s truth

condition yields unwanted vacuous truths when the limit assumption fails.
8

Lewis’s new truth condition is designed to avoid this. Let’s think about what it

says. First, there’s the vacuous case: if φ is necessarily false then φ�ψ comes

out true. But if φ is possibly true, then φ�ψ is true at w iff there exists some

φ world with the following feature: no matter how much closer to w you go,

you never �nd a φ world where ψ is false. (If there is a nearest-to-w φ world,

then φ�ψ is true at w iff ψ is true in all the nearest-to-w φ worlds.) To see

why this avoids vacuity, think for the moment of Lewis’s semantics as providing

truth-conditions for natural-language counterfactuals, and recall the sentence:

7
See Lewis (1973a, pp. 48-49). I have simpli�ed Lewis’s system.

8
Actually, dropping the limit assumption doesn’t affect which wffs are valid (Lewis, 1973b,

p. 444). The issue of the limit assumption is an issue about the truth conditions of the

counterfactual, not its logic.
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If the line had been longer than one inch, it would have

been one hundred miles long.

There’s no nearest world in which the line is longer than one inch, only an

in�nite series of worlds in which the line has lengths closer and closer to one

inch. But this doesn’t make the counterfactual true. Since its antecedent is

possibly true, the only way for the counterfactual to be true, given Lewis’s

truth condition, is for there to be some world, x, at which the the antecedent is

true, and such that the material conditional (antecedent→consequent) is true

at every world at least as similar to the actual world as is x. Since the “at least

as similar as” relation is re�exive, this can be rewritten thus:

· for some world, x, the antecedent and consequent are both true at x, and

in all worlds that are at least as similar to the actual world as is x, the

antecedent is never true while the consequent is false

So, is there any such world, x? No. For let x be any world in which the

antecedent and consequent are both true. Since the line is one hundred miles

long in x, we can �nd a world that is more similar to the actual world than x in

which the antecedent is true but the consequent is false: just choose a world

just like x but in which the line is only, say, two inches long.

Let’s see how Lewis handles a true counterfactual when the limit assumption

is false:

If I had been taller than six feet, I would have been

shorter than nine feet

(I am, in fact, shorter than six feet.) Again, there is no nearest world in which

the antecedent is true. But now we can �nd our world x: simply take x to be

a world just like the actual world but in which I am, say, six-feet-one. The

antecedent and consequent are both true in x. And any world that is at least as

similar to the actual world as x must surely be one in which I’m less than nine

feet tall. So in no such world will the antecedent (“I’m taller than six feet”) be

true while the consequent (“I’m shorter than nine feet”) is false.

Recall Lewis’s de�nition of the might-counterfactual:

· “φ�ψ” is short for “∼(φ�∼ψ)”

From this we may obtain a derived clause for the truth conditions of φ�ψ:
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· LVM (φ�ψ, w) = 1 iff for some x, LVM (φ, x) = 1, and for any x, if

LVM (φ, x) = 1 then for some y, y �w x and LVM (φ∧ψ, y) = 1)

That is, φ�ψ is true at w iff φ is possible, and for any φ world, there’s a

world as close or closer to w in which φ and ψ are both true. (In cases where

there is a nearest φ world, this means that ψ must be true in at least one of the

nearest φ worlds.)

Exercise 8.5 Show that 2
LC
[φ�(ψ∨χ )]→[(φ�ψ)∨(φ�χ )]

Exercise 8.6** Show that every LC-valid wff is SC-valid.

8.9 The problem of disjunctive antecedents
Let’s end by brie�y discussing a criticism that has been raised against both

Lewis’s and Stalnaker’s systems.
9

In neither system does (P∨Q)�R seman-

tically imply P�R (exercises 8.3c, 8.6). But shouldn’t this implication hold?

Imagine a conversation between Butch Cassidy and the Sundance Kid in heaven,

after having been surrounded and killed by the Bolivian army. They say:

If we had surrendered or tried to run away, we would

have been shot.

Intuitively, if this is true, so is this:

If we had surrendered, we would have been shot.

In general, we normally conclude from “If P or Q had been the case, then R
would have been the case” that “if P had been the case, R would have been

the case”. If Butch Cassidy and the Sundance Kid could have survived by

surrendering, they certainly would not say to each other “If we had surrendered

or tried to run away, we would have been shot”.

Is this a problem for Lewis and Stalnaker? Some say yes, but others reply as

follows. One must take great care in translating from natural language into logic.

For example, no one would criticize the law of double-negation elimination on

9
For references, see the bibliography of Lewis (1977).
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the grounds that “There ain’t no cake” doesn’t imply that there is some cake.
10

And ‘or’ behaves in notoriously peculiar ways in similar contexts.
11

Consider:

You are permitted to stay or go.

One can argue that this does not have the form:

You are permitted to do the action: (Stay ∨ Go)

After all, suppose that you are permitted to stay, but not to go. If you stay,

you can’t help doing the following act: staying-or-going. So, surely, you’re

permitted to do that. So, the second sentence is true. But the �rst isn’t; if

someone uttered it to you when you were in jail, they’d be lying to you! It really

means: “You are permitted to stay and you are permitted to go.” Similarly, “If

either P or Q were true then R would be true” seems usually to mean “If P
were true then R would be true, and if Q were true then R would be true”.

We can’t just expect natural language to translate directly into our logical

language—sometimes the surface structure of natural language is misleading.

Or so the reply goes. But it would be nice to have an explanation of why ‘or’

functions in this way.

10
The example is adapted from Loewer (1976).

11
This behavior is sometimes thought to threaten the deontic logic of section 7.1.



Chapter 9

Quanti�ed Modal Logic

Q
uantified modal logic is what you get when you combine modal logic

with predicate logic. With it we can represent natural language sen-

tences such as:

“Necessarily, all bachelors are male”: 2∀x(B x→M x)

“Some male could have been female”: ∃x(M x∧3F x)

“Ferris could have been a walrus”: 3W b

9.1 Grammar of QML
The language of quanti�ed modal logic, or “QML”, is exactly what you’d expect:

that of plain old predicate logic, but with the 2 added. Thus, the one new

clause to the de�nition of a wff says that if φ is a wff, then so is 2φ. (We retain

the old de�nitions of 3, J, ∃, ∧, ∨, and↔.) You get a different grammar for

QML depending on what version of predicate logic grammar you begin with.

To keep things simple, let’s consider a stripped-down version of predicate logic:

no function symbols, and no de�nite description operator. But let’s include the

identity sign =.

9.2 De re and de dicto
Like any logical extension, QML increases our powers of analysis. Way back in

propositional logic, we were able to analyze a certain level of structure, structure

286
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in terms of ‘and’, ‘or’, ‘not’, and so on. The move to predicate logic then let us

analyze quanti�cational structure; and the move to modal propositional logic

let us analyze modal structure. Moving to QML lets us do all three at once, as

with:

It’s not possible for something to create itself

whose tripartite propositional, predicate, and modal structure is revealed in its

QML symbolization:

∼3∃xC x x

This deeper level of analysis reveals some new logical features. One ex-

ample is the famous distinction between de re and de dicto modal statements.

Consider:

Some rich person might have been poor

∃x(Rx∧3P x)

It might have been the case that some rich person is

poor

3∃x(Rx∧P x)

The �rst sentence asserts the existence of someone who is in fact rich, but

who might have been poor. This seems true, in contrast to the absurd second

sentence, which says that the following state of affairs is possible: someone

is both rich and poor. The second sentence is called “de dicto” because the

modality is attributed to a sentence (dictum): the modal operator 3 attaches to

the closed sentence ∃x(Rx∧P x). The �rst sentence is called “de re” because

the modality is attributed to an object (res): the 3 attaches to a sentence with a

free variable, P x, and thus can be thought of as attributing a modal property,

the property of possibly being poor, to an object u when x is assigned the value u.

Modal propositional logic alone does not reveal this distinction. Given only

a Q to stand for “some rich person is poor”, we can write only 3Q, which

represents only the absurd second sentence. To represent the �rst sentence we

need to put the 3 inside the Q, so to speak, as we can when we further analyze

Q as ∃x(Rx∧P x) using predicate logic.

A further example of the de re/de dicto distinction:

Every bachelor is such that he is necessarily unmarried

∀x(B x→2U x)
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It is necessary that all bachelors are unmarried

2∀x(B x→U x)

It’s helpful to think about the difference between these two statements in

terms of possible worlds. The second, de dicto, sentence makes the true claim

that in any possible world, anyone that is in that world a bachelor is, in that

world, unmarried. The �rst, de re, sentence makes the false claim that if any

object, u, is a bachelor in the actual world, then that object u is necessarily

unmarried—i.e., the object u is unmarried in all possible worlds.

What do the following English sentences mean?

All bachelors are necessarily unmarried

Bachelors must necessarily be unmarried

Surface grammar suggests that they would mean the de re claim that each

bachelor is such that he is necessarily unmarried. But in fact, it’s very natural

to hear these sentences as making the de dicto claim that it’s necessary that all

bachelors are unmarried.

The de re/de dicto distinction also emerges with de�nite descriptions. This

may be illustrated by using Russell’s theory of descriptions (section 5.3.3). Recall

how Russell’s method generated two possible symbolizations for sentences

containing de�nite descriptions and negations, depending on whether the

de�nite description is given wide or narrow scope relative to the negation

operator. A similar phenomenon arises with sentences containing de�nite

descriptions and modal operators. There are two symbolizations of “The

number of the planets is necessarily odd” (letting “N x” mean that x “numbers

the planets”—i.e., x is a number that corresponds to how many planets there

are):

2∃x(N x∧∀y(N y→x=y)∧O x)
∃x(N x∧∀y(N y→x=y)∧2O x)

The �rst, in which the description has narrower scope than the 2, is de dicto;

it says that it’s necessary that: one and only one thing numbers the planets, and

that thing is odd. This claim is false, since there could have been two planets,

or four planets, or six, etc. The second, in which the description takes wider

scope, is de re; it says that (in fact) there is one and only one thing that numbers

the planets, and that that thing is necessarily odd. That’s true, I suppose: the
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number nine (the thing that in fact numbers the planets—let’s count Pluto as a

planet) is necessarily odd.

Natural language sentences containing both de�nite descriptions and modal

operators can perhaps be heard as expressing either de re or de dicto claims.

“The number of the planets is necessarily odd” sounds (or can sound) de re;

“The American president is necessarily an American citizen” sounds (or can

sound) de dicto.

The de re/de dicto distinction is often extended in the following way: a

sentence is said to be de re if it contains some formula of the form 2φ or 3φ
in which φ contains a name or a free variable (free in φ, that is); otherwise

the sentence is de dicto. For example, 3W b and ∃x2F x are de re, whereas

2∀x(B x→U x) and 3∃x(F x∧Gx) are de dicto.

De re modality is sometimes thought to be especially philosophically prob-

lematic. Consider again the de re sentence “Each bachelor is such that: neces-

sarily, he is unmarried”—∀x(B x→2U x). To evaluate whether this sentence is

true, we must go through each object, x, that is a bachelor in the actual world,

and decide whether 2U x is true. Take some particular bachelor, John, who is,

let us say, the only child of certain parents. We must go through all the possible

worlds and ask whether John is unmarried in all those worlds. But how do we

locate John in other possible worlds? In worlds in which John is not too different

from the way he is in the actual world, it will be easy. But consider a world in

which his parents’ only son is physically and psychologically very different. Is

this son John? If his parents have two sons, which (if either) is John? What

if their only child is female? And anyway, how are we �guring out who his

parents are? This is the so-called “problem of trans-world identi�cation”. (It is

analogous in some ways to the problem of how to re-identify individuals over

time.) What to say about it (and even, whether there really is a problem) is up

for grabs in the philosophy of modality.
1

The problem (if it is a problem) is thought not to arise with de dicto

modal sentences, for the evaluation of such sentences does not require taking

an individual from one possible world and reidentifying it in another world.

Return to the de dicto sentence “necessarily, all bachelors are unmarried”—

2∀x(B x→U x). Here, we take the sentence ‘all bachelors are unmarried’

around to the different worlds, rather than an individual like John. All we

need to do, in any world w, is �nd all the people that in w are bachelors,

and see whether they are all unmarried. We have the descriptive predicate

1
See, for starters: Quine (1953c); Kripke (1972, 39–47); Lewis (1986, chapter 4).
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“bachelor” to help us �nd the relevant individuals in w; we don’t need to do

anything like identify which individual in w is John.

9.3 A simple semantics for QML
Let’s begin with a very simple semantics, SQML (for “simple QML”). It’s simple

in two ways. First, there is no accessibility relation. 2φ will be said to be true

iff φ is true in all worlds in the model. In effect, each world is accessible from

every other (and hence the underlying propositional modal logic is S5). Second,

it will be a “constant domain” semantics. (We’ll discuss what this means, and

more complex semantical treatments of QML, below.)

Definition of model: An SQML-model is an ordered triple 〈W ,D,I 〉 where:

· W is a nonempty set (“possible worlds”)

· D is a nonempty set (“domain”)

· I is a function such that: (“interpretation function”)

· if α is a constant then I (α) ∈D
· if Πn

is an n-place predicate then I (Πn) is a set of n + 1-tuples

〈u1, . . . , un, w〉, where u1, . . . , un are members of D, and w ∈W

Recall that modal propositional logic models took the interpretations from

nonmodal propositional logic (functions assigning truth values to sentence

letters) and relativized them to possible worlds. We have something similar

here: we relativize the interpretation of predicates to possible worlds. The

interpretation of a two-place predicate, for example, was in nonmodal predicate

logic a set of ordered pairs of members of the domain; now it is a set of ordered

triples, two members of which are in the domain, and one member of which

is a possible world. When 〈u1, u2, w〉 is in the interpretation of a two-place

predicate R, that represents R’s applying to u1 and u2 in possible world w. This

relativization makes intuitive sense: a predicate can apply to some objects in

one possible world but fail to apply to those same objects in some other possible

world.

These predicate-interpretations are known as “intensions”. The name em-

phasizes the analogy with extensions, which are the interpretations of predicates

in nonmodal predicate logic. The analogy is this: the intension I (Π) of an
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n-place predicate Π can be thought of as determining an extension within each
possible world, as follows: the extension of Π in world w is the set of n-tuples

〈u1 . . . un〉 such that 〈u1 . . . un, w〉 ∈ I (Π).
Unlike the interpretations of predicates, the interpretations of constants are

not relativized in any way to possible worlds. The interpretation function I
simply assigns a member of the domain to a name. This re�ects the common

belief that natural language proper names—which constants are intended to

represent—are rigid designators, i.e., terms that have the same denotation relative

to every possible world (see Kripke (1972).) We’ll discuss the signi�cance of

this feature of our semantics below.

Recall from section 2.2 that a semantics for a formal language de�nes both a

set of con�gurations, and truth-in-a-con�guration. The con�gurations here are

SQML-models. A con�guration must represent both a way for the world to be,

and the meanings of nonlogical expressions. An SQML-model’s set of worlds

and domain represent the world (i.e., reality); and its interpretation function

represents the meanings of nonlogical expressions (by assigning denotations to

names and intensions to predicates. Notice that intensions are a richer sort of

meaning than the extensions of nonmodal predicate logic.)

As for truth-in-a-con�guration, this is the job of the valuation function

for an SQML-model. To de�ne this, we begin by keeping the de�nition of a

variable assignment from nonmodal predicate logic (section 4.2). Our variable

assignments therefore assign members of the domain to variables absolutely,

rather than relative to worlds. (This is an appropriate choice given our choice to

assign constants absolute semantic values.) But the valuation function will now

relativize truth values to possible worlds (as well as to variable assignments).

After all, the sentence ‘F a’, if it represents “Ted is tall”, should vary in truth

value from world to world.

