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CHAPTER 4 

Bayesian Induction: 
Deterministic Theories 

Philosophers of sci ence have traditionally concentrated mainly on 
deterministic hypotheses, leaving statisticians to di scuss how sta-
tistical , or non-deterministic theories should be assessed . 
Accordingly, a large part of what naturally belongs to philosophy 
of science is normally treated as a branch of statistics, going 
under the heading ' stati stical inference'. It is not surprising there-
fore , that philosophers and statisticians havc developed distinct 
methods for their di ffe rent purposes. We shall fo llow the tradition 
of dealing separately with deterministic and stati stical theories. 
As will become apparent however, we regard thi s separation as 
artificial and shall in due course explain how Bayes ian principles 
provide a unified scientific method. 

4.a Bayesian Confirmation 

Information gathered in the course of observati on is often con-
sidered to have a bearing on the merits of a theory or hypothesis 
(we use the terms interchangeably), either by confirming or dis-
confirming it. Such information may derive from casual obser-
vation or, morc co mmonly, from experiments deliberately 
contrived with a v iew to obtaining rel evant ev idence. The idea 
that observations may count as evidence either for or against a 
theory, or be neutra l towards it, is at the heart of scientific rea-
soning, and the Bayes ian approach must start with a suitable 
understanding of these concepts. 

As we have described. a very natural one is at hand, for if P(h) 
measures your belief in a hypothesis when you do not know the 
evidence, and P(h I e) is the corresponding measure when you do, 
e strengthens your belief in h or, we may say, confirms it, just in 
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case the second probability exceeds the first. We refer in the usual 
way to P(h) as 'the prior probability' of h, and to P(h I e) as the 
' posterior probability' of h relative to, or in the light of e, and we 
adopt the following definitions: 

e confirms or supports h just in case P(h I e) > P(h) 

e disconfit'ms h just in case P(h I e) < P(h) 

e is neutral towards h just in case P(h I e) = P(h) . 

One might reasonably take P(h I e) - P(h) as measuring the 
degree of e 's support for h, though other measures, involving for 
example the ratios of these terms, have also been suggested, 1 but 
disagreements on this score need not be settled in this book. We 
shall, however, say that when P(h I e) > P(h I e') > P(h), the first 
piece of evidence confirms the hypothesis more than the second 
does. 

According to Bayes 's theorem, the posterior probability of a 
hypothesis depends on the three factors: pre I h) , pre) and P(h). 
Hence, if you know these, you can determine whether or not e 
confirms h, and more importantly, calculate P(h I e). Tn practice, 
the various probabilities may be known only imprecisely, but as 
we shall show in due course, this does not undermine Bayes's the-
orem as a basis for scientif ic inference. 

The dependence of the posterior probability on these three 
terms is reflected in three principal aspects of scientif ic inference. 
First, other things being equal , the more probable the evidence, 
relative to the hypothesis, the more that hypothesis is confirmed. 
At one extreme, if e refutes h, then pre I h) = 0 and so disconfir-
mation is at a maximum, while the greatest confirmation is given 
when pre I h) = 1, which will be met in practice when h logically 
implies e. Statistical hypotheses admit intermediate values for 
pre I h); as we show in later chapters, the higher the value, the 
greater the confirmation, other things being equal. 

I For discussions of various other measures sec, for example, Good 1950, and 
Jeffrcy 2004. pp. 29-32. 
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Secondly, the power of e to confirm h depends on Pre), that is, on 
the probability of e when h is not assumed to be true. This, of 
course, is not the same as the probability of e when h is assumed 
to be fal se; in fact Pre) is related to the latter by the formula: Pre) = 
p re I h)P(h) + pre I -h)P(-h) , as we showed in Chapter 2 
(Theorem 12). Thi s inverse dependence of P(h I e) on pre) corre-
sponds to the familiar intuition that the more surprising the evi-
dence, the more confirmation it provides. 

Thirdly, the posterior probability of a hypothesis depends on 
its prior probability, a dependence that is sometimes discernible in 
attitudes to so-called 'ad hoc' hypotheses and in the frequently 
expressed preference for the simpler of two hypotheses. As we 
shall see, scientists always discriminate in advance of any experi-
mentation between theories they regard as more or less credible 
(and, so, worthy of attention) and others. 

We shall, in the course of this chapter, examine each of these 
facets of inductive reasoning. 

4.b Checking a Consequence 

A characteristic pattern of scientific inference occurs when a log-
ical consequence of a theory is shown to be false and the theory 
thereby refuted. As we saw, this sort of inference, with its unim-
peachable logic, impressed Popper so much that he made it the 
centrepiece and guiding principle of his scientific philosophy. 
Bayesian philosophy readily accommodates the crucial features of 
a theory's refutation by empirical evidence. For if a hypothesis 
h entails a consequence e, then, as is easily shown, provided 
P(h) > 0, pre I h) = I and P(h I -e) = 0. Interpreted in the Bayesian 
fashion, this means that h is maximally di sconfirmed when it is 
refuted. Moreover, as we should expect, once a theory has been 
refuted, no further evidence can ever confirm it, unless the refut-
ing evidence be revoked. For if e' is any other observation that 
is logically consi stent with e, and if P(h I - e) is zero, then so is 
P(h I -e & e'). 

Another characteristic pattern of scientific inference occurs 
when a logical conseq uence of a theory is shown to be true and 
the theory then regarded as confirmed. Bayes's theorem shows 
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why and under what circumstances a theory is confirmed by its 
consequences. First, it follows from the theorem that a theory is 
always confirmed by a logical consequence, provided neither the 
evidence nor the theory takes either of the extreme probability 

P(h) 
values. For if h entails e, pre I h) = I , so that P(h I e) = - - . 

Pee) 
Hence, provided ° < Pre) < I and P(h) > 0, P(h I e) > P(h) , which 

means that e confirms h. 
Secondly, the probability axioms tell us, correctly, that suc-

ceeding confirmations by logical consequences eventually dimin-
ish in force (Jeffrcys 1961 , pp. 43-44). For let e I ' e2, ..• , en be a 
succession of logical consequences of h, then 

P(h I e l & ... & en . l ) = P(h & ell I e l & ... & en_I) = 
P(h I e l & ... & ell )P(ell l e l & ... & ell I) ' 

As we showed earlier, if h entails all the e i , then P(h I e l & ... & 
en) P(h l ei & ... & en I)' It follows from the Bolzano-
Weierstrass theorem that the non-decreasing sequence of postcri-
or probabilities has a limit. Clearly, the limits, as n tends to 
infinity, of the two posterior probabilities in this equation are the 
same, viz, limP(h I e l & ... & ell) = IimP(h I e l & ... & en_ I)' Hence, 
provided that P(h) > 0, P(elll e l & ... & ell _I) must tend to 1. This 
explains why it is not sensible to test a hypothesis indefinitely. 
The result does not however tell us the precise point beyond 
which furth er predictions of the hypothesis are sufficiently 
probable not to be worth examining, for that would require a 
knowledge of individuals' belief structures which logic does not 
supply. 

A third sa lient feature of confirmation by a theory's conse-
quences is that in many instances, specific categories of those 
consequences each have their own, limited capac ity to confirm. 
This is an aspect of the familiar phenomenon that however often 
a particular experiment is repeated, its results can confirm a gen-
eral theory only to a limited extent; and when an experiment's 
capacity to generate significant confirming evidence for the the-
ory has been exhausted through repetition, further support is 
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sought from other experiments, whose outcomes are predicted by 
other parts of the theory. 2 

This phenomenon has a Bayesian explanation (Urbach 1981). 
Consider a general hypothesis h and let hr be a substantial restric-
tion of that hypothesis. A substantial restriction of Newton's the-
ory might, for example, express the idea that freely falling bodies 
near the Earth 's surface descend with constant acceleration, or 
that the period and length of a pendulum are related by the famil-
iar formula. Since h entails hr' P(h) :5 P(h) , as we showed in 
Chapter 2, and if h,. is much less speculative than its progenitor, it 
will often be much more probable. 

Now consider a series of predictions that are implied by h, and 
which also follow from h,.. If the predictions are verified, they 
may confirm both theories, whose posterior probabilities are 
given by Bayes's theorem thus: 

P(h) 
P(h Ie & e) & ... & e ) = _.... .. . ... _ -

I - /I P( e I & e 2 & ... & e) 

and 

P(h,) 
P(h,. 1 e l & e) & ... & e) = --- -- . -c"-. - - -

- P( e I & e 2 & ... & e) 
Combining these two equations to eliminate the common 

denominator yields 

P(h) 
P(h I e l & e) & ... & e ) = P(h _ I el & e 1 & ... & e ). 

- n P(h,.) I - /I 

Since the maximum value of the last probability in this equation 
is 1, it follows that however many predictions of h,. have been ver-
ified, the posterior probability of the main theory, h, can never rise 

b P( h) . b'l- f h d . a ove - - . Therefore, the pnor proba 1 Ity 0 _ etermmes a 
P(h,.) I 

limit to how far evidence entailed by it can confirm h. And this 
explains the phenomenon under consideration , for the predictions 
verified by means of an experiment (that is, a procedure designed 

2 This is related to the phenomenon that the more varied a body of evidence, 
the greater its inductive force, which we discuss in section 4.g below. 
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to a specified pattern) do normally follow from and confirm a 
much-restricted version of the predicting theory. 