Definition of valuation: The valuation function VM ,g , for SQML-model

M (= 〈W ,D,I 〉) and variable assignment g is de�ned as the function that

assigns either 0 or 1 to each wff relative to each member ofW , subject to the

following constraints:

· for any terms α,β, VM ,g (α=β, w) = 1 iff [α]M ,g = [β]M ,g

· for any n-place predicate, Π, and any terms α1, . . . ,αn,
VM ,g (Πα1 . . .αn, w) = 1 iff 〈[α1]M ,g , . . . ,[αn]M ,g , w〉 ∈ I (Π)
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· for any wffs φ, ψ, and variable, α,

VM ,g (∼φ, w) = 1 iff VM ,g (φ, w) = 0

VM ,g (φ→ψ, w) = 1 iff either VM ,g (φ, w) = 0 or VM ,g (ψ, w) = 1

VM ,g (∀αφ, w) = 1 iff for every u ∈D,VM ,gαu
(φ, w) = 1

VM ,g (2φ, w) = 1 iff for every v ∈W ,VM ,g (φ, v) = 1

The derived clauses are what you’d expect, including the following one for

3:

VM ,g (3φ, w) = 1 iff for some v ∈W ,VM ,g (φ, v) = 1

Finally, we have:

Definitions of validity and semantic consequence:

· φ is valid inM (= 〈W ,D,I 〉) iff for every variable assignment, g , and

every w ∈W ,VM ,g (φ, w) = 1

· φ is SQML-valid (“�
SQML

φ”) iff φ is valid in all SQML models.

· Γ SQML-semantically-implies φ (“Γ �
SQML

φ”) iff for every SQML-

modelM (= 〈W ,D,I 〉), every w ∈W , and every variable assignment g
forM , if VM ,g (γ , w) = 1 for each γ ∈ Γ, then VM ,g (φ, w) = 1

9.4 Countermodels and validity proofs in SQML
As before, we want to come up with countermodels for invalid formulas, and

validity proofs for valid ones. Validity proofs introduce nothing new.

Example 9.1: Show that �
SQML

3∃x(x = a∧2F x)→F a:

i) suppose for reductio that the wff is false in some world r in model, under

some variable assignment g . Then Vg (3∃x(x=a∧2F x), r ) = 1 and …

ii) …Vg (F a, r ) = 0

iii) From i), for some w ∈W , Vg (∃x(x=a∧2F x), w) = 1. So for some u ∈D,

Vg x
u
(x=a∧2F x, w) = 1). So Vg x

u
(x=a, w) = 1 and …
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iv) …Vg x
u
(2F x, w) = 1. So Vg x

u
(F x, r ) = 1, and so 〈[x]g x

u
, r 〉 ∈ I (F )—that is,

〈u, r 〉 ∈ I (F ).

v) from iii), [x]g x
u
= [a]g x

u
; so u =I (a). So by iv), 〈I (a), r 〉 ∈ I (F ), contra-

dicting line ii).

As for countermodels, we can use the pictorial method of section 6.3.3,

asterisks and all, with a few changes. First, we no longer need the arrows

between worlds since we’ve dropped the accessibility relation. Second, we have

predicates and names instead of sentence letters; how to deal with this? Let’s

take an example.

Example 9.2: Show that 2
SQML

(3F a∧3Ga)→ 3(F a∧Ga). We begin as

follows:

∗
1 1 1 0 0

(3F a∧3Ga)→3(F a∧Ga)
∗ ∗

r

The understars make us create two new worlds:

∗
1 1 1 0 0

(3F a∧3Ga)→3(F a∧Ga)
∗ ∗

r

1

F a
a

1

Gab

In each world we must then discharge the overstar from the false diamond in r:

∗
1 1 1 0 0 0 0

(3F a∧3Ga)→3(F a∧Ga)
∗ ∗ †

r

1 0 0

F a F a∧Ga
a

1 0 0

Ga F a∧Gab



CHAPTER 9. QUANTIFIED MODAL LOGIC 294

(I had to make either F a or Ga false in r—I chose F a arbitrarily.)

So far I’ve placed 1s and 0s above atomic formulas to indicate the truth

values I want them to have. But to get them to have these truth values, I need

to construct the model’s domain and interpretation function accordingly. Let’s

use letters like ‘u’ and ‘v’ as the members of the domain in our models. Now, if

we let the name a refer to (the letter) u, and let the extension of the predicate

F in world r be {} (the empty set), then the truth value of F a in world r will be

0, since the denotation of a isn’t in the extension of F at world r. Likewise, we

need to put u in the extension of F (but not in the extension of G) in world a,

and put u in the extension of G ((but not in the extension of F ) in world b. All

this may be indicated on the diagram as follows:

∗
1 1 1 0 0 0 0

(3F a∧3Ga)→3(F a∧Ga)
∗ ∗ †

F :{}

r

D : {u}
a : u

1 0 0

F a F a∧Ga

F : {u} G : {}

a

1 0 0

Ga F a∧Ga

F : {} G : {u}

b

Within each world I speci�ed the extension of each predicate. But the spec-

i�cation of the referent of the name ‘a’ does not go within any world. This

is because names, unlike predicates, get assigned semantic values absolutely

in a model, not relative to worlds. (Likewise the speci�cation of the domain

doesn’t go within any world.) Time for the of�cial model:

W = {r,a,b}
D = {u}

I (a) = u

I (F ) = {〈u,a〉}
I (G) = {〈u,b〉}

What about formulas with quanti�ers?
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Example 9.3: Show that 2
SQML

2∃xF x→∃x2F x. We begin thus::

∗ +
1 1 0 0

2∃ xF x→∃ x2F x
+

r

The overstar above the 2 in the antecedent must be discharged in r itself

(remember: no accessibility relation). That gives us a true existential. Now,

a true existential is a bit like a true 3—the true ∃xF x means that there must

be some object u from the domain that’s in the extension of F in r. I’ll put

a + under true ∃s and false ∀s, to indicate a commitment to some instance of

some sort or other. Analogously, I’ll indicate a commitment to all instances of

a given type (which would arise from a true ∀ or a false ∃) with a + above the

connective in question.

OK, how do we make ∃xF x true in r? By making F x true for some value of

x. Let’s put the letter u in the domain, and make F x true when u is assigned to

x. We’ll indicate this by writing “F u

x ” in the diagram, and putting a 1 overtop of

it. (F u

x isn’t a formula of our language; I’m just using it and related expressions

in these diagrams to indicate truth values for open sentences relative to variable

assignments.) And to make F x true when u is assigned to x, we put u in the

extension of F at r:

∗ +
1 1 0 0 1

2∃ xF x→∃ x2F x F u

x
+

F : {u}

r D : {u}

Good. Now to attend to the overplus, the + sign overtop the false ∃x2F x. It

requires 2F x to be false for every object in the domain. So far there’s only one

object in our domain, u, so we’ve got to make 2F x false, when u is assigned to

the variable ‘x’. We’ll indicate this on the diagram by putting a 0 overtop of

“2F u

x ”:
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∗ +
1 1 0 0 1 0

2∃ xF x→∃ x2F x F u

x 2F u

x
+ ∗

F : {u}

r D : {u}

Now we have an understar, so we need a new world. And we’ll need then to

discharge the overstar from the antecedent. We get:

∗ +
1 1 0 0 1 0

2∃ xF x→∃ x2F x F u

x 2F u

x
+ ∗

F : {u}

r D : {u,v}

0 1 1

F u

x ∃ xF x F v

x
+

F : {v}

a

Why the v? Well, I had to make F x false in a, with u assigned to x. That meant

keeping u out of the extension of F at a. Easy enough, right—just make F ’s

extension {}? Well, no. Because of the true 2 in r, I’ve got to make ∃xF x true

in a, and so something had to be in F ’s extension in a. It couldn’t be u, so I added

a new object, v, to the domain, and put it in F ’s extension in a.

But adding v to the domain of the model adds a complication, given the

overplus in r. Since ∃x2F x is false in r, 2F x must be false in r for every

member of the domain, and hence for v (as well as for u). That requires another

understar, and so a new world:
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∗ +
1 1 0 0 1 0 0

2∃ xF x→∃ x2F x F u

x 2F u

x 2F v

x
+ ∗ ∗

F : {u}

r D : {u,v}

0 1 1

F u

x ∃ xF x F v

x
+

F : {v}

a

0 1 1

F v

x ∃ xF x F u

x
+

F : {u}

b

(Well, we didn’t really need a new world; we could have discharged the understar

on r.) The of�cial model:

W = {r,a,b}
D = {u,v}

I (F ) = {〈u, r〉, 〈u,b〉, 〈v,a〉}

Exercise 9.1 For each formula, give a validity proof if the wff is

SQML-valid, and a countermodel if it is invalid.

a)* (2∀x(F x→Gx)∧3∃xF x)→3∃xGx

b) 3∀xF x→∃x3F x

c)* ∃x3Rax→32∃x∃yRxy

d) 2∀x(F x→Gx)→ (∀x2F x→2∀xGx)

e) ∃x(N x∧∀y(N y→y=x)∧2O x)→
2∃x(N x∧∀y(N y→y=x)∧O x)
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9.5 Philosophical questions about SQML
Our semantics for quanti�ed modal logic faces philosophical challenges. In

each case we will be able to locate a particular feature of the SQML semantics

that gives rise to the alleged problem. In response, one can stick with SQML

and give it a philosophical defense, or one can look for a new semantics.

9.5.1 The necessity of identity
Let’s try to come up with a countermodel for the following formula:

∀x∀y(x=y→2(x=y))

When we try to make the formula false by putting a 0 over the initial ∀, we

get an underplus. So we’ve got to make the inside part, ∀y(x=y→2x=y), false

for some value of x. We do this by putting some object u in the domain, and

letting that be the value of x for which ∀y(x=y→2x=y) is false. We get:

0 0

∀x∀y(x=y→2x=y) ∀y( ux=y→2( ux=y))
+ +

r D : {u}

Now we need to do the same thing for our new false universal: ∀y(x=y→2x=y).
For some value of y, the inside conditional has to be false. But then the an-

tecedent must be true, so the value for y has to be u again. We get:

0 0 1 0 0

∀x∀y(x=y→2x=y) ∀y( ux=y→2( ux=y)) u

x=
u

y→2( ux=
u

y )
+ + ∗

r D : {u}

The understar now calls for a new world in which x=y is false, when both x
and y are assigned u. But there can be no such world! An identity sentence is

true (at any world) if the denotations of the terms are identical. Our attempt to

�nd a countermodel has failed; time for a validity proof:

i) suppose for reductio that Vg (∀x∀y(x=y→2x=y), r ) = 0 (for some r and

g in some SQML model). Then Vg x
u
(∀y(x=y→2x=y), r ) = 0, for some

u ∈D. So Vg xy
uv
(x=y→2 x=y, r ) = 0, for some v ∈D. So Vg xy

uv
(x=y, r ) =

1 (hence [x]g xy
uv
= [y]g xy

uv
) and …
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ii) …Vg xy
uv
(2x=y, r ) = 0. So Vg xy

uv
(x=y, w) = 0 for some w ∈W . So, [x]g xy

uv
6=

[y]g xy
uv

, contradicting i).

Notice in this proof how the world at which an identity sentence is evaluated

doesn’t affect its truth condition. The truth condition for an identity sentence

is simply that the terms (absolutely) denote the same thing.
2

We can think of ∀x∀y(x=y→2(x=y)) as expressing “the necessity of iden-

tity”: it says that whenever objects are identical, they’re necessarily identical.

This claim is philosophically controversial. On the one hand it can seem ob-

viously correct. If x = y then x and y are one and the same thing, so a world

in which x is distinct from y would have to be a world in which x was distinct

from x; and how could that be? On the other hand, it was a great discovery that

Hesperus= Phosphorus. Surely, it could have turned out the other way—surely,

Hesperus might have turned out to be distinct from Phosphorus. But isn’t this

a counterexample to the necessity of identity?
3

It’s worth noting why ∀x∀y(x=y→2(x=y)) turns out SQML-valid. It was

our de�nition of variable assignments. Our variable assignments assign mem-

bers of the domain to variables absolutely, rather than relative to worlds. (Simi-

larly: since the interpretation function I assigns referents to names absolutely,

a=b→2a=b turns out valid.) One could instead de�ne variable assignments

as functions that assign members of the domain to variables relative to worlds.

Given appropriate adjustments to the valuation function, this would invalidate

the necessity of identity.
4

(Similarly, one could make I assign denotations to

names relative to worlds, thus invaliding a=b→2a=b .)

2
A note about variables. In validity proofs, I’m using italicized ‘u’ and ‘v’ as variables to

range over objects in the domain of the model I’m considering. So, a sentence like ‘u = v’

might be true, just as the sentence ‘x=y’ of our object language can be true. But when I’m

doing countermodels, I’m using upright roman letters ‘u’ and ‘v’ as themselves being members

of the domain, not as variables ranging over members of the domain. Since the letters ‘u’ and

‘v’ are different letters, they are different members of the domain. Thus, in a countermodel

with letters in the domain, if the denotation of a name ‘a’ is the letter ‘u’, and the denotation

of the name ‘b ’ is the letter ‘v’, then the sentence ‘a=b ’ has got to be false, since ‘u’6=‘v’. If

I were using ‘u’ and ‘v’ as variables ranging over members of the domain, then the sentence

‘u = v’ might be true! This just goes to show that it’s important to distinguish between the

sentence u = v and the sentence ‘u’= ‘v’. The �rst could be true, depending on what ‘u’ and

‘v ’ currently refer to, but the second one is just plain false, since ‘u’ and ‘v’ are different letters.

3
The classic discussion of this example is in Kripke (1972).

4
See Gibbard (1975).
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9.5.2 The necessity of existence
Another (in)famous valid formula of SQML is the “Barcan Formula” (named

after Ruth Barcan Marcus):

∀x2F x→2∀xF x

(Call the schema ∀α2φ→2∀αφ the “Barcan schema”.) An attempt to produce

a countermodel leads us to the following stage:

+
1 0 0

∀x2F x→2∀xF x
∗

r

0 0

∀xF x F u

x
+

F : {}

a D : {u}

When you have a choice between discharging over-things and under-things,

whether plusses or stars, always do the under-things �rst. In this case, this

means discharging the understar and ignoring the overplus for the moment.

Discharging the understar gave us world a, in which we made a universal false.

This gave an underplus, and forced us to make an instance false. So I put object

u in our domain, and kept it out of the extension of F in a. This makes F x false

in a, when x is assigned u.

But now we must discharge the overplus in r; we must make 2F x true for

every member of the domain, including u, which is now in the domain. But

then this requires F x to be true, when u is assigned to x, in a:

+ ∗
1 0 0 1 1

∀x2F x→2∀xF x 2F u

x
∗

F : {u}

r

0 0 1

∀xF x F u

x F u

x
+

F : {?}

a D : {u}

So, we failed to get a countermodel. Time for a validity proof. In fact, let’s

show that every instance of the Barcan Schema is valid:

i) suppose for reductio that Vg (∀α2φ→2∀αφ, r ) = 0 (for any r and g in

any model). Then Vg (∀α2φ, r ) = 1 and …
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ii) …Vg (2∀αφ, r ) = 0. So for some world w, Vg (∀αφ, w) = 0; and so for

some u in the domain, Vgαu
(φ, w) = 0.

iii) Given i), Vgαu
(2φ, r ) = 1; and so Vgαu

(φ, w) = 1, contradicting ii).

The fact that the Barcan formula is SQML-valid is often regarded as a defect

of SQML. To see why, we need to pause for a moment, and re�ect on the

intuitive signi�cance of the relative order of quanti�ers and modal operators.

The point is perhaps clearest when we consider the following equivalent of the

Barcan formula:

3∃xF x→∃x3F x

The consequent of this conditional is existential in form. That is, its major

connective is ∃x. Like any existential sentence it says that there exists something

of a certain sort, namely, something that could have been F . In contrast, the

form of the antecedent is modal, not existential. Its major connective is 3, not

∃x. What it says is that it would be possible for something to be the case (namely,

for there to exist an F ). It does not say that there exists something of a certain

sort. (Of course, one might present a philosophical argument that it implies
such a thing. But it doesn’t say it.) This difference in what the antecedent and

consequent say, in fact, suggests that in some cases the antecedent might be

true and the consequent might be false. Perhaps, for example, it would be

possible for there to exist a ghost, even though there in fact exists nothing that

could have been a ghost. That is: if you go through all the things there are,

u1, u2 . . . , none of them is capable of having been a ghost; but nevertheless, the

following is possible: there exists an extra thing, v , distinct from each ui , which

is a ghost.

(The contrast between ∃x3F x and 3∃xF x is analogous to the contrast

between Quine’s (1956) “there exists someone whom Ralph believes to be a

spy” and “Ralph believes that someone is a spy”. In the former, where the

existential quanti�er comes �rst, there is said to be someone of a certain sort—

namely, someone who is believed-by-Ralph-to-be-a-spy. In the latter, where

the existential quanti�er occurs inside of “Ralph believes that”, no existential

statement is made; rather, the sentence attributes an existential belief to Ralph,

to the effect that there are spies. On the face of it, Ralph might believe that

there are spies, without there being any particular person whom Ralph believes

to be a spy.)



CHAPTER 9. QUANTIFIED MODAL LOGIC 302

With all this in mind, let’s return to the Barcan formula, ∀x2F x→2∀xF x.

Notice how the quanti�er ∀x comes before the modal operator 2 in the an-

tecedent, but after it in the consequent. Thus, the antecedent is universal in

form; it says that all entities have a certain feature: being-necessarily-F . The

consequent, on the other hand, is modal in form; it says that a certain claim

is necessarily true: the claim that everything is F . Apparently, this difference

between what the antecedent and consequent say leads to the possibility that

the antecedent could be true while the consequent is false. Let u1, u2 . . . again

be all the entities there are; and suppose that each ui is necessarily F , so that

the antecedent is true. Mightn’t it nevertheless be possible for there to exist

an extra entity, v, distinct from each ui , that fails to be F ? In that case, the

consequent would be false. Suppose, for instance, that each ui is necessarily

a material object. Then, letting F stand for “is a material object”, ∀x2F x is

true. Nevertheless, 2∀xF x seems false—it would presumably be possible for

there to exist an immaterial object: a ghost, say. The ghost would simply need

to be distinct from each ui .

This objection to the validity of the Barcan formula is obviously based

on the idea that it is contingent which objects exist, for it assumes that there

could have existed an extra object, distinct from each ui that in fact exists. In

terms of possible worlds, the objection assumes that what objects exist can vary

from possible world to possible world. Anyone who thinks that the objection

is correct will then point to a corresponding defect in the SQML de�nition

of a model. Each SQML-model contains a single domain, D; and the truth

condition for the quanti�ed sentence ∀αφ, at a world w, is simply that φ is

true at w of every member of D. Thus, the quanti�er ranges over the same

domain, regardless of which possible world is being described—SQML does

not represent it as being contingent which objects exist. That is why the Barcan

formula turns out SQML-valid.

This feature of SQML models is problematic for an even more direct

reason: the sentence ∀x2∃y y = x turns out valid. (For suppose for reductio

that Vg (∀x2∃y y=x, w) = 0. Then Vg x
u
(2∃y y=x, w) = 0, for some u ∈D. So

Vg x
u
(∃y y=x, w ′) = 0, for some w ′ ∈W . So Vg xy

u u′
(y=x, w ′) = 0, for every u ′ ∈D.

So, since u ∈ D, we have Vg xy
u u
(y=x, w ′) = 0. So [y]g xy

u u
6= [x]g xy

u u
, i.e., u 6= u;

contradiction. It’s clear that the source of the validity here is the same as with

the Barcan schema: SQML models have a single domain common to each

possible world.) This is problematic because ∀x2∃y y = x seems to say that

everything necessarily exists! It says that for each object x, it’s necessary that
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there is something identical to x; but if there is something identical to x in a

possible scenario, then, it would seem, x exists in that scenario.

The Barcan schema is just one of a number of interesting schemas concern-

ing how quanti�ers and modal operators interact (for each schema I also list an

equivalent schema with 3 in place of 2):

∀α2φ→2∀αφ 3∃αφ→∃α3φ (Barcan)

2∀αφ→∀α2φ ∃α3φ→3∃αφ (converse Barcan)

∃α2φ→2∃αφ 3∀αφ→∀α3φ

2∃αφ→∃α2φ ∀α3φ→3∀αφ

We have already discussed the Barcan schema. The fourth schema raises no

philosophical problems for SQML, since, quite properly, it has instances that

turn out invalid (example 9.3). Let’s look at the other two schemas.

First, the converse Barcan schema. Like the Barcan schema, each of its

instances is SQML-valid (exercise 9.2), and like the Barcan schema, this verdict

faces a philosophical challenge. Suppose the antecedent is true. So it’s necessary

that everything is φ; in every possible world, the statement “everything is φ”

is true. But, the challenger says, this just means that in every world, all the

things that exist in that world are φ. So it permits things that don’t exist in that

world to fail to be φ in that world, in which case the consequent would be false.

This talk of an object being φ in a world in which it doesn’t exist may seem

strange, but consider the following instance of the converse Barcan schema,

substituting “∃y y=x” (think: “x exists”) for φ:

2∀x∃y y=x→∀x2∃y y=x

This formula seems false. Its antecedent is clearly true; but its consequent

seems to say that everything exists necessarily.

Each instance of the third schema, ∃α2φ→2∃αφ, is also SQML-valid

(exercise 9.2); and again, this is philosophically questionable. Let’s suppose that

physical objects are necessarily physical. Then, ∃x2P x seems true, letting P
mean ‘is physical’. But 2∃xP x seems false—surely it would have been possible

for there to have existed no physical objects. This counterexample (as well as

the counterexample to the converse Barcan formula) requires that it be possible

for some objects that in fact exist to go missing, whereas the counterexample

to the Barcan formula required the possibility of extra objects.
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Exercise 9.2 Show that all instances of the converse Barcan schema

and the third schema are SQML-valid.

9.5.3 Necessary existence defended
There are various ways to respond to the challenge of the previous section.

From a logical point of view, the simplest is to stick to one’s guns and defend

the SQML semantics. SQML-models accurately model the modal facts. The

Barcan formula, the converse Barcan formula, the third schema, and the state-

ment that everything necessarily exists are all logical truths; the philosophical

objections are mistaken. Contrary to appearances it is not contingent what

objects there are. Each possible world has exactly the same stock of individuals.

Call this the doctrine of constancy.

One could uphold constancy either by taking a narrow view of what is

possible, or by taking a broad view of what there is. On the former alternative,

one would claim that it is just not possible for there to be any ghosts, and that

it is just not possible in any sense for an actual object to have failed to exist.

On the latter alternative, which I’ll be discussing for the rest of this section,

one accepts the possibility of ghosts, dragons, and so on, but claims, roughly,

that there are possible ghosts and dragons in the actual world; and one accepts

that actual object could have failed to “exist” in a certain robust sense while

denying that actual objects could have utterly failed to be.
The defender of constancy that I have in mind thinks that there are a great

many more things than one would normally suppose. In addition to normal
things—what one would normally think of as the actually existing entities:

people, tables and chairs, planets and electrons, and so on—our defender of

constancy claims that there are also objects that, in other possible worlds, are

ghosts, golden mountains, talking donkeys, and so forth. Call these further

objects “extraordinary things”. In order for the formula “∀xφ” to be true, it’s

not enough for the normal things to be φ, for the normal things are not all

of the things that there are. There are also all the extraordinary things, and

each of these must be φ as well (must be φ here in the actual world, that is), in

order for ∀xφ to be true. Hence, the objection to the Barcan formula from the

previous section fails. That objection assumed that ∀x2F x, the antecedent of

the Barcan formula, was true when F symbolizes “is a material object”. But this

neglects the extraordinary things. Even if all the normal objects are necessarily



CHAPTER 9. QUANTIFIED MODAL LOGIC 305

material objects, there are some further things—extraordinary things—that are

not necessarily material objects.

Further: in ordinary language, when we say “everything” or “something”,

we typically don’t mean to be talking about all objects; we’re typically talking

about just the normal objects. Otherwise we would be speaking falsely when

we say, for example, “everything has mass”: extraordinary things that might

have been unicorns presumably have no mass (nor spatial location, nor any

other physical feature.) Ordinary quanti�cation is restricted to normal things.

So if we want to translate an ordinary claim into the language of QML, we

must introduce a predicate for the normal things, “N”, and use it to restrict

quanti�ers. But now, consider the following ordinary English statement:

If everything is necessarily a material object, then nec-

essarily: everything is a material object

If we mindlessly translate this into the language of QML, we would get

∀x2F x→2∀xF x—an instance of the Barcan schema. But since in every-

day usage, quanti�ers are restricted to normal things, the thought in the mind

of an ordinary speaker who utters this sentence is more likely the following:

∀x(N x→2F x)→2∀x(N x→F x)

which says:

If every normal thing is necessarily a material object,

then necessarily: every normal thing is a material object.

And this formula is not an instance of the Barcan schema, nor is it valid, as may

be shown by the following countermodel:
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+
1 0 0 0 1 0

∀x(N x→2F x)→2∀x(N x→F x) N u

x→2F u

x
∗ †

N : {}

r D : {u}

0 1 0 0

∀x(N x→F x) N u

x→F u

x
+

N : {u} F : {}

a

So in a sense, the ordinary intuitions that were alleged to undermine the Barcan

schema are in fact consistent with constancy.

The defender of constancy can defend the converse Barcan schema and

the third schema in similar fashion. The objection to the converse Barcan

schema assumed the falsity of ∀x2∃y y=x. “Sheer prejudice!”, according to

the friend of constancy. “And further, an ordinary utterance of ‘Everything exists

necessarily’ expresses, not ∀x2∃y y=x, but rather ∀x(N x→2∃y(N y∧y=x)),
(N for ‘normal’), the falsity of which is is perfectly compatible with constancy.

It’s possible to fail to be normal; all that’s impossible is to utterly fail to be.

Likewise for the third schema.”

The defender of constancy relies on a distinction between “normal” and

“extraordinary” objects. This distinction is schematic; different defenders of

constancy might understand this distinction in different ways. Some might

say that the normal things are the existent things; extraordinary objects are

things that do not exist, but neverthless are. Others might say that the normal

things are actual, and the extraordinary ones are nonactual—“merely possible”—

objects. Still others might say that the extraordinary things are those that are

not, but could have been, located in space and time.
5

However the distinction is

understood, this defense of SQML has hefty metaphysical commitments. Some

philosophers consider the postulation of nonexistent or nonactual entities as

being anywhere from obviously false to conceptually incoherent, or subversive,

5
Compare Williamson (1998), whose defense of constancy inspired this section.



CHAPTER 9. QUANTIFIED MODAL LOGIC 307

or worse.
6

And even the postulation of contingently nonspatiotemporal entities

will strike many as extravagant.

On the other hand, constancy’s defenders can point to certain powerful

arguments in its favor. Here’s a quick sketch of one such argument. First, the

following seems to be a logical truth:

Ted=Ted

But it follows from this that:
7

∃y y =Ted

This latter formula, too, is therefore a logical truth. But if φ is a logical truth

then so is 2φ (recall the rule of necessitation from chapter 6). So we may infer

that the following is a logical truth:

2∃y y =Ted

Now, nothing in this argument depended on any special features of me. We

may therefore conclude that the reasoning holds good for every object; and

so ∀x2∃y y = x is indeed a logical truth. Since, therefore, every object exists

necessarily, it should come as no surprise that there are things that might have

been ghosts, dragons, and so on—for if there had been a ghost, it would have

necessarily existed, and thus must actually exist. This and other related argu-

ments have apparently wild conclusions, but they cannot be lightly dismissed,

for it is hard to say exactly where they go wrong (if they go wrong at all!).
8

9.6 Variable domains
We now consider a way of dealing with the problems discussed in section 9.5.2

that does not require embracing constancy.

SQML models contain a single domain,D, over which the quanti�ers range

in each possible world. Since it was this feature that led to the problems of

section 9.5.2, let’s introduce a new semantics that instead provides different

6
See Quine (1948); Lycan (1979).

7
Free logicians will of course resist this step. See section 5.6.

8
On this topic see Prior (1967, 149-151); Plantinga (1983); Fine (1985); Linsky and Zalta

(1994, 1996); Williamson (1998, 2002).
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domains for different possible worlds. And let’s also reinstate the accessibility

relation, for reasons to be made clear below. The new semantics is called

VDQML (“variable-domains quanti�ed modal logic”):

Definition of model: A VDQML-model is a 5-tuple 〈W ,R ,D,Q,I 〉 where:

· W is a nonempty set (“possible worlds”)

· R is a binary relation overW (“accessibility relation”)

· D is a nonempty set (“super-domain”)

· Q is a function that assigns to any w ∈ W a subset of D. Let us refer

toQ(w) as “Dw”. Think of Dw as w’s “sub-domain”—the set of objects

that exist at w.

· I is a function such that: (“interpretation function”)

· if α is a constant then I (α) ∈D
· ifΠ is an n-place predicate thenI (Π) is a set of ordered n+1-tuples

〈u1, . . . , un, w〉, where u1, . . . , un are members of D, and w ∈W .

Definition of valuation: The valuation function VM ,g , for VDQML-model

M (= 〈W ,R ,D,Q,I 〉) and variable assignment g , is de�ned as the function

that assigns either 0 or 1 to each wff relative to each member ofW , subject to

the following constraints:

· for any terms α and β, VM ,g (α=β, w) = 1 iff [α]M ,g = [β]M ,g

· for any n-place predicate, Π, and any terms α1, . . . ,αn,

VM ,g (Πα1 . . .αn, w) = 1 iff 〈[α1]M ,g , . . . ,[αn]M ,g , w〉 ∈ I (Π)
· for any wffs φ and ψ, and variable, α,

VM ,g (∼φ, w) = 1 iff VM ,g (φ, w) = 0

VM ,g (φ→ψ, w) = 1 iff either VM ,g (φ, w) = 0 or VM ,g (ψ, w) = 1

VM ,g (∀αφ, w) = 1 iff for each u ∈Dw ,VM ,gαu
(φ, w) = 1

VM ,g (2φ, w) = 1 iff for each v ∈W , ifRwv then VM ,g (φ, v) = 1
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The de�nition of denotation remains unchanged. The obvious derived clauses

for ∃ and 3 are as follows:

VM ,g (∃αφ, w) = 1 iff for some u ∈Dw ,VM ,gαu
(φ, w) = 1

VM ,g (3φ, w) = 1 iff for some v ∈W ,Rwv and VM ,g (φ, v) = 1

Thus, we have introduced subdomains. We still have D, a set that contains

all of the possible individuals. But for each possible world w, we introduce a

subset of the domain,Dw , to be the domain for w. When evaluating a quanti�ed

sentence at a world w, the quanti�er ranges only over Dw .

How should we de�ne validity and semantic consequence here? There are

some complications. Our earlier de�nitions were: a valid formula must be true

at every world in every model under every variable assignment; and semantic

consequence is truth preservation at every world in every model under every

variable assignment. Sticking to those de�nitions leads to some odd results.

For example, the formula ∀xF x→F y turns out to be invalid. For consider

a model with a world w such that everything in Dw is F at w; suppose that

some object u that is not a member of Dw is not F at w; and consider a variable

assignment that assigns u to y. ∀xF x is then true but F y is false at w, relative

to this model and variable assignment. This result is odd because ∀xF x→F y
is an instance of the principle of universal instantiation (axiom schema PC1

from section 4.4.) For similar reasons, ∀xF x→F a comes out invalid as well.

The example could be blocked by rede�ning validity. We could say that a

formula is valid iff it is true for every admissible choice of a modelM , world w,

and variable assignment g , where such a choice is admissible iff [α]M ,g ∈Dw for

each term α (whether variable or constant). But this just relocates the oddity:

now the rule of necessitation fails to preserve validity. ∀xF x→F y now turns

out valid, but 2(∀xF x→F y) does not (as a model like the one considered in

the previous paragraph demonstrates.) Alternatively, we could stick with the

original de�nition, embrace the invalidity of ∀xF x→F y (and of ∀xF x→F a),

thus accepting free logic (section 5.6).