The arguments and explanations in this section rely on the pos-
sibility that evidence already accumulated from an experiment can 
increase the probability that further performances of the experi-
ment will produce similar results. Such a possibility was denied by 
Popper and by his supporters, on the grounds that the probabilities 
involved are not objective. How then do they explain the fact, 
familiar to every scientist, that repeating some experiment indefi-
nitely (or usually, more than a very few times) is pointless? 
Musgrave (1975) attempted an explanation. He argued that after a 
certain (unspecified) number of repetitions, the scientist should 
form a generalization to the effect that the experiment will always 
yield a result that is similar, in ccrtain respects to those results 
already obtained, and that thi s generalization should then be 
entered into 'background knowledge ' . Relative to the ncwly aug-
mented background knowledge, the experiment is certain to pro-
duce the same result when it is next performed as it did before. 
Musgrave then appealed to the putative principle, which we dis-
cuss in the next section, that evidcnce confirms a hypothesis in 
proportion to the difference between its probability relative to the 
hypothesis plus background knowledge and its probability relative 
to background knowledge alone, that is, to P(e I h & b) - P(e I b), 
and inferred that even if the experiment did produce the expected 
result when next conducted, the hypothesis would receive no new 
confirmation . 

A number of decisive objcctions can be raised against thi s 
account. First, as we show in the next section, although it forms 
part of the Bayesian account and seems to be a feature of sci-
ence that confirmation depends in its degree upon the probabil-
ity of the evidcnce, that principle has no basis in Popperian 
methodology. Popper simply invoked it ad hoc. Secondly, 
Musgrave 's suggestion takes no account of the fact that particU-
lar experimental results may be generalized in infinitely many 
ways. This is a substantial objection since different generaliza-
tions givc rise to different implications about future experimen-
tal outcomes. So Musgrave's explanation calls for a rule that 
would guide the scientist to a particular and appropriate gener-
alization ; but we cannot see how appropriateness could be 
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defined or such a rule possibly justified within the limitations of 
Popperian philosophy. Finally, the decision to designate the gen-
eralization background knowledge, with the effect that has on 
our evaluation of other theories and on our future conduct 
regarding for example, whether or not to repeat certain experi-
ments, is comprehensible only if we have invested some confi-
dence in the generalization. But then this Popperian account 
tacitly invokes the same kind of inductive notion as it was 
designed to avoid. The fact is that the phenomena concerning 
the confirming power of experiments and their repetitions are 
essentially inductive and are beyond the reach of anti-inductivist 
methodologies such as Popper's. 

4.c I The Probability of the Evidence 

In the Bayesian account, confirmation occurs when the posterior 
probability of a hypothesis exceeds its prior probability, and the 
greater the difference, the greater the confirmation. Now Bayes's 
theorem may be expressed in the following ways: 

P(h I e) 

P(h) 

pre I h) 

Pre) pie I . 
P(h) + \' 

pre I h) 

We see that the evidential force of e is entirely expressed by the 
pre I 

ratio - - , known as the Bayes {actor. The smaller this factor, . 
that is to say, the more probable the evidence if the hypothesis is 
true than if it is false, the greater is the confirmation. In the deter-
ministic case, where h entails e, so that pre I h) = I, confirmation 
depends inversely on Pre) or pre I -h); this fact is reflected in the 
everyday experience that information that is particularly unex-
pected or surprising, unless some hypothesis is assumed to be 
true, supports that hypothesis with particular force. Thus if a 
soothsayer predicts that you will meet a dark stranger some time 
and you do, your faith in his powers of precognition would not be 
much enhanced: you would probably continue to regard his pre-
dictions as simply guesswork. But if the prediction also gave you 
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the correct number of hairs on the head of that stranger, your pre-
vious scepticism would no doubt be severely shaken. 

Cox (1961 , p. 92) illustrated this point nicely with an incident 
in Shakespeare's Macbeth. The three witches, using their special 
brand of divination, tell Macbeth that he will soon become both 
Thane of Cawdor and King of Scotland. Macbeth finds these two 
predictions incredible: 

By Sinel 's death I know I am Thane of Glamis; 
But how of Cawdor? the Thane of Cawdor lives, 
A prosperous gentleman; and to be King 
Stands not within the prospect of belief 
No more than to be Cawdor. 

But shortly after making this declaration, he learns that the Thane 
of Cawdor prospered no longer, was in fact condemned to death, 
and that he, Macbeth, had succeeded to the title, whereupon, his 
attitude to the witches' powers of foresight alters entirely, and he 
comes to believe their other predictions. 

Charles Babbage (1827), the celebrated polymath and 'father 
of computing', examined numerous logarithmic tables published 
over two centuries in various parts of the world, with a view to 
determining whether they derived from a common source or had 
been worked out independently. He found the same six errors in 
all but two and drew the " irresistible" conclusion that the tables 
containing those errors had been copied from a single original. As 
Jevons (1874, pp. 278- 79) pointed out, the force of this conclu-
sion springs from the that if the tables originated from the 
same source, then it is practically certain that an error in one will 
be reproduced in the others, but if they did not, the probability of 
errors being duplicated is minuscule. Such reasoning is so COIll-

pelling that compilers of mathematica l tables regularly protect 
their copyrights by purposely incorporating some minor errors 
"as a trap for would-be plagiarists" (L.J. Comrie )\ and cartogra-
phers do the same. 

The inverse relationship between the probability of evidence 
and its confirming power is a simple and direct consequence of 

.1 Thi s is quoted in Bowden 1953. p. 4. 
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Bayesian theory. On the other hand, methodologies that eschew 
probabilistic evaluations of hypotheses, in the interests of objec-
tivity, seem constitutionally unable to account for the phenome-
non. Popper (1959a, appendix *ix) recognized the need to provide 
such an account and rose to the challenge. First, he conceded that, 
in regard to confirmation, the significant quantities are Pre I h) 
and pre); he then measured the amount of confirmation or "cor-
roboration" which e confers on h by the difference between those 
quantities. But Popper never said explicitly what he meant by the 
probability of evidence. He could not allow it a SUbjective conno-
tation without compromising the intended objectivist quality of 
his methodology, yet he never worked out what objective signifi-
cance the term could have. His writings suggest he had in mind 
some purely logical notion of probability, but neither he nor any-
one else has managed to give an adequate account oflogical prob-
ability. Secondly, Popper never satisfactorily justified his claim 
that hypotheses benefit in any epistemie sense from improbable 
evidence; indeed, the idea has been closely examined by philoso-
phers and is generally regarded as indefensible within the 
Popperian scheme. (Sec Chapter 1, above, and, for example, 
Howson 2000, and Grunbaum 1976.) 

The Bayesian position has recently been misunderstood to 
imply that if some evidence is known, then it cannot support any 
hypothesis, on the grounds that known evidence must have unit 
probability. That the objection is based on a misunderstanding is 
shown in Chapter 9, where some other criticisms of the Bayesian 
approach arc rebutted. 

4.d The Ravens Paradox 

The Bayesian position that confirmation is a matter of degree, 
determined by Bayes's theorem, scotches a famous puzzle, first 
posed by Hempel (1945), known as the Paradox ol Confirmatiol1 
or sometimes as the Ravens Paradox. It was called a paradox 
because its premises seemed extremely plausible, despite their 
supposedly counter-intuitive consequences, and the reference to 
ravens stems from the paradigm hypothesis, 'All ravens are 
black', that is frequently used to present the problem. The alleged 
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difficulty arises from the following assumptions about confirma-
tion. (RB will signify the proposition that a certain object is black 
and a raven, and RB that it is neither black nor a raven.) 

I. Hypotheses of the form 'All Rs are B' are confirmed by 
evidence of something that is both Rand B. (Hempel called 
this Condition, after the philosopher Jean Nicod.) 

2. Logically equivalent hypotheses are confirmed by the 
same evidence. (This is the Equivalence Condition.) 

Now, by the Nieod Condition, 'All non-Bs are non-Rs' is con-
firmed by RB; and by the Equivalence Condition, so is 'All Rs are 
B', since the two generalizations are logically equivalent. Many 
philosophers regard this consequence as blatantly false , since it 
says that you can confirm the hypothesis that all ravens are black 
by observing a non-black non-raven, say, a white lie or a red her-
ring. This seems to suggest that you could investigate that and 
other similar general izations jllst as lvell by examining objects on 
your desk as by studying ravens on the wing. But that would be a 
non sequitur. For the fact that RB and RB both confirm a hypoth-
esis does not mean that they do so with equal force. And once it 
is recognized that confirmation is a matter of degree, the conclu-
sion ceases to be counter-intuitive, because it is compatible with 
RB confirming 'All Rs are B', but to a negligible degree. This sim-
ple point constitutes the Bayesian solution to the problem. 

But a Bayesian analysis can take the matter further, first of all , 
by demonstrating that in the case of the paradigm hypothesis, data 
of the form R B do in fact confirm to a negl igible degree; second-
ly, by showing that Nicod's condition is not valid as a universal 
principle of confirmation. Consider the first point. The impact of 
the two data on h, 'All ravens are black ', is given as follows: 

P(h I RB) P(RB I h) P(h I RB) P(RIJ I h) 
- --- = .. _-- & -- = ---'---

P(h) P(RB) P(II) P(RB) . 

These express ions can be simplified. First, P(RB I /1) = 
PCB I h & R)P(R I /1) = P(R I h) = peR). We arrived at the last 
equality by assuming that whether some arbitrary object is a raven 
is independent of the truth of h, which seems plausible to us, at 
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my rate as a close approximation, though Horwich (1982, p. 59) 
hinks it lacks plausibility.4 By parallel reasoning, P(kB I h) = 

P(B I h) = P(B). Also, P(RB) = P(B I R)P(R) , and P(B I R) = 

'f.P(B I R & 8)P(8 I R) = LP(B I R & fJ)P(fJ) , where 8 represents 
Jossible values of the proportion of ravens that arc black (h says 
hat fJ = 1), and assuming independence between 8 and R. Finally, 
P(B I R & 8) = 8, for if the proportion of ravens in the universe 
hat are black is fJ, the probability of a randomly se lected raven 
Jeing black is also 8. 