Note that ifM is an SQML model, then we can construct a corresponding

VDQML model with the same set of worlds, (super-) domain, and interpre-

tation function, in which every world is accessible from every other, and in

whichQ is a constant function assigning the whole super-domain to each world.

It is intuitively clear that the same sentences are true in this corresponding

model as are true inM . Hence, whenever a sentence is SQML-invalid, it is

VDQML-invalid. (The converse of course is not true.)
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9.6.1 Contingent existence vindicated
What is the status in VDQML of the controversial SQML-valid formulas

discussed in section 9.5.2? They all turn out invalid. Here is an abbreviated

countermodel to the Barcan formula; for the others, see exercise 9.4.

Example 9.4: 2
VDQML

∀x2F x→2∀xF x:

D
r
: {u} F : {u}r

��

00
D : {u,v}

D
a

: {u,v} F : {u}a

00

Of�cial model:

W = {r,a}
R = {〈r, r〉, 〈r,a〉, 〈a,a〉}
D = {u,v}
D

r
= {u}

D
a
= {u,v}

I (F ) = {〈u, r〉, 〈u,a〉}

Exercise 9.3 Does the move to variable domain semantics change

whether any of the formulas in exercise set 9.1 are valid? Justify

your answers.

Exercise 9.4 Demonstrate the VDQML-invalidity of the follow-

ing formulas

a) 2∀xF x→∀x2F x

b) ∃x2F x→2∃xF x

c) ∀x2∃y y=x

9.6.2 Increasing, decreasing domains
If we made certain restrictions on the accessibility relation in variable-domains

models, then the validity of the controversial formulas of section 9.5.2 would

be reinstated. For example, the counterexample to the Barcan formula in the

previous section required a model in which the domain expanded; world a was
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accessible from world r, and had a larger domain. But suppose we included the

following constraint onR in any model:

ifRwv, then Dv ⊆Dw (decreasing domains)

The counterexample would then go away. Indeed, every instance of the Barcan

schema would then become valid, which may be proved as follows:

i) Suppose for reductio that Vg (∀α2φ→2∀αφ, w) = 0. So Vg (∀α2φ, w) =
1 and…

ii) …Vg (2∀αφ, w) = 0. So for some v, Rwv and Vg (∀αφ, v) = 0; and so,

for some u ∈Dv ,Vgαu
(φ, v) = 0.

iii) Given decreasing domains,Dv ⊆Dw , so u ∈Dw . So by i), Vgαu
(2φ, w) = 1;

and so Vgαu
(φ, v) = 1. This contradicts ii).

Similarly, the following constraint would validate the converse Barcan

schema as well as ∃α2φ→2∃αφ (exercise 9.5):

ifRwv then Dw ⊆Dv (increasing domains)

Even after imposing the increasing domains constraint, the Barcan formula

remains invalid; and after imposing the decreasing domains constraint, the con-

verse Barcan formula and also ∃x2F x→2∃xF x remain invalid. But when the

accessibility relation is symmetric (as it is in B and S5) this collapses: imposing

either constraint results in imposing both.

Exercise 9.5 Show that every instance of each of the following

schemas is valid given the increasing domains requirement.

a) 2∀αφ→∀α2φ

b) ∃α2φ→2∃αφ
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9.6.3 Strong and weak necessity
In order for 2φ to be true at a world, the VDQML semantics requires that φ
be true at every accessible world. This requirement might seem too strong. In

order for 2F a, say, to be true, F a must be true in all possible worlds. But what

if a fails to exist in some worlds? In order for “Necessarily, I am human” to

be true, must I be human in every possible world? Isn’t it enough for me to be

human in all the worlds in which I exist?

If the underlying worry here is that a must exist necessarily in order for

2F a to be true—that I must exist necessarily in order to be necessarily human—

then the worry is unfounded. The VDQML semantics does require F a to

be true in every world in order for 2F a to be true; but it does not require a
to exist in every world in which F a is true. The clause in the de�nition of a

VDQML-model for the interpretation of predicates was this:

· if Π is an n-place predicate then I (Π) is a set of ordered n + 1-tuples

〈u1, . . . , un, w〉, where u1, . . . , un are members of D, and w ∈W .

(The underlined part mentions D, not Dw .) I (F ) is allowed to contain pairs

〈u, w〉, where u is not a member of Dw . 2F a is consistent with a’s failing to

necessarily exist; it’s just that a has to be F even in worlds where it doesn’t exist.

I doubt this really addresses the philosophical worry about the semantics,

though, since it looks like bad metaphysics to say that a person could be human

at a world where she doesn’t exist. One could hard-wire a prohibition of this

sort of bad metaphysics into VDQML semantics, by replacing the old clause

with a new one:

· if Π is an n-place predicate then I (Π) is a set of ordered n + 1-tuples

〈u1, . . . , un, w〉, where u1, . . . , un are members of Dw , and w ∈W .

thus barring objects from having properties at worlds where they don’t ex-

ist. But some would argue that this goes too far. The new clause validates

∀x2(F x→∃y y=x). “An object must exist in order to be F ”—sounds clearly

true if F stands for ‘is human’, but what if F stands for ‘is famous’? If Baconians

had been right and there had been no such person as Shakespeare, perhaps

Shakespeare might still have been famous.

The issues here are complex.
9

But whether or not we should adopt the new

clause, it looks as though there are some existence-entailing English predicates

9
The question is that of so-called “serious actualism” (Plantinga, 1983).
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Π: predicatesΠ such that nothing can be aΠ without existing. ‘Is human’ seems

to be such a predicate. So we’re back to our original worry about VDQML-

semantics: its truth condition for 2φ requires truth of φ at all worlds, which

is allegedly too strong in at least some cases, for example the case where φ
represents ‘I am human’.

One could modify the clause for the 2 in the de�nition of the valuation

function, so that in order for 2F a to be true, a only needs to be F in worlds in

which it exists:

VM ,g (2φ, w) = 1 iff for each v ∈W , ifRwv, and if [α]M ,g ∈Dw for each

name or free variable α occurring in φ, then VM ,g (φ, v) = 1

This would indeed have the result that 2F a gets to be true provided a is F
in every world in which it exists. But be careful what you wish for. Along

with this result comes the following: even if a doesn’t necessarily exist, the

sentence 2∃x x=a comes out true. For according to the new clause, in order

for 2∃x x=a to be true, it must merely be the case that ∃x x=a is true in every
world in which a exists, and of course this is indeed the case.

If 2∃x x=a comes out true even if a doesn’t necessarily exist, then 2∃x x=a
doesn’t say that a necessarily exists. Indeed, it doesn’t look like we have any way

of saying that a necessarily exists, using the language of QML, if the 2 has the

meaning provided for it by the new clause.

A notion of necessity according to which “Necessarily φ” requires truth in

all possible worlds is sometimes called a notion of strong necessity. In contrast,

a notion of weak necessity is one according to which “Necessarily φ” requires

merely that φ be true in all worlds in which objects referred to within φ exist.

The new clause for the 2 corresponds to weak necessity, whereas our original

clause corresponds to strong necessity.

As we saw, if the 2 expresses weak necessity, then one cannot even express

the idea that a thing necessarily exists. That’s because one needs strong necessity

to say that a thing necessarily exists: in order to necessarily exist, you need to

exist at all worlds, not just at all worlds at which you exist! So this is a de�ciency

of having the 2 of QML express weak necessity. But if we allow the 2 to

express strong necessity instead, there is no corresponding de�ciency, for one

can still express weak necessity using the strong 2 and other connectives. For

example, to say that a is weakly necessarily F (that is, that a is F in every world

in which it exists), one can say: 2(∃x x=a→F a).
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So it would seem that we should stick with our original truth condition for

the 2, and live with the fact that statements like 2F a turn out false if a fails

to be F at worlds in which it doesn’t exist. Those who think that “Necessarily,

I am human” is true despite my possible nonexistence can always translate

this natural language sentence into the language of QML as 2(∃x x=a→F a)
(which requires a to be F only at worlds at which it exists) rather than as 2F a
(which requires a to be F at all worlds).

9.6.4 Actualist and possibilist quanti�cation
Suppose we kept the de�nition of a VDQML model as-is, but added a new

expression ∀p to the language of QML, with a grammar just like ∀ (i.e., ∀pαφ is

a wff for each variable α and wffφ), and with a semantics given by the following

added clause to the de�nition of the valuation function:

VM ,g (∀pαφ) = 1 iff for each u ∈D,VM ,gαu
(φ, w) = 1

Thus, in any world w, whereas ∀ ranges just over Dw , ∀p ranges over all of D.

∀p is sometimes called a “possibilist” quanti�er, since it ranges over all

possible objects; ∀ is called an “actualist” quanti�er since it ranges at world w
only over the objects that are actual at w. In this setup, ∀ continues to behave as

it does in VDQML, and hence the Barcan formula and company remain invalid.

But the ∀p behaves just like ∀ did in SQML. For example, ∀p x2F x→2∀p xF x
and ∀p x2∃p y y=x come out valid (where ∃p is de�ned as meaning ∼∀pα∼).

Formally speaking, this approach is very similar to the approach of section

9.5.3. For in effect, this section’s ∀p is the sole quanti�er of section 9.5.3;

and this section’s ∀ is the restricted quanti�er “∀x(N x→” of section 9.5.3,

where N is a predicate symbolizing “is a normal object”. On the face of it, the

approaches are metaphysically similar as well. If there is a difference between

introducing two quanti�ers, one possibilist and one actualist, on the one hand,

and introducing a single quanti�er plus a predicate for normalcy/actuality, on

the other, then it’s a subtle one.
10

10
Although see McDaniel (2009); Turner (MS) for some related subtle metaphysics.
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9.7 Axioms for SQML
So far our approach has been purely semantic. But one can also take a proof-

theoretic approach to quanti�ed modal logic. This is quite straightforward for

SQML. (One can do it for VDQML as well, but we won’t pursue that here.) To

get an axiomatic system, for instance, one can simply combine the axioms for

predicate logic introduced in section 4.4 with the axioms for S5 from section

6.4.6, plus axioms governing the identity sign:

Axiomatic system SQML:

· Rules: MP, plus:

φ

∀αφ
UG

φ

2φ
NEC

· Axioms: instances of the PL1, PL2, PL3 schemas, plus:

∀αφ→φ(β/α) (PC1)

∀α(φ→ψ)→ (φ→∀αψ) (PC2)

2(φ→ψ)→ (2φ→2ψ) (K)

2φ→φ (T)

32φ→2φ (S5)

α= α (RX)

α=β→ (φ(α)→φ(β)) (II)

QML wffs are now allowed to be substituted for the schematic letters. Substitu-

tions for the schematic letters in PC1 and PC2 must be restricted as discussed in

section 4.4. In RX (“re�exivity”), α may be any variable or individual constant;

in II (“indiscernibility of identicals”), α and β may be any two variables or

individual constants, and φ(α) and φ(β) may be any two wffs that are exactly

alike except that zero or more occurrences of α (free occurrences if α is a

variable) in the �rst are replaced by occurrences of β (free occurrences, if β is

a variable) in the second. Thus, RX says that everything is self-identical, and II

expresses the familiar principle of the indiscernibility of identicals: if objects

are identical then anything true of one is true of the other as well.
11

11
II must be distinguished from section 5.4.3’s “indiscernibility of identicals” (though each

is based on the same idea). The former is an axiom schema—a claim in the metalanguage
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As always, a theorem is de�ned as the last line of a proof in which each line

is either an axiom or follows from earlier lines by a rule. As with MPL, we will

be interested only in theoremhood, and will not consider proofs from premise

sets. And we will use shortcuts as in sections 2.8, 4.4, and 6.4 to ease the pain of

axiomatic proofs. Though we won’t prove this here, our SQML axiom system

is sound and complete with respect to the SQML semantics: a QML-wff is

SQML-valid iff it is an SQML-theorem.
12

Many theorems of SQML are just what you’d expect from the result of

putting together axioms for predicate logic and axioms for S5 modal proposi-

tional logic. Examples include:

2∀x(F x∧Gx)→2∀xF x
(2∀xF x∧2∀xGx)→2∀x(F x∧Gx)
(2∀xF x∧3∃xGx)→3∃x(F x∧Gx)

The �rst of these formulas, for example, is just an instance of a familiar sort

of K-theorem, namely, a wff of the form 2φ→2ψ where φ→ψ is provable on

its own. The only difference in this case is that to prove φ→ψ here, namely

∀x(F x∧Gx)→∀xF x, you need to use predicate logic techniques (see example

4.9). The other theorems are also unsurprising: each is, intuitively, an amalgam

of a predicate logic theorem and a S5 MPL theorem.

But other theorems of SQML are more surprising. In particular, all in-

stances of the Barcan and converse Barcan schemas are theorems. An instance

of the converse Barcan schema may be proved as follows:

1. ∀xF x→F x PC1

2. 2∀xF x→2F x 1, NEC, K, MP

3. ∀x(2∀xF x→2F x) 2, UG

4. 2∀xF x→∀x2F x PC2, 3, MP

Note that the only propositional modal logic required in this proof is K. The

proof of the Barcan formula, on the other hand, requires B:

to the effect that any formula of a certain shape is an axiom; the axioms it generates have

only �rst-order variables; and it is, intuitively, limited to “properties” that one can express in

the language of QML. The latter is a single sentence of the object language (the language

of second-order predicate logic); it contains second-order variables; and it is not limited to

expressible properties (since the second-order variable X ranges over all subsets of the domain).

12
See Hughes and Cresswell (1996, chapters 13–14).



CHAPTER 9. QUANTIFIED MODAL LOGIC 317

1. ∀x2F x→2F x PC1

2. 3∀x2F x→32F x 1, NEC, K3, MP

3. 32F x→F x B

4. 3∀x2F x→F x 2, 3, PL (syllogism)

5. 3∀x2F x→∀xF x 4, UG, PC2, MP

6. 23∀x2F x→2∀xF x 5, NEC, K, MP

7. ∀x2F x→23∀x2F x B3

8. ∀x2F x→2∀xF x 6, 7, PL (syllogism)

For one more example, the formula 2∃x x=a, which attributes necessary exis-

tence to a, may be proved as follows:

1. a=a RX

2. ∀x∼ x=a→∼a=a PC1

3. ∼∀x∼ x=a 1, 2, PL

4. 2∼∀x∼ x=a 3, NEC

The conclusion, 2∼∀x∼ x=a, is the de�nitional equivalent of 2∃x x=a.

Given completeness, all the other controversial SQML-valid formulas are

also SQML-theorems. Anyone who rejects these controversial formulas must

therefore come up with some other proof-theoretic approach. There are indeed

other proof-theoretic approaches. But these approaches are more complex.

Though we won’t go into this in detail, let’s look quickly at one possibility.

Take the SQML-proof of 2∃x x=a. How might we revise the rules of our

SQML axiomatic system to block it? The simplest method is to replace the

standard predicate logic axioms with those from free predicate logic. Once we

reach line 3 we have proved, purely by means of predicate logic, the sentence

∼∀x∼ x=a—that is, ∃x x=a. This is just the kind of conclusion that the free

logician wants to block; from her point of view, the name a might fail to denote

any existing object. In section 5.6.2 we saw that the axiom of standard predicate

logic that is objectionable to free logicians is PC1. PC1 expresses the principle

of universal instantiation: if everything is φ, then β is φ. The free logical

restriction of PC1 mentioned in section 5.6.2 was this:

∀αφ→ (∃κκ=β→φ(β/α)) (PC1
′
)

which says: if everything is φ, then β is φ provided β exists. Replacing PC1

with PC1
′
blocks the proof of 2∃x x=a at step 2. It also blocks the proofs of
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the Barcan and converse Barcan formulas given above. Using this free-logical

approach, one can develop various axiomatic systems for QML that are sound

and complete with respect to variable domain semantics.
13

Exercise 9.6 Construct axiomatic proofs in SQML for each of the

following wffs.

a)* 2(2∀x(F x→Gx)∧∃xF x)→2∃xGx

b) (2∀xF x∧3∀xGx)→3∀x(F x∧Gx)

c) (∀x2(F x→Gx)∧∃x3F x)→∃x3Gx

d) ∀y2∃x x=y

13
See Garson (2006). An alternate approach is that originally taken by Kripke, who blocks

the objectionable proofs by disallowing the style of reasoning using free variables on which

those proofs are based. See Kripke (1963), and Hughes and Cresswell (1996, 304–9).