Combining all these considerations with Bayes 's theorem 
yields: 

P( h I RB) 1 P( h I RB ) 
--- = --_. &-.. = 

P(h) L8P(8) P(h) P(RIE) 

i\ccording to the first of thcse equations, the ratio of the posteri-
)r to the prior probabilities of h is inversely proportional to 
'f.fJP(8). This means, for example, that if it were initially very 
Jrobable that all or virtually all ravens are black, then LfJP(fJ) 
>Yould be large and RB would confirm h rather little. While if it 
>Yere initially relatively probable that most ravens are not black, 
he confirmation could be substantial. Intermediate degrees of 
lIlcertainty regarding fJ would bring their own levels of confirma-
ion to h. 

The second equation refers to the confirmation to be derived 
from the observation of a non-black non-raven, and here the cru-

probability term is peR I B). Now presumably there are vast-
.y morc non-black things in the universe than ravens. So even if 
>Ye felt certain that no ravens are black, the probability of some 
)bject about which we know nothing, except that it is not 
Jlack, being a non-raven must be very high, practically I. Hence, 
P(h I RE) = (1 - E)P(h), where E is a very small positive number; 

Vranas (2004) interprets the assumption as asserting that whether some arbi-
rary object is a raven "should" be independent or h. and he criticizes this and 
lther Bayes ian accounts for depending upon a c laim for which, he says. there 
:an be no reasoned defence. i:3ut our argument docs not need slich a strong 
Iss limption . Ollr position is mere ly that in this particular case, our and, we SIIS-

)ect, most other people 's personal probabilities are such that independence 
lbtains. 
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therefore, observing that some object is neither a raven nor black 
provides correspondingly little confirmation for h.5 

A Bayesian analysis necessarily retains the Equivalence 
Condition but gives only qualified backing to thc Nicod 
Condition, for it anticipates circumstances in which the condition 
fails . For instance, suppose the hypothesis under examination is 
'A ll grasshoppers are located outside the County of Yorkshire'. 
One of these creatures appearing just beyond the county border is 
an instance of the generalization and, according to Nicod, con-
firms it. But it might be more reasonably argued that since there 
are no border control s or other obstacles to restrict the movement 
of grasshoppers in that area, the observation of one on the edge of 
the county but outside it increases the probability that some oth-
ers have actually crossed over, and hence, contrary to Niemi, it 
undermines the hypothesis. In Bayesian terms, this is a case 
where, relative to background information, the probability of 
some datum is reduced by a hypothesis--that is, pre I h) < P(e)-
which is thereby disconfirmed-that is, P(h I e) < P(h).6 This 
example is adapted from Swinburne 1971, though the idea seems 
to originate with Good 1961. 

Another, more striking case where Nicod 's Condition breaks 
down was invented by Rosenkrantz (1977, p. 35). Three people 
leave a party, each with a hat. The hypothesi s that none of the 
three has his own hat is confirmed, according to Nicod, by the 
observation that person I has person 2's hat and by the observa-
tion that person 2 has person 1 's hat. But since the hypothesis con-
cerns only three, particular people, the second observation must 
rejitfe the hypothesis, not confirm it. 

Our grasshopper example may also be used to show that 
instances of the type RB can sometimes confirm 'All Rs are B' . 
Imagine that an object that looks for all the world like a grasshop-
per had been found hopping about just outside Yorkshire and that 
it turned out to be some other sort of insect. The discovery that the 
object was not a grasshopper after all would be relatively unlikely 
unless the grasshopper hypothesis were true (hence, Pre) < pre I h)); 

'The account given here is substantially similar to Mackic's , 1963. 
(, This example is adapted from Swinburne 1971. though th e idea secms 10 orig-
inate with Good 19() I. 
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so it would confirm that hypothesis. [fthe deceptively grasshopper-
like object were discovered within the county, the same conclusion 
would follow for this RB instance. 

Horwich (1982, p. 58) has argued that the ravens hypothesis 
could be differently confirmed depending on how the black raven 
was chosen, either by randomly selecting an object from the pop-
ulation of ravens, or by restricting the selection to the population 
of black objects. Korb ( 1994) provides a convincing demonstra-
tion of this, which we discuss in a related context in Chapter 8. 

We do not accept Horwich's argument for his conclusion. 
Denoting a black raven either R* B or RB*, depending on whether 
it was discovered by the first selection process or the second, he 
claims that evidence of the former kind always confirms more, 
because only it subjects the raven hypothesis to the risk of falsifi-
cation. But this conf1ates the process of collecting evidence, 
which may indeed expose the hypothesis to different risks of refu-
tation, with the evidence which either does or does not 
refute the hypothesis, and in the present case it does not. 

Our conclusions are, first, that the so-called paradox of the 
ravens is not in fact problematic; secondly, that of the two condi-
tions of confirmation that generated it only the Equivalence 
Condition is acceptable; and thirdly, that Bayesian theory explains 
why. 

4.e The Duhem Problem 

The Duhem (sometimes called the Duhem-Quine) problem aris-
es with philosophies of science of the type associated with 
Popper, which emphasize the power of certain evidence to refute 
a theory. According to Popper, falsifiability is the feature of a 
theory which makes it scientific. "Statements or systems of state-
ments," he said, "in order to be ranked as scientific, must be 
capable of conflicting with possible, or conceivable. observa-
tions" (1963, p. 39). And claiming to apply this criterion, he 
judged Einstein's gravitational theory scientific and Freud's psy-
chology not. The term 'scientific' carries a strong f1avour of 
commendation, which is, however, misleading in this context. 
For Popper could never demonstrate a link between his concept 
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of sci entifi cness and epistemic or inductive merit: a theory that is 
scientific in Popper 's sense is not necessarily true, or probably true, 
nor can it be said either definitely or even probably to lead to the 
truth . There is little alternative then, in our judgment, to regarding 
Popper 's demarcation between scientific and unscientific state-
ments as without normative signif icance, but as a claim about the 
content and character of what is ordinarily termed science. 

Yet as an attempt to understand the practi ce of sc ience, 
Popper 's ideas bear little fruit. First of a ll , the claim that scien-
tific theories are fa lsifiable by "poss ible, or conceivable. obser-
vations" raises a difficulty, because an observation can only 
fal sify a theory (in other words conclusive ly demonstrate its fal-
sity) if it is itself conclusively certa in. Yet as Popper himse lf 
apprec iated, no observations fall into thi s category; they are all 
fallibl e. But unwilling to concede degrees of fa llibility or any-
thing of the kind, Popper took the view that observation reports 
that are admitted as ev idence "are accepted as the result of a 
decision or ag reement; and to that extent they are conven tions" 
(1959a, p . 106; our ita lics). It is unclea r to what psychological 
attitude such acceptance correspond s, but whatever it is, 
Popper 's view pull s the rug from under hi s own philosophy, 
since it impli es that no theory can rea lly be falsified by ev i-
dence . Every ' fa ls if ication ' is mere ly a convention or decision: 
" From a logical point of view, the testing of a theory depends 
upon basic statements whose acceptance or rej ection, in its turn , 
depends upon our decis ions . Thus it is decisions which settl e the 
fate of th eori es" (\ 959a, p. 108). 

Watkins was one of those who saw that the Popperian position 
could not rest on this arbitrary basis, and he attempted to shore it 
up by arguing that some infallibly true observation statements do 
in fact ex ist. He agreed that a statement like ' the hand on this dial 
is pointing to the numeral 6 ' is fallible , since it is possible, how-
ever unlikely, that the person reporting the observation mistook 
the positi on of the hand. But he c laimed that introspective percep-
tual reports, such as ' in my visual fi eld there is now a silvery cres-
cent against a dark blue background '. " may ri ghtly be regarded by 
their authors when they make them as infa llibly true" (1984, pp . 
79 and 248). But in our opinion Watkins was wrong, and the state-
ments he regarded as infallible are open to the same sceptical 
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doubts as any other observational report. We can illustrate this 
through the above example: clearly it is possible, though admit-
tedly not very probable, that the introspector has misremembered 
and mistaken the shape he usually describes as a crescent, or the 
sensation he usually receives on reporting blue and silvery 
images. These and other similar sources of error ensure that intro-
spective reports are not exempt from the rule that non-analytic 
statements are fallible. 

Of course, the kinds of observation statement we have men-
tioned, if asserted under appropriate circumstances, would never 
be seriously doubted, for although they could be false, they have 
a force and immediacy that carries conviction: in the traditional 
phrase, they are 'morally certain'. But if they are merely indu-
bitable, then whether or not a theory is regarded as refuted by 
observational data rests ultimately on a subjective feeling of cer-
tainty, a fact that punctures the objectivist pretensions of 
Popperian philosophy. 

A second objection to Popper's falsifiability criterion, and the 
one upon which we shall focus for its more general interest, is that 
it deems unscientific most of those theories that are usually judged 
science's greatest achievements. This is the chief aspect of the 
well-known criticisms advanced by Polanyi (1962), Kuhn (1970), 
and Lakatos (1970), amongst others, but based on the arguments 
of Duhem ( 1905). They pointed out that notable theories of science 
are typically unfalsifiable by observation statements, because they 
only make empirical predictions in association with certain auxil-
iary theories. Should any such prediction turn out to be false, logic 
does not compel us to regard the principal theory as untrue, since 
the error may lie in one or more of the auxiliaries. Indeed, there are 
many occasions in the history of science when an important theo-
ry led to a false prediction but was not itself significantly 
impugned thereby. The problem that Duhem posed was this: when 
several distinct theories are involved in deriving a Ialse prediction. 
which olthem should be regarded asfalse? 