Chapter 10

Two-dimensional modal logic

I
n this chapter we consider a class of extensions to modal logic with con-

siderable philosophical interest.

10.1 Actuality
The word ‘actually’, in one of its senses anyway, can be thought of as a one-place

sentence operator: “Actually, φ”.

‘Actually’ might at �rst seem redundant. “Actually, snow is white” just

amounts to: “snow is white”; “actually, grass is blue” just amounts to: “grass is

blue”. But it’s not redundant when it’s embedded inside modal operators. The

following two sentences, for example, have different meanings:

Necessarily, if grass is blue then grass is blue

Necessarily, if grass is blue then grass is actually blue

The �rst sentence makes the trivially true claim that grass is blue in any possible

world in which grass is blue. But the second sentence makes the false claim that

if grass is blue in any world, then grass is blue in the actual world. Intuitively,

‘actual’ lets us talk about what’s going on in the actual world, even if we’re

inside the scope of a modal operator where normally we’d be talking about

other possible worlds.

We symbolize “Actually, φ” as “@φ”. (Grammar: whenever φ is a wff,

so is @φ.) We can now symbolize the pair of sentences above as 2(B→B)

319
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and 2(B→@B), respectively. For some further examples of sentences we can

symbolize using ‘actually’, consider:
1

It might have been that everyone who is actually rich is

poor

3∀x(@Rx→P x)

There could have existed something that does not ac-

tually exist

3∃x@∼∃y y=x

10.1.1 Kripke models with designated worlds
Before doing semantics for @, let’s return to the semantics of standard proposi-

tional modal logic. Here is a way of doing that semantics which differs slightly

from that of section 6.3.1. First, instead of a triple 〈W ,R ,I 〉, let an MPL-

model be a quadruple 〈W , w@,R ,I 〉, whereW ,R , and I are as before, and

w@ is some member ofW , thought of as the actual, or designated world of the

model. Second, de�ne the valuation function exactly as before (the designated

world w@ plays no role here). But third, use the designated worlds in the

following new de�nitions (where S is any modal system):

Definitions of truth in a model, validity, and semantic consequence:

· φ is true in modelM (= 〈W , w@,R ,I 〉) iff VM (φ, w@) = 1

· φ is S-valid iff φ is true in all S-models

· φ is an S-semantic consequence of Γ iff for any S-modelM , if each γ ∈ Γ
is true inM then φ is true inM

One could add a designated world to models for quanti�ed modal logic in a

parallel way.

The old de�nitions of validity and semantic consequence, recall, never used

any notion of truth in a model. (A valid formula, for example, was de�ned

as a formula that is valid in all models.) But in model theory generally, one

normally de�nes some notion of truth in a model, and then uses it to de�ne

1
In certain special cases, we could do without the new symbol @. For example, instead of

symbolizing “Necessarily, if grass is blue then grass is actually blue” as 2(B→@B), we could

symbolize it as 3B→B . But the @ is not in general eliminable; see Hodes (1984b,a).
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validity as truth in all models, and semantic consequence as the preservation of

truth in models. The nice thing about our new de�nitions is that they let us do

the same for modal logic. But they don’t differ in any substantive way from the

old de�nitions; they yield exactly the same results (exercise 10.1).

Exercise 10.1* Show that the new de�nitions of validity and se-

mantic consequence are equivalent to the old ones.

10.1.2 Semantics for @

We can give @ a simple semantics using models with designated worlds. And

now the designated worlds will play a role in the valuation function, not just

in the de�nition of validity. We’ll move straight to quanti�ed modal logic,

bypassing propositional logic. To keep things simple, let’s go the SQML route:

constant domain and no accessibility relation.

Definition of model: A designated-world SQML-model is a four-tuple

〈W , w@,D,I 〉, where:

· W is a non-empty set (“worlds”)

· w@ is a member ofW (“designated/actual world”)

· D is a non-empty set (“domain”)

· I is an “interpretation” function that assigns semantic values as before

(to names: members of D; to predicates: extensions relative to worlds)

The valuation function is de�ned just as for SQML (section 9.3), with the

following added clause for the new operator @:

· VM ,g (@φ, w) = 1 iff VM ,g (φ, w@) = 1

Thus, @φ is true at any world iff φ is true in the designated world.

10.1.3 Establishing validity and invalidity
The strategies for establishing the validity or invalidity of a given formula are

similar to those from chapter 9.
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Example 10.1: Show that � ∀x(F x∨2Gx)→2∀x(Gx∨@F x)

i) Suppose for reductio that this formula is not valid. Then for some model

and variable assignment g , Vg (∀x(F x∨2Gx)→2∀x(Gx∨@F x), w@) =
0. So Vg (∀x(F x∨2Gx), w@) = 1 and…

ii) …Vg (2∀x(Gx∨@F x), w@) = 0. So Vg (∀x(Gx∨@F x),a) = 0 for some

a ∈ W . So Vg x
u
(Gx∨@F x,a) = 0 for some u ∈ D. So Vg x

u
(Gx,a) = 0

and…

iii) …Vg x
u
(@F x,a) = 0. So Vg x

u
(F x, w@) = 0 (by the truth condition for @).

iv) Given line i), Vg x
u
(F x∨2Gx, w@) = 1. So either Vg x

u
(F x, w@) = 1 or

Vg x
u
(2Gx, w@) = 1. So, given iii), Vg x

u
(2Gx, w@) = 1, and so Vg x

u
(Gx,a) =

1, contradicting ii).

Example 10.2: Show that 22∀x(Gx∨@F x)→2∀x(Gx∨F x):

W = {w@,a}
D = {u}

I (F ) = {〈u, w@〉}
I (G) =∅

The formula is false in world w@ of this model. (The consequent is false in @
because at world a, something (namely, u) is neither G nor F ; but the antecedent

is true in @: since u is F at w@, it’s necessary that u is either G or actually F .)

So the formula is false in the model; so it is invalid.

10.2 ×
Adding @ to the language of quanti�ed modal logic lets us express certain kinds

of comparisons between possible worlds that we couldn’t express otherwise. But

it doesn’t go far enough; we need a further addition.
2

Consider this sentence:

It might have been the case that, if all those then rich

might all have been poor, then someone is happy

2
See Hodes (1984a) on the limitations of @; see Cresswell (1990) on× (his symbol is “Ref”),

and further related additions.
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What it’s saying, in possible worlds terms, is this:

For some world w, if there’s a world v such that (ev-

eryone who is rich in w is poor in v), then someone is

happy in w

This is a bit like “It might have been that everyone who is actually rich is poor”;

in this new sentence the word ‘then’ plays a role a bit like the role ‘actually’

played in the earlier sentence. But the intention of the ‘then’ is not to take us

back to the actual world; it is rather to take us back to the world, w, that was

introduced by the �rst possibility operator, ‘it might have been the case that’.

We cannot, therefore, symbolize our new sentence this way:

3(3∀x(@Rx→P x)→∃xH x)

For this says, in possible worlds terms:

For some world w, if there’s a world v such that (ev-

eryone who is rich in w@ is poor in v), then someone

is happy in w

The problem is that @, as we’ve de�ned it, always takes us back to the designated

world, whereas what we need to do is to “mark” the world w, and have @ take

us back to the marked world:

3×(3∀x(@Rx→P x)→∃xH x)

× marks the spot: it is a point of reference for subsequent occurrences of @.

10.2.1 Two-dimensional semantics for ×
So let’s add another one-place sentence operator, × (grammar: whenever φ
is a wff, so is ×φ). The idea is that ×φ means the same thing as φ, except

that subsequent occurrences of @ in φ are to be interpreted as picking out the

world that was the “current world of evaluation” when the × was encountered.

For semantics, let’s return to the old SQML models 〈W ,D,I 〉 (without

designated worlds). Denotation is de�ned as before. But let’s change the

valuation function: it will now assign truth values to formulas relative to pairs of
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possible worlds, rather than relative to single worlds (hence: “two-dimensional

semantics”). So we’ll write “V
2
M ,g (φ, w1, w2)” rather than “VM ,g (φ, w)”. The

second world, w2, plays the same role that the sole world w played before; call

it the “world of evaluation”. The �rst world, w1, is new; call it the “reference

world”. Think of it as a “temporary actual world”: it is the world that is picked

out by @, and it can be changed by ×. Thus, “V
2
M ,g (φ, w1, w2)” will mean that

φ is true at world w2, when w1 is treated as the actual world.

Definition of valuation: The two-dimensional valuation function, V
2
M ,g , for

an SQML-modelM (= 〈W ,D,I 〉) is de�ned as the three-place function that

assigns to each wff, relative to each pair of worlds, either 0 or 1 subject to the

following constraints, for any n-place predicate Π, terms α1 . . .αn, wffs φ and

ψ, and variable β:

V
2
M ,g (Πα1 . . .αn, v, w) = 1 iff 〈[α1]M ,g , . . . ,[αn]M ,g , w〉 ∈ I (Π)

V
2
M ,g (∼φ, v, w) = 1 iff V

2
M ,g (φ, v, w) = 0

V
2
M ,g (φ→ψ, v, w) = 1 iff V

2
M ,g (φ, v, w) = 0 or V

2
M ,g (ψ, v, w) = 1

V
2
M ,g (∀βφ, v, w) = 1 iff for all u ∈D,V 2

M , gβu
(φ, v, w) = 1

V
2
M ,g (2φ, v, w) = 1 iff for all w ′ ∈W ,V 2

M ,g (φ, v, w ′) = 1

V
2
M ,g (@φ, v, w) = 1 iff V

2
M ,g (φ, v, v) = 1

V
2
M ,g (×φ, v, w) = 1 iff V

2
M ,g (φ, w, w) = 1

Note the �nal clause. ×φ says to forget about the old reference world, and let

the new reference world be the current world of evaluation. As for validity and

semantic consequence, our of�cial de�nitions will be the following:

Definitions of validity and semantic consequence:

· φ is 2D-valid (“�2D
φ”) iff for every modelM , every variable assignment

g forM , and every world w inM , V
2
M ,g (φ, w, w) = 1

· φ is a 2D-semantic consequence of Γ (“Γ �2D
φ”) iff for every model

M , every variable assignment g for M , and every world w in M , if

V
2
M ,g (γ , w, w) = 1 for each γ ∈ Γ, then V

2
M ,g (φ, w, w) = 1

These de�ne validity as truth in every pair of worlds of the form 〈w, w〉, and

semantic consequence as truth-preservation at every such pair. But these aren’t
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the only notions of validity and consequence that one could introduce. There

are also the notions of truth and truth-preservation at every pair of worlds:
3

Definitions of general 2D validity and semantic consequence:

· φ is generally 2D-valid (“�
G2D

φ”) iff for every modelM , every variable

assignment g forM , and any worlds v and w inM , V
2
M ,g (φ, v, w) = 1

· φ is a general 2D-semantic consequence of Γ (“Γ �
G2D

φ”) iff for every

modelM , every variable assignment g forM , and any worlds v and w
inM , if V

2
M ,g (γ , v, w) = 1 for each γ ∈ Γ, then V

2
M ,g (φ, v, w) = 1

Validity and general validity, and consequence and general consequence, come

apart in various ways, as we’ll see below.

As noted, the move to this new language lets us symbolize “It might have

been the case that, if all those then rich might all have been poor, then some-

one is happy” as 3×(3∀x(@Rx→P x)→∃xH x). Moreover, the move costs us

nothing. For we can replace any sentence φ of the old language with ×φ in

the new language (i.e. we just put the × operator at the front of the sentence.)
4

For example, instead of symbolizing “It might have been that everyone who is

actually rich is poor” as 3∀x(@Rx→P x) as we did before, we can symbolize it

now as ×3∀x(@Rx→P x).

Example 10.3: Show that if �2D
φ then �2D

@φ. Suppose that @φ is not

valid. Then in some model and some world, w (and some assignment g , but

I’ll suppress this when it isn’t relevant), V
2(@φ, w, w) = 0. Thus, given the

truth condition for @, V
2(φ, w, w) = 0, and so φ isn’t valid.

Example 10.4: Show that every instance of φ↔@φ is 2D-valid, but not

every instance of 2(φ↔@φ) is. (Moral: any proof theory for this logic had

better not include the rule of necessitation!) For the �rst, the truth condition

for @ insures that for any world w in any model (and any variable assignment),

3
The term ‘general validity’ is from Davies and Humberstone (1980); the �rst de�nition of

validity corresponds to their “real-world validity”.

4
This amounts to the same thing as the old symbolization in the following sense. Let

φ be any wff of the old language. Thus, φ may have some occurrences of @, but it has

no occurrences of ×. Then, for every SQML-model M = 〈W ,D,I 〉, and any v, w ∈ W ,

V
2
M ,g (×φ, v, w) =VM ′,g (φ, w), whereM ′

is the designated-world model 〈W , w,D,I 〉.
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V
2(@φ, w, w) = 1 iff V

2(φ, w, w) = 1, and so V
2(φ↔@φ, w, w) = 1. Thus,

�2D
φ↔@φ. But here is a countermodel for 2(F a↔@F a):

W = {c,d}
D = {u}

I (a) = u

I (F ) = {〈u,c〉}

V
2(2(F a↔@F a), c, c) = 0 because V

2(F a↔@F a, c,d) = 0. For F a is true at

〈c,d〉 iff the referent of a is in the extension of F at world d (it isn’t) whereas

@F a is true at 〈c,d〉 iff the referent of a is in the extension of F at world c (it is).

Note that this same model shows thatφ↔@φ is not generally valid. General

validity is truth at all pairs of worlds, and the formula F a↔@F a, as we just

showed, is false at the pair 〈c,d〉.

Exercise 10.2 Demonstrate the following facts:

a) For any wff φ, �2D
φ→2@φ

b) �2D
2×∀x3@F x→2∀xF x

10.3 Fixedly
The two-dimensional approach to possible-worlds semantics—evaluating for-

mulas at pairs of worlds rather than single worlds—raises an intriguing possi-

bility. The 2 is a universal quanti�er over the world of evaluation; we might,

by analogy, follow Davies and Humberstone (1980) and introduce an operator

that is a universal quanti�er over the reference world. Davies and Humberstone

call this operator “�xedly”. We’ll symbolize “�xedly, φ” as Fφ. Grammatically,

Fφ is a wff whenever φ is; its semantic clause is this:
5

V
2
M ,g (Fφ, v, w) = 1 iff for every v ′ ∈W ,V 2

M ,g (φ, v ′, w) = 1

5
Humberstone and Davies use designated-world QML models rather than two-dimensional

semantics (and they don’t include ×). Their truth condition for F is this: VM ,g (Fφ, w) = 1 iff

VM ′,g (φ, w) = 1 for every modelM ′
that is just likeM except perhaps containing a different

designated world. This approach isn’t signi�cantly different from the two-dimensional one.
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The other two-dimensional semantic de�nitions, including the de�nitions of

validity and semantic consequence, remain the same.

Humberstone and Davies point out that given F, @, and 2, we can introduce

two new operators: F@ and F2. It’s easy to show that:

V
2
M ,g (F@φ, v, w) = 1 iff for every v ′ ∈W ,V 2

M ,g (φ, v ′, v ′) = 1

V
2
M ,g (F2φ, v, w) = 1 iff for v ′, w ′ ∈W ,V 2

M ,g (φ, v ′, w ′) = 1

Thus, we can think of F@ and F2, as well as 2 and F themselves, as expressing

“kinds of necessities”, since their truth conditions introduce universal quanti�ers

over worlds of evaluation and reference worlds. (What about 2F? It’s easy to

show that 2F is equivalent to F2.)

As with the semantics of the previous section, validity and general validity

do not always coincide, as the following example shows.