Lakatos and Kuhn on the Duhem Problem 

Lakatos and Kuhn both investigated scientific responses to 
anomalies and were impressed by the tendency they observed for 
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th e benefit of the doubt persistently to be given to particular, 
especially fundamental theories, and for one or more of the aux-
iliary theories regularly to be blamed for any false pred iction. 
Lakatos drew from this observation the lesson that science of the 
most significant kind usually proceeds in what he called scientif-
ic research programmes, each comprising a central , or ' hard 
core', theory, and a so-called ' protective belt' of auxiliary theo-
ri es. During the lifetime of a research programme, these clements 
are combined to yield empirical predictions, which arc then 
experimentally checked; and if they turn out to be false , the aux-
iliary hypotheses act as a protective shield, as it were, for the hard 
core, and take the brunt of the refutation. A research programme 
is a lso characterised by a set of heuristic rules by which it devel-
ops new auxiliary hypotheses and extends into new areas. Lakatos 
regarded Newtonian physics as an example of a research pro-
gramme, the three laws of mechanics and the law of gravitation 
comprising the hard core, and various optical theories, proposi-
tions about the natures and dispositions of the planets, and so 
forth, being the protective belt. 

Kuhn's theory is similar to the methodology we have just out-
lined and probably inspired it in part. Broadly speaking, Kuhn 's 
' paradigm ' is the equivalent of a scientific research programme, 
though his idea is developed in less detail. 

Lakatos, following Popper, also added a normative element, 
something that Kuhn deliberat ely avoided . He held that it was per-
fectly all right to treat the hard core systemat ically as the innocent 
party in a refutat ion, provided the research programme occasion-
ally leads to successful "novel" predictions or to successful , "non-
ad hoc" explanations of existing data. Lakatos called such 
programmes "progressive." 

The sophisticated falsificationi st [which Lakatos counted himsel f] ... 
sees nothing wro ng with a gro up of brilliant scientists conspiring to 
pack cvcrything they can into their favourite research programme . 
with a sacred hard core . As long as their gen ius ----and luck- enables 
them to expand their programme 'pmgressil 'eh" , whilc sticking to its 
hard core, they are allowed to do it. (Lakatos 1970, p. 187) 

I f, on the other hand, the research programme persistently pro-
duces false predictions, or if its explanations are habitually ad 
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hoc, Lakatos called it "degenerating." The notion of an ad hoc 
explanation-briefly, one that does not produce new and verified 
predictions-is central to attempts by the Popperi an school to deal 
with the Duhem problem and we discuss it in greater detail below, 
in section g. In apprais ing research programmes, Lakatos 
employed the tendenti ous terms 'progressive' and 'degenerating' , 
but he never succeeded in substantiating their normative intima-
tions, and in the end he seems to have abandoned the attempt and 
settled on the more modest claim that, as a matter of historical 
fact, progressive programmes were well regarded by scientists, 
while degenerating ones were distrusted and eventually dropped. 

This last claim, it seems to us, contains a measure of truth, as 
cvidenced by case studies in the history of science, such as those 
in Howson 1976. But although Lakatos and Kuhn identified and 
described an important aspect of scientific work, they could not 
explain it or rationalize it. So, for example, Lakatos did not say 
why a research programme's occasional predictive success could 
compensate for numerous failures, nor did he specify how many 
such successes arc needed to convert a degenerati ng programme 
into a progressive one, beyond remarking that they should occur 
"now and then". 

Lakatos was also unable to explain why certain theories arc 
raised to the privil eged status of hard core in a research pro-
gramme while others are left to their own devices. His writings 
give the impression that the scientist is free to decide the question 
at will, by "methodological fiat", as he says. Which suggests that 
it is perfectly canonical scientific practice to set up any theory 
whatever as the hard core of a research programme, or as the cen-
tral pattern of a paradigm, and to attribute all empirical difficul-
ties to auxiliary hypotheses . This is far from being the case. For 
these reasons and also because of ditTiculties with the notion of 
an ad hoc hypothesis, to be discussed bclow, neither Kuhn's theo-
ry of paradigms nor Lakatos's so-called 'sophisticated falsifica-
tionism' are in any position to solve the Duhem problem. 

The Bayesian Resolution 

The questions left unanswered in the Kuhn and Lakatos method-
ologies are addressed and resolved, as Dorling (1979) brilliantly 
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showed, by referring to Bayes's theorem and considering how the 
individual probabilities of theories are severally altered when, as 
a group, they have been falsified. 

We shall illustrate the argument through a historical example 
that Lakatos (1970, pp. 138-140; 1968, pp. l74-75) drew heavi-
ly upon. In the early nineteenth century, William Prout (1815 , 
1816), a medical practitioner and chemist, advanced the idea that 
the atomic weight of every element is a whole-number multiple of 
the atomic weight of hydrogen, the underlying assumption being 
that all matter is built up from different combinations of some 
basic element. Prout believed hydrogen to be that fundamental 
building block. Now many of the atomic weights recorded at the 
time were in fact more or less integral multiples of the atomic 
weight of hydrogen, but some deviated markedly from Prout's 
expectations. Yet this did not shake the strong belief he had in his 
hypothesis, for in such cases he blamed the methods that had been 
used to measure those atomic weights. Indeed, he went so far as 
to adjust the atomic weight of the element chlorine, relative to that 
of hydrogen, from the value 35.83, obtained by experiment, to 36, 
the nearest whole number. Thomas Thomson (1818, p. 340) 
responded in a similar manner when confronted with 0.829 as the 
measured atomic weight (relative to the atomic weight of oxygen) 
of the element boron, changing it to 0.87S, "because it is a multi-
ple of 0.125, which all the atoms seem to be". (Thomson erro-
neously took the relative atomic weights of hydrogen and oxygen 
as 0.12S.) 

Prout's reasoning relative to chlorine and Thomson's, relative 
to boron, can be understood in Bayesian terms as follows : Prout's 
hypothesis t, together with an appropriate assumption a, asserting 
the accuracy (within specified limits) of the measuring tech-
niques, the purity of the chemicals employed, and so forth , 
implies that the ratio of the measured atomic weights of chlorine 
and hydrogen will approximate (to a specified degree) a whole 
number. In 181S that ratio was reported as 3S.83-call this the 
evidence e-a value judged to be incompatible with the conjunc-
tion of t and a. 

The posterior and prior probabilities of t and of a are related 
by Bayes's theorem, as follows: 
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P(e I t)P(t) P(e I a)P(a) 
P(t I e) = and P( a Ie) = -

P(e) P(e) 

To evaluate the two posterior probabilities, it is necessary to quan-
tify the various terms on the right-hand sides of these equations. 

Consider first the prior probabilities oft and of a. J.S. Stas, a dis-
tinguished Belgian chemist whose careful atomic weight measure-
ments were highly influential, gives us reason to think that chemists 
of the period were firmly disposed to believe in t, recalling that "In 
England the hypothesis of Dr Prout was almost universally accept-
ed as absolute truth" and that when he started investigating the sub-
ject, he himself had "had an almost absolute confidence in the 
exactness of Prout's principle" (1860, pp. 42 and 44). 

It is less easy to ascertain how confident Prout and his contem-
poraries were in the methods used to measure atomic weights, but 
their confidence was probably not great, in vicw of the many clear 
sources of error. For instance, errors were recognised to be inherent 
in the careful weighings and manipulations that were required; the 
particular chemicals involved in the experiments to measure the 
atomic weights were of questionable purity; and, in those pioneer 
days, the structures of chemicals were rarely known with certainty. 7 

These various uncertainties were reinforced by the fact that inde-
pendent measurements of atomic weights, based on the transforma-
tions of different chemicals, rarely delivered identical results.s On 
the other hand, the chemists of the time must have felt that that their 
atomic weight measurements were more likely to be accurate than 
not, otherwise they would hardly have reported them. 9 

, The several sources of error were rehearsed by Mallet ( 1893). 
For example, Thomson (1818, p. 340) reported two independent measurc-

ments--2.998 and 2.66-for the weight. relative to the atomic weight of oxygcn. 
ofa molecule of boracic (boric) acid. He required this value in order to calculatc 
the atomic weight of boron from the weight of the boric acid produced after the 
c1cmcnt was combusted. 
4 " I am far from flattcring myself that thc numbers which I shall give are all 
accurate; on the contrary, I have not the least doubt that many of them are still 
erroneous. But they constitute at least a nearer approximation to the truth than 
the numbers contained in thc first tablc [which Thomson had published some 
years before]" (Thomson 1818. p. 339). 
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For these reasons, we conjecture that P(a) was in thc ncigh-
bourhood of 0.6 and that P(t) was around 0.9, and these are the 
figures we shall work with. Wc stress that these figures and those 
we shall assign to other probabilities are intended chiefly to show 
that hypotheses that are jointly refuted by an observation, may 
sometimes be disconfirmed to very different degrees, so illustrat-
ing the Bayesian resolution of Duhem's problem. Nevertheless, 
we believe that the figures we have suggested are reasonably 
accurate and sufficiently so to throw light on the historical 
progress of Prout's hypothesis. As will become apparent, the 
results we obtain are not very sensitive to variations in the 
assumed prior probabilities. 

The posterior probabilities of f and of a depend also on Pre) , 
pre I t), and pre I a). Using the theorem of total probability, the 
first two of these terms can be expressed as follows: 

Pre) = P( e I t)P(t} + pre I 

pre I t) = P( e If & a)P(a I t) + pre I t & -a)P(-a I (). 

We will follow Dorling in taking t and a to be independent, 
viz, P(a I t) = P(a) and hence, P(-a I t) = P(-a). As Dorling points 
out (1996), this independence assumption makes the calculations 
simpler but is not crucial to the argument. Nevertheless, that 
assumption accords with many historical cases and seems clearly 
right here. For we put ourselves in the place of chemists of Prout 's 
day and consider how our confidence in his hypothesis would 
have been affected by a knowledge that particular chemical sam-
ples were pure, that particular substances had particular molecu-
lar structures, specific gravities, and so on. It seems to us that it 
would not be affected at all. Bovens and Hartmann (2003 , p. Ill) 
take a different view and have objected to the assumption of inde-
pendence in this context. Speaking in general terms, they allege 
that "experimental results are determined by a hypothesis and 
auxiliary theories that are often hopelessly interconnected with 
each other." 

And these interconnections raise havoc in assessing the value of 
experimental results in testing hypotheses. There is always the fear 
that the hypothesis and the auxiliary theory really come out of the 
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samc deceitful family and that the lics of one reinforce the lies of 
the other. 

Wc do not assert that theories are never entangled in the way that 
Bovcns and Hartmann describe, but for the reasons we have just 
cited, it secms to us that thc prcscnt situation is very far from 
being a case in point. 

Returning to the last equation, if we incorporate the independ-
ence assumption and take account of the fact that since the con-
junction f & a is rcfutcd bye, pre I f & a) must be zero, we obtain: 

pre I t) = pre I t & 

By parallel reasoning, we may derive the results: 

p re I a) = P( e I & t) 

p re I - t) = P( e I - t & a)P(a) + pre I & 

So, provided the following terms are fixed, which we havc donc in 
a tentative way, to be justified presently, the posterior probabilities 
of t and of a can be calculated: 

p re I - t & a) = 0.0] 

p re I - t &-a) = 0.0] 

Pre I t & -a) = 0.02. 

The first of these gives the probability ofthc evidence if Prout's 
hypothesi s is not true, but if the assumptions madc in calculating 
the atomic weight of chlorine are accurate. Certain ninctecnth-
century chemists thought carcfully about such probabilities, and 
typically took a theory of random distribution of atomic weights as 
the alternative to Prout's hypothesis (for instance, Mallet ]880): we 
shall follow this. Suppose it had been established for ccrtain that 
the atomic weight of chlorine lies between 35 and 36. (The final 
results wc obtain respecting the postcrior probabilities of t and of 
a are, incidentally, unaffected by the width of this interval.) The 
random-distribution theory assigns equal probabilities to the atom-
ic weight of an element lying in any 0.0 I-widc band. Hence, on 
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the assumption that a is true, but t false, the probability that the 
atomic weight of chlorine lies in the interval 35.825 to 35.835 is 
0.01. We have attributed the same value to pre I -( & -a), on the 
grounds that if a were false, because, say, some of the chemicals 
were impure, or had been inaccurately weighed, then , still 
assuming t to be false, one would not expect atomic weights to 
be biased towards any particular part of the interval between 
adjacent integers. 

We have set the probability pre I t & -a) rather higher, at 0.02. 
The reason for this is that although some impurities in the chem-
icals and some degree of inaccuracy in the measurements were 
moderately likely at the time, chemists would not have considered 
their techniques entirely haphazard. Thus if Prout's hypothesi s 
were true and the measurement technique imperfect, the meas-
ured atomic weights would be likely to deviate somewhat from 
integral values; but the greater the deviation, the less the likeli-
hood, so the probability distribution of atomic weight measure-
ments falling within the 35-36 interval would not be uniform, but 
would be more concentrated around the whole numbers. 

Let us proceed with the figures we havc proposed for the cru-
cial probabilities. We note however that the absolute va lues of 
the probabilities are unimportant, for, in fact, only their relative 
values count in the calculation. Thus we would arrivc at the 
samc results with the weaker assumptions that pre I -t & a) = 
Pre I -{ & -a) = I t & -a). Wc now obtain: 

pre 1- t) = 0.01 x 0.6 + 0.01 x 0.4 = 0.01 

pre I t) = 0.02 x 0.4 = 0.008 

pre I a) = 0.01 x 0.1 = 0.001 

Pre) = 0.008 x 0.9 + 0.01 x 0.1 = 0.0082. 

Finally, Bayes's theorem allows us to derive the posterior proba-
bilities in which we are interested: 

P(t I e) = 0.878 (Recall that P(t) = 0.9) 

P(a I e) = 0.073 (Recall that P(a) = 0.6). 
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We see then that the evidence provided by the measured atom-
ic weight of chlorinc affects Prout's hypothesis and the set of aux-
iliary hypotheses very differently; for while the probability of the 
first is scarcely changed, that of the second is reduced to a point 
where it has lost all credibility. 

It is true that these results depend upon certain-we have 
argued plausible- premises concerning initial probabilities, but 
this does not seriously limit their general significance, because 
quite substantial variations in the assumed probabilities lead to 
quite similar conclusions, as the reader can verify. So for exam-
ple, if the prior probability of Prout's hypothesis were 0.7 rather 
than 0.9, the other assignments remaining unchanged, P(t I e) 
would equal 0.65, and P(a I e) would be 0.21. Thus, as before, 
Prout's hypothesis is still more likely to be true than false in the 
light of the adverse evidence, and the auxiliary assumptions are 
still much more likely to be false than true. 

Successive pieces of adverse evidence may, however, erode the 
probability of a hypothesis so that eventually it becomes more 
likely to be false than true and loses its high scientific status. Such 
a process would correspond to a Lakatosian degcnerating research 
programme or be the prelude to a Kuhnian paradigm shift. In the 
prescnt case, the atomic weight of chlorine having been repeated 
in various, improved ways by Stas, whose laboratory skill was 
universally recognized, Mallet (1893 , p. 45) concluded that "It 
may be reasonably said that probability is against the idea of any 
future discovery ... ever making the value of this element agree 
with an integer multiple of the atomic weight of hydrogen". And 
in the light of this and other atomic weight measurements he 
regarded Prout's original idea as having been "shown by the cal-
culus of probability to be a very improbable one". And Stas him-

who started out so very sure of its truth, reported in 1860 that 
he had now " reached the complete conviction, the entire certain-
ty, as far as certainty can be attained on such a subject, that Prout's 
law ... is nothing but an illusion" (1860, p. 45). 

We conclude that Bayes 's theorem provides a framework that 
resolves the Duhem problem, unlike the various non-probabilistic 
methodologies which philosophers have sought to apply to it. And 
the example of Prout's hypothesis, as well as others that Dorling 
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( 1979 and 1996) has analysed, show in our view, that the Bayesian 
model is essentially correct. 

4.f Good Data, Bad Data, and Data Too Good 
to Be True 

Good Data 

The marginal influence that an anomalous observation may 
exert on a theory 's probability contrasts with th e dramatic effect 
of some confirmations. For instance, if the measured atomic 
weight of chlorine had been a whole number, in line with 
Prout's hypothesi s, so that P(e I t & a) = I instead of 0, and if 
the other probability assignments remained the same, the prob-
ability of the hypothes is would shoot up from a prior ofO.9 to 
a posterior of 0. 998. And even more striking: had thc prior 
probability of t been 0.7, its posterior probability would have 
risen to 0.99 . 

This asymmetry between the effects of anomalous and con-
firming instances was emphasized by Lakatos, who regarded it as 
highly significant in science, and as a characteri stic feature of a 
research programme. He maintained that a scientist involved in 
such a programme typically "forges ahead with almost complete 
disregard of 'refutations' ," provided there arc occasional predic-
tive successes (1970, p. 13 7): the scientist is "encouraged by 
nature's YES, but not discouraged by its NO" (p. 135). As we have 
indicated, we believe there to be much truth in Lakatos's observa-
tions: the trouble , however, is that these observat ions are merely 
absorbed, without justification, into his methodology; the 
Bayesian methodology, on the other hand, expl a in s why and under 
what circumstances the asymmetry effect is present. 

Bad Data 

An interesting fact that emerges from the Bayes ian analysis is that 
a successful prediction derived from a combination of two theo-
ries docs not necessarily redound to the credit of both of them, 
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indeed one may even be discredited. Consider Prout's hypothesis 
again , and suppose the atomic weight of chlorine had been deter-
mined, not in the establi shed way, but by concentrating hard on 
the e lement while selecting a number blindly from a given range 
of numbers . And let us suppose that the atomic weight of chlorine 
is reported by this method to be a whole number. This is just what 
one would predict on the basis of Prout's hypothesis, if the out-
landish measuring tec hnique were accurate. But accuracy is obvi-
ously most unlikely, and it is equally obvious that the results of the 
technique could add little or nothing to the credibility of Prout's 
hypothesis. This intu iti on is upheld by Bayes's theorem: as before, 
let t be Prout 's hypothesis and a the assumption that the measur-
ing technique is accurate. Then, set p re I I & = pre I - ( & - a) = 

Pre I-I & a) = 0.0 I, for reasons similar to those stated above. And, 
because, as we said, a is extremely implausible, we will set P(a) 
at, say 0.0001. It then fo llows that t is not signi f icantly confirmed 
bye, for P(t) and P(t I e) are virtually identical. 