Example 10.5: F@φ→φ is 2D-valid for each wff φ (exercise 10.3). But

some instances of this wff fail to be generally valid, for example:

F@(@Ga↔Ga)→(@Ga↔Ga)

General validity requires truth at all pairs 〈v, w〉 in all models. But in the

following model, V
2(F@(@Ga↔Ga)→(@Ga↔Ga), c,d) = 0:

W = {c,d}
D = {u}

I (a) = u

I (G) = {〈u,c〉}

In this model, the referent of ‘a’ is in the extension of ‘G’ in world c, but not

in world d. That means that @Ga is true at 〈c,d〉 whereas Ga is false at 〈c,d〉,
and so @Ga↔Ga is false at 〈c,d〉. But F@φ means that φ is true at all pairs

of the form 〈v, v〉, and the formula @Ga↔Ga is true at any such pair (in any

model). Thus, F@(@Ga↔Ga) true at 〈c,d〉 in this model.

Exercise 10.3 Show that �2D
F@φ→φ, for each wff φ

Exercise 10.4 Show that for some φ, 22D
φ→Fφ.

Exercise 10.5** Show that if φ has no occurrences of @, then

�2D
φ→Fφ.



CHAPTER 10. TWO-DIMENSIONAL MODAL LOGIC 328

10.4 Necessity and a priority
The two-dimensional modal framework has been put to signi�cant philosoph-

ical use in the past thirty or so years.
6

This is not the place for an extended

survey; rather, I will brie�y present the two-dimensional approach to just one

philosophical issue: the relationship between necessity and a priority.

In Naming and Necessity, Saul Kripke famously presented putative examples

of necessary a posteriori statements and of contingent a priori statements:

Hesperus = Phosphorus

B (the standard meter bar) is one meter long

The �rst statement, Kripke argued, is necessary because whenever we try to

imagine a possible world in which Hesperus is not Phosphorus, we �nd that we

have merely imagined a world in which ‘Hesperus’ and ‘Phosphorus’ denote

different objects than they in fact denote. Given that Hesperus and Phosphorus

are in fact one and the same entity—namely, the planet Venus—there is no

possible world in which Hesperus is different from Phosphorus, for such a

world would have to be a world in which Venus is distinct from itself. Thus, the

statement is necessary. But it’s a posteriori. It took astronomical investigation

to learn that Hesperus and Phosphorus were identical; no amount of pure

rational re�ection would have suf�ced. And the second sentence is a priori,

according to Kripke, because anyone possessing the semantic knowledge that

the description “the length of bar B” �xes the reference of ‘one meter’ can

know that it’s true. Nevertheless, he argues, the second sentence is contingent:

bar B does not have its length essentially, and thus could have been longer or

shorter than one meter.

But these conclusions are quite surprising. How can a statement that is true

in all possible worlds be in principle resistant to a priori investigation? Worse,

how can a statement that might have been false be known a priori?

Some think that the two-dimensional framework sheds light on all this.

Let’s consider the contingent a priori �rst. Consider the following notion:

Definition of superficial contingency: φ is super�cially contingent in model

M at world w iff, for every variable assignment g forM , V
2
M ,g (2φ, w, w) = 0

and V
2
M ,g (2∼φ, w, w) = 0.

6
For work in this tradition, see Stalnaker (1978, 2003a, 2004); Evans (1979); Davies and

Humberstone (1980); Hirsch (1986); Chalmers (1996, 2006); Jackson (1998); see Soames (2004)

for an extended critique.
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Intuitively: if you were sitting in w you could say truly: 3φ∧3∼φ.

Super�cial contingency is one way to formalize the notion of contingency.

How should we formalize the notion of a priority? As a rough and ready guide,

let’s think of a sentence as being a priori iff it is 2D-valid—i.e., true at every pair

〈w, w〉 of every model. In defense of this guide: we can think of the truth value

of an utterance of a sentence as being the truth value of that sentence at the

pair 〈w, w〉 in a model that accurately models the genuine possibilities, and in

which w accurately models the world of the speaker. So any 2D-valid sentence

is invariably true whenever uttered; hence, if φ is 2D-valid, any speaker who

understands the logic of her language is in a position to know that an utterance

of φ would be true.

These de�nitions allow sentences to be super�cially contingent but never-

theless a priori (2D-valid). For example, F a↔@F a is super�cially contingent

in any world of any model where F a is true in some worlds and false in others,

but it is 2D-valid (example 10.4). One can also give examples that are similar

in spirit both to Kripke’s example of the meter bar, and to a related example

due to Gareth Evans (1979). Consider these sentences:

Bar B is one meter

Julius invented the zip

Bar B is the standard meter bar. ‘One meter’ and ‘Julius’ are supposed to

be “descriptive names”—rigid designators whose references are �xed by the

descriptions ‘the length of bar B ’ and ‘the inventor of the zip’, respectively.

Now, whether or not these English sentences are indeed contingent and a priori

depends on delicate issues in the philosophy of language concerning descriptive

names, rigid designation, and reference �xing. Rather than going into all that,

let’s construct some examples that are similar to Kripke’s and Evans’s. Let’s

stipulate that ‘one meter’ and ‘Julius’ are to abbreviate “actualized descriptions”:

‘the actual length of bar B ’ and ‘the actual inventor of the zip’. With a little

creative reconstruing in the �rst case, the sentences then have the form: “the

actual G is G”:

the actual length of bar B is a length of bar B

the actual inventor of the zip invented the zip

Now, these sentences are not quite a priori, since for all one knows, the G might

not exist—there might exist no unique length of bar B , no unique inventor of

the zip. So suppose we consider instead the following sentences:
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If there is exactly one length of bar B , then the actual

length of bar B is a length of bar B

If there is exactly one inventor of the zip, then the actual

inventor of the zip invented the zip

Each has the form:

If there is exactly one G, then the actual G is G

Or, in symbols:

∃x(Gx∧∀y(Gy→y=x))→∃x(@Gx∧∀y(@Gy→y=x)∧Gx) (1)

(1) is 2D-valid (though not generally 2D-valid), and can be super�cially contin-

gent (exercise 10.6). So we have further examples of the contingent a priori.

Various philosophers want to concede that these sentences are contingent in
one sense—namely, in the sense of super�cial contingency. But, they claim, this

is a relatively unimportant sense (hence the ‘super�cial’; the term is Evans’s).

In another sense, they’re not contingent at all. Evans calls the second sense of

contingency “deep contingency”, and de�nes it thus (1979, p. 185):

If a deeply contingent statement is true, there will exist some state of

affairs of which we can say both that had it not existed the statement

would not have been true, and that it might not have existed.

The intended meaning of ‘the statement would not have been true’ is that the

statement, as uttered with its actual meaning, would not have been true. The

idea is supposed to be that ‘Julius invented the zip’ is not deeply contingent

because we can’t locate the required state of affairs; in any situation in which

‘Julius invented the zip’ is uttered with its actual meaning, it is uttered truly.

Evans’s notion of deep contingency is not perfectly transparent. But as

Davies and Humberstone (1980) point out, we can give a clear de�nition using

the two-dimensional modal framework:

Definition of deep contingency: φ is deeply contingent inM at w iff (for

all g ) V
2
M ,g (F@φ, w, w) = 0 and V

2
M ,g (F@∼φ, w, w) = 0.

(This is parallel to the de�nition of super�cial contingency, but with F@ in

place of 2.) The putative examples of the contingent a priori given above

are not deeply contingent. To be sure, this de�nition is only as clear as the
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two-dimensional notions of �xedness and actuality. The formal structure of the

two-dimensional framework is of course clear, but one can raise philosophical

questions about how that formalism is to be interpreted. But at least the

formalism provides a clear framework for the philosophical debate to occur.

As for the necessary a posteriori, let’s follow our earlier strategy and take

the failure to be 2D-valid as our conception of a posteriority. And let’s de�ne a

notion of super�cial necessity by analogy to super�cial contingency:

Definition of superficial necessity: φ is super�cially necessary inM at w
iff (for all g ) V

2
M ,g (2φ, w, w) = 1

But here we must take a bit more care. It’s a trivial matter to construct models

in which 2D-invalid sentences are necessarily true; and we don’t need the two-

dimensional framework to do it. We don’t want to say that ‘Everything is a

lawyer’ is an example of the necessary a posteriori. But let F symbolize ‘is a

lawyer’; we can construct a model in which the predicate F is true of every

member of the domain at every world. ∀xF x is super�cially necessary at every

world in this model, despite the fact that it is not 2D-valid. But this is too

cheap. What’s wrong is that this model isn’t realistic. Relative to our choice to

let F symbolize ‘is a lawyer’, the model doesn’t accurately depict the modal fact

that it’s simply not necessarily true that everything is a lawyer.

To provide a nontrivial formalization of the necessary a posteriori, we will

provide “realistic models” in which 2D-invalid sentences are necessarily true in

the world corresponding to actuality. To do so, we will �rst think of nonlogical

expressions of the language of QML as symbolizing certain particular expres-

sions of natural language. And then, we will choose a model that accurately

depicts the real modal facts, given what the nonlogical expressions symbolize.

(This notion of a “realistic model” is admittedly vague.)

Our putative necessary a posteriori sentence will be based on Kripke’s

Hesperus and Phosphorus example. To avoid controversies about the semantics

of proper names in natural language, let’s just stipulate that ‘Hesperus’ is to be

short for ‘the actual F ’, and that Phosphorus is to be short for ‘the actual G’,

where F stands for ‘is a �rst heavenly body visible in the evening’, and G stands

for ‘is a last heavenly body visible in the morning’. The sentence is then this:

If Hesperus and Phosphorus exist then they are identical; i.e.,
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If the actual F and the actual G exist, they are identical; i.e.,

[∃x(@F x∧∀y(@F y→x=y))∧∃z(@Gz∧∀y(@Gy→z=y)]→
∃x[@F x∧∀y(@F y→x=y)∧∃z(@Gz∧∀y(@Gy→z=y)∧ z=x)] (2)

Sentence (2) isn’t 2D-valid (exercise 10.7). But it is super�cially necessary in the

world corresponding to actuality in any realistic model. To see why, consider

the facts. The planet Venus is in fact both the heavenly body �rst visible in the

morning, and also the heavenly body �rst visible in the evening. (Or so we may

pretend.) So any realistic model must have a part that looks as follows:

W = {c . . .}
D = {u . . .}

I (F ) = {〈u,c〉 . . .}
I (G) = {〈u,c〉 . . .}

Object u corresponds to Venus, object d corresponds to Mars, and world c

corresponds to the actual world (note how u is both the unique F and the

unique G in c). And in any such model, the necessitation of (2), i.e.:

2 ([∃x(@F x∧∀y(@F y→x=y))∧∃z(@Gz∧∀y(@Gy→z=y)]→
∃x[@F x∧∀y(@F y→x=y)∧∃z(@Gz∧∀y(@Gy→z=y)∧ z=x)])

is true in 〈c,c〉 (since (2) is true in 〈c , w〉 for each world w). So (2) is super�cially

necessary in c in any such model.

Isn’t it strange that (2) is both a posteriori and necessary? The two-dimen-

sional response is: no, it’s not strange, since despite being super�cially necessary,

(2) is not deeply necessary. Deep necessity is de�ned thus:

Definition of deep necessity: φ is deeply necessary inM at w iff (for all g )

V
2
M ,g (F@φ, w, w) = 1

To see why (2) isn’t deeply necessary in the world corresponding to the actual

world of any realistic model, consider again the facts. It could have been that

Mars was the �rst heavenly body visible in the morning, while Venus remained

the �rst heavenly body visible in the evening. So in addition to the part depicted

above, any realistic model must also contain a world, d, corresponding to this
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possibility:

W = {c,d . . .}
D = {u,v . . .}

I (F ) = {〈u,c〉, 〈u,d〉 . . .}
I (G) = {〈u,c〉, 〈v,d〉 . . .}

(Note that the unique G in d is v; u is the unique F there; as before, u is both

the unique F and the unique G in c, which continues to correspond to the

actual world.) In any such model, the result of pre�xing (2) with F@:

F@{[∃x(@F x∧∀y(@F y→x=y))∧∃z(@Gz∧∀y(@Gy→z=y)]→
∃x[@F x∧∀y(@F y→x=y)∧∃z(@Gz∧∀y(@Gy→z=y)∧ z=x)]}

is false at 〈c, c〉 (and indeed, at every pair of worlds), since (2) is false at 〈d,d〉.
And so, (2) is not deeply necessary in c in this model.

One might try to take this two-dimensional line further, and claim that

in every case of the necessary a posteriori (or the contingent a priori), the

necessity (contingency) is merely super�cial. But defending this stronger line

would require more than we have in place so far. To take one example, return

again to ‘Hesperus = Phosphorus’, but now, instead of thinking of ‘Hesperus’

and ‘Phosphorus’ as abbreviations for actualized descriptions, let us represent

them by names in the logical sense (i.e., the expressions called “names” in

the de�nition of well-formed formulas, which are assigned denotations by

interpretation functions in models). Thus, ‘Hesperus = Phosphorus’ is now

represented as: a=b . Any realistic model will look in part as follows:

W = {c . . .}
D = {u . . .}

I (a) = u

I (b ) = u

In any such model the sentence a=b is deeply necessary (at any world in the

model). And yet it is a posteriori (2D-invalid) (exercise 10.8).
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Exercise 10.6 Show that sentence (1) is valid, though not generally

valid, and is super�cially contingent in some world in some model.

Exercise 10.7 Show that sentence (2) isn’t 2D-valid.

Exercise 10.8 Show that a = b is deeply necessary in any world of

any model in which I (a) =I (b ).

Exercise 10.9 Show that a formula is capable of being super�cially

contingent (i.e., for some model and some world, it is super�cially

contingent at that world) iff it fails to be generally valid.



Appendix A

Answers and Hints to Selected
Exercises

Exercise 1.1a “‘P∨∼P ’ is a logical truth” is a sentence of the metalanguage,

and (I would say) is false. ‘P∨∼P ’ contains the meaningless letter ‘P ’, so it isn’t

a logical truth. Rather, it represents logical truths (assuming the law of the

excluded middle is correct! See chapter 3.)

Exercise 1.1b ‘(P∨Q)→(Q∨P )’ is a sentence of the object language. Since

it contains meaningless expressions (‘P ’, ‘Q’), it isn’t true. (Not that it’s false!)

Exercise 1.1c This is a bit of a trick question. “‘Frank and Joe are brothers’

logically implies ‘Frank and Joe are siblings’” is a sentence of English, which is

talking about further sentences of English. So English is functioning here both

as the object language and as the metalanguage. As for whether the sentence is

true, I would say no, since the implication is not “formal”.

Exercise 1.2a ‘Attorney and lawyer are synonyms’ confuses use and mention;

inserting quotation marks thus �xes the problem:

‘Attorney’ and ‘lawyer’ are synonyms.

Exercise 1.2b How can we insert quotation marks to remove the use-mention

confusion in ‘If S1 is an English sentence and S2 is another English sentence,

then the string S1 and S2 is also an English sentence’? This is again a bit of a

trick question. You might think to do it this way:

335
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If S1 is an English sentence and S2 is another English

sentence, then the string ‘S1 and S2’ is also an English

sentence.

But this isn’t right. It makes the (false) claim that the string of letters ‘S1 and

S2’ (a string that contains the variables ‘S1’ and ‘S2’) is an English sentence,

whereas the intention of the original sentence was to say that strings like ‘Snow

is white and grass is green’ and ‘Roses are red and violets are blue’ are English

sentences. Really, what we want is something like this:

If S1 is an English sentence and S2 is another English

sentence, then the string consisting of S1, followed by

‘and’, followed by S2, is also an English sentence.

Quine (1940, 36) invented a device for saying such things more concisely. In

his notation, we could write instead:

If S1 is an English sentence and S2 is another English

sentence, then pS1 and S2q is also an English sentence.

His “corner quotes”, ‘p’ and ‘q’, work like regular quotation marks, except when

it comes to variables of the metalanguage such as ‘S1’ and ‘S2’. Expressions other

than such variables simply refer to themselves within corner quotes, just as all

expressions do within regular quotation marks. But metalanguage variables

refer to their values—i.e., the linguistic expressions they stand for—rather than

themselves, within Quine’s corner quotes. Thus,

pS1 and S2q

means the same as:

the string consisting of S1, followed by ‘and’, followed

by S2

Exercise 1.3 Let sentence S1 be ‘There exists an x such that x and x are

identical’, and let S2 be ‘There exists an x such that there exists a y such that x
and y are not identical’.

Does S1 logically imply S2 according to the modal criterion? Well, that

depends. It depends on what is possible. You might think that there could have

existed only a single thing, in which case S1 would be true and S2 would be
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false. If this is indeed possible, then S1 doesn’t logically imply S2 (given the

modal criterion). But some people think that numbers exist necessarily, and in

particular that it’s necessarily true that the numbers 0 and 1 exist and are not

identical. If this is correct, then it wouldn’t be possible for S1 to be true while

S2 is false (since it wouldn’t be possible for S2 to be false.) And so, S1 would

logically imply S2, given the modal criterion.

How about according to Quine’s criterion? Again, it depends—in this case

on which expressions are logical expressions. If (as is commonly supposed)

‘there exists an x such that’, ‘there exists a y such that’, ‘not’, and ‘are identical’

are all logical expressions, then all expressions in S1 and S2 are logical expressions.

So, since each sentence is in fact true, there’s no way to substitute nonlogical
expressions to make S1 true and S2 false. So S1 logically implies S2 (according to

Quine’s criterion). But suppose ‘are identical’ is not a logical expression. Then

S1 would not logically imply S2, according to Quine’s criterion. For consider

the result of substituting the predicate ‘are both existent’ for ‘are identical’.

S1 then becomes true: ‘There exists an x such that x and x are both existent’,

whereas S2 becomes false: ‘There exists an x such that there exists a y such that

x and y are not both existent’.

Exercise 1.4 Here is the de�nition of the powerset of A: {u : u ⊆ A}. The

powerset of {2,4,6} is {∅,{2},{4},{6},{2,4},{2,6},{4,6},{2,4,6}}. Notice that

the powerset of a set always contains both the null set and the set itself (look at

the de�nition of ‘subset’ to see why this is so.)

Exercise 1.5 N and Z are equinumerous, because of the following function

f : f (0) = 0, f (1) = 1, f (2) = −1, f (3) = 2, f (4) = −2, f (5) = 3, f (6) = −3, . . . .
This function can be de�ned more rigorously as follows:

f (n) =

(

− n
2 if n is even

n+1
2 if n is odd

(for any n ∈N)

Exercise 2.8 Hint: instead of trying to show directly that every wff without

repetition of sentence letters has the feature of PL-invalidity, �nd some feature

F that is stronger than PL-invalidity (i.e., some feature F from which PL-

invalidity follows), and show by induction that every wff without repeated

sentence letters has this feature F ; and then, �nally, conclude that every wff

without repeated sentence letters is PL-invalid.
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Exercise 2.10 Hint: call a sequent Γ⇒φ valid iff Γ �φ; prove by induction

that every provable sequent is a valid sequent.

Exercise 3.7 We’re to show that there are no valid formulas in Kleene’s

system. Consider the trivalent interpretation I that assigns # to every sentence

letter. If there existed any Kleene-valid formula φ then KVI (φ) would need to

be 1, whereas we can show by induction that KVI (ψ) = # for every wff ψ. Base

case: all the sentence letters are obviously # in I . Inductive step: assume that

φ and ψ are both # in I . We need now to show that φ∧ψ, φ∨ψ, and φ→ψ
are all # in I . But that’s easy—just look at the truth tables for ∧,∨ and→. #∧#
is #, #∨# is #, and #→# is #.

Exercise 3.8 Hint: use induction.

Exercise 3.11 Hint: in each direction, prove the contrapositive. Exercise 3.8

might come in handy.

Exercise 3.15 Hint: this isn’t hard, but it’s a bit tricky. It might help to

note that every classical (bivalent) interpretation also counts as a trivalent

interpretation, with itself as its only precisi�cation.

Exercise 3.16 We’re to argue that contraposition and reductio should fail,

given a supervaluational semantics for4 (assuming the identi�cation of truth

with truth-in-all-sharpenings). Contraposition: as argued in the text, for all φ,

φ logically implies “de�nitely, φ”. So ‘Middling Mary is rich’ logically implies

‘Middling Mary is de�nitely rich’. But ‘not: de�nitely, Middling Mary is rich’

doesn’t logically imply ‘not: Middling Mary is rich’, since if Mary is a (de�nite)

borderline case of being rich, the �rst is true on all sharpenings and hence is

true, while the second is false under some sharpenings and so is not true. So to

model these results, it should turn out under the supervaluationist semantics

that P �4P but ∼4P 2∼P .

As for reductio, “Mary is rich and Mary is not de�nitely rich” cannot be

true (on logical grounds), and so vacuously implies anything at all. (If it were

true, then it would be true on all sharpenings; but then ‘Mary is rich’ would be

true on all sharpenings; but then ‘Mary is not de�nitely rich’ would be false.)

So in particular, it logically implies both ‘Snow is white’ and ‘Snow is not white’

(say). But, contrary to reductio, ‘not: Mary is rich and Mary is not de�nitely

rich’ is not a logical truth, since it isn’t true. For there are sharpenings in which
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both ‘Mary is rich’ and ‘Mary is not de�nitely rich’ are true.

Exercise 3.17 For the systems of Łukasiewicz, Kleene, and Priest, we are to

�nd intuitionistically provable sequents whose premises do not semantically

imply their conclusions. Let’s begin with Kleene’s system. We showed in

exercise 3.7 that there are no Kleene-valid wffs. Thus, ∅ 2
K

P→P . But the

following is an intuitionistically acceptable proof of the sequent ∅⇒ P→P :

1. P ⇒ P RA (for conditional proof)

2. ∅⇒ P→P 1,→I

Next, ŁVI (∼(P∧∼P )) = # for any trivalent assignment I in which P is #,

so ∼(P∧∼P ) is Łukasiewicz-invalid. But ∅⇒∼(P∧∼P ) is intuitionistically

provable:

1. P∧∼P ⇒ P∧∼P RA (for reductio)

2. ∅⇒∼(P∧∼P ) 1, RAA

(Since ∼(P∧∼P ) is also Kleene-invalid, we could just as well have used this

example for that system as well.) Finally, P, P→Q 2
LP

Q (exercise 3.10d),

whereas P, P→Q⇒Q is intuitionistically provable:

1. P ⇒ P RA

2. P→Q⇒ P→Q RA

3. P, P→Q⇒Q 1, 2,→E

Exercise 4.1 Hint: �rst prove by induction that for any wff φ, perhaps with

free variables, and model M , if variable assignments g and h agree on all

variables with free occurrences in φ, then VM ,g (φ) = VM ,h(φ), and then use

this fact to establish the desired result.

Exercise 4.3d Hint: the premise has a free variable. Look carefully at the

de�nition of semantic consequence to see how to accommodate this.

Exercise 4.5 We’re to show that the set Γ = {φ,∃2xF x,∃3xF x . . .} would

violate compactness, where by hypothesis, i) for each n, the sentence ∃n xF x is

true in a model iff the extension of F in that model has at least n members; and

ii) the sentence φ is true in a given model iff the extension of F in that model

is �nite.
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Γ is unsatis�able. For suppose for reductio that each member of Γ were true

in some modelM . Since φ ∈ Γ, φ is true inM , and so by ii),M ’s domain has

some �nite number, k, of members. But ∃k+1xF x is also a member of Γ, and

so by i),M ’s domain would have to have at least k + 1 members.

Since Γ is unsatis�able, compactness tells us that it has some �nite unsat-

is�able subset Γ0. But that is impossible. Since Γ0 is �nite, there’s a limit to

how many sentences of the form ∃n xF x are in it. Let k be the largest such n.

So: every member of Γ0 is either a) φ, or is b) ∃n xF x for some n ≤ k. Now let

M be some model in which the extension of F has k members. By i) and ii),

every sentence of type a) or b) is true inM , so every member of Γ0 is true in

M . Contradiction.

Exercise 5.5a Hint: it’s easy to get confused by the complexity of the an-

tecedent here, “∀xLxιyF xy”. This just has the form: ∀xLxα, where α is

“ιyF xy”. L is a two-place predicate; it applies to the terms x and α. If you think

of “F xy” as meaning that x is a father of y, and “Lxy” as meaning that x loves

y, then ∀xLxιyF xy means “everyone x loves the y that he (x) is the father of”.

Exercise 5.6 We must show that for any model 〈D,I 〉, and any variable

assignment g , [α]g (relative to this model) is either unde�ned or a member of

D. We’ll do this by induction on the grammar of α. So, we’ll show that the

result holds when α is a variable, constant, or ι term (base cases), and then show

that, assuming the result holds for simpler terms (inductive hypothesis), it also

holds for complex terms made up of the simpler terms using a function symbol.

Base cases. If α is a variable then [α]g is g (α), which is a member of D
given the de�nition of a variable assignment. If α is a constant then [α]g is

I (α), which is a member of D given the de�nition of a model’s interpretation

function. If α has the form ιβφ then [α]g is either the unique u ∈D such that

Vgβu
(φ) = 1 (if there is such a u) or unde�ned (if there isn’t). So in all three

cases, [α]g is either unde�ned or a member of D. (Note that even though ι
terms are syntactically complex, we treated them here as a base case of our

inductive proof. That’s because we had no need for any inductive hypothesis;

we could simply show directly that the result holds for all ι terms.)

Next we assume the inductive hypothesis (ih): the denotations of terms

α1 . . .αn are either unde�ned or members of D; and we must show that the

same goes for the complex term f (α1 . . .αn). There are two cases; in each case

we’ll show that [ f (α1 . . .αn)]g is either unde�ned or a member of D. Case 1:
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at least one of [α1]g . . .[αn]g is unde�ned. Then [ f (α1 . . .αn)]g is unde�ned.

Case 2: all of [α1]g . . .[αn]g are de�ned. Then [ f (α1 . . .αn)]g is de�ned as

I ( f )([α1]g . . .[αn]g ). Moreover, the (ih) tells us that each of [α1]g . . .[αn]g is

a member of D. And we know from the de�nition of a model that I ( f ) is a

total function de�ned on D. So I ( f )([α1]g . . .[αn]g ) is a member of D.

Exercise 6.1 Hint: the only hard part is showing that if �
O
φ then �

S5

φ. Suppose �
O
φ and letM = 〈W ,R ,I 〉 be any S5-model; we must show

that VM (φ, w) = 1 for each w ∈ W . Now, it’s a fact from set theory that

any equivalence relation R over set A “partitions” A—it divides A into non-

overlapping subsets where: i) each element of A is in exactly one of the subsets,

and ii) every member of every subset bears R to every member of that subset. So

R partitionsW in this way. LetWw be the subset containing w, and consider

the modelM ′
that results fromM by cutting away all worlds other than those

in Ww . M ′
is a total model, so φ is valid in it, so VM ′(φ, w) = 1. But then

VM (φ, w) = 1, as well. Why? You can prove by induction that the truth value

of any wff at any world v inM is determined by the truth values of sentence

letters within v’s subset. (Intuitively: chains of modal operators take you to

worlds seen by v , worlds seen by worlds seen by v , and so on; you’ll never need

to look at worlds outside of v’s subset.)

Exercise 6.3a 2[P→3(Q→R)]→3[Q→(2P→3R)]:

∗ ∗
1 0 0

2[P→3(Q→R)]→3[Q→(2P→3R)]
r

��
∗ ∗

0 1 1 0 1 0 0

P→3(Q→R) Q→(2P→3R)
†

a

��
1 0

P Rb

00

D-countermodel:

W = {r, a,b}
R = {〈r, a〉, 〈a,b〉, 〈b,b〉}

I (Q, a) =I (P, b) = 1, all else 0

(also establishes K-invalidity)



APPENDIX A. ANSWERS AND HINTS 342

T-validity proof (also establishes validity in B, S4, and S5):

i) Suppose for reductio that the formula is false in some world r in some

T-model 〈W ,R ,I 〉. Then V(2[P→3(Q→R)], r ) = 1, and…

ii) …V(3[Q→(2P→3R)], r ) = 0.

iii) By re�exivity, R rr , so by ii), V(Q→(2P→3R), r ) = 0. So

V(2P→3R, r ) = 0. Thus, V(2P, r ) = 1 and so V(P, r ) = 1; also…

iv) …V(3R, r ) = 0

v) From i), given R rr , V(P→3(Q→R), r ) = 1, and so, given iii),

V(3(Q→R), r ) = 1. So for some world “a”,R ra and V(Q→R,a) = 1.

vi) SinceR ra, from ii) we have V(Q→(2P→3R),a) = 0, and so V(Q,a) = 1;

and from iv) we have V(R,a) = 0. These contradict line v).

Exercise 6.3d 2(P↔Q)→2(2P↔2Q):

∗
1 1 1 1 0 0

2(P↔Q)→2(2P↔2Q)
† ∗

r

OO

��

00

∗
1 1 1 1 1 0 0

P↔Q 2P↔2Q
† † ∗

a

OO

��

00

0 1

Q Pb

00

B-countermodel:

W = {r, a,b}
R = {〈r, r〉, 〈a, a〉, 〈b,b〉, 〈r, a〉, 〈a, r〉,

〈a,b〉, 〈b,a〉}
I (P, r) =I (Q, r) =I (P, a) =I (Q, a) =

I (P, b) = 1, all else 0

(also establishes K, D, and T invalidity)

Validity proof for S4 (and so for S5 as well):

i) Suppose for reductio that the formula is false in some world r of some

S4-model. Then V(2(P↔Q), r ) = 1 and…
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ii) …V(2(2P↔2Q), r ) = 0. So for some a,R ra and V(2P↔2Q,a) = 0,

and so 2P and 2Q must have different truth values in a. Without loss

of generality (given the symmetry between P and Q elsewhere in the

problem), let’s suppose that V(2P,a) = 1 and …

iii) …V(2Q,a) = 0. So for some world b ,Rab and V(Q, b ) = 0. Also, given

ii), V(P, b ) = 1. So P and Q have different truth values at b .

iv) By transitivity,Rrb , and so given i), V(P↔Q, b ) = 1, contradicting iii).

Exercise 6.3g 332P↔2P :

1 1 0 0

332P↔2P
∗ † ∗

r

??

����
��

��
��

��
��

� OO

��

00

∗
1 1 1

32P
∗

a

00

0

Pb

00

B countermodel:

W = {r, a,b}
R = {〈r, r〉, 〈a, a〉, 〈b,b〉, 〈r, a〉, 〈a, r〉,

〈r,b〉, 〈b, r〉}
I (P, r) =I (P, a) = 1, all else 0

(also establishes K, D, and T invalidity)

1 0 0

332P↔2P
∗ † ∗

r

����
��

��
��

��
��

�

��

00

∗
1 1 1

32P
∗

a

00

0

Pb

00

S4-countermodel:

W = {r, a,b}
R = {〈r, r〉, 〈a, a〉, 〈b,b〉, 〈r, a〉, 〈r,b〉}

I (P, a) = 1, all else 0

S5-validity proof:

i) Given the truth condition for the↔, it will suf�ce to show that 332P
and 2P have the same truth value in every world of every S5 model. So
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let r be any world in any S5 model, and suppose �rst for reductio that

V(332P, r ) = 1 and …

ii) …V(2P, r ) = 0. So for some b ,R r b and V(P, b ) = 0

iii) From i), for some a,R ra and V(32P,a) = 1, and so for some c ,Rac and

V(2P, c) = 1. By symmetry,R ca andRa r , and so by transitivity,R c b ,

and so V(P, b ) = 1, contradicting ii). So the �rst reductio assumption is

false. Suppose next for reductio that V(332P, r ) = 0 and …

iv) …V(2P, r ) = 1. By re�exivity, R r r . So V(32P, r ) = 1; and so,

V(332P, r ) = 1, contradicting iii).