This example shows that Leibniz was wrong to declare as a 
maxim that" It is the greatest commendation of a hypothesi s (next 
to truth) if by its help predictions can be made even about phe-
nomena or experiments not [yet] tried". Leibniz, and Lakatos, 
who quoted these words with approval ( 1970, p. 123 ), seem to 
have overlooked the fac t that if a prediction can be deduced from 
a hypothesis only with the assistance of highly questionable aux-
iliary claims, then that hypothesis may accrue very little credit 
when the prediction is verified. This explains why the various 
sensational predic tions that Velikovsky drew from his theory 
failed to impress most serious astronomers, even when some of 
those predictions were to their amazement fulfilled. For 
instance, Velikovsky 's prediction (1950, p. 351) of the existence 
of large quantities of petroleum on the planet Venus relied not 
only on hi s pet theory that various natural di sasters in the past 
had been cau sed by co lli s ions between the Earth and a comet, 
but al so on a string of unsupported and implausible assump-
tions, for instance, that the comet in question ca rried hydrogen 
and carbon; that these had been converted to petro leum by elec-
trical discharges supposedly generated in the violent impact 
with the Earth; that the comet had later evolved into the planet 
Venus; and some others. (More details of Ve likovsky's theory 
are given in the next section.) 
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Data Too Good to Be True 

Data are sometimes said to be 'too good to be true', when they fit 
a favoured hypothesis more perfectly than seems reasonable. 
Imagine, for instance, that Prout had advanced his hypothesis and 
then proceeded to report numerous atomic weights that he had 
himself measured, each an exact whole number. Such a result 
looks almost as if it was designed to impress, and just for this rea-
son it fails to. 

We may analyse this response as follows: chemists in the early 
nineteenth century recognized that the measuring techniques 
available to them were not absolutely precise in their accuracy but 
were subject to experimental error, and so liable to produce a cer-
tain spread of results about the true value. On this assumption, 
which we label a l , it is extremely unlikely that numerous inde-
pendent atomic weight measurements would all produce exactly 
whole numbers, even if Prout's hypothesis were true. So pre I t & a 1 ) 

is extremely small, and clearly pre I & a I) could be no larger. 
Now there are many possible explanations of e, apart from those 
involving aI, one being that the experiments were consciously or 
unconsciously rigged so as to appear favourable to Prout 's 
hypothesis. If this were the only plausible alternative (and so, in 
effect, equivalent to pre I t & I) would be very high, as too 
P(e I & It follows from the equations in section e, above 
that 

pre I t) = P(e I t & I) and 

P(e I = pre I & I) 

and hence, 

pre) = P(e I t & + pre I & 

Now presumably the rigging of the results to produce exactly 
whole numbers would be equally effective whether t was true or 
not; in other words, 

pre I t & = pre I -t & _al). 
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Therefore, 
Pee I t)P(t) Pee I t & )P(t) 

P(tle)=· = =P(t). 
Pee) Pee I t & 

Thus e does not confirm t significantly, even though, in a mislead-
ing sense, it fits the theory perfectly. This is why it is said to be 
too good to be true. A similar calculation shows that the probabil-
ity of a! is diminished, and on the assumptions we have made, this 
implies that the idea that the experiments were fabricated is ren-
dered more probable. (The above analysis is essentially due to 
Dorling 1996.) 

A famous case of data that were alleged to be too good to be 
true is that of Mendel's plant-breeding results. Mendel's genetic 
theory of inheritance allows one to calculate the probabilities of 
different plants producing specific kinds of offspring. For exam-
ple, under certain circumstances, pea plants of a certain strain 
may be calculated to yield round and wrinkled seeds with proba-
bilities 0.75 and 0.25, respectively. Mendel obtained seed fre-
quencies that matched the corresponding probabilities in this and 
in similar cases remarkably well, suggesting (misleadingly, 
Fisher contended) substantial support for the genetic theory. 
Fisher did not believe that Mendel had deliberately falsified his 
results to appear in better accord with his theory than they really 
were. To do so, Fisher said, "would contravene the weight of the 
evidence supplied in detail by ... [Mendel's] paper as a whole". 
But Fisher thought it a "possibility among others that Mendel 
was deceived by some assistant who knew too well what was 
expected" (1936, p. 132), an explanation that he backed up with 
some, rather meagre, evidence. Dobzhansky (1967, p. 1589), on 
the other hand, thought it "at least as plausible" that Mendel had 
himself discarded results that deviated much from his ideal, in 
the sincere belief that they were contaminated or that some other 
accident had befallen them. (For a comprehensive review sec 
Edwards 1986.) 

The argument put forward earlier to show that too-exactly 
whole-number atomic weight measurements would not have sup-
ported Prout's hypothesis depends on the existence of some suffi-
ciently plausible alternative hypothesis that would explain the 
data better. We believe that in general, data are too good to be true 
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re lative to one hypothes is only if there are such alternatives. This 
princ iple implies that if the method of eliciting atomic weights had 
long been establi shed as precise and accurate, and if careful pre-
cautions had been taken against experimenter bias and deception, 
so that all the natural alternatives to Prout 's hypothesis could be 
discounted, the inductive force of the data would then no longer be 
suspicious. Fi sher, however, did not subscribe to the principle, at 
least, not explicitly; he believed that Mendel's results told against 
the genetic theory, irrespective of any alternative explanations that 
might be suggested. But despite this official position, Fisher did in 
fact, as we have just indicated, sometimes appeal to such alterna-
tives when he formulated his argument. We refer again to Fisher's 
case against Mendel in the next chapter, section b . 

4.9 Ad Hoc Hypotheses 

We have been di scussing the circumstances in whieh an important 
scientific hypothes is, in combination with others, makes a false 
prediction and yet emerges with its reputation more or less intact, 
while one or more of the auxiliary hypotheses are largely discred-
ited. We argued that this process necessarily call s for alternatives 
to the discredited hypotheses to be contemplated. Philosophers, 
such as Popper and Lakatos, who deny any inductive role for evi-
dence, and who oppose, in particular, the Bayes ian approach take 
note of the that scientists often do dea l with paJ1icuiar 
instances of the Duhem problem by proposing alternative hypothe-
ses; some of these philosophers have suggested certain normative 
rules that purport to say when such alternatives are acceptable and 
when they are not. Their idea is that a theory that was introduced 
ad hoc , that is, " for the sole purpose of saving a hypothesis seri-
ously threatened by adverse evidence" (Hempel 1966, p. 29), is in 
some way inferior. The adhocness idea was largely inspired by cer-
tain types of scienti f ic example, which appeared to endorse it, but 
in our view, the examples are misinterpreted and the idea badly 
flawed. The foll owing are four such examples. 

1 Velikovsky, in a daring book called Worlds in Collision that 
attracted a great dea l of interest and controversy some years ago, 
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advanced the theory that the Earth has been subj ect at various 
stages in its history to cosmic disasters, through near collisions 
with massive comets. He claimed that one such comet passed 
close by our planet during the Israelites' captivity in Egypt, caus-
ing many of the remarkable events related in the Bible, such as the 
ten plagues and the parting of the Red Sea, before settling down 
as the planet Venus. Because the putative cosmic encounter 
rocked the entire Earth , Velikovsky expected other peoples to 
have recorded its consequences too, if they kept records at all. But 
as a matter of fact, many communities around the world failed to 
note anything out of the ordinary at the time, an anomaly that 
Velikovsky attributed to a "collective amnesia". He argued that 
the cataclysms were so terrifying that whole peoples behaved "as 
if [they had] obliterated impressions that should be unforget-
table". There was a need Velikovsky said, to "uncover the ves-
tiges" of these events, "a task not unlike that of overcoming 
amnesia in a singlc person" (1 950, p. 288). 

Individual amnesia is the issue in the next example. 

2 Dianetics is a theory that purports to analyse the causes of 
insanity and mental stress , which it sees as caused by the 'misfil-
ing' of information in un suitable locations in the brain. By re-fil-
ing these 'engrams ', it cla ims, sanity may be restored, composure 
enhanced and, incidentally, the mcmory vastly improved. The 
therapy is long and expensive and few people have been through 
it and borne out the theory's claims . However, L. Ron Hubbard, 
the inventor of Dianetics, trumpeted one purported success, and 
exhibited this person to a large audience, saying that she had a 
" full and perfect reca ll of every moment of her li fc". But ques-
tions from the floor ("What did you have for breakfast on October 
3rd, 1942,?", "What co lour is Mr Hubbard's tie?", and the likc) 
soon demonstrated that the hapless woman had a most imperfect 
memory. Hubbard expl ained to the dwindling assembly that when 
she first appeared on the stage and was asked to come forward 
"now", the word had frozen her in "present time" and paralysed 
her ability to recall the past. (See Miller 1987. ) 

3 Investigations into the IQs of different g roups of people 
show that the average levels of measured intelligence vary. Some 
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environmentalists, so-called, attribute low scores primarily to 
poor social and educational conditions, an explanation that ran 
into trouble when a large group of Inuit, leading an aimless, poor 
and drunken existence, were found to score very highly on IQ 
tests. The distinguished biologist Peter Medawar (1974), in an 
effort to deflect the difficulty away from the environmentalist the-
sis, tried to explain this unexpected observation by saying that an 
"upbringing in an igloo gives just the right degree of cosiness, 
security and mutual contact to conduce to a good performance in 
intell igence tests." 

In each of these examples, the theory that was proposed in 
place of the refuted one seems highly unsatisfactory. It is not like-
ly that any of them would have been advanced, save in response to 
particular anomalies and in order to evade the consequent diffi-
culty, hence the label 'ad hoc'. But philosophers who attach 
inductive significance to adhocness recognize that the mere fact 
that the theory was proposed under such circumstances is not by 
itself grounds for condemnation. For there are examples, like the 
following, where a theory that was proposed for the sole purpose 
of dealing with an anomaly was nevertheless very successful. 

4 William Herschel , in 1781 , discovered the planet Uranus. 
Astronomers quickly sought to describe the orbit of the new plan-
et in Newtonian terms, taking account of the perturbing influence 
of the other known planets, and were able to deduce predictions 
concerning its future positions. But discrepancies between pre-
dicted and observed positions of Uranus substantially exceeded 
the accepted limits of experimental error, and grew year by year. 
A few astronomers mooted the possibility that the fault lay with 
Newton 's laws but the prevailing opinion was that there must be 
some unknown planet acting as an extra source of gravitational 
attraction on Uranus, which ought to be included in the 
Newtonian calculations. Two astronomers in particular, Adams 
and Le Verrier, working independently, were convinced of this and 
using all the known sightings of Uranus, they calculated in a 
mathematical tOllr dej(Jrce where the hypothetical planet must be. 
The hypothesis was ad hoc, yet it was vindicated when careful tel-
escopic observations as well as studies of old astronomical charts 
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revealed in 1846 the presence of a planet with the anticipated 
characteristics. The planet was later called Neptune. Newton's 
theory was saved, for the time being. (See Smart 1947.) 

The Adhocness Criteria 

Examples like the first three above have suggested to some 
philosophers that when a theory t, and an auxiliary hypothesis a, 
are jointly refuted by some evidence, e I, then any replacement, of 
the form t & a ', must not only imply e ' , but should also have 
some new, ' independent' empirical implications. And examples 
similar to the fourth have suggested that if the new theory satis-
fies this condition, then it is a particular virtue if some of the new, 
independent implications are verified. 

These two criteria were anticipated some four hundred years 
ago, by the great philosopher Francis Bacon, who objected to any 
hypothesis that is "only fitted to and made to the measure of those 
particulars from which it is derived". He argued that a hypothesis 
should be " larger or wider" than the observations that gave rise to 
it and said that "we must look to see whether it confirms its large-
ness and wideness by indicating new particulars" (1620, I, 106). 
Popper ( 1963, p. 241) advanced the same criteria, laying it down 
that a "new theory should be independently testable. That is to say, 
apart from explaining all the explicanda which the new theory 
was designed to explain, it must have new and testable conse-
quences (preferably consequences of a new kind) ." And secondly, 
he said, the new theory "should pass the independent tests in ques-
tion". Bacon called hypotheses that did not meet the criteria "friv-
olous distinctions", while Popper termed them "ad hOC".10 

10 The first recorded use of the term 'ad hoc ' in this context in English was in 1936, 
in a review of a psychology book, where the reviewer critici zed some explanations 
proffered by the book's author for certain aspects of childish behaviour: 

There s a suspicion of 'ad-hoe-ness' about the 'explanations'. The whole point is that 
such an account cannot be satisfactory until we can prcdict the child's movements 
from a knowledge of the tensions, vectors and valences which are operative, inde-
pendent of our knowledge o f how the child actually behaved. So far we seem reduced 
to inventing va lences, vectors and tensions from a knowledge of the child 's behaviour. 
(Sprott, p. 249; our italics) 
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Lakatos (1970, p. 175) refined this terminology, calling a the-
ory that failed the first requirement ad hoc l , and one that failed 
the second ad hoc" intending these, of course, as terms of disap-
proval. By these criteria, the theories that Velikovsky, Medawar, 
and Hubbard advanced in response to anomalous data arc proba-
bly ad hoc I' for they seem to make no independent predictions, 
though of course a closer study of those theories might reverse 
that assessment. The Adams-Le Verrier hypothesis, on the other 
hand, is ad hoc in neither sense, because it did make new predic-
tions, some of which were verified by telescopic sightings of 
Neptune. Again, philosophical and intuitive judgment coincides. 
Nevertheless, the adhocness criteria are unsound. 

This unsoundness is evident both on apriori grounds and 
through counter-examples, some of which we consider now. For 
instance, suppose one were examining the hypothesis that a par-
ticular urn contains only white counters, and imagine an experi-
ment in which a counter is withdrawn from the urn at random and 
then, after its colour has been noted, replaced; and suppose that in 
10,000 repetitions of this operation 4,950, say, of the selected 
counters were red and the rest white. This evidence clearly refutes 
the initial hypothesis taken together with the various necessary 
auxiliary hypotheses, and it is then natural to conclude that, con-
trary to the original assumption, the urn contains both red and 
white counters in approximately equal numbers. This inference 
seems perfectly reasonable, and the revised hypothesis appears 
well justified by the evidence, yet there is no independent evi-
dence/hI" it. And if we let the urn vaporize immediately after the 
last counter has been inspected, no such independent evidence 
would be possible. So the hypothesis about the (late) urn's con-
tents is ad hoc I & 2; but for all that, it seems plausible and satisfac-
tory (Howson 1984; Urbach 1991). 

Speculating on the contents of an urn is but a humble form of 
enquiry, but there are many instances in the higher sciences which 
have the same import. Take the following one from the science of 
genetics: suppose it was initially proposed or believed that two 
phenotypic characteristics of a certain plant are inherited in accor-
dance with Mendel's principles, through the agency of a pair of 
independently acting genes located on different chromosomes. 
Imagine now that plant-breeding experiments throw up a surpris-
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ing number of plants carrying both phenotypes, so that the origi-
nal hypothesis of independence is rejected in favour of the idea 
that the genes are linked on the same chromosome. Again, the 
revised theory would be strongly confirmed, and established as 
acceptable merely on the evidence that discredited its predecessor, 
without any further, independent evidence. (Fi sher 1970, Chapter 
IX, presented an example of this sort.) 

The history of the discovery of Neptun e, which we have 
already discussed, illustrates the same point. Adams estimated 
the mass of the hypothetical planet and the elements of its orbit 
by the mathematical technique of least squares applied to a ll the 
positional observat ions availabl e on Uranus. Adams's hypothesis 
fitted these observations so well that even belore Neptun e had 
been sighted through the telescope or detected on astronomical 
charts, its existence was contemplated with the greatest confi-
dence by the leading astronomers of the day. For instance, in his 
retirement address as president of the British Association, Sir 
John Herschel , afte r remarking that the previous year had seen 
the discovery of a minor planet, went on: "It has done more. It 
has given us the probable prospect of the discovery of another. 
We see it as Columbus saw America from the shores of Spain. 
Its movements have been felt , trembling along the far-reaching 
I in e of our analysis, H·ith a certainty hardly il!j(:rior to that ol 
ocular demonstration". And the Astronomer Royal, Sir George 
Airy, who was initially inclined to believe that the problem with 
Uranus would be resolved by introducing a slight adjustment to 
the Inverse-Square law, spoke of "the extreme prohahility of now 
di scovering a new planet in a ve ry short time" (quoted by Smart, 
p. 6 1; our italics). Neptune was indecd discovered within a very 
short time . 

There is a more general objection to the idea that hypothe-
ses a re unacceptable if they are ad hoc. Imagine a scienti st who 
is interested in the conjunction of the hypotheses t & a, whose 
implication e can be checked in an experiment. The experi ment 
is performed with the result e', incompatible with e, and the 
scient ist ventures a new theory t & a', which is consistent with 
the observations. An d suppose that either no new predict ions 
follow or none has been confirmed, so that the new theory is 
ad hoc. 
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Imagine that another scientist, working without knowledge of 
his colleague's labours, also wishes to test t & a, but chooses a dif-
ferent experiment for this purpose, an experiment with only two 
possible outcomes: either e or -e. Of course, he obtains the latter, 
and having done so, must revise the refuted theory, to t & a I, say. 
This scientist now notices that e I follows from the new theory and 
performs the orthodox experiment to verify the prediction. The 
new theory can now count a successful prediction to its credit, so 
it is not ad hoc. 

But this is strange. We have arrived at opposite valuations of 
the very same theory on the basis of the very same observations, 
breaching at the same time what we previously called the 
Equivalence Condition and showing that the standard adhocness 
criteria are inconsistent. Whatever steps might be taken to resolve 
the inconsistency, it seems to us that one element ought to be 
removed, namely, the significance that the criteria attach to the 
order in which the theory and the evidence were thought up by a 
particular scientist, for this introduces into the principles of theo-
ry evaluation considerations concerning the state of scientists' 
minds that are irrelevant and incongruous in a methodology with 
pretensions to No such considerations enter the corre-
sponding Bayesian evaluations. 

The Bayesian approach, incidentally, explains why people 
often react with instant incredulity, even derision, when certain ad 
hoc hypotheses are advanced. Is it likely that their amusement 
comes from perceiving, or even thinking they perceive, that the 
hypotheses lead to no new predictions? Surely they are simply 
struck by the utter implausibility of the claims. 

Independent Evidence 

The adhocness criteria are formulated in terms that refer to 'inde-
pendent' evidence, yet this notion is always left vague and intu-
itive. How can it be made more precise? Probabilistic 
independence cannot fit the case. For suppose theory h was 
advanced in response to a refutation bye' and that h both explains 
that evidence and makes the novel prediction e". It is the general 
opinion, certainly shared by Popperians, and also a consequence 
of Bayes's theorem, that e II confirms h, provided it is sufficiently 



BAYESIAN INDUCTION: DETERMINISTIC THEORIES 125 

improbable, relative to already available information. As dis-
cussed earlier in this chapter, such confirmation occurs, in partic-
ular, when pre II I h & e ') > pre II Ie'). But this inequality can hold 
without e!l and e' being independent in the probabilistic sense. 