Exercise 6.5a `
K

3(P∧Q)→(3P∧3Q):

1. (P∧Q)→P PL

2. 2[(P∧Q)→P] 1, NEC

3. 2[(P∧Q)→P]→[3(P∧Q)→3P] K3

4. 3(P∧Q)→3P 2, 3, MP

5. 3(P∧Q)→3Q Similar to 1–4

6. 3(P∧Q)→(3P∧3Q) 4, 5, PL (composition)

Exercise 6.5c `
K
∼3(Q∧R)↔2(Q→∼R):

1. ∼3(Q∧R)→2∼(Q∧R) MN (�rst one direction)

2. ∼(Q∧R)→(Q→∼R) PL

3. 2[∼(Q∧R)→(Q→∼R)] 2, NEC

4. 2∼(Q∧R)→2(Q→∼R) 3, K, MP

5. ∼3(Q∧R)→2(Q→∼R) 1, 4, PL (syllogism)

6. (Q→∼R)→∼(Q∧R) PL (neg. conjunction) (now the other)

7. 2(Q→∼R)→2∼(Q∧R) 6, NEC, K, MP

8. 2∼(Q∧R)→∼3(Q∧R) MN

9. 2(Q→∼R)→∼3(Q∧R) 7, 8, PL (syllogism)

10. ∼3(Q∧R)↔2(Q→∼R) 5, 9, PL (biconditional)



APPENDIX A. ANSWERS AND HINTS 345

Exercise 6.5d Hint: you can move from φ→(ψ→χ ) and φ→(χ→ψ) to

φ→(ψ↔χ ) using PL.

Exercise 6.5g We’re to show that `
K

3(P→Q)↔(2P→3Q). This one’s a

bit tough. The trick for the �rst half is choosing the right tautology, and for

the second half, getting the right PL strategy.

1. P→[(P→Q)→Q] PL

2. 2P→2[(P→Q)→Q] 1, NEC, K, MP

3. 2[(P→Q)→Q]→[3(P→Q)→3Q] K3

4. 2P→[3(P→Q)→3Q] 2, 3, PL (syllogism)

5. 3(P→Q)→(2P→3Q) 4, PL (permutation)

I must now prove the right-to-left direction, namely, (2P→3Q)→3(P→Q).
Note that the antecedent of this conditional is PL-equivalent to ∼2P∨3Q
(disjunction from table 4.1), and that a conditional (φ∨ψ)→χ follows in PL

from the conditionalsφ→χ andψ→χ (dilemma). So my goal will be to get two

conditionals, ∼2P→3(P→Q), and 3Q→3(P→Q), from which the desired

conditional follows by PL (line 12 below).

6. ∼2P→3∼P MN

7. ∼P→(P→Q) PL

8. 3∼P→3(P→Q) 7, NEC, K3, MP

9. ∼2P→3(P→Q) 6, 8, PL (syllogism)

10. Q→(P→Q) PL

11. 3Q→3(P→Q) 10, NEC, K3, MP

12. (2P→3Q)→3(P→Q) 9, 11, PL (dilemma, disjunction)

13. 3(P→Q)↔(2P→3Q) 5, 12, PL (biconditional)

Exercise 6.7b Hint: use the strategy of example 6.10.

Exercise 6.8b Hint: �rst prove 2(P→2P )→(3P→P ).

Exercise 6.10c Hint: φ∨ψ follows in PL from ∼φ→ψ; and remember MN.

Exercise 7.1 One condition on accessibility that validates every instance of

(U) is the condition of re�exivity at one remove: ifRwv for some w thenRvv .
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For, let w be any world in any MPL model, and suppose for reductio that

O(Oφ→φ) is false there. Then Oφ→φ is false at some v accessible from w;

and so, Oφ is true at v and φ is false there. By re�exivity at one remove,Rvv ;

so, since Oφ is true at v, φ must be true at v; contradiction.

Exercise 7.2 To establish completeness for system X, we can use the theorems

and lemmas used to prove soundness and completeness for modal systems in

chapter 6 (strictly, those systems require the modal operator to be the 2; so

let’s think of “O” as a kind of rounded way of writing “2”.) For soundness, note

that system X is K+D ∪U in the notation of section 6.5, where D is the set of

all instances of the D schema and U is the set of all instances of the (U) schema.

So, given lemma 6.1, all we need to do is show that all members of D ∪U are

valid in every model whose accessibility relation is serial and re�exive at one

remove. This follows, for the members of D , from the proof in exercise 6.14,

and for the members of U , from the proof in exercise 7.1.

As for completeness, �rst let’s show that the accessibility relation in the

canonical model for X is serial and re�exive at one remove. For seriality, the

analogous part of the proof of D’s completeness (section 6.6.5) may simply be

repeated. As for re�exivity at one remove, supposeRwv; we must show that

Rvv . So let 2φ be any member of v ; we must show that φ ∈ v . 2(2φ→φ) is

an axiom and hence a theorem of X, and so is a member of w (lemma 6.5c). So

by the de�nition ofR , 2φ→φ ∈ v; so, since 2φ ∈ v, φ ∈ v by 6.5b.

Now for completeness. Suppose that �
X
φ. That is, φ is valid in all serial-

and-re�exive-at-one-remove MPL models. Given the previous paragraph, φ is

valid in the canonical model for X, and so by corollary 6.8, `
X
φ.

Exercise 7.5 For any MPL-wff, δ, let δH
be the result of replacing 2s with

Hs in δ. Now suppose χ is an MPL-wff and �
K
χ ; we must show that �

PTL
χ H

.

Intuitively, this holds because H works just like the 2 except that it looks

backward along the accessibility relation, and there’s nothing special about

either direction of the accessibility relation. But we need a proper argument.

LetM = 〈T ,≤,I 〉 be any PTL-model, and let t be any member of T ;

we must show that χ H
is true at t inM . Let ≥ be the converse of ≤ (that is,

t ≥ t ′ iff t ′ ≤ t ); and letM ′
be the MPL model just likeM except that ≥ is its

accessibility relation. That is,M ′ = 〈T ,≥,I 〉. Since �
K
χ , VM ′(χ , t ) = 1. I’ll

show in a moment that:

for any MPL-wff φ and any s ∈ T , VM ′(φ, s) = 1 iff VM (φ
H, s) = 1 (*)
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Thus, VM (χ
H, t ) = 1, which is what we wanted to show.

It remains to establish (*). I’ll do this by induction. The base case, that

VM ′(α, s) = 1 iff VM (α
H, s) = 1 for any sentence letter α, is immediate since

α= αH
andM andM ′

share the same interpretation function I . Now assume

for induction that (*) holds for φ and ψ; we must show that it also holds for

∼φ, φ→ψ, and 2φ. This is obvious in the �rst two cases; as for the latter:

VM ′(2φ, s) = 1 iff VM ′(φ) = 1 for each s ′ such that s ≥ s ′ (t.c. for 2)

iff VM ′(φ) = 1 for each s ′ such that s ′ ≤ s (def of ≥)

iff VM (φ
H) = 1 for each s ′ such that s ′ ≤ s (ih)

iff VM (Hφ
H) = 1 (t.c. for H)

Since HφH
is the same wff as (2φ)H, we’re done.

Exercise 7.8 We must show that if Γ �
I
φ then Γ �

PL
φ. Suppose Γ �

I
φ,

and let I be a PL-interpretation in which every member of Γ is true; we

must show that VI (φ) = 1. (VI is the classical valuation for I .) Consider the

intuitionist modelM with just one stage, r, in which sentence letters have the

same truth values at r as they have in I—i.e.,M = 〈{r},{〈r, r〉},I ′〉, where

I ′(α, r) = I (α) for each sentence letter α. SinceM has only one stage, the

classical and intuitionist “truth” conditions collapse in this case—it would be

easy to show by induction that for every wff φ, IVM (φ, r) =VI (φ). So, since

VI (γ ) = 1 for each γ ∈ Γ, IVM (γ , r) = 1 for each γ ∈ Γ. Since Γ �
I
φ, it follows

that IVM (φ, r) = 1; and so, VI (φ) = 1.

Exercise 7.10 We’re to come up with cases of semantic consequence in the

systems of Łukasiewicz, Kleene, Priest, and supervaluationism, that are not

cases of intuitionist consequence. Actually a single case suf�ces. Exercise

7.9a shows that ∼(P∧Q) 2
I
∼P∨∼Q. But ∼(P∧Q) � ∼P∨∼Q in each of

these systems. Exercise 3.10c demonstrates this for LP. As for Łukasiewicz,

suppose that ŁV(∼(P∧Q)) = 1. Then ŁV(P∧Q) = 0, so either ŁV(P ) = 0 or

ŁV(Q) = 0. So either ŁV(∼P ) = 1 or ŁV(∼Q) = 1. So ŁV(∼P∨∼Q) = 1.

Since the Kleene tables for the ∼, ∨, and ∧ are the same as Łukasiewicz’s, the

implication holds in Kleene’s system as well. Finally, supervaluationism: since

∼(P∧Q) PL-implies ∼P∨∼Q, by exercise 3.13, ∼(P∧Q) �
S
∼P∨∼Q.

Exercise 8.1 Could a general limit assumption be derived from a limit as-

sumption for atomics? No. Consider the following model. There are in�nitely
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many worlds, including a certain world w in which P is true. P is false at all

other worlds, and all other sentence letters are false in all worlds. There is

no nearest-to-w world (other than w itself): for each world x 6= w, there is

some y 6= w such that y ≺w x. And w is always the nearest-to-x world (other

than x itself), for any other world x: for any x and any y 6= x, w �x y. In

this model the limit assumption for atomics holds (for any world x, w is the

nearest-to-x P world; and no other atomic is true at any world.) But the general

limit assumption fails: although ∼P is true in some worlds (indeed, in�nitely

many), there is no nearest-to-w ∼P world.

Exercise 8.3e P�(Q�R) 2
SC

Q�(P�R):

“view from r”:

/. -,() *+d

/. -,() *+c

/. -,
() *+

1 0

Q P�Rb OO

no Q

��

OO

no P

��

/. -,
() *+

1 0 1

P Q�R
a

/. -,
() *+

0 1 0 0

P�(Q�R) Q�(P�R)
r
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“view from a”

/. -,() *+d

/. -,() *+r

/. -,() *+b

OO

no Q

��

/. -,
() *+

1 1

Q R
c

/. -,
() *+

1 0 1

P Q�R
a

“view from b”:

/. -,() *+c

/. -,() *+r

/. -,() *+a

OO

no P

��

/. -,
() *+

1 0

P Rd

/. -,
() *+

1 0 0

Q P�Rb

Of�cial model:

W = {r, a,b, c,d}
�

r
= {〈a,b〉, 〈b,c〉, 〈c,d〉 . . .}

�
a
= {〈c,b〉, 〈b, r〉, 〈r,d〉 . . .}

�
b
= {〈d,a〉, 〈a, r〉, 〈r, c〉 . . .}

I (P, a) =I (Q, b) =I (Q, c) =I (R, c) =I (P, d) = 1, all else 0

Exercise 8.6 Hint: say that an LC model is “Stalnaker-acceptable” iff it

obeys the limit and anti-symmetry assumptions. Show (by induction) that in

Stalnaker-acceptable models, Lewis’s truth-conditions yield the same results as

Stalnaker’s. That is, in any such model, a wff counts as being true at a given

world given Lewis’s de�nition of truth in a model if and only if it counts as

being true at that world given Stalnaker’s de�nition.

Exercise 9.1a �
SQML

(2∀x(F x→Gx)∧3∃xF x)→3∃xGx:

i) Suppose for reductio that Vg ((2∀x(F x→Gx)∧3∃xF x)→3∃xGx, w) =
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0, for some world and variable assignment w and g in some model. Then

Vg (2∀x(F x→Gx)∧3∃xF x, w) = 1 and…

ii) …Vg (3∃xGx, w) = 0.

iii) Given i), Vg (3∃xF x, w) = 1. So Vg (∃xF x, v) = 1, for some v ∈W . So,

Vg x
u
(F x, v) = 1, for some u ∈D.

iv) Given i), Vg (2∀x(F x→Gx), w) = 1. So Vg (∀x(F x→Gx), v) = 1. So

Vg x
u
(F x→Gx, v) = 1. So either Vg x

u
(F x, v) = 0 or Vg x

u
(Gx, v) = 1; and so,

given iii), Vg x
u
(Gx, v) = 1.

v) Given ii), Vg (∃xGx, v) = 0. So Vg x
u
(Gx, v) = 0, contradicting iv).

Exercise 9.1c 2
SQML

∃x3Rax→32∃x∃yRxy:

∗
1 0 0 0 1 1

∃ x3Rax→32∃x∃yRxy 3Ra u
x

+ ∗ ∗

R : {〈u,u〉}

r

+ +
0 0 0

∃ x∃yRxy ∃ yR u
x y R u

x
u
y

c

D = {u}
I (a) = u

Of�cial model:

W = {r, c}
D = {u}

I (a) = u

I (R) = {〈u,u, r〉}

Exercise 9.6a `
SQML

2(2∀x(F x→Gx)∧∃xF x)→2∃xGx:
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1. ∀x(F x→Gx)→ (F x→Gx) PC1

2. ∀x(F x→Gx)→ (∼Gx→∼F x) 1, PL (contr., syll.)

3. ∀x(∀x(F x→Gx)→(∼Gx→∼F x)) 2, UG

4. ∀x(F x→Gx)→∀x(∼Gx→∼F x) PC2, 3, MP

5. ∀x(∼Gx→∼F x)→ (∀x∼Gx→∀x∼F x) Distribution

6. ∀x(F x→Gx)→ (∀x∼Gx→∀x∼F x) 4, 5, PL (syllogism)

7. (∀x(F x→Gx)∧∼∀x∼F x)→∼∀x∼Gx 6, PL (contr., imp/exp.)

8. (∀x(F x→Gx)∧∃xF x)→∃xGx 7, def of ∃
9. 2∀x(F x→Gx)→∀x(F x→Gx) T

10. (2∀x(F x→Gx)∧∃xF x)→∃xGx 8, 9, PL (see below)

11. 2(2∀x(F x→Gx)∧∃xF x)→2∃xGx 10, NEC, K, MP

(Step 10 used the tautology: ((P∧Q)→R)→((S→P )→((S∧Q)→R)).) My

approach: I set myself an ultimate goal of getting the conditional

(2∀x(F x→Gx)∧∃xF x)→∃xGx (since then I could use the usual K technique

for adding a 2 to each side.). Since SQML includes the T axioms, it suf�ced to

establish (∀x(F x→Gx)∧∃xF x)→∃xGx, that is: (∀x(F x→Gx)∧∼∀x∼F x)→
∼∀x∼Gx. So this latter formula became my penultimate goal. But this follows

via PL from ∀x(F x→Gx)→ (∀x∼Gx→∀x∼F x). So this �nal formula became

my �rst goal.

Exercise 10.1 I’ll show that the designated-worlds de�nition of validity is

equivalent to the old one; the proof for semantic consequence is parallel. First

note that:

(*) For each new modelM = 〈W , w@,R ,I 〉, the corresponding old model

M ′ = 〈W ,R ,I 〉 has the same distribution of truth values—i.e., for every

wff φ and every w ∈W , VM (φ, w) =VM ′(φ, w)

(*) is true because the designated world plays no role in the de�nition of the

valuation function.

Now, where S is any modal system, suppose �rst that φ is S-valid under

the old de�nition. Then φ is valid in every old S-model. So by (*), φ is true in

every world of every new S-model, and so is true at the designated world of

every new S-model, and so is S-valid under the new de�nition.

For the other direction, suppose φ is S-invalid under the old de�nition.
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So φ is false at some world, w, in some old S-modelM ′ = 〈W ,R ,I 〉. Now

consider the new S-modelM = 〈W , w,R ,I 〉 (same worlds, accessibility, and

interpretation function asM ′
; w is the designated world). By (*), φ is false at

w inM , and so is false inM , and so is S-invalid under the new de�nition.

Exercise 10.5 Hint: �rst prove by induction the stronger result that if φ has

no occurrences of @, then φ→Fφ is generally valid.
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