Logical independence is also not the point here, for e!l might 
be independent from e' in this sense through some trivial differ-
ence, say, by relating to a slightly different place or moment of 
time. And in that case, e" would not necessarily confirm or add 
credibility to h. For, as is intuitive, new evidence supports a theo-
ry significantly only when it is significantly different from known 
results, not just trivially different in the logical sense described. It 
is this intuition that appears to underlie the idea of independence 
used in the adhocness criteria. 

That 'different' or 'varied' evidence supports a hypothesis 
more than a similar volume of homogeneous evidence is an old 
and widely held idea. As Hempel (1966, p. 34) put it: "the confir-
mation of a hypothesis depends not only on the quantity of the 
favourable evidence available, but also on its variety: the greater 
the variety, the stronger the resulting support". So, for example, a 
report that a stone fell to the ground from a certain height in such-
and-such time on a Tuesday is similar to that relating to the stone's 
fall on a Friday; it is very different, however, from evidence of a 
planet's trajectory or of a fluid's rise in a particular capillary tube. 
But although it is often easy enough to classify particular bodies 
of evidence as either similar or varied, it is not easy to give the 
notions a precise analysis, except, in our view, in probabilistic 
terms, in the context of Bayesian induction. 

The similar instances in the above list are such that when one 
of them is known , any other would be expected with consider-
able confidence. This recalls Francis Bacon's characterisation of 
similarity in the context of inductive evidence. He spoke of 
observations "with a promiscuous resemblance one to another, 
insomuch that if you know one you know all" and was probably 
the first to point out that it is superfluous to cite more than a 
small, representative sample of such observations in evidence 
(see Urbach 1987, pp . 160-64). We are not concerned to give an 
exhaustive analysis of the intuitive notion, which is probably too 
vague for that to be possible, but are interested in that aspect of 
evidential similarity that is pertinent to confirmation. Bacon's 
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observations seem to capture this aspect and we may interpret 
his idea in probabilistic terms by saying that if two items of evi-
dence, e2 and e\, are similar, then P(e2 I e\) ,., 1; when this con-
dition holds, e2 provides I ittle support for any hypothesis if e \ 
has already been cited as evidence. When the pieces of evidence 
are dissimilar, then P(e2 I e \) is significantly less than I, so that 
e2 now does add a useful amount of confirmation to any already 
supplied by e\. Clearly this characterization allows for similarity 
to be analysed in terms of degree. 

To summarize, the non-Bayesian way of appraising hypothe-
ses, and thereby of solving the Duhem problem, through the 
notion of adhocness is ungrounded in epistemology, has highly 
counter-intuitive consequences, and relies on a concept of inde-
pendence amongst items of evidence that seems unsusceptible to 
analysis, except in Bayesian terms. In brief, it is not a success. 

4.h Designing Experiments 

Why should anyone go to the trouble and expense of performing 
a new experiment and of seeking new evidence? The question has 
been debated recently. For example, Maher (1990) argues that 
since evidence can neither conclusively verify nor conclusively 
refute a theory, Popper's scientific aims cannot be served by gath-
ering fresh data. And since a large part of scientific activity is 
devoted to that end, if Maher is right, this would constitute yet 
another serious criticism of Popper's philosophy. Of more concern 
to us is Miller's claim (1991, p. 2) that Bayesian phi losophy 
comes up against the same difficulty: 

If e is the agent's total evidence, then P(h I e) is thc value of his prob-
ability and that is that. What incentive does he have to change it, for 
example by obtaining more evidence than he has already? He might 
do so, enabling his total evidence to advance from e to e-; but in no 
clear way would P(h Ie') be a better evaluation of probability than 
P(h I e) was. 

But the purpose of a scientific investigation , in the Bayesian 
view, is not to better evaluate inductive probabilities. It is to 
diminish uncertainty about a certain aspect of the world. 
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Suppose the question of interest concerns some parameter. You 
might start out fairly uncertain about its value, in the sense that 
your probability distribution over its range of possible values is 
fairly diffuse. A suitable experiment, if successful, would fur-
nish evidence to lessen that uncertainty by changing the proba-
bility distribution, via Bayes's theorem, making it now more 
concentrated in a particular region; the greater the concentration 
and the smaller the region the better. This criterion has been 
given a precise expression by Lindley (1956), in terms of 
Shannon's characterization of information, and is discussed fur-
ther in Howson 2002. Lindley showed that in the case where 
knowledge of a parameter (3 is sought, provided the density of x 
varies with (3, any experiment in which x is measured has an 
expected yield in information. But, of course, this result is com-
patible with a well-designed experiment (with a high expected 
information yield) being disappointingly uninformative in a par-
ticular case; and by the same token, a poor experiment may be 
surprisingly productive of information. 

In deciding whether to perform a particular experiment, at 
least three other factors should be taken into account: the cost of 
the experiment; the morality of performing it; and the value, both 
theoretical and practical, of the hypotheses one is interested in. 
Bayes's theorem, of course, cannot help here. 

4.i Under-Determination and Prior Probabilities 

We pointed out in Chapter 1 that any data are explicable by infi-
nitely many, mutually incompatible theories, a situation that some 
philosophers have called the 'under-determination' of theories by 
data. For example, Galileo carried out numerous experiments on 
freely falling bodies, in which he examined how long they took to 
descend various distances. His results led him to propound the 
well-known law: s = a + ut + ± gt2, where s is the distance fallen by 
the body in time t, and a, 1I and g are constants. Jeffreys (1961, p. 
3) pointed out that without contradicting his own experimental 
results, Galileo might instead have advanced as his law: 
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where t" te, ... , t" are the elapsed times of fall that Galileo record-
ed in each of his experiments; a, u and g have the same values as 
above; and I is any function that is not infinite at any of the val-
ues t l , f2' . . . , tn . Jeffreys's modification therefore represents an 
infinity of alternatives to the orthodox theory, all implying 
Galileo's data, all mutually contradictory, and all making different 
predictions about future experiments. 

There is a similar example due to Goodman (1954; for a live-
ly and illuminating discussion, see Jeffrey 1983, pp. 187-190). He 
noted that the evidence of many green emeralds, under varied cir-
cumstances, would suggest to most observers that all emeralds are 
green; but he pointed out that that hypothesis bears the same rela-
tion to the evidence as does a type of hypothesis that he formulat-
ed as 'All emeralds are grue'. Goodman defined something as 
'grue' when it was either observed before the present time (T = 0) 
and was green, or was not observed before that time and was blue. 
Clearly there are infinitely many grue-type predicates and infi-
nitely many corresponding hypotheses, each associated with a dif-
ferent value of T > O. All the current evidence of green emeralds 
is implied by both the green-hypothesis and the grue variants, yet 
not more than one of the hypotheses could be true. 

As Jeffreys put it, there is always "an infinite number of rules 
that have held in all previous cases and cannot possibly all hold in 
future ones ." This is a problem for those non-Bayesian scientific 
methods that regard a theory's scientific value as determined just 
by pre I h) and, in some versions, by Pre). Such philosophical 
approaches, of which Popper's is one example, and maximulll-
likelihood estimation (Chapter 7, section e) another, would have 
to regard the standard law offree fall and Jeffreys's peculiar alter-
natives as equally good scientific theories relative to the evidence 
that was available to Galileo, and similarly with Goodman's 
strange hypotheses concerning emeralds, although these are judg-
ments with which no scientist would agree. 

In the Bayesian scheme, if two theories explain the evidence 
equally well, in the sense that pre I hi) = pre I h) , this simply 
means that their posterior probabi I ities are in the sallle ratio as 
their priors. So theories, such as the contrived variants ofGalileo's 
law and the Goodman grue-alternatives, which have the same 
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relation to the evidence as the orthodox theories and yet are 
received with incredulity, must have much lower prior probabili-
ties. The role of prior probabilities also accounts for the important 
feature of scientific reasoning that scientists often prefer a theory 
that explains the data imperfectly, in the sense that pre I h) < I, to 
an alternative that explains them perfectly. This occurs when the 
better explanatory power of the alternative is offset by its inferior 
prior probability (Jeffreys 1961, p. 4). 

This Bayesian account is of course only partial, for we can pro-
vide no general account of the genesis of prior probabilities. In 
some situations, the prior may simply be the posterior probability 
derived from earlier results and an earlier prior. Sometimes, when 
there are no such results, a prior probability may be created 
through what we know from other sources. Consider, for instance, 
a theory that makes some assertion about a succession of events in 
the development of a human society; it might, for example, say 
that the elasticity of demand for herring is constant over a particu-
lar period, or that the surnames of all future British prime minis-
ters and American presidents will start with the letter B. These 
theories could possibly be true, but are immensely unlikely to be 
so. And the reason for this is that the events they describe are the 
causal effects of numerous, independent processes, whose separate 
outcomes are improbable. The probability that all the processes 
will turn out to favour one of the theories in question is therefore 
the product of many small probabilities and so is itself very small 
indeed (Urbach 1987b). But the question of how the probabilities 
of the causal factors are estimated remains. This could be answered 
by reference to other probabilities, in which case the question is 
just pushed one stage back, or else by some different form of rea-
soning. For instance, the 'simplicity' of a hypothesis has been 
thought to have an influence on its initial probability. This and 
other possibilities are discussed in Chapter 9. 

4.j I Conclusion 

The various, mostly familiar aspects of scientific reasoning that 
we have examined have all shown themselves to correspond nat-
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urally to aspects of Bayesian logic, whereas non-Bayes ian 
accounts fail more or less completely. So far, we have concentrat-
ed chiefly on deterministic theories. We shall see in the next and 
following chapters that the Bayesian approach applies equally 
well to statistical reasoning. 
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